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ABSTRACT

We study the two dimensional Kolmogorov flows in the limit as the forcing frequency

goes to infinity. Direct numerical simulation indicates that in this limit the low frequency

energy spectrum evolves to a universal k -4 decay law. We derive effective equations gov-

erning the behavior of the large scale flow quantities. We then present numerical evidence

that with smooth initial data, the solution to the effective equation develops a k -4 type

singularity at a finite time. This gives a convenient explanation for the k -4 decay law

exhibited by the original Kolmogorov flows.
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§ 1. Introduction

Toward the end of the 50's, Kolmogorov proposed to study the two-dimensional incompress-

ible flow with a high frequency forcing term as a model to help understand the transition to

turbulence and the inverse cascade process in a turbulent flow. These so-called Kolmogorov

flows are described by the following equation:

{ u_ +u. Vu + Vp = vAu + vk_ (sin(klx2) ,

(1.1) \ 0

V.u=O.

Here v is the dynamic viscosity, k.f is the forcing frequency. Since then, this problem has

attracted a lot of attention. Considerable progress has been made on both the experimental

and theoretical side. We refer to [10] for a discussion on the laboratory realization of

the Kolmogorov flows. The theoretical side of this problem has mostly been concentrated

on the hydrodynamic stability viewpoint. Linear stability of the basic Kolmogorov flow

(a stationary shear flow proportional to the forcing) was studied in [6]. The amplitude

equations for the weakly nonlinear theory were derived in [9, 15]. It was found that this

problem belongs to a wider class of problems which exhibit large scale instability. Later stage

development of the Kolmogorov flow was extensively studied more recently in [11, 12]using

a dynamical system viewpoint. Several scenarios of the transition to chaos and turbulence

were identified by resorting to careful numerical simulations.

In this paper, we take a different approach and study Kolmogorov's problem in the

following asymptotic limit:
1

v-- -- _ --_ O.
kf

Our main interest is to understand the inverse cascade process in the Kolmogorov flow. Our

extensive numerical results indicate that, even if we start with a smooth initial data with

an exponentially decaying energy spectrum, the high frequency forcing term pumps energy

into lower frequencies so that, beginning at a finite time, the energy spectrum exhibits a

universal k -4 algebraic decay law at the low frequencies.



To explain this phenomenon, we derive the effective equations governing the evolution of

the large scale flow quantities. We present strong numerical evidence that the solution of the

effective equation with smooth initial data form a singularity at a finite time. Furthermore,

the energy spectrum at the time of singularity formation is precisely k -4.

We remark that in this paper the term "cascade" is used loosely to describe situations

where either energy or enstrophy is shifted in the frequency space. We do not have evidence

that energy or enstrophy is transferred continuously in the frequency space with nonzero

flux at each wavenumber since we did not measure these quantities.

This paper is organized as follows. In the next section we present results of direct

numerical simulation of the Kolmogorov flow in the limit as the forcing frequency goes

to infinity. The emphasis will be placed on the evolution of the energy spectrum. In

Section 3, we derive the effecetive equations for the averaged quantities using multiple scale

asymptotics. In Section 4, we present our numerical evidence for the singularity formation in

the solutions of the effective equations. We conclude this paper in Section 5 by commenting

on the relevance of our findings for more general flows, including three-dimensional flows.

§ 2. The Inverse Cascade Phenomenon in the Kolmogorov Flows

As we mentioned in the introduction, we are interested in studying the inverse cascade

phenomena associated with the Kolmogorov flow in the following asymptotic limit:

1
(2.1)

k]

As can be easily seen from the derivations presented in the next section (see Remark 3.2),

this is the only distinguished limit for which both the viscous force and the external high

frequency force play important roles in the effective equations governing the evolution of

large scale structures.

Under the scaling (2.1), equation (1.1) takes the following form:

(2.2) I u_ + u_.Vu _ + Vp_= sAu _ + 1 sin0_ )

[ V.U_=0
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To study the influence of the small-scale forcing on the evolution of the large scales, in

particular, to study the evolution of the energy spectrum associated with the Kolmogorov

flow, we have numerically integrated (2.2) using a number of initial velocity fields and

studied the limit as € -+ 0. We discretize (2.2) using a Fourier-collocation method in space,

and a third order P_unge-Kutta method in time. More details of the numerical method will

be given in Section 4. Our calculation differs from the previous calculations of Sulem et.al.

[16]and Platt et.al [11]in that we studied as far as we can the limit as _ _ 0. In particular we

computed the solutions of (2.2) with forcing wavenumbers kf = 10, 25, 50,100 (corresponds

to € = 0.1, 0.04, 0.02, 0.01). In these cases the solutions exhibit a clear separation of scales

for some time.

Here we report two examples of our computational results. We have experimented with

other sets of initial data. In all cases we observe the same kind of phenomena as we report

below.

In the first example we take the initial vorticity to be

O_io OVo xl :r2 _ _r2
(2.3) w0 - 0x2 Oxl - sin2 -2- sin2 2

We computed the energy spectrum using the following formula:

(2.4) Z(k) = _ ([_(kl, k2)[2 + [O(kl, k2)[2)

where _(kl, k2) is the (kl, k2)-th Fourier mode of u. Figure 1 is the log-log plot the energy

spectrum at times tj : 0.1, 0.2,..., 2.5. Here e = 0.04, and the computation is done on a

4002 grid. It is clear that the energy spectrum consists of two parts: The high frequency

part is dominated by the forcing frequency and its higher harmonics. The low frequency

part corresponds to the large scale structure of the flow. Although it is not shown in Figure

1, the energy spectrum at t = 0 decays much faster than those plotted there. At early times

the low frequency spectrum is very well separated from the high frequency part. At about

t = 1, the high end of the low frequency spectrum begins to merge with the low end of the

high frequency spectrum. At the same time, the 10w end of the low frequency spectrum



forms an envelope. This envelope is compared to a straight line with slope equal to -4.

They are close.

In the second example we choose a nonsmooth initial vorticity:

(2.5) w(xl, x2) = H(xl)H(x2) - v:4,

where H(x) is the hat function on [0,2_r]with height _r. The oiher parameters are the same

as in the first example. The energy spectrum for t = 0.1, 0.2,..., 1 are plotted in Figure 2.

We observe basically the same phenomena as in Figure 1 except that here the initial data is

much less smooth, therefore the low frequency spectrum settles down to an envelope much

faster. The envelope is also compared to a straight line of slope -4 and is seen to be very

close to that.

Although there exists a large literature on two-dimensional turbulence theory (for a

review, see [2]), the discussions are much less sound than Kolmogorov's theory for three-

dimensional turbulence. We therefore seek our own explanation of this seemingly universal

behavior of relaxation to a k -a law for the low frequency spectrum. In the next section, we

will derive the effective equations governing the evolution of the large scale structures and

therefore the low frequency part of the spectrum. In Section 4 we will study the effective

equations numerically and present evidence that the energy spectrum for the solutions of

the effective equations evolve to a k -4 decay law, even with a smooth initial data. The time

that this happens is close to the time when the envelope forms at the low frequency part of

the spectrum of the Kolmogorov flows. Beyond this time the original Kolmogorov flows no

longer exhibit separation of scales and the effective equations cease to be valid.

§ 3. Effective Equations for the Large Scales

In this section, we derive effective equations governing the evolution of large scale flow

quantities. Enormous efforts have been devoted to the the derivation of similar equations,

the so-called "Reynolds equation", for general turbulent flows. The fact that turbulent flow

has a continuum range of scales presents a serious difficulty to this objective. Our problem

is drastically simplified since there is a separation of the scales which are active in the flow.
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As we pointed out in the last section, eventually separation of scales no longer holds and

the flow exhibits a transition to a continuum of scales. This signals the breakdown of the

effective equation, an issue which will be looked at more carefully in the next section.

We begin with the following proposition:

= + +s +...

v_(x,t) _(x,t) z(_,t, _) vl(_,t, _)

p_(x,t) = _(x,t) + II(x, t, ?) + spl(x,t, _-) + . . .

where w(x, t, y2), II(x, t, y_), ul(x, t, y2), pl(x, t, Y2) etc. are periodic functions of Y2, and

< w(x,t, .) >= 0, < z(x,t, .) >= O, < II(x,t, .) >=0 for every x, t _ R 2 x R +. Substituting

(3.1) into (2.2), and collecting equal orders of 6, we get a hierarchy of equations. The O(s -1)

equation are:

(3.2) V_. + V_II=/x_ + ,
(a+_)(_+_) (,_+_)_ z o

Vy. (w, z) T _- O.

The solutions of (3.2) can be obtained explicitly:

1
(3.3) w=_[sin y,- _cosy,], z =0, II=0.

'v-tl
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Averaging both sides of (3.4) with respect to y, we get (written in conservative form):

(_(x, + v_. + v_. + v_ =0
(3.5) \ _(x,0 _ _2 <_z > < : >t

V_._=0

Substituting in (3.5) the result of (3.3), we get

I _1+_ +_ +(2(_2_+i))_1+_: =0

(3.6) _)t+ u_)xl+ vb_2 + Px2= 0

u_l + v_2 = 0

This is the effective equation governing the evolution of the large scale quantities for the

Kolmogorov flow. For the self-consistency of this asymptotic argument, we have to produce

a candidate (u:,p:) which solves the remainder of (3.4). To this end we write (3.4) as

2(_+_)_: (_+_)_:+ (_+z)_: _:
(3.7) Vy. +Vyp:-/_ =f

(?_+ W)Vl + (?_-_-Z)?/,: 2(V + Z)Vl Vl

(3.8) %. (_:,_:)r=-v_. (_+_,_+_)_=g

where

'f2 _(x,t) z (_ + u,)(_ + z) Q?+w) 2
t t

+V_ + V_II- 2(V_. V_) (
W

\ Z

In (3.7) and (3.8), x and t are viewed as parameters. Since f and g only depend on Y2,

we seek a solution of (3.7) and (3.8) which depends only on Y2. The constructions above

for w, z, II,/_, _ and _ guarantee that the averages of f and g in Y2 over the period [0,27r]

are zero. Therefore we solve v: from (3.8). The first equation of (3.7) will then give the

solution u: whereas the second equation will give the solution P:. It is easy to see that if

we define

= + +_ ,

_(_,t) _(_,t) _(_,t,_) _:(_,t,-_)



t)- +iI( ,t, + t,
then the equations (2.2) are satisfied by _, _,_5_ with an error of order _.

Remark 1: The difference between equation (3.6) and the usual 2-D Euler's equation

is the appearance of the off-diagonal term in (3.6). This means that the linearized equation

is weakly well-posed: high frequency perturbations will grow with a growth rate which is

a polynomial in the wavenumber. This fact motivates us to look for finite time singularity

formation in the solutions of (3.6) with smooth initial data.

Remark 2: If we change the forcing term in (1.1) to a different function, the form

of the effective equation will not change. The off-diagonal term will usually change to a

different function. In particular if the viscosity is scaled to vanish faster than O(_), then

the added flux in the effective equation is singular in _3.

Remark 3: We notice that (3.6) conserves energy:

^ 1

1 d /(_2 + i_2)dxldx_ = _ / u(2(_2 + 1))_ldxldx 22 dt

/ 11)dmldX2 / 1= u_ 2(_32_- = - _3_22(_32+ 1)dxldx2 = O.

§ 4. Singularity Formation in the Solutions of the Effective Equations

In this section, we present numerical evidence which suggests that the solutions of (3.6)

with analytic initial data develop singularities at finite time. Furthermore, at the time when

singularity forms, the energy spectrum associated with the solutions decays like k -4.

The numerical results presented below were computed using a Fourier-collocation method.

We checked these results using both a second order centered differencing scheme and a fourth

order ENO type scheme [14]. We remark that searching singularities numerically is a very

subtle undertaking. It is important to check the numerical results using different meth-

ods since each method is likely to have its own numerical artifact when it comes to the

computation of singularities.

Strictly speaking, demonstrating finite time singularity formation is an analytical prob-

lem. The ultimate answer has to come analytically, either by giving specific examples or



by establishing a lower bound for the life span of the smooth solutions. Computers are

limited to finite arithmetic and finite capacities. A numerical approach can at best give

partial evidence, not the complete answer. Needless to say that we have tried the analytical

approach and the problem seems to be very hard. For the moment, presenting numerical

evidence is the best we can do to shed some light on our problem.

§ 4.1. Description of the Numerical Method

For the spatial discretization, we used the Fourier-collocation method [1]. Roughly

speaking, the differentiation operator is approximated in the Fourier space, whereas the

nonlinear operations such as multiplication are done in the physical space. We use the

intrinsic Cray FFT routines which considerably enhanced the performance of the code.

We observed that even for the computation of smooth solutions of the standard two

dimensional incompressible Euler's equation, a certain amount of filtering is needed for the

stability of the numerical method, and it is crucial to add the filters correctly. A robust way

of adding the filters is to replace the Fourier multiplier ikj for the differentiation operator

0 by ikjqo(]kjl), where

(4,1) for Ikl_<N

Here N is the numerical cutoff for the Fourier modes, my is the order of the filter, a is

chosen so that T(N) = e-_ = machine accuracy. The machine accuracy on Cray-YMP with

single precision is roughly 10-14 . The accuracy of such an approximation scheme depends

on the parameter m I. For smooth functions f(x), we have

(4.2) IIf'(x)- DN:(X)II= O(N

With DNf = F-l(ik_(Ikl))Ff is the numerical approximation of if(x). F denotes the

Fourier transform operator. Unless otherwise stated, the results presented in § 4.2 were

computed with my = 14.

For the temporal discretization, we used the third order l_unge-Kutta method designed

in [14]. We used the third order version since it only requires three auxiliary arrays, whereas
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the fourth order version requires five auxiliary arrays. We take initial data that is periodic

with period D where D = [0, 2_r]x [0,21r].

§ 4.2. Numerical Results

We present our numerical results for the case when the initial vorticity is the same as

in the first example of Section 2:w0 = sin2 _ sin2 _ - _r2.

As a first hint for the singularity formation, we plotted the time history of the quantity

Hi(t) = fD [Vw[2dxdy . Figure 3 suggests that as N --. +c_, Hi(t) grows without bound,

fort> 0.9.

This information alone cannot be used as a solid evidence for singularity formation,

since it only says that the quantity Hi(t) is poorly resolved for t > 0.9. Next we plotted

in Figure 4 the time evolution of the energy spectrum (on a log-log scale) associated with

the numerical solutions obtained with three different resolutions: 1282, 2562 and 4002. We

observe that at t = 1, a bump develops near the cutoff frequency on the energy spectrum.

This indicates that at this time, the numerical solutions are not very well resolved. We also

observe that the energy spectrum at t = 0.9 is well represented by the numerical solutions

obtained on the 1282 and 2562 grids, and it fits very well with a straight line with slope

-4. This is a stronger indication that at this time, the energy spectrum of the solution no

longer decays exponentially, but decays algebraically as k -4.

To determine more precisely when algebraic decay sets in, we use the techniques pro-

posed by Sulem, Sulem and Frisch [17]. Let f(z) be a function which is analytic in the strip

[Imz I < a, and has a branch-cut singularity z_ on [Imz[ = a, then its Fourier transform

](k) decays like

(4.3) /(k)~ Ck- e-% Ikl-

Imagine the following scenario for the singularity formation in the solutions of (3.6).

Instead of solving (3.6) in the real space R2, we solve (3.6) in the complex space (zl, z_) E C 2.

Initially the solution is an entire function. At later time the solution develops branch point

9



of order _(t) at z(t) with IImz(t)] = a(t) > 0, but it is analytic in the strip IImzl < a(t).

If this branch point travels to the real axis at a finite time t*, then the solution of (3.6),

solved in the real space, develops a singularity at t = t*.

This scenario has been proposed for a number of problem in fluid mechanics, notably

the formation of singularity in the evolution of a vortex sheet. (see [8, 3, 13]). In this case,

there are strong numerical as well as analytical evidence which confirms this picture.

To check whether this provides a plausible picture for our problem, we checked numer-

ically the validity of proposition 4.3 for the energy spectrum. To do that we choose three

consecutive wave numbers (k - 1, k,k + 1), and solve

(4.4) E([c, t) = C[_-_e -"_, for /_ = k - 1, k, k + 1,

with double precision arithmetic (on Cray-YMP). At each fixed time, we get three functions

C(k, t), _(k, t), a(k, t). These functions depend on k. In order that (4.3) be a good estimate

for the energy spectrum of the solutions of (3.6), asymptotically as k --* co, the functions

C(k, t), fl(k, t) and a(k, t) should not depend on k in this limit. In Figure 5 we plotted the

functions a(k, t) from t = 0.4 to t = 1 with constant time increments. The computation is

done on a 2562 grid. It is clear from Figure 5 that for fixed t, a(k, t) is almost a constant for

20 < k < 60. For k < 20, a(k, t) exhibits fluctuations since k is not yet in the asymptotic

regime. For 80 < k < 128, the energy density is at the order of 10-32 which is below machine

accuracy even if double precision is used. These wavenumbers are needed only to enforce

smooth decay for the Fourier coefficients down to the machine accuracy. Figure 6 displays

similar results for a computation using a 4002 grid. The fluctuations at high wavenumber

is a manifestation of trying to fit machine zeros with proposition 4.3. The functions C(k, t)

and fl(k, t) exhibit the same feature.

Now we can average the values of a over the intermediate wave numbers and safely

regard the averaged value (as a function of t) as the width of the analyticity strip of the

solution at that time. This function will be denoted by _(t). The corresponding function

for fl will be denoted by fl(t). Displayed in Figure 7 is the function _(t) for two different

numerical resolutions: 2562 and 4002. Results obtained on both grids indicate that the

10



width of the analyticity strip for the solution vanishes at t* _ 0.9, suggesting a singularity

formation at this time. The corresponding results for fl are displayed in Figure 8. As t --* t*,

_(t) converges to 4.

The other numerical parameter in our method is the order of the filter. Figures 9 and 10

display the results for _,/_ as we vary the order of the filter. We see that the approximated

values of a, fl are not sensitive to the change of the filters. However when the filter is too

weak (m I = 15), the numerical solution deteriorates drastically at atime before t*, since

it can no longer handle the large gradients developed in the vorticity field. The computed

value fluctuates much more, therefore the result is not shown in Figure 10. This is not

unexpected since in general fl is much more sensitive than a.

To get an idea about the nature of the singularity, we display in Figures 11 and 12 the

u and w at y = _ with t = 0.3, 0.6, 0.9. At t = 0.9, a cusp seems totime evolution of have

formed on the profile of w. Contour plots of w show that these cuspy structures occur on

isolated lines.

The behavior of the solutions reported above seems to be generic. It occurs in other

calculations we did using different initial data.

§ 5. Concluding Remarks

As we mentioned in the introduction, the Kolmogorov flow belongs to a large class of

problems which exhibit large scale instability. A typical example in three dimension is

the ABC flow which is known to be unstable to large scale perturbations [7]. In principle

the ideas and methods presented above should apply to these problems also, Mthough to

actually carry out the program is difficult mainly because the computationM cost increases

drastically for three-dimensional problems. However, it is clear that such instabilities will

trigger the transport of energy from small scales to large scales, thereby effecting the mean

flow quantities.

One can also attempt to study the interaction of different scales by studying the solutions

with two-scale initial data. Formally one can use multiple scale asymptotics to derive
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effective equations for the large scales. This is done in [5, 4]. However, a closer look at

these effective equations reveals that the linearized equations are exponentially ill-posed:

high frequency perturbations grow at a rate that is exponential in the wavenumber. The

reason for this is very simple. The incompressibility condition forces the microstructure

to be shear flows. In the limit of infinite scale separation, the microstructure appears like

stacks of vortex sheets when viewed at macro-scales. The linear ill-posedness is simply a

manifestation of the Kelvin-Helmholtz instability.

In such situations multiple scale asymptotics does not provide useful information since

it is based on the hypothesis of scale separation. For the Kolmogorov flow, we are saved

since there is a fixed time interval in which the scales are separated and we can get useful

information from two-scale expansions. As one might expect, beyond the critical time t*, the

two scales in the Kolmogorov flow merge and the effective equation cease to be valid. This is

checked numerically with the following procedure. The effective equation (3.6) is integrated

numerically using a finite difference method with a built-in nonlinear numerical viscosity

to avoid oscillations coming from large vorticity gradient [14]. The energy spectrum of the

numerical solution is found to be decaying increasingly slower. This differs sharply from the

energy spectrum of the original Kolmogorov flow since the latter approaches an asymptote

after the critical time.
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Figure 1. Log-log plot of the time evolution of the energy spectrum with initial data (2.3)

at t = 0.1,0.2, .. ,,2.5. e =0.04. t increases upward. The energy spectrum is compared to

a line of slope -4.
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Figure 2. Log-log plot of the time evolution of the energy spectrum with initial data (2.5)

at t = 0.1,0.2" . "1. e = 0.04. t increases upward. The energy spectrum is compared to a

line of slope -4.
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Figure3.From bottomtotop,timehistoryofHI(t)oncomputationalgrids:1282,2562,4002,
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Figure 4. Log-log plot of the time evolution of the energy spectrum computed on grids:

1282, 2562and 4002. From botto.m to top: t = 0.1, 0.2,..., 1.The energyspectrum is com-

pared to a line of slope -4.
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Figure 5. Functions a(k, t) from t = 0.4 to t = 1 computed from (4.4). t increases downward.

Computation is done on a 2562 grid.

2
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Figure 6. Functions c_(k, t) from t = 0.4 to t = 1 computed from (4.4). t increases downward.

Computation is done on a 4002 grid.
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Figure 7. The analyticity strip width _(t) computed on different grids. The line with circles

is computed on 4002 grid. The other line is computed on 2562 grid.
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Figure 8. /_(t) computed on different grids. The llne with circles is computed on 4002 grid.

The other line is computed on 2562 grid.
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Figure9.The analyticitystripwidth5(t)computedon a 2562gridwithdifferentordersof !

filter.The linewithcirclesiscomputedwithmf = 5,The llnewith"x"iscomputedwith

m! = 15.The otherlineiscomputedwithm! = 10.
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Figure 10. _(t) computed on a 2562 grid with different orders of filter. The line with circles

is computed with m.f = 5. The other line is computed with m.f = 10. The result for

my = 15 fluctuates and is not shown here.
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Figure 11. The profile of u at y = _ at t = 0.3, 0.6 and 0.9 respectively. The line is for

t = 0.3. The dashed line is for t = 0.6. The dotted line is for t = 0.9.
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Figure 12. The profile of w at y = _ at t = 0.3, 0.6 and 0.9 respectively. The line is for

t = 0.3. The dashed line is for t = 0.6. The dotted line is for t = 0.9.
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