
]VASA-C - I 'q, 5ff8

NASA Contractor Report 189598
NASA-CR-189598

ICASE Report No. 92-1 19920009634

ICASE
PARALLELIZATION OF IRREGULARLY
COUPLED REGULAR MESHES

Craig Chase
Kay Crowley ..

II _I:_ I_;)\w :7:":,q
Joel Saltz L,_:'°"'
AnthonyReeves

_JiARi ! 1992

LANGLEYRESEARCHCENTER.
LIBRARYNASA

ContractNo. NAS1-18605 _ ._=__HA_M_PTON__t__V.I__RGINIA"
January 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, Virginia 23665-5225]7 _Jzl .Ebi:.,.b.[.,._.._.___z'._,,.:J._,

Operated by the Universities Space Research Association

),'hDTTO tE TA}(L'IN FIIONf '_HIS }.[00,'_('

N/ A
NationalAeronautics and
SpaceAdministration

Langley Research Center
Hampton,Virginia23665-5225

Parallelization of Irregularly Coupled Regular Meshes.*

Craig Chase t Kay Crowley*
Cornell University Yale University

School of Electrical Engineering Department of Computer Science
Ithaca, NY New Haven, CT

Joel Saltz Anthony Reeves
ICASE Cornell University

NASA Langley Research Center School of Electrical Engineering
Hampton, VA Ithaca, NY

Abstract

Regular meshes are frequently used for modeling physical phenomena on both serial
and parallel computers. One advantage of regular meshes is that efficient discretization
schemes can be implemented in a straightforward manner. However, geometrically-
complex objects, such as aircraft, cannot be easily described using a single regular mesh.
Multiple interacting regular meshes are frequently used to describe complex geometries.
Each mesh models a subregion of the physical domain. The meshes, or subdomains,
can be processed in parallel, with periodic updates carried out to move information
between the coupled meshes. In many cases, there are a relatively small number (one
to a few dozen) subdomains, so that each subdomain may also be partitioned among
several processors.

We outline a composite run-time/compile-time approach for supporting these prob-
lems efficiently on distributed-memory machines. This paper describes these methods
in the context of a multiblock fluid dynamics problem developed at the NASA Langley
Research Center.

*This work was supported by the National Aeronautics and Space Administration under NASA contract
NAS1-18605.

tAdditional support for Chase has been provided by IBM Corporation
tAdditional support for Crowley has been provided by the NSF under NSF Grant ASC-8819374

1 Introduction

We are developing methods for porting programs with irregularly coupled regular meshes

(ICI_Ms) commonly known as multiblock applications, to distributed-memory parallel com-

puters. In order to ensure that our techniques are applicable to real-world problems, we

have begun our research with a specific multiblock problem from the domain of computa-

tional fluid dynamics. Although our initial focus was multiblock CFD, we aim to produce

methods that are applicable to all parallel codes that meet the following criteria:

• The data is divided into several interacting regions (typically called subdomains).

• There exists a computational phase in which work on each suFdomaln can be carried

out independently.

• Data access patterns within each subdomaln are regular.

• Communication between subdomains is limited to rectangular sections of data that

are exchanged between subdomains.

In many problems there are at most a few dozen subdomains of varying sizes. We can as-

sume that we will have to assign at least some of the subdomains to multiple processors, we

must consequently be prepared to deal with multiple levels of parallelism in ICRM codes. A

model of an ICRM application is shown in Figure 1. Typically ICRM applications have two

levels of parallelism available. A coarse-grained parallelism is available for processing the

subdomains concurrently. Each subdomain is aself-contained computation region that can,

except for boundary conditions, be operated upon independently of the other subdomains.

In addition, the computation for individual subdomalns has fine-grain parallelism available.

In order to achieve efficient execution of ICRM applications on distributed-memory multi-

computers, both levels of parallelism must be exploited.. Applying coarse-grained parallelism

1

ICRM
(coarse-grainparallelism
irregularcommunication)

Subdomain Subdomain
(finegrainparallelism

regularcommunication) I

Subdomain _ Subdomain

Figure 1: ICRM Application Model

will help to keep communication overhead to a manageable fraction of the computation time.

However, since the number of subdomains is relatively small, particularly when compared

to the number of processing elements in current distributed-memory multicomputers, the

coarse-grained parallelism between subdomalns will not provide sufficient parallel activity

to keep all processors busy. The fine-grained parallelism within each subdomain must be

used to fill this gap.

The methods we are developing to support ICRM applications are semi-automatic and

include both compile-time and runtime support for partitioning and communication. We

have developed and benchmarked on the Intel iPSC/860 the runtime support required to

carry out the required patterns ofinterprocessor data motion. We have also developed a very

rudimentary compiler prototype to embed this runtime support. The compiler produces,

as output, Fortran 77 code that can be compiled and run on a distributed-memory parallel

computer. This compiler prototype was built to experimentally define what will be needed

to effectively support ICRM computations.

Our ultimate goal in this work is to provide language-level support for ICRMs in a

general-purpose parallel language like Fortran D[FHK+90]. We concentrate here on de-

scribing the functionality that must be added to such a language to handle ICR.Ms, and

implementation techniques that efficiently support that functionality. In the course of our

work, we have defined extensions to Fortran D that are useful for these problems; these are

a means to an end, not the final product. Although we strongly believe that the functions

provided by these new features will be critical for ICRM support, we believe that further

work is needed to define appropriate syntax. We are currently collaborating with Rice to

develop Fortran D extensions which capture the functionality we describe in this paper.

1.1 Problem Overview

The application we investigated is a problem from the domain of computational fluid dy-

namics. The serial code was developed by V. Vasta at the NASA Langley Research Center,

and solves the thin-layer Navier-Stokes equations for a fluid flow over a three-dimensional

surface with complex geometry. The problem geometry is decomposed into between one and

a few dozen distinct regions, each of which is modeled with a regular, three-dimensional,

rectangular grid. The boundary conditions of each region are enforced by simulating any

of several situations including; viscous and inviscid walls, symmetry planes, extrapolation

conditions, and interaction with an adjacent region. The size of each region (hereafter sub-

domain), its boundary conditions and adjacency information are loaded into the program

at run time. For this application, the same program is run on all subdomMns. However,

different subroutines will be executed when applying the boundary conditions on different

subdomains. In general, the code used to process each subdomain of an ICI_M application

may be different.

The sequence of activity for this program is as follows:

3

Read subdomain sizes, boundary conditions and simulation parameters,

Repeat (typically large number of times):

A. Apply boundary conditions to all subdomains,

B. Carry out computations on each subdomain.

The main body of the program consists of an outer sequential loop, and two inner parallel

loops. Each of the inner loops iterate over the subdomains of the problem, the first applying

boundary conditions (Step A), which may involve interaction with other subdomains, and

the second loop advancing the physical simulation one time step in each subdomain (Step B).

Partitioning of the parallel loops is the source of the coarse-grained parallelism for the

application. Furthermore, within each iteration of the loop that implements Step B there

is fine-grained parallelism available in the form of large parallel loops.

1.2 Compiler Overview

To investigate the extent to which ICRM applications can automatically be transformed

for execution on a distributed-memory multicomputer, we designed a rudimentary compiler

geared toward applying the specific set of transformations required by ICRMs. The com-

piler is built using the Sigma Toolkit [GLS+91], which provides dependency and dataflow

analysis. Sigma also provides a framework for applying transformations to programs and

includes support for common dialects of Fortran, C ' and C++. As the main focus of the

compiler was ICRM applications, a number of important Compiler functions were not im-

plemented. Rather than duplicate the efforts of ongoing or existing distributed-memory

compiler projects, such as Fortran D [HKT91], Superb [ZBG86] [Ger89], and AL [Tse90],

which have investigated many of the fundamental issues in distributed-memory compiling,

our experimental compiler uses techniques which are complementary to these other ap-

Table 1: Compiler Transformations

Parallelism Communication

Between Subdomains Owner computes Subarray Exchanges
loop bounds replaced replace copies of

•with function calls regular array sections
with procedure calls

Within a Subdomain Owner computes Overlap Cells
loop bounds replaced size of overlap determined
with function calls at compile time

procedure calls embedded
to implement communication

proaches; applying specific transformations to those sections of the program that exhibit

characteristic ICRM behavior.

The transformations performed by the compiler can be organized into four general cate-

gories, as shown in Table 1. The basic responsibilities of the compiler for ICRM applications

are to handle the coarse grain parallelism between subdomains, the fine grain parallelism

within a subdomain, and to ensure that the required communication takes place for both

levels of parallelism. As our principal objectives were to determine the level of functional-

ity required to handle ICRM applications, an d to establish the potential for a compiler to

automatically transform annotated ICRM programs for distributed-memory environments,

the major focus of the compiler is to embed procedure calls to the enhanced PARTI runtime

library.

Our transformations introduce both fine and coarse-grained parallelism into the program

by enforcing the owner computes rule. Communication within a subdomain is implemented

using overlap cells, utilizing both compile-time and runtime components. Communication

between subdomains is provided through runtime support for exchanging regular array

sections. Procedure calls to perform the data motion are inserted into the program by the

compiler.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, the directives we use

in the annotated version of the program are explained. Section 3 outlines the runtime

library. Section 4 describes the parallelization of the computation for individual subdomains.

In Section 5 we describe the techniques we developed for achieving parallel execution of

multiple subdomains.

2 Fortran Directives

As part of our investigation into ICRM applications, we have identified the functionality

needed to express data layout and organization on the processors. Integration of this func-

tionality into the Fortran D language is currently underway. As a preliminary step, we

have defined an experimental syntax for expressing this functionality in Fortran programs,

and used this syntax to test our support for ICRMs. Although we feel that the expressive

content of our directives is necessary for ICRM applications, the directives themselves are

experimental, and unlikely to be adopted for implementation in Fortran D.

2.1 Subdomain Placement

The binding of subdomalns to processors has important performance implications. Load

balance plays a crucial role in determining computational efficiency. Since the amount

of computation associated with each subdomain is directly proportional to the number

of elements in the subdomain, good load balancing is achieved by binding processors to

subdomalns in a ratio proportional to their sizes. In our implementation, this mapping is

under user control and is specified using program directives.

The principal abstraction for dealing with data placement is the decomposition. How-

6

ever, unlike Fortran D, where decompositions are bound to the entire processor set, we map

decompositions to subsets of the processors. The mechanism for specifying this arrangement

is a directive called embed. The embed directive binds a decomposition to a rectangular sub­

region of another decomposition. Any number of decompositions may be embedded into a

single root decomposition. The root decomposition is mapped onto the entire set of physical

processors. Embedded decompositions are mapped onto subsets of these processors based

on the relative size, and location of the subregion in the root decomposition to which they

are bound. This methodology can easily be extended recursively to support an arbitrary

sequence of embeddings, although for most ICRM applications we are aware of, a two level

decomposition hierarchy appears to be sufficient. The root level establishes a template onto

which each subdomain can be mapped.

For the Navier-Stokes application, we use a one-dimensional decomposition for the root

level, and embed 3-dimensional subdomains into it. For example, if two subdomains, one of

size 10 x 10 x 10 and the other 5 x 5 x 10 were to be mapped onto the physical processing

resource, a root-level decomposition of size 1,250 would be used. The first subdomain would

be embedded into locations 1 through 1000 of this decomposition, and the second subdomain

into locations 1001 through 1250. To clarify the distinction between the declaration of a

decomposition and the specification of its size (which may be runtime dependent), we use

two directives, decomposition and shape, to provide the same functionality as Fortran D's

decomposition. This semantic partitioning allows us to conveniently declare an array of

decompositions to hold the set of subdomains. The dimensionality and size of each of the

decompositions in this array is determined dynamically by the shape directive. Although, in

this example, the sizes are constants, in general, for an ICRM application, the subdomain

sizes are not known until runtime.

7

2.2 Distributing Array Data

In our implementation, the arrays that make up each subdomain are distributed using the

Fortran D align directive. However, since the number of subdomains, and their sizes, are

not known until runtime, we allocate space using a single, one-dimensional work array. To

make it possible to allocate space for multiple decompositions (or multiple elements of an

array of decompositions) using a single work array, the align directive was extended to allow

array reshaping. Our implementation of align supports the arbitrary reshaping of a region

of memory into multidimensional, distributed arrays.

3 Run Time Support

The runtime support contains a number of PAtLTI procedures which carry out the book-

keeping needed to track the distributed arrays that describe ICRM problems. This runtime

support is a generalized version of the runtime support described in [BSS91]. The major

functions in the runtime library are listed in Table 2.

There are two principal data structures that are created and maintained in the runtime

library. These data structures are distributed array descriptors, and communication sched-

ules. The distributed array descriptor is a data structure that tracks a variety of attributes

associated with each distributed array, including:

• array dimensionality and size,

• the number of overlap cells (see Section 4) in each dimension,

• array distribution in each dimension, and

• the set of processors to which the distributed array is mapped.

Communication schedules are data structures that describe how a specific data transfer is

to be performed including:

8

Table 2: Runtime Library

Distribution Declarations

create_decomposition instantiates a decomposition
embed maps decompositions to processors

distribute establishes distribution pattern

for decompositions

align binds arrays to decompositions
creates distributed array descriptor

records overlap region sizes
Communication Primitives

exchsched makes schedule for overlap regions

subarraysched makes schedule for subarray exchange

datamove executes a schedule (communicates data)

• individual send and receive lists on each processor, and

• data access patterns for moving data between arrays and message buffers.

The communication schedule_ or schedule_ allows us to implement data motion as a two-

phase process. Commonly known as Inspector/Executor, this methodology uses a prepro-

cessing stage to determine the set of low-level communications primitives which must be

used to transfer the data. A second stage then implements the data communication. This

mechanism has been applied to irregular problems in the PAI_TI system [SCMB90], and to

both regular and irregular problems as part of the maparray construct in Paragon [CC1_$91].

Table 2 is organized into two components. The upper section of the table shows the

primitives used to define the distribution of array data. The lower section lists the primitives

used to perform data communication. These primitives can be used directly to program

ICRM applications_ or can be embedded into the program automatically.

The procedure create_decomposition defines a new decomposition with a given di-

mensionality and size in e_ch dimension. The procedure embed implements the embed

directive (see Section 2.1) and constrains the set of processors associated with a decom-

9

position. A decomposition that has not been embedded into another decomposition is, by

default, mapped to all processors.

The distribute procedure defines the type of distribution for each dimension of a de-

composition (e.g. BLOCK, CYCLIC or IRREGULAR) and is used to implement the

Fortran D distribute directive.

The align procedure implements the align directive and is used to associate arrays with

decompositions and to create distributed array descriptors. The compiler determines the

number of overlap cells for each array dimension and passes this information to align.

Align writes the distributed array descriptor into a hash table, organized by array starting

address. Using the hash table allows arrays to be passed as parameters between subroutines,

transparently inheriting the distribution information from the calling procedure. Alterna-

tively, the distribution data can, in some cases, be traced interprocedurally at compile time.

Hiranandani et al define a process known as reaching decompositions which can be used to

analyze array distribution both intra and inter procedurally [HKT91].

The communication primitives include a procedure exchsched which computes a sched-

ule that is used to direct the filling of overlap cells along a given dimension of a distributed

array. The schedule specifies required intra-processor data copying along with a set of send

and receive calls.

The primitive subarraysched carries out the preprocessing required to copy the con-

tents of a regular section, source, in one subdomain into a regular section, destination,

in another subdomain. The interactions between subdomains for ICRM applications are

limited to the exchange of regular subsections, as illustrated in Figure 2. The subar-

raysched primitive supports data moves between arbitrary rectangular sections of two

subdomains, and can transpose the data along any dimension. Subarraysched can also

copy the contents of a regular section in a given subdomain into another regular section

10

Toasectionofa
Move a section of a face on a

face from one subdomain different subdomain

Figure 2: Moving Regular Subsections Between Subdomains

in the same subdomain. Subarraysched produces a schedule which specifies a pattern

of intra-processor data transfers along with a set of send and receive calls. The primitive

subarraysched executes on each processor. On a given processor P, subarraysched must

find out whether it owns any portion of source. If P does own some portion, sourcep, of

source, subarraysched must calculate the processors to which various subsets of sourcep

will have to be sent. Subarraysched must also calculate whether processor P owns any

portion of destination and, if so, it must prepare to receive the appropriate messages.

Schedules produced by exchsched and subarraysched are employed by a primitive

called datamove that carries out communication and intra-processor data copying.

4 Computation Within a Subdomain

The computation within a subdomain requires predominantly near-neighbor communi-

11

do k=l,kmx
do j=l,jmx
do i=l,imx

qs = (skx(i,j,k) + sky(i,j,k) +
skz(i,j,k))/ra

ra = 0.5*(w(i,j,k+l) + w(i,j,k))
hs(i,j,k) = qs*ra

ra = 0.5*(w(i,j+l,k) + w(i,j+l,k)
gs(i,j,k) = qs*ra

ra = 0.5*(w(i+l,j,k) + w(i,j,k))
fs(i,j,k) = qs*ra

enddo

enddo
enddo

Figure 3: Example Code for Sweep Over a Single Subdomain

cation. A typical loop nest for this component of an ICRM application is shown in Figure 3.

The loop nest is computationally intensive, with no loop-carried data dependencies. Be-

cause the communication is regular, this code can be efficiently handled by the overlap cell

method described by Gerndt in [Ger90]. Our compiler transforms this code as follows:

• Overlap cells are determined by scanning every subroutine in the procedure and ac-

cumulating the data in an interprocedural analysis phase of the compiler. When two

subroutines have different overlap cell requirements, the maximum of the two values

is used. The final value for the number of overlap cells for each dimension of every

array must be a constant.

• Local array sizes are determined dynamically at subroutine boundaries. The array

sizes are computed by a function in the run time library, and includes the extra

memory required for the overlap cells.

• Loops are partitioned to enforce the owner computes rule within the loop body. For

this transformation, the compiler identifies an array appearing on the left hand side

12

of an assignment statement for which the loop-index is used as a subscript. This loop

is then partitioned in the same manner as the array. For multidimensional arrays, the

compiler identifies a specific dimension of an array for each loop in the loop nest.

4.1 Performance

Figure 4 shows the'performance obtained while processing a single 64,000 element subdo-

main. Figure 5 shows the same data normalized by the number of processors. The data was

collected using an iPSC/860 multicomputer processing a single 40 × 40 × 40 subdomain. The

timings were made from a single routine which is representative of the computation behav-

ior of the program while processing an individual subdomain. The curve labeled "Actual"

shows the performance, in megaflops, obtained for a single invocation of the subroutine.

The "Optimistic" curve shows the performance that results when the time spent comput-

ing the communication schedules is excluded. Since schedules can be reused, this cost can

be amortized over several invocations of the subroutine. The optimistic curve reflects the

asymptotic performance for severM iterations of this routine.

The "Ideal" curve includes only the message-passing time_ and excludes the time re-

quired to create communication schedules, and the time spent reorganizing the data. For

a multi-dimensionM array_ the elements that must be transferred to fill the overlap cells

will not, in general, be in a contiguous section of memory. To transfer this data between

processors on the iPSC/860, it must be first copied into a local buffer. After transmis-

sion_ the data is again reorganized as it is placed into the overlap cells. The "IdeM" curve

excludes the time spent packing and unpacking data. Since communication is always re-

quired for a distributed-memory implementation, this curve demonstrates the maximum

possible performance for this loop given the bandwidth and communication latencies of the

iPSC/860.

13

90 I I l I I

80 Co_cadon-_ee
Ideal -.---

Optimistic -_---
70 Actual ...x......

60

o..[]

50

_2 40

30

20

10 I , , , ,
5 10 15 20 25 30

Numberof Processors

Figure 4:iPSC/860 Single-Subdomain Performance

The curve labeled "Communication-free" shows the computation rate obtained when no

communication takes place. As the partition size on each processor decreases, the compu-

tation rate on each node also decreases. This effect is attributable to the increased relative

cost of loop overhead and pipeline setup time. This curve demonstrates that even when

communication effects are excluded, a large grMn size will result in better overall perfor-

mance. This data indicates the upper bound on the performance imposed by the application

program code and the if77 compiler.

5 Supporting Multiple Subdomains

An important characteristic of ICRM applications is the relative independence of the sub-

domains. Much of the computation for a subdomain can be performed in parallel with_

the processing of other subdomains. As Figure 5 illustrates, there is a potential for much

14

7 i ! w i i !

6 Communication-free
Ideal -+---

Optimistic-_---
5 Actual ...*......

_ 4

1

0 ! I I I I I

5 10 15 20 25 30
Number of Processors

Figure 5: Per Node Single-Subdomain Performance

15

higher overall performance by partitioning the set of processors, and binding a relatively

small number of processors to each subdomain. The cost of this approach is periodic syn-

chronization between those subdomains which must exchange data.

5.1 Inter-Subdomain Communication

Although the processing of individual subdomalns exhibits regular communication, inter-

action between subdomains is irregular. An illustration of the sort of communication that

is required is shown in Figure 6. The figure shows two subdomains, one which models the

airflow around a wing and another which models the region around a control surface on the

wing. In this problem, there are two boundary conditions which require inter-subdomain

communication. These boundary conditions consist of segments along exterior edges of the

grids that, in the problem geometry, are adjacent. Although the sections are rectangular,

the beginning and ending points of the sections are not determined until runtime. In gen-

eral, the adjacency information for an ICRM is problem specific, and not determined until

runtime. However, an efficient implementation should be able to take advantage of the fact

that communication is limited to the exchange of rectangular sections of data.

Transforming an ICRM application to efficiently handle this type of data communication

begins by identifying those locations in the program which require data transfer between

subdomains. Our implementation recognizes code that performs regular data moves between

arrays by simple symbolic analysis of array subscripts and checking the dataflow pattern

in loop bodies. When the compiler detects that a regular section of an array is being

transferred into another array, it removes the assignment statements from the loop body

and inserts procedure calls to implement the data motion. Since the runtime library can

move regular sections of data between subdomains, or within the same subdomain, this

technique is safe for any parallel loop (i.e. a loop with no loop-carried dependencies).

16

Wing (subdomain1) ControlSurface(subdomain 2)

/

subdomain 1

adjacentceils adjacentcells

Figure 6: Data Movement Between Subdomains

17

Table 3: Int_r-Subdom_in Communi
Processors Transfer Scheduling Total

4 llms 32ms 43ms

8 6.3ms 32ms 39ms
16 4.5ms 28ms 33ms

32 2.5ms 25ms 28ms

5.2 Performance

We'applied our methodology for inter-subdomain data transfers to a simplified version of the

Navier-Stokes application and benchmarked the resulting code on the iPSC/860. Table 3

shows the time required to communicate data between two 40 × 40 × 40 subdomains for

different processor sizes. Each subdomain is placed on half of the processors, and one 40 × 40

face is transferred from subdomain 1 to subdomain 2. The column labeled "Transfer" gives

the time required to actually transfer the data. The "Scheduling" column shows the time

required to compute the communication schedules. Since communication schedules can be

reused several times, the asymptotic performance is the data transfer rate.

As a point of reference, the time required to complete one iteration of the subroutine

benchmarked in Section 4.1 was on the order of a few hundred milliseconds; ranging from

230ms on 32 processors to 760ms for 4 processors. The inter-subdomain communication

time is an order of magnitude less than the computation time for each iteration and is not

an impediment to processing multiple subdomains in parallel.

5.3 Partitioning for Coarse-Grain Parallelism

The parallelism between subdomains can be obtained by introducing partitioning at sev-

eral levels in the program. Our implementation is based on introducing partitioning at a

relatively low level. With the exception of standard library routines, such as sqrt, sub-

routine calls are run on every processor. Within a subroutine, loops are partitioned to

18

mirror the array distribution, as described in Section 4. This loop partitioning results in

parallel execution of the loop on all processors bound to the subdomain. In addition, con-

current processing of multiple subdomains also develops, as processors bypass the loops

which iterate over non-local subdomains. This method is quite effective at extracting the

coarse-grained parallelism available in the Navier-Stokes application because of the large

amount of computation within each subdomaln. Since a typical loop over an individual

subdomain requires several tens or perhaps hundreds of milliseconds on the iPSC/860, the

overhead associated with subroutine calls and runtime tests to check locality is insignificant.

Our straightforward approach is safe, and will result in correct execution on distributed-

memory multicomputers, but it is not especially aggressive. More sophisticated techniques

may be required to extract the coarse-grained parallelism in programs with many, relatively

small subdomalns. The loop in Figure 7 shows a simplified version of one of the main loops

for the Navier-Stokes application. This loop iterates over a set of meshes (subdomalns) in

sequence. For each mesh, three subroutines are called. The parameters to the subroutines

are a section of the array X, and the sizes for each dimension of the current mesh. As

described in Section 2.2, a single, one-dimensional space array is used to hold the data

for all subdomains. In our implementation, every processor executes this loop serially,

and executes every subroutine call: For any given subdomaln, m, some processors will

participate in the computation of the subroutines, and others will simply fall through the

loops; performing no iterations because they store none of the elements of m.

More efficient parallelization is possible if the unnecessary subroutine calls can be

avoided on individual processors. A compile-time methodology for this can be based on

interprocedural regular section analysis. By performing regular section analysis, such as

that described in [HK90], [HK91] it may be possible to determine that a regular region of

the array X is accessed within the individual subroutines. Further symbolic analysis can

19

•do m = 1, num_domains

call navier(X (mesh (m)), isize(m), jsize(m), ksize(m))
call flux(X(mesh(m)), isize(m), jsize(m), ksize(m))
call solve(X(mesh(m)), isize(m), jsize(m), ksize(m))

enddo
o**

subroutine navier(X, isz, jsz, ksz)
dimension X(isz,jsz,ksz)
.°°

end

Figure 7: Loop Over Subdomains

then be applied to associate this section of X with the subdomain to which it has been

aligned. Note that this test may require interprocedural analysis since the distribution of

X may have occurred in a different subroutine from the loop shown in Figure 7. Once the

compiler has determined that each subroutine invocation accesses only a single subdomain,

it may partition the loop according to which subdomains are local.

An alternative approach to partitioning this loop could be based on runtime preprocess-

ing. Since the loop shown in Figure 7 is executed many times as part of an outer sequential

loop (see Section 1.1), the cost of determining the loop partitioning at runtime will likely be

an insignificant part of the total execution time. However, even with a runtime approach,

some analysis must be performed to ensure that the partitioning remains valid as this loop

is reexecuted at each iteration of the outer loop.

Both of these approaches require interprocedural and symbolic analysis that may extend

the limit of what seems reasonable to expect from the current generation of compilers. User

input, in the form of additional directives, may be required in order to partition loops such as

the one shown in Figure 7. Furthermore, since a high-level of coarse-grained parallelism can

still be obtained on large, numerically-intensive programs even when this loop is executed

sequentially on all processors, the most effective method for extracting the inter-subdomain

2O

parallelism from ICRM applications is an open question.

6 Conclusions

We have developed methods for efficiently executing ICRM applications on distributed

memory multicomputers. These applications are an important class of scientific programs

with computational behavior requiring specialized support not available in the current set

of distributed-memory compilers. The fundamental aspects of this class of applications that

we have addressed include:

• Identifying the set of functionality to be introduced at the language level for program-

ming ICRMs.

• Developing a methodology for maintaining several interacting subdomains, each dis-

tributed on a subset of the total processors.

• Providing communication support both within a subdomain and between subdomains.

• Identifying the compile-time requirements for embedding the communication support,

and for extracting parallelism (both fine-grained and coarse-grained) from ICRM ap-

plications.

The efficacy of our approach has been verified using a rudimentary compiler which

implements a set of highly specialized program transformations, and embeds procedure

calls to implement data motion. A runtime library has been developed for the iPSC/860

multicomputer. This library implements the core set of functionality required by ICRMs,

and has been tested using an applications program developed at the NASA Langley Research

Center. The communications overhead imposed by the runtime support has been shown to

not be prohibitive to achieving good performance on the iPSC/860.

21

Acknowledgements

The authors would like to thank Chuck Koelbel, Lorie Liebrock, Reinhard von Hanxleden

and Ken Kennedy for extremely useful discussions about compiler support of ICRMs and

how this functionality could be integrated into Fortran D. We would like to thank Chuck

Koelbel for insight into the (eventual) use of interprocedural analysis in the paraUelization

of ICRM computations.

We would also like to thank Dennis Gannon for providing us with an early release of

the Sigma toolkit.

References

[BSS91] H. Berryman, J. SMtz, and J. Scroggs. Execution time support for adaptive sci-
entific Mgorithms on distributed memory architectures. Concurrency: Practice
and Experience, 3(3):159-178, June 1991.

[CCRS91] Craig Chase, Alex Cheung, Anthony Reeves, and Mark Smith. Programming for
scientific computation using communication structures. In International Con-
ference on Parallel Processing, 1991.

[FHK+90] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and
M. Wu. Fortran D language specification. Technical Report TR90-141, Dept. of
Computer Science, Rice University, December 1990.

[Ger89] Hans Michael Gerndt. Automatic Parallelization for Distributed-Memory Mul-
tiprocessing Systems. PhD thesis, Institute for Statistics and Computer Science,
University of Vienna, 1989.

[Ger90] M. Gerndt. Updating distributed variables in local computations. Concurrency:
Practice _ Experience, 1990.

[GLS+91] Dennis Gannon, Jenq Kuen Lee, Bruce Shei, Sekhar Sarukkai, Srinivas
Narayana, Neelakantan Sundaresan, Daya Attapatu, and Francois Bodin.
SIGMA II: A tool kit for building parallelizing compilers and performance anal-
ysis systems. Technical report, Indiana University, 1991.

[HK90] P. Havlak and K. Kennedy. Experience with interprocedural analysis of array
side effects. In Proceedings of Supercomputing '90, New York, NY, November
1990.

[HK91] P. Havlak and K. Kennedy. An implementation of interprocedural bounded
regular section analysis. IEEE Transactions on Parallel and Distributed Systems,
2(3):350-360, July 1991.

22

[HKT91] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for fortran
D on mimd distributed-memory machines. In Supercomputing '91, Albuquerue,
New Mexico, November 1991.

[SCMB90] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling
and execution of loops on message passing machines. Journal of Parallel and
Distributed Computing, 8:303-312, 1990.

[Tse90] P.S. Tseng. A parallelizing compiler for distributed memory parallel computers.
In SIGPLAN '90, White Plains, NY, June 1990.

[ZBG86] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1986.

23

Form Approved
REPORT DOCUMENTATION PAGE OMBNo.0704-0188

Public repOrting burden for thrs collection of informal:ion is estimated to average 1 hour per response, including the time for reviewing instructions searching existing data sources,
gathering and maintaining the data needed, and completin 9 and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, fncludlng suggestions for reducing this burden, to Washington Headquarters Services, Directorate/or Information Operations and Reports, 1215 Jefferson
DavisHighway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Januarv 1992 Contraeto R_nQrr
4. TITLEAND SUBTITLE 5. FUNDINGNUMBERS

PARALLELIZATION OF IRREGULARLY COUPLED REGULAR MESHES C NASI-18605

WU 505-90-52-01
6. AUTHOR(S)

Craig Chase, Kay Crowley, Joel Saltz and Anthony Reeves

7. PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES) 8. PERFORMINGORGANIZATION
REPORTNUMBER

Institute for Computer Applications in Science

and Engineering ICASE Report No. 92-1
Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES) 10.SPONSORING/MONITQRING

NationalAeronauticsand Space Administration AGENCYREPORTNUMBER
Langley ResearchCenter NASA CR-189598
Hampton,VA 23665-5225 ICASE Report No. 92-i

11. SUPPLEMENTARYNOTES

Langley Technical Monitor: Michael F. Card International Supercomputing
Final Report Conference

(lZa. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Category 61,64

13. ABSTRACT (Maximum 200 words)

Regular meshes are frequently used for modeling physical phenomena on both serlal
and parallel computers. One advantage of regular meshes is that efficient

discretization schemes can be implemented in a straightforward manner. However,

geometrically-complex objects, such as aircraft, cannot be easily described using

a single regular mesh. Multiple interacting regular meshes are frequently _sed to
describe complex geometries. Each mesh models a subregion of the physical domain.
The meshes, or subdomains, canbe processed in parallel, with periodic updates

carried out to move informationbetween the coupled meshes. In many cases, there
are a relatively small number (one to a few dozen) subdomains, so that each subdomai,

may also be partitioned among several processors.

We outline a composite run-time/compile-time approach for supporting these problems
efficiently on distributed-memory machines. This paper describes these methods in

the context of a multiblock fluid dynamics problem developed at the NASA Langley
Research Center.

14. SUBJECTTERMS 15. NUMBEROFPAGES

Distributedmemory compiler,Navler Stokes, Block structured, 25
Fortran D 16. PRICECODE

A03

17. SECURITYCLASSIFICATION18. SECURITYCLASSIFICATION19. SECURITYCLASSIFICATION 20. LIMITATIONOFABSTRACT
OFREPORT OF THISPAGE OFABSTRACT

Unclassified Unclassified

NSN7540-01-280-5500 StandardForm298 (Rev 2-89)
Prescribed by ANSI Std Z39.18
298-102

NASA-Langley, 1992

