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FOREWORD 

The Tethers in Space Handbook Second Edition represents an update to the initial volume issued in 
September 1986. As originally intended, this handbook is designed to serve as a reference manual for 
policy makers, program managers, educators, engineers, and scientists alike. It contains information for 
the uninitiated, providing insight into the fundamental behavior of tethers in space. For those familiar with 
space tethers, it summarizes past and ongoing studies and programs, a complete bibliography of tether 
publications, and names, addresses, and phone numbers of workers in the field. Perhaps its most 
valuable asset is the brief description of nearly 50 tether applications which have been proposed and 
analyzed over the past 10 years. The great variety of these applications, from energy generation to 
boosting satellites to gravity wave detection is an indication that tethers will play a significant part in the 
future of space development. 

This edition of the handbook preserves the major characteristics of the original; however, some 
significant rearrangements and additions have been made. The first section on Tether Programs has been 
brought up to date, and now includes a description of TSS-2, the aerodynamic NASA/Italian Space 
Agency (ASI) mission. Tether Applications follows, and this section has been substantially rearranged. 
First, the index and cross-reference for the applications have been simplified. Also, the categories have 
changed slightly, with Technology and Test changed to Aerodynamics, and the Constellations category 
removed. In reality, tether constellations may be applicable to many of the other categories, since it is 
simply a different way of using tethers. Finally, to separate out those applications which are obviously in 
the future, a Concepts category has been added. 

The section on Tether Fundamentals now appears after the Tether Applications, and just before the 
section on Tether Data. These two sections go well together, and provide the user with the technical 
background necessary to understand the requirements and limitations of the applications, and perhaps to 
develop ideas of his own. 

A new section included here on Conference Summaries recognizes the fact that the tether 
community is growing internationally, and that meetings provide a means of rapid communication and 
interaction. There have been three international conferences, and several major workshops, both here and 
in Italy, and simply reproducing the programs can provide the reader with a quick reference of the 
literature and active participants in specific tether areas. All of these meetings are well documented 
elsewhere. 

Finally, the Bibliography section has been considerably updated to include all known references. 
These are listed by author and by subject and include the papers to be presented at the Third International 
Conference in May 1989. 

This second edition expands on the efforts of W. A. Baracat, and C. L. Butner of the General 
Research Corporation, who issued the first edition in 1986, and the authors are appreciative of their 
efforts. None of this, of course, would have been possible without the enthusiasm, dedication, and hard 
work of many tether advocates: in NASA, industry, the university, and certainly those in Italy. 

Paul A. Penzo

Jet Propulsion Laboratory 


Pasadena, California 

Paul W. Ammann 
SRS Technologies 
Arlington, Virginia
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SECTION 1.0

TETHER PROGRAMS



1. 1 Tethered Satellite System 

1.1.1 TSS-1 

The Tethered Satellite System (TSS) is a joint undertaking between the United States and Italy. 
Presently, only the first mission, TSS-1, is approved and scheduled for a 1991 launch with planning 
authorized for TSS-2 and TSS-3. The system consists of a U.S.-built deployer and an Italian-built 
satellite, both of which are reusable. The prime contractors for the TSS deployer and satellite are Martin 
Marietta Denver Aerospace and Aeritalia, respectively. The TSS deployer system is mounted on a 
Spacelab Enhanced/Multiplexer Demultiplexer Pallet (EMP), science equipment is mounted on a Mission 
Peculiar Equipment Support Structure (MPESS) located in the Orbiter cargo bay, and a satellite is attached 
to the deployer by a conducting tether. The total integrated TSS is installed in the Space Shuffle Orbiter as 
shown in Figure 1.1. Overall system characteristics for the TSS are presented in Table 1.1. 

Satellite Battery 
Access Door (4) 

Access 
Platform 
(Ref) 

() 
Representation I \ - 
Of A Science K,->) 
Installation . 

—7

igwl 

Sm

Satellite

Motor Assembly 
Reel/

Satellite Support Structure 

2I
Enhanced Multiplexer! 

,i	 Demuttiplexer Pallet 

7-4rection Of Flight 
Extendable Boom 
(Inside Support Structure) 

Figure 1.1 TSS-1 Configuration on Orbiter 

The deployer system is capable of performing two types of reference missions: Electrodynamic 
and Atmospheric. A unique feature of the deployer is the capability to stop and reinstate satellite 
deployment and retrieval such that the satellite can be maintained at intermediate altitudes before achieving 
the final fully-deployed tether length. The deployer provides the capability to accommodate a 500 kg 
satellite. The satellite is deployed from a 12 meter extendable boom which is mounted on the deployer 
(Figure 1.2). Prior to satellite deployment, the deployer provides an electrical interface with the satellite 
via two umbilicals. The satellite itself is multi-purpose with the capability of accommodating various 
payloads with different mission characteristics.
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Table 1.1 Tethered Satellite System Characteristics 

Maximum Total Mass (kg) 

Scientific Payload Mass (kg) 

Payload Volume 

Temperature (°C) 

Thermal Control To 
Science Payload (Watts) 

Power @28 ± 4 VDC: 
Average (Watts) 
Peak (Watts) 
Energy (Whs)

500	 6120 (Total TSS-1 Payload) 

60 to 80	 500 

NegotIable 
(1.6 m Dia.)

Negotiable (Spacelab 
MDM Pallet) 

Negotiable Negotiable 

50 (Passive) 5 Coldplates @ 1500 

50 1750 
100 3000 
900 to 2000 Negotiable

Data: 
Telemetry (kbps) 

• Commands (kbps) 

Operational Attitudes (km) 

Orbital Inclination 

Mission Duration (Hrs Deployed)

Deployed 

Figure 1.2 TSS-1 Satellite and Tether Attached to 12 Meter Extendable Boom 
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The satellite consists of a service module, a propulsion module, and a payload module. The 
service module contains the support structure and tether attachment, thermal control, attitude measurement 
and control, telemetry, on-board data handling, electrical power distribution, and engineering 
instrumentation. Science experiments on board TSS- 1 will include electrical and magnetic field 
measurements, charged particle energy and spectra determinations, and DC magnetometry. Tether 
dynamics and plasma coupling mechanisms are also planned, as well as a series of ground-based 
observations of electromagnetic emissions from the tether. A list of these experiments along with their 
principal investigators appears as Table 1.2. 

The 20 km conducting tether is comprised of five separate layers (Figure 1.3). The satellite will be 
electrically positive, collecting electrons from the ionosphere, and passing them to the Shuttle, which will 
emit the electrons with the help of an electron emitter. Potential measuring and controlling instruments are 
located at the Shuttle end of the tether. The tether will be conducting and will demonstrate the 
electromagnetic capabilities of tethers, producing up to 5 kV as it cuts through the Earth's magnetic field. 

V34 

113"	
NomexCore 

- SN-CU Conductor 

Teflon-FEP Insulation 

Kevlar #29 Load Member (Yellow) 

Nomex Jacket (White) 
Atomic Oxygen Protection 

Figure 1.3 TSS-1 Conducting Tether Configuration 

The TSS is designed to be compatible with the nominal STS orbit inclinations of both the eastern 
and western launch sites. Although the nominal TSS mission for deploying the satellite is 38 hours, the 
TSS is also compatible with an STS mission of up to 10 days. For the first TSS electrodynamic mission 
(TSS- 1), the satellite will maintain control and stability during operations through the use of an active 
thruster control subsystem together with the deployer. This first mission will be an engineering 
verification flight performing limited electrodynamic science. The Orbiter will achieve a 160 nmi altitude, 
perform other payload operations, and then begin the TSS operation cycle. The 500 kg satellite will be 
deployed upward, away from the Earth on a 20 km tether during its approximate 36 hour mission (Figure 
1.4).
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Table 1.2 Tethered Satellite System Principal Investigation Science 

and Principal Investigators 

TSS PROGRAMS 

Thomas D. Stuart (NASA Headquarters) 
Giafranco Manarini (Italian Space Agency - ASI) 

TSS PROJECT MANAGER 

John M. Price (NASA Marshall Space Flight Center) 

SATELLITE INSTRUMENTATION 

Research On Electrodynamic Tether Effects - Marino Dobrowolny (ASI) 
.3 Axis Dipoles	 • A.C. Electric Fields & Electrostatic Waves 
• 2 Axis Search Coils	 • A.C. Magnetic Fields 

(2) Langmuir Probes	 • e- Density, e- Energy, Potential Distribution 

Research On Orbital Flight Plasma Electrodynamics - Noble Stone (NASA Marshall Space Flight Center) 
• Differential Ion Flux Probe	 • Ion Energy Temperature & Density vs. Incidence Angle 
• (8) Soft Particle Energy	 • Charged Particle Energy Distribution & Space Potential 

Spectrometer 

Magnetic Field Experiments For The TSS Missions - Franco Marian! (University of Rome) 

• Triaxial Fluxgate	 • Vector Magnetic Fields 
Magnetometer 

Shuttle Electrodynamic Tether System - Peter Banks (Stanford) 
• (2) Spot Charge & Current	 • Local Current and Potential 

Probes	 • Vehicle Potential, Ion Density, and Temperature 
• Spherical Langmuir Probe 
• Fast Pulse Electron Gun 

PII;[']1A'ilI4I 

Theory And Modelling Of The Tether - Adam Drobot (SAl) 

TETHER DYNAMICS 

Investigation And Measurement Of Dynamic Noise In The Tether - Gordon Gullahom (SAO) 
Theoretical And Experimental Investigation Of Tether Dynamics - Silvio Bergamaschi (University of Padua) 

GROUND BASED OBSERVATIONS 

Investigation Of Electrodynamic Emissions By The Tether - Robert Estes (SAO) 
- Giorgio Tacconi (University Of Genoa) 

• ELF Receivers	 . Detect Tether Generated Emissions at ELF 
• Magnetometers	 • Detect Tether Generated Emissions at ULF 

CORE EQUIPMENT: INSTRUMENTS USEFUL TO ALL INVESTIGATIONS 

DCORE Electron Generator - Carlo Bonifazi (ASI) 
Shuttle Potential And Return Electron Experiment - David Hardy (AFGL) 
Hollow Cathode Plasma Bridge - James McCoy (NASA Johnson Space Center) 
Tether Optical Phenomena - Stephen Mende (Lockheed) 
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Figure 1.4 TSS-1 Planning Mission Timeline 

The satellite is deployed over a 6 to 7 hour period after initial checkout. The satellite is then 
maintained at a 20 km altitude (from the Orbiter) for 10 hrs and is retrieved over a 15 hour period with a 
stop at 2.4 km. Note that the deployment is limited to a 20 km tether length for this first mission which 
limits the induced tether voltage to approximately 5 kV. 

After the satellite has been released from the support structure and is extended upward along the 12 
meter boom, checkout is completed and the satellite is released from the boom by a combination of gravity 
gradient tension and tether in-line thrusters. The flight crew initiates deployment and control and monitors 
the satellite during deployment, on-station operations, and retrieval. During operations of the TSS, the 
Orbiter attitude is adjusted to minimize RCS consumption. A "TSS dedicated" computer will automatically 
control deployment, on-station operations, and retrieval. The final 2 km of retrieval and docking of the 
satellite will be performed with "man-in-the-loop." 

One example of a specific experiment which has been selected for TSS-1 is the Tether 
Magnetometer (TEMAG). The scientific objectives of the TEMAG experiment include measurement of the 
local magnetic field with a precision of the order of a few Gammas. These precision measurements will be 
possible only if careful "magnetic cleanliness" procedures are followed. All subsystems must be designed 
and manufactured in such a way as to minimize the satellite DC magnetic residual field and its low 
frequency variations. Procedures have been established between ASI, the experimenters, and the 
contractor to insure integrity of all systems and subsystems. 
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1.1.2 TSS-2 

The second Tethered Satellite System Mission (TSS-2) is a joint NASA/Italian Space Agency 
(ASI) mission to demonstrate the deployment and retrieval of a large satellite from the Space Shuttle, and 
concurrently, obtain data to validate the deployment dynamics and control models, verify instrumentation 
performance, and obtain steady-state atmospheric and aerothermodynamic data under real gas conditions in 
free molecular flow. 

The satellite is deployed downward from the Shuttle on a 100 km, non-conductive Nomex® coated 
Kevlar® tether. Although the satellite and tether will be in the free molecular flow regime during the entire 
deployment, other factors are expected to limit the achievable altitude to approximately 130 km 
(Figure 1.5).

Figure 1.5 TSS-2 Aerothermodynamic Mission 

The objectives of the TSS-2 are threefold: 1) to validate the computer models of the flow-fields, 
the deployment and retrieval dynamics, and the control laws that will be necessary to support the 
subsequent development and deployment of more advanced tethered research platforms; 2) to carry out 
measurements of free-stream composition and density between 220 and 130 km altitude; and, 3) to 
investigate the interaction of the satellite with the rarified atmosphere. Critical issues which remain to be 
addressed include re-use of the first (TSS- 1) satellite vs. fabrication of a new satellite, determination of the 
actual configuration of the TSS-2 satellite, and experiment selection. 

Planning for the deployment of the TSS-2 flight in late 1994 or early 1995 has been initiated with 
the formation of NASA/ASI Planning, Experiment Definition, and Facility Definition Teams, and with a 
NASA workshop to define research priorities for the mission. As of this prininig, the experiment and 
instrumentation selection for the mission has not been finalized. 

RI
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1.2 Approved Tether Experiments 

1.2.1 Small Expendable Deployer System 

The Small Expendable Deployer System (SEDS) is a lightweight spinning-reel system designed to 
deploy a payload attached to a 20 km long tether that is cut and discarded after use. The primary objectives 
are to study the dynamics of tether deployment and to validate the SEDS design concept. The deployer 
system weighs about 16 kg including the 2 kg electronic package and the 6 kg tether and is approximately 
25 cm in diameter and 33 cm in length. The tether is made from a new high-strength, low-density 
polyethylene fiber called SPECTRA. The hardware development should be completed in 1989 allowing 
SEDS to fly on a Delta II launch vehicle in 1990 or 1991, if the decision is made to proceed with a flight 
experiment. Later SEDS versions may fly on the Shuttle. On the first flight, a passive end-mass weighing 
23 kg will be deployed toward the Earth at the end of a 20 km tether. The experiment will last about 1-1/2 
hours, ending when the full 20 km tether length is deployed and has swung to a vertical position, i.e., the 
tether is pointing directly toward the Earth. The tether is then cut, allowing it and the end-mass to reenter 
the Earth's atmosphere. The SEDS concept is shown schematically in Figure 1.6. 

One proposed application of SEDS is the periodic deorbiting of Space Station waste materials 
packaged in lightweight containers that can be folded for easy storage during Shuttle trips to the Station. A 
study of this application concluded that a 200 kg SEDS-type deployer using a 100 km length tether can 
deorbit 2,000 kg of Space Station waste. 

Figure 1.6 Small Expendable Deployer System (SEDS) 

1.2.2 Plasma Motor/Generator 

The Plasma Motor/Generator Proof of Flight (PMG/POF) Experiment is a low cost "Payload of 
Opportunity" for flight on the Shuttle Orbiter using the Hitchhiker-G (HHG) carrier. The objective of this 
experiment is to provide engineering verification of key physical processes involved in the operation of 
proposed PMG systems. A summary chart of the PMG/POF characteristics appears as Table 1.3. 
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Table 1.3 Plasma Motor/Generator POF Characteristics 

PMG/POF Characteristics 

Far End Package (FEP): 	 25 kg, 15" dlax 10' high 

• 0.5 M 2 Passive Collection Area 
• 1 A Hollow Cathode Plasma Neutralizer (Battery) 
• Power Supply & Controller for Hollow Cathode 
• Spool with 200 M #32 AWG Copper Wire 
• Argon Gas Supply & Controller 

200 Meter Wire:	 0.4 kg, Teflon insulation, 2 lb. "Test" wIth 4 lb. Breakaway 

Near End Package (NEP)	 30 kg, 16" dlax 28" high 

• Retains FEP Until Release for Deployment 
• 1 A Hollow Cathode Plasma Neutralizer 
• Power Supply & Controller for Hollow Cathode 
• Variable Load & Precision Ammeter 
• Power Supply to Drive Motor Mode Current 
• Programmable Micro-Processor Controller

'Wire Cutter for Jettison 
• Xenon/Argon Gas Supply & Controller 
• Ground Test Plug 
• Interface & Control Plug: 	 (HHG Standard) 
• Deployment Ejection System 

(Fixture Mounted on NEP) 

Deployable By Spring Ejection 

(Could Use RMS or EVA/MMU if Easier) 
Centrifugally Stabilized @ I Degree/Sec 1.5 N Tension 

Via STS Orbiter: 

• Station-Keeping 200 M (Z) 
• (OMS) Delta-V_ 3.5 M/Sec 
• Roll 1 Degree/Sec to Keep FEP @ + Z ± 30 Degree 

Tension During Swinging (Max) 	 3.0 N 
Tension During Swinging (Avg) 	 1.5 N 
Tension During Ejection	 <0.1 N 

Jettison At End Of Experiment (Into Non-Recontacting Orbit) 

From 25 km Orbit, Rapid Decay of Jettisoned Package 
Decays 1 km Below Orbiter By First Crossing 
Reenters in 25 Hrs 

NEP With All Data Recorded Returned to Landing by STS Orbiter 

Early verification of the performance of hollow cathodes (the provision of adequate conduction of 
large currents between the ionosphere and each end of an electrodynamic tether wire) is needed to guide 
tether application studies of 20 kW to 200 kW PMG systems. The primary unknown in the operation of a 
PMG system is the ability of the hollow cathode "brushes" to connect the tether "armature" to the 
ionospheric current path. The numerous variables involved in the theoretical computations of the relevant 
plasma physics processes result in considerable uncertainty. Only direct measurements in orbit of the 
induced VxB voltage, current coupling, and ionospheric circuit impedance can provide adequate 
verification of the calculated effects.

8



Initial verification of these critical issues can be obtained prior to the availability of the Tethered 
Satellite System (TSS) by flying the 100 kg/200 meter/10 watt PMGIPOF "non-tether" experiment. In this 
experiment, a 25 kg Far End Package (FEP), containing a hollow cathode system, is deployed at the end 
of an insulated #32 AWG umbilical wire. This wire connects the FEP hollow cathode system to another 
hollow cathode system at the Orbiter. The 200 meter wire length is long enough to provide an adequate 
induced voltage and separation from the spacecraft wake effects, while still being short enough to avoid 
complex tether deployment, stabilization, and retrieval systems. The deployed wire and FEP are jettisoned 
at the completion of the experiment. 

The results obtained from initial flights (now scheduled for HHG-2 and HHG-3) will also provide 
a basis for planning larger scale investigations using the TSS and expanded PMG/POF type experiments. 
These growth experiments could be flown at 6-month intervals using the HHG carrier to provide a low 
cost sequence of data points. 

1.3 Proposed Tether Experiments 

1.3.1 Tether Initiated Space Recovery System (TISRS) 

The TISRS is a joint flight demonstration between NASA and the Italian Space Agency (AS!), 
designed to demonstrate deployment of a reentry package from the Shuttle or Delta R. Primary objectives 
include demonstrating: 1) Small Expendable Deployer System (SEDS) plus Satellite Reentry Vehicle 
(SRV) Deployment/Braking/Release, 2) SRV ExoAtmospheric Performance, and 3) SRV Recovery. The 
secondary objective is to demonstrate EndoAtmospheric performance. 

The system utilizes a 20 km tether attached to the SEDS, coupled with a modified version of the 
General Electric-built Satellite Reentry Vehicle (SRV). The TISRS mission baseline includes flying the 
system at a 250 km, 27.5° inclination, circular orbit. Using the SEDS deployment control, the SRV is 
released from the tether at 25.7° N Latitude, 138.1° W Longitude. Reentry will occur approximately 20 
minutes later at 12.65 0 N Latitude, 56.20 W Longitude with recovery (by parachute) at Ascension Island 
32 minutes after the SRV is released from the tether. The total weight of the system is approximately 450 
ibs, with a 200 lbs payload capacity. 

Major hardware remaining to be developed includes a modified thermal cover, parachute, capsule 
cover, heatshield forebody, flight instrumentation, and communication/command links to the Shuttle. 
Concept definitions scheduled for 1989 are being performed by General Electric (Space Recovery Vehicle) 
and Aeritalia (T!SRS Experiment Definition). Hardware assembly and qualification tests are scheduled for 
1991, with an initial flight on a Delta II in 1992. 

1.3.2 Get-Away Tether Experiment (GATE) 

The Get-Away Tether Experiment (GATE) encompasses a small free-flying tether system deployed 
from a Get-Away Special (GAS) canister. The primary objectives of this system are to 1) demonstrate 
electric power generation and orbital reboost using tether electrodynamics, 2) measure micrometeoroid 
hazards to the tether, 3) perform radio propagation experiments, and 4) measure long wire radar cross 
section.

The free-flying payload tether system is deployed from the orbiter via the GAS deployment 
system. Upon deployment, the payload separates into two parts connected by a 1 km electrically 
conductive tether. Orientation along the local vertical is achieved by deploying the tether from a small reel 
system. Once stabilized, the orbit of the system may be boosted by a magnetomotive force produced by 
forcing electrical energy from on-board batteries into the tether. This process is then reversed to 
demonstrate power generation by recharging the batteries. While the tether is deployed, micrometeoroid 
impacts on the tether are measured by vibration detectors and analyzed by a data system. Prior to reentry, 
the Orbiter rendezvous radar is used to measure the radar cross section of the tether at various aspect 
angles.



The four experiment objectives all demonstrate or develop technology of interest to both NASA 
and ASI. Moreover, the results of the GATE will complement the work of TSS-1 and may help plan the 
second TSS electrodynamic mission. In addition, the GATE will provide new insight into the study of 
micrometeoroid hazards to space tethers. 

1.3.3 Kinetic Isolation Tether Experiment (KITE) 

The Kinetic Isolation Tether Experiment is a proposed Space Shuttle flight experiment intended to 
demonstrate the feasibility of providing attitude control to a space platform by changing the attachment 
point of a tether with respect to the platform center-of-mass. Offsetting this point causes the tether tension 
force to be offset from the platform center of mass, thus producing a torque about the platform center-of-
mass. The KITE envisions a small (approximately 1000 kg) subsatellite deployed either upward or 
downward from the Shuttle at the end of a gravity gradient stabilized tether. The tether length will be in 
the range of 1 to 1.5 km. The positioning of the tether attachment point on the subsatellite will be 
performed by a microprocessor-based closed loop control system and will provide attitude control about 
two orthogonal axes. The third axis will be controlled by a conventional momentum wheel. This KITE 
project is currently in the laboratory definition and demonstration phase with laboratory modelling and 
prototype testing being conducted at Stanford University. 

1.3.4 Tether Elevator/Crawler System (TECS) 

The Tether Elevator/Crawler System consists of two tethers attached to the Space Station. 
Attached to the end of the upper tether is the "Sky's Observation Platform," and the "Earth's Observation 
Platform at the end of the lower tether. An elevator can crawl along the upper tether carrying variable-g 
experiments while the acceleration level on board the Space Station is controlled to better than 10- 5 g. The 
upper tether length is approximately 10 km, with lower tether lengths ranging between 10 and 15 km, 
depending on the elevator's position. The length of the lower tether is adjusted to compensate for the 
motion of the elevator. Consequently, variable-g experiments can be performed on the elevator without 
any interference with the micro-g experiments on-board the Station. 

1.3.5 Tether Inspection and Repair Experiment (TIRE) 

The Tether Inspection and Repair Experiment originatedfrom the prospect of long duration 
missions for tethered systems. The TIRE (currently in Phase I) will investigate tether survivability in the 
space environment. The prime contractor for the TIRE is Aeritalia, performing system requirements 
definition, impact damage testing and analysis, and global demonstration characterization. Currently 
planned tether tests for the TIRE demonstration-Phase I include: 

•	 Conducting, insulating, armoring and jacketing material performance degradation after 
prolonged exposure to LEO environment 

•	 Transmissive and mechanical performances of candidate optical fibers in LEO environment 

•	 Damage to external coat under simulated radiation, ions and atomic oxygen LEO environment 

•	 Damage of tether simulacra due to high kinetic energy particle impact 

Phase I study outputs are expected to yield a system requirement definition, selection of candidate 
material components on the basis of functional performance, inspectability and repairability, selection of 
applicable non-destructive inspection strategies, trade-offs among the suitable repair methods and 
technologies, and planning, scheduling and cost assessments of the subsequent ground demonstration 
phase.
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1.3.6 Potential New Start Programs 

Potential new start programs which require a considerable amount of definition for future flight 
demonstrations include concepts such as the Scientific and Applications Tethered Platform (SATP). This 
system would consist of a fixed or highly-accurate pointing platform attached to the end of a tether which 
would provide accommodation and support to a wide range of space science and technology activities. 
The Italian Space Agency (ASI) has completed an initial study of the SATP, producing a preliminary 
SATP configuration and subsystem analysis. The SATP study has created new interest in the scientific 
community for an ASTRO-SATP (possible use of the SATP as a facility for astrophysical payloads). This 
ASTRO-SATP study will include analysis of the SATP high-precision attitude pointing capability through 
a simulation of SATP dynamics. Assessment of technological requirements will be performed, coupled 
with the ASTRO-SATP concept evaluation. 

Another application currently being studied is the Variable Gravity Research Facility (VGRF). 
This application would provide a facility in Earth orbit that will operate at gravity levels between 0 and 2g 
at rotation rates between 1 and 10 rpm for the purpose of studying the long term effects of various gravity 
levels on humans. This facility would allow scientific investigation into the question of human 
performance and health at gravity levels other than Earth gravity for periods of up to 90 days. In 
particular, long-term exposure to Martian or Lunar gravity can be studied. The relationship of gravity level 
and rotation rate can also be studied in such a facility, since both are independently controllable. The 
facility also address engineering questions concerning generation of artificial gravity as might be required 
for manned missions to other planets. The current study is examining several options in the configuration 
and operation of the facility. Some of these trades include the use of a dead weight on the counterweight 
end of the tethered system thus allowing an inertially oriented spin axis and refurbishment without despin. 

Additional new start programs include the Shuttle Tethered Aerodynamic Research Facility 
(STARFAC) and an Orbital Electrodynamic Platform. STARFAC would perform steady-state 
aerothermodynamic and atmospheric measurements below an altitude of 200 km. The Electrodynamic 
Platform would be used for long-term (6-12 months) test and demonstration of power (25-50 kW) and 
thrust generation. 

1.4 Joint U.S./Italian Tether Task Groups 

1.4.1 Tether Applications In Space Planning Group 

The Tether Applications in Space Planning Group (TASPG) was first established by the Director 
of Advanced Planning (Code MT, Office of Space Flight) in 1983. The groups main charter was "...to 
extend our knowledge and understanding of the theoretical and operational feasibility of the behavior, 
technical and operational risks, technology requirements and overall costs and benefits of tether 
applications as compared to alternate conventional approaches." The current group consists of 
representatives from NASA Headquarters, field centers, and the Italian Space Agency (ASI) as shown in 
Table 1.4. Some of the original objectives of the group were: 

•	 To research and determine the feasibility of applications of tethers in space to such areas as 
transportation, electrodynamics, gravity utilization, space platforms, science and 
applications, and technology 

•	 To match technological solutions with theoretical systems requirements 

•	 To establish the state-of-the-art and required technology advancements 

•	 To provide responsive designs based on the assessed technology requirements 

•	 To derive cost/benefits as a function of comparing alternate equivalent mission options with 
tether applications 

•	 To establish proof-of-concept demonstration candidate missions to verify performance in 
preparation for specific tether mission applications 
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Table 1.4 Tether Applications In Space Planning Group Members 

NAME ORGANIZATION ADDRESSIMAIL CODE PHONE	 REMARKS 

Charles C. Rupp MSFC PSO4 (205) 544-0627	 Chairman 

Dr. John W.Aired JSC ED2 (713) 483-6615 

John L Anderson NASA-HO RS (202) 453-2756 

EdwardBrazjil NASA-HO MD (202) 453-1155 

Dale Ferguson LeRC 302-1 (216) 433-2298 

Joel Galafaro LeRC 302-1 (216) 433-2294 

James K. Harrison MSFC PSO4 (205) 544-0629 

Joseph C. Kolecki LeRC 302-1 (216) 433-2296 

Lawrence G. Lemke NASA-HO Z (202) 453-8928 

Dr. Alberto Loria ASI 00198 Roma, Italy 39-6-4767250 
Viale Regina Margherita 202 

Dr. James E. McCoy JSC SN3 (713) 483-5068 

Dr. Paul A. Penzo JPL 301-170U (818) 354-6162 

Marcie Smith AMES 244-14 (415) 694-4833 

Dr. William J. Webster, Jr. 	 GSFC 662 (301) 286-7166 

Dr. George M. Wood LaRC 234

- 
(804) 865-2466

The TASPG developed the Tether Applications in Space Plan (a five year plan), with the purpose 
of being utilized for initiating and proceeding with studies and advanced development activities. This 
Program Plan has been updated annually since 1983 and used by NASA Headquarters as an administrative 
and technical tool for managing and directing tether applications in space activities at the field centers. 

Over the past three years, however, the TASPG has concentrated more on advancing those 
applications which are near-term candidates for flight demonstrations. This new thrust expanded and a 
complementary joint NASA/ASI task group was formed (Tether Flight Demonstrations Task Group, 
Section 1.4.2). The TASPG reviews and recommends tether applications for further development. Over 
the years they have guided the development of the Plasma Motor/Generator (PMG) and the approval of the 
Small Expendable Deployer System (SEDS) for flight demonstrations. Another significant 
accomplishment has been the NASA Agency-wide approval to begin planning the second Tethered Satellite 
System mission (TSS-2). The TASPG serves as an overall guidance mechanism for the research, 
technology development, and funding of tether applications. 
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1.4.2 Tether Flight Demonstrations Task Group 

The Task Group for Tether Flight Demonstrations was established in July 1986 by the Italian 
National Space Plan (PSN/CNR) and NASA with the purpose of identifying and establishing areas for 
joint cooperation and complementary activities in tether applications leading to flight demonstration 
experiments. A letter of agreement was then written and signed by the two organizations for conduct of 
tether applications in space studies. The letter states: "NASA and the Italian National Space Plan 
(PSN/CNR) under the authority of the National Research Council of Italy confirm their mutual interest in 
carrying out complementary focused definition studies of potential application of tethers in space that could 
lead to cooperative flight demonstrations or experiments in the future. ..and. . .It is understood that the 
respective complementary and parallel studies by NASA and PSN/CNR will be conducted with no 
exchange of funds between NASA and PSN/CNR." 

In July 1988 the Italian Space Agency (ASI) was established and took over all duties and 
international relations of PSN/CNR, henceforth referred to as ASI. 

The Joint Task Group identified initial areas of study including: tether electrodynamics, tethered 
platforms, tether crawlers (elevators), deboost of materials from the Space Station, and tethered reentry 
systems. The Task Group also plans to review proposals for flight demonstrations or experiments on a 
case-by-case basis, and no commitment or obligation is assumed for funding or proceeding into 
development with any program, unless specifically approved by both agencies. Presented below in Table 
1.5 are the current members of the Joint ASI/NASA Task Group for Tether Flight Demonstrations. 

Table 1.5 Tether Flight Demonstrations Task Group Members 

NAME	 ORGANIZATIONADDRESS/MAIL CODE PHONE	 REMARKS 

James K. Harrison MSFC PSO4 (205) 544-0629	 Co-Chairman 

Dr. Alberto Loria ASI 00198 Roma (Italia) 39-6-4767250	 Co-Chairman 
Viale Regina Margherita 202 

Dr. S1M0 Bergamaschi Padua UnivJ 35131 Padova (Italia) 39-49-8071033 
ASI 

Charles C. Rupp MSFC PSO4 (205) 544-0627 

Larry G. Lemke ARC 244-14 (415) 694-6531 

WiIIiamDnis NASA-HO MD (202) 453-1157 

Dr. William J. Webster, Jr. GSFC 622 (301) 286-4506 

Dr. Paul A. Penzo JPL 301-17OU (818) 354-6162 

Dr. George M. Wood LaRC 234 (804) 865-2466 

Dr. James E. McCoy JSC SN3 (713) 483-5068 

Dr. Carlo Bonifazi ASI 00198 Roma (Italia) 39-6-4767246 
Viale Regina Margherita 202 

Edward J.BraziuI NASA-HO MD (202) 453-1155 

Joseph Kolecki LeRC 302-1 (216) 433-2296
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Since the creation of the Task Group in 1986, there have been a number of meetings in which 
work has begun toward proposing joint flight demonstration experiments. Following is a summary of the 
Task Groups activities over the past two years: 

•	 July 1986	 - Task Group established 

•	 Sept. 1986	 - NASA proposed various tasks associated with six prospective 
flight demonstration projects 

- Work began on NASA/ASI Letter Of Agreement 

•	 Oct. 1986	 - PSN response to NASA proposals led to revisions in tasks and 
flight projects 

•	 Jan. 1987	 - Summary presentation and critical review of each joint endeavor 
plan 

- Presentation and review of Letter Of Agreement Final Draft 

•	 Sept. 1987	 - Confirmation of agreements 
- Outline of implementation steps 
- Brief program review of each project 
- Agreed to establish and recommend a priority for flight projects 

•	 Oct. 1988	 - Agreed to propose TISRS as a joint flight demonstration 
experiment

To date, the Joint Task Group has assembled a list of proposed tether flight demonstration projects 
which have been divided into three groups. Group 1 consists of those joint flight demonstrations which 
have had substantial definition and are capable of being flown in the next 4 to 7 years. Group 2 consists 
of projects which still require a considerable amount of concept definition, and Group 3 contains future 
applications that are potential "new starts." Listed below are these three groups, the proposed joint flight 
demonstration projects, and the main features of each experiment. A more detailed description of each 
project is presented in Section 1.3 "Proposed Tether Experiments." 

GROUP 1 (Canable of being flown in the next 4 to 7 years) 

1. Tether Initiated Space Recovery System (TISRS) 
• Orbital deboost and recovery of a reentry vehicle 
• Waste removal from the Space Station 
• Possible launch in 1992 

2. Get-Away Tether Experiment (GATE) 
• Tether dynamics studies 
• Measure particle impacts on tether, determine radar cross section 
• Provide data on ULF radio propagation 
• Possible launch in 1993 

3. Kinetic Isolation Tether Experiment (KITE) 
• Spacecraft attitude control and stability by tether tension 
• Attitude and stability control of small instrument platform tethered to the Space Station 
• Possible launch in 1994 

4. Tether Elevator/Crawler System (TECS) 
• Provide variable microgravity environment 
• Tether inspection and repair operations 
• Space Station center of mass management 
• Possible launch in 1995
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Tether Inspection and Repair Experiment (TIRE) 
Tether damage detection and repair 

GROUP 3 (Future programs that are potential "New Starts") 

1. Scientific and Applications Tethered Platform (SATP) 
• A 10-ton platform attached to the Space Station via a 10 km tether to serve as a base 

for scientific experiments 

2. Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) 
• Steady-state aerothermodynamic and atmospheric measurements below an altitude of 

200 km 

3. Orbital Electrodynamic Platform 
• Multikilowatt electrodynamic tether (50 km) platform for long-term (6 to 12 months) 

test and demonstration of power (25-50 kW) and thrust generation 

4. Variable Gravity Research Facility (VGRF) 
• Facility in Earth orbit capable of producing gravity levels between 0 and 2g for the


purpose of studying the long-term effects of various gravity levels on humans 
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1.5 United States Tether Studies 

Following is a summary of tether studies being conducted by various organizations in the United 
States under contract to NASA. The list is grouped by NASA field center location. 

Title: Kinetic Isolation Tether Experiment 
NASA Center: Ames Research Center (ARC) 
Contract Number: NCC2-389 
Contract Monitor: Larry Lemke 
Contractor: Stanford University, J. David Powell 
Contract Duration: 1/85 - On going to end of FY '89 
Abstract: To develop an instrumented tethered platform with variable orientation and to 

measure force limits. 

Title: Tether Science and Applications User Requirements 
NASA Center: Goddard Space Right Center (GSFC) 
Contract Number: N/A (In-house) 
Contract Monitor: William J. Webster, Jr. 
Contractor: In-House Study 
Contract Duration: 10/88 - 10/94 
Abstract: Establish the limitations imposed by the dynamics and other physical properties of 

tethers as transportation tools for science data in Earth orbit. Quantify the 
performance problems expected. Investigate means for the suppression of the 
problems. 

Title: Tether Applications In the Space Station Era 
NASA Center: Jet Propulsion Laboratory (JPL) 
Contract Number: NAS7-100 
Contract Monitor: Paul Penzo 
Contractor: In-House Study 
Contract Duration: 10/84-9/86 
Abstract: Assess system and technology needs to support tether applications, Earth orbital 

and planetary, in the Space Station Era. 

Title: Tether Applications for Transportation and Science 
NASA Center: Jet Propulsion Laboratory (JPL) 
Contract Number: NAS7- 100 
Contract Monitor: Paul Penzo 
Contractor: In-House Study 
Contract Duration: 10/86 - On going 
Abstract: To develop concepts and perform preliminary analyses of tether applications to 

transportation (Earth orbital, lunar, and planetary), and to investigate the mission 
possibilities of using tethers for scientific use. Current studies include a lunar 
orbit transportation node, tethered telescopes for deep space interferometry, and a 
tethered lunar sounder/SAR mission.

Title:	 Tethered Propellant Resupply Depot Study 
NASA Center: Johnson Space Center (JSC) 
Contract Number: NAS9-17422, NAS9-17059 
Contract Monitor: Kenneth Kroll 
Contractor:	 Martin Marietta Denver Aerospace, Dale Fester 
Contract Duration: 10/84-4/86 
Abstract:	 This study examined the use of a tether to simplify fluid transfer for OTV 

propellant resupply.
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Title: Hollow Cathode Plasma Coupling 
NASA Center: Johnson Space Center (JSC) 
Contract Number: NAG9-120 
Contract Monitor: Jim McCoy 
Contractor: Colorado State University 
Contract Duration: 8/85-10/88 
Abstract: Plasma chamber experimental studies of current coupling between two hollow 

cathode sources. 

Title: Hollow Cathode Plasma Turbulence 
NASA Center: Johnson Space Center (JSC) 
Contract Number: NAS9-17900 
Contract Monitor: Jim McCoy 
Contractor: Lockheed; SAIC subcontractor 
Contract Duration: 7/87-3/89 
Abstract: Study of plasma turbulence and electrostatic wave generation by operation of a 

hollow cathode in a surrounding plasma.

Title:	 8 kW Orbit Reboost System 
NASA Center:	 Johnson Space Center (JSC) 
Contract Number: NAS9-17751 
Contract Monitor: Jim McCoy 
Contractor:	 TRW 
Contract Duration: 1/87-7/88 
Abstract:	 Preliminary design study of a light version of the PMG for orbit maintenance of 

low altitude solar array powered or other high drag spacecraft. Primary emphasis 
on integration and operation with existing or planned s/c concepts, Space 
Station, free-flying platforms. 

Title:	 200 kW Plasma Motor Generator 
NASA Center:	 Johnson Space Center (JSC) 
Contract Number: NAS9-17666 
Contract Monitor: Jim McCoy 
Contractor:	 Ball Brothers, Cal Rybak 
Contract Duration: 8/86-9/88 
Abstract:	 Engineering design study of the plasma motor generator concept for both power 

and thrust generation, including reversible power operation for power storage. 

Title:	 Analysis of Aerothermodynamic Experiments that may be Conducted with 
Tethered Satellites 

NASA Center:	 Langley Research Center (LaRC) 
Contract Number: NAG 1-878 
Contract Monitor: George Wood 
Contractor:	 Vanderbuilt University, Dr. Leith J. Potter 
Contract Duration: 
Abstract:	 Identify and quantitatively evaluate specific aerothermodynamic and free stream 

measurements that should be conducted with tethered satellites. Develop research 
strategy for TSS-2 and succeeding tethered systems. 
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Title:	 Analysis of Sampling Techniques to Determine Atmospheric Composition 
NASA Center:	 Langley Research Center (LaRC) 
Contract Number: NAS1-18584-9 
Contract Monitor: George Wood 
Contractor:	 Old Dominion University, Dr. Kenneth G. Brown 
Contract Duration: 
Abstract:	 Assess methodology for determining concentration profiles from the vehicle 

surface outward to the termination of the shock or boundry layer. 

Title:	 Application of Receiver Operating Characteristics to Resolution Enhancement 
NASA Center:	 Langley Research Center (LaRC) 
Contract Number: NAG1-800 
Contract Monitor: George Wood 
Contractor:	 University of Southern Mississippi, Dr. Grayson H. Rayborn 
Contract Duration: 
Abstract:	 Develop the computational methodology necessary to determine and enhance 

efficiencies of electronic detectors to be used in obtaining atmospheric and 
aerothermodynamic data at orbital velocities with tethered satellites. 

Title:	 Atmospheric Investigation Related to Aerothermodynamic Research in the 90 to 
130 Km Region by Means of Tethered Probes 

NASA Center:	 Langley Research Center (LaRC) 
Contract Number: NAG 1-876 
Contract Monitor: George Wood 
Contractor:	 Smithsonian Astrophysical Observatory, Jack W. Slowey 
Contract Duration: 
Abstract:	 Investigate ambient and induced atmospheric environment related to a vehicle 

moving at orbital velocity between 90 and 130 km and develop an observational 
strategy to support aerothermodynamic research in the region. 

Title:	 Determination of Design and Operation Parameters for Upper Atmospheric 
Research Instrumentation 

NASA Center:	 Langley Research Center (LaRC) 
Contract Number: NAG1-804 
Contract Monitor: George Wood 
Contractor:	 University of New Orleans, Dr. George E. loup; Dr. Juliette W. loup 
Contract Duration: 
Abstract:	 Analyze and develop a systematic mathematical methodology to extract 

information obtained in noisy signals generated on tethered research vehicles 
moving at orbital velocities. 

Title:	 Effects of the Interaction of Polymeric Materials with the Space Environment 
NASA Center:	 Langley Research Center (LaRC) 
Contract Number: 
Contract Monitor: Shiela T. Long 
Contractor:	 College of William and Mary, Dr. Richard Keifer; Dr. Robert Orwoll 
Contract Duration: 
Abstract:	 Determine the effects on the molecular structure of the surface of Kevlar ® and 


Nomex ® exposed to atomic oxygen and UV radiation. 
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Title:	 Requirements of Wall/Gas Interaction Studies to be Supported by Tethered 
Satellites 

NASA Center:	 Langley Research Center (LaRC) 
Contract Number: NAG1-879 
Contract Monitor: George Wood 
Contractor:	 University of California, Berkeley, Dr. Franklin C. Hurlbut 
Contract Duration: 
Abstract:	 Identify and quantitatively evaluate requirements for studies of wall/gas 

interactions between characteristic vehicle surfaces and atmospheric gases. 
Develop research strategy for TSS-2 and succeeding tethered systems. 

Title: Shuttle Tethered Aerothermodynamic Facility 
NASA Center: Langley Research Center (LaRC) 
Contract Number: NAS1-17511 
Contract Monitor: Paul Siemers 
Contractor: In-House Study and Analytic Mechanics, Henry Wolf 
Contract Duration: 1/84-12/88 
Abstract: Develop algorithms and models of the deployment, control and retrieval of a 

tethered satellite to low (90 km) altitudes. Model specific mission profiles for the 
TSS-2, STARFAC, and other proposed systems. 

Title: Beam Plasma Interaction Data Base 
NASA Center: Lewis Research Center (LeRC) 
Contract Number: NAG3-620 
Contract Monitor: Joe Kolecki 
Contractor: University of Alabama, Huntsville, AL, Chris Olsen 
Contract Duration: 1/84-12/86 
Abstract: Interaction of electron and ion beams with the ambient plasma at GEO and LEO. 

Title: Electrodynamic Tether Device Characterizations 
NASA Center: Lewis Research Center (LeRC) 
Contract Number: NGR-06-002-1 12 
Contract Monitor: Joe Kolecki 
Contractor: Colorado State University, Dr. P. J. Wilbur 
Contract Duration: 1/84 - On going 
Abstract: Investigation of VT characteristics of plasma contactors as electron collectors in 

ground-based vacuum facilities. 

Title: Electrodynamic Tether Device Characterizations 
NASA Center: Lewis Research Center (LeRC) 
Contract Number: N/A (In-house study) 
Contract Monitor: Joe Kolecki 
Contractor: LeRC In-House Study, Dr. M. Patterson 
Contract Duration: 1/84-12/88 
Abstract: Investigation of VI characteristics of plasma contactors as electron collectors in 

ground-based vacuum facilities.

Title: 
NASA Center: 
Contract Number: 
Contract Monitor: 
Contractor: 
Contract Duration: 
Abstract:

Plasma Turbulence Generated by Tether Current Flow 
Lewis Research Center (LeRC) 
NAG3-68 1 
Joe Kolecki 
MIT, Dr. D. Hastings 
1/85-12/88 
A theoretical study of turbulence effects in a contactor plasma cloud. 
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Title: Tether Plasma Interactions and Power Plant Feasibility 
NASA Center: Lewis Research Center (LeRC) 
Contract Number: NAS3-23881 
Contract Monitor: Joe Kolecki 
Contractor: S-Cubed, Dr. I. Katz 
Contract Duration: 1/84 - On going 
Abstract: Improve and validate the existing physics model of electron collection by a 

plasma contactor. Predict operational parameters for high power tether 
systems with plasma contactors. Both objectives use the NASCAP-LEO 
computer code. 

Title: Tether Power System Study 
NASA Center: Lewis Research Center (LeRC) 
Contract Number: NAS3-24649 
Contract Monitor: Joe Kolecki 
Contractor: MIT, Dr. M. Martinez-Sanchez 
Contract Duration: 1/84- 12/85 
Abstract: A conceptual design of a high power electrodynamic tether system. 

Title: Hollow Cathode Sounding Rocket Experiment (HOCAT) 
NASA Center: Lewis Research Center (LeRC) 
Contract Number: Inter-Agency Number: C-0007-J (Transfer of funds) 
Contract Monitor: Joe Kolecki 
Contractor: Naval Postgraduate School, Chris Olsen 
Contract Duration: 1/87-12/89 
Abstract: Definition study of mother/daughter sounding rocket payload to study plasma 

coupling of hollow cathode plasma contactors in space. 

Title: Constellation Dynamics 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-3666 
Contract Monitor: Charles C. Rupp 
Contractor: Center for Astrophysics Harvard-Smithsonian, E. Lorenzini 
Contract Duration: 2/85 - On going 
Abstract: To define the dynamic behavior of three body tethered constellations. 

Title: Damage Inspection and Verification of Tethers 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-37618 
Contract Monitor: Charles C. Rupp 
Contractor: ANCO Engineers, Inc. 
Contract Duration: 2/88-9/88 
Abstract: To develop a concept using an optical device for inspection and detection of 

damaged tethers.

Title:	 Getaway Tether Experiment 
NASA Center:	 Marshall Space Flight Center (MSFC) 
Contract Number: NAG8-586 
Contract Monitor: Charles C. Rupp 
Contractor:	 Auburn University, Auburn, Alabama, M. Greene 
Contract Duration: 1/87 - On going 
Abstract:	 To deploy twin satellites that separate after deployment by a conducting tether. 
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Title: Small Expendable Deployer System 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-37885 
Contract Monitor: James K. Harrison 
Contractor: Energy Science Laboratories, J. Carroll 
Contract Duration: 9/88-9/89 
Abstract: To develop and fly on a Delta H launch a tether deployment system without 

tether retrieval capability. 

Title: Small Expendable Deployer Measurement Analysis 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NGT 01-002-099 
Contract Monitor: Charles C. Rupp 
Contractor: University of Alabama; University of Southern California, Connie Carrington 
Contract Duration: 1/89-1/90 
Abstract: To plan the techniques for reducing dynamic experimental flight data on the first 

SEDS mission. 

Title: Tether Deployment Monitoring Systems 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-36268 
Contract Monitor: James K. Harrison 
Contractor: ANCO Engineers, Inc., P. Ibanez, A. Levi 
Contract Duration: 6/87-6/89 
Abstract: To build and ground-test a concept of attaching small radar detectable modules 

to a tether during deployment to verify tether shape. 

Title: Tether Elevator Crawler System 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAG8-620 
Contract Monitor: James K. Harrison 
Contractor: Tri-State University, Professor F. R. Swenson 
Contract Duration: 2/87-2/88 
Abstract: To develop a breadboard lab model of a tether crawler used to position experiment 

modules at various tether locations. 

Title: Tether Released Recovery System 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-35096 
Contract Monitor: Charles C. Rupp 
Contractor: General Electric Company, Dwight Florence 
Contract Duration: 3/85 - On going 
Abstract: To study modification of an available reentry vehicle to be deployed by tether. 

Title: TetheredSatellite Monitoring System 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-38051 
Contract Monitor: Charles C. Rupp 
Contractor: Applied Research, Inc., Scott Davis 
Contract Duration: 12/88-5/89 
Abstract: Development of an automated monitoring system for measuring tether damage.
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Title: Tether Simulations 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAS8-36673 
Contract Monitor: Charles C. Rupp 
Contractor: Control Dynamics Company, John Glaese 
Contract Duration: 6/84 - On going 
Abstract: To develop simulation programs for dynamic behavior of tethers in various 

specific tether missions. 

Title: ULF/ELF Tether Antenna 
NASA Center: Marshall Space Flight Center (MSFC) 
Contract Number: NAG8-551 
Contract Monitor: Charles C. Rupp 
Contractor: Smithsonian Astrophysical Observatory, R. Estes 
Contract Duration: 9/85 -11/86 
Abstract: To analyze and develop an ultra-low and extremely low frequency electrodynamic 

tether antenna system.
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1.6 Italian Tether Studies 

The Italian studies of tether systems and applications are performed under contracts to Aeritalia, 
with some support by other companies for specific items. Also, many universities and research 
institutions have made significant contributions in some areas of investigation; these are described in 
paragraph 1.6.8. 

The first phase of the Italian study on tether applications in space has examined a large number of 
concepts. In order for these concepts to be viable, many dynamical and technological aspects have been 
studied and the possibility of laboratory and flight demonstration has been investigated. 

The following applications are presently under study: 

1. Science and Application Tethered Platform 

2. Small Tethered Pointing Platform 

3. Tethered Space Elevator 

4. 'Complex Tether Technology 

5. Payload Orbital Transfer and Reentry, Rendezvous and Docking Facility 

6. Space Station Gravity Gradient Stabilization by Tethers 

1.6.1 Science and Application Tethered Platform (SATP) 

The problems related to the dynamics of a tethered system attached to the Space Station have been 
investigated. The limited mobility of the Space Station does not allow application of the dynamic 
techniques developed for the deployment and retrieval of a tethered satellite released from the Shuttle. The 
deployer can be placed in an area of the Space Station where the gravity gradient is different from zero thus 
making the operations of deployment and retrieval easier due to a sufficiently high value of tension in the 
tether. 

SAMThe main goal of the study was to assess the feasibility and to define the technical features of 

• Acquisition, technical analysis and evaluation of the users requirements 

• Definition of the technical requirements 

• Analysis, trade-off, and definition of the SATP configuration 

• Evaluation and definition of the preliminary design characteristics 

1.6.2 Small Tethered Pointing Platform 

The concept of a small tethered platform that would be released from the Shuttle to demonstrate the 
technological and scientific performance of a large-scale platform has been investigated. This pointing 
platform would use the displacement of the tether attachment point from the center of mass of the platform 
as a means of attitude control. This technique might also be used to allow attitude stabilization of a 
medium-size pointing platform tethered to the Space Station and to stabilize the Space Station itself. The 
demonstration of the concept would prove the feasibility of high-precision pointing performance where 
complex dynamics are involved. 

The primary engineering objective of this mission is to demonstrate the ability to perform high-
precision control of the pointing platform attitude. During the Shuttle mission, several engineering 
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parameters would be measured to assess the attainable performance with reference to pointing platform 
concept applications. At least five experiments goals can be accomplished: 

• Measurement of attitude dynamics in the absence of attitude control 

• Measurement of attitude dynamics in response to high-precision control 

• Evaluation of attitude stabilization in response to induced dynamic disturbances 

• Measurement of tether tension and tether angle as a function of time with respect to the scaled 
platform 

• Measurement of displacement mechanism and control system performance 

1.6.3 Tethered Space Elevator 

Under contract to Italy's National Space Plan (now AS I), Aeritalia conducted a study of 
applications of tethers to the Space Station. A resultant intriguing concept selected as a candidate for a 
demonstration flight by the Space Shuttle is the Tethered Space Elevator. This element has the ability to 
move between both ends of a tether and can be used for microgravity studies as well as transportation. 

The most promising feature offered by the Space Elevator when used as a microgravity facility is 
the unique capability to control the gravity acceleration level as a function of time. This possibility has 
provoked great interest in the microgravity science community. Moreover, the utilization of the Space 
Elevator as a transportation facility, able to move along the tether and providing easy access between the 
two tethered bodies, could be the fundamental tool used in the evolution of tethered systems. 

The proposed demonstration would be a proof-of-concept scaled-down configuration, rather than a 
full test of the elevator. An STS flight test would be significant as a means of validating the mathematical 
models which describe the dynamics and control of the key component designs. The system proposed for 
a Shuttle flight test of the elevator concept is made up of three major elements: the TSS-deployer, the 
TSS-satellite, and the scaled proof-of-concept elevator. 

Once the satellite is far away from the deployer, the scaled elevator would be mounted on the 
tether, by means of the Shuttle RMS, and recovered before satellite retrieval. The primary engineering 
objective of this mission is to demonstrate the ability to control the elevator motion and the overall system 
dynamics. 

Engineering data would be measured during the mission to assess the attainable performance with 
reference to elevator concept applications. At least four engineering experiment goals should be realized: 

1. Measurement of the residual acceleration behavior as a function of time for several elevator 
positions along the tether 

2. Measurement of the residual acceleration profile vs. time as a response to a commanded profile 
by elevator motion control 

3. Measurement of the system dynamics response to the elevator motion from the Shuttle to the 
satellite for a commanded velocity control profile 

4. Measurement of technical performance parameters of the elevator drive mechanism 

1.6.4 Complex Tether Technology 

Achievement of the full potential of permanent tethered facilities in space is dependent on the 
development of complex tethers which will be able to perform several functions (i.e., power transmission, 
data communication) and be resistant to long exposures to the space environment. 
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Conventional cable technology suitable for performing several functions is well developed but does 
not apply directly to space activities. In addition, the impact protection technology developed for the usual 
space structures are relevant but must be adapted to the peculiar characteristics of long cables. The 
demonstration of complex tether technology, including impact protection, is a prerequisite to effective 
implementation of advanced tether applications in space. 

The major requirement of this demonstration is simulation of the space environment. Specifically, 
such effects as pressure, temperature, radiation, and meteoroid debris flux must be modelled. These 
effects can be satisfactorily simulated in existing laboratories, hence the objective of this demonstration can 
be pursued by ground-based activities. The following steps outline the proposed demonstration 
procedure:

a. Requirements identification and current technology assessment 

b. Materials testing, functional elements testing and technologies development 

c. Multifunction tether technology and configuration analysis 

d. Sample fabrication and development tests 

e. Verification of the tether's ability to satisfy its major functional requirements when subjected to 
the simulated space environment conditions 

f. Cost and performance trade-off studies 

g. Tether configuration definition 

1.6.5 Payload Orbital Transfer and Reentry, Rendezvous and Docking Facility 

The use of launching systems, such as the OMV, connected to the Space Station or a platform by 
means of very long tethers can improve their operational capability. In fact, a payload can be transferred to 
a variety of orbits by changing the length of an upward or downward tether, and by using a static or 
oscillating release maneuver. After release, the tether and the tip mechanism may be retrieved to the Space 
Station or platform and used for repeated launches. 

It is also possible to capture suborbital payloads using a docking probe tethered to the Space 
Station. The major problem for this application is the limited rendezvous window due to the differences in 
speed between the probe and the object to be docked. The maneuverability of the docking probe appears 
to be very important for successful docking. 

1.6.6 Space Station Gravity Gradient Stabilization by Tethers 

There exists the possibility of obtaining attitude control of large space structures (e.g., the Space 
Station) by means of tethered masses. This technique can be used during the operational life of the 
Station, but it is of particular help during the assembly phases. The Italian studies have investigated a 
number of different attitude control configurations and have identified the most suitable ones. 

1.6.7 Future Italian Tether Studies 

The past Italian tether studies, reported above, were developed between 1985 and 1988. Quite a 
few of the concepts studied will be considered in the future, e.g., much work will be devoted to the 
Tethered Space Elevator. Nevertheless, on the basis of national interest and taking into account the 
recommendations of the ASI/NASA Task Group for Flight Demonstrations, effort will be concentrated on 
the following three subjects: 

1. Tether Initiated Space Recovery System (TISRS) 

2. Tether Inspection and Repair Experiment (TIRE) 

3. Astrophysical Sciences Tethered Retrievable Observatory SAT? (ASTROSATP) 
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The possibility of reentering payloads from orbit to ground by means of retro-rocket propulsion is 
well established. The Tether Initiated Space Recovery System (TISRS) provides the capability of 
deorbiting capsules from the Space Station or LEO without propulsion. A Shuttle flight is the baseline for 
this experiment utilizing the Small Expendable Deployer System (SEDS) under development in the U.S. 
and a capsule of the Satellite Reentry Vehicle (SRV) developed by GeneralElectric. The hardware of the 
capsule will, however, be modified for this demonstration, i.e., the deorbit motor will be eliminated and a 
grappling fixture, together with the tether attachment system, will be added. 

The Tether Inspection and Repair Experiment (TIRE) arises from an Aeritalia feasibility study 
performed on a tethered scientific platform (SATP) where the need for a deeper investigation of the tether 
was envisaged and addressed. It was shown that at least two major characteristics differentiate the present 
tether design with respect to potential future designs: the tether can perform several functions in addition 
to the structural ones, but the possibility of using it for long duration missions is strongly dependent on its 
capability to counteract or sustain the damaging environmental effects. A protective shield becomes 
necessary in order to prevent unacceptable damaging or the complete cutting of the tether. If suitable 
technological solutions are not found, it is likely a number of future tether applications will vanish. 

A substantial effort, must be applied toward the design of a proper tether configuration and 
component material selection. A more important requirement will be the development of techniques to 
inspect, detect and repair the damage. A Tethered Space Elevator may be used for this purpose. 

The SATP is a large multimission platform designed to support a wide range of scientific and 
application payloads tethered to the Space Station. SATP has been studied and the result was a 
preliminary configuration and subsystem analysis. 

In the ASTROSATP study, the possible use of a SATP as a facility for astrophysical payloads will 
be performed. The major advantages of a tethered platform for scientific applications are the freedom from 
Space Station pollution (thermal, mechanical, chemical, and electromagnetic) and the possibility of lower 
costs of the experiments to be flown due to the close proximity of the platform to the Space Station. 

The ASTROSATP study also affords the opportunity to further investigate high-precision pointing 
and attitude control by tether tension, since a marked interest has been shown by scientists for the 
installation of a Schmidt telescope on-board the platform. 

1.6.8 Italian Universities and Research Institutions Tether Studies 

Many universities and research institutions contribute to the Italian tether programs. Mention is 
made here of the work carried on in Padua and Frascati. At the Institute of Applied Mechanics of Padua 
University, two research areas are being investigated: 

1. Dynamics of Tethered Systems and Other Applications 

2. Tether Technology 

In the first research area, the word "dynamics" covers all aspects of the motion, including 
momentum exchange and orbit transfer, tether elastic vibrations, response to orbital perturbations, attitude 
control and stability. The work done to date was related to TSS-1, but after the signing of the letter of 
agreement between NASA and PSN (now ASI) on tether applications, attention has also been focused on 
systems or demonstrations considerably different from TSS. 

The Institute is providing an experiment on TSS-1 to evaluate the dynamical noise level on the 
satellite resulting from tether elasticity. As a result of the sequence of experiments to be performed, the 
effects of perturbations transmitted to the satellite will be determined by means of linear accelerometers and 
gyros mounted on it as part of the Core Equipment. The data obtained will be compared to the 
expectations of the mathematical models developed to simulate system dynamics. 

For other applications, dynamics and control studies on future missions of tethers in space have 
been undertaken independently and in cooperation with Aeritalia. Among these are:



a. Science and Application Tethered Platform (SATP) and Tethered Elevator: This is a multifunction 
system that would be tethered to the Space Station. Some functions are in the scientific area, such as use 
of the platform for sky or Earth observations. Others functions beneficial to Space Station operations, 
include storage of dangerous fluids on a tethered platform. The dynamics of this system, and the control 
laws of the motion of an attached elevator, have been studied by Aeritalia. Also, the vibration induced by 
the motion of the elevator has been investigated. 

b. Tether Initiated Space Recovery System (TISRS) and Trash Disposal from the Siace Station: 
Here, the tether is used to deorbit a reentry capsule from the Shuttle orbit or to release a container filled 
with Space Station waste products and have it burned in the upper atmosphere. In the first case, the tether 
would be severed at both ends so that one of the problems is to evaluate the orbital lifetime of a free tether 
in space, and consequently, the probability of impact with another spacecraft in LEO. In the second, 
system parameters must be optimized in order to achieve waste destruction. 

C. Tether Assisted Space Station Attitude Stabilization: Since the Space Station is inherently unstable 
in attitude against the gravity gradient, a large expenditure of propellant will have to be dedicated to active 
control. Therefore, the possibility of utilizing one or two ballast masses properly tethered to the Space 
Station in order to generate stabilizing gravity gradient torques and save propellant has been studied. This 
study, as well as the next, has been carried out in cooperation with Aeritalia. 

d. Tether Assisted Space Station C. G. Control: The dual keel configuration of the Space Station 
permits the micro-g labs to be located as close as possible to the center of mass of the system. In this way, 
lower acceleration levels are expected. However, the location of the C.G. can change during the initial and 
the early operational phase due to mass and moment of inertia variations, Shuttle docking or other causes. 
The possibility of using masses connected to the Station by means of tethers of suitable length, to control 
the position of the C.G. with respect to the scientific laboratories, has been studied. 

e. Tethers and Aerobrakin: Another potential application of tethers is in increasing the A/M ratio of a 
spacecraft to achieve an orbital maneuvering capability using aeroassisted braking. In this way, energy 
could be saved in unmanned missions requiring transfers from high altitude, or hyperbolic orbits down to 
LEO, such as for telecommunications platforms to be refurbished on board the Space Station, or for 
vehicles returning from the Moon. 

In the second research area of tether technology, laboratory investigations on the physical 
parameters of the tether and the development of mathematical models for simulations have been conducted. 
For TSS-1 and TSS-2, for example, tests have been performed for the determination of the mechanical 
characteristics of tethers such as: (1) longitudinal wave propagation velocity, (2) stiffness and non-liner 
elasticity, and (3) hysteresis and loss factor. Also, the theoretical investigations performed include: (1) 
development of numerical models which represent the multilayer behavior of the tether with friction and 
shear between adjoining layers, and (2) development and implementation of simple programs which allow 
the checking of laboratory experiments and the simulation of maneuvers. 

The Interplanetary Space Physics Institute (IFSI) at Frascati is involved in plasma experiments to 
be carried out in the Tethered Satellite System (TSS) electrodynamic missions. In support of these 
missions, an ionospheric plasma chamber of 9 m 3 , called SIMPLEX, has been designed in order to 
investigate the fundamental principles of plasma and TSS interactions. This chamber is equipped with 
hollow cathode sources and will provide simulations of the TSS orbiting at ionospheric altitudes. A 
Kaufman plasma source will be added to provide an adjustable ionic stream velocity and therefore perform 
a simulation of the relative velocity between the satellite and the ionospheric plasma. This would permit 
study of the current collection disturbance due to the ram and wake effect in the vicinity of the charged 
body. Since these phenomena are strongly dependent on the environmental magnetic field, the SIMPLEX 
facility is provided with a 3-D magnetic Helmoltz coil system in order to simulate the Earth magnetic field 
effects.
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SECTION 2.0

TETHER APPLICATIONS 
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2.1 General 

This section provides a summary of various tether applications proposed up to this printing, 
concentrating on near-term, mid-term, and innovative applications. In some cases, these applications are 
general ideas, and in others, they are well-defined systems, based on detailed study and computational 
analysis. These applications have been divided into eight general categories. In cases where an 
application can be logically placed in more than one, it has been placed in the one considered most 
appropriate. To avoid redundancy, variations of a particular system concept are not described separately. 
Instead, Section 2.2 contains a listing of the applications by category, page number, and possible cross 
reference to other categories. Descriptions of proposed applications follow this listing. For these 
descriptions, a standardized format is used to allow quick and easy comparisons of different applications. 
This format is designed to effectively serve as wide a readership as possible, and to conveniently convey 
the pertinent details of each application. Readers with different interests and needs can find the 
information and level of detail they desire at a glance. 

The Category and title of each application is presented at the top of the page. The "Application" 
subsection provides a brief statement of the application, and the "Description" subsection provides a brief 
description of the system design and operation. A picture is located in the upper right of the page to 
supplement the description, by providing a diagrammatic representation of the system and its operation. 
The "Characteristics" subsection exhibits the major system design and operation parameters in bullet form. 
The last characteristic is always a bullet entitled "Potential for Technology Demonstration". This entry 
attempts to classify both the conceptual maturity of an application, and the amount of technological 
development required to demonstrate the particular application. Three descriptors have been used to 
indicate the demonstration time-frame: 

Near-Term:	 5 years or less, 
Mid-Term:	 5-10 years, and 
Far-Term:	 10 years or greater. 

The date of this printing may be assumed to be the beginning of the Near-Term period. Together, these 
subsections present a brief and complete summary of the system's application, design, and operation. 

The "Critical Issues" subsection, lists the developmental and operational questions and issues of 
critical importance to the application. The "Status" subsection indicates the status of studies, designs, 
development, and demonstrations related to the application. The "Discussion" subsection presents more 
detailed information about all aspects of the application. Following this, the "Contacts" subsection lists the 
names of investigators who are involved with work related to the application, and who may be contacted 
for further information. (See Section 7.0, "Contacts", for addresses and telephone numbers.) Finally, the 
"References" subsection lists the reference and page numbers of the references used in the preparation of 
the application description. 

Many of the applications that follow are subject to similar critical issues which are more or less 
"generic" to tethers. These are issues such as damage from micrometeoroids or other space debris, 
dynamic noise induced on platforms, high power control electronics technology, rendezvous guidance and 
control, tether material technology development, and system integration. Many of the figures presented in 
Section 4.0 "Tether Data" address these critical issues. 
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2.2 Tether Applications Listing 

Following is a list of abbreviations used to identify cross references to other categories. The 
application listing has been arranged in alphabetical order by category and application within each 
category. 

AE AERODYNAMICS PL PLANETARY 
CN CONCEPTS SC SCIENCE 
CG CONTROLLED GRAVITY SS SPACE STATION 
EL ELECTRODYNAMICS TR TRANSPORTATION 

Categoryfritle	 Page	 cross Reference 

AERODYNAM 

Tether Initiated Space Recovery System 35 sc	 SS 
Multiprobe for Atmospheric Studies 36 SC	 SS 
Shuttle Tethered Aerothermodynamic Research Facility 37 SC 
Shuttle Continuous Open Wind Tunnel 38 SC 

CONCEPTS

Gravity Wave Detection Using Tethers 39 SC 
Tethered Sail (Hypersonic Rudder) 40 AE TR 
External Tank Space Structures 41 CG SS 
Alfven Engine for Interplanetary Transportation 42 EL PL 
Earth Moon Tether Transport System 44 PL TR 
Mars Moons Tether Transport System 45 PL TR 

CONTROLLED GRAVITY 

Rotating Controlled-Gravity Laboratory (Tethered Platform) 47 SC PL 
Rotating Controlled-Gravity Laboratory (Tether-Enhanced Station) 49 SC PL 
Variable Gravity Research Facility (VGRF) 51 Sc 

TR 

TR 

ELECTRODYNAMICS 

Electrodynamic Power Generation (Electrodynamic Brake) 

Electrodynamic Thrust Generation 

Electromagnetic Motor/Generator for Power Storage 

Electromagnetic Thruster to Offset Drag 

ULF/ELF/VLF Communications Antenna

53 PL SS 

55 PL SS 

57 PL SS 

59 PL SS 

61 SC SS

TR 

TR 

TR 

ce 



Categorvfritle	 Page	 Cross Reference 

PLANETARY 

Comet/Asteroid Sample Return 63 SC 
Electromagnetic Deceleration for Planetary Capture 65 EL TR 
Jupiter Inner Magnetosphere Maneuvering Vehicle 66 EL TR 
Mars Tethered Aeronomy Observer 68 AE SC 
Multipass Aerobraking of Planetary Probe 69 AE TR 
Tethered Lunar Satellite for Remote Sensing 71 SC 

SCIENCE

Science Applications Tethered Platform 72 CG EL	 SS 
Shuttle Science Applications Platform 74 CO EL 
Tethered Satellite for Cosmic Dust Collection 75 PL 

SPACE STATION 

Microgravity Laboratory 76 CG SC 
Shuttle Deorbit from Space Station 78 TR 
Tethered Orbital Refueling Facility 80 CG 
Tethered STV Hangar/Depot 82 CG 
Tethered STY Launch 84 TR 
Tethered Space Elevator 86 CO SC 
Variable/Low Gravity Laboratory 88 CO SC 

TRANSPORTATION 

Generalized Momentum Scavenging from Spent Stages 90 Ss 
Internal Forces for Orbital Modification (Orbital Pumping) 91 PL 
Satellite Boost from Orbiter 93 SC 
Shuttle Docking by Tether 95 SS 
Shuttle External Tank Deorbit 96 AE 
Small Expendable Deployer System 97 AE SC 
Tether Reboosting of Decaying Satellites 98 SS 
Tether Rendezvous System 99 PL SS 
Upper Stage Boost from Orbiter 100 PL
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2.3 Tether Applications 
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-- AERODYNAMICS --

Tether Initiated Space Recovery System 

APPLICATION: Provides a means o f 
transferring a small payload from the Space Station to 
the Earth without the use of the Shuttle Orbiter. 

DESCRIFflON: A payload (such as processed 
chemicals, engineering data, etc.) would be deployed 
along a tether from the Space Station. The tethered 
payload would be released into a reentry trajectory 
such that it would enter the upper atmosphere within 
one-half orbit. Upon reentry, a guided parachute 
would open, slowing its reentry speed to permit a soft 
landing. 

CHARACTERISTICS: 

	

• Tether Length:	 20-40 km 

	

• Payload Mass:	 100 kg 
• Potential For 

Technology 

	

Demonstration:	 Near-Term 

CRITICAL ISSUES: 
• Tether system deployment timing for proper prograde swing 
• Dynamics of tether after payload release 

STATUS: 
• Preliminary analysis completed by General Electric 
• Demonstration mission for Shuttle - to be proposed October 1989 

DISCUSSION: The time required for the tethered deployment of the payload is approximately 3 
hours. An additional 1 hour and 15 minutes is required for the reentry phase after tether (or payload) is 
released. The benefits of using a tether for a payload recovery system are reduced sensitivity to payload 
mass and elimination of the retro-rocket as a safety issue. 

CONTACTS: 
• Chris Rupp 
• Dwight Florence 
• Alberto Loria 
• Franco Bevilacqua 

REFERENCES: 
Tether Released Recovery, Final Report, NASA Contract NAS8-35096. 
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-- AERODYNAMICS --




Multiprobe for Atmospheric Studies 

APPLICATION:	 Measurement of spatial 
geophysical gradients. 

DESCRIPTION:	 A one-dimensional constella-
tion of probes is lowered by the Shuttle or Space 	

PROBE Station into the atmosphere in order to provide 	 2 PROBE 
simultaneous data collection at different locations. 	 3 PROBE 

CHARACTERISTICS: 
• Physical 

Characteristics:	 Undetermined 
• Potential For 

Technology	 (9 
Demonstration:	 Near-Term 

CRITICAL ISSUES: 
• Crawling systems might be necessary 
• Operational sequence for deployment and retrieval 

STATUS: 
Configuration study performed by Smithsonian Astrophysical Observatory 

DISCUSSION: This constellation configuration could prove very valuable in low altitude 
measurements requiring simultaneous data collection at the various probe positions. Good time 
correlation of the measurements is one benefit of this system. 

CONTACTS: 
• Enrico Lorenzini 

REFERENCES: 
Applications of Tethers in Space. Workshop Proceedings, Volume 2, Venice, Italy, NASA 

CP2422, March 1986. (pp. 150-204)
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CHARACTERISTICS: 
• Length: 
• Mass: 

• Power Required: 
• Potential For 

Technology 
Demonstration:

100-125 km 
TBD, nominally 500 kg 
depending on configuration 
TED 

Far-Term 

-- AERODYNAMICS --

Shuttle Tethered Aerothermodynamic Research Facility 

APPLICATION: Obtain aerothermodynamic data 
on various aerodynamically shaped vehicles at altitudes 
as low as 90 km. 

DESCRIPTION: A tethered subsatellite in 
combination with the Shuttle Continuous Open Wind 
Tunnel (SCOWT) based instrument package will be 
deployed from the STS downward to the upper 
continuum flow regime. The satellite may be retrieved, 
or if properly configured, released and recovered. 

CRITICAL ISSUES: 
• High temperature materials for tethers required below 120 km altitude 
• Precision locating and tracking method 
• TPS probably required 

STATUS: 
• STARFAC feasibility/definition results completed 
• SCOWT study ongoing in support of STARFAC and TSS-2 
• TSS-2 mission planning which will incorporate same objectives 

DISCUSSION: STARFAC will enable aerothermodynamic research to be performed in a region of 
the Earth's atmosphere which is presently unattainable for extended periods of time. This region is 90 to 
125 km above the Earth's surface. Presently, atmospheric measurements in this region of the atmosphere 
can only be made with sounding rockets over small regions of area and time. Since the STS will provide 
station keeping during the deployment, stady-state data which include diurnal variations can be obtained 
for an extended period encompassing several or more orbits. 

CONTACTS: 
• Paul Siemers 
• George Wood 
• Giovanni Carlomagno 
• Luigi deLuca 

REFERENCES: 
Applications of Tethers in Space. Workshop Proceedings, Volume 2, Venice, Italy, NASA 

CP2422, March 1986. (pp. 251-286)
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-- AERODYNAMICS --

Shuttle Continuous Open Wind Tunnel 

APPLICATION: Obtain steady-state aerothermo-
dynamic research data under real gas conditions 
without experiencing limitating effects inherent in 
ground-based wind tunnels. 

DESCRIPTION: A tethered aerodynamically 
shaped research vehicle is deployed downward form 
the Space Shuttle to obtain data in the free molecule, 
transition, and upper continuum flow regimes. 
Characterization of the free-stream, measurement of 
gas-surface interactions, flow field profiling, and 
determination of state vectors are to be accomplished.

Shuttle At 250 km

Altitude

Aerodynamic Model 

CHARACTERISTICS:
100-120 km 
Variable, dependent on mission requirements 
TBD, for instruments and data handling only 

CRITICAL ISSUES; 
• Quantitative definition of data requirements 
• Define method for flow-field profiling 
• Quantitative analysis of orifice effects vs. altitude 

STATUS: 
• Prototype experiment and instrument package proposed for TSS-2 
• Precursor for STARFAC 

DISCUSSION: Unique measurements are possible due to low Reynold;s number and high Mach 
number regime. Measurements in real-gas will provide more dependable data regarding fluid flow, 
turbulence, and gas-surface interactions. 

CONTACTS; 
• Franco Mariani 
• Paul Siemers 
• Giovanni Carlomagno 
• George Wood 
• Luigi de Luca 

REFERENCES: 
Applications of Tethers in Space, Workshop Proceedings, Volume 2, Venice, Italy, NASA 

CP2422, March 1986. (pp. 225-250)

•	 Length: 
•	 Mass: 
•	 Power Required: 
•	 Potential For 

Technology 
Demonstration: Near-Term
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-- CONCEPTS --

Gravity Wave Detection Using Tethers 

APPLICATION:	 To detect gravity waves from 
sources such as binary stars, pulsars, and supernovae. 

DESCRIPTION: The system would consist of 
two masses on each end of a long tether with a spring 
at its center. As this tether system orbits the Earth, 
gravitational waves would cause the masses to 
oscillate. This motion would be transmitted to the 
spring, which would be monitored by a sensing 
device. Analysis of the spring displacement and 
frequency could then lead to the detection of gravity 
waves. 

CHARACTERISTICS: 
• Mass:	 20 kg (Each End Mass) 
• Tether Length:	 25 km 
• Tether diameter:	 0.6 mm 
• Spring Constant:	 Ks = 2.3 x 103 dyne/cm 
• Orbital Altitude:	 1000 km 

CRITICAL ISSUES: 
• Existence of gravity waves 
• Gravity wave noise level from other bodies 
• Excitation of oscillations from other sources

• Potential For 
Technology 
Demonstration:	 Near-Term 

STATUS: 
Preliminary calculations have been performed at SAO, Caltech, and Moscow State University 

DISCUSSION: This gravitational wave detector would operate in the 10 - 100 MHz frequency band 
that is inaccessible to Earth-based detectors because of seismic noise. If gravitational waves do exist in 
this region, a simple system such as a tether-spring detector would prove of great value. 

CONTACTS: 
• K. Thorne 
• Marino Dobrowolny 

REFERENCES: 
V.B. Braginski and K.S. Thorne, "Skyhook Gravitational Wave Detector," Moscow State 

University, Moscow, USSR, and Caltech, 1985. 

B. Bertotti, R. Catenacci, M. Dobrowolny, "Resonant Detection of Gravitational Waves by Means 
of Long Tethers in Space," Technical Note (Progress Report), Smithsonian Astrophysical 
Observatory, Cambridge, Massachusetts, March 1977. 
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-- CONCEPTS --

Tethered Sail (Hypersonic Rudder) 

APPLICATION:	 Used to change the orbital 
inclination of a body such as the Space Shuttle or a 
satellite.

200 Km AL ORBIT 

NEW PLANE DESCRIPTION: A hypersonic lifting body 
tethered below the Shuttle Orbiter is used to generate 
side forces in order to modify the inclination of the 
system's orbit. The body must be shifted from one 
side to the other during the orbit and reeled in and out 
in order to accomplish this.

II 
'I 

I I	 100Km 
SI 

 

I 
14^ 100Km ALTITUDE 

CHARACTERISTICS: 

	

• Tether Length:	 Approximately 100 km 
• Potential For 

Technology 

	

Demonstration: 	 Far-Term 

CRITICAL ISSUES: 
• Performance 
• RCS to counteract drag forces 
• Tether heating 
• Diagnostic instrumentation 

STATUS: 
• This concept is currently believed to be infeasible 
• Preliminary evaluation completed by Wright-Patterson AFB 
• No further work planned 

DISCUSSION:	 This concept can also be used to test tether materials, tether control techniques and 
aerodynamic control structures if used as a high altitude test bed. 

CONTACTS: 
• James Walker 
• Jerome Pearson 
• Joe Carroll 

REFERENCES: 
G. Von Tiesenhausen, ed., "Tether Applications Concept Sheets", June 28, 1984. 
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-- CONCEPTS 

External Tank Space Structures 

APPLICATION:	 Utilize Shuttle external tanks in Tethered Experiment 

a raft format to form a structure in space.
j	

Or Payload Launcher 

Shuttle External Tanks 
Astrophysics 

Platform
Ratted Together	 IH 

DESCRIPTION:	 Tethers are used to separate I	 Facility 

rafts composed of external tanks. These can either be I	 To Scale 

used as a "Space Station" or as structural elements in 1 
an evolving Space Station.

Zero-Energy 
Elevators

Dia. Kevlar
Tethers 

10-20 krn Direction Of 
Orbit 

CHARACTERISTICS: 
•	 Tether Length:	 10-20 km ' 

Earth Viewing 
•	 Potential For Platform 

Technology 
Demonstration:	 Mid-Term

CRITICAL ISSUES: 
• Space operations required to adapt tanks to proposed applications 
• External tank induced contamination environment 
• Stability/controllability of proposed configuration 
• Assembly/buildup operations 
• Drag makeup requirements 

STATUS: 
• Preliminary analysis performed 
• Further analyses effort deferred 

DISCUSSION:	 Most likely use of this concept would be as a "space anchor" for tether deployment 
concepts. 

CONTACTS: 
• James Walker 
• Joe Carroll 

REFERENCES: 
Carroll, J. A., "Tethers and External Tanks, Chapter 3 of Utilization of the External Tanks of the 


Space Transportation System," California Space Institute, La Jolla, California, Sept. 1982. 

Carroll, J. A., "Tethers and External Tanks: Enhancing the capabilities of the Space Transportation 
System," Dec. 1982
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• Cooling: 
• Potential For 

Technology 
Demonstration:

Helium (2°K) 

Far-Term 

-- CONCEPTS --

Heliocentric Alfven Engine for Interplanetary Transportation 

APPLICATION: Generation of propulsion for 
interplanetary travel by using the electromagnetic 
interaction of a conducting tether and the interplanetary 
magnetic field. 

DESCRIPTION: An insulated conducting tether, 
connected to a spacecraft and terminated at both ends 
by plasma contactors, provides interplanetary 
propulsion in two ways. The current induced in the 
tether by the solar wind magnetic field is used to power 
ion thrusters. The interaction between the tether 
current and the magnetic field can also be used to 
produce thrust or drag.

CHARACTERISTICS. 
• Tether Length:	 1000 km 
• Current:	 1000 A 
• Power:	 2 MW 
• Materials:	 Superconducting 

Niobium-Tin

CRITICAL ISSUES: 
• How does this system compare with others, such as nuclear or solar sail 
• Feasibility and controllability have not been established 

STATUS: 
• TSS-1, demonstrating electrodynamic applications, is scheduled for a 1991 launch 
• More detailed study and evaluation of this application are required 

DISCUSSION: The solar wind is a magnetized plasma that spirals outward from the sun with a 
radial velocity of about 400 km/sec. The magnetic field of the solar wind is 5 x 10-5 Gauss, producing 
an electric field of 2 V/km, as seen by an interplanetary spacecraft. If a conducting tether, connected to 
the spacecraft and terminated at both ends by plasma contactors, were aligned with the electric field, the 
emf induced in it could yield an electric current. This current could be used to power ion thrusters for 
propulsion. The current could be maximized by using superconducting materials for the tether. (This 
system was proposed by Hannes Alfven in 1972). It has been calculated that a 1000 km superconducting 
wire of Niobium-tin could generate 1000 A (2 MW). To achieve superconduction temperatures, this wire 
could be housed in an aluminum tube with flowing supercooled (2° K) helium. The tube would be 
insulated and capped at each end with a refrigeration system. 

In addition to the ion thrusters, the interaction of the tether current and solar wind magnetic field 
would produce thrust or drag. As current flowed in the tether, the magnetic field would exert an IL x B 
force on the tether. If the spacecraft were moving away from the sun (with the solar wind), a propulsive 
force would be exerted on the tether as its electrical power was dissipated. A drag would be exerted on 

42



the tether if current from an on-board power supply were fed into it against the induced emf. When 
moving toward the sun (against the solar wind), the opposite conditions would apply. 

This system could be used to spiral away from or toward the sun, or to move out of the ecliptic. 
Theoretically, such a spacecraft could attain the solar wind velocity of 400 km/sec. Use of the 
electromagnetic interaction between a conducting tether system and the solar wind may allow much 
shorter transfer times and larger payloads for planetary missions. 

CONTACTS: 
• Jim McCoy 
• Nobie Stone 
• Richard Taylor 

REFERENCES: 
Applications of Tethers in S pace. Vol. 1, Workshop Proceedings, Williamsburg, Virginia, June 

15-17, 1983, NASA CP-2365, March 1985. (pp. 4-11 through 4-22) 

Applications of Tethers in S pace. Vol. 2, Workshop Proceedings, Williamsburg, Virginia, June 
15-17, 1983, NASA CP-2365, March 1985. (pp. 5-11 through 5-29) 

Applications of Tethers in S pace, Vol. 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 127-151) 

H. Alfven, "Spacecraft Propulsion: New Methods," Science, Vol. 176, pp. 167-168, April 14, 
1972.
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-- CONCEPTS --

Earth-Moon Tether Transport System 

APPLICATION:	 Transportation of material from 
lunar to Earth orbit.

DESCRIPTION: Material (probably Moon rocks) 
in lunar orbit is collected by the LOTS (Lunar Orbiting 
Tether Station), half is transferred to an AFV 
(Aerobraking Ferry Vehicle) which transports it to 
LEO, where it is transferred to the TAMPS (Tether 
And Materials Processing Station). The AFV then 
returns to the Moon for more lunar material. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined 

CRITICAL ISSUES: 
• Undetermined

• Potential For 
Technology 
Demonstration: Far-Term 

STATUS: 
No detailed study on this application has been performed 

DISCUSSION: Material (probably Moon rocks) in lunar orbit could be transported to Earth orbit 
without the use of propellants with this tether transport system. (The material in lunar orbit could have 
been placed there by the Lunar Equator Surface Sling; Application "Lunar Equator Surface Sling"). It 
could be collected in orbit by a Lunar Orbiting Tether Station (LOTS). The LOTS would proceed as 
follows: (1) catch the rocks, spin-up, catch an Aerobraking Ferry Vehicle (AFV); (2) Load the AFV with 
half of the rocks; (3) spin-up, throw the AFV into trans-Earth injection; (4) de-spin, load the other rocks 
on a tether; and (5) spin-up and deboost the rocks for momentum recovery. 

The AFV would proceed to Earth, where it would aerobrake into LEO for capture by the Tether And 
Materials Processing Station (TAMPS). The TAMPS would proceed as follows: (1) catch, retrieve, and 
unload the aerobraked AFV; (2) process moonrocks into L02, etc; (3) refuel and reboost the AFV toward 
the Moon; (4) recover momentum with an electromagnetic tether; and (5) also capture, refuel, and reboost AFV's going to GEO and deep space when required. The AFV returning to the Moon would be a rocket 
boosted into trans-lunar injection and final lunar orbit for recapture by the LOTS. 

CONTACTS: 
• Joe Carroll 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA 

CP-2422, March 1986. (pp. 127-151)
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-- CONCEPTS --

Mars Moons Tether Transport System 

APPLICATION: Transportation of manned 
vehicles and spacecraft from low Mars orbit out to 
escape, or from escape to low Mars orbit, using tethers 
attached to the Moons of Mars.

Mars 
PHOBOS 6100 km 

2960 km
MOS 

DESCRIPTION: Long tethers (Keviar strength or 
better) are attached above and below both Phobos and 
Deimos to ferry vehicles and other payloads between 
low Mars orbit and Mars escape without the use of 
propulsion. For example, a vehicle is tethered upward 
from a low Mars orbit station, released, and then 
caught by a downward hanging tether on Phobos. The 
payload is then transferred to the upward deployed 
tether and released. The process is repeated at Deimos, 
and results in escape from Mars. The process is 
reversible. 

CHARACTERISTICS: 

Length: 

• Tether Mass: 
• Tether Diameter 
• Power: 
• Materials: 
• Payload Mass: 
• Potential For 

Technology 
Demonstration:

940 km (up), 1160 km (down) at Phobos 
6100 km (up), 2960 km (down) at Deimos 
5000 kg to 90,000 kg 
2 mm (or greater) 
TED 
Keviar, or higher strength material 
20,000 kg 

Far-Term 

CRITICAL ISSUES: 
• Tether dynamics analysis 
• Comparison with other advanced propulsion methods 
• Rendezvous feasibility 
• Operations and cost 
• Tether severing by micrometeoroids or debris 

STATUS: 
• A conceptual study defines the tether length and strength requirements, but does not address 

construction, placement, and operation of the tether station. 

DISCUSSION: The two moons of Mars, Phobos and Deimos are near equatorial, and can function 
as momentum banks in the transfer of mass from Mars low orbit to Mars escape (or the reverse). The 
requirement is to place long tethers, upward and downward, on each of the two moons of Mars. Example 
uses might be to transfer Deimos or comet material to the Mars surface or to transfer astronauts from Mars 
surface to a waiting interplanetary low thrust vehicle at Deimos, or to support materials processing in Mars 
orbit.
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Tether stations on Phobos and Deimos may have to be manned for construction, operation, and 
maintenance. Therefore, other human functions at these satellites would be necessary to make this 
concept viable. It is best suited to a high activity scenario with departures and arrivals at Mars daily or 
weekly. A station on Phobos alone would be sufficient for near Mars operations, and could even be used 
for escape with a sufficiently long upward tether. The mass of the two bodies is so great, (>1015 kg) that 
their orbits would not be affected for decades or longer. 

CONTACTS: 
Paul Penzo 

REFERENCES: 
Penzo, P. A., "Tethers for Mars Space Operations," The Case for Mars II, Ed. C. P. McKay, AAS 

Vol. 62, Science and Technology Series, p. 445-465, July 1984. 
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-- CONTROLLED GRAVITY --

Rotating Controlled-Gravity Laboratory (Tethered Platform) 

APPLICATION: Provide a readily accessible 
variable/controlled gravity laboratory, capable of 
generating artificial gravity levels of up to 1 g and 
over, in Earth orbit. 

DESCRIPTION: A tethered platform composed 
of two end structures, connected by a 
deployable/retractable 10 km tether. One end structure 
includes the solar arrays, related subsystems, and 
tether reel mechanism. The other includes two manned 
modules and a propellant motor. Artificial gravity is 
created in the manned modules by extending the tether 
and firing the motor, rotating the entire system about 
its center of mass (the solar panels are de-spun). 
Tether length is used to control the gravity level. 

CHARACTERISTICS: 
• Length:	 Up to 10 kin 
• g-Level:	 Up to 1.25 
• Rotation Rate:	 Up to 0.75 rpm

TETHER PLATFORM CONCEPT 

TETHER	 SOLAR ARRAYS 
REEL	 (Do-Spun) 

SYSTEM 

ftHHTF1O'OJ 
MODULE)t	 '*'MODULE 

MOTOR

I 10 km 
RETRACTABLE,V 

TETHER 

MANNED MODULES-

PROPELLANT/MOTOR 

• Potential for 
Technology 
Demonstration: Far-Term 

CRITICAL ISSUES: 
Susceptibility to micrometeoroid/debris damage 

STATUS: 
No detailed system design study for this application has been performed 

DISCUSSION: Access to an orbiting variable/controlled-gravity laboratory, capable of providing 
artificial gravity levels of up to 1 g and over, would allow vital experimentation in this important gravity 
range, and provide an appropriate facility, should artificial gravity be determined to be a physiological 
requirement for extended manned orbital missions. Artificial gravity (in the form of centrifugal 
acceleration) would be created by rotating the laboratory. The magnitude of the resulting centrifugal 
acceleration is equal to the square of the angular velocity times the radius of rotation. 

Three basic rotating lab configurations are possible - a torus or cylinder (centrifuge), a rigid station, 
and a tethered platform. The centrifuge is the least attractive because of its relatively small volume, large 
Coriolis force, and large dynamic disturbance levels. Of the remaining two, the tethered system has 
several advantages over the rigid one. It would provide a larger radius of rotation, reducing the rotational 
rate required to produce a desired g-level. This, in turn, would reduce unwanted side effects, such as the 
Coriolis force. The variable tether length would also allow a large varkt v of artificial gravity 
environments. To spin the system, the tether would be extended to its full 10 ku i length, and the motor 
fired. (The minimum necessary Delta-V has been calculated to be 125 m/s.) The tether length would then 
be adjusted to provide the desired g-level. Assuming the end masses are equal and rotating about a 
common center, 0.08 g would result from a tether length of 10 km at a spin rate of 0.12 rpm, 0.16 g 
(lunar gravity) from a length of 8 km at 0.20 rpm, 0.38 g (Mars gravity) from a length of 6 km at 0.33 
rpm, 1 g from a length of 4.3 km at 0.65 rpm, and 1.25 g from a length of 4 km at 0.75 rpm. The solar 
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arrays would be de-spun and sun-oriented. However, a disadvantage is the high Delta-V required to start 
and stop this spin. Another is the fact that the rotation would probably have to be stopped to allow 
docking with a spacecraft. 

This lab would allow experimentation at gravity levels ranging from low gravity, through Moon, 
Mars, and Earth gravities, to more than 1 g. The effects of gravity on plant and animal growth, and on 
human performance and medical processes (such as those related to the cardiovascular, skeletal, and 
vestibular systems) could be studied for prolonged periods of time. Gravity conditions on the Moon and 
Mars could be simulated, and the lab could be used to prepare for the possible use of artificial gravity on 
manned interplanetary missions. It could also provide Earth-like habitability at partial g. Such physical 
processes as crystal growth, fluid science, and chemical reactions could be studied at various gravity 
levels. 

CONTACTS: 
Paul Penzo 

REFERENCES: 
Applications of Tethers in Siace. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 125-135)
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-- CONTROLLED GRAVITY --

Rotating Controlled-Gravity Laboratory (Tethered-Enhanced Station) 

APPLICATION: Provide a readily accessible 
variable/controlled gravity laboratory, capable of 
generating artificial gravity levels of up to about one-
half g, in Earth orbit. 

DESCRIPTION:	 A rigid station with two manned 
lab modules and a tethered, deployable propellant Elevator 

motor at each end of a rotating beam. A hub structure 
at the center of the beam contains two tether reel and 
control systems for the motors, and a de-spun solar 
power system and docking platform. An elevator 
transfers men and supplies along the beam, to and 
from the ends. Artificial gravity is created in the lab 
modules by extending the tethers symmetrically and 
firing the two motors, rotating the entire system about 
its center of mass. Tether length is used to control the 
gravity level. 

CHARACTERISTICS:

Solar

Dynamic Power


(De-Spun)

Docking 
PlatformJ1,,,//>

Tether 

100.

Reel 
and Control 

Manned Modules 

Propellant/Motor

100.

N 1 (MASS) 

000.

N 2) OIN1) 

Propellant Motor

(Deployed) 

• Module Rotation Radius:	 100 m	 • Rotation Rate: 
• Motor Rotation Radius: 	 100 m	 • Potential for 
• g-Level:	 Up to 0.45	 Technology 

Demonstration: 

CRITICAL ISSUES: 
Susceptibility to micrometeoroid/debris damage

Up to 2 rpm 

Far-Term 

STATUS: 
No detailed system design study for this application has been performed 

DISCUSSION: Access to an orbiting variable/controlled-gravity laboratory, capable of providing 
artificial gravity levels of up to about one-half g, would allow vital experimentation in this important 
gravity range, and provide an appropriate facility, should artificial gravity be determined to be a 
physiological requirement for extended manned orbital missions. Artificial gravity (in the form of 
centrifugal acceleration) would be created by rotating the lab station. The magnitude of the resulting 
centrifugal acceleration is equal to the square of the angular velocity times the radius of rotation. 

Three basic rotating lab configurations are possible - a torus or cylinder (centrifuge), a rigid station, 
and a tethered platform. The centrifuge is the least attractive because of its relatively small volume, large 
Coriolis force, and large dynamic disturbance levels. The tether-enhanced rigid station combines the best 
features of the tethered platform and rigid station. It has a shorter radius of rotation than the tethered 
platform, while using deployable/retractable tethers with the propellant motors to control the station 
rotation and lab gravity more efficiently than a rigid station alone. The docking platform, which could be 
de-spun for docking with a spacecraft and then spun to allow the transfer of men and supplies to the lab 
modules, would allow easy access to the lab modules, without stopping their rotation. A disadvantage of 
this system is that its spin rate (and associated Coriolis force) would be greater than that of the tethered 
platform system, for a given gravity level.
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The lab modules would be located 100 m from the center of the station, and the propellant motors 
.ould be deployed outward from that distance, up to 1000 m from the center. To spin the system, the 
tethers would be fully and symmetrically deployed, and the motors fired. It has been calculated that a g-
level of 0.11 g would result from a tether length (from the end of the rigid beam) of 900 m at a spin rate 
of 1.0 rpm, 0.16 g (lunar gravity) from a length of 700 m at 1.2 rpm, 0.30 g from a length of 400 m at 
1.6 rpm, and 0.45 g from a length of 0.0 m at 2.0 rpm. 

With this lab, the effects of gravity on plant and animal growth, and on human performance and 
medical processes (such as those related to the cardiovascular, skeletal, and vestibular systems) could be 
studied for prolonged periods of time. Gravity conditions on the Moon and Mars could be simulated, and 
the lab could be used to prepare for the possible use of artificial gravity on manned interplanetary 
missions. It could also provide Earth-like habitability at partial g. Such physical processes as crystal 
growth, fluid science, and chemical reactions could be studied at various gravity levels. 

CONTACTS: 
Paul Penzo 

REFERENCES: 
Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 125-135)
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HABITATION 
MODULE 

-- CONTROLLED GRAVITY --

Variable Gravity Research Facility (VGRF)

APPLICATION: Provide a facility in Earth orbit 
that will operate at gravity levels between 0 and 2g at 
rotation rates between 1 and 10 rpm for the purpose of 
studying the long term effects of various gravity levels 
on humans. 

DESCRIPTION: A habitation module with 
supporting structure, power and life support systems, 
connected to a propulsion module by a tether. The 
tether is deployable/retractable with a maximum length 
of about 2 km. Artificial gravity is created by 
extending the tether and using propulsion to spin the 
system about its center of mass. Both gravity levels 
and rotation rates are controllable by changing tether 
length and firing the propulsion motor.

CHARACTERISTICS: 
•	 Tether Length: 0 to 2 km 
•	 g-Level: 0 to 2g 
•	 Rotation Rate: 0 to 10 rpm 
•	 Crew Size: 2 to 3 persons

ATTITUDE	 - 
CONTROL 
MODULE 

• Potential For 
Technology 
Demonstration: Mid-Term 

CRITICAL ISSUES: 
• Tether and Module dynamics and controls 
• Mission operations development 
• Engineering of subsystems that work in both zero and finite gravity 

STATUS: 
• Preliminary studies have been completed indicating feasibility 
• Current studies are generating more detailed subsystem design 
• Study underway of dynamics and controls of tethered configuration at Stanford University 

DISCUSSION: This facility would allow scientific investigation into the question of human 
performance and health at gravity levels other than Earth gravity for periods of up to 90 days. In 
particular, long-term exposure to Martian or Lunar gravity can be studied. The relation with gravity level 
and rotation rate can also be studied in such a facility, since both are independently controllable. The 
facility also will answer the engineering questions concerning generation of artificial gravity required for 
manned missions to other planets. Engineering design of such systems that operate under variable gravity 
levels and with controllable forces will be required for this facility. 

Operations of the facility might be as follows. The facility is initially docked and not rotating with the 
tether completely retracted. The tether is deployed in the gravity gradient configuration to the desired 
tether length, and then the propulsion motor is fired to create the desired rotation rate. Selection of tether 
length is determined by desired rotation rate and gravity level. The facility is spun so that the spin axis of 
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the system is solar pointing, for maximum solar panel output. To maintain such a configuration, 
however, requires precession of the spin axis to follow the Sun as the Earth orbits. Every 90 days, the 
facility is despun and the tether retracted for rendezvous with the Shuttle or the Space Station for crew 
change and resupply. Besides studying the effects of such rotation rates and gravity levels on humans, 
the facility will provide facilities for animal and plant research. 

The current study is examining several options in the configuration and operation of the facility. 
Some of these trades include the use of a dead weight on the counterweight end of the tethered system; 
allowing an inertially oriented spin axis; and refurbishment without despin. 

CONTACTS: 
• Marcie Smith 
• Larry Lemke 
• Franco Bevilacqua 

REFERENCES: 
Powell, J. David, Systems Study of a Variable Gravit y Research Facility, Final Report to NASA 

(Grant No. NCA2-208), April 1988. 

Wercincski, P. F., Searby, N. D., Tillman, B. W., "Space Artificial Gravity Facilities: An A 
to Their Construction", Engineering, Construction and Operations in Space: Proceedings 
S pace '88, Albuquerque, New Mexico, August 29-31, 1988. 

Lemke, Larry G., "An Artificial Gravity Research Facility for Life Sciences", presented at the 18th 

Intersociety Conference on Environmental Systems, San Francisco, CA, July 11-13, 1988. 
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-- ELECTRODYNAMICS --

Electrodynamic Power Generation (Electrodynamic Brake) 

PLASMA CONTACTOR 

APPLICATION:	 Generation of DC electrical 
power to supply primary power to on-board loads.

NEGATIVE 
CURRENT 

I EARTH'S 
+	 UAGI4EIIG,7" 

F(LD 

DESCRIPTION: An insulated conducting tether 
connected to a spacecraft and possibly terminated with 
a subsatellite. Plasma contactors are used at both tether 
ends. Motion through the geomagnetic field induces a 
voltage across the orbiting tether. DC electrical power 
is generated at the expense of spacecraft/tether orbital 
energy.

CHARACTERISTICS: 
•	 Power Produced: 1 kW - 1 MW 
•	 Length: 10-20km 
•	 Mass: 900 - 19,000 kg 
•	 Efficiency: —90% 
•	 Materials: Aluminum/ 

Teflon

DEcELERATIIG ••-. 
FORCE 

ORBITAL 

/ VELOCITY 

/ 
/ PLASMA' 
CONTACTOR 

/S
/ 7	 S.'.. 

• Potential For 
Technology 
Demonstration: Near-Term 

CRITICAL ISSUES: 
• Flight experiment validation of the current-voltage characteristics of plasma contactor devices 

operating at currents of up to 50 A in the ionosphere are urgently needed to validate results 
from chamber tests and theoretical models in space 

• Flight experiment determination of the role played by ignited mode operation in the ionosphere 
• Ground and flight experiment validation of the theoretically predicted role of plasma contactor 

cloud instabilities 
• Characterization of the magnetosphere current closure path and its losses 
• Characterization of the effects of large electromagnetic tether systems on the LEO environment 

and other space vehicles 
• Assurance of long-term insulator life 
• Characterization of massive tether dynamics 
• Development of space compatible insulation methods and power processing electronics for 

multikilovolt operation 
• Susceptibility to micrometeoroid/debris damage 
• Understanding of current collection effects at resulting insulator defects and their impacts on 

system performance 

STATUS: 
• TSS-1, demonstrating dynamic and electrodynamic applications, is scheduled for a 1991 

launch 
• A demonstration of basic electrodynamic tether operation, using a small PMG system (a 200 m 

wire with plasma contactors), is expected to fly aboard the Shuttle as a GAS canister for James 
McCoy at the earliest practical date 

• A wide variety of work is actively underway in the areas of electrodynamic demonstrations, 
hollow cathodes, tether materials, and hardware technologies including two proposed sounding 
rocket flight experiments
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DISCUSSION: An orbiting insulated tether, terminated at the ends by plasma contactors, can be 
used reversibly as an electrical power or thrust generator. MotiOn through the geomagnetic field induces a 
voltage in the tether, proportional to its length and derived from the v x B electric field and its force on 
charges in the tether. This voltage can be used to derive a DC electrical current in the tether. Electrical 
power is generated at a rate equal to the loss in spacecraft orbital energy due to a drag force of magnitude 
(jIB) where i is the tether current and 1 is the length. It has been shown that this drag force functions as an 
electrodynamic brake and can be used to perform orbit maneuvering in LEO or in the ionosphere of 
planets such as Jupiter or Saturn. 

Three basic plasma contactor configurations have been considered in the studies performed to date: 
(1) a passive large-area conductor at both tether ends; (2) a passive large-area conductor at the upper 
(positive) end and an electron gun at the lower (negative) end; and (3) a plasma-generating hollow cathode 
configuration. Although not yet confirmed by flight testing, PMG systems appear superior for primary 
power applications operating at much lower voltages and higher currents. Hollow cathodes are safer for 
spacecraft systems, since they establish a known vehicle ground reference potential with respect to the 
local plasma. They also allow simple reversibility of the tether current for switching between power and 
thrust generation. If flight tests show that the PMG design is not feasible, one or both of the other two 
system configurations would be alternatives. Moreover, there may be specific missions which would be 
best served by the characteristics of one of these two alternative configurations. 

Calculations have been made of the performance of four PMG reference systems. A 2 kW system 
(designed with minimum mass and size for disposable tether applications) uses 10 km of #12 wire, has a 
mass of 200 kg, and has an efficiency of 80% (efficiency is traded for low mass and greater flexibility). 
A 20 kW PMG (normally operating at 2 kV and 10 A, and capable of a peak power of 125 kW) uses 10 
km of #2 wire, has a mass of 1,200 kg, and has an overall efficiency of about 90%. A 200 kW PMG 
(normally operating at 4 kV and 50 A, and capable of a peak power of 500 kW) uses 20 km of #00 wire, 
has a mass of 4,200 kg, and has an overall efficiency of about 87%. A Megawatt Reference System 
(normally operating at 500 kW, 4 kV and 125 A; capable of a peak power of over 2 MW) uses a wire 2 
cm in diameter, has a mass of 19,000 kg, and has an overall efficiency exceeding 90%. All of these 
reference systems use aluminum wire and Teflon insulation. Aluminum is used because its conductivity 
per mass is about twice that of copper, and Teflon because it provides good resistance to atomic oxygen 
erosion. Both are mature technologies with extensive experience and standards from use on aircraft. 

CONTACTS: 
• James McCoy 
• Marino Dobrowolny 
• Joseph Kolecki 
• Paul Siemers 

REFERENCES: 
Applications of Tethers in S pace. Vol. 1, Workshop Proceedings, Williamsburg, Virginia, June 

15-17, 1983, NASA CP-2365, March 1985. (pp. 1-17 through 1-30, 3-49 through 3-65, 4-11 through 4-22) 

Applications of Tethers in S pace. Vol. 2, Workshop Proceedings, Williamsburg, Virginia, June 
15-17, 1983, NASA CP-2365, March 1985. (pp. 5-11 through 5-29) 

Applications of Tethers in S pace. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 153-184, 369-377, 383-394, 547-594) 

Proceedings of Tether Applications in Space Program Review, General Research, Corporation, 
McLean, VA, July 1985. (pp. 141-180) 

James E. McCoy, "PMG Reference System Designs for Power & Propulsion," abstract. 
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PLASMA CONTACTOR 

Materials: Aluminum/Teflon 
Potential For 
Technology 
Demonstration: Near-Term 

-- ELECTRODYNAMICS --

Electrodynamic Thrust Generation

APPLICATION:	 Generation of electro-magnetic 
propulsive thrust to boost the orbit of a spacecraft. 

DESCRIPTION: An insulated conducting tether 
connected to a spacecraft and possibly terminated with 
a subsatellite. Plasma contactors are used at both tether 
ends. Current from an on-board power supply is fed 
into the tether against the emf induced by the 
geomagnetic field, producing a propulsive force on the 
spacecraft/tether system. The propulsive force is 
generated at the expense of primary on-board electric 
power. 

CHARACTERISTICS: 
• Thrust Produced:
	

Up to 200 N 
• Power Required:
	

Up to 1.6 MW 
• Length:
	

10-20 km 
• Mass:
	

100-20,000 kg & 
power supply 

Efficiency:	 —90% 

CRITICAL ISSUES: 
The same as listed in Electrodynamic Power Generation application 

STATUS: 
The same as listed in Electrodynamic Power Generation application 

DISCUSSION: An insulated conducting tether, terminated at the ends by plasma contactors, can be 
used reversibly as an electromagnetic thruster or electrical power generator. A propulsive force of IL x B 
is generated on the spacecraft/tether system when current from an on-board power supply is fed into the 
tether against the emf induced in it by the geomagnetic field. 

The Plasma Motor/Generator (PMG) configuration, previously discussed in the Electrodynamic 
Power Generation application, appears to be the most suitable design currently available for 
electrodynamic thrusters. Although projections of their performance have not yet been confirmed by 
flight testing,their projected high current capacity and ease of current reversibility make them good 
candidates for electrodynamic thruster systems. However, if flight tests show that the PMG design is not 
feasible, one or both of the other two system configurations discussed previously would be alternatives. 
Moreover, there may be specific missions which would be best served by the characteristics of one of 
these two alternative configurations. 

Calculations have been made of the thruster performance available from the four PMG reference 
systems described previously. The 2 kW, 20 kW, 200 kW, Megawatt PMG systems have nominal thrust 
ratings of 0.25 N, 2.5 N, 25 N, and 125 N, respectively. When operated at their peak powers, the 20 
kW, 200 kW, and 1 MW PMG's operate at 125 kW, 500 kW, and greater than 2 MW, producing thrusts 
of greater than 40 N, 100 N, and 400 N, respectively. 
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A major application of electromagnetic propulsion would be orbital maneuvering. A 2,000 kg PMG 
system, using a 20 km tether of #2 AWG aluminum wire, has been calculated to produce 10 N of thrust 
from an 80 kW power supply. Continuous application of this thrust could produce altitude changes of 7, 
30, and 150 km/day for the Space Station (200,000 kg), a space platform (50,000 kg), and a free-flyer 
(10,000 kg), respectively. A PMG the size of the Megawatt Reference System could produce 200 N of 
thrust from a 1.6 MW power supply. 

Recommendations were made at the Venice Tether Workshop (October 1985) to use electrodynamic 
tethers in the 1-20 kW range to provide drag compensation and orbital maneuvering capability for the 
Space Station, other solar array powered satellites, and the power extension package (PEP), and to use 
higher power tethers (up to about 1 MW) for orbital maneuvering of the Space Station and other large 
space systems. Design tradeoffs were also recommended, including: 

• Use of multiple parallel tethers instead of long single tethers 
• Use of counterbalancing tethers deployed in opposite directions to provide center-of-mass-

location control 
• Use of shorter tethers operating at low voltage and high current versus longer tethers operating 

at high voltage and low current 
• Definition of electrical/electronic interface between the tether and the user bus. 

CONTACT'S: 
• James McCoy 
• Marino Dobrowolny 
• Joseph Kolecki 
• Paul Siemers 

REFERENCES: 
Applications of Tethers in Space. Vol. 1, Workshop Proceedings, Williamsburg, Virginia, June 

15-17, 1983, NASA CP-2365, March 1985. (pp. 1-17 through 1-30, 3-49 through 3-65, 4-11 through 4-22) 

Applications of Tethers in S pace. Vol. 2, Workshop Proceedings, Williamsburg, Virginia, June 
15-17, 1983, NASA CP-2365, March 1985. (pp . 5-11 through 5-29) 

Applications of Tethers in Space. Volume 1, Workshop Proceedin gs, Venice, Italy, NASA CP-2422, March 1986. (pp . 161-184, 369-377, 383-394, 547-594) 

G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-86519, 
Marshall Space Flight Center, October 1985. (pp. 44-50) 

Proceedings of Tether Applications in Space Program Review, General Research Corporation, 
McLean, VA, July 1985. (pp. 141-180) 

James E. McCoy, "PMG Reference System Designs for Power & Propulsion," abstract. 

Application "Electrodynamic Power Generation"
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-- ELECTRODYNAMICS --




Electromagnetic Motor/Generator for Power Storage 

Plasma Contactor 

APPLICATION: Reduction in battery use for 
energy storage by generating thrust during the daytime 
and DC electricity at night with a reversible conducting 
tether system. 

DESCRIPTION: An insulated conducting tether 
connected to a spacecraft equipped with a solar array. 
Plasma contactors are used at both tether ends. During 
illumination, current from the solar array is fed into the 
tether against the emf induced in it by the geomagnetic 
field, producing a propulsive force on the 
spacecraft/tether system. During periods of darkness, 
DC electrical current (induced in the tether by the 
geomagnetic field) is tapped for on-board use. This 
system stores some of the electrical energy, generated 
by the solar array during illumination, as orbital 
mechanical energy, and converts it back from orbital to 
electrical energy when the array is in darkness.

4

Plasma Contactor 

RENT	 ,,,' 

EARTWS 
MAGIET( '7 

Plasma 
ontactor 

/ 
rn	 / 

POWER GENERATION 
CHARACTERISTICS: 

• Thrust Produced: 
• Power Required: 
• Power Generated: 
• Length: 
• Mass: 
• Efficiency: 
• System Weight 


Comparison:

7.5N 
60 kW 
100 kW 
10 km 
2,000 kg 
-80% (Full Cycle) 

40% of Conventional 
Array with Batteries

Reduction In Solar 
Array Size:	 10% 
Reduction in Heat 
Rejection:	 60% 
Potential for 
Technology 
Demonstration:	 Mid-Term 

CRITICAL ISSUES: 
The same as listed in Application "Electrodynamic Power Generation" 

STATUS: 
The same as listed in Application "Electrodynamic Power Generation" 

DISCUSSION: A propulsive force of IL x B is generated on the spacecraft/tether system when 
current from the on-board solar array power system is fed into the tether against the emf induced in it by 
the geomagnetic field. This thrust boosts the orbital altitude during array illumination. During periods of 
darkness, the orbital altitude is reduced as the geomagnetic field induces a voltage in the tether 
(proportional to its length and derived from the v x B electric field and its force on charges in the tether), 
providing useful DC electrical power. 

Such a reversible energy storage system has a higher theoretical efficiency than a system employing 
the charging and discharging of batteries. A system comprised of a 100 kW solar array and a 2,000 kg 
reversible Plasma Motor/.Generator (PMG) tether system could produce thrust from 60 kW during the 
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day, and 100 kW of electrical power during the night. This system would have 40% of the weight of a 
conventional array with batteries. It would also provide a reduction of 10% in array size, and 60% in 
power-processing heat rejection. 

At the Venice Tether Workshop (October 1985), high-power tethers (up to about 1 MW) were 
recommended for a Space Station power storage system. This concept could also be applied to any other 
spacecraft using a solar array power system. 

CONTACTS: 
James McCoy 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 161-184, 369-377) 

Applications "Electrodynamic Power Generation" and "Electrodynamic Thrust Generation" 
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-- ELECTRODYNAMICS --

Electromagnetic Thruster to Offset Drag

PLASMA CONTACTOR 

OONEGATIVE
 CURRENT 

X I 	
AaERAT,,," 

FIEAD 

/ / PL:A 

[hip VELOCITY c,  

SPACE 
STATION 

PHOPL$1ON 

APPLICATION: Generation of sufficient 
electromagnetic thrust to offset the orbital drag of a 
spacecraft. 

DESCRIPTION: An insulated conducting tether 
connected to a spacecraft and powered by an on-board 
solar array. Plasma contactors are used at both tether 
ends. During illumination, current from the solar array 
is fed into the tether against the emf induced in it by the 
geomagnetic field, producing a propulsive force on the 
spacecraft/tether system. This force, sufficient to 
offset the orbital drag, is generated at the expense of 
on-board electrical power from the solar array power 
system. 

CHARACTERISTICS: 
•	 Thrust Produced:	 0.1-2 N •	 Fuel Savings: 	 >1,000 kg/yr 
•	 Power Required:	 0.8-15 kW per kW 
•	 Length:	 10 km •	 Materials:	 Aluminuni[Feflon 
•	 Mass:	 100-200 kg •	 Potential for 
•	 Efficiency:	 —90% Technology 

Demonstration:	 Mid-Term 

CRITICAL ISSUES: 
•	 Successful operation of hollow cathodes or related active collectors as plasma contactors 
•	 Assurance of long-term insulator life 
•	 Susceptibility to micrometeoroid/debris damage

STATUS: 
TSS-1, demonstrating electrodynamic applications, is scheduled for a 1991 launch 

DISCUSSION: A propulsive force of IL x B is generated on the spacecraft/tether system when 
current from the on-board solar array power system is fed into the tether against the emf induced in it by 
the geomagnetic field. A thrust sufficient to offset orbital drag can be generated by a small tether system. 
The advantage of such an arrangement is the savings in fuel no longer required to keep the spacecraft in 
orbit. The savings is especially significant for low Earth orbits and large spacecraft with high drag. A 
kilowatt of power thusly used is roughly equivalent to a ton per year of fuel expended for orbit 
maintenance. A 100 kg Plasma Motor/Generator (PMG) system, producing 0.1 N thrust from 0.8 kW, is 
calculated to save >1,000 kg/yr of fuel and keep a 100 kW solar array at the Space Station Altitude. A 
200 kg PMG system, using 10-15 kW of electrical power, is calculated to produce 1-2 N of thrust --
enough to keep the Space Station and a 100 kW solar array in an orbit less than 300 km in altitude, using 
less than 60 kg/yr of argon for the hollow cathodes. 

As recommended at the Venice Tether Workshop (October 1985), such a system could be applied to 
the Space Station, other solar array powered satellites, and the power extension package (PEP), which 
could then be left in LEO between successive Shuttle flights. 



CONTACTS: 
• James McCoy 
• Neal Hulkower 

REFERENCES: 
Applications of Tethers in Space. Vol. 1, Workshop Proceedings, Williamsburg, Virginia, June 

15-17, 1983, NASA CP-2365, March 1985. (pp. 1-17 through 1-30, 3-49 through 3-65, 4-11 
through 4-22) 

Applications of Tethers in Snace. Vol. 2, Workshop Proceedings, Williamsburg, Virginia, June 
15-17, 1983, NASA CP-2365, March 1985. (pp. 5-11 through 5-29) 

Applications of Tethers in S pace. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 161-184, 369-377) 

G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-86519, 
Marshall Space Flight Center, October 1985. (pp. 44-50) 

Hulkower, N. D., Rusch, R. J., "Plasma Motor Generator Tether System for Orbit Reboost," Int. 
Conf. 1987. 

Application "Electrodynamic Thrust Generation"



-- ELECTRODYNAMICS --




ULF/ELF/VLF Communications Antenna 

APPLICATION:	 Generation of ULF I ELF / VLF Long-Wire 
Antenna 

waves by an orbiting electrodynamic tether for	 In Earth Orbit	 Spreading 

worldwide communications. 

DESCRION: An insulated conducting tether  
connected to a spacecraft, and terminated at both ends 
with plasma contactors. Variations in tether current 

communications. This tether antenna can be self- 	 ' 
can be produced to generate ULF/ELF/VLF waves for 

powered (using the current induced in it by the	 - 
geomagnetic field for primary power) or externally	 aveguide	

Sea powered (fed by an on-board transmitter). 

CHARACTERISTICS: 
• Length:	 20-100 km	 • Potential For 
• Tether Current:	 10A	 Technology

Demonstration: Near-Term 

CRITICAL ISSUES: 
• Characterization of the transmitter 
• Characterization of the propagation media (including the ionosphere at LEO altitudes, the lower 

atmosphere, and ocean water) 
• Analysis of the sources of background noise and the statistical structure of that noise at the 

receiver 
• Characterization of the instabilities and wave due to large current densities in the Alfven wings 
• More advanced mathematical models are required for an adequate understanding of tether 

antenna systems, including the need to supersede the present cold-plasma based models with 
more accurate warm-plasma based models 

• Determination of optimum ground station locations, including the possibility of mobile 
receivers 

• Correlation of signals received at different ground station locations to subtract out noise 

STATUS: 
TSS-1, demonstrating electrodynamic applications, is scheduled for a 1991 launch 

DISCUSSION: When a current flows through the tether, electromagnetic waves are emitted, 
whether the current is constant or time-modulated. The tether current can be that induced by tether motion 
through the geomagnetic field, or one generated by an on-board transmitter. Modulation of the induced 
current can be obtained by varying a series impedance, or by turning an electron gun on the lower end on 
and off, at the desired frequency. Waves are emitted by a loop antenna composed of the tether, magnetic 
field lines, and the ionosphere. 

ULF/ELF/VLF waves produced in the ionosphere will be injected into the magnetosphere more 
efficiently than those from present ground-based man-made sources. These waves may provide instant 
worldwide communications by spreading over most of the Earth via the process of ducting. With a 20-
100 km tether and a wire current of the order of 10 A, it appears possible to inject into the Earth-
ionosphere transmission line power levels of the order of 1 W by night and 0.1 W by day. 
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CONTACTS: 
• Joseph Kolecki 
• Marino Dobrowolny 
• Charles C. Rupp 
• Mario Grossi 
• Giorgio Tacconi 

REFERENCES: 
Applications of Tethers in Space, Vol. 1, Workshop Proceedings, Williamsburg, Virginia, June 

15-17, 1983, NASA CP-2365, March 1985. (pp. 4-11 through 4-22) 
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Anplications of Tethers in S pace. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 153-160, 369-377, 395-400, 421-439) 

Grossi, M. D., "A ULF Dipole Antenna on a Spaceborne Platform of the PPEPL Class," Report for 
NASA contract NAS8-28203, May, 1973. 

G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 
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-- PLANETARY --

Comet/Asteroid Sample Return 

APPLICATION:	 Collection and return to Earth of 
comet or asteroid samples. 

DESCRIPTION: Tethered penetrators are 
launched from a spacecraft during its rendezvous with 
a comet or asteroid. They penetrate the body's 
surface, collecting samples of surface material. They 
are then reeled aboard the spacecraft for return to 
Earth. Using several penetrators, samples could be 
collected from different spots on one body, or from 
more than one body. 

CHARACTERISTICS: 
• Tether Length:
	

50-100 m 
• Tether System:
	

Single Reel 
• Penetrator 

System:	 Multiple Chambered 
Turret 

Penetrators:
	

Core Drilling and 
Surface 

Deployment:
	

Spring and Solid Rocket

COLLECTED 

SAMPLES	
\

HOLES	 TfT 

\

SAMPLE CUP 
CUP SEALING CHARGE 

• Potential For 
Technology 
Demonstration: Far-Term 

CRITICAL ISSUES: 
• Long-range, remote-controlled maneuvering and rendezvous 
• Design and development of the penetrators, tether-reel subsystem, and penetrator turret 

subsystem 

STATUS: 
• Although preliminary definition of the mission and hardware has been performed, detailed 

study and design remain to be done 

DISCUSSION: The conventional approach to collecting samples from comets and asteroids would 
be for a spacecraft to rendezvous with them and release a lander. The lander would attach itself to the 
body in some way, drill for a core sample, and return to the spacecraft. The sample would then be 
returned to Earth. A typical scenario would require the following capabilities: (1) close range verification 
of a suitable landing and drilling site; (2) automated and highly accurate soft landing; (3) lander attachment 
to the body (since some would have very low gravity); (4) a drill unit with sufficient power to core a 
sample; (5) lander separation from the body; (6) automated rendezvous with the orbiter; (7) sample 
transfer; (8) launch stage ejection; and (9) Earth return. 

A tether approach would consist of the following sequence of events: (1) the spacecraft rendezvous 
with the comet or asteroid; (2) a tethered penetrator is shot at the target from a 50-100 m altitude; (3) on 
impact, sample material enters holes in the penetrator shell and fills the sample cup inside; (4) an 
explosive seals the cup and ejects it from the penetrator shell; (5) the cup velocity creates a tension in the 
tether as it rotates it; (6) spacecraft thrusters control the cup retrieval as it is reeled aboard; (7) other 
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tethered penetrators retrieve samples from other areas or bodies; and (8) the spacecraft returns the samples 
to Earth. 

In addition to the penetrator design described above, another type, in which the penetrator contains a 
core drill, could also be used. For this version, flanges would be extended upon impact, to secure the 
penetrator shell to the surface while the core sample is being drilled. The surfaces hardness would 
determine which type to use. Both types could be launched from the spacecraft by a spring and then 
propelled by attached solid rockets to the impact point. (This should impart sufficient momentum to 
permit a good surface penetration.) To allow a single tether reel subsystem to handle many penetrators, a 
rotatable turret with multiple, chambered penetrators could be used. 

This tether system has the advantage of being simpler than a lander system (not requiring many of the 
capabilities listed for a lander system), and of allowing the collection of samples from more than one spot 
or body. The cost of such a tether mission has been estimated to be about $750 M, as opposed to about 
$1-2 B for a lander mission. However, the two methods are complementary in that the lander provides a 
single very deep sample and the penetrator provides smaller samples from different areas or bodies. 

CONTACTS: 
Paul Penzo 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 127-151) 

"Tether Assisted Penetrators for Comet/Asteroid Sample Return," by Paul A. Penzo (JPL); 
paper submitted for 1986 AJAA/AAS Astrodynamics Conference.



-. PLANETARY --

Electromagnetic Deceleration for Planetary Capture 

APPLICATION:	 Generation of a decelerating 
force on a spacecraft to allow planetary capture. 

DESCRIPTION: A spacecraft constructed as two 
halves connected by an insulated conducting tether. 
Plasma contactors are used at both tether ends. Upon 
entering the magnetosphere of a planet with a strong 
magnetic field, the halves separate and deploy the 
tether, which conducts a large current between them. 
This produces a decelerating force on the spacecraft, 
slowing it for planetary capture. Upon capture, the 
halves rejoin for orbital operations. 

CHARACTERISTICS: 
Physical Characteristics:	 Undetermined

Spacecraft Splits 

Incoming	 Into 2 Halves 

Spacecraft	 Current 
From Station	 Deceleration Force ----------- 

Electron Gun 
Velocity

Modulated

Capture 

MAGNETIC 
FIELD 

• Potential For 
Technology 
Demonstration: Far-Term 

CRITICAL ISSUES: 
Further study is required to determine if sufficient braking thrust can be generated to allow 
capture during one encounter 

STATUS: 
• TSS-1, demonstrating electrodynamic applications, is scheduled for a 1991 launch 
• No detailed evaluation of this application has been performed 

DISCUSSION: Such a system has the advantage of a lower weight than the rockets and fuel 
required for braking. However, if the tether cannot produce all of the required deceleration, assistance 
would be required from another propulsion source. This system would also require a lower insertion 
accuracy than an aerobraking process. If the system uses a modulative electron gun, super-power radio 
transmission would be available during capture. The energy from braking could be dissipated as heat in 
the plasma or tether, as well as being radiated as RF waves. The major disadvantage is that such a system 
would only be applicable to the outer planets with magnetic fields. This technology may provide a 
valuable tool for the exploration of these planets. 

CONTACTS: 
• Nobie Stone 
• Richard Taylor 

REFERENCES: 
Applications of Tethers in Space. Vol. 1, Workshop Proceedings, Williamsburg, Virginia, June 

15-17, 1983, NASA CP-2365, March 1985. (pp. 4-11 through 4-22) 

Applications of Tethers in Space. Vol. 2, Workshop Proceedings, Williamsburg, Virginia, June 
15-17, 1983, NASA CP-2365, March 1985. (pp. 5-11 through 5-29) 
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-- PLANETARY --

Jupiter Inner Magnetosphere Maneuvering Vehicle 

APPLICATION: Generation of electro-magnetic 
thrust or drag for maneuvering within the inner Jovian 
magnetosphere. 

DESCRIPTION:	 An insulated conducting tether 
connected to a spacecraft and possibly terminated with i TO 
a subsatellite. Plasma contactors are used at both tether	 SUN ends. When used selectively with an on-board power 
supply (probably nuclear) or a load, it interacts with 
the Jovian magnetic field to produce thrust, drag and 
electrical power as required to change orbital altitude or 
inclination. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined	 • Potential For 

Technology 
Demonstration:	 Far-Term 

CRITICAL ISSUES: 
• Successful operation of hollow cathodes or related active collectors as plasma contactors 
• Assurance of long-term insulator life 
• Susceptibility to micrometeoroid/debris damage 
• Successful operation of a power supply (probably nuclear) with sufficient output power 

density 
• Characterization of the performance of an electromagnetic tether in the Jovian Magnetosphere 

STATUS: 
• TSS-1, demonstrating electrodynamic applications, is scheduled for a 1991 launch 
• No detailed system design study for this application has been performed 

DISCUSSION: Since Jupiter's magnetic field is about twenty times that of Earth, an 
electromagnetic tether should work well there. Because of Jupiter's rapid rotation (period = 10 hrs), at 
distances greater than 2.2 Jovian radii from its center, the Jovian magnetic field rotates faster than would a 
satellite in a circular Jovian orbit. At these distances, the magnetic field would induce an emf across a 
conducting tether, and the dissipation of power from the tether would produce a thrust (not drag) on the 
spacecraft/tether system. At lesser distances, the satellite would rotate faster than the magnetic field, and 
dissipation of tether power would produce drag (not thrust). Examples of induced tether voltages are: 
-10 kV/km (for drag) in LJO; and +108, 50, 21, and 7 v/km (for thrust) at Jo, Europa, Ganymede, and 
Callisto, respectively. 

Inside the Jovian magnetosphere, at distance > 2.2 Jovian radii, the spacecraft could decrease altitude 
(decelerate) by feeding power from an on-board power supply into the tether against the induced emf. 
Below 2.2 radii, power from the tether could be dissipated. To return to higher altitudes, the process 
could be reversed. 

Since the gravitational attraction of Jupiter is so strong, the energy required to descend to (or climb 
from) a very low Jupiter orbit is prohibitive for any conventional propulsion system. To descend to the 
surface of Jupiter from a distance of, say, 100 Jovian radii, an energy density of a little over 200 kW-



hr/kg would be required for propulsion. Using this as a conservative estimate of the required 
performance of a tether system, it should be well within the capability of a nuclear power supply. 

Recommendations were made at the Tether Workshop in Venice (October 1985) for a Jupiter inner 
magnetosphere survey platform to operate in the range from one to six Jovian radii. The electromagnetic 
tether in this application would be used primarily for orbital maneuvering. It could also assist a Galileo- 
type satellite tour (all equatorial), sampling of the Jovian atmosphere, and rendezvous with a Galilean 
satellite. 

CONTACTS: 
• Paul Penzo 
• James McCoy 
• Steve Gabriel 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 127-151, 161-184, 369-377) 

Gabriel, S. B., Jones, R. M., and Garrett, H. B., "Alfven Propulsion at Jupiter," Int. Conf. 1987. 

Penzo, P. A., "A Survey of Tether Applications to Planetary Exploration," AAS 86-206, mt. Conf. 
1986.
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APPLICATION: Provide instrument access to 
low orbital altitudes for periodic in-Situ analysis of the 
upper Martian atmosphere. L= UP TO 300 km 

SATELLITE (350 km) 

-- PLANETARY --

Mars Tethered Aeronomy Observer 

DESCRIPTION:	 An instrument package attached 
by a deployable tether (up to 300 km in length) to an 
orbiting Mars Observer spacecraft. 	 INSTRUMENT 

GROUND TRACK—' 
CHARACTERISTICS: 

• Length:	 Up to 300 km (Tether is 
not vertical) 

• Satellite Altitude: 	 350 km	 • Potential For 
• Instrument	 Technology 

Altitude:	 Down to 90 km	 Demonstration: Mid-Term 

CRITICAL ISSUES: 
Tether material (graphite is a potential candidate) 

STATUS: 
• System performance analysis for various altitudes of the probe performed by the Smithsonian 

Astrophysical Observatory 

DISCUSSION: The Mars Aeronomy Observer (MAO) is included in NASA's Solar System 
Exploration Committee (SSEC) core program, and is planned to be launched in 1994 or 1996. This 
application of tether technology would serve to enhance the presently planned observer. The purpose of 
the mission itself is to analyze the composition and chemistry of the Martian atmosphere for one Martian 
year. The tether would allow instruments to be lowered periodically for in-situ measurements at lower 
altitudes. A tether (Up to 300 km long) could be used with the observer as it orbits Mars at an altitude of 
350 km. The instrument package would be deployed for a few hours at a time, perhaps every two 
months, or so. Additional propulsion capability would be required for the observer for altitude 
maintenance. Although addition of the tether system would increase the mission cost, it should greatly 
enhance its scientific value. 

CONTACTS: 
• PaulPenzo 
• Enrico Lorenzini 

REFERENCES: 
Applications of Tethers in S pace, Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 127-151) 

Lorenzini, E.C., MD, Grossi, and M. Cosmo, "Low Altitude Tethered Mars Probe," Proceedings of 
the 39th Congress of the International Astronautical Federation, Oct. 8-15, 1988, Bangalore, 
India. Also to appear in Acta Astronautica.

68



-- PLANETARY --

Multipass Aerobraking of Planetary Probe 

SPACECRAFT 

APPLICATION:	 Effecting propellant savings 
through gradual orbit contraction by means of the drag 
of a lightweight tether. 	 REEL ASSEMBLY 

DESCRIPTION: A small diameter tether is 
deployed to the local vertical from a probe in a highly 
elliptical orbit about a planet possessing an 
atmosphere. At each successive periapsis pass the 
lower most region of the tether experiences rarefied 
flow, thus creating drag on the probe-tether system and 
gradually reducing the orbit's apoapsis. An instrument 	 INSTRUMENT PACKAGE 
package at the tether tip could enhance mission science 
by taking data during the atmospheric passes. 

CHARACTERISTICS:	
Final OrWt	

Body Small AV 

• TetherLength:	 100-300 krn	 Each Paw 

• Tether Diameter.	 —2 mm	 initial oeatw 
• Tether System:	 Single reversible reel/brake 
• Spacecraft:	 Conventionally designed for the space environment 
• Potential For 

Technology 
Demonstration:	 Mid-Term 

CRITICAL ISSUES: 
• Possible severance due to prolonged exposure to micrometeoroid hazard 
• Tether stability and control during aerobraking passes in highly elliptical orbits 

STATUS: 
• Preliminary study of the shapes, tensions, and drag of a flexible, massive tether in static, 

circular aerobraking have been performed 
• Further study is required to determine open and closed-loop dynamical behavior of such a 

tether during aerobraking from highly elliptical orbits 
• TSS-2 will demonstrate the behavior of a tether subjected to aerodynamic forces 

DISCUSSION: Conventional planetary probes carry substantial propellant to establish low orbits 
about a body of interest. An alternative method uses only enough propellant to achieve a highly elliptical 
"capture" orbit. The spacecraft, now modified to avoid contamination and protected by a large circular 
shield, then effects a gradual reduction in the height of apoapsis through successive, drag-producing 
passes in rarefied flow at periapsis. This method requires the following: (1) A large, heat-resistant shield 
(or "aerobrake") in front of the spacecraft; (2) an unconventional spacecraft design protected from flow 
effects in the aerobrake's wake; (3) careful adjustment of the angle-of-attack during each atmospheric 
pass; and (4) orbit trim maneuvers at apoapsis to insure proper altitude at periapsis. 

The tether approach would allow a conventional, unprotected spacecraft to use a bare tether to 
circularize an elliptical orbit in times comparable to those of a typical hard-shield aerobrake. The creation 
of the necessary drag could be shared between the lowest portion of tether equivalent in length to one or



two atmospheric scale heights and a suspended body at the tether tip. In addition, this end mass could 
give added control. Varying the tether length allows adjustment of the total drag on the spacecraft-tether 
system in order to account for unforeseen atmospheric variations and navigation uncertainties encountered 
during previous atmospheric passes. 

CONTACTS: 
• J.W. Flower 
• Paul Penzo 
• Silvio Bergamaschi 

REFERENCES: 
Flower, J. W., "Space Tethers: Comments on Their Scope and on the Possibility of Their Use with 

Aerodynamic Forces," mt. Conf. 1987.
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-- PLANETARY --

Tethered Lunar Satellite for Remote Sensing 

APPLICATION:	 Provide instrument access to	
SATELLITE (350 km)

 
low, unstable, lunar orbital altitudes. 	 TO 250 km 

DESCRIPTION: An instrument package at low 
altitude, suspended by a tether from a satellite in a 
higher, stable, polar orbit around the moon.

GROUND TRACK—" 
CHARACTERISTICS: 

• Instrument Length: 250 km	 • Potential For 
• Instrument Altitude: 50 km	 Technology 
• Satellite Altitude:	 300 km	 Demonstration: Far-Term 

CRITICAL ISSUES: 
• Assurance of acceptable strength and flexibility for the tether material 
• Susceptibility to micrometeoroid/debris damage 

STATUS: 
No detailed study on this application has been performed 

DISCUSSION: Due to Sun and Earth perturbations, close lunar satellites would be unstable and 
short lived (perhaps a few months). However, as proposed by Guisseppe Colombo, access to low lunar 
orbits could be achieved by tethering an instrument package to a satellite in a stable lunar orbit. The 
package could be lowered as close to the Moon as desired. One proposed configuration would tether an 
instrument package 50 km above the lunar surface from a satellite in a stable 300 km orbit. By using a 
polar orbit, complete coverage of the lunar surface could be obtained. Occasional adjustments to the 
tether length may be required to keep the package at a safe altitude. Sensitive measurements of such 
things as the Moon's magnetic field and gravitational anomalies could be made. 

CONTACTS: 
• Paul Penzo 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 127-151)
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• Potential For 
Technology 
Demonstration: Mid-Term 

-- SCIENCE --

Science Applications Tethered Platform 

APPLICATION: Provides a remote platform to 
the Space Station for space and Earth observation 
purposes. 

DESCRIPTION: A platform, attached to the 
Space Station by a multifunction tether (power link, 
data link), provides a new means to allow high 
precision pointing performance by the combination of 
disturbance attenuation via tether and active control of a 
movable attachment point. 

CHARACTERISTICS: 
• Length: 
• Mass: 
• Power required: 

Link Data Rate 

Pointing Accuracy:

10 km 
10,000 kg 
Up to 15 kW by Tether 
Power Line Link 
Up to 20 Mb/s by Tether 
Optical Fibers Link 
Up to 10 Arcseconds 

CRITICAL ISSUES: 
• Space Station impacts 
• Dynamic noise induced on tether 
• Movable attachment point control 
• Power link technology 
• Optical fibers link technology 
• Tether impact protection technology 

STATUS: 
• ASI/Aeritalia SATP Definition Study in initial design assessment phase, mid-term report 

issued in March 1986. Final report for the current study phase issued in May 1987 
• Ball Aerospace, Selected Tether Applications Study Phase Ill 

DISCUSSION: A tethered pointing platform would take advantage of the facilities of the station for 
maintenance and repair while being isolated from contamination and mechanical disturbances. As an 
initial step, a medium size pointing platform seems the most suitable facility for a class of observational 
applications. In fact, if ambitious astrophysical projects justify the design of a dedicated complex free-
flyer, medium observational applications of relatively short duration could take advantage of a standard 
pointing facility able to arrange at different times several observational instruments. This pointing facility 
could allow reduction of costs, avoiding the cost of separate service functions for each application. 

CONTACTS: 
• Franco Bevilacqua 
• Alberto Loria 
• James K. Harrison 
• James Walker
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Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. 

F. Bevilacqua, P. Merlina, and A. Anselmi, "The Science and Applications Tethered Platform 
(SATP) Project," Aeritalia Space Systems Group, Torino, Italy, Tether Applications in 
Space Workshop, Venice, Italy, October 15-17, 1985. 

J. Laue and F. Manarini, "The Tethered Retrievable Platform Concept and Utilization," #IAF-82-
13, 33rd IAF Congress, Paris, France, September-October 1982. 

S. Vetrella and A. Moccia, "A Tethered Satellite System as a New Remote Sensing Platform," 
University of Naples, Italy, Undated. 

SATP Definition Study, Mid-Term Report, Aeritalia, TA-RP-AI-002, March 21, 1986. 

SATP Definition and Preliminary Design, Final Report, Aeritalia, TA-RP-AI-006, 1987. 

Selected Tether Applications in Space, Phase Ill," NASA Contract NAS8-36617. 

Walker, J. D., "Tether Applications Scenarios for Space Station/Platforms Systems," Int. Conf. 1987. 
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-- SCIENCE --

Shuttle Science Applications Platform 

APPLICATION: Provides a remote platform to 
the Space Shuttle for various science and applications 
purposes. 

DESCRIPTION: A platform, attached to the 
Space Shuttle by a tether, provides a unique means by 
which remote applications may be performed. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined 
• Potential For 

Technology 
Demonstration:	 Near-Term 

CRITICAL ISSUES: 
• Dynamic noise induced on tether 
• Micrometeoroid damage 

STATUS: 
Various investigators (listed below) have examined preliminary concepts 

DISCUSSION:	 Possible uses for a remote platform include stereoscopic sensing, magnetometry, 
atmosphere science experiments, and chemical release experiments. 

CONTACTS: 
• Sergio Vetrella 
• Antonio Moccia 
• Franco Mariani 
• Franco Bevilacqua 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986.
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-- SCIENCE --




Tethered Satellite for Cosmic Dust Collection 

APPLICATION:	 To collect micrometeoric 
material from the upper atmosphere. 

DESCRIPTION: A satellite tethered to the Space 
Shuttle is lowered into the upper atmosphere. The 
surface of the satellite contains numerous small 
collecting elements which would document the impact 
of cosmic dust or actually retain the particles for 
analysis back on Earth.

OPtPOf- 

CHARACTERISTICS: 
• Tether Length:
	

100 km 
• Operating Altitude:
	

120 km 
• Tether Diameter
	

1 meter 
• Power 

Requirements:
	

Minimal, enough to operate	 • Potential For 

collectors	 Demonstration: 
solenoid activated irises over 	 Technology 

N 
•_.	 ,_ vol.—.--

Near-Term 

CRITICAL ISSUES: 
Efficient analysis of large collector surface areas to detect micron-sized particles and impact 
craters 

STATUS: 
Preliminary concept design investigated at Indiana University Northwest 

DISCUSSION: This concept proposes to collect intact cosmic dust particles smaller than 2 microns 
which impact the collector surface at velocities less than 3 km/sec, and the study of impact craters and 
impact debris which result from impacts of all sized particles at velocities greater than 3 km/sec. It is 
estimated that at a 120 km altitude, between 1 x 10 3 and 1 x 104 particles will survice collection intact per 
square meter per day, and between 2 x 104 and 2 x 105 impact craters will be recorded per square meter 
per day. The figure in the illustration above represents the "survivable" impact cones for particles striking 
a tethered satellite. For a maximum impact velocity of 3 km/sec, cc is approximately 22 degrees. 

CONTACTS: 
• George J. Corso 

REFERENCES: 
G.J. Corso, "A Proposal to Use an Upper Atmosphere Satellite Tethered to the Space Shuttle 

for the Collection of Micro-meteoric Material," Journal of the British Interplanetary Society. 
Vol. 36, pp. 403-408, 1983.
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-- SPACE STATION --

Microgravity Laboratory 

APPLICATION: Provide a readily accessible 
laboratory in Earth orbit with the minimum gravity 
level possible. 

DESCRIPTION: A laboratory facility on board 
the Space Station at its vertical center of gravity. Two 
opposing tethers with end masses are deployed 
vertically from the Space Station (one above and one 
below). Their lengths are varied to control the Space 
Station center of gravity, placing it on the microgravity 
modules to minimize their gravity gradient acceleration 
(artificial gravity level). 

CHARACTERISTICS: 
Physical Characteristics:	 Undetermined 

CRITICAL ISSUES: 
• Evaluation of the overall impacts to the Space Station 
• Determination of just how good the lab's microgravity would be 
• Identification of the process and technologies to be studied in microgravity, and the laboratory 

facilities and capabilities they will require 
• Development of the necessary gravity-measuring instrumentation 
• Evaluation of the tether system's cost effectiveness 

STATUS: 
• A JSC tethered gravity laboratory study (addressing the issues of active center-of-gravity 

control, identification of low-gravity processes to be studied, and evaluation of the laboratory 
g-level quality) 

• MSFC study for definition of the Microgravity Materials Processing Facility (MMPF) for the 
Space Station 

• The Small Expendable Deployer System (SEDS) mission (scheduled for a 1992 launch) may 
provide measurements of the acceleration field change and associated noise throughout the 
Shuttle, during tether and payload deployment 

• TSS-1 will demonstrate and analyze the acceleration field and associated noise during all 
phases of tether operations 

DISCUSSION: To allow the performance of experiments under microgravity conditions (10 g 
and less) for extended periods of time, a microgravity laboratory facility could be incorporated into the 
Space Station. The laboratory modules would be located on the Space Station proper, at its center of 
gravity. Two opposing TSS-type tethers with end masses would be deployed vertically from the Space 
Station (one above and one below), to assure that the station center of gravity is maintained within the lab 
modules. Its exact location would be controlled by varying the upper and lower tether lengths, allowing 
prolonged and careful control of the residual microgravity magnitude and direction inside the lab. A 
nearly constant microgravity could be maintained. These tethers would lower the gravity-gradient 
disturbances transmitted to the experiments being performed while enhancing station attitude control. 
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Although people would be a major source of disturbances, human access to microgravity experiments is 
preferred (at least initially) over remote access. This configuration would easily accommodate this 
preference. 

One candidate microgravity lab currently under study for the Space Station, is the Materials 
Technology Lab (MTL). It is projected to be a common module, equipped as a lab, to perform a variety 
of experiments related to materials technology. Biological experiments may also be performed in 
microgravity in another module. 

Although this is the preferred microgravity lab configuration, two alternatives are also possible. One 
would be to have the lab connected by a crawler to a single tether from the Space Station. The crawler 
would position the lab on the station-tether system center of gravity. The other configuration would be to 
fix the lab to a single tether from the station. The lab would be positioned at the system center of gravity 
by varying the tether length. Both alternatives have the advantage of isolating the lab from disturbances, 
but they have the disadvantages of reducing human access and probably precluding the use of the 
microgravity modules planned for the initial Space Station. 

CONTACTS: 
• Kenneth Kroll 
• Franco Bevilacqua 

REFERENCES: 
Applications of Tethers in S pace, Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 223-238) 

Applications of Tethers in Space, Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 53-77, 97, 137-147) 

G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-86519, 
Marshall Space Flight Center, October 1985. (pp. 64-66, 70-75, 78-80) 

K. Kroll, Presentation Package for the NASA Tether Working Group Meeting at Marshall 
Space Flight Center, February 1986.
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-- SPACE STATION --

Shuttle Deorbit from Space Station 

Tether 
Orbiter at Station	 Futy 
Before Oayment	 Deøoyed

After 
Tether

Orbiter Oeorbits 
from 245 ned Apogee 

APPLICATION:	 Allows the Shuttle Orbiter to be 286mm

Release at Later Passage 

deboosted to Earth while the Space Station is boosted -'
'j-__ 

to a higher orbit. Olt. 2S6a383rtti 
(Tether Retrieved)

Space Station	 -	 26 nm	 245nm,
—'i.-__ 

DESCRIPTION:	 Upon completion of a Shuttle
270mm 

- 245 nmi

245, tOo ned 
Orbit 
(Cargo Bay

245 nmi to Reentry 
)Finai OMS Bum 
with Cargo say

re-supply operation to the Space Station, the Shuttle is / A 
Center

Doors Open) Doors Closed) 

deployed on a tether toward the Earth. 	 The Space 
Station, accordingly, is raised into a higher orbit, (Orbiter 

causing excess momentum to be transferred from the 
Shuttle orbit to the Space Station orbit. 	 After 
deployment, the Shuttle is released causing the Shuttle To 

to deorbit.
N. 

S'.-.	 —	 Perigee .-'

- - 
Orbit Overview

CHARACTERISTICS: 
• Initial Space Station/Shuttle Orbit: 	 500 km	 • Potential For 
• Tether Length:	 65 km	 Technology 
• Final Space Station Orbit:	 518 x 629 km	 Demonstration: Far-Term 
• Final Shuttle Orbit:	 185 x 453 km 
• Estimated Mass:	 250,000 kg 

(Space Station) 
100,000 kg (Shuttle) 

CRITICAL ISSUES: 
• Excess angular momentum scavenged by Space Station must be used in order to beneficially 

use this application 
• Dynamic noise induced by tether deployment and separation 
• Alignment of tether to Space Station to eliminate torques 

STATUS: 
Martin Marietta, Selected Tether Applications Study, Phase Ill 

DISCUSSION: This application potentially could be one of the most cost effective uses of a tether. 
The main disadvantage is that the excess momentum transferred to the Space Station must be efficiently 
used, otherwise the station will be in an orbit too high for subsequent Shuttle re-supply missions. 
Several ideas on use of this excess momentum have been studied, such as altering STY boosts by the 
Space Station with Shuttle re-supply missions (see Application "Tethered STY Launch"). Another 
method is using an electrodynamic tether (see Application "Electrodynamic Power Generator") to generate 
power at the expense of orbital energy to deboost the Space Station. 

CONTACTS: 
• James K. Harrison 
• Bill Woodis
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-- SPACE STATION --

Tethered Orbital Refueling Facility 

APPLICATION: Utilization of artificial gravity to 
assist in the transfer of liquid propellants to and from a 
tethered storage and refueling platform. 

DESCRIPTION: A platform (depot) with liquid 
propellant storage tanks and remote manipulators, 
tethered a short distance above or below the Space 
Station. The gravity gradient between the Space 
Station and the depot produces a tension in the tether, 
resulting in an equal and opposite artificial-gravity 
force throughout the depot. The artificial gravity 
allows fluid settling in the tanks (liquid settles over an 
outlet and gas over a vent), facilitating propellant 
handling. The depot can be refilled by the Shuttle, 
providing a long-term remote refueling capability. 

CHARACTERISTICS: 
• Propellants:	 Cryogenic and 

Storable 
• Tether Length:	 1 km (Cryogens) 
• Fuel Capacity:	 100,000 lbs 

(Cryogens)

• Potential For 
Technology 
Demonstration:	 Far-Term 

CRITICAL ISSUES: 
• Design of the vapor return line to assure that it will not be blocked by trapped liquids during 

transfer 
• Design of tank baffling to prevent the inflow jet from covering the gas vent with liquid while 

also controlling liquid slosh 
• Prevention of propellant contamination of sensitive Space Station surfaces 
• Evaluation of the overall impacts to the Space Station 
• Evaluation of the tether system's cost effectiveness 
• Determination of human access and control requirements 

STATUS: 
• The TORF is the first design proposed for a tethered S1'V refueling facility - it is now 

considered too small for currently projected requirements and has been superseded by the 
Tethered STY Hangar/Depot; however, the TORF design may prove to be useful in the future 
for other types of refueling 

• The final report for the current JSC Tethered Orbital Refueling Study (including a cost/benefits 
comparison of tether and zero-g refueling systems) completed in June 1986 

• The main emphasis is on cryogenic propellants 
• Detailed design of the propellant depot has not been performed 
• The Spinning Shuttle Experiment is the planned demonstration for this concept 

DISCUSSION:	 In this stable vertical system, the level of artificial gravity at the Tethered Orbital 
Facility (TORF) is proportional to the tether length between the center of mass of the entire Space 
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Station/TORF system and the TORF. To determine the minimum gravity level (and tether length) 
required to overcome surface tension and allow fluid settling, a nondimensional number, the bond 
number (Bo), can be calculated for each liquid propellant. It is a fluid settling parameter, equal to the 
product of the fluid density, acceleration, and square of the tank diameter, divided by 4 times the fluid 
surface tension coefficient. (Although a fluid will settle if Bo ^ 10, a value of Bo = 50 is used to be 
conservative.) Using this value, the minimum required tether length has been calculated for each of the 
following propellants: 32.3 m for oxygen; 71.3 m for hydrogen; 342.0 m for nitrogen tetroxide; 719.0 m 
for monomethylhydrazine; and 1235.0 m for hydrazine. (Assuming that cryogenic propellants use a tank 
diameter of 4.2 m to fit in the Shuttle cargo bay, and storable propellants use a tank diameter of 1.7 m to 
fit side-by-side in the Shuttle bay.) Fluid slosh, from single and multiple disturbances, would be 
controlled by using tethers of at least 1 km in length, and by using tanks with a conical bottom and ring-
type internal baffle. 

Fluid settling would allow the use of a vapor return line from the receiver tank to the supply tank. 
This would permit receiver tank venting without dumping the gas overboard (where it would pose a 
contamination hazard), eliminate the need to resupply pressurant for the liquid transfer, and provide an 
equalizing supply tank pressure. Due to the availability of extra gas and limited pressure at a pump, a 
compressor in the vapor return line has been recommended to transfer cryogenic propellants. Due to the 
opposite conditions, a pump in the liquid transfer line has been recommended to transfer storable 
propellants. The gravity feed method could be used as a backup for either; however, it would be 
considerably slower. Calculations have also shown that a tether long enough for settling would overcome 
the acceleration due to the initial fluid transfer impulse. 

The TORF would separate hazardous liquid storage and transfer from the Space Station; thus reducing 
the hazards related to propellant contamination, tank explosion, and spacecraft docking. Remote 
manipulators would provide remote maneuvering of the spacecraft during refueling, and the tether could 
be released if a catastrophic problem were imminent. (The fluid settling technique could also be applied to 
liquids other than propellants, if desired). A possible disadvantage of the TORF would be the vertical 
shift in the center of gravity to a point off of the Space Station, produced unless another tethered system 
balanced the TORF. Currently, an intermittent deployment is preferred because it would minimize the 
impact to microgravity experiments, and require no sustained counterbalancing. 

The latest cryogenic propellant depot design would hold 100,000 lbs of fuel (equal to two Centaur 
loads), and could be launched in a single Shuttle flight. Auxiliary propulsion would be needed to 
overcome the drag produced by atmospheric drag, and spacecraft berthing. For continuous drag make-
up, using only H2 boiloff in cold gas thrusters, a specific impulse of 200 s would be adequate for TORF 
auxiliary propulsion (570 s for both the TORF and the Space Station). 

CONTACT'S: 
Kenneth Kroll 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 223-238) 

Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 89-123) 

G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-86519, Marshall 
Space Flight Center, October 1985. (pp. 64-72, 78-80) 
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-- SPACE STATION --

Tethered STV Hangar/Depot 

APPLICATION: Provide an STV facility for the 
Space Station, combining a hangar with a propellant 
depot which utilizes artificial gravity to assist in liquid 
propellant transfers. 

DESCRIPTION: A combined STy hangar/depot 
facility with liquid propellant storage tanks and remote 
manipulators, tethered a short distance above or below 
the Space Station. The gravity gradient between the 
Space Station and this facility produces a tension in the 
tether resulting in an equal and opposite artificial-
gravity force throughout the facility. The artificial 
gravity allows fluid settling in the tanks, facilitating 
propellant handling. The tanks can be refilled by the 
Shuttle, providing a long-term remote STV refueling 
capability. 

CHARACTERISTICS: 
• Propellants:	 Cryogenic and 

Storable 
• Tether Length:	 1 km (Cryogens) 
• Fuel Capacity:	 100,000 lbs 

(Cryogens)

manger/Depot 

• Potential For 
Technology 
Demonstration:	 Far-Term 

CRITICAL ISSUES: 
• Design of the vapor return line to assure that it will not be blocked by trapped liquids during 

transfer 
• Design of tank baffling to prevent the inflow jet from covering the gas vent with liquid, while 

also controlling liquid slosh 
• Prevention of propellant contamination of sensitive Space Station surfaces 
• Evaluation of the overall impacts to the Space Station 
• Evaluation of the tether system's cost effectiveness 
• Determination of human access and control requirements 

STATUS: 
• This is the latest design for a tethered STV hangar/refueling facility on the Space Station 
• The main emphasis is currently on cryogenic propellants 
• The final report for the current JSC Tethered Orbital Refueling Study (including a cost/benefits 

comparison of tether and zero-g refueling systems) completed in June 1986 
• Detailed design of the hangar/propellant depot and STV remains to be done 
• The Spinning Shuttle Experiment is the planned demonstration for this concept 

DISCUSSION: Current planning has determined a preferred STY design requiring twice the depot 
propellant quantities provided by the "Tethered Orbital Refueling Facility". (Deii iled descriptions of 
liquid propellant settling and transfer are presented in that application). It has also heen determined that 
basing an STY on the Space Station would require the addition of a large hangar, sign iflcantly shifting the 
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Space Station center of gravity laterally. These problems could be overcome by combining a hangar with 
two tethered propellant depots, of the type described in Application "Tethered Orbital Refueling Facility". 
Such a hangar/depot facility would eliminate the need to ferry the STV and its attached payload from the 
Space Station to a tethered depot for refueling, simplify STY refueling, and would allow the attachment of 
another tether to the bottom of the facility. It could also service other spacecraft as desired. A possible 
disadvantage would be the vertical shift in the center of gravity to a point off of the Space Station, 
produced unless another tethered system balanced this facility. Currently, an intermittent deployment is 
preferred because it would minimize the impact to microgravity experiments, and require no sustained 
counterbalancing. The STY could be launched from the deployed depot, minimizing its effects on the 
Space Station. 

CONTACTS: 
Kenneth Kroll 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 223-238) 

G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-86519, Marshall 
Space Flight Center, October 1985. (pp. 64-72, 78-80) 

K. Kroll, Presentation Package for the NASA Tether Working Group Meeting at Marshall Space 
Flight Center, February 1986. 

Application "Tethered Orbital Refueling Facility" 
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• Potential For 
Technology 
Demonstration:	 Far-Term 

-- SPACE STATION --

Tethered STV Launch 

APPLICATION: Allows an STY to be boosted to 
a higher orbit at the expense of Space Station angular 
momentum. 

DESCRIPTION: An STY would be deployed 
from the Space Station on a tether away from Earth, in 
preparation for launch. Upon separation from the 
tether, orbital angular momentum is transferred from 
the Space Station to the STY, causing the Space 
Station Altitude to be lowered while that of the STY is 
raised.

CHARACTERISTICS: 
•	 Initial Space Station! 

SW Orbit: 500 km 
•	 Tether Length: 150 km 
•	 Final Space Station 

Orbit: 377 x 483 km 
•	 Final STY Orbit: 633 x 1482 km 
•	 Estimated Masses: 250,000 kg 

(Space Station) 
35,000 kg (STY)

CRITICAL ISSUES: 
• Angular momentum taken away from the Space Station must be resupplied in order to 

beneficially use this application 
• Dynamic noise induced by tether deployment and separation 
• Alignment of tether to Space Station to eliminate torques 

STATUS: 
Martin Marietta, Selected Tether Applications Study Phase ifi 

DISCUSSION: Martin Marietta has studied the application of tethered deployment of the STY as 
well as Shuttle from the Space Station. Either of these applications alone would cause an unacceptable 
change in altitude of the Space Station. When combined, properly sequencing STY launches and Shuttle 
deorbits, the orbital angular momentum of the Space Station may be preserved while providing a large net 
propellant savings for the Shuttle, STY and Space Station. 

CONTACTS: 
• James K. Harrison 
• BifiWoodis
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Application "Shuttle Deorbit From Space Station" 
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CHARACTERISTICS: 
• Length: 
• Elevator Mass: 
• Ballast Mass: 
• g-Level: 
• Power Required: 

• Link Data Rate:

10 km 
5,000 kg 
Up to 50,000 kg 
10-7 to 10-3 
Up to 10 kW by Tether 
Power Line Link 
Up to 40 Mb/s by Tether 
Optical Fiber Link 

-- SPACE STATION --

Tethered Space Elevator 

APPLICATION: The Space Elevator may be used 
as a Space Station facility to tap different levels of 
residual gravity, and a transportation facility to easily 
access tethered platforms. 

DESCRIPTION: The Space Elevator is an 
element able to move along the tether in a controlled 
way by means of a suitable drive mechanism. The 
primary objectives of the microgravity elevator mission 
are the achievement of a new controllable microgravity 
environment and the full utilization of the Space Station 
support while avoiding, the microgravity disturbances 
on board the Space Station. A shorter and slack cable 
could be used as both a power and data link. 

A ballast mass represents the terminal end of the 
tether system. It could be any mass (e.g., a Shuttle 
ET) or a tethered platform. The objective of the 
transportation elevator application is to access large 
tethered platforms for maintenance, supply of 
consumables, or module and experiment exchanges.

'I 

• Potential For 
Technology 
Demonstration:	 Mid-Term 

CRITICAL ISSUES: 
• Space Station impacts 
• Dynamic noise induced on the tether drive mechanism 
• Gravity-measuring instrumentation 
• Power link technology 
• Optical fibers link technology 

STATUS: 
• ASI/Aeritalia Elevator Definition Study in initial design assessment phase, Final Report issued 

in March 1988 
• Analysis of dynamics during deployment, station-keeping, and transfer maneuvers carried out by 

the Smithsonian Astrophysical Observatory under contract to NASA/MSFC 
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DISCUSSION: The most promising feature offered by the Space Elevator is the unique capability 
to control with time the gravity acceleration level. In fact, since the radial acceleration changes with 
position along the tether, the Elevator would be able to attain a continuous range and a desired profile vs. 
time of residual gravity level by the control of the Elevator motion. Moreover, the Elevator is able to fully 
utilize the Space Station support (power, communications, logistics) and to avoid the Space Station 
contaminated environment, from a microgravity point of view, by tether mediation. 

Another way to exploit the Space Elevator capabilities is its utilization as a transportation facility. The 
idea of using large tethered platforms connected to the Space Station by power line and communication 
link (via tether technology) makes unrealistic frequent operations of deployment and retrieval. On the 
other hand, the platform may require easy access for maintenance, supply of consumables, module and 
experiment exchange. The Space Elevator, as a transportation facility able to move along the tether to and 
from the platform, may be the key to tethered platform evolution. 

CONTACTS: 
• Franco Bevilacqua 
• Enrico Lorenzini 
• Alberto Loria 

REFERENCES: 
Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 413-456) 

F. Bevilacqua, P. Merlina, and A. Anselmi, "The Science and Applications Tethered Platform 
(SATP) Project," Aeritalia Space Systems Group, Torino, Italy, Tether Applications in 
Space Workshop, Venice, Italy, October 15-17, 1985. 

F. Bevilacqua and P. Merlina, Aeritalia Space Systems Group, "The Tethered Space Elevator 

System," Second International Conference on Tethers In Space, Venice, Italy, 1987. 

F. Bevilacqua,P. Merlina, and S. Ciardo, Aeritalia Space Systems Group, "Tethered Space 
Elevator: Possible Applications and Demonstrative Experiments," 38th I.A.F. Congress, 
Brighton, UK, IAF-87-049, 1987. 

SATP Definition Study, Mid-Term Report, Aeritalia, TA-RP-AI-002, March 21, 1986. 

Tethered Space Elevator Definition and Preliminary Design, Final Report, Aeritalia, 
TA-RP-AI-009,1988. 

L.G. Napolitano and F. Bevilacqua, "Tethered Constellations, Their Utilization as Microgravity 
Platforms and Relevant Features," IAF-84-439. 

S. Bergamaschi, P. Merlina, "The Tethered Platform: A Tool for Space Science and Application," 
AIAA-86-0400, AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 6-9,1986. 

Lorenzini, E.C., M.D. Grossi, D.A. Arnold, and G.E. Gullahorn, "Analytical Investigation of the 
Dynamics of Tethered Constellations in Earth Orbit (Phase II)," Smithsonian Astrophysical 
Observatory Reports for NASA/MSFC, Contract NAS8-36606. Quarterly Reports: No.1, July 
1985; No.2, October 1985; No.3, February 1986; and No.4, March 1986. 

Lorenzini, E.C., "A Three-Mass Tethered System for Micro-g/Variable-g Applications," Journal of 
Guidance. Control, and Dynamics, Vol. 10, No.3, May-June 1987. (pp. 242-249) 

Applications "Microgravity Laboratory" and "Variable/Low Gravity Laboratory" 
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-- SPACE STATION --

Variable/Low Gravity Laboratory 

APPLICATION: Provide a readily accessible 
laboratory in Earth orbit with a variable, low-gravity 
level. 

DESCRIPTION: A laboratory facility, attached 
by a crawler to a tether deployed vertically from the 
Space Station. The gravity gradient between the 
station-tether system center of gravity and the 
laboratory produces an artificial-gravity force 
throughout the lab. The lab gravity level, with a 
constant vertical direction, is varied by changing the 
lab and crawler distance from the system's center of 
gravity. The lab can attain microgravity levels if it can 
move to the center of gravity. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined 
• g-Level:	 Up to 10-1

• Potential For 
Technology 
Demonstration:	 Far-Term 

CRITICAL ISSUES: 
• Evaluation of the overall impacts to the Space Station 
• Determination of just how good the lab's low gravity would be 
• Identification of the processes and technologies to be studied in low gravity, and the laboratory 

facilities and capabilities they will require 
• Development of the necessary gravity-measuring instrumentation 
• Evaluation of the tether system's cost effectiveness 
• Determination of how gravity-level medical experiments should be performed in a Space 

Station system 
• Design of a tether crawler and lab module 
• Development of systems for the remote control of the lab experiments 

STATUS: 
• A JSC tethered gravity laboratory study (addressing the issues of active center-of-gravity 

control, identification of low-gravity processes to be studied, and evaluation of the laboratory 
g-level quality) will begin this year (procurement beginning in March, and the study in 
September) 

• An MSFC study for definition of the Microgravity Materials Processing Facility (MMPF) for 
the Space Station is in progress 

• The Small Expendable Deployer System (SEDS) mission (scheduled for a 1992 launch) may 
provide measurements of the acceleration field change and associated noise throughout the 
Shuttle, during tether and payload deployment 

• The Spinning Shuttle Mission should provide initial investigations of controlled-gravity and 
threshold phenomena in the 10-1 g to 10 4 range 

• TSS- 1 will demonstrate and analyze the acceleration field and associated noise, during all 
phases of tether operations
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DISCUSSION: To allow the performance of experiments under conditions of constant or variable 
low gravity (up to 10-1 g) for extended periods of time, a variable/low gravity lab could be attached to a 
crawler on a tether deployed vertically from the Space Station. The artificial gravity at any point along the 
tether is produced by the gravity gradient between that point and the station/tether system center of 
gravity, and is proportional to the distance between them. The lab could vary its gravity level, with a 
constant direction, by varying its distance from the system center of gravity. A constant gravity level 
could be maintained by adjusting the lab position to compensate for orbital variations in the system gravity 
level. The lab could also attain microgravity levels if it could move to the center of gravity. This lab 
could study processes with both gravity and time as variables. It has been calculated the the lab could 
attain g-levels of 10 6, 10 4, 10-2, and 10- 1 at distances above the center of gravity of about 2 m, 200 m, 
20 km, and 200 km, respectively. 

In addition to easy gravity control, the use of a tether system for a low gravity lab would have other 
advantages. It would reduce disturbances transmitted to the lab (to about 10- 8 g), minimize the gravity 
gradient acceleration inside the lab, and enhance overall system attitude control. It would have the 
disadvantage of reducing human access to lab experiments, requiring the increased use of remote 
controls. Also, it could only provide a gravity level of up to 10-1 g. 

This lab could be used to examine the effects of low gravity on both physical and biological 
processes. Some biological processes of interest would be plant and animal growth, and human 
performance and medical processes (such as those related to the cardiovascular, skeletal, and vestibular 
systems). Such physical processes as crystal growth, fluid science, and chemical reactions could be 
studied. Conditions on low gravity bodies (such as asteroids) could be simulated to examine natural 
processes (such as meteor impacts). Of particular interest would be the determination of the gravity 
threshold for various processes. 

CONTACT'S: 
• Kenneth Kroll 
• Paul Penzo 
• Franco Bevilacqua 

REFERENCES: 
Applications of Tethers in Space. Volume 1, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 223-238) 

Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 
March 1986. (pp. 53-77, 87, 125-147) 

G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-86519, Marshall 
Space Flight Center, October 1985. ( pp. 64-66, 70-75, 78-80) 

K. Kroll, Presentation Package for the NASA Tether Working Group Meeting at Marshall Space 
Flight Center, February 1986. 

Bevilacqua, F., Ciardo, S., and Loria, A., "Space Station Gravity Gradient Stabilization by Tethers," 
Int. Conf. 1987. 

Penzo, P. A., "Space Station Adaptability to Tether Applications," 22nd Space Congress Proceedings, 
Apr. 1985.
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-- TRANSPORTATION --

Generalized Momentum Scavenging from Spent Stages 

APPLICATION:	 Scavenge angular momentum 
from a spent stage for the benefit of the payload. 

DESCRIPTION: After the injection of an upper 
stage and its payload into an elliptical park orbit, the 
payload is tethered above the spent stage. At the 
proper time, the payload is released which causes a 
payload boost and spent stage deboost. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined 
• Potential For 

Technology 
Demonstration:	 Mid-Term

ZTO EO 

CRITICAL ISSUES: 
• Mass of tether and reel equipment versus payload performance gain 
• Integration impact on systems 

STATUS: 
• Preliminary evaluation completed by ItvHT and Michoud 
• No further analysis in process 

DISCUSSION: This concept appears to be impractical due to mass relationships and integration 
costs. The most immediate application is for newly developed upper stage/payload combinations and 
those having a high ratio of spent upper stage to payload mass. 

CONTACTS: 
• James Walker 
• Manual Martinez-Sanchez 
• Joe Carrol 

REFERENCES: 
J.A. Carroll "Guidebook for Analysis of Tether Applications," Contract RH4-394049, Martin 


Marietta Corporation, March 1985. Available from Mail Code P501, MSFC, NASA. 

G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 

M. Martinez-Sanchez and S.A. Gavit, "Four Classes of Transportation Applications Using 
Space Tethers," Space Systems Laboratory, Massachusetts Institute of Technology in 
Contract with Martin Marietta, March 1984. 

M. Martinez-Sanchez, "The Use of Large Tethers for Payload Orbital Transfer," Massachusetts 
Institute of Technology, 1983. 

G. Colombo, "The Use of Tethers for Payload Orbital Transfer," NASA Contract NAS8-33691, 
Vol. II, March 1982.
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AX 

TRANSPORTATION --

Internal Forces for Orbital Modification (Orbital Pumping) 

APPLICATION: To change the orbital 
eccentricity of a Space Station or platform without the 
use of propulsion systems. 

DESCRIPTION: The internal mechanical energy 
of a Space Station (in the form of excess electrical 
energy transferred to a motor) is used to vary the 
length of a tether attached to an end mass. The length 
is changed in phase with the natural libration of the 
tether, which is known as libration pumping. Proper 	 L MI 

timing of tether deployment and retrieval done in this 
fashion can be used to change the orbital eccentricity. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined 
• Potential For 

Technology 
Demonstration:	 Mid-Term

CRITICAL ISSUES: 
• Internal vs. external energy trade-off 
• Power required and heat generated by the operation 
• Change in orbits is relatively slow 

STATUS: 
Preliminary feasibility shown by Martin Marietta Denver 

DISCUSSION: Orbit eccentricity can be increased by libration pumping as is shown in the 
illustration. At (1) the mass is fully extended, and libration starts. At (2), with the mass in a prograde 
swing, the retrieval motor pulls the spacecraft toward the mass, adding energy to the orbit. At (3), which 
is the new apogee of the orbit, the tether length is at a minimum. At (4), with the mass in a retrograde 
swing, the tether is re-deployed and the retrieval brakes are used to dissipate orbital energy in the form of 
excess heat. At (5), the new perigee, the mass is again fully deployed. This procedure is repeated until 
the desired eccentricity is reached. 

CONTACTS: 
• James Walker 
• Manual Martinez-Sanchez 
• Joe Carrol 
• John Breakwell 

REFERENCES: 
G. Von Tiesenhausen, ed., "The Roles of Tethers on Space Station," NASA TM-865 19, Marshall 

Space Flight Center, October 1985. (pp. 16-17) 
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G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 

Breakwell, J. V., Gearhart, J. W., "Pumping a Tethered Configuration to Boost its Orbit Around an 
Oblate Planet," AAS 86-217, Int. Conf. 1986. 
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-- TRANSPORTATION --

Satellite Boost from Orbiter 

APPLICATION:	 Boost a satellite payload into a 
circular or elliptical orbit higher than the Orbiter orbit. 

DESCRIPTION: A satellite is deployed along a 
tether "upward" (away from the Earth) from the Shuttle 
Orbiter. Libration begins and momentum is transferred 
from the Shuttle orbit to the satellite. The satellite is 
released and placed into a higher orbit while at the 
same time giving the Shuttle a deboost to return to 
Earth. Less fuel is required for both the satellite and 
the Orbiter. A TSS-derived deployer could be used.

PAYLOAD IN 

TETHERED	
TRANSFER 

PAYLOAD	
SHUTTLE\ ORBIT 

DEPLOYMENT	
__-•-- PERIGEE 

BEGINS 8.?
	

LOWERED 

PAYLOAD	

EARTH	 LI' PAYLOAD 

LIBRATION	
RELEASED 

CHARACTERISTICS: 
• Length:	 Dependent on desired orbit (see "Discussion" below) 
• Tether System:	 Either permanent or removable from Orbiter 
• Potential For 

Technology 
Demonstration:	 Near-Term 

CRITICAL ISSUES: 
• Release mechanism for payload 
• Airborne support equipment for Orbiter 
• Micrometeorite damage 

STATUS: 
• Energy Science Lab development contract completed March 1987 
• MIT, Martin Marietta-Denver have completed preliminary assessment 
• Ball Aerospace, Selected Tether Applications Study, Phase ifi 

DISCUSSION: This application has been studied in various forms by several contractors as noted 
above. One example studied is the tethered deployment of the AXAF (Advanced X-Ray Astrophysics 
Facility) into its operational orbit. For this example, the AXAF is assumed to have a mass of 9,070 kg 
and the Shuttle (after deployment) a mass of 93,000 kg. With the Shuttle and AXAF at an initial elliptical 
orbit of 537 x 219 km, the AXAF is deployed along a 61 km tether. As momentum is transferred from 
Shuttle to AXAF, the Shuttle orbit descends to a new 531 x 213 km and the AXAF orbit ascends to a new 
593 x 274 km orbit. After tether separation, the AXAF is directly inserted into a 593 km circular orbit. 
Simultaneously, the Shuttle takes on an elliptical 531 x 185 km orbit, from which it will make a final 
OMS burn before its reentry. 

CONTACTS: 
• James K. Harrison 
• Joe Carroll 
• Manual Martinez-Sanchez 

REFERENCES: 
G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 

"Selected Tether Applications in Space, Phase Ill," NASA Contract NAS8-36617. 
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Applications "Upper Stage Boost from Orbiter" and "Small Expendable Deployer System" 

Carroll, J. A., "Guidebook for Analysis of Tether Applications," Contract RH4-394049, Martin 
Marietta Corporation, Feb. 1985.
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Auxiliary Docking

Port Tether 
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With OMS Scavenging Tanks 

-- TRANSPORTATION --

Shuttle Docking by Tether 

APPLICATION:	 Enables Shuttle Orbiter to dock 
to other structures such as the Space Station. 

DESCRIPTION: A tether deployed by the Space 
Station is attached to a docking module. This module 
would capture and retrieve the Shuttle, allowing a 
remote rendezvous. 

CHARACTERISTICS: 

	

• Tether Length:	 40-100 km 
• Potential For 

Technology 

	

Demonstration:	 Mid-Term 

CRITICAL ISSUES: 
• Accurate guidance system needed (such 

as GPS) to effect rendezvous 
• Rendezvous and capture technique 

definition required 
• Post-rendezvous tether dynamics 
• Alignment of tether tension with Station 

center of mass

STATUS: 
Martin Marietta, Selected Tether Applications Study, Phase Ill 

DISCUSSION: A tether, attached to a docking module, would be deployed toward the Earth from 
the Space Station. The length of deployment is adjusted so that the velocity of the docking module 
matches the velocity at apogee of an elliptical orbit of the Shuttle. This would cause increased OMS 
propellant available to the Shuttle. This application would probably be combined with Application 
"Shuttle Deorbit from Space Station". 

CONTACTS: 
• James K. Harrison 
• BifiWoodis 

REFERENCES: 
Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. 

"Selected Tether Applications in Space, Phase III," NASA Contract NAS8-36617. 
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-- TRANSPORTATION --




Shuttle External Tank Deorbit 

APPLICATION:	 Shuttle Orbiter boost using 
momentum scavenging of external tank. 	

EXTERNAL TANK 
160nm	 36,lO4nm 

DESCRIPTION:	 The external tank is brought 
along with the Shuffle into a stable orbit configuration. 	

\\\ 

The tank is deployed downward toward the Earth 
along a tether. The tether is then severed, boosting the 
Shuttle into its desired orbit while deboosting the

	 ))	

) external tank into a nonstable orbit for disposal.

/ 
 CHARACTERISTICS: 	

120nm

 

• Tether Length:	 37 km (20 nmi) 
• Potential For	 124 x 1 6Onm 

Technology 
Demonstration:	 Near-Term 

CRITICAL ISSUES: 
• Shuttle Orbiter impacts 
• Integration costs 
• Permanent vs. removable system 
• Safety/disposal implications 
• Attachment point/mechanism of tether 

STATUS: 
• Studied by MMlMichoud 
• Feasibility shown with preliminary design by JSC/EH (Contella) 

DISCUSSION: A tethered deployment of the Shuttle external tank would serve several purposes. 
By transferring momentum from the tank to the Shuttle, less fuel would be required to obtain its desired 
orbit, hence, payload capacity is increased. Another benefit of a tethered external tank deorbit is the 
removal of launch azimuth restrictions caused by the external tank flight pattern over water. A third 
benefit is the increase in time available for the scavenging of cryo propellants from the external tank. 

CONTACTS: 
James Walker 

REFERENCES: 
G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 

Unknown, "Utilization of the External Tanks of the STS," draft of results from workshop held 
at the University of California, San Diego, August 23-27, 1982. 

"Preliminary Feasibility Study of the External Tank (ET) Deorbit by a Tether System," Martin 
Marietta Memo 83-SES-665, May 24, 1983. 

M.C. Contella, "Tethered Deorbit of the External Tank," Johnson Space Center, April 24, 1984. 

J.A. Carroll, "Tethers and External Tanks: Enhancing the Capabilities of the Space Transportation 
System," Research and Consulting Services, La Jolla, California, December 20, 1982.



-- TRANSPORTATION --

Small Expendable Deployer System 

APPLICATION: To boost a payload from the 
STS into an orbit higher than the STS can reach. Also 
to deboost payloads from the Space Station to Earth 
reentry orbits. 

DESCRIPTION: This system uses a simple tether 
deployer about the size of a basketball. The end mass 
is deployed under low tether tension. This results in 
near-horizontal deployment, followed by a pendulum 
swing to the vertical. The tether and end mass are 
released simultaneously, allowing reentry into the 
Earth's atmosphere.

Electronics Box

End Mass 

CHARACTERISTICS:
•	 Tether Length: 20 km 
•	 System Mass: 30 kg 
•	 Tether Diameter > 0.7 mm 
•	 Potential For 

Technology 
Demonstration: Near-Term

SEDS Deployer 

CRITICAL ISSUES: 
• Tether and payload oscillations during deployment and pendulum swing 
• Tether failure followed by recoil 
• Tether deployer design and performance 
• Overall system reliability 

STATUS: 
• SBIR Phase II Development Contract with Energy Science Laboratories completed in 1987 
• Demonstration Right hardware development in 1989 for Delta II launch vehicle flight in 1990 

or 1991 

DISCUSSION: The operation of this system uses spring ejection to initiate end mass deployment. 
This simplifies the deployer design and eliminates the need for payload thrusters. Discarding the tether 
eliminates the time and hardware needed to retrieve it. Problems such as tether and end mass oscillations 
do appear to be controllable. Possible applications for SEDS include boosting small STS payloads and 
deorbiting small packages from the Space Station back to Earth. 

CONTACTS: 
• Joe Carroll 
• James K. Harrison 
• Charles C. Rupp 

REFERENCES: 
Applications of Tethers in Space. Volume 2, Workshop Proceedings, Venice, Italy, NASA CP-2422, 

March 1986. (pp. 5-7, 9-30)
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-- TRANSPORTATION --

Tether Reboosting of Decaying Satellites 

APPLICATION:	 To retrieve, repair, and reboost 
a defective or decaying satellite. 

DESCRIPTION: A permanent tether attached to 
the Space Shuttle is used to rendezvous with a 
decaying satellite. It can then either be repaired by 
Shuttle crewmen and/or reboosted into a higher orbit. 
This would eliminate the need to launch a replacement 
for the defective or decaying satellite. 

CHARACTERISTICS: 
• Physical Characteristics: 	 Undetermined 
• Potential For 

Technology 
Demonstration:	 Near-Term 

CRITICAL ISSUES: 
• Mechanisms and rendezvous techniques to capture satellite 
• Compatibility with existing satellite systems 
• Trade-off of the mission and reboost requirements 

STATUS: 
• Preliminary analysis indicates feasible concept 
• No defined mission requirement 
• Potential flight experiment application for the Tethered Satellite System (TSS) 

DISCUSSION:	 Integration of this system may be costly. The concept appears to be feasible, but 
the practicality has not been established. No mission drivers have yet been determined. 

CONTACTS: 
• James Walker 
• Joe Carroll 

REFERENCES: 
G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 
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-- TRANSPORTATION --

Tether Rendezvous System 

APPLICATION:	 Used to supplement the 
operations of the Space Station and OMV. 

DESCRIPTION: The Tether Rendezvous System 
would be used to capture and retrieve payloads, OTVs 
or the Space Shuttle to the Space Station. The system 
would consist of a "smart" hook which would be able 
to rendezvous and attach to a payload with or without 
human intervention. 

CHARACTERISTICS: 
• Physical Characteristics:	 Undetermined 
• Potential For 

Technology 
Demonstration:	 Mid-Term 

CRITICAL ISSUES: 
• Extent of system capabilities needs to be determined 
• Dynamics in the tether and on the Space Station after rendezvous 
• System design 
• Rendezvous and capture techniques 
• Hardware required 

STATUS: 
• Concept under study by Aeritalia 
• Preliminary evaluations have been positive 

DISCUSSION: The Tether Rendezvous System can supplement the operations of the Space Station 
or any space platform by accomplishing remote rendezvous, increasing flexibility, decreasing risk and 
saving a great amount of propellant for incoming vehicles (STV, OMV, or the Shuttle Orbiter). 

CONTACTS: 
• Chris Rupp 
• Joe Carroll 
• Dale Stuart 
• Franco Bevilacqua 

REFERENCES: 
G. Von Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 

Stuart, D. G., "Guidance and Control for Cooperative Tether-Mediated Orbital Rendezvous," Draper 
Labs, submitted for publication in Journal of Spacecraft and Rockets, 1988.



-- TRANSPORTATION --

Upper Stage Boost from Orbiter 

APPLICATION: 
into a higher orbit.

Boost an upper stage payload 

DESCRIPTION: An upper stage is deployed 
along a tether "upward" (away from the Earth) from 
the Shuttle Orbiter. Libration begins and momentum is 
transferred from the Shuttle to the upper stage, 
enhancing the performance envelope of the upper stage 
motor. A TSS-derived deployer system could be used. 
The Orbiter could be deboosted along with the upper 
stage boost. Spinup capability for some upper stages 
may be required. 

CHARACTERISTICS: 
• Length: 
• Tether Deployment 

System: 
• Potential For 

Technology 
Demonstration:

Dependent on desired final orbit 

Permanent or removable from Orbiter, TSS-derived 

Near-Term 

CRITICAL ISSUES: 
Requirement for spinup capability may be difficult 

STATUS: 
• MDAC assessment complete on this study 
• Ball Brothers, Selected Tether Applications Study, Phase Il 

DISCUSSION: This application could be tailored to the Space Transfer Vehicle (STY). An 
expendable tether system or TSS-derived system could eliminate a major portion of the STY propellant 
required and increase payload capability for a specific mission with a fixed STY. 

CONTACTS: 
• James K. Harrison 
• Dan McMann 
• Mauro Pecchioli 

REFERENCES: 
"Study of Orbiting Constellations in Space," Contract RH4-394019, Martin Marietta, Smithsonian 

Astrophysical Observatory, December 1984. 

G. Yon Tiesenhausen, ed., Tether Applications Concept Sheets, June 28, 1984. 

Applications "Satellite Boost from Orbiter" and "Small Expendable Deployer System" 

Pecchioli, M., and Graziani, F., "A Thrusted Sling in Space: A Tether-assist Maneuver for Orbit 
Transfer," mt. Conf. 1987.
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SECTION 3.0

TETHER FUNDAMENTALS



3.1 Gravity Gradient 

3.1.1 General 

Gravity-gradient forces are fundamental to the general tether applications of controlled gravity, and 
the stabilization of tethered platforms and constellations. The basic physical principles behind gravity-
gradient forces will be described in this section. This description will be in three parts. The first will 
discuss the principles behind the general concept of gravity-gradient forces. The second will continue the 
discussion, addressing the specific role of these forces in controlled-gravity applications. The third will 
address their role in the stabilization of tethered platforms and constellations. 

For the purposes of this discussion, it will be sufficient to describe the motion of the simple 
"dumbbell" configuration, composed of two masses connected by a tether. Figure 3.1 shows the forces 
acting on this system at orbital velocity. When it is oriented such that there is a vertical separation between 
the two masses, the upper mass experiences a larger centrifugal than gravitational force, and the lower 
mass experiences a larger gravitational than centrifugal force. (The reason for this is described later in the 
discussion.) The result of this is a force couple applied to the system, forcing it into a vertical orientation. 
This orientation is stable with equal masses, and with unequal masses either above or below the center of 
gravity. Displacing the system from the local vertical produces restoring forces at each mass, which act to 
return the system to a vertical orientation. The restoring forces acting on the system are shown in Figure 
3.2 (see Ref. 1, p. 3-5).

Centrifugal 
Force =M 1 r1 

- - - - 
Gravitational 
Force =GMM 1 /r12 

Center of 
Gravity

Tether Tension 

Center of Mass 

- - - - 

- -

Centrifugal
	

Tether Tension	

ro 

Force= M 2 2(00 
	

co 0 

Gravitational 
Force = GMM 2 /r22 

Local Vertical 

Figure 3.1 Forces on Tethered Satellites 
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Since the gravitational acceleration changes nonlinearly with distance from the center of the Earth, 
the center of gravity of the tethered system will not coincide exactly with its center of mass. The 
separation becomes more pronounced as the tether length increases. However, the separation is not 
dramatic for systems using less than very large long lengths. Therefore, for the purpose of this discussion 
it will be assumed that the center of mass coincides with the center of gravity. Furthermore, to facilitate an 
"uncluttered" discussion, the two masses will be assumed to be equal, and the tether mass will be ignored. 

Centrifugal-
Gravitational Force 

Resultant 
Restoring 
Force 
Component

Tether 
Tension 

- - - - - - - - - T Tether 

 ther  ension 

 Resultant 
Restoring 

Component: 
Force 

Centrifugal-
Gravitational Force

Local 
Vertical 

EARTH


Figure 3.2 Restoring Forces on Tethered Satellites 

The gravitational and centrifugal forces (accelerations) are equal and balanced at only one place: 
the system's center of gravity (C.G.). The center of gravity (or mass), located at the midpoint of the tether 
when the end masses are equal, is in free fall as it orbits the Earth, but the two end masses are not. They 
are constrained by the tether to orbit with the same angular velocity as the center of gravity. For the center 
of gravity in a Keplerian circular orbit, equating the gravitational and centrifugal force, 

GMMOM2	 and 
00 0 r0 

2 GM 
(00 =	 3	 ;where r

 = universal gravitational constant (6.673 x 10-11 Nm2/kg2), 
M = mass of the Earth (5.979 x 1024 kg), 
M0 = total tether system mass (kg), 
r = radius of the system's center of gravity from the center of the 

Earth (m), and 
coo = orbital angular velocity of the center of gravity (0). 
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Since
V0

and 
ro 

2 7 
(0 =	 , where 

T0 

V0 = orbital speed of the center of gravity, (m/s), and 
T0 = orbital period of the center of gravity (s), 

2 GM 
vO=	 and 

ro 

T2 = 4ir2r 

GM 

Note that the orbital speed, period, and angular velocity depend on the orbital radius, and are independent 
of the tether system mass. 

If the two end masses were in Keplerian circular orbits at their respective altitudes and were not 
connected by a tether, their orbital speeds would be different from the tethered configuration. For the 
upper mass, applying equations (1) and (2), 

2	 GM 
(0 1 =	 .,	 and 

(r0+L) 

2	 GM 

	

= (r0+ L)
	 where 

L = tether length from the center of gravity to the mass (m). 

Similarly, for the lower mass, 

CO 
2	 GM 

	

(re- L)	
and 

2 GM
V2	
(r0- L) 

It can be seen that without the tether, the upper mass would move at a slower speed and the lower 
mass would move at a higher speed. The tether, therefore, speeds up the upper mass and slows down the 
lower mass. This is why the upper mass experiences a larger centrifugal than gravitational acceleration, 
and why the lower mass experiences a larger gravitational than centrifugal acceleration. The resulting 
upward acceleration of the upper mass and downward acceleration of the lower mass give rise to the 
balancing tether tension. They also produce the restoring forces when the system is deflected from a 
vertical orientation. The masses experience this tension as artificial gravity. 
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The artificial-gravity force and tether tension are equal to the gravity-gradient force. The gravity-
gradient force on a mass, m, attached to the tether at a distance, L, from the system's center of gravity is 
equal to the difference between the centrifugal and gravitational forces on it. An approximate value for this 
force is given by, 

FGG 3L m 

For mass m below the center of gravity, the gravity-gradient force is simply 

FGG - 3L m 

indicating that the gravity-gradient force acts upward above the center of gravity and downward below it. 
The force acts along the tether and away from the center of gravity. Furthermore, the gravity-gradient 
acceleration and force increase as the distance from the center of gravity increases and as the orbital radius 
of the center of gravity decreases. (A more rigorous derivation of this equation is presented in Appendix A 
of Ref. 2, and also in Ref. 3). Figures 3.3 and 3.4 show the tether tension (artificial-gravity force) and 
artificial-gravity acceleration as a function of tether length from the center of gravity for various system 
masses in LEO (see Ref. 4). Figure 3.5 shows the tether mass and g-level as a function of tether length 
for a tether made of Keviar 29. This figure includes tapered tethers which are discussed below. 
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Figure 3.3 Tether Tension Due to Gravity Gradient Versus Tether Length From 

Center of Gravity and Effective Satellite Mass In LEO 

104



C,) 
C/) 

—ii 
>-

0

(I) 

cc 

(1) 

uJ 

I-
LU 
I-

TETHER TENSWN 

100,000 
10.000—

EFFECTIVE MASS TETHERED	 100.000K9. 

10.000- 
1000— 

100 —
1,000— 

Cl) 
z

Kg 

LLJ 
z

100-
OIL 

10-

10-

1 — ACCELERATION 
AT MA 55. G's 

0.01	 02	 o.	 0.06	 1 
- 1- -

1 10	 100	 1000 
TETHER LENGTH km FROM cg

Figure 3.4 "Artificial Gravity" at Tethered Masses in LEO 

gLEVEL 

0	 .05	 0.1	 0.15	 0.2 
20 

10
	

CONSTANT 

CROSS 

SECTION. 

TAPERED

MATERIAL: KEVLAR 29 

SAFETY FACTOR = 3.5 

WORKING STRESS 0.7 x 101 nrn 

DENSITY = 1450kg m3 

ALTITUDE = 500km 

STEADY STATE 

Oh	 I	 I' 
0	 300	 600


LENGTH OF TETHER (km) 

Figure 3.5 Tether Mass and g-Level Versus Tether Length for Keviar 29 Tethers 

105 



Since the gravity-gradient force and acceleration in orbit vary with GM/r 03 (where M is the 
planetary mass), they are independent of the planet's size, and linearly dependent on its density. The 
acceleration is largest around the inner planets and the Moon (0.3-0.4 x 10 3gfkm for low orbits, where g 
is Earth gravity), and about 60-80% less around the outer planets. The gravity-gradient acceleration 
decreases rapidly as the orbital radius increases (to 1.6 x 10-6 g/km in GEO). 

Although the vertical orientation of the tether system is a stable one, there are forces which cause it 
to librate (oscillate) about the vertical. These weak but persistent forces include atmospheric drag due to 
the different air densities encountered in the northward and southward passes of non-equatorial orbits and 
due to solar heating and electrodynamic forces (for conducting tethers). Station-keeping and other rocket 
maneuvers would also contribute to driving (or damping) libration. The natural frequency for in-plane (in 
the orbit plane) librations is 43 w0 = 1.732 con, and 2 o for out-of-plane librations (a detailed derivation is 
contained in Appendix A of Ref. 2). 

Since both the displacement and restoring forces increase linearly with tether length, libration 
frequencies are independent of tether length. Therefore, the tether system will librate as a solid dumbbell 
(except for very long tethers, where the gravity gradient itself varies). Libration periods, however, do 
increase at large amplitudes. Since the tether constrains the motion of the masses, the sensed acceleration 
is always along the tether. Furthermore, the tether can go slack if the in-plane libration angle exceeds 65°, 
or if the out-of-plane libration angle exceeds 60°. The slackness can be overcome by reeling or unreeling 
the tether at an appropriate rate. Additional information on tether libration is presented in Ref. 5 and also 
Section 4.0. 

Libration can be damped out by varying the tether length. It would be deployed when the tension 
was too high and retracted when the tension was too low. Since the in-plane and out-of-plane librations 
have different periods, they could be damped simultaneously. Shorter-period, higher-order tether 
vibrations could also be damped in this way. 

Since the portion of the tether at the center of gravity must support the tether as well as the masses, 
the mass of long tethers must be taken into account. To minimize the tether's mass while maintaining its 
required strength, its cross-sectional area could be sized for a constant stress at all points along its length. 
The optimum design for very high tether tensions would be an exponentially tapered tether with a 
maximum area at the center of gravity and minima at the end masses. Tethers of constant cross-section 
have limited length, as indicated in Figure 3.5, whereas tapered tethers can have unlimited length; but then, 
its mass will increase exponentially along with its cross-section. A detailed discussion of tapered tether 
design is provided in Ref. 6. 

In addition to the general areas of controlled gravity and tethered-platform and constellation 
stabilization, gravity-gradient effects play a fundamental role in applications related to momentum 
exchange and iethered-satellite deployment. These aspects are discussed in Section 3.3, entitled 
"Momentum Exchange." 

3.1.2 Controlled Gravity 

As a first step in discussing the role of gravity-gradient effects in controlled-gravity applications, a 
few definitions will be established. The definitions used in this book will be those recommended by the 
controlled gravity panel at the tether applications conference in Venice, Italy in October 1985 (Ref. 4, Vol. 
2, p. 56, 60). The term "controlled gravity" means the intentional establishment and control of the 
magnitude, vector properties, time dependence, and associated "noise" (uncertainty) of the acceleration 
field within a designated volume of space. In addition, the following definitions are also provided: 

g = the acceleration on the equator at mean sea level on the Earth's surface (9.81 m/s2); 
microgravity = 10 g and smaller, 
low gravity = 10 g to 10 g; 
Earth gravity = 1 g;
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hypergravity = greater than 1 g; 
reduced gravity = microgravity and low gravity; and 
enhanced gravity = hypergravity. 

There are two basic tether configurations which can be used to provide controlled-acceleration 
fields: gravity-gradient-stabilized configurations (rotating once per orbit in an inertial frame), and rotating 
configurations (rotating more rapidly than once per orbit). This section will cover gravity-gradient-
stabilized configurations. Rotating configurations are discussed later in Section 3.2. 

In an orbiting, vertically-oriented, gravity-gradient-stabilized tether system composed of two end 
masses connected by a tether, all portions of each end mass experience the same acceleration, caused by 
the tether tension pulling on the end mass. This force is perceived as artificial gravity. As described 
before, its magnitude is proportional to the tether length from the system's center of gravity, and may be 
held constant or varied by deploying and retracting the tether. (For LEO, the gravity gradient is about 4 x 
10-4 gfkrn.) Its direction is along the tether and away from the center of gravity. 

This same principle can be used in more complex configurations (constellations) of three or more 
bodies. For example, consider a three-body system stabilized along the gravity gradient. In this system, a 
third body is attached to a crawler mechanism ("elevator") on the tether between the two primary end 
masses. The crawler mechanism allows the third body to be moved easily to any point along the tether 
between the end masses. The acceleration field (artificial gravity) in the third body can be controlled easily 
by moving it up or down the tether. Its distance from the system's center of gravity determines the 
magnitude of the artificial gravity within it. This artificial gravity acts in the direction along the tether and 
away from the center of gravity. The two end masses experience the artificial gravity determined by their 
distances from the center of gravity, as in the two-body system. The artificial gravity that they experience 
can also be held constant or varied by increasing or decreasing the tether length. 

When positioned at the center of gravity, the third body could experience an acceleration field as 
low as about 10-8 g at the center of gravity, and 10- 7 g and 10-6 g at distances from the center of gravity of 
20 cm and 2 m, respectively. Using appropriate control laws, the third body's position could be 
automatically adjusted to produce a desired g-level time profile or to minimize transient disturbing effects. 

Gravity-gradient effects can also be used to control the location of the system's center of gravity. 
This would be a very useful capability for the Space Station if microgravity experiments were to be 
performed on-board. Two tethered masses would be deployed vertically from the Space Station - one 
above and one below. By controlling the tether lengths, the position of the center of gravity could be 
maintained at a particular point in the system or moved to the other points as desired. This means that the 
artificial gravity at all points in the system would be correspondingly controlled to a fine degree of 
resolution. For example, the center of gravity could be adjusted to coincide with the minimum possible 
acceleration field. 

All of these system configurations allow the generation and fine control of a wide range of g-
levels. Using appropriate control laws, tether lengths and the relative positions of system components can 
be varied to produce desired gravity fields and their time profiles, to minimize transient disturbances to the 
gravity field, and to carefully control the location of the system's center of gravity. In addition to all of 
this, tethers also provide two-axis stabilization of the system. 

Gravity-gradient systems have several advantages over rotating systems. They can provide 
artificial gravity for large-volume structures more easily. Also, the gravity gradient and Coriolis 
accelerations within these volumes are much less than those produced in rotating systems. One result of 
this is a lower occurrence of motion sickness. However, one disadvantage of gravity-gradient systems is 
that they would require very long tethers to achieve g-levels approaching 1 g or more. In fact, current 
tether materials are not strong enough to support their own weight at such tether lengths. However, by 
using moderate lengths and a relatively small rotation rate about the C.G, g-levels of 1 g or more can be 
achieved, with some increase in the Coriolis acceleration and gravity gradient. Figure 3.6 provides 
additional information concerning the acceptable values of artificial-gravity parameters (Ref. 4). 
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ARTIFICIAL GRAVITY-
PARAMETERS 

• UNAIDED TRACTION REQUIRES 0.1 G 

• ANGULAR VELOCITY SHOULD BE LESS THAN 3.0 RPM TO 
AVOID MOTION SICKNESS 

• MAXIMAL CENTRIPETAL ACCELERATION NEED NOT 
EXCEED EARTH GRAVITY 

• CORIOLIS ACCELERATION SHOULD NOT EXCEED 0.25 
CENTRIPETAL ACCELERATION FOR A LINEAR VELOCITY 
OF 3 FEET/SECOND IN A RADIAL DIRECTION 

• "G" GRADIENT SHOULD NOT EXCEED 0.01 G/FOOT IN 
RADIAL DIRECTION 

• TETHER MASS MIGHT BE LIMITED TO 10.000 TO 20.000 
POUNDS 
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Figure 3.6 Acceptable Values of Artificial-Gravity Parameters 

Tether technology suggests a number of exciting application possibilities. For example, since a 
tether can be used to attain a gravity field simply by deploying a counterweight along the gravity gradient, 
the establishment of a desirable low-level gravity on-board the Space Station appears practical. The use of 
0.01 - 0.1 g on-board the Space Station might permit simpler and more reliable crew-support systems 
(such as eating aids, showers, toilets, etc.), operational advantages (no floating objects, easier tool usage, 
and panels and controls which are operated as in ground training), and perhaps some long-term biological 
advantages. The tether mass would be a significant part of the station mass to produce 0.1 g (using a 
tapered 450 km tether), but would be relatively small for 0.05 g or less. However, careful consideration 
will have to be given to the disadvantages of tether system mass and complexity, and to assurance of 
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survival in case of tether severing by meteoroid or debris impact. Such a system would also affect a 
microgravity laboratory, requiring it to be moved from the Space Station to the C.G. location. 

A variable/low gravity laboratory module could be attached by a crawler mechanism to a tether 
deployed along the gravity gradient from the Space Station. A microgravity laboratory could also be built 
as part of the Space Station at its center of gravity. These labs could be used to examine the effects of 
microgravity and low gravity on both physical and biological processes. Some biological processes of 
interest would be plant and animal growth, and human performance and medical processes (such as those 
related to the cardiovascular, skeletal, and vestibular systems). The gravity-threshold values for various 
biological phenomena could also be studied. Such physical processes as crystal growth, fluid science, and 
chemical reactions could be studied. Many experiments in materials science and manufacturing could be 
performed in these gravity ranges. Liquid propellant storage and refueling facilities could be tethered to 
the Space Station. The artificial gravity produced by the tether would assist in propellant handling and 
transfer. Figure 3.7 shows the tether lengths necessary to allow propellant settling for the proper transfer 
of various propellants. 

These are but a few of the possible applications of the artificial-gravity environments produced by 
gravity-gradient effects. Detailed descriptions of applications utilizing these gravity-gradient effects are 
contained in the "Tether Applications" (Section 2.0) of this handbook. Note that, due to the wide variety 
of possible system configurations, all of these applications are contained in one category. There are 
applications which overlap two or more categories and which could be logically listed under any one of 
them. In these cases, a judgment has been made as to which category is the most appropriate for the 
particular application and it is listed in that category. The applications related to the artificial gravity 
produced by gravity-gradient effects appears in the "Controlled Gravity" and "Space Station" categories of 
the "Applications" section, as appropriate.
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Figure 3.7 Fluid Settling Properties of Various Liquid Propellants Under Conditions 

of Artificial Gravity - Required Tether Length Versus Propellant 
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Constellations

Dynamic

Constellations 

3.1.3 Constellations 

Gravity-gradient forces also play a critical role in the stabilization of tethered constellations. A 
tethered constellation is defined as a generic distribution of more than two masses in space connected by 
tethers in a stable configuration. They can be configured in either one, two, or three dimensions. All of 
the non-negligible forces or gradients available in low orbit come into play to stabilize these various 
configurations. The vertical gravity gradient has the strongest influences, but differential air drag, 
electrodynamic forces, the J22 gravity component (an harmonic of the Earth's gravitational potential), and 
centrifugal forces also contribute. Different configurations utilize different combinations. 

Tethered constellations are divided into the two basic categories shown in Figure 3.8 (Ref. 4, p. 
296). These are "static" and "dynamic" constellations. Static constellations are defined as constellations 
which do not rotate relative to the orbiting reference frame (they do rotate at the orbital rate when referred 
to an inertial frame). Dynamic constellations, on the other hand, are defined as constellations which do 
rotate with respect to the orbiting reference frame. These two basic categories are subdivided further. 
Static constellations include gravity-gradient-stabilized (one-dimensional, vertical), drag-stabilized (one-
dimensional, horizontal), drag-and gravity-gradient-stabilized (two-dimensional), and electromagnetically 
and gravity-gradient-stabilized (two-dimensional) constellations. Dynamic constellations include 
centrifugally stabilized two dimensional and three-dimensional constellations. This section will address 
only the static constellations.
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Figure 3.8 Types of Tethered Constellations 
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From the standpoint of stability and complexity, a gravity-gradient-stabilized, one-dimensional, 
vertical constellation is the most desirable configuration. A diagram showing three bodies tethered in this 
configuration is shown in Figure 3.9. Examples included the three-body configurations used for 
variable/low gravity and microgravity labs, and for the position control of the system center of gravity. 
Earlier discussion of vertical configurations included descriptions of their dynamics (including libration). 
The dominant influence on these constellations is the vertical gravity gradient. 

FLIGHT 

DIRECTION 

Figure 3.9 Example Configuration of 1-D, Gravity-Gradient-Stabilized, 

Vertical Constellation 

Stability in one-dimensional, horizontal constellations is provided by tensioning the tethers. (Such 
a constellation is depicted in Figure 3.10.) By designing such a constellation so that the ballistic 
coefficient of each of its elements is lower than that of the element leading it and higher than that of the 
element trailing it, a tension is maintained in the tethers connecting them along the velocity vector. The 
resulting differential drag on its elements prevents the constellation from compressing, and the tension in 
its tethers prevents it from drifting apart. In principle, there is no limit to the number of platforms which 
can be connected in this manner. However, it should be noted that drag takes orbital energy out of the 
constellation, shortening its orbital lifetime unless compensated by some form of propulsion. 

FLIGHT 

DIRECTION 

Figure 3.10 Example Configuration of 1-D, Drag-Stabilized, 

Horizontal Constellation 

The fundamental parameter for one-dimensional, horizontal constellations is the differential ballistic 
coefficient of the two end bodies. In the case of a massive front body and a voluminous rear body 
(balloon), it is equal to the ballistic coefficient of the latter. Tether lengths and orbital lifetimes are 
competing requirements and are never sufficiently satisfied in the altitude range of interest. Since the 
vertical gravity gradient dominates over the differential air drag at the Space Station altitude and above, the 
maximum horizontal tether length must be short for stability. At lower altitudes (150-200 km) where the 
differential air drag becomes relatively strong, tether length may be longer, but the orbital lifetime will be 
limited.
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The "fish-bone" configuration was the first proposed two-dimensional constellation and it utilizes 
both gravity-gradient and air-drag forces in order to attain its stability. A simple "fish-bone" constellation 
is depicted in Figure 3.11. For analytical purposes, this constellation can be reduced to an equivalent one-
dimensional, horizontal constellation by lumping the overall ballistic coefficient of the rear leg (balloons 
plus tethers) and the front leg at the ends of the horizontal tether. Additional information on the stability 
analysis of the original "fish-bone" configuration shown in Figure 3.11 is presented in Ref. 4 (p.171-172) 
and contains calculated values of its stability limits versus altitude. Analysis has revealed that this 
configuration is less stable than a comparable one-dimensional, horizontal constellation. The necessity of 
a massive deployer at the center of the downstream vertical tether subsystem greatly reduces the area-to-
mass ratio of that subsystem.

V eriicai
M12, A2 

Figure 3.11 Example Configuration of 2-D, "Fish-Bone" 

Two additional designs for a two-dimensional constellation, utilizing gravity-gradient and air-drag 
forces for stability, have been proposed. These drag-stabilized constellation (DSC) designs are depicted in 
Figure 3.12. With this type of configuration, the gravity gradient is exploited for overall attitude stability 
(the constellation's minimum axis of inertia must be along the local vertical), and differential air-drag 
forces are used to stretch the constellation horizontally for shape stability. The drag force is fully exploited 
to assure the minimum tension in the horizontal tethers, and not to counteract the gravity-gradient force as 
it does in the "fish-bone" configuration. Design parameters for DSC systems are presented in Ref. 4 (p. 
175-178).
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Figure 3.12 Two Designs of 2-D DSC Constellations Horizontally 

Two designs for a two-dimensional constellation utilizing gravity-gradient and electromagnetic 
forces for stability have been proposed. These electromagnetically stabilized constellation (ESC) designs 
are shown in Figure 3.13. In these configurations, the gravity gradient is again used for overall attitude 
stability (the minimum axis of inertia is vertical) and electromagnetic forces are used to stretch the 
constellation horizontally for shape stability. (These electromagnetic forces are discussed in detail in 
Section 2.4.) In the quadrangular configuration, current flows in the outer-loop tethers, interacting with 
the Earth's magnetic field, to generate electromagnetic forces in the outer loop. The current direction is 
chosen such that these forces push the tethers outward, tensioning them (like air inside a balloon). 
Although the shape is different in the pseudo-elliptical constellation (PEC) design, the same principle of 
electromagnetic tensioning of the outer-loop tethers is applied. The two lumped masses provide extra 
attitude stability without affecting the constellation shape. Moreover, since the resultant force is zero, the 
orbital decay rate is provided by air drag only. Design parameters for ESC systems are presented in Ref. 4 
(p. 176-177).

Figure 3.13 Two Designs of ESC 2-D Constellations Where Shape Stability is 

Provided by Electromagnetic Forces 

113



Preliminary conclusions on the design of two-dimensional constellations have been reached. The 
"fish-bone" constellations are less stable than the one-dimensional, horizontal constellations. "Fish-bone" 
constellations are stable with very short horizontal tethers (less than 100 m at 500 km altitude). The 
alternative quadrangular DSC and ESC constellations (and PECs for special applications) exhibit a better 
static stability. Suitable design parameters can provide good stability with a reasonably low power 
requirement for ESCs and feasible balloons for DSCs. 

Typical dimensions for these constellations are 10 km (horizontal) by 20 km (vertical) with balloon 
diameters of about 100 m for DSCs, a power consumption of about 5.5 kW for ESCs and 2 kW for 
PECs. The ESC constellations have greater tension in the horizontal tethers than the DSC constellations 
and an orbital decay which is smaller by an order of magnitude. ESCs are suitable for low inclination 
orbits. Moreover, since they tend to orient their longitudinal plane perpendicular to the Earth's magnetic 
field (B vector), a small oscillation about the vertical axis at the orbital frequency is unavoidable even at 
low orbital inclinations. DSCs, on the other hand, are suitable for any orbital inclination. In the DSCs, 
the yaw oscillation occurs at high inclinations only due to the Earth's rotating atmosphere. 

There are several proposed applications for one-dimensional, vertical constellations. A three-body 
configuration could be used for microgravity/variable-gravity laboratories attached to the Space Station or 
the Shuttle. A three-body system could be used on the Space Station to control the location of the center of 
gravity. A system of 3 or more bodies attached to the Shuttle or Space Station could be used as a multi-
probe lab for the measurement of the gradients of geophysical quantities. A 3-body system could also 
function as an ELF/ULF antenna by allowing a current to flow alternatively in the upper and lower tether 
to inject an electromagnetic wave with a square waveform into the ionosphere. A space elevator (or 
crawler) for the Space Station is yet another application. 

There are several proposed applications for two-dimensional constellations. An 
electromagnetically stabilized constellation could provide an external stable frame for giant orbiting 
reflectors. Multi-mass constellations in general allow a separation of different activities while keeping 
them physically connected, such as for power distribution, etc. Detailed analysis of these two-dimensional 
structures may be found in Ref. 7. 

3.2 ROTATION OF TETHER SYSTEMS 

3.2.1 General 

Tethers will almost always be involved in some form of rotational configuration. Any planet-
orbiting tether system, by nature, will rotate about the planet at the orbit angular velocity. The combination 
of the centrifugal forces due to rotation and gravity gradient acting on the tether end masses causes it to be 
stabilized in a vertical position about the planet center of mass. In many interplanetary applications, 
rotation will be desired to cause an artificial-gravity environment or to create a centrifugally stabilized 
configuration. 

3.2.2 Controlled Gravity 

A tether-mass system may desire controlled gravity for a number of applications. These may range 
from an artificial-gravity environment for manned interplanetary missions to a controlled-gravity platform 
for industrial space applications. The calculation of the acceleration at a point for purely circular motion is 
presented here. With reference to Figure 3.14, we assume that point P (which would represent the mass) 
is at a constant radius, r (the tether), from the center of our rotation system. 
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X 

Figure 3.14 Circular Motion of a Point. 

The acceleration can then be found by the expression: 

- = (-r(ol)i+(rc)FO* 

where,

= acceleration at the point P (mIs2), 

= unit vector in radial direction, 

4 = unit vector in tangential (velocity) direction, 

r = radius (length of tether) (m), 

Co = angular velocity (rad/s), 

Ci) = angular acceleration (rad/s2). 

Notice that if the angular velocity is constant the acceleration simplifies to 

.a:*= (r(o2) 

where the negative sign indicates that the acceleration acts toward the center of rotation (see Ref. 8). 

As an example, suppose it is desired to calculate the gravity level at a manned module rotating 
about another similar module with angular velocity of 2.0 rpm, attached by a tether of length 200 meters. 
The center of mass will be exactly between them, and, with this as the origin, the distance to each module 
is 100 meters. Then, the calculation is, 

a = rCO2

if 2rev\I_lnhin(2itrad\I = (loom) mm ) 60 sec) rev 

= 4.38 rn/s2
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To calculate the gravity level (as compared to Earth's): 

4.38 rn/s2 
a=

9.8 mIs2 

= 0.45g. 

3.3 MOMENTUM EXCHANGE 

3.3.1 General-Conservation of Angular Momentum 

Tethers can have useful space applications by redistributing the orbital angular momentum of a 
system. A tether can neither create nor destroy system angular momentum, only transfer it from one body 
to another. Angular momentum is defined (for a rotating system, Figure 3.15) as, 

1= mxt=mr2; 

where

V = angular momentum of system (kgm2 s 1 ), 

m = mass of system (kg) 

= radius vector from center of rotating coordinate system 
(usually the Earth) to system center of mass (m), 

-4 
v = velocity of system center of mass normal to r (m9 1 ), and 

co = system angular velocity (sd).

0 
U 

Figure 3.15 Angular Momentum in a Rotating System 
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In general, momentum exchange can be used for various tether applications using different 
momentum exchange techniques. These techniques will be described first, followed by examples of their 
application. A useful chart is presented in Subsection 4.4.4 of Section 4.0, "Tether Data". 

3.3.2 Tether Payload Deployment 

Consider a system composed of two bodies connected by a variable-length tether as in Figure 3.16 
(see Ref. 9). 

In order to initiate a tethered deployment, such as deploying a payload (M2) downward from the 
Shuttle (M 1 ),. it is first necessary to provide an initial impulse to the payload to start separation. After a 
certain length of tether has been deployed, the masses are in sufficiently different orbits so that gravity-
gradient and centrifugal forces continue the separation. If the two masses were not constrained by a tether, 
mass M 1 would acquire a lower orbital circular velocity and M 2 would obtain a higher orbital circular 
velocity in their new orbits. This is because as M 1 moves further away from the Earth's gravitational 
field, its potential energy is raised and its kinetic energy is lowered. For M 2 the exact opposite is true. 
Since the masses are constrained by a tether, they also must move at the same orbital velocity. Mass M2, 
therefore, will "drag" mass M 1 along until libration occurs. Libration (pendulum motion) will continue 
due to the centrifugal, gravitational, and tether tension restoring forces. 

Dominant 

Resultant	
Centrifugal 

Accelerating	
Force 

Force	 M1 
___________ (Boost Force)  

initial
 Full  

Separation Tether Tension

	

	 Separation I Before 
Deployment 

Orbit Of System 

0 During Deployment Reversed * 
During Retrieval

Center Of Orbit 
Tether Tension	 Of Tethered System 

M2	 Resultant 
Acceleration 

Dominant	 Force 
Gravitational 	 (Deorbit Force) 
Force 

Figure 3.16. Tethered Deployment 

In this case, mass M 1 gained angular momentum equal to an identical amount lost by M 2. This 
amount of angular momentum transferred is equal to: 

Ali =M 1 VAR1 =M2VAR2 

The momentum is transferred from M 1 to M2 through the horizontal component of the tether tension. This 
tension is caused by the Coriolis term of the acceleration expression of the librating masses. 

If the tether is now cut, the upper mass, M 1 , is boosted into an elliptical orbit having higher energy 
than it would have had due to its greater velocity. The point in the orbit where the tether is severed will 
correspond to the perigee of M 1 . The situation is exactly reversed for M 2, which will be at its apogee at 
this point.
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The preceding discussion explains the basic mechanics of momentum transfer in tethers. There are 
many variations of tethered deployment, many of which are beyond the scope of this text. Only some of 
the more basic ones will be described here. 

Static and dynamic tether deployment are basically the same, except that static deployment occurs 
with the tether remaining under small angular displacements from the vertical, and dynamic deployments 
utilize large angular displacements. For certain dynamic deployments, it is possible to impart additional 
energy to one mass at the expense of the other. In order to implement this exchange, the deployment 
begins with a large angular displacement, tether tension is purposely kept low until a desired length is 
reached. When brakes are applied, a large angle prograde swing occurs. When the upper mass (payload) 
leads the lower mass, the tether is severed. In this way, an added boost due to the additional velocity of 
the prograde swing is accomplished. 

Another method of tethered deployment is libration pumping. The tether is initially deployed then 
alternately extended and retrieved in resonance with tether tension variations during libration. (In-plane 
libration causes these tension variations due to Coriolis effects.) Spin pumping is yet another method, 
whereby libration pumping is carried further to the point that the tether system is caused to spin. In both 
cases, the added energy increases the departure velocity of the payload, just as in the dynamic tethered 
deployment case. 

3.3.3 Orbit Variations 

If the payload deployment described previously is carefully done, the orbits of both masses can be 
changed for one or both of their benefits. The Shuttle, for example, can boost a payload into a higher orbit 
and at the same time deboost itself back to Earth. Conversely, the Shuttle could perform a tethered 
deployment of its external tanks, whereby the tanks are deboosted back to Earth and the Shuttle is boosted 
to a higher orbit. Applications such as these are termed "momentum scavenging" since excess momentum 
is utilized for a beneficial purpose. The trick with this approach is that excess momentum must be 
available. One major application which is described in the applications section of the handbook is the 
Space Station-Shuttle deboost operation. This is an excellent example where both masses benefit. 
Resupply missions of the Space Station by the Shuttle are finalized by a tethered deployment of the 
Shuttle. In this way, the Space Station is boosted to a higher orbit and the Shuttle is de-boosted back to 
Earth. In order to utilize the additional momentum of the Space Station, tethered deployments of an STY 
are alternated with those of the Shuttle. Fuel savings can be obtained by both Shuttle and STV in this 
example. Tethers can also be used to change orbit eccentricity. This is done by libration pumping of 
tethered mass, phased as in Figure 3.17 (Ref. 9). 

Figure 3.17 Orbit Eccentricity Change 
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At (1) the mass is fully extended, and libration commences. At (2), with the mass in a prograde 
swing, the retrieval motor pulls the spacecraft toward the mass, adding energy to the orbit (through the use 
of excess electrical energy transferred to the motor). At (3), which is the new apogee of the orbit, the 
tether length is at a minimum. At (4), with the mass in a retrograde swing, the tether is re-deployed and 
the retrieval brakes are used to dissipate orbital energy in the form of excess heat. At (5), the new perigee, 
the mass is again fully deployed. 

3.4 ELECTRODYNAMICS 

3.4.1 General 

Electrodynamic tether systems can be designed to produce several useful effects by interacting with 
magnetic fields. They can be designed to produce either electrical power or thrust (either a propulsive 
thrust or a drag). They can also be designed to alternately produce electrical power and thrust. In 
addition, they can be designed to produce ULF/ELF/VLF electromagnetic signals in the upper atmosphere, 
and shape-stability for orbiting satellite constellations. Electrodynamic systems can be designed to 
produce electrical power. 

3.4.2 Electric Power Generators 

The discussion of electric power generation by tether systems will begin with electrodynamic 
systems in low Earth orbit. Consider a vertical, gravity-gradient-stabilized, insulated, conducting tether, 
which is terminated at both ends by plasma contactors. A typical configuration is shown in Figure 3.18 
(Ref. 9, 10). As this system orbits the Earth, it Cuts across the geomagnetic field from west to east at 
about 8 km/s. An electromotive force (emf) is induced across the length of the tether. This emf is given 
by the equation:

V = J 
along length of tether 

where
V = induced emf across the tether length (volts), 

= tether velocity relative to the geomagnetic field (m/s) 

= magnetic field strength (webers/m2 ), and 
—3 
dl = differential element of tether length - a vector pointing in the 

direction of positive current flow (m). 

For the special case where the tether is straight and perpendicular to the magneiic field lines everywhere 
along its length, the equation for the emf simplifies to: 

-4-3-4. 
V = (vxB)•L 

where

-4 
L = tether length - a vector pointing in the direction of positive 

current flow (m). 

The equation for the induced emf across the tether in this special case can also be written as: 

V = LvBsinO
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where

-4	 -4 
0 = angle between v and  

(From these equations, it can be seen that equatorial and low-inclination orbits will produce the largest 
emfs, since the maximum emf is produced when the tether velocity and the magnetic field are 
perpendicular to each other.)
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Figure 3.18 Power Generation With an Electrodynamic Tether 

The emf acts to create a potential difference across the tether by making the upper end of the tether 
positive with respect to the lower end. In order to produce a current from this potential difference, the 
tether ends must make electrical contact with the Earth's, plasma environment. Plasma contactors at the 
tether ends provide this contact, establishing a current loop (a so-called "phantom loop") through the 
tether, external plasma, and ionosphere. Although processes in the plasma and ionosphere are not clearly 
understood at this time, it is believed that the current path is like that shown in Figure 3.19. The collection 
of electrons from the plasma at the top end of the tether and their emission from the bottom end creates a 
net-positive charge cloud (or region) at the top end, and a net-negative charge cloud at the bottom. The 
excess free charges are constrained to move along the geomagnetic field lines intercepted by the tether ends 
until they reach the vicinity of the E region of the lower ionosphere where there are sufficient collisions 
with neutral particles to allow the electrons to migrate across the field lines and complete the circuit. 

To optimize the ionosphere's ability to sustain a tether current, the tether current density at each end 
must not exceed the external ionospheric current density. Plasma contactors must effectively spread the 
tether current over a large enough area to reduce the current densities to the necessary levels. Three basic 
tether system configurations, using three types of plasma contactors, have been considered. They are: (1) 
a passive large-area conductor at both tether ends; (2) a passive large-area conductor at the upper end and 
an electron gun at the lower end; and, (3) a plasma-generating hollow cathode at both ends. 
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Figure 3.19 The Current Path External To An Orbiting

Electrodynamic Tether System 

In the first configuration, the upper conductor (probably a conducting balloon) collects electrons. 
The lower plasma contactor in this configuration (perhaps a conductive surface of the attached spacecraft) 
utilizes its large surface area in a similar way to collect ions. 

To achieve higher currents, it is possible to replace the passive large-area conductor at the lower 
end with an electron gun, providing the equivalent of collecting a positive ion current by ejecting a negative 
electron current. Ejecting these electrons at a high energy distributes them over an effectively large contact 
region. Unfortunately, electron guns are active plasma contactors, requiring on-board electrical power to 
drive them. 

The third configuration is quite different from the first two. Based upon research results and 
performance modeling up to this point, it is projected to be the most promising of the three systems. 
Instead of relying on a passive and physically large conducting surface to collect currents, a hollow 
cathode at each tether end generates an expanding cloud of highly conductive plasma. The plasma density 
is very high at the tip of the tether and falls off to ionospheric densities at a large distance from the tip. 
This plasma provides a sufficient thermal electron density to carry the full tether current in either direction 
at any distance from the tether end, until it is merged into the ambient ionospheric plasma currents. This 
case of current reversibility allows the system to function alternately as either a generator or a thruster, 
with greater ease than either of the other two configurations (as will be discussed in more detail in the next 
section). Hollow cathodes are also active plasma contactors, requiring on-board electrical power and a gas 
supply to operate. However, they require much less power than an electron gun, and the gas supply 
should not impose a severe weight penalty. Two diagrams of a hollow cathode plasma source are shown 
in Figure 3.20. Additional diagrams and information relating to the construction and operation of the 
PMG hollow cathode plasma contactor are given in Figures 3.21, 3.22 and 3.23. Typical characteristics 
of a hollow cathode and an electron gun are compared in Figures 3.24 and 3.25. 

Although current research and modeling results indicate that hollow cathodes are far superior to 
electron guns and passive contactors for producing high current contact with the ionosphere, this has not 
been verified by flight tests. In addition, there may be particular applications for which passive contactors 
or electron guns are desirable.

121



node - 4.5 cm DIA (0.0 
w2cm Hole (1.0) 

Cathode Tip 
015" Orifice 

'/ DIA Tantalum

CROSS SECTVIH U.0 • • ••• 

	

.	
0. . 0 0 0 .••	 .. 

	

• ••	
o..02 

•0. 

ri 
• o• C)	 00 

NEUTRAL:° 
PLASMA : 

)n:.00.BAL'0 
I"ER•'	

00• 

ATOMS	 BARIUM COVERED SURFACE FOR \. ELECTRODE 

0 

ELECTRONS	

CATHODE ORIFICE	
• 0 0 

* PONS o0 S.	 o 
•0.•. •o• 

SCHEMATIC 

v

KE
su OLLOW CATHODE 

VAPOR	 -. 
GAS SUPPLY

SUPPLY KEEPER (ANODE)

Figure 3.20 Diagrams of a Hollow Cathode Plasma Contactor 
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Figure 3.21 Diagram of the Plasma Motor/Generator (PMG) Hollow Cathode Assembly 
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Figure 3.24 Comparison of the IV Characteristics of a Hollow Cathode and Electron Gun 
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Figure 3.25 Comparative Characteristics of an Electron Gun and a Hollow Cathode 

Since hollow cathodes are projected to allow much larger tether currents than the other types of 
plasma contactors, PMG systems should obtain desired electrical power levels at lower voltages than the 
other tether systems and thereby avoid requirements for technology advances to handle very high voltages. 
PMG systems are expected, therefore, to use shorter and more massive tethers, greatly reducing the mass 
required for a stabilizing end mass, and simplifying tether deployment and dynamics. Using hollow 
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cathode plasma contactors should also be safer for spacecraft systems, since they establish a known 
vehicle ground reference potential with respect to the local plasma. 

The current passing through the tether can be controlled by any one of several methods, depending 
upon the type of plasma contactors used. For systems with passive conductors at both ends, control is by 
variable resistance, inserted between the tether and one of the plasma contactors. For systems using an 
electron gun as a plasma contactor, tether current is controlled by the current emitted by the electron gun. 
Unfortunately, these methods are very inefficient. They not only waste all of the 1 2R power lost in the 
resistors, plasma sheaths (around the plasma contactors), and electron gun impedance, but they also 
transfer most of it as heat back into the spacecraft, where it is a significant thermal control and heat 
rejection problem. 

PMG systems, on the other hand, use DC impedance matching to control the tether current and 
power. This is accomplished by adjusting a continuously variable effective load impedance in order to 
match the varying tether voltage and power with the spacecraft load power requirements. This control 
system is a variation of a DC/DC converter, developed at NASA/Lewis Research Center as the power 
converter module for the "Electric Airplane" project. The conductivity of the hollow cathode assembly is 
not readily controllable and it acts as an upper limit on tether current. Tether current is variable over its full 
± range with little interaction with the hollow cathode assembly controller. 

The basic equation of the current loop (circuit) is: 

VIND = JR + AVLOW + iVjjp + AVION + AVWAD; 

where	 V11	 = emf induced across the tether (volts), 
I = tether current (amps), 

R = resistance of the tether (ohms), 
LVw = voltage drop across the space charge region around the lower plasma 

contactor (volts), 
LIVJJp = voltage drop across the space charge region around the upper plasma 

contactor (volts), 
EVIoN = voltage drop across the ionosphere (volts), and 

AVLOAD = voltage drop across a load (volts), 

This equation simply states that the emf induced across the tether by its motion through the magnetic field 
is equal to the sum of all of the voltage drops in the circuit. The JR term in the equation is the voltage drop 
across the tether due to its resistance (according to Ohm's Law). 

To provide an expression for the working voltage available to drive a load, this equation can be 
rewritten as:

LWLOAD = JND - - AVLOW -	 - AVION 

The voltage drop across the space charge region (sheath, electron gun, or plasma cloud) at each 
tether end is caused by the impedance of that region. The voltage drop across the ionosphere is likewise 
due to its impedance. The problem with these equations is that the impedances of the charge regions 
around the tether ends are complex, nonlinear, and unknown functions of the tether current. The 
impedance of the ionosphere has not been clearly determined. Although some laboratory studies have 
been performed, and estimates made, detailed flight test measurements will have to be performed before 
these quantities can be clearly determined. 

It has been calculated that the ionospheric impedance should be on the order of 1-20 ohms (Ref. 
11). The highest impedance of the tether system are encountered at the space charge sheath regions around 
the upper and lower plasma contactors. Reducing these impedances will greatly increase the efficiency of 
the tether system in providing large currents. Data exist which indicate that plasmas released from hollow 
cathode plasma contactors should greatly reduce the sheath impedance between the contactors and the 
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ambient plasma surrounding them. Data from one study of hollow cathodes predict ZLOW (election 
emitting end) to be on the order of 20 ohms, and Z jp (electron collecting end) to be on the order of 10-
1000 ohms (Ref. 4, p. 499-546). Studies of PMG systems with hollow cathode plasma contactors, have 
indicated that there is a nearly constant voltage. Therefore, for the PMG model, the voltage across the 
tether is simply reduced by 20 volts to account for the voltage drop at both tether ends. Although 
processes in these plasmas and in the ionosphere are not well understood and require continued study and 
evaluation through testing, preliminary indications are that feasible tether and plasma-contactor systems 
should be able to provide large induced currents. 

As indicated earlier, the electric currents induced in such tether systems can be used to power loads 
on board the spacecraft equipped with them. They can also be used as primary power for the spacecraft. 
It has been calculated that electrodynamic tether systems should be capable of producing electrical power in 
the multikilowatt to possibly the megawatt range (Ref. 4, p. 161-184). Calculations for some sample 
systems are presented in Figures 3.26 through 3.29. 

There is a price to be paid for this electrical power, however. It is generated at the expense of 
spacecraft/tether orbital energy. This effect is described in detail in the next section. 

In principle, electrodynamic tether systems can generate electrical power not only in Earth orbit, 
but also when they move through the magnetic fields of other planets and interplanetary space. The 
magnetic field in interplanetary space is provided by the solar wind, which is a magnetized plasma 
spiralling outward from the sun. 

References 1 (p. 1-22 through 1-24, 3-49 through 3-65), 2, 4 (p. 153-184, 547-594), 10,11, and 
data from Dr. James McCoy (NASA/Johnson Space Center) are the primary references for this section. 
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PMG - 20 KW REFERENCE	 SYSTEM 

TETHER LENGTH 10 KM WORKING TENSION 21	 N 

NOMINAL VOLTAGE 2 KV WORKING ANGLE 7	 DEG 

RATED POWER 20 KW RATED THRUST 2.b	 N 

PEAK POWER 125 KW PEAK THRUST >40.	 N 

CONDUCTOR #2 AWG	 ALUMINUM WIRE 908 KG 
DIAMETER	 6.5 MM @ 20°C 
RESISTANCE 8.4 OHMS	 @ 20°C 

7.7	 OHMS	 @	 0°C 
7.1	 OHMS	 @-20°C 

INSULATION 0.5 MM TEFLON	 (100	 VOLTS/NIL) 99 KG 

FAR END MASS 10 AMP HOLLOW CATHODE ASS 'V 10 KG 
(INCLUDING ELECTRONICS	 & CONTROL) 

TETHER CONTROLLER ELECTRONICS	 & MISC.	 HDWR. 83 KG 
(POWER	 DISSIPATION	 LOSSES	 1%	 200W) 

ARGON	 SUPPLY	 &	 CONTINGENCY	 RESERVE 100 KG 

TOTAL 1.200 KG 

TETHER DYNAMICS	 CONTROL PASSIVE,	 IXB PHASING 
TETHER	 CURRENT/POWER	 CONTROL DC	 IMPEDANCE MATCHING 
TETHER	 OUTSIDE	 DIAMETER 1.5	 MM 
TETHER	 BALLISTIC	 DRAG AREA 75	 SQ.	 METERS 

-11	 3 
DRAG FORCE	 @	 10	 KG/M .045	 N .36 KW 
(300	 KM	 1976	 USSA-400	 KM	 SOLAR	 MAX) 

2 
I	 R	 LOSSES	 @ 20	 KW .77 KW 

HOLLOW CATHODE	 POWER .50 KW 

IONOSPHERIC	 LOSS	 @	 10 AMP .05 KW 

TOTAL	 PRIMARY	 LOSSES 1.68 KU 

EFFICIENCY	 ELECTRIC	 (18.68 KU	 NET	 @	 10 AMP/20 KW) 93.4 
OVERALL	 (20.36 MECH.	 TO	 18.68 ELEC.	 KW) 91.7% 

INCLUDING	 CONTROLLER/POWER	 PROCESSER LOSSES	 @	 1% .20 KU 

TOTAL	 (NET	 POWER	 OUT	 18.48	 KU) 1.88 KU 

FINAL	 EFFICIENCY	 ELECTRIC	 =	 92.4% OVERALL =	 90.8%

Figure 3.26 Calculated Performance of an Example Electromagnetic Tether System 
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PMG - 200 KU REFERENCE SYSTEM 

TETHER	 LENGTH 20 KM	 (10	 UP.1U	 ON) WORKING	 TENSION 42	 N 

NOMINAL	 VOLTAGE 4 KV WORKING ANGLE 17	 DEG 

RATED	 POWER ZOO KW RATED THRUST 25	 N 

PEAK POWER 500 KU PEAK	 THRUST '100	 N 

CONDUCTOR #00 AUG	 ALUMINUM WIRE 3640 KG 
DIAMETER	 9.3 MM	 2U.0 
RESISTANCE 8.4 OHMS	 20°C 

7.7	 OHMS @	 0°C 
7.1	 OHMS	 -20°C 

INSULATION 0.5 MM TEFLON	 (100	 VOLTS/NIL) 278 KG 

FAR END MASS SO AMP HOLLOW CATHODE ASS'Y 25 KG 
(INCLUDING	 ELECTRONICS	 &	 CONTROL) 

TETHER	 CONTROLLER ELECTRONICS	 &	 MISC.	 HOUR. 94 KG 
(POWER	 DISSIPATION	 LOSSES	 @1%	 •	 2	 KU) 

ARGON	 SUPPLY	 & CONTINGENCY	 RESERVE 163 KG 

TOTAL 4.00 KG

TETHER DYNAMICS CONTROL	 PASSIVE, IXB PHASING 
TETHER CURRENT/POWER CONTROL	 DC IMPEDANCE MATCHING 
TETHER OUTSIDE DIAMETER 	 10.3 MM 
TETHER BALLISTIC DRAG AREA	 206 SO METERS 

-11	 3 
DRAG FORCE @ 10	 KG/N	 .12 N	 .96 KU

(300 KM 1970 USSA-400 KM SOLAR MAX) 

2 
I R LOSSES 0 200 KU	 19.25 KU 

HOLLOW CATHODE POWER	 2.50 KU 

IONOSPHERIC LOSS 0 50 AMP	 1.25 KU 

TOTAL PRIMARY LOSSES	 23.96 KW 

EFFICIENCY	 ELECTRIC (177 KU NET 0 50 AMP/200 KU)	 88.5% 
OVERALL (201 MECH. TO 117 ELEC. KU)	 88.1% 

INCLUDING CONTROLLER/POWER PROCE55ER LOSSES @1% 	 2.00 KU 

TOTAL	 (NET POWER OUT 115.0 KU)	 2.96 KU 

FINAL EFFICIENCY	 ELECTRIC	 81.5t	 OVERALL° 87.1% 

Figure 3.27 Calculated Performance of an Electromagnetic Tether System 
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PMG - MEGAWATT REFERENCE SYSTEM 

TETHER LENGTH 20 KM	 (10 UP.10	 ON) WORKING	 TENSION 190	 N 

NOMINAL VOLTAGE 4 KY WORKING ANGLE 10 DEG 

RATED POWER 500 KU RATED THRUST 65 N 

PEAK POWER >2 NW PEAK THRUST 40U N 

CONDUCTOR 2 CM ALUMINUM WIRE 17'860 KG 
DIAMETER	 20.0 MM	 20C 
RESISTANCE	 1.68	 OHMS @ 20C 

1.54 OHMS	 D.0 
1.42 OHMS @-20C 

INSULATION 0.5 MM TEFLON	 (100	 VOLTS/NIL) 580 KG 

FAR END MASS 125 AMP HOLLOW CATHODE ASSY 50 KG 
(INCLUDING	 ELECTRONICS	 & CONTROL) 

TETHER	 CONTROLLER ELECTRONICS	 &	 MISC.	 HOUR. 120 KG 
(POWER DISSIPATION	 LOSSES	 1% •	 S	 KU) 

ARGON	 SUPPLY	 & CONTINGENCY RESERVE 290 KG 

TOTAL 19UUO KG

TETHER DYNAMICS CONTROL	 PASSIVE. IXB PHASING 
TETHER CURRENT/POWER CONTROL	 DC IMPEDANCE MATCHING 
TETHER OUTSIDE DIAMETER 	 21.0 MM 
TETHER BALLISTIC DRAG AREA	 420 SQ METERS 

-11	 3 
DRAG FORCE 0 10	 KG/N	 .25 N	 2.0 KU

(300 KM 1976 USSA-400 KM SOLAR MAX) 
2	 __________ 
I R LOSSES	 SOU KU	 24.1 KU 

HOLLOW CATHODE POWER	 5.0 Ku 

IONOSPHERIC LOSS @ 125 AMP	 7.8 Ku 

TOTAL PRIMARY LOSSES	 36.9 Ku 

EFFICIENCY	 ELECTRIC (463.1 KU NET @ 500 KU)	 92.67. 
OVERALL (5U2 MECH. TO 463 ELEC. KU)	 92.3% 

INCLUUING CONTROLLER/POWER PROCESSER LOSSES Y 1% 	 S.O KU 

TOTAL	 (NET POWER OUT 48.1 KU)	 41.9 KU 

FINAL EFFICIENCY	 ELECTRIC	 91.6%	 OVERALL • 91.3% 

Figure 3.28 Calculated Performance of an Example Electromagnetic Tether System 
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RECOMMENDED APPLICATIONS 

I. THRUST - USE WITH SOLAR ARRAYS IN LOW EARTH ORBIT TO OFFSET DRAG 

100 KG SYSTEM PRODUCING .1 NEWTON THRUST 

8 KW/N ELECTRIC POWER CONSUMPTION • .8KW 

ELIMINATES DELTA-v FUEL REQUIRED: >1,000 KG/YR 

KEEP 100 KW SOLAR ARRAY @ SPACE STATION ORBIT 

INCREASE TO 200 KG SYSTEM @ 1-2 N THRUST 
KEEP SPACE STATION 4 100KW ARRAY IN (300 KM ORBIT ALTITUDE 
NO ORBIT MAINT. FUEL REQUIRED; CONSUMABLES 	 < 60 KG/YR (ARGON) 
1TES 10-15 KW FROM 100 KW AVAILABLE 

II. THRUST - USE FOR ORBITAL MANUEVERING PROPULSION 

2,000 KG SYSTEM (PLUS 80 KW POWER SUPPLY: SOLAR, NUCLEAR, WHAT-EVER) 

10 NEWTON THRUST - CONTINUOUS AS LONG AS POWER AVAILABLE 

ALTITUDE CHANGE 

7 KM/DAY - 200,000 KG (SPACE STATION) 

30 KM/DAY -	 50,000 KG (PLATFORM) 

150 KM/DAY -	 10,000 KG (FREE-FLYER) 

TOTAL IMPULSE: 864,000 N-SEC/DAY (194.000 LB-SEC/DAY) 

17 N/SEC/DAY - 50,000 KG (PLATFORM) 

86 N/SEC/DAY - 10,000 KG (FREE-FLYER, ONV, OR TUG) 

ORBIT PLANE CHANGE: 30 DEGREE IN 6 MONTHS MAY BE POSSIBLE 

'FLY" ENTIRE SPACE STATION DOWN TO 200-250 KM ALTITUDE & MAINTAIN 

GROWTH VERSION: 200 N @ 1.6 MW, 20,000 KG + POWER SUPPLY 

III. POWER STOREAGE - 100KW SOLAR ARRAY SYSTEM 
+ 2,000 KG REVERSIBLE MOTOR/GENERATOR TETHER SYSTEM 

60 KW THRUST DURING DAY (POWER STOREAGE AS ORBIT ENERGY) 

100 KW POWER GENERATION DURING DARK 

TOTAL SYSTEM WEIGHT 40% OF CONVENTIONAL ARRAY WITH BATTERIES 

10% REDUCTION IN SOLAR ARRAY SIZE 

60% REDUCTION IN POWER PROCESSING HEAT REJECTION REQUIRED 

Figure 3.29 Recommended Applications and Calculated Performance of Example 

Electromagnetic Tether Systems 
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3.4.3 Thrusters 

As mentioned in the previous two sections, electrodynamic tether systems can be used to generate 
thrust or drag. Consider the gravity-gradient-stabilized system in Earth orbit, for example. Its motion 
through the geomagnetic field induces an emf across the tether. When the current generated by this emf is 
allowed to flow through the tether, a force is exerted on the current (on the tether) by the geomagnetic field 
(see Figure 3.30). This force is given by: 

-4 f  F = (Idl)xB 

along length of tether 

where

=ifx 
along length of tether 

= force exerted on the tether by the magnetic field (newtons), 

= tether current (amps), 

= differential element of tether length - a vector pointing in the direction 
of positive current flow (m), and 

= magnetic field strength (webers/m2) 

,.. PLASMA CONTACTOR 

— -"""Z NEGATIVE 
CURRENT 

// '// t , 

I / 
THRUST (MOTOR) 

Figure 3.30 Thrust Generation With An Electrodynamic 

Tether System 
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For the special case of a straight tether, this equation simplifies to: 

-	 —+ -4 
F = ILxB 

where

-4 
L = tether length - a vector pointing in the direction of positive 

current flow (m). 

This equation for the electromagnetic force on a straight tether can also be written as: 

F = ILB sin O 
where

-4 -4 
0 = angle between L and B 

Its maximum value occurs when the tether is perpendicular to the magnetic field. 

Depending on the relative orientation of the magnetic field to the tether velocity, this force can have 
a component parallel to the velocity and one perpendicular to the velocity. Considering the parallel 
(inpiane) component, whenever the current induced in the tether by the magnetic field is allowed to flow, 
this component of the force always acts to reduce the relative velocity between the tether system. In low 
Earth orbit, where the orbital velocity of the tether is greater than the rotational velocity of the geomagnetic 
field and they are rotating in the same direction, this force is a drag on the tether. This means that when 
electric power is generated by the system for on-board use, it is generated at the expense of orbital energy. 
If the system is to maintain its altitude, this loss must be compensated by rockets or other propulsive 
means.

When current from an on-board power supply is fed into the tether against the induced emf, the 
direction of this force is reversed. This force follows the same equation as before, but now the sign of the 
cross product is reversed, and the force becomes propulsive. In this way, the tether can be used as a 
thruster. Therefore, the same tether system can be used reversibly, as either an electric generator or as a 
thruster (motor). As always, however, there is a price to be paid. The propulsive force is generated at the 
expense of on-board electrical power. 

It is necessary to distinguish between tether systems orbiting at subsynchronous altitudes, and 
those orbiting at altitudes greater than the synchronous altitude, where the sense of the relative velocity 
between the satellite and the magnetic field rest frame is reversed (often thought of in terms of a concept 
known as the "co-rotating field"). An analogous situation exists in orbits around Jupiter for altitudes 
greater than 2.2 Jovian radii from its center (the Jovian synchronous altitude: i.e., the altitude at which the 
rotational angular velocity of an orbiting satellite equals the rotational velocity of Jupiter and its magnetic 
field). Another analogous situation exists in interplanetary space if a spacecraft moves outward at a speed 
of 400 km/s). In such cases, dissipation of the induced electrical current would produce a thrust (not a 
drag) on the tether. Again, the force acts to bring the relative velocity between the tether and the magnetic 
field rest frame to zero. In such cases, feeding current into the tether against the induced emf would 
produce a drag. When moving in a direction opposite to the direction of motion of the magnetic field, the 
effects would be reversed. 

Systems have been proposed to operate reversibly as power and thrust generators (Ref. 4 and 10). 
Such systems could provide a number of capabilities. Calculations of the performance of a number of 
example systems are presented in Figures 3.26 through 3.29. 

In addition to the in-plane component, the electromagnetic force on the tether current generally also 
has an out-of-plane component (perpendicular to the tether velocity). For an orbiting tether system, the 
out-of-plane force component acts to change the orbital inclination, while doing no in-plane mechanical 
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work on the tether and inducing no emf to oppose the flow of current in the tether. This makes 
electrodynamic tethers potentially ideal for orbital plane changes. Unlike rockets, they conserve energy 
during orbital plane changes. If the current is constant over a complete orbit, the net effect of this force is 
zero (since reversals in the force direction during the orbit cancel each other Out). On the other hand, if a 
net orbital inclination change is desired, it can be produced by simply reversing the tether current at points 
in the orbit where the out-of-plane force reverses its direction, or by allowing a tether current to flow for 
only part of an orbit. Attention must be paid to this out-of-plane force when operating a tether alternately 
as a generator and thruster, and when operating a tether system which alternately generates and stores 
electrical energy. Strategies for using electrodynamic tethers to change orbits are shown in Section 4.0. 

Electromagnetic forces also cause the tether to bow and produce torques on the tether system. 
These torques cause the system to tilt away from the vertical until the torques are balanced by gravity-
gradient restoring torques. These torques produce in-plane and out-of-plane librations. The natural 
frequencies of in-plane and out-of-plane librations are 43 times the orbital frequency and twice the 
orbital frequency, respectively. Selective time phasing of the IL x B loading, or modulation of the tether 
current, will damp these librations. The out-of-plane librations are more difficult to damp because their 
frequency is twice the orbital frequency. Unless care is taken, day/night power generation/storage cycles 
(50/50 power cycles) can actively stimulate these librations. Careful timing of tether activities will be 
required to control all tether librations. The proposed PMG systems will use passive IL x B phasing to 
control tether dynamics and a long, light ballast tether will be attached to the end of the PMG tether for 
missions requiring more control. Additional information on electromagnetic libration control issues is 
shown also in Section 4.0. 

3.4.4 ULF/ELF/VLF Antennas 

As discussed in Section 3.4.2, the movement of an Earth-orbiting electrodynamic tether system 
through the geomagnetic field gives rise to an induced current in the tether. One side effect of this current 
is that as the electrons are emitted from the tether back into the plasma, ULF, ELF, VLF electromagnetic 
waves are produced in the ionosphere (see Ref. 11). 

In the current loop external to the tether, electrons spiral along the geomagnetic field lines and close 
at a lower layer of the ionosphere (see Figure 3.3 1.) This current loop (or so-called "phantom loop") acts 
as a large ULF, ELF, and VLF antenna. (The phantom loop is shown in Figure 3.32). The 
electromagnetic waves generated by this loop should propagate to the Earth's surface, as shown in Figure 
3.33. The current flow generating these waves can be that induced by the geomagnetic field or can be 
provided by a transmitter on board the spacecraft so that the tether is in part an antenna. 

Messages can be transmitted from the tether (antenna) by modulating the waves generated by the 
current loop. If the induced current is used to generate these waves, it is modulated by varying a series 
impedance or by turning an electron gun or hollow cathode on the lower tether end on and off at the 
desired frequency. If a transmitter is used, current is injected into the tether at the desired frequency. 

The ULF, ELF, VLF waves produced in the ionosphere will be injected into the magnetosphere 
more efficiently than those from existing ground-based, man-made sources. It is believed that the 
ionospheric boundary may act as a waveguide, extending the area of effective signal reception far beyond 
the "hot spot" (area of highest intensity reception, with an estimated diameter of about 5000 km) shown in 
Figure 3.33. If this turns out to be the case, these waves may provide essentially instant worldwide 
communications, spreading over the Earth by ducting. Calculations have been performed, predicting that 
power levels of the order of 1 W by night and 0.1 W by day can be injected into the Earth-ionosphere 
transmission line by a 20-10 km tether with a current of the order of 10 A. Such tether systems would 
produce wave frequencies throughout the ULF (3-30 Hz) and ELF bands (30-300 Hz), and even into the 
VLF band (about 3000 Hz).
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Figure 3.31 Electron Paths in the Electrodynamic Tether Generator 

Lower Boundry 
Of Ionosphere 

-	 /Ionospheric 
O..	 "Phantom I nnn" 

Induced 

EMF 

Figure 3.32 The 'Phantom Loop" of the ULF/ELF Tether Antenna 
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Magnetosphere 

Figure 3.33 Propagation of ULF/ELF/VLF Waves To The Earth's

Surface From An Orbiting Tether Antenna 

It should be noted that if the induced tether current is used to power the antenna, orbital energy will 
be correspondingly decreased. A means of restoring this orbital energy (such as rocket thrust) will be 
required for long missions. 

3.4.5 Constellations 

As mentioned earlier, electromagnetic forces exerted by the geomagnetic field on the current in 
orbiting tethers can be used in conjunction with gravity-gradient forces to stabilize two-dimensional 
constellations (see Figure 3.13). The force exerted on a current in a tether is exactly the force described in 
Section 3.4.3. The tether currents used in these constellations can be those induced by the geomagnetic 
field or those provided by on-board power supplies. 

The basic concept is that gravity-gradient forces will provide vertical and overall attitude stability 
for the constellation, and electromagnetic forces will provide horizontal and shape stability (see Ref. 1, 
p.1-29, and 4, p. 150-203). This is accomplished in the quadrangular configuration by establishing the 
current direction in each of the vertical tethers such that the electromagnetic forces on them push the side 
arcs horizontally away from each other. Each side arc may be composed of a number of satellites 
connected in series by tethers. The current directions for the tethers on each side arc will be the same, 
providing a consistent outward force. Large masses are placed at the top and bottom juncture points where 
the two sides join together. This provides additional stability for the constellation. 
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SECTION 4.0

TETHER DATA



4.1 General 

This handbook would not be complete without providing the user with specific data and other 
information relevant to the analysis of tether applications. To the authors' knowledge, the best 
summarization of this data is contained in J. A. Carroll's Guidebook for Analysis of Tether Applications, 
published in 1985 under contract to the Martin Marietta Corporation. It provides a concise review of those 
technical areas which are essential to tether analyses. For the uninitiated, it is the first exposure they 
should have to ensure that they understand the broad implications of any application they might consider. 
From here, they can explore the many references given in the Bibliography. 

The Guidebook is reproduced here in full, except for its bibliography which would be redundant. 
J. A. Carroll's introductory remarks and credits are presented below: 

This Guidebook is intended as a tool to facilitate initial analyses of proposed 
tether applications in space. The guiding philosophy is that at the beginning 
of a study effort, a brief analysis of all the common problem areas is far 
more useful than a detailed study in any one area. Such analyses can 
minimize the waste of resources on elegant but fatally flawed concepts, and 
can identify the areas where more effort is needed on concepts which do 
survive the initial analyses. 

In areas in which hard decisions have had to be made, the Guidebook is: 

Broad, rather than deep 
Simple, rather than precise 
Brief, rather than comprehensive 
Illustrative, rather than definitive 

Hence the simplified formulas, approximations, and analytical tools 
included in the Guidebook should be used only for preliminary analyses. 
For detailed analyses, the references with each topic and in the bibliography 
may be useful. Note that topics which are important in general but not 
particularly relevant to tethered system analysis (e.g., radiation dosages) are 
not covered. 

This Guidebook was presented by the author under subcontract R114- 
394049 with the Martin Marietta Corporation, as part of their contract 
NAS8-35499 (Phase II Study of Selected Tether Applications in Space) 
with the NASA Marshall Space Flight Center. Some of the material was 
adapted from references listed with the various topics, and this assisted the 
preparation greatly. Much of the other material evolved or was clarified in 
discussions with one or more of the following: Dave Arnold, James 
Arnold, Ivan Bekey, Guiseppe Colombo, Milt Contella, Dave Criswell, 
Don Crouch, Andrew Cutler, Mark Henley, Don Kessler, Harris Mayer, 
Jim McCoy, Bill Nobles, Tom O'Neil, Paul Penzo, Jack Slowey, Georg 
von Tiesenhausen, and Bill Thompson. The author is of course responsible 
for all errors, and would appreciate being notified of any that are found. 

137



4.2 Generic Issues 

MAJOR CONSTRAINTS IN MOMENTUM-TRANSFER APPLICATIONS 

CONSTRAINT: 
APPLICATION;

ORBIT 
BASICS

TETHER 
DYNAMICS

TETHER 
PROPERTIES

TETHER 
OPERATIONS 

All types Apside Forces on pmeteoroid Tether recoil 
location end masses sensitivity at release 

Librating Tether can Facility attitude 
go slack & "g"s variable 

Spinning High loads Retrieval can 
on payload be difficult 

Winching High loads Extremely high 
on payload power needed 

Rendezvous Orbit planes Short launch & 
must match capture windows 

Multi-stage Dif.	 nodal Waiting time 
regression between stages 

High deltaV Gravity Control of Tether mass Retrieval energy; 
losses dynamics & lifetime Facility	 i alt. 

MAJOR CONSTRAINTS WITH PERMANENTLY-DEPLOYED TETHERS 

CONSTRAINTS: 
APPLICATION:

ORBIT 
BASICS

TETHER 
DYNAMICS

TETHER 
PROPERTIES

TETHER 
OPERATIONS 

All types Aero. drag Libration Degradation, Recoil & orbit 
pmeteoroids & changes after 
debris impact, tether break 

Electrodynamic Misc changes Plasma High-voltage 
in orbit disturbances insulation 

Aerodynamic Tether drag 
& heating 

Beanstalk Tether mass; Consequences 
(Earth) debris impact of failure 

Gravity Use: 
Hanging Libr-sensitive <.1	 gee only. 
Spinning Docking awkward

139	 PRECEDING PAGE BLANK NOT FILMED 



4.3 Orbit Equations and Data 

4.3.1 Orbits and Orbital Perturbations 

KEY POINTS Basic orbit nomenclature & equations are needed frequently in following pages. 
Comparison of tether & rocket operations requires orbit transfer equations. 

The figures and equations at right are a summary of the aspects of orbital 
mechanics most relevant to tether applications analysis. For more complete 
and detailed treatments and many of the derivations, consult refs 1-3. 

The first equation in the box is known as the Vis Viva formulation, and to 
the right of it is the equation for the mean orbital angular rate, n. Much of 
the analysis of orbit transfer AVs and tether behavior follows from those two 
simple equations. Some analyses require a close attention to specific angular 
momentum, h, so an expression for h (for compact objects) is also given here. 

In general, six parameters are needed to completely specify an orbit. Various 
parameter sets can be used (e.g., 3 position coordinates & 3 velocity vectors). 
The six parameters listed at right are commonly used in orbital mechanics. 
Note that when i0, Li becomes indeterminate (and unnecessary); similarly with 
w when e=0. Also, i &(Lare here referenced to the central body's equator, as 
is usually done for Low Earth Orbit (LEO). For high orbits, the ecliptic or 
other planes are often used. This simplifies calculation of 3rd body effects. 

The effects of small AVs on near-circular orbits are shown at right.. The rela-
tive effects are shown to scale: a V along the velocity vector has a maximum 

NOTES periodic effect 4 times larger than that of the same AV perpendicular to it 
(plus a secular effect in 9 which the others don't have). Effects of oblique 
or consecutive aYs are simply the sum of the component effects. Note that out-
of-plane Vs at a point other than a node also affect .1). 

For large Vs, the calculations are more involved. The perigee and apogee 
velocities of the transfer orbit are first calculated from the Vis Viva formu-
lation and the constancy of h. Then the optimum distribution of plane change 
between the two AVs can be computed iteratively, and the required total AV 
found. Typically about 90% of the plane change is done at CEO. 

To find how much a given in-plane tether boost reduces the required rocket V, 
the full calculation should be done for both the unassisted and the tether-
assisted rocket. This is necessary because the tether affects not only the 
perigee velocity, but also the gravity losses and the LEO/CEO plane change 
split. Each m/s of tether boost typically reduces the required rocket boost 
by .89 m/s (for hanging release) to .93 m/s (for widely librating release). 

Note that for large plane changes, and large radius-ratio changes even without 
plane changes, 3-impulse "bi-elliptic" maneuvers may have the lowest total V. 
Such maneuvers involve a boost to near-escape, a small plane and/or perigee-
adjusting V at apogee, and an apogee adjustment (by rocket or aerobrake) at 
the next perigee. In particular, this may be the best way to return aero-
braking OTVs from. CEO to LEO, if adequate time is available. 

1. A.E. Roy, Orbital Motion, Adam Hilger Ltd., Bristol, 1978. 
REFERENCES 2. Bate, Mueller, & White, Fundamentals of Astrodynamjcs, Dover Pub., 1971. 

3. M.H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, 1976. 

140



M	 M0-s-nt 

pa(1-e2) 

rapo a(1-i-e) r per= a(1-e)

Satellite 
Dosition 
at t=O 

Periapsis 
Direction 

Orbit & Orbit Transfer Equations 

n-7 

h ljij5	 r2O 	 rVcos 

Virc p/r
Pearth398601 km3/sec2 

VL	 2p/r	 -'x	 = G * Mass of x 

BASIC ORBIT EQUATIONS

I	 ORBITAL ELEMENTS 

a	 semi-major axis 
e	 eccentricity 
I	 inclination 

long, of asc. node 
w argument of periapsis 
M.,= position at epoch 

-. -f-- 
Ar 2( 1-cose)vh/n 

'sineL,V/n

J9(s1n8_3nt)Vh/rn 2(cosO_1AV/rn 

r0 =O ,

(in radians) 

N
-- 

Effects  of Small AVs on Near-Circular Orbits

(Lfl 0) 

1 EV2 = VGEO - VaPN\


1apo Vper rLEO/rGEO 

no plane 
change 

- VLEO 

per rLEO rLEO+rGEO

9O	 EZYG E 
4y1	 YLEO 

çe 
with plane change

- 
Total AV is minimized when sin LEO rLEp

Sifl YGEO rGEO 

Large Orbit Transfers (e.g., LEO—GEO) 
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4.3.2 Orbital Perturbations 
Differential nodal regression severely limits coplanar rendezvous windows. 

KEY POINTS Apsidal recession affects STS deboost requirements from elliptical orbits. 
Third bodies can change the orbit plane of high-orbit facilities. 

The geoid (earth's shape) is roughly that of a hydrostatic-equilibrium oblate 
ellipsoid, with a 296:297 polar: equatorial radius ratio. There are departures 
from this shape, but they are much smaller than the 1:297 oblateness effect 
and have noticeable effects only on geosynchronous and other resonant orbits. 

The focus here is on oblateness, because it is quite large and because it has 
large secular effects on fl and w for nearly all orbits. (Oblateness also 
affects n but this can usually be ignored in preliminary analyses.) As shown 
at right, satellites orbiting an oblate body are attracted not only to its 
center but also towards its equator. This force component imposes a torque on 
all orbits that cross the equator at an angle, and causes the direction of the 
orbital angular momentum vector to regress as shown. 

A is largest when i is small, but the plane change associated with a given dl 
varies with sin i. Hence the actual plane change rate varies with sini cosi, 
or sin2i, and is highest near 450• For near-coplanar rendezvous in LEO, 
the required out-of-plane AV changes by 78 sin 2i m/s for each phasing"lap". 
This is independent of the altitude difference (to first order), since phasing 
& differential nodal regression rates both scale with Aa. Hence even at best 
a rendezvous may require an out-of-plane .V of 39 m/s. At other times, out-of-
plane AVs of 2 sin i sin(1/2) Vcirc (=up to 2 Vcirc!) are needed. 

NOTES The linkage between phasing and nodal regression rates is beneficial in some 
cases: if an object is boosted slightly and then allowed to decay until it 
passes below the boosting object, the total AQ is nearly identical for both. 
Hence recapture need not involve any significant plane change. 

Apsidal recession generally has a much less dominant effect on operations, 
since apsidal adjustments (particularly of low-e orbits) involve much lower 
AVs than nodal adjustments. However, tether payload boosts may often be done 
from elliptical STS orbits, and perigee drift may be an issue. For example, 
OMS deboost requirements from an elliptical STS orbit are tonnes lower (and 
payload capability much higher) if perigee is near the landing site latitude 
at the end of the mission. Perigee motion relative to day/night variations 
is also important for detailed drag calculations, and for electrodynamic day-
night energy storage (where it smears out and limits the eccentricity-pumping 
effect of a sustained day-night motor-generator cycle). 

Just as torques occur when the central body is non-spherical, there are also 
torques when the satellite is non-spherical. These affect the satellite's spin 
axis and cause it to precess around the orbital plane at a rate that depends 
on the satellite's mass distribution and spin rate. 

In high orbits, central-body perturbations become less important and 3rd-body 
effects more important. In GEO, the main perturbations (-47 m/s/yr) are caused 
by the moon and sun. The figure at right shows how to estimate these effects, 
using the 3rd body orbital plane as the reference plane. 

1. A.E. Roy, Orbital Motion, Adam Huger Ltd., Bristol, 1978. 

REFERENCES 2. Bate, Mueller, & White, Fundamentals of Astrodynamics, Dover Pub., 197L 
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OBLATENESS CAUSES LARGE 
SECULAR CHANGES IN d1& W: 

(L:up to 1 rad./week in LEO 

up to 2 rad./week in LEO 

Orbital Perturbations 

Nodal Regression in LEO:	 1<90°	 i>9(' 

(a/re)3.5(1_e2)2 

(re -6378km) 

For sun-synchronous orbits: (11000±1I0) 

cos 1	 -.0988(a/re )3'5(1--e2)2

yr 

For coplanar low-AV rendezvous 
between 2 objects (e,eO, 1, i,), 
nodal coincidence intervals are: 

180 ( —a/re) 5 
tnc	 a fcos il km.yrs

Apsidal recession in LEO: 

63 .6 ( 2 - 2. 5 sini) rad/yr 

( a / re) 35 (1-e2) 

i<63.4°	 i63.14°	 1>63.11° 

Motion of the longitude of 
perigee with respect to the 
sun's direction ("noon") is: 

(.4) th+ 12 - 27/yr 

£fl1s3 -.75 cos 153 j /n. r3	 "Smeared out" 3rd body 

-/	 'I
0.. 

Third-Body Perturbations (non-resonant orbits) 
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4.3.3 Aerodynamic Drag 

Tether drag affects tether shape & orbital life; at. oxygen degrades tethers. 
KEY POINTS Out-of-plane drag component can induce out-of-plane tether libration. 

The main value of payload boosting by tether is the increased orbital life. 
Unboosted orbital life of space facilities is affected by tether operations. 

The figure at right shows the orbiter trolling a satellite in the atmosphere, 
as is planned for the 2nd TSS mission in the late 1980s. The tether drag 
greatly exceeds that on the end-masses and should be estimated accurately. 
The drag includes a small out-of-plane component that can cause Ø-libration. 

Tether drag is experienced over a range of altitudes, over which most of the 
terms in the drag equation vary: the air density /o, the airspeed Vrel, and 
the tether width & angle of attack. In free-molecular flow, C L is small, 
and CD (if based on A -L) is nearly constant at 2.2. (CD rises near grazing 
incidence, but then A. is low.) 

Only /o varies rapidly, but it varies in a way which lends itself to simple 
approximations. Empirical formulae have been developed by the author and are 
shown at right. They give values that are usually within 25% of ref. 1, which 
is still regarded as representative for air density as a function of altitude 
& exosphere temperature. These estimates hold only for,o>lE-14, beyond which 
helium & hydrogen dominate & the density scale height H increases rapidly. 

Note that over much of LEO, atomic oxygen is the dominant species. Hyperther-
NOTES	 mal impact of atomic oxygen on exposed surfaces can cause rapid degradation, 


and is a problem in low-altitude applications of organic-polymer tethers. 

The space age began in 1957 at a 200-yr high in sunspot count. A new estimate 
of mean solar cycle temperatures (at right, from ref. 2), is much lower than 
earlier estimates. Mission planning requires both high & mean estimates for 
proper analysis. Ref. 2 & papers in the same volume discuss models now in use. 

If the tether length L is <<H, the total tethered system drag can be estimated 
from the total AL & the midpoint V &p. If L>>H, the top end can be neglected, 
the bottom calculated normally, and the tether drag estimated from l•l,Obottom 
* tether diameter * H * V2 rell with H & V rel evaluated one H above the bottom 
of the tether. For L between these cases, the drag is bounded by these cases. 

As shown at right, the orbital life of more compact objects (such as might be 
boosted or deboosted by tether) can be estimated analytically if Tex is known. 
For circular orbits with the same r, Vrel &,3 both vary with i, but these 
variations tend to compensate & can both be ignored in first-cut calculations. 

The conversion of elliptical to "equal-life" circular orbits is an empirical 
fit to an unpublished parametric study done by the author. It applies when 
apsidal motions relative to the equator and relative to the diurnal bulge are 
large over the orbital life; this usually holds in both low & high-i orbits. 
For a detailed study of atmospheric drag effects, ref. 3 is still useful. 

1. U.S. Standard Atmosphere Supplements, 1966. ESSA/NASA/USAF, 1966. 
2. K.S.W Champion, "Properties of the Mesosphere and Thermosphere and 

REFERENCES	 Comparison with CIRA 72", in The Terrestrial Upper Atmosphere, Champion 
and Roemer, ed.; Vol 3, #1 of Advances in Space Research, Pergamon, 1983. 

3. D.G. King-Hele, Theory of Satellite Orbits in an Atmosphere, Butterworths, 
London, 1964.
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4.3.4 Thermal Balance 

Aerothermal heating of tethers is severe at low altitudes (<120 km'). 
KEY POINTS Tether temperature affects strength, toughness, & electrical conductivity. 

Extreme thermal cycling may degrade pultruded composite tethers. 
"View factors" are also used in refined micrometeoroid risk calculations. 

Preliminary heat transfer calculations in space are often far simpler than 
typical heat transfer calculations on the ground, since the complications 
introduced by convection are absent. However the absence of the "clamping" 
effect of large convective couplings to air or liquids allows very high or 
low temperatures to be reached, and makes thermal design important. 

At altitudes below about 140 km in LEO, aerodynamic heating is the dominant 
heat input on surfaces facing the ram direction. The heating scales with,o 
as long as the mean free path ), is much larger than the object's radius. It 
is about equal to the energy dissipated in stopping incident air molecules. 
In denser air, shock & boundary layers develop. They shield the surface from 
the incident flow and make Q rise slower asp increases further. (See ref 1.) 

Because tethers are narrow, they can be in free molecular flow even at 100 km, 
and may experience more severe heating than the (larger) lower end masses do. 
Under intense heating high temperature gradients may occur across non-metallic 
tethers. These gradients may cause either overstress or stress relief on the 
hot side, depending on the sign of the axial thermal expansion coefficient. 

NOTES At higher altitudes the environment is much more benign, but bare metal (low-
emittance) tethers can still reach high temperatures when resistively heated 
or in the sun, since they radiate heat poorly. Silica, alumina, or organic 
coatings >1 pm thick can increase emittance and hence reduce temperatures. 
The temperature of electrodynamic tethers is important since their resistance 
losses (which may be the major system losses) scale roughly with Tabs. 

For a good discussion of solar, albedo, and longwave radiation, see ref. 2. 
The solid geometry which determines the gains from these sources is simple but 
subtle, and should be done carefully. Averaged around a tether, earth view-
factors change only slowly with altitude & attitude, and are near .3 in LEO. 

Surface property changes can be an issue in long-term applications, due to 
the effects of atomic oxygen, UV & high-energy radiation, vacuum, deposition 
of condensible volatiles from nearby surfaces, thermal cycling, etc. Hyper-
thermal atomic oxygen has received attention only recently, and is now being 
studied in film, fiber, and coating degradation experiments on the STS & LDEF. 

Continued thermal cycling over a wide range (such as shown at bottom right) 
may degrade composite tethers by introducing a maze of micro-cracks. Also, 
temperature can affect the strength, stiffness, shape memory, and toughness of 
tether materials, and hence may affect tether operations and reliability. 

1. R.N. Cox & L.F. Crabtree, Elements of Hypersonic Aerodynamics, The English 
Universities Press Ltd, London, 1965. See esp. Ch 9, "Low Density Effects" 

REFERENCES 2. F.S. Johnson, ed., Satellite Environment Handbook, Second Edition, Stanford 
University Press, 1965. See chapters on solar & earth thermal radiation. 

3. H.C. Hottel, 'Radiant Heat Transmission," Chapter 4 of W.H. McAdams, HEAT 
TRANSMISSION, 3rd edition, McGraw-Hill, New York, 1954, pp. 55-125. 
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4.3.5 Micrometeorojds and Debris 

KEY POINTS Micrometeoroids can sever thin tethers & damage tether protection/ insulation. 
Orbiting debris can sever tethers of any diameter. 

At the start of the space age, estimates of . meteoroid fluxes varied widely. 
Earth was thought to have a dust cloud around it, due to misinterpretation of 
data such as microphone noise caused by thermal cycling in spacecraft. By the 
late 1960s most meteoroids near earth were recognized to be in heliocentric 
rather than geocentric orbit. The time-averaged flux is mostly sporadic, but 
meteor showers can be dominant during their occurrence. 

There is a small difference between LEO and deep-space fluxes, due to the 
focusing effect of the earth's gravity (which increases the velocity & flux), 
and the partial shielding provided by the earth & "sensible" atmosphere. For 
a typical meteoroid velocity of 20 km/see, these effects combine to make the 
risk vary as shown at right in LEO, GEO, and beyond. The picture of a metal 
plate after hypervelocity impact is adapted from ref. 3. 

The estimated frequency of sporadic meteoroids over the range of interest for 
most tether applications is shown by the straight line plot at right, which is 
adapted from ref. 4 & based on ref. 1. (Ref 1 is still recommended for design 

NOTES purposes.) For masses<1E-6 gm (c15 mm diam. at an assumed density of .5), the 
frequency is lower than an extension of that line, since several effects clear 
very small objects from heliocentric orbits in geologically short times. 

Over an increasing range of altitudes and particle sizes in LEO, the main 
impact hazard is due not to natural meteoroids but rather to man-made objects. 
The plots at right, adapted from refs 4 & 5, show the risks presented by the 
5,000 or so objects tracked by NORAD radars (see ref. 6). A steep "tail" in 
the 1995 distribution is predicted since it is likely that several debris-
generating impacts will have occurred in LEO before 1995. Such impacts are 
expected to involve a 4-40 cm object striking one of the few hundred largest 
objects and generating millions of small debris fragments. 

Recent optical detection studies which have a size threshold of about 1 cm 
indicate a population of about 40,000 objects in LEO. This makes it likely 
that debris-generating collisions have already occurred. Studies of residue 
in small surface pits on the shuttle and other objects recovered from LEO 
indicate that they appear to be due to titanium, aluminum, and paint fragments 
(perhaps flaked off satellites by micrometeoroid hits). Recovery of the Long 
Duration Exposure Facility (LDEF) later this year should improve this database 
greatly, and will provide data for LEO exposure area-time products comparable 
to those in potential long-duration tether applications. 

1. Meteoroid Environment Model-1969 [Near Earth to Lunar Surface], NASA 
SP-8013, March 1969. 

2. Meteoroid Environment Model-1970 [Interplanetary and Planetary], NASA 
REFERENCES	 SP-8038, October 1970. 

3. Meteoroid Damage Assessment, NASA SP-8042, May 1970. Shows impact effects. 
4. D.J. Kessler, "Sources of Orbital Debris and the Projected Environment for 

Future Spacecraft", in J. of Spacecraft & Rockets, Vol 18 #4, Jul-Aug 1981. 
5. D.J. Kessler, Orbital Debris Environment for Space Station, JSC-20001, 1984. 
6. CLASSY Satellite Catalog Compilations. Issued monthly by NORAD/J5YS, 

Peterson Air Force Base, CO 80914. 
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4.4 Tether Dynamics and Control 

4.4.1 Gravity Gradient Effects 

"Microgee" environments are possible only in small regions -5 m) of a LEO facility. KEY POINTS
Milligee-level gravity is easy to get & adequate for propellant settling, etc. 

The figure at right shows the reason for gravity-gradient effects. The long 
tank-like object is kept aligned with the local vertical, so that the same end 
always faces the earth as it orbits around it. If one climbs from the bottom 
to the top, the force of gravity gradually decreases and the centrifugal force 
due to orbital motion increases. Those forces cancel out Only at one altitude, 
which is (nearly but not exactly) the altitude of the vehicle's center of mass. 

At other locations an object will experience a net force vertically away from 
the center of mass (or a net acceleration, if the object is allowed to fall). 
This net force is referred to as the "gravity-gradient force." (But note that 
1/3 of the net force is actually due to a centrifugal force gradient!) Exact 
and approximate formulas for finding the force on an object are given at right. 

The force occurs whether or not a tether is present, and whether or not it is 
desirable. Very-low-acceleration environments, which are needed for some types 
of materials processing and perhaps for assembling massive structures, are only 

NOTES available over a very limited vertical extent, as shown at right. Putting a 
vehicle into a slow retrograde spin can increase the "height" of this low-gee 
region, but that then limits the low-gee region's other in-plane dimension. 

Since gravity gradients in low orbits around various bodies vary with 1/r3, 
the gradients are independent of the size of the body, and linearly dependent 
ion its density. Hence the gradients are highest (.3-.4 milligee/km) around 
the inner planets and Earth's moon, and 60-80% lower around the outer planets. 
In higher orbits, the effect decreases rapidly (to L6 microgee/km in GEO). 

The relative importance of surface tension and gravity determines how liquids 
behave in a tank, and is quantified with the Bond number, Bo=,oar 2/0 If B 0>10, 
liquids will settled but higher values (Bo=50) are proposed as a conservative 
design criterion. h On the other hand, combining a small gravity gradient 
effect (Bo<10) with minimal surface-tension fluid-management hardware may be 
more practical than either option by itself. Locating a propellant depot at 
the end of a power-tower structure might provide an adequate gravity-gradient 
contribution. If higher gravity is desired, but without deploying the depot, 
another option is to deploy an "anchor" mass on a tether, as shown at right. 

Many nominally "zero-gee" operations such as electrophoresis may actually be 
compatible with useful levels of gravity (i.e., useful for propellant settling, 
simplifying hygiene activities, keeping objects in place at work stations, etc). 
This needs to be studied in detail to see what activites are truly compatible. 

1. D. Arnold, "General Equations of Motion," Appendix A of Investigation of 
Electrodynamic Stabilization and Control of Long Orbiting Tethers, Interim 

REFERENCES	 Report for Sept 1979 - Feb 1981, Smithsonian Astrophys. Observ., March 1981. 
2. K.R. Kroll, "Tethered Propellant Resupply Technique for Space Stations," 

IAF-84-442, presented at the 35th IAF Congress, Lausanne Switzerland, 1984. 
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4.4.2 Dumbbell Libration in Circular Orbit 

Libration periods are independent of length, but increase at large amplitude. 
KEY POINTS Out-of-plane libration can be driven by weak forces that have a 2n component. 

Tethers can go slack if Bmax>65 0 or Omax>600. 

The two figures at right show the forces on a dumbbell in circular orbit which 
has been displaced from the vertical, and show the net torque on the dumbbell, 
returning it towards the vertical. The main difference between the two cases 
is that the centrifugal force vectors are radial in the in-plane case, and 
parallel in the out-of-plane case. This causes the net force in the out-of-
plane case to have a smaller axial component and a larger restoring component, 
and is why 0-libration has a higher frequency than 8-libration. 

Four aspects of this libration behavior deserve notice. First, the restoring 
forces grow with the tether length, so libration frequencies are independent 
of the tether length. Thus tether systems tend to librate "solidly", like a 
dumbbell, rather than with the tether trying to swing faster than the end-masses 
as can be seen in the chain of a child's swing. (This does not hold for very 
long tethers, since the gravity gradient itself varies.) For low orbits around 
any of the inner planets or the moon, libration periods are roughly an hour. 

Second, tethered masses would be in free-fall except for the tether, so the 
sensed acceleration is always along the tether (as shown by the stick-figures). 

NOTES Third, the axial force can become negative, for 0>60 0 or near the ends of 
retrograde in-plane librations >65.90. This may cause problems unless the 
tether is released, or retrieved at an adequate rate to prevent slackness. 

And fourth, although 9-libration is not close to resonance with any significant 
çlriving force, Ø-libration is in resonance with several, such as out-of-plane 
components of aerodynamic forces (in non-equatorial orbits that see different 
air density in northward and southward passes) or electrodynamic forces (if 
tether currents varying at the orbital frequency are used). The frequency droop 
at large amplitudes (shown at right) sets a finite limit to the effects of weak 
but persistent forces, but this limit is quite high in most cases. 

The equations given at right are for an essentially one-dimensional structure, 
with one principal moment of inertia far smaller than the other two: A<<B<C. 
If A is comparable to B & C, then the 9-restoring force shrinks with (B-A)/C, 
and the 6-libration frequency by Sqrt((B-A)/C). Another limitation is that a 
coupling between 0 & 9 behavior (see ref. 1) has been left out. This coupling 
is caused by the variation of end-mass altitudes twice in each 0-libration. 
This induces Coriolis accelerations that affect 8. This coupling is often 
unimportant, since 4n is far from resonance with 1.73n. 

Libration is referenced to the local vertical, and when a dumbbell is in an 
eccentric orbit, variations in the orbital rate cause librations which in 
turn exert periodic torques on an initially uniformly-rotating object. 
In highly eccentric orbits this can soon induce tumbling.Z 

1. D. Arnold, "General Equations of Motion," Appendix A of Investigation of 
Electrodynamic Stabilization and Control of Long Orbiting Tethers, Interim 

REFERENCES	 Report for Sept 1979—Feb 1981, Smithsonian Astrophys. Observ., March 1981. 
2. P.A. Swan, "Dynamics & Control of Tethers in Elliptical Orbits," IAF-84-361, 

presented at the 35th lAP Congress, Lausanne, Switzerland, October 1984. 
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4.4.3 Tether Control Strategies 

Open-loop control is adequate for deployment; full retrieval requires feedback. 

KEY POINTS Tension laws can control 9 & -1ibration plus tether oscillations. 


Many other options exist for libration, oscillation, & final retrieval control. 

The table at right shows half a dozen distinct ways in which one or more aspects 
of tethered system behavior can be controlled. In general, anything which can 
affect system behavior (and possibly cause control problems) can be part of the 
solution, if it itself can be controlled without introducing other problems. 

Thus, for example, stiff tethers have sometimes been considered undesirable, 
because the stiffness competes with the weak gravity-gradient forces near the 
end of retrieval. However, if the final section of tether is stiff AND nearly 
straight when stress-free (rather than pig-tail shaped), then "springy beam" 
control laws using a steerable boom tip might supplement or replace other laws 
near the end of retrieval. A movable boom has much the same effect as a stiff 
tether & steerable boom tip, since it allows the force vector to be adjusted. 

The basic concepts behind tension-control laws are shown at right. Libration 
damping is done by paying out tether when the tension is greater than usual 

NOTES and retrieving it at other times. This absorbs energy from the libration. 
As shown on the previous page, in-plane libration causes large variations in 
tension (due to the Coriolis effect), so "yoyo" maneuvers can damp in-plane 
librations quickly. Such yoyo manuevers can be superimposed on deployment and 
retrieval, to allow large length changes (>4:1) plus large in-plane libration 
damping (or initiation) in less than one orbit, as proposed by Swet) 

Retrieval laws developed for the TSS require more time than Ref. 1, because they 
also include damping of out-of-plane libration built up during stationkeeping. 
Rupp developed the first TSS control law in 1975;2 much of the work since then 
is reviewed in (3). Recent TSS control concepts combine tension and thrust 
control laws, with pure tension control serving as a backup in case of thruster 
failure.. 4 Axial thrusters raise tether tension when the tether is short, while 
others control yaw & damp out-of-plane libration to allow faster retrieval. 

A novel concept which in essence eliminates the final low-tension phase of 
retrieval is to have the end mass climb up the tether. 5 Since the tether 
itself remains deployed, its contribution to gravity-gradient forces and stab-
ilization remains. The practicality of this will vary with the application. 

1. C.J. Swet, "Method for Deploying and Stabilizing Orbiting Structures", 
U.S. Patent #3,532,298, October 6, 1970. 

2. C.C. Rupp, A Tether Tension Control Law for Tether Subsatellites Deployed 
Along Local Vertical, NASA TM X-64963, MSFC, September 1, 1975. 

3. V.J. Modi, Geng Chang-Fu, A.K. Misra, and Da Ming Xu, "On the Control 
REFERENCES	 of the Space Shuttle Based Tethered Systems," Acta Astronautica, Vol. 9, 

No. 6-7, pp. 437-443, 1982. 
4. A. K. Banerjee and T.R. Kane, "Tethered Satellite Retrieval with Thruster 

Augmented Control," AIAA 82-1-21, presented at the AIAA/AAS Astrody-
namics Conference, San Diego, Calif., 1982. 

5. T.R. Kane, "A New Method for the Retrieval of the Shuttle-Based Tethered 
Satellite," J. of the Astronaut. Sci., Vol 32, No. 3, July-Sept. 1984. 
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Tether Control Strategies 
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4.4.4 Momentum Transfer Without Release 

Tethers merely redistribute angular momentum; they do not create it. 
KEY POINTS Changes in tether length, libration, and spin all redistribute momentum. 

Momentum transfer out-of-plane or in deep space is possible but awkward. 

The two figures at right show two different tether deployment (and retrieval) 
techniques. In both cases, the initial deployment (which is not shown) is 
done with RCS burns or a long boom. In the case at left, the tether is paid 
out under tension slightly less than the equilibrium tension level for that 
tether length. The tether is slightly tilted away from the vertical during 
deployment, and librates slightly after deployment is complete. 

In the other case, after the initial near-vertical separation (to about 2% of 
the full tether length), the two end masses are allowed to drift apart in near-
free-fall, with very low but controlled tension on the tether. Just under one 
orbit later, the tether is almost all deployed and the range rate decreases to 
a minimum (due to orbital mechanics). RCS burns or tether braking are used to 
cushion the end of deployment and prevent end mass recoil. Then the tether 
system begins a large-amplitude prograde swing towards the vertical. 

In both cases, the angular momentum transferred from one mass to the other is 
simply, as stated in the box, the integral over time of the radius times the 
horizontal component of tether tension. In one case, transfer occurs mainly 
during deployment; in the other, mainly during the libration after deployment. 

NOTES	 In each case, momentum transfer is greatest when the tether is vertical, since 
the horizontal component of tether tension changes sign then. 

An intermediate strategy —deployment under moderate tension—has also been 
investigated. 1 However, this technique results in very high deployment 
velocities and large rotating masses. It also requires powerful brakes and 
a more massive tether than required with the other two techniques. 

As discussed under Tether Control Strategies, changing a tether's length in 
resonance with variations in tether tension allows pumping or damping of libra-
tion or even spin. Due to Coriolis forces, in-plane libration and spin cause 
far larger tension variations than out-of-plane libration or spin, so in-plane 
behavior is far easier to adjust than out-of-plane behavior. Neglecting any 
parasitic losses in tether hysteresis & the reel motor, the net energy needed 
to induce a given libration or spin is simply the system's spin kinetic energy 
relative to the local vertical, when the system passes through the vertical. 

Two momentum transfer techniques which appear applicable for in-plane, out-of-
plane, or deep-space use are shown at right. The winching operation can use 
lighter tethers than other tethered- momentum_trsfer techniques, but requires 
a very powerful deployer motor. The tangential AV simply prevents a collision. 

The spin-up operation (proposed by Harris Mayer) is similar to the winching 
operation. It uses a larger tangential V, a tether with straight and tapered 
sections, and a small motor. Retrieval speeds up the spin by a factor of L. 
Surprisingly, the long tapered section of tether can be less than half as 
massive as the short straight section that remains deployed after spin-up. 

REFERENCE 1. J. Tschirgi, "Tether-Deployed SSUS-A, report on NASA Contract NAS8-32842, 
McDonnell Douglas, April 1984.
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4.4.5 Orbit Transfer by Release or Capture 
The achievable orbit change scales with the tether length (as long as r<< r). 


KEY POINTS Retrograde -lib ration releases are inefficient, but allow concentric orbits. 

Apogee & perigee boosts have different values in different applications.

Tethered capture can be seen as a time-reversal of a tether release operation. 

The figures to the right show the size of the orbit changes caused by various 
tether operations. When released from a vertical tether, the end masses are 
obviously one tether length apart in altitude. The altitude difference 1/2 
orbit later, varies with the operation but is usually far larger. The 
linear relationship shown becomes inaccurate when r approaches r. Tethered 
plane changes are generally limited to a few degrees and are not covered here. 

Tether release leaves the center-of-mass radius at each phase angle roughly 
unchanged: if the upper mass is heavier, then it will rise less than the lower 
mass falls, and vice-versa. Note that the libration amplitude, Smax, is taken 
as positive during prograde libration & negative during retrograde libration. 
Hence retrograde libration results in Ar < 7L. In particular, the pre-release 
& post-release orbits will all be concentric if Bmax = _600. But since 
methods of causing _600 librations usually involve +600 librations (which 
allow much larger boosts by the same tether), prograde releases may usually be 
preferable unless concentric orbits are needed or other constraints enter in. 

The relative tether length, mass, peak tension, and energy absorbed by the 
NOTES deployer brake during deployment as a function of (prograde) libration angle 

are all shown in the plot at right. Libration has a large effect on brake 
energy. This may be important when retrieval of a long tether is required, 
after release of a payload or after tethered-capture of a free-flying payload. 

The double boost-to-escape operation at right was proposed by A. Cutler. It 
is shown simply as an example that even though momentum transfer is strictly a 
"zero sum game", a tethered release operation can be a "WIN-win game" (a large 
win & a small one). The small win on the deboost-end of the tether is due to 
the reduced gravity losses 1/2 orbit after release, which more than compensate 
for the deboost itself. Another example is that deboosting the shuttle from a 
space station can reduce both STS-deboost & station-reboost requirements. 

Rendezvous of a spacecraft with the end of a tether may appear ambitious, but 
with precise relative-navigation data from GPS (the Global Positioning System) 
it may not be difficult. The relative trajectories required are simply a time-
reversal of relative trajectories that occur after tether release. Approach to 
a hanging-tether rendezvous is shown at right. Prompt capture is needed with 
this technique: if capture is not achieved within a few minutes, one should 
shift to normal free-fall techniques. Tethered capture has large benefits in 
safety (remoteness) and operations (no plume impingement; large fuel savings). 
The main hazard is collision, due to undetected navigation or tether failure. 

1. G. Colombo, "Orbital Transfer & Release of Tethered Payloads," SAO report 
on NASA Contract NAS8-33691, March 1983. 

2. W.D. Kelly, "Delivery and Disposal of a Space Shuttle External Tank to Low 
REFERENCES	 Earth Orbit," J. of the Astronaut. Sci., Vol. 32, No. 3, July-Sept 1984. 

3. J.A. Carroll, "Tether-Mediated Rendezvous," report to Martin Marietta on 
Task 3 of contract RH3-393855, March 1984. 

4. J.A. Carroll, "Tether Applications in Space Transportation", IAF 84-438, at 
the 35th IAF Congress, Oct 1984. To be published in ACA ASTRONATJTICA. 
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4.4.6 Energy and Angular Momentum Balance 

Tether operations cause higher-order repartitions of energy & angular momentum. 

KEY POINTS First-order approximations that neglect these effects may cause large errors.


Extremely long systems have strange properties such as positive orbital energy. 

The question and answer at right are deceptively simple. The extent to which 
this is so, and the bizarre effects which occur in extreme cases, can be seen 
in the 3 graphs at right. At top, deploying & retrieving two masses on a very 
long massless tether changes not only the top & bottom orbital radii but also 
that of the CM. In addition, the free-fall location drops below the CM. Other 
key parameter changes under the same conditions are plotted underneath. 

Note that when the tether length exceeds about 30% of the original orbital 
radius, the entire system lies below the original altitude. Also, at a radius 
ratio near L95:1, the maximum tether length compatible with a circular orbit 
is reached. At greater lengths (and the initial amount of angular momentum), 
no circular orbit is possible at any altitude. 

Tether retrieval at the maximum-length point can cause the system to either 
rise or drop, depending on the system state at that time. If it continues to 
drop, there is a rapid rise in tether tension, and the total work done by the 
deployer quickly becomes positive. This energy input eventually becomes large 
enough (at 2.89:1) to even make the total system energy positive. The system 
is unstable beyond this point: any small disturbance will grow and can cause 

NOTES	
the tether system to escape from the body it was orbiting. (See ref. 2.) 

The case shown is rather extreme: except for orbits around small bodies such 
as asteroids, tethers either will be far shorter than the orbital radius, or 
will greatly outweigh the end masses. Either change greatly reduces the size 
of the effects shown. The effects on arbitrary structures can be calculated 
using the equations listed at right, which are based on a generalization of 
the concept of "moments" of the vertical mass distribution. Changes in tether 
length or mass distribution leave h unchanged, so other parameters (including 
rem, n, and E) must change. (For short tethers, the changes scale roughly 
with the square of the system's radius of gyration.) In many cases different 
conditions are most easily compared by first finding the orbital radius that 
the system would have if its length were reduced to 0, rLO. 

The mechanism that repartitions energy and angular momentum is that length 
changes cause temporary system displacements from the vertical. This causes 
both torques and net tangential forces on the system, which can be seen by 
calculating the exact net forces and couples for a non-vertical dumbbell. 
The same effect occurs on a periodic basis with librating dumbbells, causing 
the orbital trajectory to depart slightly from an elliptical shape. 

Other topics which are beyond the scope of this guidebook but whose existence 
should be noted are: eccentricity changes due to deployment, orbit changes due 
to resonant spin/orbit coupling, and effects of 2- & 3-dimensional structures. 

1. G. Colombo, M. Grossi, D. Arnold, & Al. Martinez-Sanchez, "Orbital Transfer 

REFERENCES	 and Release of Tethered Payloads," continuation of NAS8-33691, final report 
for the period Sept 1979—Feb 1983, Smithsonian Astrophysical Observatory, 
March 1983. (in particular, see the table on page 21) 

2. D. Arnold, "Study of an Orbiting Tethered Dumbbell System Having Positive 
Orbital Energy," addendum to final report on NAS8-35497, SAO, Feb 1985. 
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Energy & Momentum Balance 
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of the dumbbell spin 
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4.5 Tether Material Consideration 

4.5.1 Tether Strength and Mass 

KEY POINTS Tether strength/weight ratio constrains performance in ambitious operations. 
Required tether mass is easily derivable from deltaV and payload mass. 

Usable specific strength can be expressed in various ways. Three ways are shown 
at right. Ye, Lc, and Llg are here defined in terms of a typical design stress 
(new/m2) rather than the (higher) ultimate stress. Including the safety factor 
here streamlines the subsequent performance calculations. Higher safety factors 
are needed with non-metals than with metals since non-metals are often more var-
iable in their properties, brittle, abrasion-sensitive, and/or creep-sensitive. 
A safety factor of 4 (based on short-term fiber strength) is typical for Keviar, 
but the most appropriate safety factor will vary with the application. 

The "characteristic velocity," Ye, is the most useful parameter in tether-
boost calculations, because the tether mass can be calculated directly from 
V/Vc, independently of the orbit, and nearly independently of the operation. 

The table at the bottom, which lists tether/rocket combinations that have the 
lowest life-cycle mass requirements, holds whenever kVc=l km/sec & Isp =350 sec. 

The characteristic length Lc is useful in hanging-tether calculations. It varies 
with the orbital rate n. (The simple calculation given assumes L<<r; if this 

NOTES is not true, l/r effects enter in, and calculations such as those used in refs 
3-5 must be used.) The safe 1-gee length Lig is mainly useful in terrestrial 
applications, but is included since specific strength is often quoted this way. 
(Note that Vc and Lc vary with Sqrt(strength), and Lig directly with strength.) 

The specific modulus is of interest because it determines the speed of sound 
in the tether (Cthe speed of longitudinal waves), the strain under design load 
(AL /Lz{Vc/C}2), & the recoil speed after failure under design load (= Vc2/C). 

Tether mass calculations are best done by considering each end of the tether 
separately. If Mpl>>Mp2, then Mtl can be neglected in preliminary calculations. 

Du Pont's Keviar is the highest-specific--strength fiber commercially available. 
Current R&D efforts on high-performance polymers indicate that polyester can 
exhibit nearly twice the strength of Kevlar. 2 Two fiber producers have already 
announced plans to produce polymers with twice the specific strength of Keviar. 

In the long run, the potential may be greater with inorganic fibers like SiC 
& graphite. Refs. 3-5 focus on the requirements of "space elevators." They 
discuss laboratory tests of single-crystal fibers and suggest that 10-fold 
improvements in specific strength (or 3-fold in Vc & Lc) are conceivable. 

1. Characteristics and Uses of Keviar 49 Aramid High Modulus Organic Fiber. 
available from Du Pont's Textile Fibers Department, 1978. 

2. G. Graff, "Superstrong Plastics Challenge Metals," High Technology magazine, 
February 1985, pp. 62-63. 

REFERENCES 3. J. Isaacs, H. Bradner, G.Backus, and A.Vine, "Satellite Elongation into a 
True"Skyhook"; a letter to Science, Vol. 151, pp. 682-683, Feb 11, 1966. 

4. J. Pearson, "The Orbital Tower: a Spacecraft Launcher Using the Earth's 
Rotational Energy," Acta- Astronautica, Vol.2, pp. 785-799, Pergamon, 1975. 

5. H. Moravec, "A Non-Synchronous Orbital Skyhook," J. of the Astronautical 
Sciences, Vol. XXV, No. 4, pp. 307-322, Oct-Dec 1977. 
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4.5.2 Tether Impact Hazards 

Micrometeoroids can sever thin tethers & damage tether protection/ insulation. 
KEY POINTS Orbiting debris (or other tethers) can sever tethers of any diameter. 

Debris could impact an Earth-based "Space Elevator" over once per year. 

Sporadic micrometeoroids are usually assumed to have an typical density of 
about .5 and a typical impact velocity in LEO of approximately 20 km/sec.1 
At impact speeds above the speed of sound, solids become compressible and the 
impact shock wave has effects like those of an explosion. For this reason, the 
risk curve assumes that if the EDGE of an adequately large meteoroid comes close 
enough to the center of the tether (within 45 0 or .35 Dt), failure will result. 

Experiments done by Martin Marietta on TSS candidate materials have used glass 
projectiles fired at 6.5 km/see, below the (axial) speed of sound in Keviar. 
Two damaged tethers from those tests are shown at right. The scaling law used 
(p 5 V 67 ) indicates that this is representative of orbital conditions, 
but that law (used for impacts on sheet metal) may not apply to braided fibers. 

For tethers much thicker than 10 mm or so (depending on altitude), the risk 
does not go down much as Dt increases, because even though the micrometeoroid 

NOTES risk still decreases, the debris risk (which INCREASES slightly with Dt) begins 
to dominate. As with micrometeoroids, the tether is assumed to fail if any 
part of the debris passes within .35 Dt of the center of the tether. 

The debris risk at a given altitude varies with the total debris width at that 
altitude. This was estimated from 1983 CLASSY radar-cross-secton (RCS) data 
by simply assuming that W = Sqrt(RCS) and summing Sqrt(RCS) over all tracked 
objects in LEO. 6 This underestimates W for objects with appendages, and over-
estimates it for non-librating elongated objects without appendages. 

CLASSY RCS data are expected to be accurate for RCS > 7 m2. The 700 objects 
with RCS > 7 m2 account for 3 km of the total 5 km width, so errors with smaller 
objects are not critical. Small untracked objects may not add greatly to the 
total risk: 40,000 objects averaging 2 cm wide would increase the risk to a 1-em 
tether by only 20%. W was assumed independent of altitude, so the distribution 
of risk with altitude could be estimated by simply scaling Figure 1 from Ref. 4. 

As shown at right, debris impact with a space elevator could be expected more 
than once per year at current debris populations. The relative density at 00 
latitude was estimated from data on pp. 162-163 of ref. 6. 

Similar calculations can be made for two tethers in different orbits at the same 
altitude. If at least one is spinning or widely, librating, the mutual risks can 
exceed .1 cut/km.yr. This makes "tether traffic control" essential. 

1. Meteoroid Environment Model-1969 [Near Earth to Lunar Surface], NASA 
SP-8013, March 1969. 

2. Meteoroid Environment Model-1970 [Interplanetary and Planetary], NASA 
REFERENCES	 SP-8038, October 1970. 

3. Meteoroid Damage Assessment, NASA SP-8042, May 1970. (Shows impact effects) 
4. D.J. Kessler, "Sources of Orbital Debris and the Projected Environment for 

Future Spacecraft", in J. of Spacecraft & Rockets, Vol 18 #4, Jul-Aug 1981. 
5. D.J. Kessler, Orbital Debris Environment for Space Station, JSC

7 20001, 1984. 6. CLASSY Satellite Catalog Compilations as of 1 Jan 1983, NORAD/J5 ys, 1983. 
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4.6 Electrodynamic Tethers 

4.6.1 Interactions with Earth's Magnetic Field and Plasma 

KEY POINTS Tether (& other) resistance can limit the output of electrodynamic tethers. 
Electron collection methods & effectiveness are important—and uncertain. 

Since the publication of ref. 1, 20 years ago, electrodynamic tether proposals 
and concepts have been a frequent source of controversy, mainly in these areas: 

1. What plasma instabilities can be excited by the current? 
2. What is the current capacity of the plasma return loop? 
3. What is the best way to collect electrons from the plasma? 

The first Tethered Satellite mission may do much to answer these questions. 
The discussion below and graphics at right merely seek to introduce them. 

The current flowing through an electrodynamic tether is returned in the 
surrounding plasma. This involves electron emission, conduction along the 
geomagnetic field lines down to the lower ionosphere, cross-field conduction 
by collision with neutral atoms, and return along other field lines. 

The tether current causes a force on the tether (and on the field) perpendicu-
lar to both the field and the tether (horizontal, if the tether is vertical). 

N	 Motion of the tether through the geomagnetic field causes an EMF in the tether. 
NOTES This allows the tether to act as a generator, motor, or self-powered ultra-low-

frequency broadcast antenna. 2 The motion also causes each region of plasma 
to experience only a short pulse of current, much as in a commutated motor. 

Based on experience with charge neutralization of spacecraft in high orbit, 
it has been proposed that electrons be collected by emitting a neutral plasma 
from the end of the tether, to allow local cross-field conduction. 3 In 
GEO, the geomagnetic field traps a plasma in the vicinity of the spacecraft, 
and "escape" along field lines may not affect its utility. This may also hold 
in high-inclination orbits in LEO. But in low inclinations in LEO, any emitted 
plasma might be promptly wiped away by the rapid motion across field lines. 

A passive collector such as a balloon has high aerodynamic drag, but a end-on 
sail can have an order of magnitude less drag. The electron-collection sketch 
at bottom right is based on a preliminary analysis by W. Thompson. 5 This 
analysis suggests that a current moderately higher than the electron thermal 
current (Ne *200 km/sec) might be collected on a surface normal to the field. 
This is because collecting electrons requires that most ions be reflected away 
from the collection region as it moves forward. This pre-heats and densifies 
the plasma ahead of the collector. The voltage required for collection is just 
the voltage needed to repel most of the ions, about 12 V. 

1. S.D. Drell, H.M. Foley, & M.A. Ruderman, "Drag and Propulsion of Large 
Satellites in the Ionosphere: An Alfven Propulsion Engine in Space," J. 

-	 of Geophys. Res., Vol. 70, No. 13, pp. 3131-3145, July 1965. 
2. M. Grossi, "A ULF Dipole Antenna on a Spaceborne Platform of the PPEPL 

Class," Report on NASA Contract NAS8-28203, May 1973. 
REFERENCES 3. R.D. Moore. "The Geomagnetic Thruster—A High Performance "Alfven Wave" 

Propulsion System Utilizing Plasma Contacts," AIAA Paper No. 66-257. 
4. S.T. Wu, ed., University of Alabama at Huntsville/NASA Workshop on The Uses 

of a Tethered Satellite System, Summary Papers, Huntsville AL, May 1978. 
See papers by M. Grossi et al, R. Williamson et al., and N. Stone. 

5. W. Thompson, "Electrodynamic Properties of a Conducting Tether," Final 
Report to Martin Marietta Corp. on Task 4 of Contract RH3-393855, Dec. 1983. 
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4.6.2 Electrodynamic Orbit Changes 

KEY POINTS Electrodynamic tether use will affect the orbit—whether desired or not. 
Stationkeeping and/or large orbit changes without propellant use are possible. 

The offset dipole approximation shown at right is only a first approximation 
to the geomagnetic field: harmonic analyses of the field give higher-order 
coefficients up to 20% as large as the fundamental term. Ref. 1 contains 
computerized models suitable for use in detailed electrodynamic studies. 

The geomagnetic field weakens rapidly as one moves into higher orbits, and 
becomes seriously distorted by solar wind pressure beyond GEO. However, ohmic 
losses in a tether are already significant in LEO, so electrodynamic tethers 
are mainly useful in low orbits where such distortions are not significant. 

As the earth rotates, the geomagnetic field generated within it rotates also, 
and the geomagnetic radius and latitude of a point in inertial space vary over 
the day. If a maneuvering strategy which repeats itself each orbit is used 
(necessary unless the spacecraft has large diurnal power storage capacity), 
then the average effect, as shown at right, will be a due east thrust vector. 

Variations in geomagnetic latitude (and thus in Bh) cancel out variations in 
the component of flight motion perpendicular to the field, so these variations 

NOTES do not cause large voltage variations in high-inclination orbits. (Note that 
the relevant motion is motion relative to a rotating earth.) Out-of-plane 
libration, variations in geomagnetic radius, and diurnal variation of the 
"geomagnetic inclination" of an orbit can all cause voltage variations. Peak 
EMF5 (which drive hardware design) may approach 400 V/km. 

However these variations need not affect the thrust much if a spacecraft has 
a variable-voltage power supply: neglecting variations in parasitic power, 
constant power investment in a circular orbit has to give constant in-plane 
thrust. The out-of-plane thrust is provided "free" (whether desired or not). 
Average voltage & thrust equations for vertical tethers are shown at right. 

The table shows how to change all six orbital elements separately or together. 
Other strategies are also possible. Their effects can be calculated from the 
integrals listed. For orbits within 11 0 of polar or equatorial, diurnally-
varying strategies become more desirable. Computing their effects requires 
using the varying geomagnetic inclination instead of i (& moving it inside the 
integral). Note that the "DC" orbit-boosting strategy also affects i. This 
can be cancelled out by superimposing a -2 Cos(2) current on the DC current. 

As discussed under Electrodynamic Libration Control Issues, eccentricity and 
apside changes can strongly stimulate -libration unless the spacecraft center 
of mass is near the center of the tether. Other maneuvers should not do this, 
but this should be checked using high-fidelity geomagnetic field models. 

1. E.G. Stassinopoulos & G, D. Mead, ALLMAG, GDALMG, LINTRA: Computer Programs 
for Geomagnetic Field & Field-Line Calculations, Feb. 1972, NASA Goddard. 

REFERENCES 2. R.D. Moore, "The Geomagnetic Thruster—A High Performance ' t Alfven Wave" 
Propulsion System Utilizing Plasma Contacts," AIAA Paper No. 66-257. 

3. H. Alfven, "Spacecraft Propulsion; New Methods," Science, Vol. 176, 14 April 
1972, pp. 167-168.
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4.6.3 Tether Shape and Libration Control 

Properly controlled AC components can be used to control 8 and *-libration. 
KEY POLNTS Solar-energy storage and e or w changes strongly stimulate -libration. 

AC currents other than 1 & 3/orbit should not affect -libration much. 

The maneuvering strategies on the previous page have assumed that electrodyn-
amic tethers will stay vertical. However, as shown at right, the distributed 
force on the tether causes bowing, and that bowing is what allows net momentum 
transfer to the attached masses. Note that net momentum can be transferred to 
the system even if the wire is bowed the wrong way (as when the current is sud-
denly reversed); momentum transferred to the wire gets to the masses later. 

This figure also illustrates two other issues: 
1. Bowing of the tether causes it to cross fewer field lines. 
2. Unequal end masses and uniform forces cause overall torques & tilting. 

The bowing causes the tether to provide less thrust while dissipating the same 
parasitic power. The net force on the system is the same as if the tether 
were straight but in a slightly weaker magnetic field. 

The torque on the system causes it to tilt away from the vertical, until the 
torque is balanced by gravity-gradient restoring torques. For a given system 
mass and power input, disturbing torques vary with L and restoring torques 

NOTES

	

	 with L 2 , so longer systems can tolerate higher power. The mass distribution 

also affects power-handling capability, as seen in the sequence at top right. 

Modulating the tether current modulates any electrodynamic torques. Current 
modulation at 1.73 n can be used to control in-plane libration. Out-of-plane 
torques can also be modulated, but another control logic is required. This is 
because the once-per-orbit variation in out-of-plane thrust direction makes a 
current with frequency F (in cycles per orbit) cause out-of-plane forces and 
torques with frequencies of F-i and F+i, as shown in the Fourier analysis at 
bottom right. Hence 0 libration control (F=2) requires properly phased F=1 or 
F=3 currents. Higher frequencies can damp odd harmonics of any tether bowing 
oscillations. Control of both in- & out-of-plane oscillations may be possible 
since they have the same frequencies and thus require different currents. 

Applications that require significant F=l components for other reasons can 
cause problems. Four such strategies are shown at right. Sin & Cos controls 
allow adjustment of e or w. The two 'Sign of ..." laws allow constant power 
storage over 2/3 of each orbit and recovery the rest of the orbit. These laws 
would be useful for storing photovoltaic output for use during dark periods. 

These strategies drive out-of-plane libration (unless the center of mass is at 
the center of the tether). The libration frequency decreases at large ampli-
tudes, so if the system is not driven too strongly, it should settle into a 
finite-but-large-amplitude phase-locked loop. This may be unacceptable in 
some applications, due to resulting variations in gravity or tether EMF. In 
some cases, such as eccentricity changes, adding a F=3 component might cancel 
the undesired effect of an F=i current while keeping the desired effect. 

1. G. Colombo, M. Grossi, M. Dobrowolny, and D. Arnold, Investigation of Elec-
REFERENCE	 trodynamic Stabilization & Control of Long Orbiting Tethers, Interim Report


on Contract NAS8-33691, March 1981, Smithsonian Astrophysical Observatory. 
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SECTION 5.0

CONFERENCE SUMMARIES



5.1 General 

The following sections (5.2 First International Conference On Tethers In Space, 5.3 Second 
International Conference On Tethers In Space, and 5.4 Third International Conference On Tethers In 
Space) contain the programs of each conference. These programs list the papers presented, authors, 
Session Chairmen/Co-Chairmen, and workshops conducted during the course of the conference. Note 
that the program for the Third International Conference On Tethers In Space is a preliminary agenda, since 
at the time of this printing, this conference had not been held. Phone numbers and addresses of the 
participating individuals may be found in Section 7.0 "Contacts." 

5.2 First International Conference On Tethers In Space (1986) 

OBJECTIVE 
The objective of the Conference is to provide a broad over-
view of how tethers in space may be used to study Earths 
atmosphere and plasma environment, produce power in the 
kilo or megawatt range, generate variable gravity, and boost 
satellites. The era of tethers will begin in 1988 with the 
Shuttle flight of the Tethered Satellite System (TSS), a joint 
U.S. and Italian project. Many studies by both countries 
have generated applications to the Space Station, such as 
tethered platforms. propellant de pots, and variable gravity 
modules for commercial and life science experiments. The 
number of applications is expanding to include lunar and 
planetary exploration. Jupiter's strong magnetic field, for 
example, may someday be used with electrodynamic tethers 
to produce power and thrust for a more versatile vehicle, 

The Conference will cover tether fundamentals, the spectrum 
of turner applications, current national and international 
act!vties. status and plans for the TSS, hardware develop-
rnenr demonstration missions. Space Station applications, 
planetary applications, and tether technology developments 
being conducted or planned by the U.S. or Italy. 

The Conference is sponsored by the National Aeronautics 
and Space Administration (NASA) and the Piano Spuziale 
Nazionale (PSN) of Consiglio Nazionale belle Ricerche 
(CNR), Italy. It is cosponsored by the American institute of 
Aeronautics and Astronautics )AIAA(, the American 
Astronautical Society (AAS) and the Associazione Italiana d 
Aeronautica e Astronautica (AIDAA), Italy, It is operated by 
the American Institute of Aeronautics and Astronautics, 

SYMPOSIUM ORGANIZATION

General Chairman Program Committee 
IVAN BEKEY PETER M. BAINUM 
Director, Advanced American Astronautical 
Programs. Office of Space Society/Howard University 
Flight, NASA Headquarters EDWARD J. BRAZILL 
International Chairman NASA Headquarters 
LUCIANO GUERRIERO DALE A. FESTER 
Director, Piano Spaziale Martin Marietta Denver 
Nazionale, Italy Aerospace 

Program Chairman MIREILLE GERARD 
PAUL A. PENZO American Institute of 
Jet Propulsion Laboratory Aeronautics and 

Administrative Committee Astronautics 

MIREILLE GERARD VITTORIO CIAVOTTO 
American Institute of Associ3zione Italiana di 
Aeronautics and Aeronaut'ca 
Astronautics Astronautica, Italy 

PAMELA EDWARDS YINCENZO LETICO 
American Institute of Piano Spazale Nazionale, 
Aeronautics and Italy 
Astronautics DAVE MORUZZI 
WILLIAM A. BARACAT Italian Advanced 

General Research Industries, Inc. / Aeritalia 

Corporation TERRENCE REESE 
General Research 
Corporation 

S. CAL RYBAK 
Ball Aerospace Systems 
Division

EXPECTED ATTENDANCE 
The Conference is designed to assemble current and poten-
tial participants in all aspects of using tethers in space. 
including planners, thinkers, builders, entrepreneurs, policy 
makers, engineers, scientists and researchers, 

HOTEL ACCOMMODATIONS 
The Conference will be held at the Hyatt Regency Crystal 
City, 2799 Jefferson Davis Highway. Arlington, Virginia 
22202. Telephone (703) 486-1234. Special hotel rates have 
been secured for the nights of Tuesday. September 16, 1986 
through Thursday, September 18, 1986 at $95 for a single or 
double room. There are also a limited number of rooms at 
$66 per night for U.S. government employees only 
presentation of a valid government identification card 

required upon registration at hotel). All reservations should 
be made directly with the hotel mentioning the International 
Conference on Tethers in Space before August 16, 1985. 
After this date, the rooms will be released to the general 
public and reservation requests will be accepted on a space-
available Oasis, 

REGISTRATION 
All attendees must register in advance by mail as follows: 

Government, Congressional and 
University attendees	 /$250 

Industry attendees	 /$350 
Student attendees	 /$50 

Since space is limited, registrations will be taken on a first-
come. first-served basis. All registrations must include the 
fee Please return the enclosed registration card and fee by 
August 15. 1985 to: 

Ms. Pamela Edwards

Conference Administrator


AIAA

1 633 Broadway


New York, NT 10019 
The registration fees cover the cost of the three luncheons 
on September 17, 18, and 19, coffee breaks during the sym-
posium hours, and a reception on the evening of Wednesday. 
September 17. It also includes copies of all available papers. 

No refunds for cancellations received alter September 1, 
1986. 

For furtner information, please contact Pamela Edwards, 
AAA Headquarters (212) 408-9778. 

MESSAGES AND INFORMATION 
Messages will be recorded and posted for the person on a 
bulletin board in the registration area. It is not possible to 
page conferees. Please call (703) 486-1234 and ask for the 
AIAA. Message Center. 
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ADDITIONAL AND OPTIONAL WORKSHOP 

Tether Dynamics Simulation

(TDS) Workshop 

A one day workshop will be held 8:15 am, to 5:00 pm. on 
Tuesday, September 16. 1986 prior to the Conference. There 
is a nominal charge for attending this Workshop, and it will 
be open to all regardless of their participation in the Confer-
ence. A summary presentation of the Workshop will be given 
in Session Vi of the International Conference, Friday, Sep-
tember 19, 1986 at 10:00 am. 

OBJECTIVE 

The oDlective of the TOS Workshop is to provide a forum to 
discuss the structure and status of existing computer pro-
grams which are used to simulate the dynamics of a variety 
of tether applications. A major topic will be concerned with 
the purpose of having different simulation models, and how 
our confidence in them can be improved. Validation of 
specific models will be limited by budget constraints and 
lack of experimental data. Guidance on future work in this 
area will be sought from a panel of preselected workshop 
participants representing resource and technical managers 
and dynamics analysts. TDS Workshop attendees will be 
invited to participate in arriving at a consensus through open 
discussion and written comments. 

The TDS Workshop is sponsored by NASA and will hear 
simulation descriptions from several NASA centers, industry. 
and university representatives who have a significant capa-
bility in tether dynamics simulations. Computer simulation 
demonstrations will be available for review. Following the 
presentations, a panel discussion will be held, inviting com-
ments from all attendees. 

WORKSHOP ORGANIZERS 

CHRIS C. RUPP	 WILLIAM A. BARAGAT 
NASA Marshall Space	 General Research 
Flight Center	 Corporation 

HOTEL ACCOMMODATIONS 

Hotel rates for the Conference apply t3 Monday, September 
15.1986. Please refer to main section on hotel accommosa-
nuns for more information. 

REGISTRATION 

All attendees musi register in advance by mail as follows: 
Students /Free (no lunch included) 
All others/ $50 

August 15, 1986 is the registration deadline. A3 registra-
tions must include the fee. The registration tee includes 
coffee breaks, continental breakfast and lunch on September 
16.Please refer to the main section on registration for more 
information. 

For turther information on the Workshop. please Contact 
William A. Baracat, General Research Corporation 
(703) 893-5900 ext. 544.

Wednesday/17 September 1986 

AM 
8:00 Registration 

9:00 Opening Remarks 

IVAN BEKEY 
Director, Advanced 'Programs, 
Office of Space Flight, 
NASA Headquarters 

THOMAS 0. PAINE 
Thomas Paine Associates 
Chairman, National Commission on Space 

9:45 Break 

SESSION I/WHAT CAN TETHERS. 
DO IN SPACE? A Tutorial 

Co-Chairmen 
GEORGE V. BUTLER 
McDonnell Douglas Astronautics Company 

ERNESTO VALLERANI 
Aeritatia Space Systems Group, Italy 

Organizer 
GEORO VON TIESENIIAUSEN 
NASA Marsha)) Space Flight Center 

10:00 Introduction 

10:10 Historical Evolution of Tethers in Space 
IVAN BEKEY 
NASA Headquarters 

10:40 The Behavior of Long Tethers in Space 
DAVID A. ARNOLD 
Smithsonian Astrophysical Observatory 

11:00 Scientific Purposes of Earth Orbital Tether 
Operations 
WILLIAM J. WEBSTER, JR. 
NASA Goddard Space Flight Center 

11:20 Scientific Applications or Tethered Satellites 
ERNESTO VALLERANI 
and FRANCO BEVILACQUA 
Aeritalia Sp7ce Systems Group, Italy 

11:40 A Survey of Tether Applications to Planetary 
Exploration 
PAUL A. PENZO 
Jet Propulsion Laboratory 

12:00 
noon Lunch 
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Wednesday/17 September 1986 
(continued) 

SESSION II/SHUTTLE FLIGHTS: 
OPENING THE ERA OF TETHERS 

Co-Chairmen 
GIANFRANCO MANARINI 
Piano Spaziale Nazionale, Italy 

THOMAS STUART 
NASA Headquarters 

Organizer 
GEORGE LEVIN 
NASA Headquarters 

PM 
1:30 Introduction 

1:40 Deployment of a Tethered Satellite Pair into Low 
Earth Orbit for Plasma Diagnostics 
A. H. VON FLOTOW 
and P. B. WILLIAMSON 
Stanford University 

2:004 Small Expendable Deployment System (SEDS) 
JOE CARROLL 
Energy Science Laboratories 

2:20 Electrodynamic Plasma Motor/Generator 
Experiment 
JAMES E. McCOY 
NASA Johnson Space Center 

2:10 Attitude Control of Tethered Spacecraft 
LARRY LEMKE 
NASA Ames Research Center 

DAVID POWELL 
and XIAONUA HE 
Stanford University 

3:00 Break

3:20 Feasibility Assessment of the Get-Away Tether 
Experiment 
MICHAEL GREENE 
University of Alabama at Huntsville 
CHRIS C. RUPP 
NASA Marshall Space Flight Center 
ANDREA LORENZONI 
Piano Spaziale Nazionale, Italy 

3:10 The Tethered Elevator and Pointing Platform 
Demonstrations: A Shuttle Flight Test of Scaled 
Engineering Models 
PIETRO MERLINA. WALTER B000 
and SALYATORE CIARDO 
Aeritalia Space Systems Group, Italy 

1:00 Tethered Satellite System (TSS) Core Science 
Equipment 
CARLO BONIFAZI 
Piano Spaziale Nazionale/CNR, Italy 

1:20 Tethered Satellite System Capabilities 
THOMAS D. MEGNA 
Martin Marietta Denver Aerospace 

4:40 The RETE and TEMAG Experiments for the TSS 
Missions 
MAURIZID CANDIDI 
and MARINO DOBROWOLNY 
Istituto Fisica Spazio lnterplanetario 
(IFSI)/CNR, Italy 
FRANCO MARIANI 
University of Rome, Italy 

5:00 Adjournment 
5:15 Reception 
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Thursday/18 September 1986 

Sessions Ill and IV

are Parallel Sessions 

SESSION Ill/TETHER DYNAMICS: 
UNDERSTANDING BEHAVIOR AND CONTROL 

Co-Chairmen 
VINOD J. MODI 
University of British Columbia, Canada 
YITTDRIO GIAVOTTO 
Politechnico di Milano. Italy 
Organizer 
PETER N. BAINUM 
Howard University 

AM 
1:30 Introduction 

8:40 Pumping a Tethered Configuration to Boost its 
Orbit Around an Oblate Planet 
JOHN V. BREAKWELL 
and JAMES W. GEARHART 
Stanford University 

9:05 Dynamical Effects of Tether Structural Damp-
ing; A Preliminary Model 
SILVIO BERGAMASCHI 
University of Padova, Italy 
ANNA SINOPOLI 
University of Venice, Italy 

9:30 Nonlinear Control Laws for Tethered Satellites 
ALEXANDER BOSCHITSCH 
and ODD VAR 0. BENDIKSEN 
Princeton University 

9:55 Break 

10:20 The Dynamics and Control of a Space Platform 
Connected to a Tethered Subsatellite 
FAN BUYING and PETER M. BAINUM 
Howard University 

10:45 Tether Satellite Program Control Strategy 
CARL BODLEY and HOWARD FLANDERS 
Martin Marietta Denver Aerospace 

11:10 Disturbance Propagation in Orbiting Tethers 
FILIPPO GRAZIANI 
and SILVANO SGUBINI 
University of Rome, Italy

11:35 Gravity Gradient Enhancement during Tethered 
Payload Retrieval 
RON F. GLICI(MAN 
and S. CAL RYBAK 
Ball Aerospace Systems Division 

SESSION IV/ELECTRODYNAMICS: 
NEW APPROACHES TO SPACE POWER 

Co-Chairmen 
LESTER J. LIPPY 
Martin Marietta Denver Aerospace 
FRANCO BEVILACQUA 
Aeritalia Space Systems Group, Italy 
Organizer 
JOSEPH C. KOLECKI 
NASA Lewis Research Center 

AM 
8:30 Introduction 

1:40 A System Study of a One Hundred Kilowatt 
Electrodynamic Tether 
MANUEL MARTINEZ-SANCHEZ 
and 0. E. HASTINGS 
Massachusetts Institute of Technology 

9:00 Three Dimensional Simulation of the Operation 
of a Hollow Cathode Electron Emitter on the 
Shuttle Orbiter 
IRA KATZ, MYRON J. MANDELL 
and VICTORIA A. DAVIS 
S-Cubed 

9:20 Plasma Contactors for Electrodynamic Tether 
MICHAEL J. PATTERSON 
NASA Lewis Research Center 

PAUL J. WILBUR 
Colorado State University 

9:40 Tether Power Supplies Exploiting the 
Characteristics of Space 
CHRISTOPHER R. PURVIS 
Jet Propulsion Laboratory 

10:00 Break 
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Thursday/ 18 September 1986 
(continued) 

10:20 Plasma Motor/Generator Reference Systems 
Designs for Power and Propulsion 
JAMES E. McCOY 
NASA Johnson Space Center 

10:40 Electrodynamic Tethers for Energy Conversion 
WILLIAM 0. NOBLES 
Martin Marietta Denver Aerospace 

11:00 Power Generation and Storage with Tethers 
MARCELLO VIGNOLI, MARCO MATTEONI 
and FRANCO BEVILACQUA 
Aeritalia Space Systems Group. Italy 

11:20 Self Powered. Drag Compensated. Tethered 
Satellite System as an Orbiting Transmitter at 
ULF/ELF 
ROBERT 0. ESTES and MARIO D. GROSSI 
Smithsonian Astrophysical Observatory 

11:40 Results from a Series of U.S. /Japan Tethered 
Rocket Experiments 
S. SASAKI, K-I. OYAMA, N. I(AWASHIMA 
and T. OBAYASHI 
Institute of Space and Astronautical Science, 
Japan 
K. HIRAO 
Tokal University, Japan 
W. J. RAITT 
Utah State University 
P. R. WILLIAMSON and P. M. BANKS 
Stanford University 
W. F. SHARP 
University of Michigan 

12:00 
noon Lunch 

Speaker to be announced

SESSION V/THE SPACE STATION ERA: 
TETHERS FOR SCIENCE, TECHNOLOGY 
AND OPERATIONS 

Co-Chairmen 
DALE A. FESTER 
Martin Marietta Denver Aerospace 
LUIGI G. NAPOLITANO 
Istituto U. Nobile, Italy 
Organizer 
DALE A. FESTER 
Martin Marietta Denver Aerospace 

PM 
2:00 Introduction 

2:05 Benefits of Tether Momentum Transfer to Space 
Station Operations 
WILLIAM R. W000IS 
and JOHN M. VAN PELT 
Martin Marietta Denver Aerospace 

2:25 Tether Implications on Space Station Gravity 
Level 
KENNETH R. KROLL 
NASA Johnson Space Center 

2:45 Comparison of a Tethered Refueling Facility to 
a Zero-Gravity Refueling Depot 
ERLINDA R. KIEFEL, L. KEVIN RUDOLPH 
and OALE A. FESTER 
Martin Marietta Denver Aerospace 

3:05 Break 

3:20 Tethered Platforms' 	 Facilities for Scientifiô 
and Applied Research in Space 
FRANCO BEVILACQUA, PIETRO MERLINA 
and ALBERTO ANSELMI 
Aeritalia Space Systems Group. Italy 

3:40 J2 Perturbations on the Motion of Tethered 
Platforms 
SILVIO BERGAMASCHI 
University of Padova, Italy 
CLARE SAVAGLIO 
University of Michigan 

4:00 Tether Systems and Controlled Graviy 
LUIGI C. NAPOLITANO 
and R000LF0 MONTI 
Istituto U Nobile, Italy 
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4:20 Preliminary Analysis of a SAP Interferometer 
Using a Tethered Antenna 
SERGIO VETRELLA and ANTONIO MOCCIA 
University of Naples. Italy 

4:40 Japanese Tether Concepts 
S. SASAKI and M. NAGATOMO 
Institute of Space and Astronautical Science, 
Japan 

5:00 Space Transportation without Pockets 
CHARLES SHEFFIELD 
Vice President 
Earth Satellite Corporation 

6:00 Adjournment 

Friday/19 September 1986 

SESSION VU/TECHNOLOGY DEVELOPMENT: 
THE KEY TO SUCCESS 

Co-Chairmen 
LEONARD A. HARRIS 
NASA Headquarters 

CARLO BUONGIORNO 
Ministry of Scientific and Technological 
Research, Italy 
Organizer 
GEORG VON TIESENHAUSEN 
NASA Marshall Space Flight Center 

AM 
8:30 Introduction 
8:40 Development, Testing, and Evaluation of New 

Tether Materials 
RALPH F. ORBAN 
Material Concepts, Inc. 

9:00 Technology and Applications—Convergence to 
a Tether Capability 
JOHN L. ANDERSON 
NASA Headquarters

9:20 Critical Space Technology Needs for Tether 
Applications 
WILLIAM A. BARACAT 
and CHARLES F. GARTRELL 
General Research Corporation 

9:40 A Survey on the Dynamics and Control of 
Tethered Satellite Systems 
ARUN K. MISRA 
McGill University, Canada 
VINOD J. MODI 
University of British Columbia, Canada 

10:00 Summary of the September 16 Tether 

Dynamics Simulation Workshop 
CHRIS C. RUPP 
NASA Marshall Space Flight Center 

10:30 Break 

10:45 Panel: 
The Future Impact of Tethers in Space 

Moderator, 
IVAN BEKEY 
Director. Advanced Programs 
Office of Space Flight 
NASA Headquarters 
LUCIANO GUERRIERO 
Director 
Piano Spaziale Nazionale, Italy 
Representatives from industry, military, 
academia and government will be 
members of this panel. 

12O0 
noon Lunch 

PM 
2:00 Adjournment 
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Tether Dynamics Simulation (TDS) Workshop 

7besday/16 September 1986 

AM 
7:45 Registration/Continental Breakfast 
8:15 Introduction 

CHRIS Q RUPP 
NASA Marshall Space Flight Center 

WILLIAM A. BARACAT 
General Research Corporation 

Simulation Descriptions 

8:30 VINOD J. MODI 
University of British Columbia, Canada 

ARUN K. MISRA 
McGill University, Canada 

9:00 CARL BODLEY 
Martin Marietta Denver Aerospace 

9:30 Speaker to be announced 
NASA Johnson Space Center Systems Engineering Simulator 

10:00 DAVID D. LANG 
David D. Lang Associates 

10:30 JOHN R. GLAESE 
Control Dynamics Company 

11:00 Skyhook Program 
DAVID A. ARNOLD 
Smithsonian Astrophysical Observatory 

11:20 Slack Program 
DAVID A. ARNOLD 
Smithsonian Astrophysical Observatory 

11:40 Artificial Gravity Laboratory 
ENRICO LORENZINI 
Smithsonian Astrophysical Observatory 

12:00 
noon Lunch 

Demonstration of Computer Simulations 

Simulation Descriptions—Continued 
PM 
1:30 SILVIO BERGAMASCHI 

University of Padova, Italy 

2:00 Speaker to be announced 
Aeritalia Space Systems Group, Italy 

2:30 Validation of TSS Simulations 
KEITH MOWERY 
NASA Marshall Space Flight Center 

3:00 TSS-1 Dynamics Flight Experiments 

GORDON E. GULLAHORN 
Smithsonian Astrophysical Observatory 

3:30 Panel Discussion on Future Validation Activities 
5:00 Adjournment
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5.3 Second International Conference On Tethers In Space (1987) 

OBJECTIVE 

The objective of the Second International Conference 
on Tethers in Space is to provide a focus on how 
tethers may be used for science in the era of the Space 
Station. The era of tethers will begin in 1991 withthe 
Shuttle flight of the Tethered Satellite System (TSS), 
a joint U.S. and Italian project. Many studies by both 
countries have resulted in applications to the Space 
Station such as tethered platforms, propellant depots, 
and variable gravity modules for commercial and life 
science experiments. The number of applications is 
expanding to include lunar and planetary exploration. 
Jupiter's strong magnetic field, for example, may 
someday be used with electrodynamic tethers to pro-
duce power and thrust for a more versatile vehicle. 

The Conference will cover tether fundamentals, the 
spectrum of tether applications, current national and 
international activities, status and plans for the TSS, 
hardware development, demonstration missions, 
early experimental validation, Space Station applica-
tions, planetary applications, and tether technology 
developments being conducted or planned by the U.S. 
and Italy. Additionally, a special Tether Dynamics 
Simulation Workshop will be held. 

The Conference is sponsored by the Piano Spaziale 
Nazionale (PSN) of Consiglio Nazionale dde Ricer-
the (CNR), Italy, the National Aeronautics and Space 
Administration (NASA), and the European Space 
Agency (ESA). It is co-sponsored by the Associazi-
one Icaliana di Aeronautica e Astronautica (AIDAA), 
the American Institute of Aeronautics and Astronau-
tics (AIAA), and the American Astronautical Society 
(AAS).

CONFERENCE ORGANIZATION

GcrJChain,-jan Program Ccm,aiuee Oiaimizn 
LUCIANO GUERRIRRO WILLIAM DJNIS 
Diinctor, PSN/CNR Advanced Program, 

Office of Space Flight, 
CoMinaea NASA Headquarters 
JEAN-JACQUES DORDAIN 
Hcad, Space Station and Loagisdod CoCheijwi, 
Plaffoetna, Promotion and MARISA ADDUCI 
Utilintion Dept, Centro Inrmli Ccmgrcui 
European Space Ageixy

MARINELLA ERCOU 
WAN BEKEY PSNNR 
Director for Policy Planning 
NASA Headquarters ThRRENCE G. REESE 

Dreczoe, Aerospace Systems Group 
General Rc,earcb Coeperation

Program Committee - 

JOHN L ANDERSON JAMES R. LEASE 
NASA Headquarters NASA Headquarters 

PETERM. BAINUM VINCENZO LETICO 
American Astronautical PSNNR 
SoctylHoward University

ALBERTO LORIA 
WILLIAM A. BARACAT 
General Research Cpon

PSNNR 

GIANFRANCO MANARINI 
EDWARD J. BRAZILL PSNJR 
NASA Headquarter,

FRANCO MARIANI 
DALE A. FESTER 
Martin Marietta

University of Ron 

Denver Aerospace DAVE MORUZ2I 
Italian Advanced Industries. 

MIREILLE GERARD 
Azceriean bititutc Of 
Aeronautics and Azonautjcs PAUL FENZO 

JPL 
vrrroo GIAVOTFO 
A,aociazione Italiana di REMO RUFFINI 
Acronauticac Astronautics Soercta Italiana di Fiaica/ 

University of Rome 
RONALD L GIVE 
TRW CHARLES C. RUW 

NASA MSFC 
LEONARD HARRIS 
NASA Headquarters ATFILIO SALVETFI 

University of Piaa 
JAMES K. HARRISON 
NASA MSFC ERNESTO VALLERANI 

Acritalia 
JOSEPH C. KOLECKI 
NASA Hcadquartcra GEORGE M. WOO!) 

NASA LaRC 

GENERAL INFORMATION

CONFERENCE LOCATION 

The Second International Conference on Tethers in 
Space will be held at the Scuola Grande San Giovanni 
Evangelista in Venice, Italy. 

REGISTRATION 

All Conference attendees are required to register. 
Please complete and return the enclosed registration 
form, along with your hotel deposit, by July 22,1987. 

Badging will be conducted at the Conference in the 
lobby of the Scuola Grande San Giovanni Evangel-
ista on Sunday, October 4 from 5:00 to 8:00 p.m., and 
from 8:00 a.m. to 6.00 p.m. on Monday, October 5. 

FEE 

The fee for the Conference is 380,000 Lire (approx. 
$300 U.S.) per person and covers the cost of working 
lunches each day of the Conference, refreshments, 
administrative charges, a concert on Tuesday, a gala 
dinner on Wednesday, and the conference proceed-
ings. The fee is payable in Lire before July 22. 
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TRANSPORTATION 

Conference participants should coordinate their 
transportation needs individually. 

HOTEL ACCOMMODATIONS 

The Conference has reserved blocks of rooms at 
various hotels in Venice. To make your reservation, 
send the information required on the Hotel Reserva-
tion Form to Marisa Adduci. We must have your res-
ervation and deposit, equivalent to one night's stay at 
your hotel (in Lire) no later than July 22. 

Hotel rooms are usually at a premium in Venice -- and 
with a competing conference (Workshop on Science 
and the Space Station) during the same time period, 
the situation is critical. 

SPECIAL EVENTS

SUNDAY, 4 OCT 1987 

5:00 P.M. 8:00 P.M.	 Registration 

MONDAY, 5 OCT 1987 

8:00 a.m. - 6:00 p.m.	 Registration 

SESSION I I MONDAY, 5 OCT 1987 
SPACE PROGRAM: CONTEXT FOR 
TETHERS 

Session Chairmen: 
Carlo Buongiomo - MRST 
Frederick Engstrom - ESA Headquarters 

Session Organizer: 
Amalia Ercoli Finn - Politecnico di Milano 

AM 
An evening cruise around the lagoon including din- 	 9:00 
ner, drinks and dancing will take place on Monday, 
October 5 starting at approximately 7:00 p.m. The 
costperperson will be 60,000 Lire (approx. $50 U.S.). 	 9:30 

On Tuesday, October 6, a concert featuring a local 
Venetian string quintet will be held. The cost for a	 10:00 
registrant and one guest is included in the registration 
fee. This concert will be held at the Chiesa dei Fran 
in Venice.

Welcome/Opening Remarks 
Luciano Guemero, PSN/CNR 

Keynote Speaker 
Ivan Bekey, NASA Headquarters 

"Tether History and Historiography" 
Mario D. Grossi, Smithsonian Astrophysical 
Observatory (SAO) 

A gala dinner will be held at the Palazzo Pisani-
Moretta on Wednesday, October 7. This is a very 
ancient and famous palace on the Canal Grande, still 
intact with the original art and furnishings. The cost 
for a registrant and one guest is included in the 
conference registration fee. 

Special excursions and tours will be available for 
spouses. Information on these events will be avail-
able at registration on Sunday and Monday. 

MESSAGE AND TRAVEL DESK 

Messages for conference attendees may be left at 
telephone number 39-41-718234. 

CONFERENCE PROCEEDINGS 

Conference proceedings will be sent to all conference 
attendees. This document will contain a copy of all 
presented papers. The cost for one copy has been in-
cluded in the registration fee. 

Note: All fees shown in US dollars are approximate.

10:20 "Tether Programs - PSN" 
Gianfranco Mananm, PSN/CNR 

10:40 "Status and Plans for the Space Station 
Program' 
Alfonso V. Diaz, Code S, NASA 
Headquarters 

11:00 "Columbus Program" 
Jean-Jacques Dordain, ESA Headquarters 

11:20 "Status of Tethered Satellite System (TSS) 
Development" 
Jay H. Laue, Deputy Manager, Tethered 
Satellite System Project, NASA Marshall 
Space Flight Center 

11:40 "Tether Tutorial" 
David A. Arnold, Smithsonian Astrophy-
sical Observatory (SAO) 
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SESSION II /	 MONDAY, 5 OCT 1987 
EARLY EXPERIMENTAL VALIDATION 

Session Chairmen: 
Len Harris - NASA Headquarters 
Ernesto Vallerani - Aentalia 

Session Organizer: 
Ron Gilje - TRW 

PM 
2:00 "Early Tether Dynamics Flight Experiment"


Lawrence G. Lemke, NASA ARC; 
Charles C. Rupp, NASA MSFC; William 
J. Webster, NASA GSFC; George M. 
Wood, NASA LaRC 

2:20 "Small Expendable Deployer System 
(SEDS)" 
Joseph A. Carroll, Energy Science 
Laboratories 

2:40 "The Get Away Tether Experiment (GATE): 
Experimental Plans" 
Michael Greene, Justin Walls, Theron Car-
ter, Auburn University, Department of 
Electrical Engineering; Charles C. Rupp, 
Marshall Space Flight Center, and Douglas 
Wheelock, University of Alabama in 
Huntsville, Department of Electrical Engi-
neering 

	

3:00	 'MAIMIK, A Tethered "Mother" - 
"Daughter" Electron Accelerator Rocket" 
B.N. Maehlum, Norwegian Defense 
Research Establishment 

3:20 "Recent Laboratory Results of the KITE 
Control System and Attitude Dynamics 
Simulator" 
Lawrence G. Lemke, NASA ARC; 
J. David Powell and R. Schoder, Stanford 
University 

	

3:40	 "Absorptive Tether, A First Test in Space" 
Wubbo J. Ockels, ESA 

4:00 "Hollow Cathode Rocket Experiment 
(HOCAT)" 
Richard C. Olsen, Physics Department, 
Naval Postgraduate School 

	

4:20	 "Validation of Tethered Package Deploy-
ment for the Space Station" 
Richard S. Post, J. D. Sullivan, J. H. Irby, 
Massachusetts Institute of Technology; 
Enrico C. Lorenzini, SAO

4:40	 Scientific Achievement of a Series of Tether 
Rocket Experiments" 
N. Kawashima, Institute of Space and 
Astronautical Science, Tokyo 

SESSION III I TUESDAY, 6 OCT 1987 
TETHER DYNAMICS SIMULATION 
WORKSHOP 

Session Chairmen: 
Charles C. Rupp - NASA MSFC 
Silvio Bergamaschi - University of 

Padova 
Session Orgardzer. 

Peter Bainum - AAS / Howard University 

SIMULATION TECHNIQUES 

AM 
9:00	 "Optimal State Estimation for a Tethered 

Satellite System" 
Daniel S. Swanson and Robert F. Stengel, 
Princeton University, Department of 
Mechanical and Aerospace Engineering 

9:25	 "Effect of Tether Flexibility on the 
Tethered Shuttle Subsatellite Stability 
and Control" 
Liu Uangdong and Peter M. Bainum, 
Department of Mechanical Engineering, 
Howard University 

9:50	 "Dynamics and Control of Two Space 
Platforms Connected by a Short Tether" 
Antonio Moccia, Sergio Vetrella, 
Cauedra di Ingegneria del Sistemi 
Aerospaziali, University of Naples 

10:15	 "Interaction of the Space Shuttle On-Orbit 
Autopilot with Tether Dynamics" 
Edward V. Bergmann, C. S. Draper 
Laboratory 

10:40	 "The Tethered Satellite System on the 
Systems Engineering Simulator" 
Ronald W. Humble, Lockheed Engineer-
ing and Management Services Company 

11:05	 "Dynamics Simulation of the TSS 
Actively Controlled Satellite" 
Bnrna Cibrano, Bruno Musetti, Mario 
Rossello, Floriano Venditti, Aeritalia 
Space Systems Group 
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11:30	 "Out-of-Plane Perturbations of a SYSTEMS 

Resonant Tether" AM 
John V. Breakwell, Stanford University; 9:00	 "Shuttle Electrodynamic Tether System" 

James W. Gearhart, Lockheed P. Roger Williamson and Peter M. Banks, 
STARLAB, Stanford University 

11:55	 "Tethsim: A Dynamics Simulation 
Software Package for Tethered Systems" 9:30	 "Passive Current Collection to a 
Bruna Cibrario; F101ianO Venditti, Conducting Tether" 
Aentalia Space Systems Group, Torino; William B. Thompson, University of 

Gianni Origgi, Politecnico di Milano California, San Diego

PM 
2:00	 Test Case Results: In-depth-review of 

dynamics simulation of some test cases. 
Digest of current tether dynamics sim-
ulations, focus on capabilities, inade-
quacies and verification. Recommend-
ations for additions and extensions of 
performance to enable greater precision 
and validity. Ground and flight test 
verification experiments. 

VISCOELASTIC TETHER DYNAMICS

	

10:00	 "Laboratory Investigation of the 
Electrodynamic Interaction of a Tethered 
Satellite in an Ionospheric Plasma: 
Preliminary Results" 
Carlo Bonifazi, Michele Smargiassi, and 
Jean Pierre Lebreton, CNR Frascati 

	

10:30	 "Current Distribution and Fields 
Generated by a Body Moving Through 
a Magnetoplasma" 
Kenneth J. Harker, Peter M. Banks, D.J. 
Donahue, STARLAB, Stanford Univ. 

4:00	 "Effects of Damping on TSS Vibrations	 11:00	 "Model of the Interaction of a Hollow 

Stability"	 Cathode with the Ionosphere" 
Anna Sinopoli, Institute of Architecture, 	 Marino Dobrowolny and Luciano less, 

University of Venice	 Istituto di Fisica dello Spazio 
lnterplanetario, CNR Frascati 

	

4:22	 "Tether Damping in Space" 
Xiaohua He and 1. David Powell, Stanford 
University 

	

4:44	 "Tether as a Dynamic Transmission 
Line" 
Gordon E. Gullahorn, SAO; Robert G. 
Hohifleld, Boston University 

	

5:06	 "Tether Dynamics and Vibration 
Analysis" 
R. L Engeistad and E. Lovell, University 
of Wisconsin 

SESSION IV I TUESDAY, 6 OCT 1987 
ELECTRODYNAMICS 

Session Chairmen: 
Peter Banks - Stanford University 
Franco Mariani - University of Rome 

Session Organizer 
Joseph C. Kolecki - NASA Headquarters

	

11:30	 "Plasma Motor Generator Tether System 
for Orbit Reboost" 
Neal D. Huilcower and Roger J. Rusch, 
TRW Space and Technology Group 

	

12:00	 "Alfven Propulsion at Jupiter" 
Steven B. Gabriel, R. M. Jones, JPL 

	

12:30	 "Hollow Cathode Discharge Characteris-
tics in Space: Flight Demonstrations" 
James E. McCoy, NASA JSC 

TECHNOLOGY 

PM 

	

2:00	 "TSS Core Equipment: A High 
Perveance Electron Generator for the 
Electrodynamic Missions" 
Carlo Bonifazi, PSN; Paolo Musi, 
Aeritalia; Gianfranco Cirri, Proel Eleur. 
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AM 
2:30	 "On the Need for Space Tests of Plasma 9:00 Opening Remarks 

Contactors as Electron Collector" TBD 
Ira Katz, Victoria A. Davis, and Donald 
E. Parks, S-CUBED 9:20 "Cosmic Rays and Particle Physics" 

TBD 
3:00	 "Experimental Validation of a 

Phenomenological Model of the Plasma 9:40 "Small Payloads in Astrophysics" 
Contacting Process" TBD 
Paul J. Wilbur and John D. Williams, 
Department of Mechanical Engineering, 10:00 "Physics and Chemistry in Zero-G" 
Colorado State University TED 

3:30	 "Hollow Cathode Laboratory Activities 10:20 "Solar System and Planetology" 
at Frascati" TBD 
Giuliano Vannaroni, Cnsuano 
Cosmovici, IFSI Carlo Bonifazi, 10:40 'innovative Uses of Tethers in Space" 
PSNIIFSI James McCoy, NASA JSC Paul A. Penzo, JPL 

4:00	 "Ground-Based Plasma Contactor Char- 11:00 "Outer Atmospheric Research - One 
actenzauon for Spaceflight Experiment Tether Capability" 
Definition" John L Anderson, NASA HQ, OAST 
Michael J. Patterson, NASA LCRC 

4:30	 "A Two-Dimensional Theory of Plasma
11:20 "Role of Tethers in a LEO-Lunar Ferry" 

David B. Weaver, McDonnell Douglas 
Contactor Clouds Used in the Ionosphere Astronautics Co. 
with an Electrodynamic Tether" 
Daniel E. Hastings, N. Gatsonis, and D. 11:40 "Artificial Gravity for a Mars Spaceship 
Rivas, Department of Aeronautics and Design" 
Astronautics, MIT TBD 

5:00	 "A Rocket-Borne Experiment to Demon- 
strate, Test, and Characterize the Funda- SESSION VI / WEDNESDAY, 7 OCT 1987 

mental Science and Engineering TETHERS IN SPACE: A BROAD 

ciples of Hollow Cathode Discharge PERSPECTIVE 

Operations in Space" 
Edward P. Swszczewicz, Science session Chairmen: 

Applications International Corporation; James K. Harrison - NASA MSFC 

James B. McCoy, NASA JSC; Franco Bevilacqua - Aeiitàlia 

Dobrowolny, IFSI/CNR. Session Organizer. 

Carlo Bonifazi, PSN/IFSI John R. Glaese - Control Dynamics Co. 

PM 

SESSION V / WEDNESDAY, 7 OCT 1987 2:00 "From Space Elevators to Space Tethers: 

TETHERS FOR SCIENCE AND An Historical Perspective" 

INNOVATIVE USES Jerome Pearson, Air Force Wright 
Aeronautical Laboratories 

Session Chairmen: 
Roger Bonnet - ESA Headquarters 2:30 "Tether Applications in the European 

Thomas Donahue - National Academy of 
Sciences Chris A. Markiand, ESA; 

Session Organizer: 
Remo Ruffini - Societe' Italiana di Fisicaj 

University of Rome

184



330	 "The Tethered Space Elevator System" 
Franco Bevilacqua, Pietro Medina, 
Aeritalia 

4:00	 "Environmental Factors Affecting 
Atmospheric Research with Tethered 
Satellites" 
Jack W. Slowey, SAO 

4:30	 "The Use of Tethers for an Artificial 
Gravity Facility" 
Lawrence G. Lemke, Fred Mascy, Byron 
L. Swenson, NASA ARC 

5:00	 "Dynamics of Tethers in Artificial 

Gravity Applications" 
John R. Glaese, Control Dynamics 
Company 

5:30	 "Lower Thermosphere Studies from 
Tether" 
J. H. Hoffman and R. R Hodges, 
University of Texas at Dallas 

SESSION VII I WEDNESDAY, 7 OCT 1987 
TETHER DYNAMICS 

Session Chairmen: 
John V. Breakwell - Stanford University 
Enrico Lorenzini - SAO 

Session Organizer. 
Alberto Loria - PSN/CNR 

PM 
2:00	 "Dynamical Stability of a Flexible 

Tether" 
William B. Thompson, University of 
California, San Diego 

2:22	 "Tethered Diagnostic Package for Use 
from Space Station" 
James D. Sullivan, Richard D. Post, J. H. 
Irby, MIT; Enrico C. Lorenzini, SAO 

2:44	 "Effects of Atmospheric Density Gradi-
ent on the Stability and Control of Teth-
ered Subsateffite" 
Naoyuki Watanabe and Junjiro Onoda, 
The Institute of Space and Astronautical 
Science, Tokyo

	

3:06	 "Study of an Orbiting Tethered Dumbbell 
System Having Positive Orbital Energy" 
Enrico Lorennni, David A. Arnold, 
Mario D. Grossi, Gordon E. Gullahom, 
SAO 

	

3:28	 "Dynamics and Control of the Space 
Station Based Tethered Payload" 
P. K. Lakshmanan, Vinod I. Modi, 
Department of Mechanical Engineering, 
University of British Columbia; 
Arun K. Misra, McGill University 

	

3:50	 "Free Dynamics of Tethered Satellite 
System" 
Angelo Luongo, Marcello Pignatari, 
Universita di Roma "La Sapienza"; 
Fabrizio Vestroni, Umversita dell' Aquila 

	

4:12	 "Order of Magnitude Evaluation of the 
Lifetime of a Free Tether in Orbit" 
Silvio Bergamaschi, Marco Morana, 
Institute of Applied Mechanics, 
Padua University 

	

4:34	 "Thermal Effects on Tether Dynamics' 
Filippo Graziani, Universita di Roma 

	

4:56	 "Effect of the Attitude Dynamics on 
Tether Propulsion" 
Arun K. Misra and Z. E. Amier, 
Department of Mechanical Engineering, 
McGill University; Vinod J. Modi, 
Department of Mechanical Engineering, 
University of British Columbia 

SESSION VIII I THURSDAY, 8 OCT 1997 
TETHERS ON STATIONS AND PLAT-
FORMS 

Session Chairmen: 
Jean-Jacques Dordain - ESA Headquar-

ters 
Dale A. Fester - Martin Marietta Denver 

Aerospace 
Session Organizer. 

George M. Wood - NASA LaRC 
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AM 

	

9:00	 Chairmen Remarks 

	

9:10	 "Tethered System/Space Platform Inte-
gration: TSS Lessons Learned" 
L Kevin Rudolph, Martin Marietta 
Denver Aerospace 

	

9:30	 "Tether Applications Scenarios for Space 
Station/Platform Systems" 
James D. Walker, Martin Marietta 
Denver Aerospace 

	

9:50	 "Consideration of Requirements for 
Space Station with Attached Tethers" 
Melvin R. Carnith, Jr., NASA MSFC 

	

10:10	 "Space Station Gravity Gradient 
Stabilization by Tethers" 
Franco Bevilacqua, Salvatore Ciardo, 
Aeritalia; Alberto Lozia, PSN 

	

10:30	 "Acceleration Levels on Board the Space 
Station and a Tethered Elevator for 
Micro- and Variable-Gravity 
Applications" 
Enrico C. Lorenzini, Mario Cosmo, SAO; 
Sergio Vetrella, Antonio Moccia, 
University of Naples 

	

10:50	 "Double Tether System Improving 
Automatic Docking Maneuvers" 
Amalia Ercoli Finzi, Biagio Mignemi, 
Politecnico di Milano 

	

11:10	 "Tethered Astrometric Telescope 
Facility" 
Lawrence G. Lernke, Martha Smith, 
NASA ARC 

	

11:30	 "The Use of Tethers to Construct and 
Deploy Solar Sails from the Space Sta-
tion" 
John M. Garvey, McDonnell Douglas 
Astronautics 

	

11:50	 "Electrodynamic Tethers for Energy 
Conversion" 
William Nobles,Martin Marietta Denver 
Aerospace 

	

12:10	 "Opportunities for Tether Experiments 
and Applications in the Columbus 
Program" 
Karl Knott, ESA

PM 
2:00	 "Early Roles for Expendable Tether Sys-

tems on Space Stations and Platforms" 
Joseph A. Carroll, Energy Science 
Laboratories 

2:20	 "Space Station Tethered Waste Disposal" 

Charles C. Rupp, NASA MSFC 

2:40	 "Tethered Capability to Return Space 
Station Material" 
Mario Burigo and Cosimo Chiarelli, 
Aeritalia 

3:00	 "Tethered Space Recovery Vehicle 
Deployment / Re-entry Demonstration" 
Dwight Florence, General Electric 
Re-entry Systems 

3:20	 "Thrusted Sling in Space - A Tether 
Assist Maneuver for Orbit Transfer" 
Mario Pecchioli and Filippo Grazaani, 
Universita di Roma 

SESSION IX I THURSDAY, 8 OC'i 1987 
TETHER TECHNOLOGY 
Session Chairmen: 

John Anderson - NASA Headquarters 
Vittorio Giavotto - Politecaiico di Milano 

Session Organizer. 
James Lease - NASA Headquarters 

AM 
9:00	 "Tether Dynamics SimulationWorkshop 

Summary" 
Charles C. Rupp, NASA MSFC 

9:20	 "Electrodynamics Session Summary" 
Joseph C. Kolecki, NASA Headquarters 

9:40	 "An Overview of a Tether Deployment 
Monitoring System" 
Paul Ibanez and Alejandro' Levi, 
ANCO Engineers, Inc.
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10:00	 "Simulation and Measurement of 3:20	 "Tether Inspection and Repair 
Disturbance Propagation in a Single Experiment (TIRE)" 
Tether System" George M. Wood, NASA LARC; Albero 
Michael Greene, Theron Carter, Loria, PSN/CNR; James K. Harrison, 
Department of Electrical Engineering, NASA MSFC 
Auburn University; 
Charles C. Rupp, NASA MSFC 3:40	 "Some Open Questions on Tether 

Technology" 
10:20	 "Feasibility Assessment of TSS Joseph A. Carroll, Energy Science 

Terminal Phase Retrieval Procedures" Laboratories 
James E. Oberg, RSOC, JSC

10:40	 "Optimization of Motion Control Laws 
for Tether Crawler or Elevator Systems" 
Frank it Swenson , Georg von 
Tiesenhausen, Tri-State University 

11:00	 "Space Tethers: Comments on Their 
Scope and on the Accessibility of Their 
Use with Aerodynamic Forces" 
J. W. Flower, University of Bristol 

11:20	 "STARFAC: Advanced Concept 
Definition and Mission Analysis" 
R. Kermeth Squires, Henry Wolf, Martin 
W. Henry, Analytical Mechanics Associ-
ates, Inc.; Paul M. Sierners ifi and 
George M. Wood, Jr., NASA LaRC; 
Giovanni M. Carlomagno, University of 
Naples 

PM 
2:00	 "Technologies Applicable to Space 

Tethers" 
William A. Baracat, General Research 
Corporation, Aerospace Systems Group 

2:20	 "Acceptance and Qualification Test 
Results of the 20 KM Electromechanical 
Tether for TSS-1" 
Leland S. Marshall, Martin Marietta 
Denver Aerospace 

2:40	 "TSS-2 Technology" 
Andrea Locenzoni, PSN; E. Allais, 
Aentalia; T. Megna, MMA 

3:00	 "Hypervelocity Impact Testing of 
Tethers" 
Francis L Tallentire and William R. 
Woodis, Martin Marietta Denver 
Aerospace

SESSION X / THURSDAY, 8 OCT 1987 
CONFERENCE SUMMARY 

PM 
400	 Luciano Guemero, PSN/CNR 

Jean-Jacques Dordain, ESA Headquarters 
Ivan Bekey, NASA Headquarters 

SESSION XI I THURSDAY, 8 OCT 1987 
PANEL DISCUSSION: THE NEXT STEP? 

PM 
4:30	 Moderators: 

Gianfranco Manarim, PSN Headquarters 
Darrell it Branscome, NASA 

Headquarters 
Roger Bonnet, ESA Headquarters 

Organizer
George Butler, McDonnell Douglas 

Panel Members: 
Luigi Napolitano, University of Naples 
Remo Ruffini, Societa Italiana di Fisica/ 

University of Rome 
Ernesto Vallerani, Aeritalia 
Col. George Hess, USAF 
Paul Penzo, IPL 
Frank Van Rensselaer, Martin Marietta 

6:30	 Adjournment 
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5.4 Third International Conference On-Tethers In Space (1989) 

Objective and Approach 

For more than a decade the excitement of 
a potential new space capability has 
accompanied the concept, development, 
analysis and research related to tethers in 
space. Based on this work the capability of 
tethering research and operational craft 
together to obtain unique properties and 
performance seems promising for several 
applications. The next steps toward opera-
tional reality are already being taken. Flight 
demonstrations for the purpose of 
validating the dynamics and operating 
principles of tethered systems are under 
development. Also, activities to define 
specific user operational and systems 
requirements and to define flight validation 
experiments for promising applications are 
underway. 

The theme of the Third International 
Conference on Tethers in Space is 
"TOWARD FLIGHT" The conference will 
focus on tether applications with strong 
user interest and where appropriate, on 
planned flight systems and experiments. 
Its objective is to identify tethered system, 
users for specific applications and begin to 
focus the attention of the tether commu-
nity on helping to define and meet the re-
quirements of potential user communities.

The conference will be preceded by two 
specialist workshops, held in parallel on 16 
May, one addressing the dynamics of 
tether behavior and control and the other 
addressing the electrodynamics of con-
ducting tethers moving through the earth's 
magnetic field within the ionosphere. 

This conference is being Organized and 
operated by the American Institute of 
Aeronautics and Astronautics (AIAA) and 
co-sponsored by the National Aeronautics 
and Space Administration (NASA), the 
Agenzia Spaziale Italiana (AS!) and the 
European Space Agency (ESA) in 
cooperation with the American 
Astronautical Society (AAS) and the 
Associazione Italiana di Aeronautica e 
Astronautical (AIDAA).

Conference 
Organization 

Conference Cochairmen 
Darrell R. Branscome 
Director. Advanced Program 
Development Division 
NASA Headquarters 

Cart Durocher 
Executive Director 
American Institute of 
Aeronautics and Astronautics 

Luciano Guerriero 
President 
Italian Space Agency 

Heinz Stoewer 
Head. Systems Engineering 
and Programmatic 
Department 
ESA European Space 
Technology Center 

Program 
Committee 

'ogram Cochairmen 
John L Anderson 
NASA Headquarters 

Dale A Fester 
Martin Marietta 
S pace Systems and 
American Institute of 
Aeronautcs and Astronautics 

Philip J. Baker 
Aeritaija 

Sivo Bergarr.asch 
University of Paaua Italy 

Carlo Boniiaz 
!:ahar, Soace Agency 

Edwaro J. BraII 
NASA Headquarters 

Wiliam Diinis 
NASA Headquarters 

MireAe M. Gerard 
American InSt:tute of 
Aeronautics and Astronautics

Joseph C. Kolecki 
NASA 
Lewis Research Center 

Vi ncenzo Letco 
itai;an S pace Agency 

Albeno Loria 
ltaiian S pace Agency 

Ian Pryire 
European 
Space Agency 

Charles C. Rupp 
NASA Marshall 
S pace Flight Center 

George M. Wood 
NASA Langley 
Researcn Center 

Technical Advisor 
Ivan Bekey 
NASA HeadQuarters 

Administrative 
Committee 

Kaye E. Anqrs 
SRS Tec'.nc!oges 

W;Iiiarr A. Baracat 
Gene'ai Researcn 
Corporation 

Joanne M Hauser 
American Institute 
Of Aeronautics 
ar.o AstrOnatcs 

ORIGINAL PAGE Is 
OF POOR QUALITY 
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AM	 PM 
11:20 Overview of	 3:10 

ESA Tether Activities 
K. Reinhartz 
ESA European Space Technology 
Center 

PR8LJMINARY PROGRAM 
WEDNESDAWI7 MAY 1989 

AM 
9:00 Introductory Remarks 

Program Cochairman 
J. Anderson 
NASA Headquarters 

9:05 Welcome 
and Opening Addresses 
Conference Cochairmen 
C. Durocher 
American Institute of Aeronautics 
and Astronautics 
D. Branscome 
NASA Headquarters 
L. Guerriero 
Italian Space Agency 
H. Stoewer 
ESA European 
Space Technology Center 

9:25 Tethers - Evolution from 
Ideas to International 
Conferences 
I. Bekey 
NASA Headquarters 

9:45 Overview of the 
1987 Venice Conference 
J. Kolecki 
NASA Lewis Research Center 

10:00 Break 

Session I 
Tether Programs 

Cochairmen 
John L. Anderson 
NASA Headquarters 

Dale A. Fester 
Martin Marietta Space Systems 

Organizer 
John L. Anderson 

10:15 Introduction 

10:20 Overview of the 
National Aeronautics and 
Space Administration 
Tether Activities 
P. Penzo 
Jet Propulsion Laboratory 

10:50 Overview of 
ASI Tether Activities 
G. Manarini 
Italian Space Agency

11:40 Overview of 
DFVLR Tether Activities 
W. Seboldt 
German Aerospace 
Research Establishment 

PM 
12:00 Overview of 

Soviet Tether Activities 
V. Sarychev 
USSR Academy of Sciences 
(Invited) 

12:20 Adjournment 

Session II 
Flight Demonstration 
(Parallel Session) 

Cochairmen 
George M. Levin 
NASA Headquarters 

Alberto Loria 
Italian Space Agency 

Organizer 
Edward J. Brazill 
NASA Headquarters 

2:00 Introduction 

2:10 Tethered Satellite 
System TSS-1 Flight Status 
J. Price 
NASA Marshall 
Space Flight Center 

2:30 Joint ASI/NASA 
Efforts in Tether Flight 
Demonstrations 
A. Loria 
Italian Space Agency 
J. Harrison 
NASA Marshall 
Space Flight Center 

2:50 Plasma Motor/Generator 
Experiments 
J. McCoy 
NASA Johnson Space Center

Small Expendable-Tether 
D.ploy.r System (SEDS) 
Development Status 
J. Harrison, C. Rupp 
NASA Marshall 
Space Flight Center 
J. Carroll, C. Alexander, E. Pulliam 
Energy Science Laboratories, Inc. 

3:30 Break 

3:50 Tether Initiated Space 
Recovery System (TISRS): 
Italian Activities Toward 
Flight Demonstration 
P. Merlina, M. Burigo 
Aeritalia 

4:10 Delta II Secondary Payload 
Opportunities for Tether 
Demonstration Experiments 
J. Garvey 
McDonneli Douglas Astronautics 
Company 

4:30 Get-Away Tether 
Experiments (GATE) for the 
Tether Dynamics Explorer 
Series (TDE) 
M. Greene, J. Walls, D. Freeman, 
G. Stoverl 
Auburn University 

4:50 High Current Plasma 
Contactor Neutralizer System 
C. Collett, J. Beattie, 
W. Williamson, J. Matossian 
Hughes Research Laboratories 

5:10 Adjournment 

6:00	 Reception 
(See page 10 under Special Events 
for detailed information) 
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WEDNESDAY/17 MAY 1989 PM AM 
4:00 An Experimental 10:00 Tether De-Orbit System: 

Investigation of the Plasma A Promising Alternative 
Session Ill Contacting Process F. Bevilacqua, M. Burigo 
Electrodynamics J. Williams, P. Wilbur Aeritalia 
(Parallel Session) Colorado State University

10:20 High Altitude 
Cochairpersons 4:15 Hollow Cathode Plasma Aerothermodynamic 
Carlo Bonifazi Contactor Technology Research Opportunities 
Italian Space Agency M. Patterson with Large Tethered 

NASA Lewis Research Center Satellites 
Carolyn K. Purvis T. Verhey L. DeLuca, G. Caricmagno 
NASA Lewis Research Center Sverdrup Technology, Inc. University of Naples 

G. Wood, P. Siemers 
Organizer 4:45 Adjournment NASA Langley Research Center 
Michael J. Patterson 
NASA Lewis Research Center 6:00 Reception 10:40 Break 

(Seepage 10 under Special Events 
PM for detailed information.) 11:00 The Impact of Tethers on 
2:00 Introduction Atmospheric Science 

J. Slowey 
2:10 Calculating the Harvard-Smithsonian Center for 

Electromagnetic Field on Astrophysics 
the Earth Due to an 
Electrodynamic Tethered THURSDAY / 18 MAY 1989 11:20 Applications of a Downward-
System in the Ionosphere Deployed Tether in Polar 
R. Estes Session IV Orbits 
Harvard-Smithsonian Center Downward Deployed Tethers S. Gabriel, N. Garrett 
for Astrophysics (Parallel Session) Jet Propulsion Laboratory 

J. Forbes 
2:25 Current Distribution Cochairmen Boston University 

Generated by Conducting Gibvanni Carlomagno 
Bodies Moving University of Naples 11:40 Atmospheric Density 
Through a Magnetoplasma Variations via Tethered 
D. Donohue, K. Harker, P. Banks Stanley D. Shawhan Satellite Drag 
Stanford University NASA Headquarters G. Gullahorn 

Harvard-Smithsonian Center for 
2:40 Space-Based Tethered Organizer Astrophysics 

Array Antenna George M. Wood 
M. Kaplan, C. King NASA Langley Research Center PM 
Naval Research Laboratory AM 12:00 Adjournment 

8:30 Introduction 
2:55 Waves and Wings from 

Tethers and Electrodes in a 8:40 Tethered Satellite System-2: 
Laboratory Plasma A Proposed Program 
J. Urrutia, R. Stenzel J Anderson Session V 
University of California NASA Headquarters Dynamics 
at Los Angeles (Parallel Session) 

9:00 Aerodynamic Aspects of 
3:10 Plasma Contactor Clouds: Tethered Satellite Design and Cochairmen 

A Comparison of Theory Utilization Vittorio Giavotto 
and Experiment R. Boettcher Polytechnic of Milan 
M. Oberhardt German Aerospace Research 
U.S. Air Force Geophysics Lab Establishment Thomas R. Kane 
D. Hastings Stanford University 
Massachusetts institute of 920 Satellite-Tethered 
Technology Upper-Atmospheric Research Organizers 

Facility Silvio Bergamaschi 
3:25 Break C. Butner, C. Gartrell University of Padua, Italy 

3:45 A Fluid Model of Plasma
General Research Corporation

Charles C. Rupp 
Contactors in the 9:40 Tethered Dynamics NASA Marshall 
Ionosphere Explorer Series Space Flight Center 
L. less, M. Dobrowolny K. Crumbly, G. Wood, R. DeLoach AM 
Institute of Physics of the	 nter- NASA Langley Reseach Center 8:30 Introduction 
planetary Space/ C. PLIPP, J. Hamson 
National Research Council. italy NASA Marshall Space Flight Center
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ThIMSDAYII$ MAY 1989 

AM 
8:40 Tethered Satellite System 

Control Systems Design 
C. Bodley 
Martin Marietta Astronautics 
D. Mowery, D. Tomlin 
NASA Marshall 
Space Flight Center

PM 
12:00 16 May 1989 Dynamics 

Workshop Summary 
C. Rupp 
NASA Marshall Space Flight 
Center 

12:20 Adjournment

PM 
4:35 Tethered Gravity 

Laboratories 
F. Bevilacqua, P. Merlina 
Aeritalia 
E.Lorenzini, M. Cosmo 
Smithsonian 
Astrophysical Observatory 
S. Bergamaschi 
University of Padua 

9:00 Three-Dimensional 5:00 Two-Phase Flow-Induced 
Vibrations of Tethered Vibrations of Space Tethers 
Satellite System Session VI R. Engelstad, E. Lovell 
P. Monica, P. Marcello, L. Angelo Stations, Nodes and University of Wisccnsin 
University of Rome Platforms 

(Parallel Session) 5:25 Adjournment 
9:20 Passive Tethered Satellite 

Retrieval Cochairmen 
R. Humble Earle K. Huckins 
Lockheed Engineering and NASA Headquarters 
Sciences Company

Remo Ruffini Session VII 
9:40 A Length Rate Control Law University of Rome Electrodynamics 

Applicable to Space Station (Parallel Session) 
Tether Deployment/Retrieval Organizers 
J. Glaese Phillip J. Baker Cochairpersons 
Control Dynamics Company Aeritalia Carlo Bonifazi 

Italian Space Agency 
10:00 Space Station Based William Dlinis 

Tethered Payload: NASA Headquarters Carolyn K. Purvis 
Control Strategies and Their NASA Lewis Research Center 
Relative Merit 2:00 Introduction 
P. Lakshmanan, V. Modi Organizer 
The University of British Columbia 2:10 Experiments with the KITE Michael J. Patterson 
A. Misra Attitude Control Simulator NASA Lewis Research Center 
McGill University, Canada B. Kline - Schoder, J. Powe ll pJ.4 

Stanford University 2:00 Introduction 
10:20 Break

2:35 Analysis of the 2:10 Shuttle Electrodynamic 
10:40 Orbit Evolution and Decay Performances of a Tethered Tether System 

of Tether-Launched Space Stabilized P. Williamson, P. Banks 
SVstems Schmidt Telescope Asserved Stanford University 
S. Bergamaschi to the Space Station W. Raitt 
University of Padua F. Bertola, P. Rafanelli, F. Angrilli, Utah State University 

G. Bianchini, M. DaLio, G. Fanti 
11:00 Robust Attitude Control of a University of Padua 2:30 Determination of the 

Tethered Nuclear Power Tethered Satellite Location 
Plant-Space Station System 3:00 The Outpost Platform, for the Shuttle 
R. Yedavalli A Place for Tether Research Electrodynamic Tether 
Ohio State University and Transportation Node System First Mission 
M. Ernst, C. Lawrence Operations in Orbit S. Williams, P. Williamson 
NASA Lewis Research Center T. Taylor, C. Cook, W. Good Stanford, University 

Global Outpost, Inc. 
11:20 Dynamics and Control 2:50 Electrical Characteristics 

of Tethered Antennas / 3:25 Break of the Tethered 
Reflectors in Orbit Satellite System One 
L. Liangdong, P. Bainum 3:45 The Science and Application D. Lauben, P. Williamson 
Howard University Tethered Platform Stanford University 

F. Lucchetti, P. Merlina 
11:40 General 3-0 Animation Aeritalia 

Techniques for Tether 
Dynamics 4:10 A Design for a Space Station 
D. Lang Tethered Elevator 
Lang Associates M. Haddock, L. Anderson 
C. Soderland University of Central Florida 
NASA Johnson Space Center
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TNIJfl8DAY18 MAY 1989 Carlo Buongiomo AM 
Italian Space Agency 10:50 How Tethered Systems 

s..sion vu Can Benefit Microgravity 
Electrodynamics Organizer Research in the Spec. 
(continued) Paul A. Penzo Station Era 

PM Jet Propulsion Laboratory M. Lavitola, F. Giani, M. Briccarello 
3:10 A Systematic Approach to AM Aeritalia 

Sensors Evaluation of 8:30 Introduction 
Ground-Track Measurement 11:10 An Artificial Gravity 
Systems for TSSI 8:40 Tether as Upper Stage for Demonstration Experiment 
G. Careti Launch to Orbit C. Rupp 
Institute of Physics of the B. Tiilotson NASA Marshall Space Flight Center 
nterplanetary Space/National Space Research Associates, Inc. L. Lemké 
Research Council, Italy NASA Headquarters 
G. Tacconi, A. Tiano 9:00 On the Tilting Tethered P. Penzo 
University of Genoa Crane Concept Jet Propulsion Laboratory 

A. Finzi, G. Origgi 
3:30 Break Polytechnic of Milan 11:30 Attitude Dynamics of the 

3.50 Tethered Satellite System - 9:20 Transportation Using
Tether Elevator/Crawler 
System for Microgravity Electromagnetic Field Spinning Tethers with Applications 

and FEM Effect Numerical Emphasis S. Vetrella, A. Moccia 
Simulation in Near on Phasing and Plane Change University of Naples 
Proximity of TSS Satellite D. Henderson E. Lorenzini, M. Cosmo 
A. Lorenzirii Jet Propulsion Laboratory Harvard-Smithsonian Center 
Italian Space Agency for Astrophysics 
E. Pierazostini 9:40 A Comparative Analysis of 
Telespazio Roma an Electrodynamic Tether as 

a Propulsive Device 11:50 Optimization of the G-Level 4:10 The Active Control of the T. Verhey in Microgravity 
Electrodynamic Interaction Sverdrup Technology, Inc. Experimentation: 
of a Tethered Satellite by the A Motivation for the Variable 
Core Electron Generator 10:00 Materials Transport between Gravity Tethered Platform 
C. Bonifazi LEO and the Moon Using A. Monti, C. Golis, L. G. Napolitano 
Institute of Physics of the Tethers University of Naples 
Interplanetary Space! National M. Stern, J. Arnold PM 
Research Council, Italy University of 12:10 Adjournment 

California at San Diego 
4:30 Shuttle Potential and 

Return Electron Experiment 10:20 Break 
M. Oberhardt, D. Hardy 
U.S. Air. Force Session X Geophysics Laboratory Tether Technology 

4:50 VLF Space Transmitter
(Parallel Session)

 
R. Olsen Session ix Cochairmen 
Naval Postgraduate School Gravity and Rotating James K. Harrison 

Tether Systems NASA Marshall Space Flight 5:10 16 May 1989 ( Parallel Session) Center
 Electrodynamics Workshop 

Summary Cochairmen Ernesto Vallerani 
J. Kolecki Jean Pierre Lebreton Aeritalia 
NASA Lewis Research Center ESA European Space Technology 

5:30 Adjournment
Center Organizer 

William A. Baracat 
Luigi Napolitano General Research Corporation 
University of Naples AM 

8:30 Introduction 
Organizer 

FRIDAY! 19 MAY 1989 Franco Bevilacqua 8:40 Pan-Spheric Diagnostics 
Aeritatia Using an Umbilical Tether 

Session VIII J. Sullivan 
Transportation 10:40 Introduction MIT Plasma Fusion Center 
(Parallel Session) E. Lorenzini 

Smithsonian 
Cochairmer, Astrophysical Observatory 
Maxwell W. Hunter 
Consultant
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FRIDAY/IS MAY 1989 Klaus Retnhartz 
ESA European Space 

AM Technology Center 
9:00 Advances in Space 

Tether Materials Organizers 
R. Orban Terrence G. Reese 
Materials Concepts, Inc. The Bionetics Corporation 

9:20 A Method for Damage Giovanni Rum 
Inspection and Verification Italian Space Agency 
of Tethers PM 
G. Howard, A. Levi, F. Gray 1:30 Introduction 
ANCO Engineers, Inc.

1:40 Tethers in the Real World of 
9:40 Gravity Gradient Manned Space Flight 

Disturbances on Rotating J. Hoffman 
Tethered Systems in Astronaut Office 
Circular Orbits NASA Johnson Space Center 
A. DeCou 
Northern Arizona University 1:55 Operational Techniques for the 

TSS-1 Mission 
10:00 Development of a Tether M. Laible 

Deployment Monitoring Rockwell International 
System Shuttle Operations 
P. Ibanez, F. Gray, A. Levi 
ANCO Engineers, Inc. 2:10 To be announced 

10:20 Development Testing of 2:25 Tether Inspection and Repair: 
TSS-1 Deployer Control The Key for the Development 
System Mechanisms of Permanent 
D. Tisdale, D Bentley Tethered Facilities 
Martin Marietta Space Systems F. Bevilacqua, S. Ciardo 

Aeritalia 
10:40 Mechanical Behavior of 

TSS-1 and TSS-2 Tethers: 2:40 Operation of Small Tethered 
Experimental Results and Payloads from the Space 
Physical Modelling Station 
F. Angrilli, G. Bianchini, G. He, B. Lee, 
M. DaLio, G. Fanti E. Stoneking, S. Williams 
University of Padua Stanford University 

11:00 Attitude Sensing Device of 2:55 Break 
the Subsatellite Relative to 
the Tether 
A. Caporali, G. Coloroe 
University of Padua 

11:20 The Use of Tethered Session XII 
Satellites for the Collection Critical Issues Panel 
of Cosmic Dust and the 
Sampling of Man Made Chairman 
Orbital Debris Robert Rosen 
G. Corso NASA Headquarters 
Loyola University of Chicago

Organizers 
11:40 Tethers in Space, and Gianfranco Manarini 

Meteorites Italian Space Agency 
E. Scala 
Cortland Cable Company, Inc. Thomas D. Stuart 

NASA Headquarters

3:15 Panel 
Participants 
W. Bo//endonk 

Session XI	 Martin Marietta Space Systems 
Operations and Safety

D. Branscome 
Cochairmen	 NASA Headquarters 
Joseph P. Loftus, Jr. 
NASA Johnson Space Center

C. Buongiorno 
Italian Space Agency 

J.J. Dordain 
ESA European Space 
Technology Center 

F Harkleroad 
NASA Headquarters 

J. Hoffman 
Astronaut Office 
NASA Johnson Space Center 

L. Napolitano 
University of Naples 

H. Stoewer 
ESA European Space 
Technology Center 

E. Vallerani 
Aeritalia 

PM 
5:00 Closing Remarks 

Program Cochairman 
J. Anderson 
NASA Headquarters 

5:10 Adjournment 
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OWective and Approach PRELIMINARY PROGRAM AM 
TUESDAY/19 MAY 1989 1000 Deployment and Retrieval of 

Dynamics Workshop Kane's Tethered Crawler 
In keeping with the theme of the Dynamics Workshop from Orbiting Spacecraft 
conference, 'Toward Flight" the A. Banerjee, D. Levinson 
objective of the workshop is to Organizers Lockheed Missiles 
provide a forum for describing Silvio Bergamaschi and Space'Company 
flight experiments, data reduction Italian Space Agency 
methods, and parameter identifica- 10:20 Two-Phase Flow-Induced 
tion techniques. Instrumentation Charles C. Rupp Vibrations of Space Tethers 
requirements for future f light ex- NASA R. Englestad, E	 Lovell 
periments will be solicited. Marshall Space Flight Center University of Wisconsin 

AM 
Electrodynamics Workshop 7:30 Registration 10:40 Active and Passive Control 
The theme of the Electrodynamics of Tether Damping 
Workshop is. "Beyond TSS-l: The 8:30 Introduction T. Vaneck, X. He 
Next Logical Steps". The objective J. Powell, P. Banks 
of the workshop is to discuss ques- 8:40 Dynamics of N-Body Stanford University 
tions and issues dealing with the Tethered Satellite Systems 
future development of the electro- A. Misra, P. Lopez, T. Kainth 11:00 Retrieval Dynamics 
dynamic tether as a multipurpose McGill University, Canada D. Arnold 
tool for space in the upcoming V. Modi Harvard-Smithsonian 
decade and beyond. Specifically, University of British Columbia, Center for Astrophysics 
three broad questions will be Canada 
addressed: 11:20 Automatic Docking 

9:00 Simulation of Maneuver by a Double 
I) What type of missions would Tether Motions Tether System 
most logically follow TSS-I, G. Woodward, T. Kane A. Finzi 
and who would be the most Stanford University Polytechnic of Milan 
likely users?

9:20 Dynamical Effects of Radar 11:40 A Non-Linear Analysis of 
2) In which areas of application Reflectors Attached to the Thermal Effects on Tether are electrodynamic tethers Small Expendable-Tether Dynamics 
most competitive with other Deployer System (SEDS) S. Sgubini, F. Grazianp 
technologies? M. Cosmo, E. Lorenzini University of Rome 

Harvard-Smithsonian PM 
3) What work needs to be done to Center for Astrophysics 12:00 Lunch 
bring electrodynamic tethers 
to a state of user readiness 9:40 Wave Propagation 12:20 The Over-Extended Tether in the power ranges Along the Tether J. Breakwell 
and areasof applicat:on deemed Elevator/Crawler System Stanford University most desirable? E. Lorenzini, M. Cosmo 

Harvard-Smithsonian 12:40 An Earth Pointing (YAW) 
In order to facilitate these Center for Astrophysics Spinning Satellite with No 
discussions panels of Counter Rotating Wheel 
speakers have been assembled W Davis, D. Levinson 
to deliver papers. Time will be Lockheed Missiles and Space 
al/owed between papers for Company 
workshop participants to 
respond to each of the topics. 
Open discussion arid/or written 
comments are welcome.
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PM PRELIMINARY PROGRAM PM 
1:00 Ip..e StatIen-Ct	 Station TUESDAY/i6 MAY 1989 2:20 ScisutINc Interest lam 

Keeping via Tethers El.ctrodynamic Tether 
D. Lang Electrodynamics Workshop Development Beyond 1984 
Lang Associates P. Banks 
C. Sodertand Organizers Stanford University 
NASA Johnson Space Center Marino Dobrowolny 

Institute of Physics of the Inter- 3:10 Ground Experiments to 
1:20 Proximity Motion of Free planetary Space/National Research Support anElectrodynamic 

and Tethered Council, Italy Tether Flight Program 
Bodies in Space Development 
W. Kriabe Joseph C. Kolecki G. Vannaroni 
MBB/Erno NASA Lewis Research Center Institute of Physics of the 

AM Interplanetary Space/National 
1:40. Center of Mass Motion off 7:30 Registration Research Council, Italy 

Kepler, Orbits 
P. Swan 8:30 Introduction and Opening Remarks 4:00 Theoretical Developments to 
Motorola, Inc. J. Kolecki Support an Electrodynamic 

NASA Lewis Research Center lather Flight Program 
2:00 Panel Discussion M. Dobrowolny Development 

Institute of Physics of the Inter- I. Katz 
A. Review of Dynamics Flight planetary Space/National Research S-Cubed, Inc. 
Experiments Council, Italy

5:00 Wine and Cheese Reception 
Tethered Satellite System 9:00 TSS-I Program Overview with Conference Registration 
G. Gullahorn Comments on the 
Harvard-Smithsonian Center for Future of Electrodynamics 
Astrophysics T. Stuart 

NASA Headquarters 
Small Expendable N. Stone 
D.ployer System NASA Marshall Space Flight Center 
C. Rupp 
NASA Marshall Space Flight Center 9:50 On the Direction of 

ULF and VLF Emission from 
B. Measurement Analysis for the TSS-I Experiment 
the First SEDS Experiment G. Tacconi 
C. Carrington University of Genoa 
University of South Carolina 
C. Rupp 10:40 Electrodynamic 
NASA Marshall Space Flight Center Polar Mission 

S. Gabriel 
C. Future Flight Jet Propulsion Laboratory 
Dynamics Instrumentation 
Requirements 11:30 Space Station Power and 
D. Arnold Propulsion Applications 
Harvard-Smithsonian D. McMann 
Center for Astrophysics Ball Aerospace 

PM 
12:20 Lunch 

5:00 Wine and Cheese Reception 
Conference Registration 1:30 Communications 

Applications 
M. Grossi 
Smithsonian 
Astrophysical Observatory
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6.1 Abbreviations 

The following abbreviations are used in the bibliography listings to avoid repetition of commonly 
used phrases. 

Int. Conf. 1986 NASA/ATAA/PSN International Conference on Tethers in Space, Arlington, 
Virginia, 17-19 September 1986. Proceedings, Vol. 62, Advances in the 
Astronautical Sciences, Tethers in Space, Eds. P. M. Bainum, I. Bekey, 
L.Guerriero, P. A. Penzo, 1987. 

Int. Conf. 1987 PSN/NASA/ESA Second International Conference on Tethers in Space, 
Venice, Italy, 6-9 October 1987. Conference Proceedings, Vol. 14, Societa 
Italiana di Fisica, Space Tethers for Science in the Space Station Era, Eds. 
L. Guerriero, I. Bekey, 1988. 

Int. Conf. 1989	 AIAAJNASA/ASI/ESA Third International Conference on Tethers in Space, 

San Francisco, California, 17-19 May 1989. 

Work Shop 1978	 Uses of a Tethered Satellite S ystem, UAHINASA Workshop, Huntsville, 
Alabama, NASA report available, Ed. S. T. Wu, May 1978. 

Work Shop 1983 Applications of Tethers in Space, Workshop, Williamsburg, Virginia, 15-
17 June 1983: Workshop Proceedings, NASA CP-2364 (Vol. 1), NASA 
CP-2365 (Vol. 2), March 1985. 

Work Shop 1985 Applications of Tethers in Space, Workshop, Venice, Italy, 15-17 October 
1985. Workshop Proceedings, NASA CP-2422 (Executive Summary, Vol. 
1, Vol. 2), 1986.

AAS American Astronautical Society 

ATAA American Institute of Aeronautics and Astronautics 

ASI Agenzia Spaziale Italiana (Italian Space Agency) 

IAF International Astronautical Federation 

JPL Jet Propulsion Laboratory, Pasadena, California 

NUT Massachusetts Institute of Technology, Cambridge, Massachusetts 

NASA/ARC Ames Research Center, Moffett Field, California 

NASA/GSFC Goddard Space Flight Center, Greenbelt, Maryland 

NASA/HQ NASA Headquarters, Washington, D. C. 

NASA/JSC Lyndon B. Johnson Space Center, Houston, Texas 

NASA/LaRC Langley Research Center, Hampton, Virginia 

NASA/LeRC Lewis Research Center, Cleveland, Ohio 

NASA/MSFC Marshall Space Flight Center, Marshall Space Flight Center, Alabama 

PSN Piano Spaziale Nazionale (Italian National Space Plan) 

SAO Smithsonian Astrophysical Observatory, Cambridge, Massachusetts 

UAH University of Alabama, Huntsville, Alabama
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8080 Grainger Court 
Springfield, VA 22153 
(703) 569-8800 

William R. Woodis 
Martin Marietta Denver Aerospace 
P0 Box 179 
Mail Stop S-8080 
Denver, CO 80201 
(303) 977-9796
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7.2	 Foreign Contacts Frediico Bedarida Massimo Bozzo 
1st. Minaralogia Aeritalia 

Stefano Abba Universita di Genova Via Ortigara 3/13 
Aeritalia Corso Eurpoa, Palazzo delle Scienze 00100 Roma, Italy 
Via Archimede, 156 16132 Genova, Italy 39-6-67741 
000197 Roma, Italy 
39-6-878425 Alberto Beretta Carlo Buongiorno 

Laben, I.S.C. Director General, AS! 
Marisa Adduci S.S. Padana Superiore, 290 Viale Regina Margherita 202 
Centro Internazionale Congressi 20090 Vimodrone-MI, Italy 00198 Roma, Italy 
Viale PlO XII, 18 39-2-250751 39-64767218 
70124 Ban, Italy 
39-80-517299[1'x:812259CI'C i Silvio Bergamaschi Mario Lorenzo Burigo 

University of Padua Aeritalia Space Systems Group 
Carlo Alberti Institute of Applied Mechanics Corso Marche, 41 
Proel Tecnologie Via Venezia 1 10146 Torino, Italy 
Viale Macchiavelli, 29 35131 Padua, Italy 39-11-7180718 
50125 Firenze, Italy 3949-8071033

G. Cainmarano 
Francesco Angrilli Gianfranco Bevilacqua M.R.S.T. 
Institute of Applied Mechanics Aeritalia Space Systems Group Longotevere Thaan de Revel 76 
University of Padua Corso Marche 41 00196 Roma, Italy 
Via Venezia, 1 10146 Torino, Italy 
35131 Padova, Italy 39-11-725089 Maurizio Candidi 
3949-8071033

Giannandrea Bianchini CP 27 
Alberto Anselmi University of Padua 00044 Frascati, Italy 
Aeritalia Space Systems Group Via Venezia 1 39-6-9423801 
Corso Marche 41 35131 Padua, Italy 
10146 Torino, Italy 3949-20198 Giovanni Caprara 
39-11-7180356 Corriere della Sera 

Bernd Bishof Via Solferino, 28 
Ettore Antona Emo Raunfahrtechnick Gmbh RA 301 20121 Milano, Italy 
Politecnico Di Torino Hunefelddstr. 1-5 Postf. 105909 39-2-62827522 
Dipartimento Ingegneria Aerospaziale Bremen, Germany 
Corso Duca Degli Abruzzi, 24 (421) 3509248 Giovanni Carlomagno 
10146 Torino, Italy Istituto Di Gasdinamica 
39-11-5566807 W. Bogo P.le V. Tecchio, 80 

Aeritalia Space Systems Group 80125 Napoli, Italy 
Carlo Baccaato Corso Marche 41 39-81-635355 /616276 
Agusta Spa 10146 Torino, Italy 
Via Caldera 21 39-11-7180356 Ludwik Celnikier 
Milano, Italy Observatoire Dc Paris Meudon 
39-245275390 Angelo Bonanni 92 Meudon, France 

Carlo Gavazzi Controls 33-1-5347570 
Emilio Banfi Via G. Ciardi 9 
Laben Milano, Italy Carlo Ceitignani 
SS Superiore 290 39-24020212 Dipartimento Matematica 
Vimodrone (MI), Italy Politecnico di Milano 
39-2-25075229 Carlo Bonifazi Piazza Leonardo da Vinici, 32 

AS! 20133 Milano, Italy 
Ignazio Banaco IFSI/CNR 39-2-23994557 
Aeritalia Space System Group Viale Regina Margherita 202 
Corso Marche 41 00198 Roma, Italy Philip Chandler 
10146 Torino, Italy 39-6-4767246 Space Station Program DFVLR 
39-11-7180718 Linden Hoehe 

Roger Bonnet D - 5000 Koeln 90- FGR 
Giangrande Bantsi ESA 49-022030-6012856 
Italspazio 8-10 Rue Mario-Nikis 
Via Orlando, 83 75738 Paris Cedex 15, France 
00185 Roma, Italy 33-142737338
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Salvatore Ciardo	 Frederick Engstrom	 Giovanni Ghersini 
Aeritalia Space Systems Group 	 ESA	 Via Reggio Emilia, 39 
Corso Marche 41	 8-10, rue Mario-Nikis 	 20090 Segrate (MI), Italy 
10146 Torino, Italy	 75738 Paris Cedex 15, France 	 39-2-21672201 
39-11-7180356	 33-1-42737338 

Giafranco Cirri 
Proel Technologie 
Viale Macchiavelli, 29 
50125 Firenze, Italy 
39-55-2298507

Mr. Festa 
Aeritalia Space Systems Group 
Corso Marche 41 
10146 Torino, Italy 
39-11-718071

Francesco Giani 
Aeritalia, Space Systems Group 
Mail Code RCSP 
Corso Marche 41 
10146 Torino, Italy 
39-11-7180235 /721345 

Peter J. Conchie	 Amalia Ercoli Final 
British Aerospace PLC	 Politecnico di Milano 
Space & Communications Division 	 Dipartimento di Ingegneria Aerospaziale 
Argyle Way, Stevenage Herts. 	 Via Golgi-40 
SG1 2AS, England 	 20133 Milano, Italy 
44438-736378	 39-2-23994000 

Mario Cosmo	 Robert Fissette 
Universita di Napoli
	

Maritn Marietta International, Inc. 
P.le Tecchio, 80
	

Vice President 
80125 Napoli, Italy 	 375 Anenue Louise 
39-81-7682158
	

1050 Brussels, Belgium 
32-2-640-4878 

Cristiano B. Cosmovici 
IFSI/CNR
	

Enrico Flamini 
00044 Frascati, Italy	 AS! 
39-6-9423801
	

Viale Regina Margherita, 202 
00198 Roma, Italy 

Luigi de Luca	 39-6-4767251 
Istituto Di Gasdinamica 
P.le V. Tecchio, 80
	

Piero Forcella 
80125 Napoli, Italy	 R.A.I. Television 
39-81-616526 / 616276
	

Via Tevlada 66 
Roma, Italy 

Paul Dickinson	 39-6-36863810 
Rutherford Appleton Laboratory 
Chilton Didcot
	

Martin Franco Foresta 
Oxon Ox 11 OQX, England

	
Via del Parlarnento 9 

Abingdon 44-0-235-21900 x.6510
	

00186 Roma, Italy 
39-6-77071

Origgi Giani 
Via Cagnola 3 
20754 Milano, Italy 

Vittorio Giavotto 
Politecmco di Milano 
Dipartimento di Ingegneria Aerospaziale. 
Via Golgi 40 
20133 Milano, Italy 
39-2-23994030 

Filippo Graziani 
Universita di Roma 
Associate Professor 
Via Lariana 5 
00199 Roma, Italy 
39-6-858333 

Fernando Grego 
Seleni Spazio 
Via Gaeta 70 
Roma, Italy 
39-6-43682157 

Vincenzo Guarnieri 
Aeritalia - Saipa 
Via Servais 125 
10100 Torino, Italy 
39-11-721345 

Francesco Di Tolle 
Laben - I.S.C. 
Sirada Padana Superiore, 290 
20090 Vimodrone - Ml, Italy 
39-2-250751 

Marino Dobrowolny 
IFSJ/CNR 
CP 27 
00044 Frascati, Italy 
39-6-9421017 

Jean-Jacques Dordain

Ranco Frulli 
Ministero Ricerca Scinetifica 
Lungotevere Thaon de Revel 78 
00100 Roma, Italy 
39-6-394601 

Leonardo Gagliardi 
AS! 
Viale Regina Margherita 202 
00198 Roma, Italy 
39-6-4767250

Luciano Guerriero 
President, AS! 
Viale Regina Margherita, 202 
00198 Roma, Italy 
39-6-4767207 

Umberto Guidoni 
IFSI/CNR 
C.P. 27 
Frascati 
00044 Rome, Italy 
39-6-9423801 

European Space Agency	 Pietro Luigi Gervasini 
Head of Space Station and Platforms 	 LABEN 
8-10, rue Mario-Nikis	 S.S. Panana Superiore 290 
75738 Paris, France	 22090 Vimodrone, Italy 
33-1-42737338	 39-2-250751

Martin Hechler 
European Space Operation Center 
Mission Analysis Office 
Robert Bosch Str. 5 
61 Darmstatd, Germany 
49-44-6151886291 
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K. Hirao John Lewak Chris A. Markiand Institute of Space and Astronautical Bristol Aerospace European Space Agency Science PO Box 874 2200 AG 
4-6-1 Komaba Winnipeg, Canada R3C 2S4 Noordwijk, Netherlands Meguro-Ku (204)775-8331 31-17198655 Tokyo 153, Japan

Federici Licci Gualtiero Marone Luciano less Aeritalia SIA SPA IFSI/CNR Corso Marche, 41 Via Servais 125 Via G. Galilei 10146 Torino, Italy 00100 Torino, Italy 00040 Frascati, Italy 39-11-71801 39-11-794844 

Ciro Iorio Andrea Lorenzoni M. Mauconi Aeritalia 
Viale Petrolini 2

ASI 
Viale Regina Margherita, 202

Aeritalia Space Systems Group 
Corso Marche 41 00197 Roma, Italy 00198 Roma, Italy 10146 Torino, Italy 39-6-8778539 39-6-4767259 

Dieter Kassing Alberto Loria
John J. McPhee 
University of Waterloo ESA/ESTEC 

Keplerlaan 1
ASI Dept. of Mechanical Engineering 

Postbus 299
Viale Regina Margherita 202 University of Waterloo 

AG2200 Noorwijk, Netherlands
00198 Roma, Italy 
39-6-4767250

Ontario, Canada N2L 3G1 
(519) 885-1211 x.2346 31-1719-86555 

Nobuki Kawashima
Fabrizio Lucchetti 
Aeritalia Space Systems Group

Pietro Merlina 
Aeritalia Space Systems Group Institute of Space and Astronautical Corso Marche, 41 Corso Marche 41 Science 10146 Torino, Italy 10146 Torino, Italy 6-1, Komaba 4-Chome 39-11-7180718 39-11-7180356 Meguro-Ku 

Tokyo 153, Japan Dr. C. Maccone Arun K. Misra 81-3-467-111 x.335 Via Matorelli, 43 McGill University 

Mr. Kuriki
1-10155 Torino, Italy Department of Mechanical Engineering 

Institute of Space and Aeronautical Piergiovanni Magnani
817 Sherbrooke Street, W. 
Montreal, Quebec, Canada H3A 2K6 Science FIAR SPA (514) 398-6288 4-6-1 Komaba Via Montefeltro 8 

Meguro-Ku 20100 Milano, Italy Antonio Moccia 
Tokyo 153, Japan 39-2-35790267 Istituto Di Gasdinamica 81-3-467-1111 P. le V. Tecchio, 80 

Giafranco Manarini 80125 Napoli, Italy James G.Laframboise AS! (081) 616276 York University Viale Regina Margherita, 202 
Physics Department 00198 Roma, Italy Vinod J. Modi 4700 Keeie Street 39-64767262 University of British Columbia Downsview, Ontario, Canada M3J1P3 Department of Mechanical Engineering (416) 736-2100 x.6476 Franco Mariani Vancouver, B.C., Canada V6T 1W5 

Secondo Universital (604) 263-8571 P.K. Lakshmanan Dipartimento di Fisica 
University of British Columbia Via Orazio Raimondo Giacomo Modugno 
Department of Mechanical Engineering 00173 Roma, Italy Via A. Ristori, 21 
Vancouver, B.C., Canada V6T 1W5 39-6-79792319 00197 Roma, Italy 

39-6483505 
Jean Pierre Lebreuon Ezvoli Marinella 
Space Science Dept. of ESTEC AS! Giuseppe Moneti 
Keperlaan 1 Viale Regina Margherita, 202 Multiconsult 
Postbus 299 00198 Roma, Italy Via Porta Pinciana, 34 
AG2200 Noorwijk, Netherlands 39-64767207 00100 Roma, Italy 
31-1719-86555 39-6483505
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Rudolfo Monti L. Marco Palenzona Remo Ruffmi 
Istituto Aerodinamica U. Nobile ESA/ESTEC Dipartimento di Fisica 
Plaza le Tecchio 80 Keplerlaan 4 Universita di Roma 
08123 Napoli, Italy Posthus 299 P.le Aldo Moro, 2 

2200 AG Noordwijk, Netherlands 00100 Roma, Italy 
Maria B. Montini 31-171982651 39-6-4976304 
AS! 
Viale Regina Margherita, 202 Alberto Passerone Efrem Rusconi 
00198 Roma, Italy Istituto di Chimica Fisica Carlo Gavazzi Controls 
39-6-4767261 Applicata Dci Materiali (CNR) Via Ciardi, 9 

Lungo Bisagno Istria, 34 20100 Milano, Italy 
Bruno Musetti 16136 Genova, Italy 39-240201 
Aeritalia Space Systems Group 39-10-852951 
Corso Marche, 41 Jean Sabbagh 
10146 Torino, Italy Mauro Pecchioli ASI 
39-11-71801 Telespazio Viale Regina Margherita 202 

Via Alberto Bergamini, 50 00198 Roma, Italy 
Paolo Musi 00159 Roma, Italy 39-6-4767247 
Aeritalia Space Systems Group 39-649872408 
Corso Marche, 41 AJ. Saber 
10146 Torino, Italy Pier Franco Pellegrini 4827 Grand Blvd. 
39-11-7180750 Dipartimento di Fisica Montreal, Canada H3X 3S1 

Via S. Marta, 3 (514) 489-1751 
M. Nagatomo 50139 Firenze, Italy 
Institute of Space and Aeronautical 39-55-4796267 Attilio Salvetti 
Science University of Pisa 
4-6-1 Komaba, Meguro-Ku Carlo Pontiggia Department of Aerospace Engineering 
Tokyo 153, Japan Dipartimento di Fisica Pisa, Italy 

Via del Bragone, 13 
Luigi G. Napolitano 16147 Genova, Italy Franco Samoggia 
Istituto U. Nobile 39-10-518184 Indusirie Spazio Comunicazioni 
Plaza le Tecchio 80 Viale Macchiavelli, 29 
08123 Napoli, Italy Walter Prendin 50125 Firenze, Italy 
39-81-7690525 Tecnomare 39-55-220281 

San Marco 2091 
Patrick Norris 30100 Venezia, Italy Palo Santini 
Logica SDS Ltd. 39-41-796711 Scuola di Ingeneria Aemspaziale 
Marketing Manager University di Roma 
64 Newman Street Giulo Raiola Via Eudossiana, No. 18 
London W1A 4SE,England Aeritalia 00100 Roma, Italy 
44-1-6379111 Via Ermete Novelli, 6 39-6-4741702 

00100 Roma, Italy 
T. Obayashi 39-6-874526 S. Sasaki 
Institute of Space and Aeronautical Institute of Space and Aeronautical 
Science Rausch Science 
4-6-1 Komaba Dornier Systems GMBH 4-6-1 Komaba 
Meguro-Ku Postfach 1360 Meguro-Ku 
Tokyo 153, Japan Frankfurt 11, D-6000 West Germany Tokyo 153, Japan 

81-3-467-1111 
Junjiro Onoda Armando Rovatti 
Insitute of Space and Astronautical MAR Space Division Manager Chikatoshi Satoh 
Science Via Montefeltro 8 Nihon University 
6-1 Komaba 4-Chome 20156 Milano, Italy 7-24-1, Narashinodai 
Meguro-Ku 39-2-35790205 Funbashi-city, Chiba-pref, 274 Japan 
Tokyo 153, Japan 8147-466-1111 

Carlo Rubbia 
K. Oyama CERN Filippo Sciarrino 
Institute of Space and Aeronautical EP Division Contraves Italiana 
Science Geneva 23, Switzerland Via Affile, 102 
4-6-1 Komaba 41-22-836111 00131 Roma, Italy 
Meguro-Ku 39-6-43672444 
Tokyo 153, Japan
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Dr. Sebastianj 
Techomare S.P.A. 
S. marco 2091 
30124 Venice, Italy 

Silvano Sgubini 
Universita di Roma 
Dipartimento Aerospaziale 
Via Salaria 851 
00100 Roma, Italy 
30-6-8120529 

Anna Sinopoli 
University of Venice 
Assistant Professor 
S. Croce 191 
30125 Venice, Italy 
39-49-8071033 

Giorgio Tacconi 
University of Genova 
Dipartimento Dibe Universita Genova 
Via delFOpera Pin 11 A 
16145 Genova, Italy 
39-10-311811 

Marjorie Townsend 
Agusta Sistemi 
21046 Tradate -VA, Italy 

Carlo Tiipodi 
Aentalia 
Via Bemini, 58 
80129 Napoli, Italy 

Edmondo Turci 
Aeritalia 
Corso Marche 41 
10100 Torino, Italy 
39-11-7180564 

Saverio Valente 
do ASI 
Viale Regina Margherita, 202 
00198 Roma, Italy 

Ernesto Vallerani 
Aeritalia, Space Systems Group 
General Manager 
Corso Marche 41 
10146 Torino, Italy 
39-11-712932 

Guiliano Vannamni 
IFSI/CNR 
Via G. Galilei 
00044 Frascati, Italy 
39-6-9423801

Ivo Varano 
Officine Galileo 
Via Einstein, 35 
50013 Campi Bisenzio-FI, Italy 
39-55-8950359 

Floriano Venditti 
Aeritalia, Space Systems Group 
Dynamic Systems Director 
Corso Marche 41 
10146 Torino, Italy 
39-11-7180752 

Sergio Vetrella 
Universita di Napoli 
Istituti Gasdinamica 
P.le Tecchio 80 
80125 Napoli, Italy 
39-11-725089 

M. Vignoli 
Aeritalia Space Systems Group 
Corso Marche 41 
10146 Torino, Italy 
39-11-725089 

Naoyuki Watanabe 
Institute of Space and Astronautical 
Science 
6-1 Komaba, 4-Chome 
Meguro-Ku 
Tokyo 153, Japan 

Wolfgang Westphal 
AEG 
D-2000 Wedel 
Industriestrasse 29 
A472V2 Germany 
(04103) 702843 

Holger Wolff 
Messerschmitt Boelkow Blohn GMBH 
Postfach 801169 
8012 Ottobrunn 
Muenchen, West Germany 
49-84-60007762
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