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Abstract

This report describes our progress on the development and imple-
mentation of hybrid finite element methods for scattering by bodies of
revolution. It was found that our earlier finite element-boundary in-
tegral formulation suffered from convergence difficulties when applied
to large and thin bodies of revolution. This report describes an alter-
native implementation where the finite element method is terminated
with an absorbing termination boundary. In addition, an alternative
finite element-boundary integral implementation is discussed for im-
proving the convergence of the original code.



1 Introduction

A restraining factor in the numerical simulation of three-dimensional structures for

electromagnetic scattering computations is the storage requirement associated with the

chosen method. For sub-wavelength structures traditional methods [1] have been found to

work well. However, for structures spanning several wavelengths, the storage requirement

limits the use of these methods.

For the special case of axially symmetric structures or bodies of revolution (BOR), a

reduction of the storage requirement is accomplished by reducing the three-dimensional

problem to a set of two-dimensional ones. Several moment method codes have been de-

veloped for the solution of these ([2] - [7] and others). However, for large structures the

required storage of 0(N2), where JV denotes the number of unknowns over the BOR cross

section, limits their use.

To further reduce the storage requirement, hybrid finite element methods ([8]-[12], etc.)

may be used, since the storage associated with the finite element method is O(N) in contrast

to the 0(N2) requirement of moment methods. These methods differ from one another

primarily by the application of the radiation condition. The most accurate method enforces

the radiation implicitly through an application of the boundary integral equation (BI) over a

fictitious boundary enclosure. By nature of the full matrix encountered over the enclosure,

this method is one of a class of boundary conditions referred to as "global" boundary

conditions. A reduction in storage is realized by choosing a fictitious enclosure in the shape

of a circular cylinder on which some of the integrals become convolutions! and may thus be

evaluated with the FFT in conjunction with an iterative solver [13]. Less accurate but more

efficient methods of storage involve the use of "local" boundary conditions, the most typical



of which being the absorbing boundary condition (ABC) [14]. Another local condition

involves the application of a simple first order condition (i.e., Dirichlet or impedance) on

the exterior boundary immediately adjacent to multiple absorbing material layers that are

included in the solution of interior problem [15]. This is termed the artificial termination

boundary (ATB).

For all hybrid finite element methods formulations mentioned above, the finite element

(FE) system is formed by discretizing the coupled potential equations [10] via the usual finite

element method. The resulting system is then augmented by either a discrete representation

of the Stratton-Chu equations [16] for the boundary integral approach, a discrete version

of the ABC's [18] or the free space impedance boundary condition (adjacent to absorbing

layers) for the ATB approach.

In this report, we present the current status of this research. Each section considers a

different hybrid finite element method and discusses our progress on that method.

2 Finite element — boundary integral method

A finite element - boundary integral method for the scattering by bodies of revolution

was previously developed [13]. In that report, the structures studied were restricted to sizes

O(1A) due to inaccuracies in the BI subsystem. (It was originally thought that since the

finite element portion had inaccuracies in the vicinity of the singular shell of radius k$p = m,

it must be the source of the inaccuracies. But after separating the BI and FE subsystems

that the source of the problem was revealed. It should be noted that tests performed on

the FE system using the incident field as the boundary condition to a free space solution

region, validated the FE subsystem.)



Enforcing the pec boundary conditions on the BI system (each unique term of the

original BI subsystem preserved), scattering tests were performed on ogives of normalized

size 1A x 0.088A for axial incidence. The current produced from this system is highly

oscillatory in the J0 component (denoted Jp in the figures), whereas the Jt component is

virtually unaffected in comparison to the Method of Moments (MoM) [17]. This is seen in

Figs. 1 - 4 for a 3A and a 10A version of the ogive, respectively. To correct this problem,

the suspect portion of the system was weighted with linear weighting functions, instead of

pulse functions, as was used in the original formulation. This resulted a much smoother

currents, as indicated in the Figs. 1 and 2. Note, however, that as the structure becomes

large, inaccuracies near k0p = m = I (corresponding to index positions 12 and 50 in Figs.

1 and 2 and indices 12 and 195 in Figs. 3 and 4) become even larger, particularly for the

10A ogive. This translates to correspondingly large errors in the far fields, which are more

apparent in the backscatter and forward scatter regions. After a careful re-evaluation of the

self-cell terms in the formulation, the problem continued to exist. The source of the problem

was then deduced to be the inaccurate matrix element evaluations near the observation cell,

since some of the integrands are strongly singular. This, as well as extending all weighting

and basis functions to linear form will be considered in a future work.

3 Elimination of internal resonances from the FE-BI sys-
tem

We have recently found for two dimensional problems [19] that the use of the scattered

field formulation eliminates the resonance problem associated with the boundary integral

portion of the formulation. We are currently investigating the reason behind this. Addition-

ally, a method involving the use of a complex wave number in place of the usual free space



wave number for the same purpose will be implemented. The authors of [20] indicate an

improved condition number (important for fast CG convergence) and excellent results for

a two dimensional example. We have experienced the same through some limited testing.

4 Finite element - artificial termination boundary method

The finite element development of the previous section was modified for a scattered

field implementation. To ensure the outgoing nature of the wave, our ATB was used.

This absorber was developed by minimizing the reflection coefficients from an impedance

backed three material layer absorber (cri = 0.3801 + jO.3098, er2 = 3.2211 + jl.3129,

er3 = 2.2448 + J0.6698, /xr, = crt, each has thickness r = 0.055A and are numbered from

innermost to outermost). Assuming that deforming this planar absorber into a spherical

shape (or any other shape) preserves its absorbing characteristics, the finite element region

was be terminated at some distance from the scatterer.

To determine the absorbing qualities of the spherically shaped absorber, tests were per-

formed by placing an x-directed electric dipole source inside a fictitious spherical boundary

as indicated in Figs. 5 and 6. The absorbing layers were placed at a minimum distance of

A/2 from the inner boundary in Fig. 5 and 1A in Fig. 6. Enforcing the Dirichlet boundary

condition for the electric field and the Neumann condition for the magnetic field (as would

be the case for a perfect conductor on the same boundary), the position of the dipole was

varied from the center of the sphere along the axis of revolution to a distance A/4 from the

inner boundary as indicated in Fig. 5. (The inner boundary was chosen as such to reduce

the number of unknowns required for the test. This was also necessary because of the strong

singular nature of the source.) Fig. 7 displays the far H$ field patterns (the <j> = 0 cut)

of the dipole as computed by integrating along the surface of the inner sphere and after



solving the system for those fields via the FE-ATB method. A comparison is made with

the exact results. For a source position ZQ = 1A, the far field pattern begins to deviate by

approximately 1 dB. For an axial position of ZQ = 1.25A significant deviation has occurred.

At this point, the source is 1.5A from the innermost layer of the absorber. Thus, a scatterer

would have to be at least this distance from this absorber to obtain reasonable results.

Scattering patterns for spheres of 1A and 1.5A using the same absorber geometry are

found in Figs. 8 - 10. Clearly, the results of the smaller sphere are better, but because

of multiple interactions with the absorbing layers, oscillations in the pattern are still pro-

duced. In order to obtain better results, better absorbers must be designed. A temporary

alternative is the use of the standard absorbing boundary conditions, described in the next

section.

5 Finite element — absorbing boundary condition method

The mesh may be terminated by the use of the standard ABCs [18] for the body of

revolution. This is currently under development. The code is being modified to allow for

general form higher order boundary conditions to developed in the future, which conform

to the scattering body.

6 Summary

We have presented a summary of the work performed during the past year. Work

currently in progress and expected to be completed soon is itemized as follows:

• Modify the BI subsystem for better accuracy and stability



• Resolve the resonance problem by either the scattered field approach or via the com-

plex wave number approach

• Couple the ABCs to the FE subsystem

• Modify the FE subsystem to include resistive cards and impedance boundary condi-

tions

• Perform a study on multilayered radome structures

The details of the previous work in addition to that mentioned above will be available

in a full report at the end of March.
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Figure 1: The Jt current on a 3A ogive.
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Figure 2: The J$ current on a 3A ogive.
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Figure 3: The Jt current on a 10A ogive.
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Figure 4: The J0 current on a 10A ogive.
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Figure 5: Mesh for a 1.5A sphere inside an absorbing spherical enclosure, the various layers

of which are indicated by the shading.
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Figure 6: Mesh for a 1A sphere inside an absorbing spherical enclosure, the various layers

of which are indicated by the shading.
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along the axis of revolution.
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Figure 8: TEZ scattering pattern for a 1.5A conducting sphere.
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Figure 9: TEZ scattering pattern for a 1A conducting sphere.
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Figure 10: TMZ scattering pattern for a 1A conducting sphere.
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