
'•3)

• v.)

KUP
TIMAL IM STATIONS

CSCL
Unc'

U37

Department of Computer Science
Cornell University
Ithaca, New York

Primary-Backup Protocols: Lower Bounds and
Optimal Implementations

Navin Budhiraja*
Keith Marzullo*

Fred B. Schneider**
Sam Toueg***

TR 92-1265
January 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

'Supported by Defense Advanced Research Projects Agency (DoD) under NASA
Ames grant number NAG 2-593 and by grants from IBM and Siemens. The views,
opinions and findings contained in this report are those of the authors and should not
be construed as an official Department of Defense position, policy or decision.
"Supported in part by the Office of Naval Research under contract N00014-91-J-
1219, the National Science Foundation under Grant No. CCR-8701103, DARPA/NSF
Grant No. CCR-9014363 and by a grant from IBM Endicott Programming Laboratory.
***Supported in part by NSF grants CCR-8901780 and CCR-9102231 and by a

grant from IBM Endicott Programming Laboratory.

Primary-Backup Protocols: Lower Bounds and
Optimal Implementations

Navin Budhiraja* Keith Marzullo* Fred B. Schneider*

Sam Toueg*

Department of Computer Science, Cornell University
Ithaca NY 14853, USA

January 30, 1992

Abstract

We present a formal specification of primary-backup. We then prove
lower bounds on the degree of replication, failover time, and worst-
case response time to client requests assuming different failure models.
Finally, we outline primary-backup protocols and indicate which of
our lower bounds are tight.

Keywords: Fault-tolerance, reliability, availability, primary-backup, lower
bounds, optimal protocols.

1 Introduction

One way to implement a fault-tolerant service is by using multiple servers
that fail independently. The state of the service is replicated and distributed

'Supported by Defense Advanced Research Projects Agency (DoD) under NASA Ames
grant number NAG 2-593 and by grants from IBM and Siemens. The views, opinions,
and findings contained in this report are those of the authors and should not be construed
as an official Department of Defense position, policy, or decision.

'Supported in part by the Office of Naval Research under contract N00014-91-J-1219,
the National Science Foundation under Grant No. CCR-8701103, DARPA/NSF Grant
No. CCR-9014363, and by a grant from IBM Endicott Programming Laboratory.

'Supported in part by NSF grants CCR-8901780 and CCR-9102231 and by a grant
from IBM Endicott Programming Laboratory.

1

among these servers, and updates are coordinated so that even when a subset
of servers fail, the service will remain available.

Such fault-tolerant services have been structured in several ways. One
approach is to replicate the service state across all servers and to present
each clients request to all nonfaulty servers in the same order. This ser-
vice architecture is commonly called active replication or the state machine
approach [Sch90] and has been widely studied from both theoretical and
practical viewpoints (e.g., [PSL80, CASD85, JB89]).

Another approach to building replicated services is to designate one
server as the primary and all the others as backups. Clients make requests
by sending messages only to the primary. If the primary fails, then a faihver
occurs and one of the backups takes over. This service architecture is com-
monly called the primary-backup or the primary-copy approach [AD 76] and
has been widely used in commercial fault-tolerant systems. However, the
approach has not been analyzed as extensively as the state machine ap-
proach, and little is known of the costs and tradeoffs, the degree of repli-
cation required, and the worst-case response time for various failure mod-
els. In this paper, we derive some of these tradeoffs. For example, some
primary-backup protocols use more servers than the number of failures to
be tolerated [LGG+91]. We are able to show that the number of servers
needed depends on the failure model.

The key difference between the active replication and primary-backup
approaches is how each masks failures. With active replication, server fail-
ures are completely masked by voting and the service implemented is that of
a single non-faulty server. With the primary-backup approach, a request to
the service can be lost if it is sent to a faulty primary.1 Thus, clients can now
observe the effects of server failures. Periods during which requests are lost,
however, are bounded by the length of time that can elapse between failure
of the primary and takeover by a backup. Such behavior is an instance of
what we call a bofo service (bounded outage finitely often). Specifically, a
service outage occurs at time t if some client makes a request at that time
but never receives a response to that request.2 Furthermore, in a (k, A)-
bofo service, all service outages can be grouped into at most k intervals of
time, with each interval having a length of at most A. Accordingly, even
though some requests may not elicit a response from a bofo service, not
too many will. Note that if clients are restricted to send requests only to

1The client can subsequently resend a copy of that request to the new primary.
2 For simplicity, we assume in this paper that every request elicits a response.

a single server, then one cannot implement a service that is stronger than
bofo. This is because if the client sends a request to a server and the server
subsequently crashes, then the request can be lost and will not be processed.

In this paper, we give lower bounds for implementing a bofo service
using the primary-backup approach. These lower bounds depend on the
message delivery delay and the kinds of failures that can be tolerated. The
lower bounds constrain the degree of replication, the time during which the
service can be without a primary, and the worst-case response time of client
requests. In some cases the results are surprising. For example, more than
/ + 1 servers are necessary to tolerate / failures of certain types (crash and
link failures, receive-omission failures, or general-omission failures). Also, if
a majority of the servers can be faulty, then any primary-backup protocol
for receive-omission failures will have a run in which the primary is non-
faulty, but it is forced to become a backup, while a server that is faulty
becomes the primary in its place.

Finally, in this paper we outline some primary-backup protocols. This
allows us to determine which of our lower bounds are tight.

The paper is organized as follows. Section 2 gives a formal specification
of a primary-backup protocol. Section 3 defines our system model. Sec-
tion 4 discusses the lower bounds, and in Section 5 we outline our protocols
and state which of the previously-shown bounds are tight. We conclude in
Section 6.

2 Primary—Backup Protocols

To derive lower bounds, we have to give a precise definition of a primary-
backup protocol. We believe that the following four properties characterize
a primary-backup protocol and note that many primary-backup protocols
(e.g. [AD76, BarSl, Cen87, BEM91]) satisfy this characterization.

Pbl: There exists predicate Prmy, on the state of each server a. At any
time, there is at most one server a whose state satisfies Prmy,.3

For brevity, whenever we say that "a is the primary (at time r)" we mean
that the state of a satisfies Prmya. Note that the failover time for a service
is the longest period of time during which Prmy, is not true for any s.

3The protocol of [LGG+91] allows concurrent primaries, but only for bounded periods.
If one replaces Pbl by this property, then except for the bounds on failover times, the
bounds shown in Section 4 continue to hold.

Pb2: Each client i maintains a server identity Desk such that to make a
request, client i sends a message only to

Property Pb2 distinguishes the primary-backup approach from active repli-
cation, where each client sends requests to every server in the service.

For the next property, we model a communications network by assuming
that client requests are enqueued in a message queue of a server.

Pb3: If a request arrives at a server that is not the primary, then the request
is not enqueued (and is therefore not processed).

Properties Pbl-Pb3 specify a protocol for interacting with a service, but
not the semantics of the service. For example, the properties do not rule out
a primary that ignores all requests. A fourth property eliminates such trivial
implementations by stipulating that the server be bofo for some values of k
and A:

Pb4: There exist fixed values k and A such that the service behaves like a
single (fc, A)-bofo server.

This property is not implementable if the number of failures is not a priori
bounded. Assuming a bounded number of failures is just a modeling trick.
When the number of failures is unbounded, bounding the rate of failures
and including reintegration of recovered servers can provide service outages
of bounded lengths. We do not address failure rates or reintegration in this
paper.

A Simple Primary-Backup Protocol

As an example of a service based on the primary-backup approach, consider
the following protocol, which tolerates a single server crash. Assume that all
communication is over point-to-point nonfaulty links and that each link has
an upper bound 6 on message delivery time4. Refer to Figure 1. There is
a primary server p\ and a backup server pi connected by a communications
link. A client initially sends all requests to p\ (indicated by the arrow labeled
1 in the figure). Whenever p\ receives such a request, it

• processes the request and updates its state accordingly,
4To simplify exposition, we assume that the maximum message delay between the

clients and the servers is the same as the delay between the servers. However, our results
can be easily extended to the case when the delays axe different.

Figure 1: A Simple Primary-Backup Protocol.

• sends information about the state update to pj (message 2 in the
figure),

• without waiting for an acknowledgement from p?, sends a response to
the client (message 3 in the figure).

The order in which these messages are sent is important because it guaran-
tees that if the client receives a response, then either p% has received message
2 or ps has crashed.

Server pj updates its state upon receiving update messages from p\. In
addition, p\ sends messages to p? every r seconds. If pa does not receive
such a message for r + 6 seconds, then p? becomes the primary. Once pj
has become the primary, it informs the clients (who update their copies of
Dest) and begins processing any subsequent requests sent by them.

We now show that this protocol satisfies our characterization of a primary-
backup protocol. Property Pbl requires that there never be two primaries.
This is satisfied by the following definitions of Prmy:

Prmypl = has not crashed)

has not received a message for T + 6)

The predicate Prmypl A Prmyn is always false in a system executing our
protocol, and hence Pbl is satisfied. The failover time for this protocol is
the longest interval during which ->Prmypl A ->PrmyK can hold, and it is

r + 26 seconds. Property Pb2 follows trivially from the description of the
protocol. Property Pb3 is true because requests are not sent to p2 until
after p\ has failed. Finally, Pb4 requires that the protocol implements a
single bofo server for some values of k and A. Since p\ sends message 2
before message 3, it will never be the case that p\ sends a response to the
client, and p? does not get information about that response from p\. Using
this fact, it can be shown that the service behaves like a single server. To
compute k and A, we can let k = 1 and so it suffices to compute the longest
interval during which a client request may not elicit a response. Assume
that pi crashes at time tc. Any request sent at tc — 6 or later may be lost
since p\ crashes at tc. Furthermore, pi may not learn about pi's crash until
tc + T + 26, and clients may not learn that pi is the primary for another
6. So, the total period during which a request may not elicit a response is
tc — 6 through tc + T + 3£: the service is equivalent to a single (1, r + 4£)-bofo
server.

3 The Model

We consider a system consisting of n, servers and nc clients. We assume
that server docks are perfectly synchronized with real time.5 Clients and
servers communicate by exchanging messages through a completely con-
nected point-to-point network. Each message sent is enqueued in a queue
maintained by the receiving process, and a process accesses its message
queue by executing receive. We assume that links between processes are
FIFO (i.e. if p,- sends message m followed by m' to process PJ, then PJ will
never receive m after m') and if processes p,- and PJ are connected by a (non-
faulty) link, then a message sent from p,- to PJ at time t will be enqueued in
PJ'S queue at of before t + 6.

We are interested in identifying the costs inherent in primary-backup
protocols, and so we assume that it takes no time for a server to compute a
response. We also assume that a client can send a request at any time.

We model execution of a system by a run, which is a sequence of times-
tamped events involving clients, servers, and the message queues. -These
events include sending messages, enqueuing messages, receiving messages,
and modeling computation at processes. Two runs o\ and <TJ °ftne system
are indistinguishable to a process p if the same sequence of events (with the

5 Extension to the case where clocks are only approximately synchronized [LMS85] is
discussed in [Bud93].

same timestamps) occur at p in both a\ and a-i. We assume that if two runs
a\ and a-i are indistinguishable to p, then at any time t, the state of p at
time t in a\ is the same as the state of p at time t in 03. Again, it is not hard
to extend our definition of indistinguishability to handle nondeterministic
servers; the current definition does not.

We consider the following hierarchy of failure models:

Crash failures: A server may fail by halting prematurely. Until it halts, it
behaves correctly. After it halts, a timeout can detect this fact.6

Crash+Link failures: A server may crash or a link may lose messages (but
not delay, duplicate or corrupt messages).

Receive-Omission failures: A server may fail not only by crashing, but also
by omitting to receive some of the messages sent to it over a nonfaulty
link.

Send-Omission failures: A server may fail not only by crashing, but also by
omitting to send some of the messages over a nonfaulty link.

General-Omission failures: A server may exhibit send-omission and receive-
omission failures.

Figure 2 illustrates this failure hierarchy. Note that crash+link failures
and the various types of omission failures are distinct. Although both rep-
resent loss of messages, each is dealt with by a different masking technique.
In particular, crash+link failures can be masked by adding redundant com-
munication paths, while omission failures can only be masked by adding
sufficient redundant servers so that faulty processes can detect their own
failure and halt. We discuss these masking techniques in Section 5.

Henceforth, we assume that no more than /, servers can be faulty, and
for crash+link failures that no more than // links can be faulty.

4 Lower Bounds

We now give lower bounds for implementing a single (fc, A)-bofo server using
the primary-backup approach for each failure model.

'The lower bounds we derive for crash failures also hold for fail-stop failures [SS83]
except for the bound on failover time. The lower bound on failover time depends on the
maximum duration between when a server pi fails and when failed, becomes true.

general
omission

crash+link

crash

Figure 2: Failure Hierarchy

4.1 Bounds on Replication

The first theorem is obvious. However, to introduce our notation and the
proof technique that will be used later in the section, we give a formal proof
of the theorem.

Theorem 1 Any primary-backup protocol tolerating /, crash failures re-
quires n3 > ft + 1.

Proof: We prove the result by contradiction. Suppose there is a protocol
P for na < fa +1. Thus, P satisfies Pb4. Consider a run in which all na

servers are crashed initially and clients submit R > fcfA/<f| requests, where
d is the minimum time between the sending of any two requests (d > 0). By
Pb4, at least one of these requests must elicit a response. This is because
the number of requests that cannot have responses must fall into at most k
intervals of length at most A, and each interval of A can contain at most
f A/ff| requests. However, such a response is impossible since, by assump-
tion, all servers have crashed. Q

The following lemma will be used for the rest of the theorems in this
section.

Lemma 4.1 Consider any protocol that satisfies Pb4. Suppose two disjoint
and nonempty sets of servers A and B can be found that meet the following
three properties:

1. There exists a run aa containing R > 2k\A/d] requests where d is the
minimum time between the sending of any two client requests (d > 0).
Furthermore, in this run the servers in A do not crash and all other
servers crash at time 0.

2. There exists a run <T(, containing R requests. Furthermore, in this run
the servers in B do not crash and all other servers crash at time 0.

8. There exists a run <ra(, containing R requests. Furthermore, the servers
in A and B do not crash, <7ai is indistinguishable from <ra to all servers
in A, and <7a6 is indistinguishable from a^ to all servers in B.

At least one of the above runs violates Pb2.

Proof: Suppose for contradiction that the lemma is false and runs <ra, at,
and <7a(, all satisfy Pb2.

For o-a, by Pb4 at least R — fc[A/cf| of the requests must have been re-
ceived by servers in A. Similarly, for <T(,, at least R - fc[A/<f| of the requests
must have been received by servers in B. Finally, since aab is indistinguish-
able from (Ta to servers in .A, they must execute the same number of receive
events in both runs. The same holds for the servers in B. By Pb2, each
request is sent to at most one server and so at least 2(R — fcfA/cf|) requests
must have been sent in <r0fc. Since only R requests were sent, we must have
R > 1(R - fcfA/rf]), or R < 2fc[A/flT|, which contradicts the assumption
that R> 2JbfA/ef|.

D

Theorems 2 and 3 depend on two parameters of primary-backup proto-
cols. Let F be the maximum time between any two successive client requests
(possibly from different clients) in any run of the system, and let D be a
duration such that if some server 5 becomes the primary at time to and re-
mains the primary through time t > to + D when a client c,- sends a request,
then Desti = s at time t. For simplicity of notation, we will write D < F to
mean that D is bounded and F is either unbounded or bounded and greater
than D.

With both send-omission failures and crash+link failures, messages may
fail to reach their intended destinations. The following theorem shows that
crash+link failures are more expensive to tolerate as they require more repli-
cation.

Theorem 2 Suppose there is at most one link between any two servers
and the total number of server and link failures that can occur is f, where
f < mt'n(/,,/{). Then any primary-backup protocol tolerating crash+link
failures and having D < F requires n, > f + 2.

Proof: For contradiction, assume the existence of a protocol P with
n, < / + 2. We will show that P has three runs <ra, a\> and a^ that satisfy
the conditions of Lemma 4.1. From the lemma, at least one of these runs
violates Pb2, which implies that P cannot be a primary-backup protocol.

Let A be a set containing the one server sa and let B be the set of
remaining servers. Since \A\ = 1 and \B\ = na — 1 < /, A and B can be
partitioned by link failures.

We first construct the run <raj, in which no server crashes, postulating
that the links between the servers in na and nj are faulty and do not deliver
any messages. As required by Lemma 4.1, clients will send a total of R >
2fc[A/<fj requests. Let 0 < d < T- D be the minimum interval between any
two such requests. We postulate that a request will be sent at time t iff no
request has been sent during the interval [t — d..t) and one of the following
rules hold.

1. A server a is the primary during the interval [t — D..i\. This request
arrives immediately and is enqueued (at 3, by Pb3 and the definition
of£>).

2. There is no primary at time t. This request arrives immediately and
by Pb3 will never be enqueued at any server.

3. A server s is the primary at time t but another server s' is the primary
immediately after time t. If this request is sent to s, then it arrives
after i, and if it is sent to any other server, then it arrives immediately.
In both cases, it arrives at a server that is not the primary, and so will
not be enqueued (again by Pb3).

Note that, by construction, the maximum interval between any two client
requests is D + d. This interval occurs when a server 3 becomes the primary
just before d after a client message is sent, and s remains the primary for
at least D. Hence, the client will be able to send R requests within time
R(D + d). This completes the construction of <706-

We now construct <70 and ot,, recalling that in <ra all of the servers except
30 crash at time 0, and in <J\, server a0 crashes at time 0. The clients send the

10

same requests and at the same times in <ra and in <?(, as in <7aj. Furthermore,
by construction these requests will arrive at the servers according to the
same rules used in constructing <ra(>- Of course, a client request may not be
delivered to the same servers in aa or <T(, as in <TOJ, since different servers are
operational in these runs.

Since sa does not receive any messages from servers in B in either crab
or <ra, these two runs are indistinguishable to sa as long as it receives the
same client requests at the same times in both runs. We that this is the case
by contradiction: let t be the earliest time that sa can distinguish between
these two runs.

Thus, at time t either sa received a request m in <raj, but not in 0a or it
received a request m in aa but not in <raft. We will assume the former; the
proof for the latter is similar. The request m must have been enqueued at
some time t' < t at sa in aab. Since m was received by sa, m must have been
sent by rule 1. By rule 1, sa must have been the primary through [t' — D..t']
in <704 and therefore, by indistinguishability, in <ra as well. By the definition
of D, m would have been enqueued at sa at time t' in <ra as well.

Since sa cannot distinguish between the runs before £, sa cannot receive
m before * in <ra, and sa must execute a receive in both <7a and <7a(, at time
t. So, it must be the case that sa receives another request m' ^ m at time t
in <ra. Assume that m' was enqueued at time t". By an indistinguishability
argument similar to above, m' must be enqueued at time t" at sa in o^ as
well. Therefore, if a received m' in oa at time J, it must receive m' in &ab as
well, a contradiction.

A similar argument can be used to show that the servers in nt, receive
the same requests in a\, and cr06, and so these two runs are indistinguishable
to the servers in nj. Thus, by Lemma 4.1 P cannot be a primary-backup
protocol. D

The next theorem states that additional replication is required in order to
tolerate receive-omission failures. The proof is similar to that of Theorem 2,
and so it is omitted.

Theorem 3 Any primary-backup protocol tolerating receive-omission fail-
urea and having D < T requires nt >

The next lower bound holds independent of the relation between D and
F. However, before we prove the result, we need the following definitions.

Define -< to be the potential causality relation [Lam78] on server events
e\ and e? as follows: e\ -< e^ iff

11

1. Both ei and 62 occur at the same server s and e\ occurs before 63 or

2. e\ is a send event and 62 is the corresponding receive event or

3. (3e: ei -< e A e •< e2)

We say that a request m is an update request iff in any run a for which m
has a response r, any other response r' sent after r in real time causally
follows m, i.e. if event e(m) corresponds to the receipt of m and event
e(r') corresponds to the sending of r', then e(m) -< e(r'). A primary-backup
protocol is trivial to implement if there are no update requests, and so we
assume that update requests exist and that clients can send them at any
time.

Theorem 4 Any primary-backup protocol tolerating general-omission fail-
ures requires n, > 2f3.

Proof: Assume for contradiction that there is a protocol for na < 2/,.
Partition the servers into two disjoint sets A and B of size at most /, each.
We will construct two runs a\ and a?.. In each run, one set of servers will
be faulty and the other set will be nonfaulty.

a\: The servers is A axe faulty and fail to communicate with all servers
in Bj but behave correctly otherwise. Clients send update requests until
the first response is sent (this must happen, by Pb4). Assume that the first
response r to a request is sent at time t. Say that this response is sent by
server 5.

a-i'- The same as a\ up to time t, but if s is in B, then in <TI the servers
in B are faulty and fail to communicate with all servers in A. In either case,
no server can distinguish o\ from a? through time t and therefore, the first
response r is sent at time t in <72 as well.

By construction, r is sent by a faulty server in a^. Let all of the faulty
servers in GI crash immediately after r is sent and have clients continue to
send requests until another response r' is sent. This response must have
been sent by a nonfaulty server which implies that -i(e(m) -< e(r')). How-
ever this violates the fact that m is an update request. a

4.2 Bounds on Blocking

Informally, a blocking primary-backup protocol is one in which the primary
must, subsequent to receiving a request m, either receive a message from

12

another server or simply wait an interval before it can respond to m. We
say that a primary-backup protocol is C-blocking if any request (received,
say, at tm) elicits a response in a failure-free run at time tr, then tr — tm <
C. For example, any primary-backup protocol in which the primary sends
information about a request to the backups and waits for acknowledgement
before sending the response to the client will be at least 2^-blocking.

As shown in Section 5, 0-blocking primary-backup protocols are possible
for crash and crash+link failure models. The simple protocol tolerating
crash failures presented in Section 2 is 0-blocking. We call such protocols
nonblocking because the primary can send a reply to the client as soon as
the reply is computed. Nonblocking protocols tolerating receive-omission
failures are also possible as long as n, > 2f,, but there is no nonblocking
primary-backup protocol tolerating send-omission failures.

Theorem 5 Any primary-backup protocol tolerating receive-omission fail-
ures with ft > I, nt < 2ft and D < F is C-blocking for some C > 26.

Proof: For contradiction, suppose there is a primary-backup protocol
for n, < 2ft and /« > 1 that is C-blocking where C < 26. Partition the
servers into two sets A and B where \A\ = /, and \B\ = ns - / ,</». We
construct three runs. In all three runs, assume that all server messages take
6 to arrive.

a\: There are no failures and all client requests take 6 to arrive. More-
over, clients send update requests until some request m evokes a response
r. Let m be received at time tm by server p € A and r be sent at time tr

by a different server q € A. Notice that since the protocol is C-blocking
where C < 26, tr — tm < 26. Also, since by construction all requests take
6 to arrive, all client requests sent after time tm + 6 will be received after
time tr.

a-i\ Identical to a\ until p receives m at time tm. At this point in a-i, all
servers in A are assumed to crash and clients are assumed to send no request
during the interval [tm + S..tr]. Finally, after time tr clients are assumed to
repeatedly send requests at intervals of at least d where Q < d < T — Das
follows. A request is sent at time t if no request has been sent in [t — d..t)
and one of the following rules hold.

1. A server s 6 B is the primary during the interval [t — D..t], This
request arrives immediately and is enqueued (at s, by Pb3 and the
definition of D).

13

2. There is no primary in B at time t. This request arrives immediately
by Pb3 will never be enqueued at any server.

3. A server s € B is the primary at time t but another server sf € B
is the primary immediately after time t. If the request is sent to s,
then it arrives after t, and if it is sent to any other server it arrives
immediately. In both cases, it arrives at a server that is no the primary,
and so will not be enqueued (again, by Pb3).

Notice that eventually, there will be a response (say T'} in cr? because
the protocol satisfies Pb4, and by construction it must be from a request
sent by rule 1.

0$: The same as aj, except that the servers in A do not crash at time
tm. Instead, the servers in B commit receive failures on all messages sent
after tm by servers in A. Clients send requests at the same times as in 0-3
which arrive using the same rules as 03.

Now, consider these three runs. By construction, the runs are identical
up to time t. Since all server messages take 6 to arrive, clients cannot dis-
tinguish o\ and (73 through tm + 6, and so clients send the same requests to
the same servers in both <r\ and ^3. Similarly, since all server messages take
S to arrive, the servers in S cannot distinguish between a\ and 03 through
tm + S. Therefore, since tr — tm < 26, p (the server that received request
m at time tm in cr\) and q (the server that sent response r at time tr in
cTi) cannot distinguish between a\ and 03 through time tr, and so q sends
response r in (73 as well. Then, using an argument similar to the one in
Theorem 2, servers in B cannot distinguish crj and <?3, and so response r'
also occurs in (73. However, ->(e(m) -< e(rf)) which violates the assumption
that m is an update request. Q

In run (73 of the above proof, a correct primary (p in set A) becomes
the backup, while a faulty server from set B becomes the primary in p's
place. It is always possible to construct such a run. This is a disconcerting
property: there does not exist a primary-backup protocol that tolerates
receive-omission failures with n, < 2f, in which a primary cedes only when
it fails. Moreover, his lower bound is tight—we have constructed a receive-
omission primary-backup protocol with nt = 2/, + 1 in which a primary
cedes only when it fails.

The above lower bound holds only if fa > 1. If /, = 1, then the following
theorem holds. Its proof is similar to the proof of Theorem 5, except that
p = q .

14

Theorem 6 Any primary-backup protocol tolerating receive-omission fail-
ures with f3 = 1 and n, < 2f3 and having D < T is C-blocking for some
C > 6.

Primary-backup protocols tolerating send-omission failures exhibit the
same blocking as those tolerating receive-omission failures:

Theorem 7 Any primary-backup protocol tolerating send-omission failures
and f3 > 1 is C-blocking for some C > 26.

Proof: For contradiction, suppose there is a primary-backup protocol
that is C-blocking where C < 26. We consider the following two runs in
which all server messages take 6 to arrive.

<r\: There are no failures and all client requests take 6 to arrive. More-
over, clients send update requests until some request m evokes a response r.
Let m be received at time tm by server p and r be sent at time tr by a dif-
ferent server q. Notice that since the protocol is C-blocking where C < 26,
tr — tm < 26. Also, since by construction all requests take 6 to arrive, all
client requests sent after time tm + 6 will be received after time tr.

<r2: Identical to a\ through tm. After tm, p and q fail and omit to send
all messages to all servers except each other. Since by construction all mes-
sages take 6 to arrive, servers and clients cannot distinguish between <TI and
(72 through tm + 6, and as a result p and q cannot distinguish the two runs
through tm + 26. Therefore, since tr — tm < 26, q sends the response r at
time tr in ai as well. Now let p and q crash at time tr and the clients send
requests after time tr. By Pb4, there eventually must be some request m'
that results in a response r'. However, -t(e(m) -< e(r')), which violates the
assumption that m us an update request. O

Theorem 8 Any primary-backup protocol tolerating send-omission failures
and /, = 1 is C-blocking for some C > 6.

4.3 Bounds on Failover Times

The failover time is the longest interval during which Prmy, is not true for
any server s. In this section, we present lower bounds on failover times.
In order to discuss these bounds, we postulate a fifth property of primary-
backup protocols:

Pb5: A server that is the primary remains so until there is a failure.

15

This is a reasonable expectation and it is valid for all protocols that we have
found in the literature.

Theorem 9 Any primary-backup protocol tolerating fs crash failures must
have a failover time of at least f36.

Proof: Assume that the theorem is false. We derive a contradiction by
induction on fa.

Base case /, = 0: trivially true since the failover time cannot be
smaller than zero.

Induction case /, > 0: suppose the theorem holds for at most fa — 1
failures, but there is a protocol P for which the theorem is false when there
are f, failures. From the induction hypothesis, there is a run a with at most
/» — 1 failures and an interval [<o--*i] at least (fa — 1)^ during which there is
no primary. Let pi be the server that becomes the primary at 11. Consider
the two runs o\ and aj that extend o as follows:

o\: Assume p\ crashes at time t\. By assumption, there exists a new
primary (say p^) at time fy < t\ + 6. Since p\ crashes at time t\, pi does
not receive any messages from p\ that were sent sent after time t\.

oi\ Assume p\ does not crash but all messages sent by p\ after time (i
take 6 to arrive.

Since p? cannot distinguish o\ from o? through time t?, p? becomes the
primary at time ti in ffj. By Pb5, however, p\ remains the primary at time
ti in (72. This violates Pbl, and so P is not a primary-backup protocol, d

The failover times for all other failure models have a larger lower bound.

Theorem 10 Any primary-backup protocol tolerating f crash+link failures,
where f < mtn(/,,//), has a failover time of at least If 8.

Proof: We again assume that the theorem is false and derive a contra-
diction.

Base case / = 0: trivially true.

16

Induction case / > 0: suppose the theorem holds for at most / - 1
failures, but there is a protocol P for which the theorem is false when there
are / failures.

From the induction hypothesis, there is a run o with at most / - 1
failures and an interval [<o-.*i] at least (/ - 1)6 during which there is no
primary. Let p\ be the server that becomes the primary at t\. Consider the
three runs cr\, o-i and, a3 that extend o as follows:

a\: Assume that p\ crashes at time t\ and that all messages sent after t\
take 6 to arrive. By assumption, there exists a new primary (say p^) at time
<2 < ti + 2£. Since p\ crashes at time tj, pj does not receive any messages
from pi that were sent after time t\. Furthermore, since all messages take S
to arrive, any message that was sent after t\ + 6 can be received by pj only
after time t^.

oi\ Assume that p\ does not crash and that all messages sent after time
t\ take 6 to arrive. Since there are no failures after time t\, by Pb5 pi
continues to be the primary through time <2-

(73: The same as <7j except that the link between pi and pi is faulty and
does not deliver any message sent by pi to pj after time t\.

By construction, p2 cannot distinguish o\ from 03 through time ty, and
so p2 becomes the primary at time tj in °z- Similarly, pi cannot distinguish
<72 from cr3 through time tj and so pi remains the primary until time t? in
er3. This violates Pbl, and so P is not a primary-backup protocol. D

We omit the proofs of the following two theorems because they are similar
to Theorem 9.

Theorem 11 Any primary-backup protocol tolerating /, receive-omission
failures has a failover time of at least 2f,6.

Theorem 12 Any primary-backup protocol tolerating /, send-omission fail-
ures has a failover time of at least 2f,6.

5 Outline of the Protocols

In order to establish that the bounds given above are tight, we have de-
veloped a set of primary-backup protocols for the different failure mod-
els [BMST92]. In this section, we outline these protocols and use them to
show which of the lower bounds in the previous sections are tight.

17

Our protocol for crash failures is similar to the protocol given in Sec-
tion 2. Whenever the primary receives a request from the client, it processes
that request and sends information about state updates to the backups be-
fore sending a response to the client. All servers periodically send messages
to each other in order to identify server failures. This protocol uses (/, + !)
servers and is 0-blocking. Thus, Theorem 1 is tight and this protocol uses
the optimal number of servers and incurs no additional delay. Furthermore,
this protocol has the failover time f,S + T for arbitrarily small and positive
r, and so Theorem 9 is tight.

In order for the protocol to tolerate crash-(-link failures, we add an addi-
tional server. By Theorem 2, this server is necessary. The additional server
ensures that there is always at least one nonfaulty path between any two
correct servers, where a path contains zero or more intermediate servers.
The crash failure protocol outlined above is now modified so that a primary
ensures any message sent to a backup is sent across at least one nonfaulty
path. Note that this protocol uses (/ + 2) servers and is 0-blocking. Thus,
Theorem 2 is tight and this protocol uses the optimal number of servers and
incurs no additional delay. Furthermore, this protocol has the failover time
2f6 + T for arbitrarily small and positive r, and so Theorem 10 is tight.

Most of our protocols for the different kinds of omission failures apply
translation techniques [NT88] to the crash failure protocol. These techniques
ensure that a faulty server detects its own failure and halts. The translations
assume a round-based protocol. Since our crash failure protocol is not round-
based, we must modify the translations so that a server can send and receive
messages at any time rather than just at the beginning or the end of a
round. This is not difficult to do. All of these resulting omission protocols
have failover time 2f,6 + r, and thus Theorems 11 and 12 are tight. The
protocol for send-omission failures uses /, +1 servers and is 2^ + r-blocking.
Furthermore, we also have a send-omission protocol for /a = 1 that is 6-
blocking. Thus, Theorems 7, 8 and 12 are tight. The protocol for general-
omission failures also uses 2/, + 1 servers and is 26 + r-blocking, and so
Theorem 4 is tight, and Theorems 7 and 12 are tight for general-omission
failures as well.

We have not been able to determine whether Theorems 3 and 5 are
tight. Our protocol tolerating receive-omission failures uses 2/, + 1 servers
whereas the lower bound in Theorem 3 only requires n, > [2Aj. We have
constructed receive-omission protocols for na = 2, /, = 1 and n, = 4, fa = 2
but have not been able to generalize the protocols. The protocols in this
region have the odd property that a nonfaulty primary can cede to a faulty

18

failure
model

crash
crash+link

receive
omission

send
omission
general

omission

degree of
replication

n, > f,
n, > f + 1 t

». > L^J ' f

n, > /,

n, > 2/,

amount of
blocking

0
0

6 /. = !'
26 f, > 1 • t

< * / , = !
2$ • /, > 1

6 /« = !
2* /. >1

failover
time

/.«
2/«

2/.«

2/s*

2/.«

Bound not known to be tight.
z?<r .

Table 1: Lower Bounds.

primary, and so we do not expect such protocols to have much practical
importance. However, the protocol for n, = 2, /, = 1 is ^-blocking and so
Theorem 6 is tight.

Table 1 summarizes all of our results.

6 Discussion

This paper gives a formal characterization of primary-backup protocol for a
synchronous system. It presents lower bounds on the degree of replication,
the blocking time, and the failover time for a primary-backup protocol under
various kinds of server and link failures. A set of primary-backup protocols
is outlined and used to show which of our lower bounds are tight.

It is instructive to compare our results to existing primary-backup pro-
tocols. A two-server primary-backup protocol that tolerates crash+link
failures is presented in [BarSl], which seemingly contradicts Theorem 2.
However, this protocol assumes that there are two links between the two
servers which effectively masks a single link failure. Hence, only crash fail-
ures need to be tolerated which can be accomplished using only two servers
(Theorem 1).

A more ambitious primary-backup protocol is presented in [LGG+91].
This protocol tolerates the following failure model (quoted from [LGG+91]):

19

The network may lose or duplicate messages, or deliver them late
or out of order; in addition it may partition so that some nodes
are temporarily unable to send messages to some other nodes. As
is usual in distributed systems, we assume the nodes are fail-stop
processors and the network delivers only uncorrupted messages.

This failure model is incomparable with the hierarchy we present. However,
the protocol does tolerate general-omission failures and has optimal degree
of replication as it uses n, = 2f3 -f 1 servers.

In Theorem 2, we assumed that D < T. This assumption is crucial:
we have constructed a two-server primary-backup protocol tolerating one
crash+link failure for which D > F. Recall that link failures are masked
by adding redundant paths between the servers. Our two-server crash+link
protocol essentially uses the path from the primary to the backup through
the client as the redundant path. Thus, there appears to be a tradeoff
between the degree of replication and the time it takes for a client to learn
that there is a new primary.

The lower bounds on failover times given in Section 4.3 were derived
assuming Pb5. We have constructed primary-backup protocols that have
failover times smaller than the lower bounds given in Section 4.3, and as
expected these protocols do not satisfy Pb5. This smaller failover time is
achieved at a cost of an increased variance in service response time.

Finally, we have attempted to give a characterization of primary-backup
that is broad enough to include most synchronous protocols that are con-
sidered to be instances of the approach. There are protocols, however, that
are incomparable to the class of protocols we analyze [BJ87]. In addition,
the protocols in [OL88, MHS89] are incomparable since they were devel-
oped for an asynchronous setting. Such protocols cannot be cast in terms
of implementing a (fc, A)-bofo service for finite values of k and A. We are
currently studying possible characterizations for a primary-backup protocol
in an asynchronous system and expect to extend our results to this setting.

References

[AD76] P.A. Alsberg and J.D. Day. A Principle for Resilient Sharing
of Distributed Resources. In Proceedings of the Second Interna-
tional Conference on Software Engineering, pages 627-644, Oc-
tober 1976.

20

[BarSl] J.F. Barlett. A NonStop Kernel. In Proceedings of the Eighth
ACM Symposium on,Operating System Principles, SIGOPS Op-
erating System Review, volume 15, pages 22-29, December 1981.

[BEM91] Anupam Bhide, E.N. Elnozahy, and Stephen P. Morgan. A
Highly Available Network File Server. In USENIX, pages 199-
205, 1991.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Exploiting Virtual
Synchrony in Distributed Systems. In Eleventh ACM Symposium
on Operating System Principles, pages 123-138, November 1987.

[BMST92] Navin Budhiraja, Keith Marzullo, Fred Schneider, and Sam
Toueg. Optimal primary-backup protocols. Technical report,
Cornell University, Ithaca, N.Y., 1992.

[Bud93] Navin Budhiraja. Primary Backup in Synchronous and Asyn-
chronous Systems. PhD thesis, Cornell University, Department
of Computer Science, 1993. In preparation.

[CASD85] Flaviu Cristian, Houtan Aghili, H. Ray Strong, and Danny
Dolev. Atomic broadcast: From simple message diffusion to
Byzantine agreement. In Proceedings of the Fifteenth Interna-
tional Symposium on Fault-Tolerant Computing, pages 200-206,
Ann Arbor, Michigan, June 1985. A revised version appears as
IBM Technical Report RJ5244.

[Cen87] IBM International Technical Support Centers. IBM/VS Ex-
tended Recovery Facility (XRF) Technical Reference. Technical
Report GG24-3153-0, IBM, 1987.

[JB89] Thomas Joseph and Kenneth Birman. Reliable Broadcast Proto-
cols, pages 294-318. ACM Press, New York, 1989.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in
a Distributed System. Communications of the ACM, 21(7):558-
565, July 1978.

[LGG+91] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul John-
son, and Michael Williams. Replication in the Harp file system.
In Proceedings of the 13th Symposium on Operating System Prin-
ciples, pages 226-238, 1991.

21

[LMS85] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in
the presence of faults. Journal of the ACM, 32(l):52-78, January
1985.

[MHS89] Timothy Mann, Andy Hisgen, and Garret Swart. An Algorithm
for Data Replication. Technical Report 46, Digital Systems Re-
search Center, 1989.

[NT88] Gil Neiger and Sam Toueg. Automatically increasing the fault-
tolerance of distributed systems. In Proceedings of the Sev-
enth ACM Symposium on Principles of Distributed Computing,
pages 248-262, Toronto, Ontario, August 1988. ACM SIGOPS-
SIGACT.

[OL88] B. Oki and Barbara Liskov. Viewstamped replication: A new
primary copy method to support highly available distributed sys-
tems. In Seventh ACM Symposium on Principles of Distributed
Computing, pages 8-17, august 1988.

[PSL80] M. Pease, R. Shostak, and Leslie Lamport. Reaching agreement
in the presence of faults. Journal of the ACM, 27(2):228-234,
April 1980.

[Sch90] Fred B. Schneider. The state machine approach: A tutorial.
Computing Surveys, 22(4):299-319, December 1990.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop proces-
sors: an approach to designing fault-tolerant computing systems.
ACM Transactions on Computer Systems, l(3):222-238, August
1983.

22

