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Abstract

New volume and volume-surface integral equations are presented
for modeling inhomogeneous dielectric regions. The presented inte-
gral equations result in more efficient numerical implementations and
should therefore be useful in a variety of electromagnetic applications.



1 Introduction

The modeling of inhomogeneous dielectrics via an integral equation ap-
proach is traditionally accomplished via the introduction of equivalent vol-
ume electric and magnetic currents [1] - [8]. For a dielectric with non-trivial
permittivity and permeability this type of modeling implies six scalar un-
knowns at each volume location. As a result, the implementation of the
resulting integral equation is computationally intensive and has excessive
storage requirements.

In this paper it is demonstrated that any inhomogeneous dielectric mate-
rial, regardless of its permittivity and permeability profile, can be modeled
by a single electric or magnetic current density. Alternatively, either the
electric or magnetic fields within the dielectric can be used as the unknown
quantities. It appears though that one must pay a price for resorting to
these reduced-unknown and/or kernal-singularity representations. Specifi-
cally, because they involve derivatives of the unknown quantities, a higher
(at least linear) basis function is required for discretizing the resulting inte-
gral equations. However, it is possible to relax this requirement by resorting
to a new volume-surf ace field representation. In this case, either the undif-
ferentiated electric or magnetic field within the dielectric is the unknown
quantity along with the corresponding tangential electric or magnetic fields
on the outer boundary. Provided the dielectric volume is not composed of
a single thin layer, this volume-surf ace integral equation still represents a
nearly fifty percent reduction in the number of unknowns relative to tradi-
tional implementations.

2 Volume Representations

Let us consider the dielectric/ferrite volume Vj, shown in Fig. 1, having
relative constitutive parameters er and HT which are arbitrary functions of
position. Assuming some exterior excitation, (E',H'), the total field can
be written as

E = E'' + ES H = H'' + H' (1)

where (Es, Hs) are the scattered fields caused by the presence of the dielec-
tric. Traditionally [1] the scattered fields are formulated in terms of the



equivalent currents

Je, = jk0Y0(er - 1)E, Meq = jk0Z0(nr - 1)H (2)

with k0 and Z0 = l/Y0 being the free space wavenumber and intrinsic
impedance, respectively. In terms of these effective or equivalent current
densities, the scattered field is given by

* / • / • / • ( • — , ,. . ,. .. =• , >\ T ( i\\ j i
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in which r and r' denote the observation and integration points, respec-
tively,

L o J

is the free space dyadic Green's function,

VxF0(r ,r ' ) = -V<?0(r,r')xl, (5)

p-JMr-r'|

I = xx + yy + zz

is the unit dyad and Hs is given by the dual of (3). By substituting (3) and
its dual into (1) and then into (2), we obtain the coupled set of integral
equations

ES = E1' r € V d (7a)
jk0Y0(er - 1)

- H5 = H' re Vd (76)

for a solution of the equivalent currents Je? and Me?.
The aforementioned formulation appears to be the only approach that

has so far been utilized for three dimensional implementations. However,
as noted in the literature [4, 5, 9], the singularity of the kernal in (3)



presents numerical difficulties. Also, for non-trivial permeability, six scalar
unknowns are involved in the solution of (7). The first of these difficulties
can be alleviated by resorting to higher order basis functions and expressing,
for example, Es as

JMe, x VG0(r,r') - jk0Z0JeqG0(r,r')

^

Es =

(8)

which is the volume equivalent to the Stratton-Chu surface integral equa-
tion. Likewise, the scattered magnetic field to be substituted in (7b) can
be expressed by the dual of (8).

Although this appears to be the most popular approach in modeling
three-dimensional dielectrics, it can be shown that there are several other
ways to formulate the problem. Most importantly, it can also be shown
that (7) can be replaced with an equivalent system which involves only
three (not six) scalar unknowns. Specifically, from Maxwell's equations [10]
the radiation of Me? is indistinguishable from the radiation of the electric
current

V X Me,

"~ jk.Z0

This can be combined with (2) giving a single equivalent electric current

J^ = jk0Y0(eT - 1)E + V x [(/,„ - 1)H]

- V x H + Vx [(^ r-l)H] (10)

for representing the scattered fields (E% Hs). From the dual of (3) we then
obtain that the scattered magnetic field due to the current density (10) is

+ V x [Mr') - l)H(r')] dv' (11)



in which V implies differentiation with respect to the primed/integration
coordinates. When this is used in (1) we deduce the integral equation

H'(r) = H ( r ) - / / / [VG0(r,r') x l] • |^_llv' x H(r')
j j JVj L rv /

+ V x [(/zP(r') - l)H(r')] \dv' r £ V d (12)

where the unknown quantity is now the magnetic field within Vj. Using a
similar procedure it can be also shown that the scattered field may instead
be represented by the radiation of a single magnetic current density

M'e; = -^"^V x E - V x [(er - 1)E] (13)
\1T

From the first of (1) and (3), we then deduce the integral equation

E'(r) = E(r) - [VG0(r, r') x l - - V x E(r')
J J Jvd (. LLr\ i )

+ V'x[(e r(r ' )- l)E(r ' )] W (14)

which as expected is the dual of (12). We observe that the kernel singular-
ity associated with (12) and (14) is the same as that associated with (8).
In addition, as in the case of the integral equation (7) in conjunction with
(8), linear expansion functions such as those in [3] or [4] are required for
the discretizing (12) and (14). Thus, even though the new integral equa-
tions (12) %and (14) have half the unknowns, this was not achieved at the
expense of increasing the kernel's singularity or the order of the expansion
basis required in their implementation. It is remarked that special forms
of these integral equations have already been successfully implemented for
two dimensional applications [11, 12].

3 Volume- Surface Representation

The requirement to employ linear basis in connection with the implemen-
tation of (12) and (14) can be relaxed by resorting to a volume- surf ace



integral equation (VSIE) such as that derived in [13] and [14] for two di-
mensional simulations. To do so we begin with (3) which in conjunction
with (2) can be rewritten as

= E; + E^ = -kl j j j^ [er(r') - 1] E(r') - F0(r, r')E

-jk0Z0V x v [/ir(r') - 1] H(r')G0(r, r')dv' (15)

where E^ is associated with the second integral and represents the field
due to the magnetic equivalent current defined in (2). Setting
H = V x E/jk0Z0nr in this integral, and invoking the identities

V x [V x <^E] = V x [V'0 x E] + V x [^V x E]

we obtain

Es = Fsl + F52 + Fs3 (16)'-'m * - m > m ' t - m \i*J I

with

= -V x / / / { (l - -L-] V'G0(r,r') x E(r')} d»' (IS)
J J JVd ( \ ^T\f ) / J

These integral expressions can be simplified through the use of various
integral and differential identities.

The volume integral in (17) can be transformed to a surface integral by
invoking Stoke's identity

/ / / (V x A)*;' = $s(n' x A)ds' (20)
J J JVtt Jj



where Sd is the surface enclosing Vd and n' = n(r') denotes the outward
unit normal to the surface Sj- We have

Fl1 = V

[h'xE(r')}xVG0(r,r ')ds' (21)

which is an integral involving the undifferentiated tangential electric field
over the surface enclosing Vd. Turning now to the integral in (18) we first
rewrite it as

F^2 = - 1- V x [V'G0(r, r') x E(r')] dv1 (22)

and we note that [15, p. 487]

V x [V'Go x E(r')] = E(r')V2G0 - E(r') • VVG0

Then, upon invoking the differential equation

V2G0(r,r') + fc0
2G0(r,r') = -6(r - r')

where £(r') denotes the Dirac delta function, it follows that

(23)

(24)

• -« Ilk I1 - ^ E<r'> <2

Again, this involves only the undifferentiated electric field within the di-
electric's volume. Finally, the last integral in (16) can be readily simplified
and written as

(26)



When (21), (25) and (26) are substituted into (16) and then into (15),
we find that the total scattered field can be expressed as

= -k*'f f LJ J J\d

1- E(r) (27)

For two dimensional simulations where the material parameters and the
fields are invariant with respect to z, this expression can be readily shown
to reduce to the VSIE given by Jin, etc. [13, equs. 28 and 31]. Expression
(27) is also similar to the VSIE given by Tai [16]. However, Tai's expression
was left in terms of differentiated field quantities and is only applicable for
homogeneous dielectrics.

To obtain an integral equation on the basis of (27) we substitute this
into the first of (1) and upon taking the principal value of the appropriate
integrals we have

1 - —i-] \n' x E(r')] x VG.(r, r')*/
AMr )]

E(r) r not in

°n (28)

2Air(r)]E(r) r in Vd



In this, V0 is a vanishingly small spherical volume whereas 5*,, is a vanish-
ingly small hemispherical surface both having their centers at r. As given,
(28) can be discretized via the moment method or some other technique
for a solution of E(r) within the dielectric. Its kernal has, of course, the
same singularity as (7a) but involves only a single unknown vector field
in comparison with the two vector unknowns appearing in (7). If linear
rather than pulse basis are employed for the solution of (28), then it may
be desirable to rewrite the first integral of (28) in the form given by (8)
with Me? = 0 and

(29)

However, in this case one could also resort to the alternative integral equa-
tions (12) or (14). Of course, the dual of (28) is another integral equation.
Further, linear combinations of (28) and its dual or (12) and (14) can be
utilized if so desired.

In closing, we remark that if //r and/or er are discontinuous within Vj,
the'surface integral in (27) and its dual must then be replaced by

hi(r') x F(r')] x VG0(r, r'}ds

where F = E or H. Here, Sd, denotes the zth discontinuous surface within
Vd, «;(r) is the unit normal to Si pointing from the — side to the + side
(outermost side) and u± denotes the inverse relative dielectric constant at
the + or — side of the surface S<f,. In particular ul = 1//4 for the E-field
integral equation (27) and ul = 1/eJ. for the H-field integral equation.

4 Conclusion

Some alternative formulations were proposed for modeling three-dimensional
inhomogeneous dielectrics. These are summarized in figure 2 and the aim
of the investigation was to generate integral equations for the fields within
the dielectric scatterer utilizing the minimum number of unknowns and the
least singular kernels. A purely volume integral equation was derived in-
volving half the unknowns required with traditional equations for ferrite



materials. The implementation of this reduced-unknown volume equation
implies use of (at least) linear basis functions and to relax this requirement
a volume-surface integral equation was derived. All of the integral equa-
tions presented here appear to be more efficient than the traditional ones
without compromising the kernel's singularity. They should thus be found
useful in a variety of radiation, scattering or SAR applications.
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Fig. 1. Illustration of the inhomogeneous dielectric volume
enclosed by the surface S..



Vx[(u r- l )H]

Fig. 2. Different volume equivalent currents for modeling the scattering
by the inhomogeneous dielectric volume V, in figure 1.




