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Chapter 1

Introduction

Leading and trailing edges on aerodynamic surfaces often have special edge

terminations due to design constraints. One constraint is their impact upon

the electromagnetic scattering performance for aerodynamic surfaces. The

edges are important in determining the scattered field from these surfaces.

Their impact is seen in several different ways. For an electrically thin, per-

fectly conducting surface, near grazing incidence, the leading edge is primar-

ily sensitive to an electric field polarized parallel to the edge while the trailing

edge is primarily sensitive to an electric field polarized perpendicular to the

trailing edge.

The previously mentioned scattering behavior changes as the surface be-

comes electrically thicker. The leading edge becomes a specular scatterer and

is sensitive to both polarizations while the trailing edge will allow energy to

"creep" around the edge. Other changes occur when the surface is no longer

perfectly conducting due to fabrication considerations. Now the incident field

can penetrate the structure and scatter with greater complexity.

The character of the scattered field depends upon several parameters. The

most important parameter is the shape of the structure. The scattered field



is focused in directions where Snell's law is satisfied. Backscattered fields are

the strongest where the incident field direction is normal to a flat surface. A

curved surface results in lower backscattered fields but then provides broader

angular scattering. Hence, it is important to properly shape both the exterior

and interior of penetrable surfaces.

Another parameter involves the various materials used in a penetrable

surface. Abrupt changes in material with different electrical properties can

also contribute to the scattered field. Thus, it is then desirable to taper

the electrical material properties when possible. Appropriately chosen loss

characteristics can also help in reducing the internal visibility of a structure

when sufficient tapering is not possible.

Hence, the design of terminating structures involves the judicious choice

of both structural shape and material components to achieve the desired

electromagnetic scattering performance. A computer program is under de-

velopment to assist in the design of two-dimensional edge terminations. This

code is based upon the rigorous solution of Maxwell's equations.

The following chapters discuss the general formulation used in the code,

its present status and a few examples to demonstrate the validity of the

code. A future report will present the final form of the code, its operation and

comparisons with measurements to illustrate particular design considerations

for edge terminations.



Chapter 2

Theoretical Analysis

The analysis chosen for the basis of the computer program to calculate the

scattered field from an edge termination was based upon its potential ge-

ometry and its material properties. Figure 2.1 illustrates a conceptual ter-

mination which has several homogeneous regions. Each region can be de-

scribed geometrically with unique constitutive parameters. There are two

basic approaches to solve such problems. The traditional approach involves

the formulation of an integral equation with unknown equivalent volumetric

currents occupying the space of the scatterer [1]. This approach is called a

method of moments solution (MM) where the integral equation is discretized

into a system of equations.

The alternate approach involves the direct solution of the differential form

of Maxwell's equations [2, 3]. This approach is called a finite element solution.

Traditional finite element solutions (FEM) have been employed in problems

with bounded (finite) regions but their presence is becoming more common

in problems with unbounded regions such as in electromagnetic scattering

problems where the region extends to infinity.
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Figure 2.1: Illustration of conceptual edge termination.



There are several differences between the two basic approaches. The most

noticeable difference involves the final matrix for inversion to solve for the

unknowns. The MM solution yields a dense matrix while the FEM solution

yields a sparse matrix. This difference becomes significant when the problem

becomes electrically large since the number of unknowns will also increase. It

is for this reason that the FEM approach was taken to develop the necessary

scattering code.

The following sections briefly describe the FEM formulation and its im-

plementation. The work is centered at determining the local and far fields

from and inhomogeneous scatterer illuminated by a plane wave. The analysis

is divided into two parts, i.e., the bounded internal region which consists of

the scatterer and the unbounded external region which includes all of space

excluding the scatterer.

I Interior Region

There are two independent scattered field solutions to Maxwell's equations

for two dimensional geometries. Defining the geometry cross-section in the

x-y plane, the solution is determined by the polarization of the incident field.

The solution is called TM (transverse magnetic) if the incident electric field

is z polarized or TE (traverse electric) if the incident magnetic field is z

polarized. The scalar wave equation to be solved for the total field where the

relative permittivity (er) and permeability (fj,r) vary with position is

V . (-V<f>] + -k2<j> = 0 (2.1)
\i/ / v



where

_ * | TM polarization. (2.2)

and

6 = H 1
_ * \ TE polarization. (2.3)

with k being the propagation constant in the medium which equals ^

The total field is the sum of the incident and scattered fields denoted with

superscripts i and a, respectively.

The total field solution can be obtained through using the technique of

weighted residuals. This technique involves the integration of the differen-

tial equation over the bounded region S times a testing function, Wj. The

resulting expression from this operation is

f l -
J Js v

V<f> - K*Wj<l> dxdy = - - d l (2.4)
' Jar v on

where we have made use of the vector identity

= V • wj- V<^J - - Vw, ; • V0. (2.5)

The line integral is a result of applying the two dimensional divergence the-

orem "to simplify Equation (2.4). This boundary term associated with dT, is

dependent upon certain boundary conditions discussed later.

The next step is to expand <f> in some basis and for simplicity, the same

expansion as the testing function, Wj, is used for both. The expansion used

are the common triangular elements [2] although there are several others.



The basis is a polynomial approximation represented by subsectional ele-

ments which span the bounded geometry region. The expanded region is

represented with individual elements as shown below

#z,y) = 5>eOr,j,) (2.6)
e=l

with each element, <f> e(x,y)\ being represented as

Nn

<F(x,y) = '£t<t>iwi (2.7)
i=l

where u;, are polynomial shape functions, Ne are the number of elements and

<f>i represents the field at the tth node of the eth element. The constant Nn

equals 3 or 6 depending upon if an element consists of three or six nodes as

shown in Figure 2.2. A three nodal element corresponds to a linear approx-

imation to the fields while a six nodal element allows a quadratic variation

in the fields.

It is convenient to define the test functions such that Wj = 0 at all nodes

except one, where it has unity value. This is accomplished by letting

,6)JZ,-(n,6)l2fc(n,6), i+j + k = n (2.8)

where

m-l

m =
JZo(n,0 = 1. (2.9)

The interpolation functions Wj may be expressed in terms of simplex

coordinates which are independent of the global x — y coordinates to simplify



First order

Second order

Figure 2.2: Typical first and second order triangular elements.



the necessary calculations [2]. The relationship between the cartesian and

simplex coordinates is given by

61
6
6 2A - x2yl

2/2 - 1/3

- 1/2
x l -x 3

1
X (2.10)

where

idet 1 X2 1/2

1 «3 V3

(2-11)

represents the area and Z i , y i , X 2 etc... are the vertices of the element under

consideration.

In matrix form, Equation (2.4), can be written as

Se = v (2-12)

where

and

= 1 1 — fVw, • Vwj — k2WiWj\ dxdy

v,; = — / ty.n • V<f>dl
v Jar

(2-13)

(2.14)

Efficient evaluation of the terms in Equation (2.13) is provided in [2].

The final boundary consideration applies to conducting boundaries. The

nodes along a conducting boundary are known for the TM case since El
z = 0

and are excluded from the matrix equation as unknowns. For the TE case,

since the normal gradient is identically equal to zero along the conductor,

the nodal points along the boundary are treated as unknowns.



II Exterior Region

The FEM approach allows a very convenient boundary condition implemen-

tation for bounded regions. However in scattering problems, the region is

unbounded (boundary at infinity) and a far field boundary condition has to

be employed. There are two basic approaches to accomplish this task. One

approach is to construct a boundary near the scatterer which ideally absorbs

all outward propagating waves and creates no reflected waves. This approach

is called the absorbing boundary condition (ABC).

The second approach couples the fields calculated by a FEM calculation

(bounded region) to the exterior through a integral expression provided by

the boundary element method (BEM). This approach is called the hybrid

FEM-BEM approach and is theoretically more accurate since no scattered

field approximations are made at the coupling boundary as is done for the

ABC method.

II. 1 Absorbing Boundary Method

The goal in this technique is to make a bounded region from an unbounded

region in order to directly use the FEM. This can be accomplished only ap-

proximately since the Sommerfeld far field radiation condition is only asymp-

totically satisfied at some boundary which encloses the scatterer. The Som-

merfeld far field radiation condition

lim ^- = -jkf (2.15)
— »p— »oo

is valid for dT — > oo. However, for numerical analysis it is necessary to

apply a boundary condition valid for dT located at a finite distance from the

10



scatterer. From a practical standpoint, it should be as close as possible but

far enough away for the following approximations to be valid.

Expanding the scattered field asymptotically

(2,6)

Imposing the Sommerfeld far field radiation condition on dT results in only

the first term of the asymptotic expansion being satisfied. Bayliss and Turkel

[5] presented a higher order radiation condition

P.")

which satisfies the first four terms in Equation (2.16), where

and

kp

Substituting Equation (2.17) into Equation (2.4) with 0" = <f> — fi and

integrating-by-parts yields

I I - {Vwj • V^ - K?Wj<j>) dxdy

(2.20)

where dT is circular and centered at the origin. In Equation (2.20), 4>l is

assumed known while <f> is the unknown variable.

11



In matrix form, Equation (2.20), can be written as

Se = v.

The matrix elements are given by

(2.21)

(2.22)

where

-j =11- Vwj - k2WiWj) dxdy (2.23)

(2.24)

and

(2.25)

The terms expressed in Equation (2.23) have been previously computed, thus

only the second integral need be considered. Due to limitations on the num-

ber of triangles one can expect to accommodate, approximating the curved

boundary ST by a straight line introduces discretization error. If, however, we

do not restrict our trial function polynomials to exist only within the triangle

but allow them to "spill" over onto the curved boundary we can eliminate

this error [6]. This is valid since the polynomials exist over all space. The

node values however, are still given at points on the triangle. In polar form

the global coordinates are

2A

V2 - J/3

1/3 - I/I

y\ -y-i

1
pcosQ
psinff

(2.26)

12



The test functions used in evaluating the integrals are the same functions

previously given in Equation (2.8). Additionally, the partial derivatives in

Equation (2.24) are expanded in terms of the area coordinates which yields

'
88

Equation (2.24) is valid for a circular absorbing boundary centered at the

origin of our coordinate system, therefore p is constant and Equation (2.24)

can be solved in closed form.

Finally, the voltage coefficients v, given in Equation (2.25) are considered.

The incident plane wave with a e~'wt time convention is used and is defined

as

(2.28)

where <f>o is the magnitude of the plane wave and 7 is the angle of incidence.

Taking the derivatives in Equation (2.25) results in

p,8) (2.29)

and

Q2-JL1

—jL =. {-jkp cos(e - 7) - fc V sin2(0 - 7)} ^(p,9)- (2-30)

Inserting Equations (2.29) and (2.30) into Equation (2.25) and numerically

integrating yields the required coefficients, v,.

13



II.2 Hybrid FEM/BEM

The efficiency of the FEM technique for unbounded problems can be greatly

increased if the required meshed region can be reduced. The previously

presented ABC technique allowed a convenient numerical approach at the

cost of requiring many more unknowns in the region external to the scatterer.

An alternate technique is to couple the internal FEM solution to the exterior,

unbounded region through an integral equation formulation provided by the

boundary element method (BEM) [7]. The BEM provides an efficient solution

to the wave equation in a homogeneous region.

The FEM-BEM [8, 9, 10] method combines the strength of both of these

methods. A single boundary is established at the surface of the material body.

Inside the boundary, where the material properties may be inhomogeneous,

the FEM solves for the fields. Outside the boundary, the BEM solution

for free space is used which couples the incident field to the far field using

the boundary conditions derived from the FEM. The link between the FEM

and BEM is based on the boundary conditions of the differential equation

at a discontinuity of the material properties. For electromagnetic fields, this
—* —*reduces to continuity of tangential E and H across the surface of the material

body.

This section will show how the FEM and the BEM are coupled together

to solve for both the scattered far fields and the internal fields for an incident

plane wave on an inhomogeneous two-dimensional body.

Differential Equation

The scattering problem being considered here is two dimensional. The mate-

rial properties of the body are constant along the z axis and the incident field

14



is also constant in z. Under these conditions, Maxwell's equations separate

into two equations which depend only on the values of the E,H fields in the

2 direction,

(2.31)
/*r /*r /

and

( V • (-V#2) -I- — Hz } = 0.
\ er er J

(2.32)

The relative permittivity er, permeability fir, and wave number k = ^

may depend on position zr,y. The derivative V is in the x,y direction only.

The other field components may be derived from E2 and Hz.

For a transverse magnetic (TM) field,

Eine = E0ze-jKi'? (2.33)

and the scattered field will also be TM. Likewise a transverse electric (TE)

incident field,

Hinc = H0ze-*'-p~ (2.34)

will produce only TE scattered fields. Both the TE and TM differential

equations have the form of the scalar equation

=0 (2.35)

with an incident field defined as

fc-c = fa-**. (2.36)

15



This scalar equation is the differential equation which will be solved by the

FEM-BEM with the understanding that the solution corresponds to either

the TM case with <j> = E2, v = fir or to the TE case with $ = Hz, v = er.

Boundary Conditions

At a boundary between material 1 and material 2 with parameters v\, k\ and

1/2,^2 respectively, the differential equation provides the following boundary

conditions,

(2.37)

(2.38)
dn 1/2 dn

where n is an outward unit vector normal to the boundary and -j- is a

derivative in the n direction. The last boundary condition can be written

1>i = V>2 (2.39)

^ = -!*. (2-40)Y vdn v '

The fields <f> and i/} are continuous across the boundary.

Let i = z x n be a unit vector tangential to the surface. Then for TM

fields

0 = E, (2.41)

i> = jui-H (2.42)

and for TE fields

* = H. (2.43),

E. (2.44)

16



The boundary conditions on <f> and ifr are equivalent to enforcing continuity

of tangential E and H.

FEM

The FEM is ideal for solving the differential equation shown in Equa-

tion (2.35). To construct a solution, a mesh of triangular elements is made

which completely encloses the material body. As usual this mesh is made

small enough to accurately model the inhomogeneity of the body and the

variation of the fields. Nodes on the edges of the triangles represent the

value of <f) at that point. These nodal values are used to extrapolate a linear

or quadratic solution in the element. Each node t gives rise to a generating

function tu, which extends across each element node t touches, has unit value

at node t and has zero value at every other node. The total field can be

written as a linear combination of these generating functions,

N

^ = 5>W (2.45)
t=i

where <£, is the value at node t for the N nodes on the mesh.

The FEM solution seeks to minimize the residual of the differential equa-

tion as weighted by each generating function Wj. The residual for the j'th

generating function is

fy = - J (v • (iv$ + ̂ J wjds. (2.46)

After an integration by parts, this residual becomes,

•Rj ; = - / - (Vwj - V<f> - k2wj(f>) ds+ f wM. (2.47)
JS V v ' ' JC

17



The region of integration is 5 which is enclosed by the boundary C. The

FEM boundary coincides with C. As before, V' = ~;f~ on the boundary and

is assumed independent (known). There are N residual equations. Using the

expansion in Equation (2.45) for <f> and setting the residuals to zero gives N

equations in the N unknowns ^,,

.

I•'C'

N j
£ ) < £ • / - (Vu>j • Vw, - tfwjWi} da. (2.48)
• _ * J S if

This is the matrix equation,

Vj = Sub (2.49)

Sji = I - (Vwj • Vwi - k2WjWi) da (2.50)

Vj= I wrfdl (2.51)
» C-

with Sji an TV x TV matrix and Vj an TV dimensional vector. There is an

implied summation over repeated indices in this and the following matrix

equations.

For a node k on the boundary, there is a generating function tuf , restricted

to the boundary, which has unit value at node k and is zero at all other

boundary nodes. These generating functions provide a means for expanding

^ on the boundary,

(2-52).
1=1

in terms of V'fcj the value of V» at the fcth boundary node. The total number

of boundary nodes is NB- Substituting this expansion for ̂  into the formula

for Vj gives the matrix equation,

Vj = Tjki>k (2.53)

18



Tjk = I w^dl (2.54)

where Tjk is a nonsquare matrix with N rows and NB columns. The FEM

matrix equation becomes,

r,-fcVfc = Sjifa. (2.55)

Inverting the FEM matrix 5,-, and solving for <^, gives,

>k. (2.56)

This equation gives the internal field $ in terms of V>, the normal derivative

of <f> on the boundary. Note that the index t runs from 1 to N for the total

number of nodes while A; runs from 1 to Ng for the boundary nodes. For the

linkage to the BEM, <f> need only be known on the boundary. We therefore

restrict t to these boundary nodes with the index k' which runs from 1 to

NB.

<t>k> = h'k^k (2.57)

/*•*= S^ i .T j k . (2.58)

The matrix /*'* is a square NB x NB matrix which relates <f> on the bound-

ary to if} on the boundary. This matrix acts like an impedance boundary

condition and will be used as part of the BEM solution.

In the formula for the impedance matrix, the inverse of the FEM matrix

Sji is shown. Finding this inverse is not necessary. The matrix Sj, is banded

and large so that taking the inverse could be very costly. Given a value of

19



V> on the boundary, the solution of <j> throughout the internal region and on

the boundary can be obtained quickly using matrix algorithms for banded

matrices. The mth column of the impedance matrix is therefore obtained by

setting V'm = 1 and V'fc = 0 for k ^ m and solving for <fo/. The mth column

of the impedance matrix is then given by,

/*•« = &'. (2-59)

This method requires NB iterations to build the NB columns of

BEM

The BEM is an integral equation method for solving fields in a homogeneous

region. This integral equation is reduced using moment method techniques

to a matrix equation which relates the known incident field to a set of un-

known coefficients. Solution of the matrix equation solves for the unknown

coefficients and from these coefficients, the scattered field may be determined.

Consider a region 5 bounded by the curve C. This time, however, the

area exterior to S will be included in the analysis. Because the exterior region

is free space and homogeneous, v+ = 1 and k+ = fco = 7- The superscript -f

refers to the exterior region. Inside S, the parameters v~ and k~ may vary.

The integral equation is usually derived from Green's second identity

which yields the following relation for the field <f> exterior to 5 in terms of

the value of ^ and if) on the boundary curve C,

(2.60)

The outward normal is n' and -ĵ , is the derivative along the normal. Since

<f> and V* are continuous across a material boundary, no superscript is needed

20



to distinguish the interior and exterior fields. The Green's function solution

for the two dimensional wave equation in free space is,

- f \ \ ) . (2.61)

The zeroth order Hankel function of the second kind is consistent with the

eju)' time convention.

This integral relation is valid everywhere in the exterior region and can

be used to find the far field once ^ and ^ &re known. The integral equation

results from taking the field point on the boundary. Rearranging terms,

= \f
IV C

This equation relates the unknown <j) and ip on the boundary in terms of the

known incident field <^,nc. Substituting the expansion of <f> and 1/1 on the basis

of boundary weighting functions into this integral equation,

k=l
^ \ a r dGn(p,p') 0 -. 1

+ x _i I n I ^ J \ r > r f H/ / \ _ I l M /o tfO\
y (pfci \wLi — / WLi[p Jttt I . [2.Do)

k'=l [ •'C "n/ J

The moment method testing functions are chosen to be the boundary weight-

ing functions w?. This gives a Galerkin form of moment method solution

since the expansion and testing functions are the same. Applying each of

these testing functions to the integral equation gives the matrix equation,

V- = M/fc
+V* -f Mf+fa (2.64)

where

Vj = / wfhncdT (2.65)
Jc '

21



LJ O
(2.66)

w?w°dl'dl - u * ( f i - w « ( ) d l > d l (2.67)

The matrices Mjfc
+, Mj^t" are NB x TV^ square matrices. Mjj[.+ is symmetric,

but Mjk, is not. There are NB equations and INs unknowns in this matrix

equation. Another set of NB equations is needed to complete the solution.

So far no information about the interior region has been used. If the

interior is homogeneous, another integral equation can be derived which de-

pends on the value of <j> and V> on the boundary and uses the interior Green's

function solution with parameters i/~, k~ . This provides another NB set of

equations in the 2NB unknowns, <j>k' and V'fc- Simultaneous solution of the

resulting INs equations gives the BEM solution for the scattering from a ho-

mogeneous dielectric body. The far field may be found using Equation (2.60)

along with the asymptotic form of the Hankel function,

(2.68)
c

This equation gives the far field <f> in the p direction in terms of the boundary

fields at the nodal points ^k'^k-

For an inhomogeneous body, additional internal boundaries can be in-.

eluded and corresponding integral equations derived. The number of un-

knowns grows rapidly and can quickly become unmanageable. What is

needed by the BEM is an additional relation between 0 and if> on the bound-

ary. This is exactly what the FEM interior solution provides.

22



FEM-BEM

The FEM and BEM are combined by substituting the impedance matrix

Equation (2.58) derived from the FEM into the BEM matrix Equation (2.64).

This operation uses the continuity of <j> and ij> across the boundary curve C '.

The result is

Vj = AjkTJ>k (2.69)

Ajk = M}k
++Af$Ik,k. (2.70)

The unknowns in this matrix equation are the values of if) on the boundary.

The solution for

depends on the incident field through Vj. The matrix Ajk is independent of

the incident field.

Once the V'/t are known, the internal field <f> may be found by solving the

FEM matrix Equation (2.56) with the known values of V**- The impedance

matrix is used to find the boundary value of <^ as in Equation (2.58). The

field can then be found in the far field by using Equation (2.68) and the ^,

i]} boundary values.

Ill Matrix Inversion

The resulting system of equations to be solved involves the inversion of a

square matrix. This matrix is very sparse due to the limited coupling be-

tween elements. The location of non-zero elements in the matrix is dependent
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Figure 2.3: Matrix distribution of non-zero elements before renumbering.

upon the nodal numbering. Numbering of the nodes should be done to al-

ways minimize the difference of neighboring nodes. This allows the matrix

to become very banded for greater inversion and internal memory storage

efficiency.

Presently, a renumbering algorithm [12] is used to renumber the-nodes.

Figures 2.3 and 2.4 demonstrate the element distribution of a typical matrix

composed with 123 nodes before and after the renumbering, respectively. The

darkened squares represent non-zero elements. Note that the bandwidth of
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Figure 2.4: Matrix distribution of non-zero elements after renumbering.
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the matrix is dramatically reduced. The initial and final bandwidth was 70

and 17, respectively for this particular matrix. The bandwidth is defined here

to be the maximum difference minus one of the non-zero matrix elements for

any row.

The actual solver used employs simple Gaussian elimination to obtain the

unknown nodal values. This appears to be adequate when the elements have

approximately the same area size. When there is a drastic difference between

element size, a partial pivoting algorithm would be required. However, this

requirement would require more storage than presently used since only the

banded elements of the matrix are stored.

IV Scattered Far Fields

Although the FEM solution provides fields in the vicinity of the scattering

geometry, most often the scattered far field is of interest. A useful normal-

ization quantity for the scattered far field is the echo width as defined below:

\ \ U ' \ \ 2

Echo Width = 27T Urn p]- (2.72)

where U" represents the scattered field for either polarization.

Obtaining the scattered far field for the ABC and BEM approaches is

slightly different. The ABC approach uses the calculated total field at some

specified circular boundary. The scattered field can be represented as

U°= E anj-
nHl(Kp)e*n* (2.73)

n=— oo

where an are coefficients and H* are Hankel functions of the second kind.

Once the coefficients are found, the scattered far field is obtained by using
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the large argument form for the Hankel function. The scattered far field is

then given by

(2-74)

The coefficients an are determined by the following expression, indepen-

dent upon how the total fields, Ul, are calculated:

J" £ Ju2ir Ef (a. *)e r. (2'75)

where Ul is the total field at p = a and Jn is a Bessel function. The integra-

tion in this equation yields the nth order contribution for the scattered and

incident fields. The scattered field is then obtained by subtracting the nth

order incident field (plane wave) contribution from the nth order total field.

The BEM approach instead uses equivalent currents which are calculated

at the coupling boundary surrounding the scatterer. The fields from these

currents are then radiated into the far field using the standard radiation

integral as discussed earlier.

V Geometry Specification

For any numerical solution, the geometry under consideration has to be spec-

ified. The approach chosen here is to use a commercially available CAD

package and mesher to provide the scattering code required data. Several

packages are available at very reasonable costs. The package chosen here is

provided by Structural Research and Analysis Corporation [4] and is called

Geostar. They have implementations available on several computers ranging

from PC's to workstations.
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The scattering code reads an ASCII output file generated by Geostar

which describes the geometry in terms of first or second order triangular

elements. This file lists the coordinates of the nodes, the global node num-

bering for each element, material specification for each element and required

information to enforce the necessary boundary conditions.

28



Chapter 3

Examples

Two different example classes are presented. One is to validate the computer

solution through comparisons with results generated by eigenfunction solu-

tions. The other examines the scattered fields from some simple terminations.

The calculated results shown here were all obtained using the FEM/BEM ap-

proach. The FEM/ABC appears not as robust and requires a much greater

mesh and hence more unkowns. The greater number of unknowns may not

be as significant interms of compution time and required storage as the error

resulting from the field propagating through the extra mesh. It is desirable

to keep the meshed area as small as possible to minimize discretization error.

Hence, the FEM/BEM is a natural for this. A future report will document

the FEM/ABC performance.

I Validation

Code validation usually results through the comparison of its calculations

to measurements or calculations through other independent solutions. An

eigenfunction solution is considered to be the most exact form of numerical

solution available. For this validation, comparisons will be made to two
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Table 3.1: Geometry data

Geometry [ Nodes [ Elements | Bandwidth [ Run Time (s)
Con-Cylinder
Strip
Termination 1
Termination 2
Termination 3

1577
90

2087
2087
1652

3016
120

3873
3873
3030

52
9

45
45
41

126
3.2
387
393
280

geometries where eigenfunction solutions exist. The validation geometries

will be (1) two concentric dielectric cylinders and (2) a perfectly conducting

flat strip. The excitation in both cases will be from plane wave incidence as

illustrated in Figure 3.1.

The dimensions for the dielectric cylinder are 7 and 16 cm for the inner

and outer radii, respectively. The relative permittivities for the inner and

outer regions are er = (4.,—j.2) and er = (2.,—j.l). The relative perme-

ability for both regions is unity. The width for the strip geometry is 10 cm.

The frequency of the incident field for both cases is 3 GHz. The meshed

geometries are illustrated in Figures 3.2 and 3.3. The mesh density used

for both cases was approximately 10 nodes per linear length per free space

wavelength. The BEM boundary was located at the perimeter of the meshed

regions. Table I contains mesh information and computer run time for all

the geometries.

Figures 3.4 and 3.5 compare the TE and TM, respectively, FEM/BEM

and eigenfunction bistatic echo width solutions for the concentric dielec-

tric cylinders. Figures 3.6 and 3.7 compare the TE and TM, respectively,

FEM/BEM and eigenfunction monostatic echo width solutions for the flat

strip. All calculations used linear shape functions. Agreement between the
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Figure 3.1: Test geometries: (a) Concentric cylinders, (b) Flat strip.
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Figure 3.2: Mesh used for the concentric cylinders.
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X

Figure 3.3: Mesh used for the flat strip. The centerline of the dashed region
is the location of the strip.

eigenfunction and FEM/BEM results improve as the mesh density is in-

creased and/or higher order expansion functions are used.

II Terminations

Three examples are shown here to demonstrate simple triangular termina-

tions. The terminations are lossy dielectric structures with a conducting

backplane and are designated as Tl, T2 and T3. Terminations Tl and T2

are shown in Figure 3.8a. and termination T3 is shown in Figure 3.8b.

The relative dielectric constant for termination Tl had a uniform value of

er = (4.,—.05). Termination T2 had its relative dielectric constant linearly

graded from er = (2., —.05) at its tip to er = (4., —.2) at its base. The relative

dielectric constant for termination T3 had a uniform value of er = (4., —.05).

The relative permbeality for all three cases was fi = (l.,0.).

Figures 3.9 through 3.11 contain the TM and TE echo widths for termi-

nations Tl through T3, respectively. All calculations were performed at 3

GHz with a linear nodal density of 20 per material wavelength.
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Figure 3.4: TM bistatic echo width for the dielectric concentric cylinders.
FEM/BEM - solid, Eigenfunction - dashed.
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Figure 3.5: TE bistatic echo width for the dielectric concentric cylinders.
FEM/BEM - solid, Eigenfunction - dashed.
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Figure 3.6: TM bistatic echo width for the flat strip. FEM/BEM - solid,
Eigenfunction - dashed. •
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Figure 3.7: TE bistatic echo width for the flat strip. FEM/BEM - solid;
Eigenfunction - dashed.
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Figure 3.8: Test terminations, (a) Terminations Tl and T2, (b) Termination
T3.
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Figure 3.9: Echo widths for termination Tl. TM - solid, TE - dashed.
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Figure 3.10: Echo widths for termination T2. TM - solid, TE - dashed.
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Figure 3.11: Echo widths for termination T3. TM - solid, TE - dashed.
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A final plot is shown in Figure 3.12 which illustrates the internal TE

scattered fields for termination T3 at an incidence angle of 25°. This angle

was chosen due to the large echo width return, however, the correlation

between near field distribution and echo width value is not simple. This

plot does illustrate the standing wave pattern from waves due to localized

scattering centers. These scattering centers can conceptually be identified by

tracking the standing wave nature for a geometry when its electrical size is

sufficiently large. The benefit of knowing these locations is that appropriate

action can be taken to treat them from a scattering viewpoint.
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Figure 3.12: The internal TE scattered field for termination T3 with illumi-
nation from 25°.

43



Chapter 4

Conclusions

The status of a computer code for the calculation of the electromagnetic

scattering for two dimensional geometries is presented. The code is based

upon a finite element (FEM) solution for a bounded region. Two different

approaches are examined to extend the solution for an unbounded region.

One is using an absorbing boundary condition to simulate a reflectionless

boundary (ABC) and the other one couples interior and exterior fields at a

boundary through an integral equation (BEM). The advantages of the present

FEM/BEM approach is that 1) no field approximations are made as in the

ABC approach, 2) the boundary is placed at the outer contour of the geom-

etry which minimizes the FEM unknowns and 3) this particular FEM/BEM

approach, unlike others, retains the full advantage of the sparseness associ-

ated with the FEM interior region for matrix inversion.

Future activities include both the refinement of the existing code and

the study of particular terminations of interest using both numerical and

experimental approaches.
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Appendix A

BEM/FEM Numerical
Implementation

I Introduction

This appendix will consider in more detail the calculation of the matrices

M f k * M<lk> and the vector Vj used in the FEM-BEM. The relationship of Vj

.to the far field calculation will also be outlined.

II Geometry

The boundary for the FEM-BEM is defined by the mesh used in the FEM

solution. This consists of a set of geometry nodes connected by line segments.

The line segments form the boundary elements. Let the number of geometry

nodes', which equals the number of boundary elements, be Ng. Figure A.I

shows a boundary with Ng = 5. The boundary elements are indexed such

that element number e is between geometry nodes e and (e mod Ng) + l. The

following discussion for the boundary element implementation includes both

linear and quadratic generating functions.
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5 1
Figure A.I: A five sided boundary. The numbering of the nodes and bound-
ary elements is shown.
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Figure A. 2: Linear generating functions on the boundary elements.

For linear generating functions, the boundary nodes used as the unknowns

for the FEM-BEM are the same as the geometry nodes, Ng = Ng. Consider

the set of linear generating functions for Figure A.I as shown in Figure A.2.

The generating functions are combinations of the elemental linear functions

N*J (i = 1,2; e — 1, Ng) defined on each boundary element e as,

flji(0 = -1-* (A.I)

where £ is a normalized distance along the element (0 < £ < 1). For example,

the linear generating function w^ is given by,

(A.3)

For any linear generating function A,

(A-4)

This formula gives the subscripts of AT?, as a function of k. The inverse

relationship is also useful. Each function JV|,- is a part of exactly one gener-

ating function it;*- For linear elements, the kth boundary generating function

which has N*,• as part of its expansion is

fc «= e (i = 1)
fc = (emod^) - f l (t = 2) (A-5)
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N N e,2

0

Figure A.3: Elemental linear generating functions on a single boundary ele-
ment.

The set of quadratic generating functions for Figure A.I is shown in Fig-

ure A.4. The interior boundary nodes are shown as open circles. The numbers

correspond to the boundary elements. These generating functions are com-

binations of the elemental quadratic functions ./NT,?, (t = 1,3; e = 1, Ng). The

three functions N%f defined on boundary element e are,

w 9 w 1 Q W l

Figure A.4: Quadratic generating functions on the boundary elements.
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Figure A. 5: Elemental quadratic generating functions on a single boundary
element.

JVi(0 =. -4f + 4£ (A.7)

^i(0 = *?-( (A-8)

where £ is again the normalized distance along the boundary element (0 <

£ < 1). The expansion of Wj on the set of functions N^ depends on whether

j is even (an internal node) or odd (a geometry node),

for j' = IjNg. Notice that w-ij> extends over one boundary element while

w2j'-i extends over two. Each function JV'- is a part of exactly one quadratic

generating function. The kth quadratic boundary function which has JV' • as

part of its expansion is

k = 2e-l (» = 1)
A; = 2e (t = 2)
fc = 2(e mod #g) + 1 (i - 3).
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The matrices Mj^+ and Mj^t are defined by,

M*+ = "+ Ic L wiWG°tf> P>k(p'}dl'dl ( A.12)

The actual integrations will be done over the functions 7V£, and ./Vj?n resulting

in the terms

ie,, = "+ L L x?»
«/C7 JC

These integrals are defined over straight line elements. For a given pair of

•boundary elements e and /, the integrals for (i = l,p) and (j = l,p) can be

done simultaneously thus saving run time in function calls for the Green's

function. The terms m^.ei and m^.e , are added to the appropriate matrix

elements of M-^ and M^t based on the formulas in Equations (A.5) or

(A.ll).

The voltage vector Vj is denned as

Vj = I wf4>incdl'. (A.16)
Jc '

The integrals

are calculated for each boundary element e with (i = 1,^) and combined

to form the Vj vector.
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The following notation and assumptions will be made for the BEM in-

tegrations. The integral around the boundary will be done in a counter-

clockwise direction. This defines the integration path along each boundary

element. Let pe be the position of the geometry node of boundary element

e where the integral begins. The vector from one end point to the other is

le where le =\\ le || is the length of boundary element e. Any point on the

boundary element is given by

for 0 < £ < 1. The outward normal and the exterior region will always be to

the right of the integration path. The outward unit normal is then given by

rie = (£ X z) //e. (A.19)

III Component ra/>;e,;

The free space Green's function for the two dimensional wave equation is,

G»(P>?) = ~j-H(*\k || p- p> ||). (A.20)

Using this Green's function in Equation (A.14) for the term m^*.e, and

parameterizing the line integrals with Equation (A.18) gives,

m
/ -L. — 7 «c' f f I n n i f 2^

J,n,e,t £ Ju J0 J,n e,i

p = p} + llt (A.22)

? = & + l,t' (A.23)
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u')- (A-24)

From the symmetry of this integral,

J/,- = (A.25)

This means that we only need to dp a calculation of m^.eii for e < f. The

symmetry gives all the cases for e > f.

The Hankel function of order zero has a logarithmic singularity at ||

p — p' ||= 0. When elements e and / are separated, the integrand is well

behaved and a simple Gaussian quadrature is sufficient to calculate the dou-

ble integral. When elements e and / touch at an endpoint, there is one

logarithmic singular point in the unit square of £,£' space where the inte-

gration is done. This is a very mild singularity and can be ignored when a

Gaussian quadrature is used.

When e = /, the logarithmic singularity becomes a line (£ = £') in the

unit square. This double integral must be done more carefully to get accurate

answers. For e = /,

The innermost integral will be examined. It has the form,

(A-27)
(A-28)
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where /(£') has a log singularity at £' = £. The singularity will be moved to

zero in the integration variable with the transformation t = ^- in the first

integral and i = ^—^ in the second,

- 0) + (1 - O/ (* + (1 - 00 *• (A-29)

Substituting the integrand of the double integral for /(£'),

U + (i - 00 #o2) (*«.(! - 00 *• (A.30)

Let A^,-(z) = a-ix2 -f- aiz + fflo- This equation works for linear (p = 2) or

quadratic (p = 3) functions. Then,

,,- (f(l - 0) =

+(a0 -f o^ + a2^2). (A.32)

Substituting this expansion in powers of the integration variable t into Equa-

tion (A.30) gives,

- 0) /i (He(l - 0)

+ (a0 + a1e + a2e2)/o(We(l-0)}. (A-33)

where the /jt(a) are defined as

- (A-34)
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The reduction of these integrals was done in [8, 11] and is repeated here.

Not much can be done with /0(a)-'except integrate the series expansion

of #<2)

(A.35)

I- + 7 *.) - (A.37)

where 7 = .57721 ... is Euler's constant. Grinding through the integral gives

a Jo
(A.39)

The last summation is defined to be zero when k — 0, £°=1 ^ = 0. The

integral for /i(a) can be done exactly,

(A.40)

a

Using the small argument approximation of H[ (CM/) at T; w 0 gives,

(A.42)

(A.43)
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72(a) is found by an integration by parts,

/2(z;a) = I' r)2H^(arj)dr, (A.44)
Jo

;(i7;a)*7 (A.45)

; a) |5- r/^ja)*/ (A.46)
•/o

-^ (!$)(<*,)) *n (A.47)

7; a) |S + Tj/f <2)(a>7) |S - T J^Wrfii (A.48)

/ f \ tr(2)/ \ i tr(2)/ \ r / \ /A At \ \
2(a) = -77} '(a) -f —H^ '(a) j70(a). (A.49)

The e — f term is evaluated by doing a Gaussian quadrature on the

outer integral in Equation (A.26). For each value of £, the inner integral is

evaluated using Equation (A.33) and the 7*(a) functions given above.

IV Component

The normal derivative of the free space Green's function is,

= = H P ( k \ \ p - p \ \ t f - A (A.SO)

where .R is a unit vector from the source to the field point,

*=(?-?)/ \ \ P - ? \ \ > (A-51)

When e = /, there is a singularity in the second integral in Equation (A. 15)

for m f * . . This singularity comes from the , * • • . „ behavior of the HankelJ,n,e,t o J \\p-p'\\
A A

function of order one. Also, with e — f on a linear path of integration, n''R =
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0 except at p = p'. The net effect of the second integral in Equation (A. 15)

is to reduce the first integral by one half resulting in,

m

(A.52)

This integral can be done exactly which gives

= 5 (A.53)

= - (A.54)

for linear generating functions and

y1 3 3 /"' 3 3 2

Jo e' e< At e' e' 15

• 5 (A.56)

' s (A-57)

w <A'58)

for quadratic generating functions.

When e ̂  /, Equation (A.15) reduces to,

J,n,e,t ^ Jo Jo " C''

(A.59)

p = p/-f^ (A-60)

p' = Pe + Tef (A.61)

(A.62)

In general m^.ei ^ n^e,i;/,n because of the term (n^ • ̂ ). However, by cal-

culating both (n'e • R) and (n'f • J?), both terms m^.ei and *n*J!/,n
 can ^e

calculated in the same integration loop.

56



For e 7^ / and e not touching /, the integrand of Equation (A. 59) is well

behaved and can be found by a simple Gaussian quadrature.

When e 7^ / and e touches / at a corner, there is a singularity at that

corner. While this singularity is not severe, it can be easily removed. We
-*assume / = e mod Ng + 1 so that pf = pe + le. Let 77 = 1 — (J (drj = —d£')

in Equation (A. 59),

H(k || p- p' ||)(n'e • b,dt. (A.63)

,p = pj + lft (A.64)

p' = pj- l er j (A.65)

P-P' = (ht + fa). (A.66)

The double integral over the unit square in £,»/ space is divided into two

triangular regions as shown in Figure A. 6,

(A.67)
For the lower triangle, let £ = t, TJ = th. This gives

(A.68)

(A.69)

/n\

Notice how the singularity at t = 0 has been removed since the term tH\ (k ||
_» •

/T— p' ||) is bounded at t = 0. For the upper triangle, let T) = a, £ = aw. This

gives

(A.70)
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Figure A.6: The division of the unit square into upper and lower triangles.
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The singularity at s = 0 has been removed. Since the integrands for

and .Tn^ljT,- are well behaved, a Gaussian quadrature is used for the double

integrals. Adding the results as in Equation (A. 67) gives m**.̂  for the case

e < f and touching. The case e > f and touching is found by calculating

the two terms m/^;ei, and me*.jn simultaneously as indicated earlier.

V Component v<,,i

The induced voltage depends on the incident field. We assume here that

the incident field is a plane wave of unit magnitude coming from the pinc

direction,

<t>inc = e-*™* (A.72)

_ eJ*OP,nC-p- (A 73)

Equation (A. 17) gives the term vejl,

weil- = /„ jf VxO^*"e'(*+r'^ (A-74)

= /eCj*>AW« /" jVe
p.(OeJ'ae# (A.75)

Ju

a = fcu/Jmc • le- (A. 76)

Substituting the polynomial expansion N£J(£) = a^2 + a£ + eiu into this

equation gives,

(a) -f O! Ji(a) -f a0J0(a)) (A.77)

Ae = /eCJ*»«"«-ft (A.78)

Jk(a) = tke*°tdt. (A.79)
Jo
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The Jfc(a) integrals can be reduced,

J,(o) = -?- (e''Q - J0(a))
jo x '

•Ma) = i(c*--2J,(a))
I/I. > '

for a 7^ 0 . For a close to or equal to zero, the

evaluated using the series expansion for eja^ ,

(A.80)

(A.81)

(A.82)

integrals are best

(A.83)

VI Far Field

The far field <j>jar in the p/ar direction in terms of the boundary fields

at the nodal points is,

/_/ fa' I ~Jk)(
k^\ C

This can be written as,

= f w
J C

= f -
J C

C = \ J -

.(A.84)

(A.85)

(A.86)

(A.87)

(A.88)
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where an implicit summation over repeated indices has been used. Here

again, the terms

(A.89)

(A.90)

are calculated for each boundary element e (i = l,p) and combined to give

Ffc, F$. The factor (n' • /5/0r) is constant over the linear boundary element

e and so it was removed from the integrand.

By comparing the far field Equations (A.89) and (A.90) with the voltage

Equation (A. 74), the far field terms F^ , F,r, can be written as,

F^ = A'c (a2J2(a
;) + ttl J,(o') + o0Jo(a')) (

Ff,i = -jk0(n' • ̂ /ar)^ (o2J2(o
;) + Ol Ji(a') + a0J0(a')) (A.92)

where A'e and a' are defined by

A'e = ieejk0pfar-p< (A.93)

a' = AoP/ar • Te. (A.94)

The Jto functions were defined earlier.
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