
THE JADE FILE SYSTEM

(Ph.D. Dissertation)

Herman Chung-HwaRao

TR 91-18

DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF

ARIZONA
TUCSON ARIZONA

(NASA-CR-189929) THE JADE FILE SYSTEM Ph.D.
Thesis (Arizona Univ.) 132 p CSCL 098

V...

N92-19256

Unclas
G3/61 0072186

THE JADE FILE SYSTEM

(Ph.D. Dissertation)

Herman Chung-HwaRao

TR 91-18

August 15,1991

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This work supported in part by National Science Foundation Grant CCR-8811423 and NCR-9005028, and

National Aeronautics and Space Administration Grant NCC-2-561.

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an ad-
vanced degree at The University of Arizona and is deposited in the University Library to
be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for ex-
tended quotation from or reproduction of this manuscript in whole or in part may be
granted by the copyright holder.

SIGNED:

PRECEDING PAGE BLANK NOT FILMED

ACKNOWLEDGMENTS

I am deeply indebted to my advisor, Larry Peterson. His guidance and example as a

scientist have directed my development in the field of computer science, and his patience

and support have made this work possible.

I am also grateful to other members of my committee, Richard Schlichting and Scott

Hudson, for their comments and suggestions on my work. I thank the minor members of

my committee, Fredrick Hill and Ralph Martinez, for helping with my graduate program.

I also thank Richard Snodgrass for his inspiration.

I want to thank my fellow graduate students, Tyson Henry, Sun Wu, Vic Thomas,

Andrey Yeatts, Shamim Mohamed, Nick Kline, Shivakant Mishra, Patrick Homer, Edwin

Menze, Jim Knight, and Naiwei Lin, for their friendship. Particularly, I am indebted to

Tyson Henry, who read the draft of this thesis and gave valuable comments.

Finally, I would like to thank my parents for their faith and support; my wife, Zoe, for

her patience and love, and being my best friend; my daughter, Stephanie, for the happiness

we had together; and my sisters for their encourage.

PRECEDING PAGE BLANK NOT FILMED

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

LIST OF FIGURES 11

LIST OF TABLES 13

ABSTRACT 15

CHAPTER 1: INTRODUCTION 17

1.1 Need for an Internet File System 17

1.2 Problem: Scalability 20

1.3 Solution: The Jade File System 23

1.4 Overview of Related Work 24

1.4.1 Distributed File Systems 25

1.4.2 Naming Systems 27

1.5 Thesis 27

CHAPTER 2: DESIGN OVERVIEW 31

2.1 Physical File Systems 31

2.2 Logical Name Space 33

2.2.1 Per-User Name Space 34

2.2.2 Building a Logical Name Space 36

2.2.3 More about the Mount Operation 37

2.2.4 Confederation of Logical Name Spaces 38

2.3 System Structure 39

2.3.1 Name Space Manager 40

2.3.2 Access Manager 42

CHAPTER 3: NAME SPACE MANAGER 45

8

3.1 Logical Name Space 45

3.2 Semantics of Skeleton Directories 49

3.2.1 Mount Operation 50

3.2.2 Reference to a Logical File System 50

3.2.3 Multiple Mount 51

3.2.4 Logical Directories and Opaque Nodes 53

3.3 Pathname Resolution 53

3.3.1 Resolving Pathnames on Physical File Systems 54

3.3.2 Resolving Pathnames in a Sequence of Name Spaces 54

3.3.3 Handling Multiple Mounts 58

3.3.4 Pathname Resolution Algorithm 58

3.3.5 Listing Directory Entries 60

3.4 Name Space Stack 64

3.5 Jade Naming Protocol (JNP) 69

3.6 Access Control 72

CHAPTER 4: ACCESS MANAGER 75

4.1 System Structure 75

4.2 Caching Scheme 79

CHAPTER 5: EVALUATION 83

5.1 Prototype 83

5.1.1 Protocol Agents 87

5.1.2 Name Space Manager 89

5.1.3 Access Manager 91

5.1.4 Shared Library 93

5.2 Performance 96

5.3 Discussion 99

CHAPTER 6: APPLICATIONS 107

6.1 Overview of Jade's Features 107

6.2 Tailoring a Private Name Space 109

6.3 Downloading Software from the Internet Ill

6.4 Architecture-Specific Name Spaces 112

6.5 Version Control 114

6.6 Global Name Space in Jade 118

CHAPTER 7: CONCLUSIONS 123

7.1 Contributions 123

7.1.1 Jade is Scalable 123

7.1.2 Jade is Practical 124

7.1.3 Rich Naming Facilities 125

7.2 Future Directions 125

APPENDIX A: JADE NAMING PROTOCOL SPECIFICATION 129

APPENDIX B: JADE ACCESS PROTOCOL SPECIFICATION 135

REFERENCES 139

11

LIST OF FIGURES

2.1 Logical Name Space 34

2.2 Partition of a Logical Name Space 36

2.3 Relationship Among Logical and Physical Name Spaces 39

2.4 Relationship Between Jade and Other File Access Protocols 40

2.5 File Access 43

3.1 Private File Hierarchy 46

3.2 Mounting Other Name Spaces 51

3.3 Multiple Logical Name Spaces 55

3.4 Recursive Method 56

3.5 Iterative Method 57

3.6 Mounting Graph 59

3.7 Function ResolvePathNameQ 61

3.8 Function FindClosestAncestorQ 62

3.9 Function Dir() 63

3.10 Name Space Stack 66

3.11 Push Operation 67

3.12 Pop Operation 68

3.13 Renaming Files 71

4.1 Jnode Structure 76

4.2 Copying Files 81

5.1 Name Spaces for a Workstation User 84

5.2 Implementation Structure 85

5.3 Function open 86

5.4 Shared Library 94

PRECEDING PAGE BLANK NOT FILMED

12

5.5 Modified Function open 95

5.6 Directories, Symbolic Links, and Skeleton Directories 103

5.7 Comparison of Multiple Mounts and Union Mounts 104

6.1 Private File Hierarchy 110

6.2 Architecture-Dependent Name Spaces 113

6.3 Software Development Environment 115

6.4- Overlaid View 116

6.5 Global Name Space in Jade 119

13

LIST OF TABLES

3.1 Reference 48

5.1 Agent Interface 88

5.2 Name Space Manager Interface 92

5.3 Access Manager Interface 93

5.4 Performance Results 97

6.1 Pathname Resolutions in the Global Name Space 121

15

ABSTRACT

File systems have long been the most important and most widely used form of shared

permanent storage. File systems in traditional time-sharing systems such as Unix support
j

a coherent sharing model for multiple users. Distributed file systems implement this

sharing model in local area networks. However, most distributed file systems fail to scale

from local area networks to an internet. This thesis recognizes four characteristics of

scalability: size, wide area, autonomy, and heterogeneity. Owing to size and wide area,

techniques such as broadcasting, central control, and central resources, which are widely

adopted by local area network file systems, are not adequate for an internet file system.

An internet file system must also support the notion of autonomy because an internet is

made up by a collection of independent organizations. Finally, heterogeneity is the nature

of an internet file system, not only because of its size, but also because of the autonomy
~~

J
- f

of the organizations in an internet. ; ; (j . r.^

This thesis introduces ,the Jade File System, which provides a uniform way to name

and access files in the internet environment. Jade is a logical system that integrates

a heterogeneous collection of existing file systems, where heterogeneous means that the

underlying file systems support different file access protocols. Because of autonomy, Jade

is designed under the restriction that the underlying file systems may not be modified.

In order to avoid the complexity of maintaining an internet-wide, global name space,

Jade permits each user to define a private name space. In Jade's design, we pay careful

attention to avoiding unnecessary network messages between clients and file servers in

order to achieve acceptable performance. Jade's name space supports two novel features:

It allows multiple file systems to be mounted under one directory," and it permits one

logical name space to mount other logical name spaces. -" / ,

A prototype of Jade has .been implemented to examine and validate its design. The

prototype consists of interfaces to the Unix File System, the Sun Network File System,

and the File Transfer Protocol.

PRECEDING PAGE BLANK NOT RLMED

17

CHAPTER 1

INTRODUCTION

Internets, such as the National Research and Education Network (NREN)[Come91],

provide an opportunity to unite geographically dispersed users and computing resources

into an integrated computing environment. They allow users throughout the country to

exchange mail, share files, and access databases and supercomputers. As networking facil-

ities become increasingly ubiquitous, the number of available resources can be expected to

grow by several orders of magnitude. Software infrastructures that support access to, and

sharing of, these resources must also be upgraded to take advantage of this connectivity.

The File Transfer Protocol (FTP)[Post85], the TELNET protocol[Post83], and the Simple

Mail Transfer Protocol (SMTP)[Post82], all designed more than a decade ago, are still the

primary services and tools by which users take advantage of the internet [Cace91]. A lack

of mechanisms for transparently naming and accessing resources limits the utilization of

internet resources.

This dissertation presents a new distributed file system, called Jade, that addresses

internet- wide resource sharing in the context of file systems. Jade is both an infrastructure

for accessing files in an internet and a framework for collaboration among geographically

dispersed users. It provides a uniform mechanism to name and access files located in the

internet — remote files are named and manipulated in the same way as local files.

1.1 Need for an Internet File System

File systems have been the most important and most widely used form of shared permanent

storage. A file system provides users with the abstraction of a file, thereby freeing them

from concerns about the details of storage locations and disk allocations. File systems in

traditional time-sharing systems such as Unix[Bach86][Leff89] support a coherent sharing

model in which multiple users share files. Distributed file systems such as the Locus Dis-

PRECEDING PAGE BLANK NOT FILMED

18

tributed System[Pope85][Walk83], the Sprite File System[Nels88][Welc86], Sun's Network

File System[Sand85][Sun86a], and the Andrew File System[Howa88][Saty85] implement

this sharing model in local area networks.

An internet-wide file system further distributes this sharing model across multiple

autonomous sites that span an entire internet. Such a file system allows users to access

files located anywhere in an internet, and serves as a sharing mechanism for geographically

dispersed users. Although it is difficult to characterize precisely—since no wide-spread

internet file system currently exists—we anticipate that the availability of an internet

file system would have three major impacts on the internet community. First, it would

support access to a variety of resources. Second, it would encourage inter-organization

collaboration. Finally, it would increase user mobility. Consider each of these three

impacts in turn.

Accessing a Variety of Resources

An internet contains a rich variety of resources, including file systems, databases, in-

formation archives, supercomputers, and specialized hardware. The Internet Resource

(7uie/e[NSF89] reports scientific resources available in the internet, including computational

resources, library catalogs, and biological and software data archives. For example, Request

for Comments (RFCs)[Come91], technical reports, public domain software, and informa-

tion archives are accessible through the internet. As another example, NSFNET[Come91]

gives scientists access to supercomputers located at various Supercomputer Centers (e.g.,

Pittsburgh Supercomputer Center, San Diego Supercomputer Center, etc.).

Unfortunately, adequate user-level facilities to access the remote resources are not yet

available. There is a need to give the internet community the ability to make effective

use of the internet in accessing the remote resources[Lein87j. File systems have been

proven to provide an effective framework for accessing resources in time-sharing systems

and local area networks. It is reasonable to expect that file systems in the internet would

provide users with a consistent, effective, and transparent way to name and access remote

resources.

Consider the following scenario for accessing a supercomputer. Users prepare data

19

files and programs at their local workstations, transfer all the files needed from the local

environment to the supercomputer environment using FTP[P6st85], and then execute

the task on the supercomputer. After the task is finished, they retrieve results over the

network, again by FTP. Typically, users repeat this cycle several times until the programs

and data are correct. In order to transfer files properly, users need to know the details of

FTP, as well as of the networks; this is not easy for naive users. With the sharing model

provided by an internet file system, however, users would be able to invoke a job on a

supercomputer located in the internet in the same way they do on local area networks.

Encouraging Inter-organization Collaboration

Using an internet file system as a sharing mechanism, we expect new collaborations to

arise, because geographical distance among members will no longer constrain the carrying

out of tasks or sharing of data. Moreover, the ease with which members in a collaboration

can exchange their designs, data, images, and documentation contributes in large part to

the ease with which those members can share their ideas and knowledge.

Within research and academic environments, inter-organization collaboration is grow-

ing rapidly. The report Towards a National Collaboratory[Lede89] introduces the concept

of the National Collaboratory and states that such a collaboratory for the scientific com-

munity

will significantly increase the productivity of science and engineering, accelerate

the pace of discovery, and amplify the capabilities of human intellect.

A scalable, internet-wide file system would be the first step toward the goal of a National

Collaboratory. This is because applications for sharing resources across the nation would

be much easier to build on top of such a file system than from scratch.

Increasing User Mobility

An internet file system would significantly increase user mobility. At present, there is an

explosion in the number of computers in the world. There are supercomputers in national

supercomputer centers, large mainframes in campus computer centers, minicomputers for

20

departmental use, workstations used by individuals, and personal computers at home for

personal use. Many people use more than one computer; for example, a personal computer

for handling personal finance, a workstation for writing papers and documents, a main-

frame for heavy computing, supercomputers for large dynamic simulations, and remote

computers for accessing specialized databases. That is, the work space of an individual

user consists of multiple machines spread across multiple administrative boundaries. It is

also important that people be able to work effectively while at different offices or when

traveling. An internet file system would be able to present users with a homogeneous view

of these heterogeneous machines. Moreover, with such a file system, the user would be able

to incorporate files located on different machines in order to execute a task. For example,

with the same command as is used for local files, the user could include simulation results

from the supercomputer when editing a paper from a workstation.

1.2 Problem: Scalability

Many distributed file system designs have been proposed and implemented over the last

decade. Issues concerning the design of distributed file systems, including naming and

transparency, consistency and availability, remote access methods, and fault tolerance,

are well documented in several survey papers[Levy90][Saty89a][Svob84]. Designing an

internet-wide file system, however, introduces a new orthogonal issue: scalability. In this

section, we describe the problems raised when one scales a file system up to an internet.

We envision an internet file system encompassing millions of participants, where by

participants we are referring to servers maintaining resources, and clients consuming re-

sources. Such a file system would have four critical characteristics:

• Size—number of participants;

e Area—geographical distance among these participants;

• Autonomy—independence and self-determination of individual participants;

« Heterogeneity—diversity of software and hardware of participants.

Consider these four characteristics in turn.

21

Size

The number of participants in a large internet is vast. Comer has documented that in 1990,

the connected internet included more than 3,000 active networks and 200,000 computers at

universities, government agencies, and corporate research laboratories[Come91j. An even

more important property is the evolutionary growth of the environment. Comer estimates

that in late 1987, the growth of the internet had reached 15% per month[Come91].

A distributed system based on static assumptions that the number of participants is

bounded by a constant will not scale well. Barak and Kornatzky[Bara87] express this

point from a different perspective:

The service demand from any component of the system should be bounded by a

constant. This constant is independent of the number of nodes in the system.

That is, any service mechanism whose load demand is proportional to the size of the

system is destined to break down once the system grows beyond a certain size. This

principle can be applied to channels and network traffic, and hence prohibits the use of

broadcasting, which is an activity that involves every server in the network. The large

size also prevents participants from attempting to maintain information about the global

state of the system.

Wide Area

In an internet file system, participants may be located anywhere in the internet. A wide

area, in contrast to a local area, presents another property of the scalability problem:

distance. Because of distance, the cost to access resources located in the internet becomes

significant in comparison with the cost to access resources in local area networks. More

precisely, in local area networks, network latency is not an issue, and the ratio of the

message latency time to the time spent at hosts for computation is insignificant. In a

wide area network, on other hand, network latency becomes a major factor in overall

performance. For example, in the current NSFNET, it takes about 100 milliseconds to

send a packet round trip to a nearby site, and about 400 milliseconds to a site across the

country[SchaQO]. On the other hand, the user-to-user round trip from a host to another

22

connected by a lOMbps Ethernet is about 2 milliseconds[Hutc89a]. Avoiding unnecessary

network messages between participants is critical to performance. Therefore, well-designed

caching mechanisms and proper communication paradigms are very important in the de-

sign of an internet file system.

Autonomy

Although a large distributed system could be built from scratch, an internet-wide file sys-

tem must be created by joining together a collection of existing, independent distributed

file systems. This is because a variety of distributed file systems have been widely used by

distinct, autonomous organizations[Cabr88][Howa88][Nels88][Pope85], and it is unlikely

that any single file system will ever be universally accepted in an internet environment.

Indeed, distribution of these existing systems over an internet is the consequence of com-

munication advance rather than the result of a dedicated design. In a system composed

of a multitude of cooperating participants, the autonomy of each entity must be respected

in order to accommodate each of the separate participants to form the system. In fact,

the property of autonomy is inherited from the internet itself: The connectivity of an

internet is based on the willingness of individual autonomous organizations to participate

in a shared environment. Consequently, the architecture of an internet file system must

support the notion of autonomy in order to scale well in practice.

Heterogeneity

A large-scale system also implies a high degree of heterogeneity, in both hardware and

software. This is particularly true because an internet file system consists of a collection

of autonomous organizations, each of which has the freedom to install and use its own

systems according to its own internal needs. How to choose an appropriate layer to

accommodate heterogeneity is a major task in designing an internet file system. For

example, portability and heterogeneity contribute to the popularity of the Sun Network

File System[Levy90][Saty89a]. To facilitate portability and accommodate heterogeneity,

NFS distinguishes between the access protocol and the implementation of the file system.

23

1.3 Solution: The Jade File System

This dissertation proposes the Jade file system as a solution to the problems of scalability.

Jade has the following characteristics:

• It integrates existing, heterogeneous distributed file systems.

• No modification in software or change in administration of the underlying file systems
is necessary.

• It provides a per-user logical name space.

• It facilitates sharing by mounting logical name spaces.

• It allows multiple file systems to be mounted into one directory.

• It caches entire files on disk.

The following discusses each of these characteristics, focusing on how Jade addresses prob-

lems identified in the previous section.

Jade is a logical system that integrates a heterogeneous collection of existing file sys-

tems. It does not provide any storage of its own; it only maps file names onto files that

are stored in existing file systems. These underlying file systems may be heterogeneous

in the sense that they support different file access protocols for communications between

file servers and their users. Examples of access protocols include the protocol used by

Sun's Network File System, the protocol defined by the Andrew File System, and the File

Transfer Protocol. The access protocol not only provides the key to access file systems,

but also hides the heterogeneity of the operating systems and the architectures of the

hosts where file systems are located.

Because of autonomy, Jade is designed under the restriction that the underlying file

systems may not be modified in software nor changed in administration. The underlying

file systems treat an instance of the Jade File System as a regular file system user without

any special privileges.

Rather than providing a global name space, Jade permits each user to define a private

name space. A given user has the same view of heterogeneous, internet-wide file systems,

regardless of what machine he or she is using. A global name space for a time-sharing

system is one of the major features provided by Multics[Orga72][Salt78] and Unix[Ritc78].

24

Most of the distributed file systems have inherited this idea and support global name

spaces for local area networks or for campus-wide networks. However, maintaining a

consistent and coherent global name space for a large internet is not a trivial task. Jade

trades the burden on an administrator of maintaining a global name space for the burden

on the user of organizing a private name space. Hence, the complexity of Jade is bounded

by the number of files accessed by one user.

To facilitate file sharing, Jade allows one logical file system to be mounted into another

Jade file system, in the same way that a physical file system can be mounted into a Jade

file system. This allows each user to transparently name and access files through another

user's name space.

To support a variety of access paradigms and to encourage collaboration among users,

Jade refines the mount operation provided by Unix-like file systems to allow multiple file

systems, either logical or physical, to be mounted under a single directory. This feature

is called the multiple mount. With the multiple mount, users are able to group files

from different file systems under one directory and transparently locate files replicated on

several file systems. Moreover, a set of users are able to share a collection of files stored

on different file systems without worrying about interference from one another. To take

advantage of this feature, we have developed a new software development environment on

top of Jade.

Jade employs whole file caching. Opening a file causes it to be cached in its entirety,

on some nearby disk. Reads and writes are directed to the cached copy without involving

the original servers. The valid cached copy can be used for further opens as well. Because

of the high cost of accessing remote servers, complete file caching is needed to reduce the

network traffic; it is essential for good performance in the internet.

1.4 Overview of Related Work

This dissertation is related to research in two broad, and perhaps overlapping, areas:

distributed file systems and naming systems. In summary, most distributed file systems

commit to a single access protocol and are designed for local area networks[Saty89b]; they

do not scale well over a large internet. Many naming systems, on the other hand, are

25

designed for large internets. However, they are mainly used to map objects other than

files (e.g., mailboxes and hosts), and it is too expensive to invoke these naming systems

whenever a file is opened[Cher89].

1.4.1 Distributed File Systems

Countless distributed file systems have been developed over the last decade, and many

of the well-known efforts are surveyed by Svobodova[Svob84], Satyanarayanan[Saty89b],

and Levy and Silberschatz[Levy90]. This section summarizes this work, with an emphasis

on how these systems do not scale in one or more of the four dimensions outlined in

Section 1.3.

Locus[Pope85] and Sprite[Nels88] are designed to integrate several Unix machines into

a single virtual machine. The Locus Distributed System provides facilities for file replica-

tion and location transparency. In order to maintain consistency among replicated copies,

there is a current synchronization site associated with each file group. Such a central

controller of an otherwise distributed mechanism becomes a performance bottleneck when

the system grows beyond a certain size. The Sprite File System employs a prefix table to

map pathname prefixes to file servers in a distributed environment and uses broadcasting

to locate the file server whenever prefix matching fails. As mentioned before, broadcasting

invokes every node in the network, making it unrealistic in a loosely coupled environment

such as an internet.

The Amoeba File System[Mull85][Tane90] examines the concept of layered file services

and uses a central directory server to map a string name of an object into its capability.

As mentioned before, this central server would be a performance bottleneck when the

system becomes large scale. This is particularly true for the directory server because

profiling studies for Unix-like systems show that nearly one-quarter of the time in the

kernel is spent in the pathname translation[LeffB9]. Levy and Silberschatz have pointed out

that centralization is a form of functional asymmetry between components composing the

system, and central control schemes should not be used to build scalable systems[Levy90].

Sun Microsystems' Network File System (NFS)[Sand85][Sun86a] and CMU's Andrew

File System (AFS)[Howa88][Saty85] do not require all participant machines to be tightly

26

connected as in Locus or Sprite. Both systems support the concept of a global name

space and provide mechanisms to build such a name space. In order to build a global

name space, NFS requires all the hosts to mount each other's file systems. The number

of mount points in the system, therefore, is proportional to the square of the number

of hosts in the environment, limiting its scalability. Scalability is the dominant design

consideration in the Andrew File System. However, the original design[Howa88][Saty85]

considers only one aspect of scalability—size. An extended design, called the Cellular

Andrew Environment[Zaya88], considers a wide-area environment and allows a collection

of sites to cooperatively establish a global name space among these sites. In order to

construct such a global name space, however, each site must adopt the Andrew File

System. Thus, autonomy is the major problem of this design. It has proven very difficult

to persuade each autonomous site to give up the file systems currently running, and

switch to the Andrew File System. Furthermore, one common drawback of the global

name space approach, from users' perspective, is that pathnames in the global name

space become longer. It becomes increasingly difficult to search for files whose names

are not precisely known. For example, a typical home directory for the user John is

"/afs/cs.arizona.edu/usr/john" in the Andrew File System. In contrast, one could

consider this the root (**/") of John's personal file system.

Projects such as Tilde[Come86][Come85], QuickSilver[Cabr88], and

Plan 9[Pres91][Pike90] provide mechanisms to let users construct their own name spaces

rather than a single global name space. QuickSilver and Plan 9 do consider systems in

large scale, but only in terms of size and wide area. Jade surpasses these systems in the

ability to accommodate heterogeneity, allow for customization, and support Interactions

between name spaces. Generally, none of these three systems allows a name space to be

mounted into another name space, and they all commit to a single protocol-suite. Tilde

allows users to choose individual name spaces (called trees) to form their naming environ-

ment (called a forest). However, it does not allow one tree to be attached under another

tree, and therefore the pathname is always started from the tree's name. Plan 9 provides

a per-process based name space. However, whenever invoking a new job in other servers,

it needs to reconstruct a new naming environment.

27

1.4.2 Naming Systems

A great deal of effort has been spent on the design and implementation of a global naming

facility. Perhaps the most advanced work of this kind are Grapevine[Birr82], Lampson's

Global Name Space[Lamp86], and the Domain Name Service[Mock87] of the DARPA

internet. Work in this area is surveyed by Terry[Terr85]. Although these naming systems

are designed for large-scale environments, they are mainly used to resolve names for hosts,

mailboxes, or network services, and they are practically applicable only to objects that do

not need to be looked up frequently. It is too expensive to invoke the global name service

whenever a file is opened[Cher89].

Cheriton and Mann[Mann87][Cher89] extend these global naming designs and focus

on issues of performance and fault tolerance. This system is based on the fundamental

requirement that each server knows the full global names of the objects it maintains.

Therefore, the structure of the global name space is rigid and requires the full cooperation

of each participating name server. Another problem of this design is the availability of

multicast in the internet, which is used to locate name servers. While being supported by

some local area networks, the multicast is not generally available in the internet.

1.5 Thesis

The major thesis advanced by this dissertation can be stated as follows:

An internet-wide file system that is scalable and has acceptable performance

can be built by integrating heterogeneous file access protocols, and by providing

users with their own private name spaces.

In supporting this thesis, the dissertation makes two contributions:

• We have designed, implemented, and evaluated an internet-wide file system that

provides each user with a completely homogeneous view of heterogeneous file sys-

tems./

• We have invented a rich set of naming facilities, including per-user logical name

spaces, mounting logical name spaces, multiple mounts, name space stacks, and a

28

generalization of a symbolic link and a directory. These naming facilities not only

are useful to access internet files, but also are applicable to a variety of applications.

This dissertation is structured as follows. Chapter 2 justifies the design of the Jade file

system. It describes how to construct a logical file system using existing heterogeneous

physical file systems as building blocks. It concludes with an overview of Jade's structure,

including its two major components: a Name Space Manager and an Access Manager.

Chapter 3 presents the Name Space Manager that maintains the name space. It

describes its two novel features: allowing multiple file systems to be mounted under one

directory, and permitting one logical name space to be mounted in another logical name

space. Because of these features, the semantics of directories in Jade differs from those in

other Unix-like file systems. It also makes pathname resolution more complicated in Jade

than in other file systems.

Chapter 4 describes the Access Manager that supports access to files located on the

internet. This chapter delineates the design of the Access Manager and discusses its

caching scheme. Jade allows users to choose any available physical file system as the

cache server, and it caches entire files on that server. In order to reduce the number of

messages exchanging between the cache server and the underlying file systems, the Access

Manager implements two delayed-write policies: write-on-close and create-on-close.

Chapter 5 evaluates the design of the Jade file system. After describing the imple-

mentation of the prototype—which consists of the interface to the access protocols UFS,

NFS, and FTP—this chapter reports the performance of the prototype using the Andrew

Benchmark [Howa88]. It concludes by re-examining design issues based on experience with

Jade, emphasizing the tradeoffs of alternative choices.

Chapter 6 describes applications of the Jade file system. In addition to examining

Jade's features from an application perspective, the chapter presents several examples

that illustrate how one takes advantage of these unique features.

Chapter 7 summarizes the contributions and suggests future research. Issues of con-

sistency control are not addressed in this thesis. Because of the autonomy restriction/

Jade does not modify heterogeneous access protocols, and therefore inherits consistency

problems from them. In order to support more complicated applications, there is a need

29

for a more sophisticated control mechanism. Transarc's DEcorum File System[Kaza90]

suggests a token mechanism to preserve single-system Unix semantics. The Coda file sys-

tem, developed at Carnegie Mellon University, focuses on issues of availability in the face

of server and networks failures[Saty90b]. Chapter 7 suggests directions for future research

in this area.

PRECEDING PAGE BLANK NOT FILMED

31

CHAPTER 2

DESIGN OVERVIEW

This chapter motivates and justifies the design of the Jade file system. First, it ab-

stractly defines the underlying physical file systems upon which the Jade file system is

built. Second, it introduces Jade's salient features, focusing on its logical name space.

Jade's name space provides users with two novel features: It allows multiple file systems

to be mounted under one directory, and it permits one logical name space to be mounted

in another logical name space. The chapter concludes with an overview of Jade's imple-

mentation structure, including its two major components: a Name Space Manager and

an Access Manager. The following two chapters explore these two components in more

detail.

2.1 Physical File Systems

Abstractly, Jade adopts a very simple model of the underlying physical file systems. A

physical file system provides two services: It maps file names into file handles, and it

stores and retrieves file data associated with a given file handle. Each physical file system

is identified by the network address of the host where the file system resides and a host-

specific identifier for the file system. We assume that each physical file system represents

files as non-typed byte-streams.

An access protocol is the key to the services provided by a physical file system. Exam-

ples of access protocols include the protocol used by Sun's Network File System (NFS),

the protocol defined by the Andrew File System (AFS), and the File Transfer Protocol

(FTP). The system interface, supported by the Unix operating system to access files on

the local disk, is considered as a protocol for the Unix File System (UFS). For the purpose

of this thesis, we use the terms "NFS", "AFS", and "UFS" to refer to the access pro-

tocols for the Network File System, the Andrew File System, and the Unix File System

32

correspondingly, not the file system itself. A given physical file system may adopt one or

more access protocols for remote access. For example, many physical file systems support

a default access protocol (e.g., AFS or NFS) and provide FTP as an additional service.

The access protocol not only provides the key to accessing the physical file system, but

also hides the heterogeneity — both in hardware and in software — of the system on which

the physical file system is located. That is, once the proper access protocol is available,

it should be possible to access the services provided by a physical file system without

regard to the machine type or the operating system. Thus, Jade has only to deal with a

heterogeneous collection of access protocols.

Jade defines a uniform interface to accommodate this collection of access protocols.

This interface acts like a switch among these heterogeneous access protocols and maps

operations denned by the interface into functions provided by distinct access protocols.

This interface consists of the following operations:

Fetch: retrieve an entire file from a physical file system.

Restore: store data back to a file in a physical file system.

GetEntries: get entries in a directory in a physical file system.

RemoveEntry: remove an entry in a directory in a physical file system.

GetAttr: return the attributes associated with a file or directory in a physical
file system.

SetAttr: set attributes of a file or directory in a physical file system.

Connect: connect the server that supports a physical file system.

Disconnect: disconnect the server.

MakeDir: create a new directory in a physical file system.

RemoveDir: remove a directory in a physical file system.

A complete description of the interface, and how it is mapped into common access protocols

(i.e., UFS, NFS, AFS, and FTP), is given in Chapter 5.

Notice that the uniform interface separates the directory operations (GetEntries, Re-

moveEntry, and GetAttr) completely from the file access operations (Fetch and Restore).

The significance of this is that the Fetch operation is not used to access directories in

a physical file system; the GetEntries operation is used instead. The reason behind this

33

separation is based on the observation that the directory abstraction is different in dissim-

ilar file systems. In fact, most file access protocols provide a completely different set of

operations for directory manipulation.

Consider a physical file system maintained by a host with the domain name[Mock87]

meg.cs.arizona.edu. The host supports the access protocol NFS to access this physical

file system identified as /usr by the host. Hence, from Jade's point of view, this physical

file system is described by the triple

<NFS, rneg.cs.arizona.edu, /usr>

When the access protocol and the exact host-specific identifier are not germane to the

discussion, we use the shorthand notation:

Server_Name:Pathname

to refer to the physical file system. In this example, meg:/usr specifies the file system. As

mentioned before, operations defined by the uniform interface are mapped into the corre-

sponding functions supported by the access protocol. In this example, the Fetch (Restore)

operation is realized by a sequence of NFS's read (write) operations[Sand85][Sun86a], while

the GetEntry, RemoteEntry, and GetAttf operations are directly mapped to NFS's readdir,

remove, and getattr operations, respectively.

2.2 Logical Name Space

This section describes the logical name space that is central to the Jade file system.

After discussing the name space in general, it illustrates how one might build a logical

name space from a collection of heterogeneous physical file systems. Like other Unix-like

distributed file systems[Saty85][Sun86a][Welc86], Jade supports the mount mechanism to

glue individual file systems together. However, this mechanism is more complicated in

Jade than in other systems and requires more explanation. The section completes the

picture by discussing the relationship among a collection of logical name spaces in the

internet.

34

2.2.1 Per-User Name Space

Like most Unix-like file systems[Ritc78][Saty85][Welc86], Jade presents a tree-structured

naming hierarchy to the user. Unlike other file systems, each Jade file system is defined

on a per-user basis. Figure 2.1 illustrates an example of a Jade file system associated with

the user John. The result is a collection of small, per-user name spaces rather than a large

system-wide name space. A Jade file name, rather than being global, has scope relative

to a single logical name space. That is, every resolution of a file name is performed in the

context of a specific user's name space.

RFC

/1\/1\ x'Tx A
src bin doc

/KA /\
paper conf

/1\/K
oric

/K
Figure 2.1: Logical Name Space

mike .cshrc

original

Defining the file system on a per-user basis is well justified. First, it increases user mo-

bility in the sense that users view the same file system regardless of what workstations they

are using and where the physical file system is located. Even when users access the network

from a single workstation, network window systems such as X Window[Sche86] and Sun

NeWS[Gros86] encourage them to access more than one host at one time. The private file

system provides the user with a single name space among these hosts. Second, the activity

of accessing files by a single user tends to be isolated from other users, and focused on

a small working set of directories[Cabr88][Floy86b][Shel86]. Satyanarayanan[Saty89a] has

pointed out that in a research or academic environment, most files are read and written by

35

a single user. When users share a file, it is usually the case that only one of them modifies

it. This implies that file references outside the user's private name space are relatively

infrequent.

This per-user name space approach trades the burden on administrators of maintaining

a global name space for the burden on users of organizing private name spaces. Maintaining

a consistent and coherent global name space in a large distributed system is not a trivial

task. In NFS, for example, if all the hosts mount each other's file system, the number of

mount points in the system is proportional to the square of the number of hosts in the

environment, producing a significant maintenance overhead. This overhead is probably

the limiting factor in the scale of the environment. On the other hand, organizing a

private name space is much easier. The scope of the private name space is both small

and relatively static. A default private name space for novice users, which includes the

directory for binaries and the user's home directory, can be automatically generated from

user password files (e.g. passwd file in Unix). Expert users can then tailor their own

file systems by mounting the desired file systems into their logical name spaces. The user

must know where a physical file system is located to be able to mount it on his or her

logical file system, but once the file system is mounted, the user can use the logical file

system in a network transparent way.

As mentioned before, pathname resolution is performed in the context of a specific

user's name space. When running a program, the name space of the user who invoked the

program (called the invoker) is used by default to resolve names. However, Jade introduces

a new feature, called SetNameSpace, that allows users to associate a particular name

space with a program. This attached name space is used for name resolution when the

program is executed. The function SetNameSpace is similar to the function setuid

provided by Unix: It changes the privilege of a process from the program invoker to the

program owner. For example, when running a text processing application, the application

can use its name space rather than the invoker's name space to resolve font file names.

The attached name space can also be a special name space defined for only a program.

For example, a front-end program of a database system can define its own name space to

match internal file organizations.

36

2.2.2 Building a Logical Name Space

A given logical name space is built on top of one or more physical file systems. Users

choose the physical file systems they want to access, and glue these systems together to

form their private logical file systems. Hence, it is possible to partition a given logical

name space into multiple domains, each of which is implemented by a different physical

file system. For example, Figure 2.2 illustrates a possible partitioning of the logical name

space shown in Figure 2.1.

.••••\

~
.̂...-V'paper \ /conf.

.
.....-•/•'original '••

\

Figure 2.2: Partition of a Logical Name Space

TC-.. %

\cshrc)

Like most distributed file systems, Jade supports a mount operation that is used to

attach a given physical file system to a logical name space. Unlike other systems, however,

one physical file system may be mounted in many Jade file systems, each time in a different

place. Because of autonomy, all the information necessary to mount one directory under

another is maintained in the Jade file system; none of the underlying physical file systems

is aware of the fact that it is participating in some user's logical file system.

Jade implements skeleton directories to maintain this mounting information and to

keep track of the boundaries between the mounted file systems. It is only a skeleton be-

cause most of the files/directories within a given domain are maintained by some physical

file system, not by Jade. Only the roots of mounted file systems, called skeleton directo-

37

ries, are maintained by Jade. Another way of saying this is that the skeleton directories

are superimposed over a collection of existing file hierarchies; much of the structure of the

underlying hierarchies remains visible to the user.

2.2.3 More about the Mount Operation

Traditionally, the mount operation attaches a physical file system to a leaf of the existing

naming hierarchy. Jade enhances the mount operation in two ways. First, the mounted

file system can be either a physical file system or another logical file system. Second, Jade

allows more than one file system to be mounted on one directory.

In order to facilitate file sharing, Jade allows one logical file system to be mounted in

another Jade file system in the same way that a physical file system can be mounted into a

Jade file system. This allows each user to name files through another user's name space. In

John's name space shown in Figure 2.2, for example, the directory /mike refers to a logical

name space belonging to another user, Mike. Simply by concatenating the prefix /mike

with the names used by Mike, John can name files using Mike's name space. Moreover,

the name space that is mounted by one name space might mount yet another name space.

Unlike the Sun Network File System, the Jade file system allows users to name files across

name space boundaries. In general, this indirect naming can be of arbitrary depth, in that

a sequence of logical name spaces needs to be searched in order to locate a desired file.

Chapter 3 discusses issues raised in this search and introduces the algorithm we use.

Not only does this feature support file sharing, it also encourages users to generate

auxiliary name spaces for special purposes. To help manage these auxiliary name spaces,

Jade introduces the idea of a Name Space Stack. A Name Space Stack is a stack of name

spaces owned by a user. The top name space in the stack is the only one that is accessible

from outside of the stack. However, every name space in the stack can mount name spaces

underneath. By analogy, each name space is like a translucent paper that may either hide

information below it or contain new information. The view provided by a Name Space

Stack is the view of a stack of overlapping translucent papers. The Name Space Stack

also provides a simple way to perform checkpoint and rollback on mount operations. The

concept of Name Space Stack is discussed in the next chapter.

38

Jade enhances the functionality of the mount operation by allowing an ordered list

of file systems to be mounted under a single directory. In John's name space shown in

Figure 2.2, for example, the directory /bin might refer to three physical file systems:

/usr/john/bin in the host jag, /usr/john/bin in the host meg, and /usr/bin in the

host meg. Entries under the logical directory /bin include those from these three physical

file systems. As another example, the directory /RFC keeps documents of Request For

Comments (RFC) distributed by the Network Information Center, and it refers to two

physical file systems: megt/usr/john/RFC, where some local, cached copies of RFCs

are located, and nic.ddn.mihRFC, where the original files are stored.

This feature, called a multiple mount, has a number of advantages, especially when

compared with auxiliary mechanisms built on top of other file systems. This is because

all directory services (commands) are still applied to directories created by the multiple

mount. For example, the multiple mount is capable of supporting the same functions

provided by the search path or version file mechanism. However, by using the standard

directory listing command (e.g., Is in Unix), users can list all available files under the

directory created by the multiple mount. Multiple mounts are especially useful in software

development, where they can be used to handle version control and software distribution.

Chapter 6 describes these applications in more detail.

2.2.4 Confederation of Logical Name Spaces

By mounting logical file systems, users can name and access files through other logical

name spaces. This indirect naming can be of arbitrary depth and is completely transparent

to the user. Figure 2.3 depicts the relationship between one logical name space and a

collection of other physical and logical name spaces.

By mounting logical name spaces, these individual logical name spaces are linked to

each other to form a loosely coupled confederation. This confederation has two important

characteristics. First, Jade does not enforce specific configurations, or any kind of naming

conventions on underlying physical file systems. Instead, each physical file system is viewed

as a building block with a uniform interface. Users can construct their name spaces with

these building blocks according to their own conventions and preferences. Second, Jade

39

does not require a central authority to organize and administrate individual logical name

spaces. Instead, each logical name space is considered as an autonomous unit. That is,

administration of name spaces is fully decentralized. The relationship among all logical

name spaces is arbitrary and voluntary.

Logical Name Space

Other Logical Name Spaces

Figure 2.3: Relationship Among Logical and Physical Name Spaces

It is worth noting that it is still possible to build a global, internet-wide name space on

top of Jade without any modification to the file system. A logical name space that includes

only other logical name spaces is called the backbone name space. Chapter 6 presents one

example that uses backbone name spaces to construct a global naming environment.

2.3 System Structure

The Jade file system provides a logical layer between existing file systems and their users.

It consists of two major pieces: a Name Space Manager and an Access Manager. The

40

Name Space Manager provides a directory service that maps a logical file name provided

by the user into a file reference] it is called when opening files. A file reference consists

of the address of the physical file system where the desired file is located, the name of

the protocol used to access the physical file system, and a handle used by the physical file

system to identify the desired file. Given a file reference, the Access Manager supports

file access by caching entire files on a nearby physical file system.

In Jade, the directory service is completely separated from the file access service, both

in functionality and implementation. The former is provided by the Name Space Manager,

and the latter is supported by the Access Manager. Both the Name Space Manager and

the Access Manager are built on top of the uniform interface described in Section 2.1,

depending indirectly on the underlying file access protocols. For example, a Jade file

system might depend on NFS, AFS, FTP, and UFS, as illustrated in Figure 2.4.

Jade

Name Space
Manager Access Manager

Figure 2.4: Relationship Between Jade and Other File Access Protocols

2.3.1 Name Space Manager

The Name Space Manager implements a logical name space by maintaining skeleton direc-

tories that keep track of the boundaries between the underlying file systems. Each skeleton

41

directory maintains a list of references to other file systems. The mount operation is used

to attach a given file system to the name space by creating a new skeleton directory. Jade

generalizes the mount operation to allow none, one, or more file systems to be attached to

a single skeleton directory. Moreover, the mounted file system pointed to by the reference

can be either a physical file system or another Jade file system. When resolving a given

pathname, Jade first locates the proper skeleton directory, and then resolves the rest of

the pathname by consulting the underlying file systems referred to by references stored

in the skeleton directory. The underlying file systems are queried using the GetEntries

operation defined by the uniform interface. However, because a given skeleton directory

may have more than one reference, as well as references to other logical file systems, the

procedure to resolve the rest of the pathname is more complicated than those used by

other distributed file systems.

Although conceptually simple, this design is more powerful than techniques intro-

duced by other distributed file systems; e.g., prefix tables and remote links used by the

Sprite File System[Welc86], mounting tables and mount points used by the Network File

System[Sand85], and volumes used by the Andrew File System[Side86]. The fundamental

difference comes from where and how the mounting information is maintained. Andrew

embeds all mounting information in volumes that are maintained by physical file systems.

In Sprite, the remote link is maintained by the physical file system and used as a marker

of the boundary; the prefix table is located on the client site, but serves as a naming cache

only. Thus, both Andrew and Sprite embed mounting information in the data stored in

the file server, which Jade cannot do, not only because of the autonomy restriction, but

also because each user may mount the file system in a different place in her or his own

logical name space. Sun's Network File System separates the mounting information into

two parts: The mounting table directs a path name to the appropriate file server, and

mount points relate a local directory to the root of the mounted file system. The former

is kept in the client workstation, while the latter is maintained by individual physical file

systems. Jade, on the other hand, realizes the mounting relation as the skeleton directory

and maintains it only at the client workstation. More precisely, when one physical file

system is mounted under another, the latter system contains no information pointing to

42

the former. All information needed to mount one directory under another is maintained

at the client.

In most other distributed file systems, the name space is implemented as a kernel

service. In Jade, on the other hand, the private name space is implemented as a separate

name server; each user process uses an interprocess communication mechanism to consult

its private name space. Because the name space is defined on a per-user basis, the traffic

to an individual name space is small and limited, and the private name space is not the

bottleneck of the system. The advantage of this approach is that it allows a set of processes

owned by one user to share the same naming environment even when those processes span

more than one host.

2.3.2 Access Manager

Jade's Access Manager is similar to the Cache Manager used by the Andrew File System.

When a file is opened, the Access Manager checks the cache for the presence of a valid

cached copy. If such a copy exists, the cached copy is opened and used. Otherwise, the

Fetch operation is invoked to get an up-to-date copy from the original file in a physical

file system. Read and write operations on an open file are directed to the cached copy. If

a cached file is modified, it is stored back using the Restore operation to the physical file

system when the file is closed.

Jade differs from the Cache Manager of the Andrew File System in three respects.

First, Jade does not require a local disk for caching. Instead, it allows the user to choose

any one of the underlying physical file systems as the cache server. Of course, the cache

server is usually located nearby. Notice that the local disk of the workstation is considered

as one of the physical file systems for Jade, and can be chosen as the cache server. The

major advantage of this refinement is that it allows use of the logical file system even

without a local disk for caching. It also provides flexibility in that users can dynamically

switch the cache server to other physical file systems. Dynamically changing the cache

server is particularly useful when the current cache server's storage is not big enough for

remote files or is temporarily unreachable. Furthermore, this cache server is actually a

secondary cache; the operating system of the workstation has its own in-memory caching

43

Workstation Physical File System
File Server

File

Read

Restore

Cached

Cache Server
Physical File System

Figure 2.5: File Access

mechanism for accessing files on the cache server. Therefore, it is possible to implement a

new cache policy on the cache server. This policy is designed specially for internet access

and is different from the one used by the operating system to access resources in local area

networks. Chapter 4 describes the caching scheme in more detail.

Second, unlike the Andrew File System, Jade integrates a collection of heterogeneous

file access protocols (i.e., NFS, AFS, FTP, and UFS) and supports a uniform interface

among them. The services provided by the Access Manager are mapped into operations

of the proper access protocol.

Third, the Fetch and Restore operations defined by the uniform interface invoke the

access protocol of the physical file system where the file is located. After the file is cached

on the cache server, however, the access protocol provided by the cache server is used to

open, read, write, seek, and dose the cached copy on the cache server. In other words,

cached copies on the cache server are accessed through the interface of the workstation

44

operating system rather than the uniform interface defined in Section 2.1. Figure 2.5

schematically depicts a file that is located on a physical file system, cached on the cache

server, and accessed through a workstation.

45

CHAPTER 3

NAME SPACE MANAGER

A Name Space Manager implements a logical name space that is the heart of the

Jade file system. In addition to describing the data structures used by the Name Space

Manager, this chapter gives the pathname resolution algorithm. The key data structure

used by this algorithm is a skeleton directory that maintains the boundaries between the

underlying file systems. A mount operation is used to construct a logical name space.

The pathname resolution algorithm is more complex than those used by other file systems

because a given directory in a logical name space may point to multiple underlying file

systems as well as to other logical file systems. Finally, Jade supports Name Space Stacks

that allow users to manage a set of logical name spaces and to perform checkpoint and

rollback on mount operations.

3.1 Logical Name Space

Jade presents each user with a single tree-structure naming hierarchy. Like most Unix-

like file systems, this naming hierarchy supports mapping from pathnames to file handles.

However, it conceptually consists of two parts: a set of skeleton directories that are main-

tained by the logical name space, and a collection of domains that are supported by the

individual mounted file systems. Skeleton directories glue individual domains together to

form the naming hierarchy. Figure 3.1 illustrates an example of a Jade file system asso-

ciated with the user John, where the dotted lines denote the partitioning of the naming

hierarchy into a set of domains. For each domain, there exists a skeleton directory in

the logical name space referring to the root of the domain. For example, in Figure 3.1,

the domain rooted at /jade represents one mounted file system and there is a skeleton

directory named /jade in the logical name space.

Skeleton directories and domains are realized in the implementation by skeleton nodes

46

••,. y /̂original \

Figure 3.1: Private File Hierarchy

maintained by the Name Space Manager and physical directories as the roots of physical

file systems respectively. Like mount points in the Network File System[Sun86a] and

remote links in the Sprite File System[Welc86], a skeleton node serves as a pointer from a

node in the logical name space to the root of a mounted file system. Unlike mount points

and remote links, skeleton nodes indeed contain references to directories in mounted file

systems. Entries under a skeleton directory, however, are those in the physical directory

referred to by its skeleton node. The fact that skeleton directories are implemented by

a Name Space Manager is transparent to the users, except that they are created by the

mount operation rather than by the mkdir operation. In order to improve performance

of pathname resolution, the Name Space Manager also caches directories/files inside a

domain. These are called cached nodes.

In other words, although the user sees a Unix-like hierarchy of directories—and is able

to refer to a particular directory with a pathname—the Name Space Manager implements

this hierarchy as a collection of skeleton nodes and cached nodes. The skeleton nodes

are intrinsic to Jade; they are similar to mount points and remote links found in other

file systems. The cached nodes are caches of directory information contained in other

file systems. Furthermore, even though skeleton and cached nodes are used to implement

47

directories in the logical name space, neither of them actually "points to" other nodes, in

the same way that a directory in a Unix-like hierarchy points to some set of other direc-

tories or files. Thus, instead of locating a particular skeleton/cached node by traversing a

sequence of pointers, a hash table is used to map a pathname into the skeleton or cached

node that implements the directory in Jade.

Even though nodes in the Name Space Manager do not physically point to other nodes,

in order to describe their logical relation, we consider a skeleton node to be a skeleton child

of another node if the pathname of the latter is the parent-pathname of the former, where

the parent-pathname of a pathname is the pathname without the last component (e.g., the

parent-pathname of /a/b/c/d/e is /a/b/c/d). For example, in Figure 3.1, the skeleton

node with the pathname /jade (called the skeleton node /jade) has one skeleton child,

/jade/doc; the skeleton node "/" has seven skeleton children, /RFC, /bin, /man,

/jade, /tex, /mike, and /.cshrc.

In this thesis, we use the term "skeleton node" to refer to the node maintained by the

Name Space Manager that contains information about the mounted file systems, we use

the term "skeleton directory" to refer to the directory in the logical name space that is

the root of a mounted file system; it therefore implies both the skeleton node in the Name

Space Manager and the physical directory in the mounted file system.

Each skeleton or cached node consists of an ordered list of references. Each reference

identifies a point in a mounted file system, and is given by the 4-tuple:

<Access_Protocol, Server, Handle, Token>

Access-Protocol identifies the protocol used to access the mounted file system, e.g.,

NFS, AFS, UFS, or FTP. Server specifies the host that provides services to access the

mounted file system. Handle is the descriptor used by the server to identify the root of the

mounted file system, for example /usr. Token provides authentication information used

to access the mounted file system. Jade maintains a per-user Tokens list. Each Token in

the list specifies authentication information needed to access a group of file systems and

is referred to by a generic name. Section 3.6 describes Tokens in more detail. Until then,

we consider only the first three components in the reference.

48

Access Protocol
UFS
NFS
AFS
FTP
JNP

Server
Host_Name
Host_Name
CelLNaine
Host_Name
User®Host_Name

Root handle
Path_Name
Path_Name
Volume_Name : Path_Name
Path-Name
Path-Name

Table 3.1: Reference

The exact information specified in a reference varies according to the access protocol.

For example, the host address is used to specify Server if the access protocol is NFS, while

the cell name is used for AFS. Table 3.1 illustrates formats for different access protocols

currently supported by Jade. A logical file system can be mounted by another logical file

system. The protocol used to access a logical file system, called the Jade Naming Protocol

(JNP), is described in Section 3.5. The server that maintains the logical file system is

addressed by the name of the user who owns this logical file system and the host where

the server is located; it is given as User@Host_Name.

To illustrate better how various file systems are mounted into a logical name space,

consider the following five examples from Figure 3.1. First, the skeleton node /jade

contains the following reference:

{<NFS, meg.cs.arizona.edu, /usr/john/jade>}

In this case, meg.cs.arizona.edu (or meg for short) is the host name of the server;

/usr/john/jade is the root of the mounted file system; and NFS indicates the NFS

protocol used to access files on meg.

Second, the skeleton node /jade/doc/paper contains the following reference:

{<AFS, C8.arizona.edu, user.john:/afs/az/usr/john/paper>}

where AFS indicates that the AFS protocol is used to access files in this domain;

cs.arizona.edu is the cell name; and user John is the volume name of the mounted

file system and /afs/az/usr/john/paper is the name of the root.

49

Third, the skeleton node might refer to another Jade file system rather than a physical

file system. For example, the skeleton node /mike refers to another Jade file system

named mike@cs.arizona.edu and is given by

{<JNP, mike@cs.arizona.edu, /database>}

JNP is used to access Jade name space mike@cs.arizona.edu.

Fourth, the skeleton node might have more than one reference. For instance, there are

three references associated with the skeleton node /bin:

<UFS, jag.cs.arizona.edu, /usr/john/bin>
<NFS, meg.cs.arizona.edu, /usr/john/bin>
<NFS, meg.cs.arizona.edu, /usr/bin>

As another instance, the references of the skeleton node /RFC are

<NFS, meg.cs.ariozna.edu, /usr/john/RFC>
<FTP, nic.ddn.mil, RFC>

Finally, the skeleton node /jade/doc has no reference and corresponds to no

physical file systems. Notice, however, that /jade/doc has two skeleton children,

/jade/doc/paper and /jade/doc/conf. When listing /jade/doc, users see two en-

tries under it, i.e., paper and conf. Hence, we call the skeleton directory /jade/doc

a logical directory. Another example of the logical directory corresponds to the skeleton

node for the root "/"•

3.2 Semantics of Skeleton Directories

Jade supports a mount operation that is used to attach file systems to the name space.

It does this by creating a new skeleton directory in the logical name space. This section

describes the mount operation and its options, and then discusses the semantics of the

skeleton directories created by the mount operations with different options.

50

3.2.1 Mount Operation

The mount operation creates a skeleton node in the Name Space Manager with the given

pathname, and associates this directory with references to mounted file systems. It is

defined as

Mount(logicaLdirectory, reference Jt'sf)

where logical-directory is the pathname of a skeleton node on which file systems are

mounted, and referenceMst is a list of references to mounted file systems.

In addition to the traditional mount that links a directory to one single file system,

the operation supports a null mount and a multiple mount option. With the null mount

option, the referenceJist is empty. No file system is bound to the skeleton node. With the

multiple mount option, on the other hand, the referenceJist has more than one reference—

the node refers to a list of mounted file systems. The list is ordered and this order is used

to resolve name conflicts. Also, the mounted file system specified by the reference in the

referenceMst can be another Jade file system.

3.2.2 Reference to a Logical File System

One Jade name space can be mounted into another Jade name space in the same way that

a physical file system can be mounted into a Jade name space. As mentioned before, the

reference used to refer to a logical file system is given as

<JNP, User@Host.Name, Path_Name>

For example, the skeleton directory /mike on John's name space (as shown in Figure 3.1)

mounts the subtree /database of a private name space belonging to the user Mike. The

reference associated with the node /mike is given as

{<JNP, mike@cs.arizona.edu, /database>}

In this example, the pathname /mike/dfs.bib in John's name space and the pathname

/database/dfs.bib in Mike's name space refer to the same file. The Jade file system also

allows users to name files across name spaces. As illustrated in Figure 3.2, Mike's name

51

space mounts the subtree /bib/journal of Bob's name space under the skeleton directory

/database/ieee. Therefore, the pathname /mike/ieee/computer.bib in John's name

space refers to the file specified by the pathname /bib/journal/computer.bib in Bob's

name space.

/k
database

-^/N
x^""

dfs.bib ieee

1

A\
bib

A\ 1•**^S 1 N I
journal |

A\ 1
computer.bib a

John's Name Spec* Mik«'» Nanw Spac« Bob'* Narrw Space

Figure 3.2: Mounting Other Name Spaces

3.2.3 Multiple Mount

The multiple mount option associates more than one file system with one skeleton di-

rectory. For example, the skeleton directory /bin shown in Figure 3.1 mounts three file

systems: jag:/usr/john/bin, meg:/usr/john/bin, and meg:/usr/bin. Entries of this

skeleton directory are unioned with those from mounted file systems. There are two new

issues in regard to skeleton directories created by multiple mounts. First, entries from dif-

ferent mounted file systems may have name conflicts. Second, there is a question of which

physical file system new files should be created on. This subsection specifies multiple

mounts and discusses these two issues.

As mentioned before, entries of a skeleton directory created by multiple mounts are

unioned with those from mounted file systems. One way to define this union operation

is to merge entire subtrees of mounted file systems, and it is called the union mount.

Examples of union mounts include the viewpath mechanism suggested by Korn and Krell's

3-D File System[Korn90] and Sun's Translucent File Service[Hend90]. In multiple mounts

provided by Jade, however, the union operation is applied only to entries under the skeleton

52

directory; it is not recursively applied to the entire subtrees of all mounted file systems.

That is, the entries of the skeleton directory with the multiple mount are indeed the

union of those on different mounted file systems; entries of a directory under this skeleton

directory, however, include only entries on the physical file system where this directory is

located. Section 5.3 compares multiple mounts and union mounts in more detail.

The mounted file system (either a physical file system or a logical file system) can

have files with names that already exist as skeleton directories in the original name space.

Also, files from different file systems mounted on one skeleton directory (multiple mount)

can have the same name. Jade uses two rules to resolve name conflicts. First, names of

local skeleton directories have precedence over names from mounted file systems. Second,

the order of the list of references associated with the directory is used to resolve conflicts

among different mounted file systems. Thus, files from the mounted file system appearing

in the front of the list of references have preference over those appearing in the back of the

list. An alternative way to resolve name conflicts between different mounted file systems is
•

to compare timestamps of files with the same name. It therefore changes the semantics of

the list of references. There are occasions when this semantics may be useful. For example,

the software make may want to choose newly updated sources among several mounted

file systems. We decided not to do this because it would be very hard to implement this

without a internet-wide, global clock.

Finally, because a given skeleton directory refers to zero, one, or more than one file

system, the file system on which a new file/directory should be created becomes an issue.

Recall that a given Jade pathname refers to at most one logical directory in the Jade name

space, or one physical file/directory in a physical file system. In Jade, a new file/directory

is created on the same physical file system where its parent directory is located. If the

parent directory is a physical directory, the problem is trivial. If the parent directory is

a skeleton directory (called the skeleton-parent directory), however, the first physical file

system to which this directory refers is used. Note that the first physical file system is

not necessarily referenced directly in the reference list associated with the skeleton-parent

directory. It may be necessary to consult several logical name spaces to locate the desired

file system. Section 3.3 discusses how to resolve pathnames in the context of multiple

53

logical name spaces. If the skeleton-parent directory points to no physical file systems,

the operation of creating a new file fails. Finally, skeleton directories are created by the

mount operation, which is completely separated from regular file/directory creation.

3.2.4 Logical Directories and Opaque Nodes

There are two kinds of skeleton directories created by null mounts: logical directories

and opaque nodes. A logical directory is a skeleton directory referring to no physical file

systems, but its skeleton node has skeleton children. For example, the root (/) in the name

space showed in Figure 3.1 is a logical directory with entries RFC, bin, man, jade, tex,

mike, and .cshrc—each of which is a skeleton directory. An opaque node is a skeleton

directory without any reference, and it is not visible under operations (e.g., listing entries

of a directory) with the default option; it is shown with a special option. The opaque

node is used to hide a file/directory with the same name from a mounted file system.

Consider the name space illustrated in Figure 3.1. Users can create an opaque node with

the pathname /Jade/bin to obscure the physical directory /usr/john/jade/bin and its

entries located in the file system meg.

3.3 Pathname Resolution

In order to resolve a given pathname, Jade locates the desired domain by identifying the

skeleton node whose pathname has the longest matched prefix with the given pathname.

Jade then resolves the rest of the pathname by consulting the underlying file systems

referred to by the list of references associated with this skeleton node. If there is only one

physical file system specified by the list, the procedure to resolve the remaining path is

straightforward. However, multiple mounts and the ability to mount logical name spaces

make this procedure more complicated. ' Three issues need to be considered. The first

involves the simple matter of resolving the pathname on a physical file system. The key

to this issue is achieving acceptable performance. The second issue involves resolving a

name relative to more than one logical name space. Since Jade allows pathnames across

logical name space boundaries, the searching procedure may invoke a sequence of logical

name spaces before reaching the physical file system that is able to complete the resolution

54

process. The last issue deals with the multiple mount. For the multiple mount, it may be

necessary to try several possibilities before successfully resolving the given name.

3.3.1 Resolving Pathnames on Physical File Systems

In general, there are two approaches for resolving the remaining path on the physical file

system. In the first approach, called local pathname resolution, each directory is brought

across the network from the host of the physical file system and searched on the host of

the logical file system. In the second approach, called remote pathname resolution, the

pathname is packaged into a network request message and sent to the host of the physical

file system, which then opens and searches directories locally.

The Jade file system uses the local pathname resolution. In order to improve perfor-

mance, Jade not only maintains the skeleton nodes but also caches remote directories.

The reason behind this decision is that experiments[Shel86][Howa88] have shown that the

activity of most users is confined to a small, slowly changing subset of the entire name

space hierarchy. Thus, a directory cache on the Jade has a high hit ratio, and much

network traffic for moving directory entries from remote file systems is avoided.

Caching is a general technique for reducing the cost of pathname resolution in dis-

tributed systems[She!86][Terr87][Saty90a]. However, its functionality varies in different

file systems. For example, prefix tables used by the Sprite File System map only path-

name prefixes to file servers; the Network File System caches attributes and file handles

of visited files /directories for later access; and the Locus Distributed System and the An-

drew File System use the local pathname resolution and cache intermediate directories

when resolving pathnames. Like Locus and Andrew, Jade caches intermediate directories.

However, rather than starting from the root and caching each component directory under

the root, as in Locus and Andrew, Jade starts from the skeleton directory and caches only

component directories under this domain.

3.3.2 Resolving Pathnames in a Sequence of Name Spaces

Mounting logical file systems can be treated the same as mounting physical file systems,

but the resolution procedure is more complicated when a sequence of logical name spaces

55

Si tstclttc ractoraJc T&bJc

Physical Rl» System on Jag Physical Rte System on Meg

Skeleton directory

Figure 3.3: Multiple Logical Name Spaces

needs to be traversed before a desired physical file system can be located. Consider

Figure 3.3, which shows three logical name spaces (i.e., John, Mike, and Bob) and two

physical file systems (i.e., jag and meg), where John's name space mounts Mike's name

space, which in turn mounts Bob's name space, which finally mounts a physical file system

on meg. Each of the directories John:/jade.menu (the directory /jade.menu on John's

name space), Mike:/projl/doc/man, and Bob:/jade/versionl.0/doc/man refers to

the same physical directory: meg:/usr/jade/versionl.0/doc/man. In order to resolve

the pathname /jade.menu from John's name space, it is necessary to consult each of the

logical name spaces before the physical file system is found. Notice that directories on the

56

GetEntrits(/j«de.m«inj)
, re*tore3c}

GetEntries(/projl/doc/maii)

{Uh, stdloJc, fetch3c, ratorc3c)

GetEntrles(/j»dt/verslonl.O/doc/miii)

Get£atries(/iia-/j«de/venioaLO/doe/mui)

Figure 3.4: Recursive Method

name spaces of this sequence may contain other skeleton directories. For example, Mike's

name space has a skeleton directory /projl/doc/man/ish introducing a different domain

and, therefore, the directory Mike:/projl/doc/man (and hence John:/jade.menu)

includes not only files on the directory meg:/usr/jade/versionl.0/doc/man (i.e.,

fetch.3c, restore.3c, and stdio.Sc), but also ish. Also, name conflicts may exist between

names of local skeleton directories and those from mounted name spaces. Section 3.2.3

illustrates two general rules used to resolve name conflicts. That is, names of local skele-

ton directories have precedence over names from mounted files systems; the order of the

list of references associated with the directory is used to resolve conflicts among different

mounted file systems. Finally, it is possible to form a loop within this calling sequence.

How to detect and prevent loops is one of the critical issues in designing the pathname

resolution algorithm. We address this issue later.

There are two methods to resolve the pathname on a sequence of name spaces: the

recursive method and the iterative method. With the recursive method, pathnames are

recursively resolved within the new name space, and all of the entries (including local

skeleton directories and mounted files) of the directory are collected and returned to

57

{megVusr/Jade/vtnlonlJVdoc/mMi}

G«tSkeletons</proll/doc/mtii)

1.0/doc/inan)

{stdk)3c fetch Jc, restoreJc)

{Ish, stdioJc fetch Jc restored)

Figure 3.5: Iterative Method

the caller one at a time. Figure 3.4 illustrates the procedure to query the directory

/jade.menu of the name space John using this method. The query starts from John's

name space, which then generates a new query to Mike's name space, which in turn queries

Bob's name space, which finally consults the physical file system meg. The answers come

backward from meg to Bob to Mike, and finally to John. The recursive method has the

advantage of the forward mounting property being completely hidden from the current

name space. The Get Entries (See Section 3.5) operation is the only directory lookup

service provided by the logical name space, and the procedure for handling logical file

system mounting is treated in exactly the same way as that of the physical file system

mounting. However, this method is very expensive because it requires each of the logical

name spaces in the calling sequence to collect directory entries before returning the query.

Moreover, because of its recursive nature, the original name space has no control over

the whole resolution activity, making detection of loops in the mounting sequence more

difficult.

Instead, we chose the iterative method illustrated in Figure 3.5. With this method, the

original logical name space (i.e., John's name space) retains control over the resolution

activity. When Jade calls a given name space, that name space responds to the query

with the list of references associated with the queried directory and a set of skeleton

nodes, each of which is a child under the queried pathname. In this example, Mike's

58

name space returns the query of the pathname /projl/doc/man with the reference

to Bob:/jade/versionl.0/doc/man and the skeleton node ish. John's name space

then queries Bob's name space for further information, and so on. In this method, the

skeleton directories are exposed, rather than hidden, by each logical name space. The

GetSkeletons operation (See Section 3.5) queries the list of references associated with the

node (skeleton or cached) with a given pathname and a set of skeleton children under this

node. In contrast, the Get Entries operation lists all entries under one directory including

skeleton nodes and regular files and directories. Because the original name space has full

control over the resolution procedure, it is easy to detect loops in the mounting graph.

3.3.3 Handling Multiple Mounts

Jade allows more than one file system to be mounted on a single skeleton directory. The

mounted file systems can be either physical file systems or other Jade file systems. In the

latter case, a sequence of nodes in different logical name spaces may be consulted before

proper physical file systems are located. However, multiple mounts may also occur in name

spaces within this sequence. Hence, among these invoked name spaces, there is a directed

graph that describes the mounting relationships. Figure 3.6 illustrates a directory of the

name space A and all name spaces referenced by this directory: Name spaces A, C, and F

are logical, and the name spaces of B, D, E, G, H, and I are physical. Arrows represent

mounting relationships among name spaces. In this example, a skeleton directory in the

name space A multiply mounts nodes on name spaces B, C, and D.

The preference rules presented in Section 3.2.3 suggest that the depth-first search is

the proper way to search name spaces in the direct graph. In this example, the sequence of

invoked name spaces is B, C, E, F, H, I, G, and D. The searching procedure terminates

whenever the desired name is found in one of the name spaces of this sequence.

3.3.4 Pathname Resolution Algorithm

To summarize, the Jade file system maintains the skeleton directories and caches entries

of visited remote directories; a given skeleton directory points to zero or more file systems,

and each file system may be either a physical file system or another Jade file system;

59

Logical Nam* Spac*

Physical Fil* Sy»tom

Figure 3.6: Mounting Graph

Jade uses local pathname resolution, caches remote directories, iteratively consults indi-

vidual name spaces, and uses depth-first search to consult name spaces. This subsection

completes the picture by presenting the algorithm used to resolve a pathname.

A Jade name space is implemented by a collection of nodes. Each of them is either a

skeleton node or a cached node. Cached nodes, in turn, correspond to either skeleton nodes

in other Jade name spaces, or files/directories on physical file systems. The structure of

the node consists of the pathname, a list of references to other file systems, and a set of

attributes. A hash table is used to locate nodes by mapping a given pathname into the

corresponding node.

The pathname resolution function, ResolvePathNameQ1, translates a pathname into

'ResolvePathNameQ is logically equivalent to nameiQ in the Unix operating system.

60

a node. ResolvePathNameQ is given in Figure 3.7. It starts by locating the node in the

current name space that has the longest prefix of the input pathname; it is called the closest

ancestor node. It can be either a skeleton directory or a cached node. FindClosestAncestorQ

performing this search is given in Figure 3.8. If the closest ancestor node is a cached node,

the validity of this cached node is checked. In order to reduce the traffic between Jade

and the physical file systems, we examine only the closest ancestor node instead of all the

nodes along the path from the skeleton directory to the closest ancestor node.

Once the closest ancestor node is located, ResolvePathNameQ then resolves each com-

ponent of the remaining pathname. The function maintains two lists: An outstanding list

keeps outstanding references and a visited list records references that have been visited.

The visited list is used to avoid visiting previous references in order to detect the loops in

the mounting sequence. The body of ResolvePathNameQ consists of two while loops. The

outer while loop scans each component in the remaining path and the inner while loop

consults each of the references in the outstanding list in order to resolve the current com-

ponent. At the beginning, the outstanding list is set to the references associated with the

closest ancestor node. Whenever the component is resolved, the outstanding list is reset to

the list of references associated with the new node. For each reference in the outstanding

list, the name space pointed to by this reference is consulted using the CacheQ function.

If the reference points to a physical file system, CacheQ calls the operation GetEntries to

get entries in the remote directory and caches them. If the reference refers to a logical

name space, CacheQ calls the operation GetSkeletons to get the skeleton children under the

remote node and the reference list associated with it, caches these skeleton children, and

returns the reference list. This list is then put in front of the outstanding list in order to

implement the depth-first search. The inner while loop exists whenever the node with the

name of the current component is located. If the outstanding list is empty, the function

ResolvePathNameQ fails.

3.3.5 Listing Directory Entries

As mentioned before, skeleton nodes contain references to other name spaces, not to other

nodes in the same name space, and Jade uses a hash table to locate desired nodes directly.

61

ResolvePathName(jxii/iname)
node := FindClosestAncestor(patfmame);
let remaining.path be the difference between the path of node and pathname;
let current-path be pathname of node;

while remaining-path not empty do
let component be the first component in remaining.path,

and remove it from the path;
let outstanding-list be the list of references associated with node;
initiate visitingjist;

while not found and outstanding-list is not empty then
let reference be the first element in outstanding-list,

and remove it from the list;
if reference is not found in visitedJist then

add reference into visitedJist;
newJist := Cache(re/erence);
newjnode := LookupCache(currenLpa£/i);

/* Consults the hash table to get the node with current-path */.
if new.noc/e is not nil then

let node be new-node;
let found be true;

else
insert new-list into the front of outstanding.list;

fi
fi

end /* inner while */

if not found then
return nil

fi
end /* outer while */

return node;

Figure 3.7: Function ResolvePathNameQ

62

FindClosestAncestor(pat/mame)
while true do

node := LookupCache(pai/mame);
/* Consult the hash table to get the node with pathname */.

if node is nil then
remove the last component of pathname;

else
if node is a skeleton node then

return node;
else /* The node is a cached node. */

check the validity of node ;
if node is valid then

return node;
else

remove the last component of pathname;
fi

fi
fi

end

Figure 3.8: Function FindClosestAncestorQ

Entries under a directory include not only nodes from mounted file systems, but also

skeleton directories in the logical name space. Thus, listing entries under a directory in

Jade is more complicated than in other systems. Figure 3.9 outlines the Dir() function

that implements this operation. In addition to the previously mentioned hash table that

maps a pathname into a node, another hash table is used to implement this function.

This hash table, the Skeleton Children Table (SCT), maps a given pathname into a set

of nodes, each of which is an entry under this pathname and is a skeleton node. Using

Figure 3.1 as an example, SCT maps the pathname /jade/doc to two skeleton nodes:

/jade/doc/paper and /jade/doc/conf. Dir() starts by calling ResolvePathNameQ to

locate the node corresponding to the input pathname. Then, SCT is used to collect entries

that are skeleton children under this directory node. Finally, the depth-first method

presented in the previous section is used to collect other entries from the mounted file

systems referred to by this directory node.

63

Dir(pa</mame)
dir.node := ResolvePathname(pafAname);
if dir.node is nil then

return fail;
children := LookupCache(SCT, pathname);
let outstandingJist be the list of references associated with dir.node]
initiate visiting-list;

while outstandingJist is not empty do
let reference be the first element in outstandingJist and

remove it from the outstandingJist;
if reference is not found in visitedJist then

add reference into visitedJist;
(newJist, new.children) := Cache(re/erence);
children := children U new.children;
insert newJist into the front of outstandingJist;

fi;
end; /* while */

return children

Figure 3.9: Function DirQ

64

3.4 Name Space Stack

Jade allows a logical name space to be mounted into another logical name space. This

feature encourages a user to define fine grain name spaces and construct a view by over-

lapping a set of logical name spaces. In order to help users to organize their logical name

spaces, Jade provides a Name Space Stack mechanism. The Name Space Stack also pro-

vides checkpoint and rollback on the mount operation. Jade supports push, pop, dump, and

load operations to manipulate the stack.

The Name Space Stack is a stack of name spaces owned by a single user. The topmost

name space in the stack, called the current working name space (or WNS), is the only

name space that is accessible from outside the stack. That is, all pathname resolutions

are relative to WNS; and operations to the name space are applied to WNS only. For

example, the mount operation creates a new skeleton directory on WNS, and the unmount

operation removes an existing skeleton directory on WNS. This also means that the

address of the user's name space (e.g. john@cs.arizona.edu) refers to his/her WNS.

However, on the Name Space Stack, an upper name space is able to mount a lower name

space. Figure 3.10 illustrates a Name Space Stack and physical file systems referred to

by logical name spaces on the stack. In this example, the Name Space Stack consists of

three name spaces: I, II, and III—III is WNS. The name space I mounts the physical

file system A on the /A and the physical file system B on the /B. The name space II

mounts the root of the name space I on its root and the physical file system C on the /C.

Therefore, the view from the name space II includes not only the physical file system A

and B but also the physical file system C. Finally, the name space III mounts the root of

the name space II on its root and the physical file system D on /A. Consequently, from

the view of the name space III—the current user's view—/A refers to the physical file

system D rather than the physical file system A. More precisely, /A now includes files

j and k which are located on the physical file system D rather than a, b, and c on the

physical file system A.

Jade provides the operations push and pop to manipulate name spaces on the Name

Space Stack. The push operation, as illustrated in Figure 3.11, generates a new space with

65

a single skeleton (/) pointing to the root (/) of the name space on top of the Name Space

Stack. It then pushes this newly generated name space on top of the stack. After the

push operation, WNS refers to this newly created name space. Note that the user's view,

however, remains exactly the same. It is the mount operations following push that change

the user's view. The pop operation, on the other hand, pops off the top name space from

the stack. WNS changes to the next name space on the stack. Unlike the push operation,

the pop operation may change the user's view. Figure 3.12 illustrates the pop operation.

In this example, the pathname /A in the logical name space refers to the physical file

system A instead of D after the pop operation. If the Name Space Stack only has one

name space, then the pop operation fails.

In order to save and reuse name spaces, Jade supports dump and load operations.

The dump operation saves an image of WNS to an external file. Rather than the full

naming hierarchy, the image includes only skeleton nodes in the WNS. Conversely, the

load operation takes an image stored on an external file, regenerates the name space, and

pushes on the Name Space Stack.

There are several occasions where the Name Space Stack can be very useful. For

example, a user may own several logical name spaces, each of them dedicated to a different

task; e.g., one for daily administration work, one for teaching tasks, and one for research

projects. With the Name Space Stack, the user is able to switch easily to different logical

name spaces in order to perform different tasks, or even overlap more than one logical name

space to have a mixed view. Version control is another possible application domain. In

this case, it is possible to generate a collection of logical name spaces for a large software

project, each of which represents one particular software/hardware configuration. The

Name Space Stack makes it easier for the user to switch to different versions. Chapter 6

describes examples that take advantage of the Name Space Stack.

66

Name Space Stack Physical File Systems

A B C

A Af A,
j k d e f h i

User's View

Figure 3.10: Name Space Stack

67

PUSH

Name Space Stack Physical File Systems

,J k d e f

User's View

Figure 3.11: Push Operation

68

Name Space Stack Physical File Systems

A B C

A A /\
j k d e f h i

Before Pop Operation

A A
a b c d e f h i

After Pop Operation

User's View

Figure 3.12: Pop Operation

69

3.5 Jade Naming Protocol (JNP)t

The Jade Naming Protocol (JNP) specifies the interface of the Name Space Manager.

A user consults the Name Space Manager with JNP in order to resolve pathnames in a

logical name space. The Name Space Manager also uses JNP to consult other Name Space

Managers in order to resolve a pathname. The protocol defines functions provided by a

name space. These functions support directory services and can be categorized into three

groups of operations: operations for handling individual files/directories, operations for

manipulating a logical name space, and operations for managing a Name Space Stack.

Notice that unlike the directory in other Unix-like file systems, a directory in Jade is

treated differently from regular files; file access operations (i.e., open, read, write, close,

and seek) are no longer applied to directories. This is necessary because directory services

are supported by Jade rather than by the underlying physical file systems.

The protocol is specified in terms of a set of procedures, their arguments and results,

and their effects. A reference to a file on a physical file system consists of four pieces

of information: the server name, the access protocol supported by the server, the handle

used by the server to identify the file (this handle varies by access protocol, e.g., the file

handle for NFS, the inode for UFS, the fid for AFS, and the pathname for FTP), and

authentication information needed to access the file in the server. Appendix A gives a

complete specification of JNP. The remainder of this section discusses three interesting

issues associated with JNP: listing entries of a directory, removing files, and renaming

files.

Jade supports two operations to list the entries under a directory: Get Entries returns

all entries (skeleton nodes and nodes on physical file systems), and GetSkeletons returns

only skeleton children. Since a given directory may refer to more than one physical file

system, the cost of collecting all the entries can be very high. Jade provides GetSkeletons

as a less expensive alternative, and as Section 3.3 points out, this operation is useful in

pathname resolution.

Jade also provides two ways to unlink a file: The Remove operation physically removes

the file from the underlying file system, and the Hide operation logically removes the file

70

by creating an opaque node on the logical name space to hide it.

Finally, the Rename operation becomes complicated in the context of multiple mounted

file systems. It renames the file named pathl to paths, with the format:

Rename(pathl,pa*/»2)

The function is successful only if the file named pathl exists. After Rename, the file should

remain on the same physical file system, and users should be able to name this file using

path2. This implies that Rename applies only to the physical file system where the file

is stored. Furthermore, if there exists a file named pathS before invoking the Rename

function, two general rules must be followed:

1. If the file path2\B located on the same physical file system as the file pathl, it should
be removed.

2. Otherwise, the file path2 should remain unchanged.

Consider the logical file system illustrated in Figure 3.13, where /A mounts the phys-

ical file system A, /B mounts the physical file system B, /AB mounts A and B, and

/BA mounts B and A. Notice that the mounting sequence is significant and, therefore,

/AB/a refers to the file A:/a, while /BA/a refers to the file B:/a.

For a domain with a single reference, Rename behaves as in Unix. For example,

Rename(/A/a, /A/b)

returns success and the original file named A:/b is removed and A:/a is renamed as

A:/b. However,

Rename(/A/b,/B/i)

fails. This is because /A/b and /B/i refer to different physical file systems. For domains

with multiple references, the situation becomes more complicated. For example,

Rename(/AB/c,/AB/f)

is successful—the file named A:/c is renamed as A:/f. Notice that the file B:/f is un-

changed, and therefore the path /B/f and the path /AB/f, which used to point to the

same file, now refer to different files. As another example,

71

A B AB BA

A A A A

Logical File System

a b o d e

B

a b c f g h

Physical File System A Physical File System B
Figure 3.13: Renaming Files

Renamc(/AB/g,/AB/i)

succeeds. However, the file is still located on B and the path /AB/i refers to the file B:/i

rather than A:/i. As a final example,

Rename(/AB/h,/AB/d)

fails. This is because even if it were successful, the path /AB/d still refers to the file

A:/d rather than to the file B:/d which was renamed from B:/h.

72

3.6 Access Control

The Jade file system does not implement its own authentication control mechanism. In-

stead, it relies on the underlying file systems to check the access rights whenever their files

are accessed. This is because Jade is just an agent between the user and the file system; it

does not have any special privileges. Also, the end-to-end augment[Salt84] suggests that

functions placed at intermediate levels of a system may be redundant or of little value

when compared with the cost of providing them at intermediate levels. Therefore, 'we

believe that the authentication mechanism should be installed on the server where objects

are implemented, rather than on the intermediate agent. One problem with this decision

is that a skeleton directory owned by one user is readable by other users (i.e., users cannot

make skeleton directories unreachable for others). However, because we use the iterative

search method, the user still needs to have access rights in the physical file system in order

to list the contents of a directory on a physical file system.

Acting as an agent, the Jade file system also collects all authentication information

needed to access file systems and issues the proper information automatically whenever it

accesses these files. A Token list is maintained on a per-user basis. Each Token in the

list is assigned a generic name by the user and consists of a principal (e.g., login name)

and an authentication key (e.g., password). For example, a user can define a token named

nobody with the principal given by anonymous and the authentication key given by

ident. Recall that each reference specifies a name of the token that is used to access the

file system. For example, a reference associated with the pathname /RFC in the name

space illustrated in Figure 3.1 is

<FTP, nic.ddn.mil, RFC, nobody>

In order to access the file system nic.ddn.mihRFC, Jade issues the user name anony-

mous and the password ident to the access protocol (i.e., FTP in this example).

Unix access control requires that a user have access right for every component in a

pathname in order to access the file. Most Unix-like file systems implement this behavior

by checking permission component by component during pathname resolution. In Jade,

however, a given pathname may cross multiple domains, each of which may be located

73

anywhere in the internet or be temporarily unreachable. It would be very expensive to

check permission in each domain. Instead, Jade locates the desired domain directly using

a prefix table, and permission checking is done only inside this domain. For example, if

there is a domain rooted by the skeleton directory /a/b/c and a lookup request on the

path /a/b/c/d, neither of the directories /a or /a/b is examined. The node /a/b/c

is used as a starting point to resolve the remaining path. This means that any access

controls in /a and /a/b will be ignored. Therefore, if access to a file is to be restricted,

it must be restricted with the access controls at the domain where this file is located.

PRECEDING PAGE BLANK NOT FILMED

75

CHAPTER 4

ACCESS MANAGER

This chapter focuses on Jade's second major component: the Access Manager. The

Access Manager supports access to a remote file given by its reference. It allows users to

choose one of several physical file systems as the cache server, and caches the entire file

on this server. In order to promote maximal sharing of these cached copies, the Access

Manager records files that are accessed or have been accessed by clients. It supports

operations to request and release a cached copy. Jade uses a two-level cache. The operating

system supports the first-level cache: caching files in memory when access files from

the cache server. The Access Manager caches remote files on the cache server, which is

considered as the secondary cache. In order to reduce the number of messages sent to

the underlying file systems, the Access Manager implements two delayed-write policies:

write-on-close and create-on-close.

4.1 System Structure

The Access Manager records files that are accessed or have been accessed in a table called

the jnode table. Each entry in the table, called a jnode, represents a file that is maintained

and cached on the cache server. It consists of a source reference, a sink reference, a cache

reference, a timestamp, and a reference count. Figure 4.1 illustrates the structure of a

jnode. Section 3.1 defines the contents of a reference. It includes the name of the protocol

used to access the mounted file system, the name of the host that provides services to access

the mounted file system, the handle used by the server to identify the root of the mounted

file system, and authentication information used to access the mounted file system. The

source reference refers to a file on a physical file system from which the cached copy is

fetched. The sink reference, on the other hand, points to a file on a physical file system

where the cached copy is supposed to be placed when it is restored back. By default,

76

the source reference and the sink reference refer to the same file on the same physical file

system. Jade provides an operation to change the sink reference. This is useful when users

want to copy files from one physical file system to another; Section 4.2 describes this use

in more detail. The cache reference refers to the cached copy on the cache sever. The

timestamp marks the timestamp of the source when the file was fetched. The reference

count records the number of clients that are accessing the cached copy of this file; it is used

to implement a replacement mechanism. The Access Manager assigns an unique number

to each jnode, called the jnode number.

Physical File System

Physical File System Physical File System (Cache Server)

Figure 4.1: Jnode Structure

77

The Access Manager provides the following three operations: Request, Release, and

Relabel. The Request operation locates a jnode in the jnode table, validates the cached

copy, increments its reference count, and returns the cache reference specified in this jnode.

The Release operation decrements the jnode's reference count and restores the cached copy

of the file back to its sink, if necessary. The Relabel operation changes the sink reference

of a jnode.

More precisely, the Request operation is defined as

cache-reference, jnode.number:= Re<\uesl(source.reference,tiTnestamp, flag)

where source-reference is used as a key to locate the jnode from the jnode table. If the

desired jnode is not found, the Access Manager allocates a new jnode structure, initiates its

source reference and sink reference to source-reference, and requests a unique pathname

from the cache server that is assigned as the jnode's cache reference. The timestamp

argument is used to validate the cached copy referred to by the cache reference. This

validation procedure is defined as follows. The timestamp is compared with the one stored

in the jnode structure. If this comparison indicates that the cached copy is invalid, the

Access Manager fetches—using the Fetch operation of the underlying access protocol—a

fresh copy from the source, and replaces the cached copy pointed to by the cache reference.

Notice that the Access Manager does not implement its own clock; it only records and

compares the timestamp associated with a file in the source file system.

The flag argument indicates the type of request:

• reqvesLfor.reod;
• requesLforjwrite\
• requesLfor.read-andLwrite.

With the flags requefL.for.read and requesLfor-read-and-write, the Access Manager vali-

dates the cached copy and fetches a new copy if necessary. With the flag request-for.write,

on the other hand, the Access Manager ignores the validation procedure and simply re-

turns the cache reference. It delays the creation of new files until they are closed; this is

called create-on-close. The next section addresses this issue in more detail.

78

The Release operation releases a previous request. It is given as

status := Re\ease(j node-number, flag, mode)

where jnode-number is used to directly locate the proper jnode in the jnode table. In

addition to decrementing its reference count, the Release operation restores—using the

Restore operation of the underlying access protocol—the cached copy back to the sink

reference. The flag argument indicates the restoring process as being either:

none: no restore is done and the cached copy is just freed;

synchronous.write: restores back before the Release operation returns;

asynchronous.write: schedules the restoring process and returns without wait-
ing for its completion.

Thus, Jade is capable of supporting two kinds of writing policy: synchronous-write and

asynchronous-write. The latter is especially important in performance because the re-

mote file system may be located anywhere in the internet and may even be temporarily

inaccessible. The target file is created with the mode mode.

Finally the Relabel operation is defined as

status := Re\abe\(jnode-number, sink-reference)

The sink reference of the jnode identified by jnode-number is changed to sink-reference.

The Relabel operation is used to avoid unnecessary duplications of cached copies. The

next section addresses this issue in more detail.

The result of this design can be best understood by examining a file access in detail.

Suppose a user process opens a file with pathname P. The Name Space Manager is con-

sulted to resolve P. It returns a source reference 5 to a file on some physical file system,

and the timestamp T associated with this file. The reference includes the name of the

access protocol used to access the underlying file system, the name of the server that

supports access to the file system, the file handle that is used by the server to identify the

desired file, and authentication information needed to access the file system. The Request

operation is then invoked with arguments 5 and T to get the reference to the cached copy

on the cache server. According to the way in which the file is opened (i.e., open for read,

79

open for write, or open for read and write), the flag argument is set (i.e., reqitest.for.read,

request-for.write, or requestJor.read.and.write). The cached copy is then opened, and

subsequent read and write operations are directed to this cached copy. When the user

doses the file, the cached copy is closed first. Finally, the Release operation is called; its

flag argument is set according to the needs of the restore process.

4.2 Caching Scheme

Jade supports two-level caches: Remote files are cached on the cache server by the Access

Manager, and files on the cache server are cached on the client workstation by the operating

system. With this scheme, the cache server is considered to be the secondary cache.

There are two advantages of this approach. First, it allows the access protocol used to

fetch the remote file to be different from the one used to access the cached copy. This

approach suggests that resources other than files—e.g., mailboxes and printers—can also

be named and accessed through Jade. When fetching a remote resource, the Access

Manager generates a local, file-like object of the resource on the cache server. This object

is then transferred back to the proper form when it is restored.

Second, experiments with the prototype of Jade show that performance factors change

when files axe located in an internet rather than in a local area network. For example,

network latency, which is insignificant in comparison with local computations, becomes

significant in the internet environment. The two-level cache scheme permits a different

cache policy for each environment. .In order to get good performance, it is common to

choose the default file system used by the workstation as the cache server. That is, the

local disk is chosen as the cache server for diskful workstations. Otherwise, a nearby file

server is selected. The operating system in a client workstation uses page access rather

than file access to access files in the cache server. However, like the Andrew file system,

the cache server caches entire files on the disk, which is different from the memory cache

scheme adopted by most other distributed file systems. Caching entire files is essential in

access files in the internet. This is because the network latency in the internet becomes

higher and communication is not as reliable as in the local area network. Caching entire

files can avoid individual block requests as well as transfers that may be very expensive or

80

even fail in the case of a temporary network partition. Chapter 5 addresses performance

issues in more detail.

One drawback of this caching scheme is that the cost of copying files is more expensive

than the memory cache scheme. Figure 4.2 shows three alternative ways to copy a file A

to a file B, assuming A and B are located in the same physical file system. In the basic

case, the file A is fetched from its source to the Access Manager to generate a cached copy

of A, the cached copy of A is copied to another cached copy in the Access Manager that

is then used as the cached copy of the file B, and the cached copy of B is stored back

to its destination. The total cost is three copy operations. In an optimized case, Jade's

Relabel operation lets users change the sink reference associated with the cached copy to

a new one, and therefore the copy from the cached copy of A to the cached copy of B can

be omitted. However, two copy operations are still required. The ideal way to solve this

problem is to have the access protocol support a new copy operation, thereby making the

cost of copying files comparable to the cost of renaming files.

Jade's write-on-close policy means that dirty files are written back to the underlying

file system only when the files are closed. This delayed-write scheme has two advantages

over a simple write-through scheme. First, because writes are to the cache, write accesses

complete much more quickly. This is particularly true in Jade because individual write

operations to the file system need to go through the internet, and this is very expensive.

Second, data may be deleted before they are written back, in which case they do not need

to be restored at all. However, this policy requires the closing process to delay while the file

is written through. In order to overcome this problem, Jade provides a write-behind policy

as one option of the Release operation. With this option, the dose operation returns before

data written back to the physical file system. This is particularly important because the

target file system may be located anywhere in the internet and may even be temporarily

unreachable due to network partition.

In addition to this write-on-close policy, Jade supports a create-on-close policy that

creates a new file on the target file system when the file is closed. Most distributed file

systems need a file handle for the new file before data can be written on the cache, and this

file handle is issued by the target file system. In Jade, a cache reference is generated by

81

Physical File System Physical File System Physical File System

Fetch Restore Fetch Restore

Cache Server

A. Basic

Cache Server

B. Optimized

Cache Server

C. Ideal

File A

FileB

Cached Copy of A

Cached Copy of B

Figure 4.2: Copying Files

the Access Manager without consulting the target file system, and it is used to write data

on the cache. The file system is not aware of the existence of this new file until it is closed

and stored to the file system. The reason behind this design is that experiments have

shown most file lifetimes are very short [Shel86][Howa88][Oust85], where these lifetimes

are measured starting from the creation of the file on the cache. A trace-driven analysis

on the Unix file system[0ust85] shows that 50-60 percent of such files have a lifetime of

less than 3 minutes. A further observation finds that most of these files are temporary

files used to pass data between sequence executions; they are deleted right after the next

execution is finished. For example, in program development, the compiler generates an

assembler file which is deleted as soon as it has been translated to a machine code. The

create-on-close policy delays the act of creating a file on the underlying file system until

the file is closed on the cache server.

PRECEDING PAGE BLANK NOT FILMED

83

CHAPTERS

EVALUATION

In order to examine the design, we have implemented a prototype of the Jade File

System and measured its performance. This chapter reports the experience. The proto-

type consists of interfaces to the access protocols UFS, NFS, and FTP. We measured the

performance of this prototype with the Andrew Benchmark[Howa88]. The last section in

this chapter re-examines major issues in the design and implementation of the Jade file

system, with an emphasis on the tradeoffs of alternative choices.

5.1 Prototype

The prototype of Jade is implemented on top of the Sun OS 4.1. operating system and

located at the user-level without any modification to the kernel. It uses Sun RPC[Sun86b]

as the interprocess communication mechanism between system components. Jade adopts

the Sun Shared Library mechanism[Sun88]. By dynamically linking Jade's shared library,

most existing software (ed, cc, find, etc.,) is able to transparently access Jade without

modification or re-compilation. The prototype of the Jade file system co-exists with the

file system supported by the operating system of the workstation (called the original file

system) in that Jade is attached on top of the directory /Jade of the original file system.

Figure 5.1 illustrates one example of name spaces for a workstation user, including a

per-user based name space provided by the Jade file system and a shared name space

supported by the original file system.

Compared with the kernel-approach implementation used by the Andrew File System

and the Network File System, the user-level approach has the following advantages. It is

easy to experiment and to examine different design options. Debugging user-level servers

is much easier than kernel-level mechanisms because the servers are ordinary applications

and the standard debugging tools can be used. Portability among heterogeneous operating

84

Original File System Jade File system

Figure 5.1: Name Spaces for a Workstation User

systems is another advantage. A potential disadvantage of this approach, however, is that

performance will be degraded by the user-level approach. The next section addresses this

issue in more detail.

The prototype includes two user-level servers, one shared library, and a collection of

agents for different access protocols, as illustrated in Figure 5.2. The first server imple-

ments the Name Space Manager described in Chapter 3, while the second server imple-

ments the Access Manager explained in Chapter 4. Jade implements the Name Space

Manager and the Access Manager as separate servers rather than combining them. This

is because the Name Space Manager is defined on a per-user basis, whereas the. Access

Manager allows different users to share a single cache. The shared library embeds func-

tions into the system call interface. These functions invoke services from the Name Space

Manager for pathname resolution and services from the Access Manager for file caching.

Sun RFC is used as the communication mechanism between the shared library and the

two servers. Jade implements each of the access protocols (i.e., UFS, NFS, and FTP) as

an agent. Agents support a uniform interface on which the Name Space Manager and the

Access Manager are implemented.

85

RequestQ
ReleaseQ
RelabelQ
OutputJTableO

The Shared Library

Name Space
Manager

LookupO
GetAttrQ
SetAttrQ
RemoveO
GetEmriesQ
MakeDirQ
RemoveDirQ
RenameQ

MountQ
HideQ
UnmountO
GetSkeletonsQ
FSInfoO
NSPushQ
NSPopO
NSDumpO
NSLoadO

FetchQ
RestoreQ

Agent Interface

ConnectQ
DisConnectQ
GetEntriesQ
GetAttrQ
MakeDirQ
RemoveDiiO
RemoveEntryO
SetAttrO

FTP Agent UFS Agent NFS Agent AFS Agent

Figure 5.2: Implementation Structure

86

open(path, flags, mode)
reference := NameSpaceManager.Lookup(pa</»);
if reference is not nil then

handle := AccessManager.Request(re/erence, request.for.read);
if handle is not nil then

return sysca\\(SYS.open, handle, flags, mode)]
fi

fi

return fail;

Figure 5.3: Function open

In order to present how the shared library and two servers are tied together, consider

the function open in the shared library as illustrated in Figure 5.3. To simplify the

discussion, only the function of opening a file for reading is described. When a file is

opened for read, the Name Space Manager is consulted in order to resolve the given path.

It returns a reference to a file. The Access Manager is then invoked to cache the entire file

using the reference as an argument. A handle of the cached copy is then returned. The

cached copy is located in the original file system, and the handle is either a pathname or

an inode defined in the file system. Finally, the cached copy is opened by invoking the

system call syscall.

The remainder of this section discusses the implementation of each of four components.

We start from the bottom with protocol agents. Next, we describe the Name Space

Manager and the Access Manager, which are implemented on top of protocol agents.

Finally, we depict the shared library, which invokes services of the Name Space Manager

and the Access Manager.

87

5.1.1 Protocol Agents

In order to accommodate heterogeneous access protocols, the Access Manager and the

Name Space Manager define a uniform interface through which services supported by these

two managers are mapped into functions of individual protocols. More precisely, for each

access protocol, there is an agent that supports the uniform interface for the protocol. Each

agent implements the client part of a protocol and encapsulates communication details of

this protocol (e.g., Sun RPC[Sun86b] for NFS, Rx[Side89] for AFS, and TCP[Post81] for

FTP). An agent serves as the front-end to a collection of file systems accessible through

the protocol.

Each agent supports a set of functions, as summarized in Table 5.1. The function

Connect starts the dialogue with the physical file system and returns the handle of the

connection. The function Disconnect terminates this connection.

In order to implement the local resolution method described in Chapter 3, the function

Get Entries retrieves entries under a given directory of the physical file system. Notice that

there is no lookup function defined in agents. This is because pathname resolution is done

in the Name Space Manager rather than in physical file systems.

The function Fetch (Restore) retrieves (stores) a file from (to) the physical file system.

Because Jade supports entire file caching, agents do not support Read and Write functions

to access individual pages as the Network File System does. Because of the create-on-close

semantics, new files are created by the function Restore and there is no creat function.

Other functions defined by agents support common directory services. The function

GetAttr (SetAttr) retrieves (sets) attributes associated with a file/directory in a file system.

The function RemoveEntry removes an entry under a directory in a physical file system.

The function MakeDir creates a new directory on a physical file system. The function

RemoveDir removes an existing empty directory on a physical file system.

The following reports our experience implementing agents for UFS, NFS, and FTP. In

addition to describing the prototype, we report problems in implementing the agent for

each protocol.

88

Connect connects the server that supports a physical file system and
returns a handle for the file system.

Disconnect disconnects the server.
Get Entries gets entries under a directory in a file system.

RemoveEntry removes an entry tinder a directory in a physical file system.
GetAttr returns attributes associated with a file or directory in a file

system.
SetAttr sets attributes of a file/directory in a physical file system.

MakeDir creates a new directory on a physical file system.
RemoveDir removes an existing, empty directory on a physical file sys-

tem.
Fetch retrieves an entire file from a physical file system.

Restore stores data back to a file in a physical file system.

Table 5.1: Agent Interface

UFS Agent

The implementation of the UFS Agent is trivial. Most of the functions are directly mapped

into the corresponding system calls in the Unix file system interface[Bach86]. For exam-

ple, the function MakeDir is mapped into the system call mkdir; the function GetAttr is

implemented by the system call stat. Because the desired file system is located on the

local host, there is no need to connect the file system at the beginning, and therefore, the

functions Connect and Disconnect invoke no Unix system calls.

NFS Agent

The NFS Agent communicates with file servers using Sun RFC. Like the UFS Agent,

most of the NFS Agent's functions are mapped into corresponding RFC calls directly. For

example, the function GetEntries is implemented by the RFC call NFSPROCREADDIR;

the function RemoveEntry is mapped into the RFC call NFSPROC.REMOVE. However, the

function Connect invokes the call MOUNTPROC.MNT, which is supported by the Sun's

Mount Protocol[Sun86a] instead of the NFS protocol, to get the handle of the root of the

mounted file system. Furthermore, NFS supports page access instead of file access as used

in Jade. Therefore, the function Fetch (Restore) opens a file and then invokes sequences

89

of the call NFSPROC.READ (NFSPROC.WRITE) to retrieve (store) the entire file.

The major drawback of the NFS protocol is that it was designed based on the existence

of a unique identifier (uid) for each user. More precisely, clients identify themselves to

the server with their uids rather than login names; the server returns owners' uids for

file attributes instead of string names, and the protocol supports no functions to convert

between a uid and its login name. In order to handle this problem, Jade keeps a uid in

addition to a login name in the corresponding Token (see Section 3.6).

FTP Agent

The FTP Agent is implemented on top of the Unix socket interface. It communicates with

file servers through Transmission Control Protocol (TCP)[Post81]. The agent's functions

are mapped into FTP commands. The function Connect initiates dialogue with a server.

Transferring files is straightforward in the FTP Agent: The function Fetch invokes the

command RETR to retrieve the whole file from the file server, while the function Restore

calls the command STOR to store a file into the file server.

Unlike access protocols for other agents, the FTP protocol specification does not sup-

port all the functionality needed to implement an agent. There are two major problems.

First, the content and format of attributes of files/directories are undefined in the pro-

tocol specification, and therefore, they may vary from one file server to another. The

function GetAttr invokes the command LIST to get attributes of a file/directory from the

server. However, there is no common way to parse the returned attributes. Furthermore,

FTP does not support commands to change attributes associated with a file/directory

and, therefore, the function SetAttr is undefined in the FTP Agent. Second, the notion of

directory is defined as an option in that it is not supported by every file server. Therefore,

the function MakeDir and RemoveDir, which are implemented by the FTP command MKD

and RMD, are not available for all file systems.

5.1.2 Name Space Manager

The Name Space Manager is implemented as a server. Each machine has a single daemon

that is able to support a collection of logical name spaces at one time. The name space

90

is addressed as UserName@HostName where HostName specifies the host on which

the server resides and UserName is an identifier used by the daemon to specify a logical

name space. The name space, consulted by a user process, is addressed by the environment

variable NameHost.

Functions supported by the Name Space Manager are categorized into three groups:

functions for regular directory services (i.e., Lookup, GetAttr, SetAttr, Remove, Get Entries,

MakeDir, RemoveDir, and Rename), functions for maintaining a logical name space (i.e.,

Mount, Unmount, Hide, GetSkeletons, and FSInfo), and functions for handling a Name

Space Stack (i.e., NSPush, NSPop, NSDump, and NSLoad). The following describes each

of these functions; Table 5.2 summarizes them.

The function Lookup takes a pathname as an argument and returns a reference to a

file. The reference includes the name of the access protocol used to access the physical

file system, the name of the server maintaining the physical file system, the handle used

by the server to identify the file, and the authentication information needed to access the

server (see Section 3.1).

The functions SetAttr and GetAttr are used to manipulate attributes associated with

a file/directory. The function Remove deletes a file with a given pathname. The function

Rename changes the name of a file or a directory (the semantics of Rename is discussed

in Section 3.5). The function MakeDir creates a directory in the physical file system. The

function RemoveDir removes an existing empty directory on a physical file system.

The function Mount creates a new skeleton directory with the given pathname and

associates it with a list of references. The function Unmount deletes an existing skeleton

directory. The function Hide is a special case of the function Mount; it creates an opaque

node—a skeleton node without any reference as described in Chapter 3. Jade supports

two different functions to make a directory entry invisible: the function Remove, which

unlinks a file in the physical file system, and the function Hide, which hides the named

file by creating a opaque node.

The function GetSkeletons lists skeleton directories under the specified pathname. Each

entry contains a pathname, a list of references, and attributes. This function is used to

implement the iterative search on a sequence of name spaces. The function FSInfo returns

91

the skeleton directory of the domain pointed to by a given pathname.

Finally, the Name Space Manager supports functions to manipulate the Name Space

Stack as described in Chapter 3. The function NSPush pushes a new name space on top

of the Name Space Stack, while the function NSPop pops off the top name space of the

Name Space Stack. The latter returns error if the Name Space Stack becomes empty after

the pop operation. The function NSDump outputs the top name space of the Name Space

Stack to a file, while the function NSLoad generates a new name space from a file and

pushes it on top of the Name Space Stack.

5.1.3 Access Manager

The Access Manager maintains the jnode table and caches remote files on the cache server.

The location of the cache server is specified by the environment variable CacheHost. By

assigning a new address to this variable, users are able to move the Access Manager from

one host to another. There are a number of situations in which such a migration is

desirable. One of the most common cases concerns accessing large files or even databases.

The physical file system currently used as a cache server may not have enough room to

cache remote files. Users can then migrate the Access Manager to a host with a larger

file system, or even to the host where the desired file is located. In the latter case, the

caching process is avoided.

The Access Manager supports four functions: Request, Release, Relabel, and

OutputJnodeTable; Table 5.3 summarizes these functions.

The function Request takes a reference to a file as an argument and returns a handle

of the cached copy of the remote file on the cache server. The handle is either a path-

name or an mode, of the cached copy in the cache server and is accessible through the

original file system. The function supports three different kind of access: request.for.read,

requesLfor.write, and reqttesLfor.readjaneLwrite.

The function Release dismisses a cached copy by decrementing its reference count. It

restores the file back to the sink file system if necessary. The restore process is defined by

a input flag that is either none, write-through, or write-behind.

Finally, the function Relabel changes the sink reference of a given jnode, while the

92

Lookup .returns a reference to the named file.
GetAttr gets the attributes and the file reference of a file/directory.
SetAttr sets the attributes of a file/directory.

Remove deletes a specified file.
GetEntries lists entries under one directory.

MakeDir creates a new directory on a physical file system.
RemoveDir removes an existing empty directory on a physical file system.

Rename changes the name of a file or a directory. Cross file system
renames are illegal.

Mount creates a new skeleton directory and mounts the specified file
systems on this directory.

Hide creates an opaque node with the given pathname.
Unmount removes the specified skeleton directory and unmounts file

systems on this directory.
GetSkeletons lists skeleton directories under the specified directory. Each

skeleton contains a pathname, a list of references, and at-
tributes.

FSInfo returns the skeleton directory of the domain in which the
given pathname is located. The skeleton consists of a path-
name, a list of references, and attributes.

NSPush creates a new name space and pushes on top of the Name
Space Stack.

NSPop pops off the top name space of the Name Space Stack.
NSDump outputs WNS to a file.

NSLoad creates a new name space from the specified file and pushes
on top of the Name Space Stack.

Table 5.2: Name Space Manager Interface

93

function OutputJnodeTable outputs the jnode table to a file.

Request requests a cached copy for a remote file and returns the handle
of the cached copy.

Relabel changes the sink reference of the given jnode.
Release releases a cached copy and restores the file if necessary.

OutputJnodeTable outputs the jnode table to an external file.

Table 5.3: Access Manager Interface

5.1.4 Shared Library

Jade modifies system calls in order to provide transparent access to the Jade file system.

As mentioned before, the prototype of the Jade file system is mounted on top of the

directory /Jade in the original file system. That is, file names with the prefix /Jade/ are

handled as names in the Jade name space; other file names are handled as names in the

original file system. This mounting process is different from the mount operation provided

by the original file system or by Jade. Instead, it is handled by the shared library. In

order to preserve the semantics of the root directory ("/"), however, a dummy directory

named Jade is created under the root directory. The current implementation does not

allow symbolic links across the boundary between these two heterogeneous name spaces.

This is because the switch between the Jade File System and the original file system is

installed in the user-level shared library rather than in the kernel.

Most Unix-like file systems support the notion of a current directory. With this notion,

files/directories can be named either by the full pathname (a pathname starting from the

root) or by the relative pathname (a pathname relative to the current directory). However,

the notion of current directory is maintained inside the kernel: The kernel keeps the current

directory of each process in the process context (i.e., u area)[Bach86]; the system call chdir

is used to change the current directory; and the current directory is inherited from the

parent when a process is forked. Because it is implemented at the user-level, the Jade

Library maintains the current directory as an environment variable. All relative pathnames

are converted to the full pathname before passing them to the Name Space Manager for

94

pathname resolution. Environment variables are inherited by the child process from its

parent process.

Name Space
Manager

Access Cached Copy

Operation System

Figure 5.4: Shared Library

Figure 5.4 shows the relationship of the Shared Library with the Name Space Manager,

the Access Manager, and the Operation System. Consider now in more detail .the library

function open defined in the Shared Library; the code is given in Figure 5.5. First, the

given path is translated to a full path pathname. The real system call open (through the

function syscall) is immediately invoked if the pathname is in the original file system rather

than in the Jade file system; users pay insignificant cost (the cost of a single if statement)

to access files not in Jade. If pathname is in Jade, on the other hand, the service Lookup

supported by the Name Space Manager is called to resolve the path. It returns a reference

to the desired file. The Request of the Access Manager is then invoked using the reference

as an argument. It returns a handle of the cache copy in the cache server. With this

handle, the system call syscall is invoked to open the cached copy for access.

95

open (path, flags, mode)
pathname := Relative2Full(pot/i);

if pathname does not have the prefix "/Jade/" then
return sysca\\(SYS.open, pathname, flags, mode);

fi

if flags is open.for.read then
reference := NameSpaceManager.Lookup(pa£/mame);
if reference is not nil then

handle := AccessManager.Request(re/erence, request.for.read);
if handle is not nil then

return sysca\\(SYS.open, handle, flags, mode);
fi

fi

fi
if flags is open.for.read.only then

return fail;
fi

/* Handling opening a file for write. */

Figure 5.5: Modified Function open

96

5.2 Performance

We measured the performance of this prototype with the Andrew Benchmark developed at

CMU by M. Satyanarayanan[Howa88]. The input to the benchmark is a read-only source

subtree consisting of about 70 files. These files are the source code of an application

program and total about 200 kilobytes in size. There are five distinct phases in the

benchmark:

MakeDir: Constructs a target subtree that is identical in structure to the source subtree.

Copy: Copies every file from the source subtree to the target subtree.

ScanDir: Recursively traverses the target subtree and examines the status of every file
in it. It does not actually read the contents of any file.

Read All: Scans every byte of every file in the target subtree once.

Make: Compiles and links all the files in the target subtree.

Two cases are tested: a local area network and the internet. For each case, we compare

the performance of Jade and NFS. For the first case, the file sever is located on a local area

network, where a 10 Mbps Ethernet connects the file server and the client workstation.

For the internet test, the file server is located at Purdue University, while the client

workstation is at the University of Arizona. There are 13 gateways between the file server

and the client workstation, and the communication channels between them range from

10 Mbps Ethernets within the universities to 1.544 Mbps Tl connection between these

two universities. The client workstation, where Jade and the Andrew Benchmark were

running, is a Sun 4/60 workstation with 16 Mbytes main memory and 320 Mbytes disk

dedicated for files caching by the Access Manager. The client workstation is running Sun

OS 4.1. Both file servers provide Sun NFS protocol for file access.

The performance results of both tests are given in Table 5.4. In the LAN case, the

Access Manager is running on the host where the file server is located, and therefore there

is no need to cache files whenever accessing them. Jade exhibits a 36% slowdown relative

to NFS. We attribute this to the cost of the user-level implementation. For example, each

open call needs to consult the Name Space Manager to resolve pathnames1. Since the
JThe consultation to the Access Manager is omitted since files are located on the same host as the

Access Manageris located.

97

MakeDir
Copy
ScanDir
ReadAU
Make
Total

LAN
NFS

3 sees
20 sees
31 sees
50 sees
98 sees

202 sees (1.00)

Jade
3 sees
23 sees
52 sees
84 sees
113 sees

275 sees (1.36)

Internet
NFS

23 sees
299 sees
115 sees
120 sees
568 sees

1125 sees (1.00)

Jade
23 sees
536 sees
127 sees
139 sees
344 sees

1169 sees (1.04)

Table 5.4: Performance Results

Name Space Manager is running as a separate process, there are six user-kernel boundary

crossings. NFS only requires two crossings for this test. This result (36% slowdown)

is similar to the result from the Pseudo-File-System[Welc89]. The Pseudo-File-System

provides access to NFS file servers from Sprite workstations. The paper [Welc89] shows

33-41% slowdown when running the Andrew Benchmark.

In the internet case, the overall performance of Jade is almost identical to that of NFS,

with only a 4% slowdown. The general observation is that the cost to access the internet is

so high that the penalty of the user-level implementation is insignificant. Entire file caching

is another interesting issue. Jade takes advantage of the fact that the cached copies can be

reused in the latter operations, and therefore in the last phase of the test, Make, Jade's

time dramatically drops to 61% of the NFS's time. The major drawback of this access

pattern is that the cost of copying files is extremely high. As discussed in Chapter 4,

Jade provides a new function Relabel to let users change the reference associated with

the cached copy from its source to a new sink. However, two copy operations are still

required, and the performance of the Copy phase of the Andrew Benchmark exhibits a

79% slowdown compared with the NFS case in which only one copy operation is performed.

The ideal way to solve this problem is to have the access protocol support the new function

copy, and therefore the cost of copying files is comparable to the cost of renaming files.

For the ScanDir phase, the performance of Jade in the LAN case is 52 seconds, while

that of NFS is 31 seconds. In the internet case, the former is 127 seconds and the latter

98

is 115 seconds. The lesson we learn from this phase is about network latency. In a local

area network, the network latency is not an issue, and the ratio of the message latency

time to the time spent at the client and the server for computation is insignificant. In

the internet, on the other hand, the network latency becomes a major factor in overall

performance. Avoiding unnecessary network messages is crucial in performance improve-

ment. For example, the NFS protocol supports the function readdir to list entries under a

given directory. However, it only returns a file name for each entry. In order to obtain full

information about a directory for each entry, it requires one extra function call, lookup, to

retrieve the file's attributes. In the LAN case, where network latency is not a issue, this

overhead is insignificant. In the Internet, where the network latency is much higher, the

cost becomes visible and even serious.

We have extended the function readdir to return attribute information in addition to

the name of each entry in a directory. The performance of this phase in the internet

case then improves to 72 seconds, which is 43% faster than the Jade figure presented in

Table 5.4 and 38% faster than NFS. Notice that the speedup percentage will increase as

a function of directory size because the fixed cost of reading a directory is amortized over

more directory entries.

For the ReadAll phase, the performance of Jade in the LAN case is 84 seconds and

that of NFS is 50 seconds. For the internet case, the former is 139 seconds and the latter

is 120 seconds. However, when running this phase in the internet case, NFS, which uses

page access, has a similar performance. But Jade drops to 65 seconds, which is 46% faster

than NFS. This is because Jade takes advantage of the fact that cached files on the Access

Manager can be reused. Again, the Make phase illustrates that caching entire files is

essential for good performance in the internet. In the LAN case, Jade takes 113 seconds

and NFS takes 98 seconds, while in the internet case, Jade's time drops dramatically

to 61% of the NFS's time (344 seconds versus 568 seconds). This result is extremely

important because the majority of file access in a research or academic environment invokes

viewing, editing, and compiling a small set of files[Floy86b].

99

5.3 Discussion

The main goal of this thesis is to design a file system that is scalable, as well as practical for

an internet environment. This section summarizes lessons we have learned in achieving

this goal. Although the design decisions were made based on this particular problem

domain, most of them can be applied in general to the design of large distributed systems.

Naming Conventions vs. Naming Systems

Distributed systems such as Plan 9[Pike90][Pres91] and Cellular Andrew[Ever90][Zaya88]

have naming conventions explicitly built into the system. Thus, the implementation of the

system relies heavily on these conventions in that they must be followed by each component

in order to compose the whole system. For example, the Cellular Andrew Environment

requires that the Andrew file tree be rooted as /afs in each autonomous unit (called a

cell). Each cell owns one node under this root directory, and the cell's individual file

systems can only be mounted under this cell node. As another example, Plan 9 defines a

set of pathnames with special meaning, e.g., /proc/77/mem for the virtual memory of

process number 77.

While such techniques simplify the design and implementation of the system, built-

in naming conventions restrict the scalability and flexibility of the system. We believe

that naming conventions should be independent of the design and implementation of a

naming system and should be defined by users. Jade presents users with a fundamental

abstraction (logical name spaces) and basic tools (mount operations) and lets users build

their own custom naming environments. The result is that Jade provides more freedom

than other systems for users to tailor their own naming environment.

Global Name Space vs. Per-User Name Space

The concept of a name space being global was introduced by Multics[Orga72][Salt78] and

widely adopted by most Unix-like systems[Ritc78]. The advantage of this concept is that

it supports a coherent view among users and hence promotes resource sharing. However,

a global name space implies the existence of central control, and central control is not

amenable to scalable systems. The Amoeba File System[Tane90][Mull85], for example,

100

uses a central directory server to support the global name space. This central server would

be a performance bottleneck in a large scale system. Cheriton and Mann[Mann87][Cher89]

introduce decentralized naming in which the naming hierarchy is partitioned into global

directories, regional directories, and local directories. This design suggests a possible

solution for constructing a global name space. In reality, however, the availability of

multicasting mechanisms in the internet, which are used to locate name servers, is the

major limitation of this design. Even when multicast mechanisms are available in the

internet, this design does not solve other drawbacks of the global name space approach,

including the difficulty of searching for files due to long pathnames and the lack of flexibility

to tailor the name space for individual needs.

Jade completely decentralizes the construction and maintenance of name spaces from

system administrator to individual users. The scope and complexity of a per-user name

space are less than a global name space. This is because although the number of available

file systems in an internet is huge and growing dynamically, the number of file systems an

individual user wants to access at one time remains small and relatively stable.

In contrary to the central control method, Levy and Silberschatz have suggested a clus-

ter model that partitions a system into a collection of semi-autonomous clusters[Levy90].

Each cluster is well balanced so that it can be used as a basic modular building block to

scale up the system. Jade exemplifies this cluster model. Each per-user file system is a

cluster that consists of a set of physical file systems and a dedicated duster server (i.e.,

the Name Space Manager and the Access Manager), which can operate independently.

A collection of per-user file systems, however, can be joined together by mounting one

another to create a bigger and bigger global system. Chapter 6 presents an example of a

global environment built on top of the Jade file system.

Local Resolution vs. Remote Resolution

Chapter 3 describes two resolution methods—local resolution and remote resolution—

that can be used to interact with mounted file systems in order to resolve a path. Like

Locus and Andrew, Jade adopts the local resolution method and caches directory entries.

This decision is based on the observation that the activity of most users is confined to

101

a small, slowly changing subset of the entire name space hierarchy. Thus, a directory

cache has a high hit ratio, and much of the network traffic for importing directory entries

from remote file systems is avoided. When network latency becomes significant, as in an

internet, avoiding unnecessary network messages between clients and file servers is crucial

to achieve acceptable performance.

The Network File System[Sun86a] uses remote pathname resolutions to allow systems

to use different way to resolve a name. In particular, it supports access to file systems

located on personal computers running the DOS operating system. Jade focuses on a

different application domain—an internet—where many available file systems support a

Unix-like, tree structural naming space. While the syntax of pathnames in systems such

as VAX/VMS may differ slightly from that of traditional Unix file systems, the difference

can be hidden inside the access protocols.

Iterative vs. Recursive Pathname Resolution

The two methods to resolve a pathname on sequences of name spaces presented in

Chapter 3 are the recursive method and the iterative method. The recursive method

has the advantage of completely hiding forward mounts from the current name space.

Therefore, the procedure for handling logical file system mounting is treated in exactly

the same way as that of the physical file system mounting. This simplifies the interface

design. However, this method is very expensive because it requires each logical name space

in the calling sequence to collect directory entries before answering the query. Moreover,

because of its recursive nature, the original name space has no control over the whole

resolution activity, making the detection of loops in the mounting sequence more difficult.

On the other hand, the iterative method exposes skeleton directories. Because the

original name space has full control over the resolution procedure, it is easy to detect

loops in the mounting graph.

Another advantage of the iterative method is that it is easy to handle authentication

control. Consider a sequence of name spaces JV0, NI, JV2, and Np. Let NQ be the name

space receiving the user's query. Assume NO refers to NI which in turn points to N^,

and so on; Np is the physical file system where the desired files are located. Because the

102

original name space NQ maintains the inquirer's authentication information on a per-host

basis, NQ can issue the proper authentication to Nf. The recursive method needs an

extra pair of messages between NI and NO to get the authentication information before

N2 can query Np on behalf of the inquirer. When mounting relationships becomes more

complicated (e.g., multiple mounts), this overhead becomes even worse.

Remote Server vs. Local Context

In Plan 9[Pike90][Pres91], the name space is implemented as one of the process's contexts.

The purpose of this design is to provide a virtual machine for each process in order to sup-

port heterogeneous environments. However, whenever invoking a new job on other servers,

it needs to re-construct a new naming environment for the newly created process. Jade's

naming scheme also is able to support the concept of per-process name spaces. However,

Jade implements a name space as a name server rather than as a context associated with

an object (e.g., process). It trades the cost of querying a separate name server for the cost

of generating a new naming environment at fork time.

Symbolic Links, Directories, and Skeleton Directories

Most Unix-like file systems support the notion of symbolic links to let users tailor the global

name space. Like a skeleton directory, a symbolic link redirects a path from one subtree to

another. Unlike a skeleton directory, a symbolic link is applied only within the file system

in which it resides, and it can only point to at most one subtree. Moreover, symbolic

links are always leaves in a naming tree. For example, suppose /a/b is a symbolic link to

the directory /a/c. A new file /a/b/foo would be created as an entry in the directory

/a/c instead of /a/b. A skeleton directory, on the other hand, may have a set of skeleton

directories under it.

The notion of skeleton directories is a generalization of symbolic links and directories;

directories and symbolic links are two special cases of skeleton directories. Figure 5.6

sketchs a directory, a symbolic link, and a skeleton directory. In the following discussion,

the term local entries of a directory is used to refer to entries that are maintained by the

directory itself. For example, entries p, q, and r are local entries of the directory d. In

103

bx—^ °' >1

XN Ok /N/K
r s t u

Directory Symbolic Link Skeleton Directory
Figure 5.6: Directories, Symbolic Links, and Skeleton Directories

fact, the GetSkeletons function returns local entries under a given pathname in a logical

name space. The directory a contains only local entries. The symbolic link b refers to a

node c, and thus, entries under b are the same as those under c. The skeleton directory d

not only contains local entries but also refers to another node e. Therefore, entries under

d are the union of its local entries and entries under e—that is, , p, q, r, s, t, and u.

The node referred to by a skeleton directory can be either a symbolic link, a directory, or

another skeleton directory.

Multiple Mounts vs. Union Mounts

Korn and Krell's 3-D file system[Korn90], Sun's Translucent File Service (TFS)[Hend90],

and Neuman's Prospero[Neum89] advocate a union mount mechanism that is different

from the multiple mount provided by Jade. With the union mount, entire subtrees from

different mounted file systems are merged. With multiple mounts, on the other hand,

entries of the skeleton directory are the union of those on different mounted file systems;

entries of a directory under this skeleton directory include only entries on the physical file

system where this directory is located.

In order to compare multiple mounts and union mounts, consider two physical file

systems A and B and two logical file systems I and II as illustrated in Figure 5.7. Both

I and II mount A and B on the path /AB, while I uses multiple mounts and II uses

union mounts. The directories named /AB on I and II have the same entries. However,

the directory named /AB/a on I has entries only from the directory /a on A (i.e., d

104

and e), while the directory /AB/a on II has entries that are the union of those from the

directory /a on A and those from the directory /a on B (i.e., d, e, h, and i).

Physical File System A

B

Physical File System B

a b c f g a b c f g

Logical File System I Logical File System II
With Multiple Mounts With Union Mounts

Figure 5.7: Comparison of Multiple Mounts and Union Mounts

Both multiple mounts and union mounts are equally functional. That is, by recursively

applying multiple mounts, users can generate exactly the same view on mounted file

systems as by using union mounts. For example, by mounting both A:/a and B:/a on

the path /AB/a, I has the exact same view as II. On the other hand, by mounting only

A:/a on the path /AB/a, II restricts the entries under /AB/a to only those from A,

and therefore presents the same view as I.

There are two reasons why Jade supports multiple mounts rather than union mounts.

105

First, with multiple mounts, a pathname refers to at most one directory—either a skeleton

directory in a logical name space or a physical directory in a physical file system. With

union mounts, on the other hand, a given pathname may refer to more than one physical

directory in different physical file systems. For example, the path /AB/a in II refers to

two directories, /a in A and /a in B. The property of one-to-one mapping from pathnames

to nodes in a naming tree is preserved in a name space with multiple mounts, but not in a

name space with union mounts. Many problems arise without this property. For example,

it is difficult to maintain file attributes in the union mount case; it is not clear where the

attributes are recorded.

Second, it is more expensive to resolve a pathname in a name space with union mounts.

This is because whenever failing to resolve a name in one directory, it needs to backtrack

to the original skeleton directory and try other mounted file systems. This backtracking

process becomes even more complicated in the general case where nodes in mounted file

systems can also be skeleton directories pointing to multiple file systems.

Caching Entire Files

The Cedar file system[Gif!B8][Schr85] developed by Xerox Palo Alto Research Center in-

troduces the concept of caching entire files on a workstation's local disk. The Andrew file

system has shown that in a large environment this approach, together with a call-back

mechanism, is superior in performance to the page access pattern used by the Network

File System[Sun86a]. In Jade, caching entire files is essential to access internet files, as

described in the previous section. There are two reasons. First, physical file systems are

contacted only on file opens and doses and not on individual reads and writes. Second,

the total network overhead in transmitting a file is lower when the file is sent in its entirety

rather than in a series of requests and responses for individual pages.

There is one potential problem with this approach: access to very large files. Jade

provides a partial solution for this problem. It allows users to choose one of many physical

file systems as the cache server rather than restricting the cache server to the local disk.

When necessary, the cache can be dynamically migrated to a larger file system in order

to access larger files. Consistency among cached copies of a file is another problem.

106

The DEcorum file system[Kaza90] introduces a token mechanism to solve this problem.

Chapter 7 suggests future research in this area.

107

CHAPTER 6

APPLICATIONS

Jade provides a rich set of naming facilities, including per-user logical name spaces,

the ability to mount logical name spaces, multiple mounts, and Name Space Stacks. These

facilities are not only useful to access internet files, but are also applicable to a variety of

other uses. This chapter illustrates these novel features from the application's perspective

by presenting the five example uses. The first example shows that Jade provides a rich set

of functions that allow users to tailor their private name spaces to fit their personal needs.

The second example presents a new method to download software from the internet using

the concept of the Name Space Stack and multiple mounts. The third example illustrates

how the mount mechanism can be used to build an architecture-specific name space in a

heterogeneous environment. The fourth example describes a version control mechanism

built on top of Jade. This mechanism provides a hierarchical view of a collection of files

for each programmer and allows maximal sharing among these files. The last example

illustrates a global, internet-wide name space that is built on top of Jade without any

modification to the file system.

6.1 Overview of Jade's Features

Jade provides a rich set of naming facilities. This section re-examines them, with an

emphasis on how applications can take advantage of these schemes. In summary, Jade

introduces the notion of fine-grain logical name spaces as a new dimension of locating

files in the file system, in addition to directories and filenames. It enhances the mount

operation so that multiple file systems are able to group together. It also invents the

concept of Name Space Stacks to let users manipulate multiple logical name spaces.

Jade extracts the notion of the logical name space from the physical construction of

file systems. It allows users to form their own views of a collection of file systems by

108

constructing their private logical name spaces. In fact, Jade supports name spaces in a

wide spectrum of granularity. At one end of the spectrum, a user may define more than one

name space in order to handle different tasks, e.g., one for teaching, several for different

research projects, one for administration, and so on. In addition to directories, the notion

of logical name spaces offers a new method for users to organize their files. At the other

end of the spectrum, it is possible to define a logical name space for a software project

that is shared by users working on the project. A large software project may even have a

set of name spaces, each of which represents a view for one particular software/hardware

configuration, e.g., one for shared codes, one for the Spare architecture, one for Sequent

machines, another for Sun OS 4.1., and so on.

Jade allows a logical file system to be mounted into other logical file systems just like a

regular physical file system. In addition to promoting file sharing among users, this feature

provides a mechanism to overlap multiple name spaces to have a mixed view among them.

As in the previous example of the large software project, it is possible to overlap three

name spaces: the one for shared codes, the one for the Spare architecture, and the one

for Sun OS 4.1., in order to have a view of the project for this particular software and

hardware configuration.

With multiple mounts, Jade allows users to mount multiple file systems on a directory.

There are several occasions where these features are very useful. For example, multiple

mounts are capable of supporting the same function provided by the notion of search path

in Unix. Section 6.2 describes this feature in more detail, and Section 6.5 applies it into

a version control mechanism. As another example, users can put a local, writable file

system in front of a remote, read-only file system on which source files are located. As

a consequence, users are able to transparently read the latter file system while writing

output on the former file system. Section 6.3 applies this feature to download software

from the internet,

Jade supports Name Space Stacks as a simple mechanism to let users manage multiple

logical name spaces. In addition, the Name Space Stack is applicable to other uses. For

example, it is possible to checkpoint and rollback on mount operations using the Name

Space Stack. That is, the current view of the logical file system can be saved by pushing a

109

new logical name space on top of the stack. Subsequent mount operations would only affect

the newly created name space. The view can be rollbacked to the saved one simply by

popping off the topmost logical name space in the stack. As another uses, with the Name

Space Stack, users are able to switch back and forth to different logical name spaces in

order to perform different tasks. This feature is similar to the directory stack mechanism

provided by csh in Unix, where users are able to pop the stack to go back to the previous

directory. Furthermore, each name space in the stack is capable of including as well as

hiding information, like a translucent paper. The view of a Name Space Stack, therefore,

is the result of overlapping a stack of translucent papers. For example, when running a

text processing application, it is possible to overlap the application-specific name space

and the invoker's name space, and resolve naming in both of them.

6.2 Tailoring a Private Name Space

Because the structures of the underlying hierarchies of file systems remain visible to users,

Jade provides methods to allow users to assemble their own name spaces from these

various hierarchies, and thus customize systems according to their own preferences. There

are several ways that users can tailor their name spaces. Figure 6.1 illustrates an example

of a private name space used in this section.

First, skeleton directories might not be part of any physical file system and may serve

only as logical directories with entries of other skeleton directories. These skeleton di-

rectories are created by the mount operation with the null option. For example, the

directory /jade/doc in Figure 6.1 is not contained in any physical file system. Also,

the resolution procedure implies that the name of a skeleton directory has preference

over the names of files/directories in physical file systems, such that names in the private

hierarchy supersede names in the underlying file systems. For example, if there were a

directory named /usr/jade/doc on host meg, then this directory would not be visible

to the nsei because it would be hidden by the private directory /jade/doc. That is,

/jade/doc replaces meg:/usr/jade/doc. Additionally, had there been a file or direc-

tory named /usr/jade/junk on host meg, then it would have been hidden by an opaque

node named junk in the logical name space. Because the opaque node is bound to no file

110

V.,

^
Figure 6.1: Private File Hierarchy

systems, its only purpose is to hide something in the underlying file system.

Second, with the multiple mount option, users can define a directory to include

files located in more than one file system. The order in which the file systems are

mounted is significant. For example, the directory /bin points to meg:/usr/john/bin,

meg:/usr/bin, and jag:/usr/john/bin. As another example, the directory /tex points

to jag:/usr/john/tex, jag:/usr/mike/tex, and meg:/usr/lib/tex/macros. This

features provides the same functionality as search paths in Unix. The advantage of

our approach is that directories created by the multiple mount option are treated ex-

actly the same as other directories, and all directory operations still apply to these di-

rectories. For example, with the command "Is /tex", the user can list all files under

jag:/usr/john/tex, jag:/usr/mike/tex, and meg:/usr/lib/tex/macros, while the

command "Is -1 /tex/plain.fmf can be used to find out on which physical directory the

file plain.fmt is located. In contrast, Unix does not provide any general mechanism to

list all available files under the search path, or to locate a desired file by its name1.

Finally, the multiple mount option can be used to locate a file that is replicated

in several file systems- K a failure causes one physical file system to become un-

reachable during pathname resolution, Jade consults the next physical file system in
sUnix provides the command which to locate a given command, but it can only be applied to commands.

Ill

the reference list. For example, the directory /man points to jag:/usr/share/man

and meg:/usr/share/man; the file .chsrc points to jag:/usr/john/.cshrc and

meg:/usr/john/.cshrc. Note that the physical file systems under the directory are iden-

tical and read-only. Putting them under the same name makes the replication property

transparent to users.

6.3 Downloading Software from the Internet

Jade supports multiple mounts to allow more than one file system to be mounted onto

a directory, each of which may provide a different access protocol. Also, the concept of

the Name Space Stack supports the rollback function on mount operations. This sec-

tion describes a novel method to download software from the internet using these two

techniques.

Suppose users want to install the software grep from the Free Software Founda-

tion(GNU); the sources are located on the directory pub/gnu/grep in the host named

prep.ai.mit.edu2.

Installation includes the following five steps. The first step is to create a new name

space to handle this task. That is,

% NSPush

creates anew name space and pushes it on top of the user's Name Space Stack. Subsequent

mounting operations affect only this newly created name space. However, because its root

points to the name space underneath it, the view of the Name Space Stack remains the

same.

The second step is to mount the source file system by the command

% mount /grep UFS:jag:/tmp FTP:prep.a5.mit.edu:pub/gnu/grep

where the first argument /grep is the pathname of the skeleton directory in the logical

name space where file systems are mounted, and the second and third arguments specify
2Actually, sources in prep.ai.mit.edu are stored in a compressed tar file. Chapter 7 suggests mech-

anisms to mount file systems in the compressed tar format; the system would automatically extract files
whenever they are visited. In this example, however, we assume that sources have been extracted from
the tar file.

112

references to two physical file systems. The first reference refers to a directory /imp on

the local machine (jag), which is accessed by the protocol UFS, while the second reference

specifies the source file system (prep.ai.mit.edu:pub/gnu/grep), which is accessed by

the protocol FTP. Notice that according to the semantics of multiple mounts described in

Section 3.2.3, new files are created on the first mounted file system. Because the source

file system is read-only and located in the internet with high cost to access, using a local

temporary file system as a "work sheet" is essential in this example.

The third step is to generate object files with the regular method as follows:

% cd /grep

% make

The command make uses files in the source file system as input and generates temporary

files and object files in the first mounted file system.

In the fourth step, the object file is installed in a proper place, e.g., the directory /bin,

as follows:

% cp /grep/grep /bin

Finally, the command

% NSPop

is used to remove the name space of the top of the Name Space Stack, and as a consequence,

the mount operation in the second step is undone.

In summary, this example demonstrates two interesting features. First, with the Name

Space Stack, users can easily undo mount operations and rollback to the previous view.

Second, with multiple mounts, a local, writable file system is put in front of a remote,

read-only file system. Thus, users are able to transparently read the latter file system

while writing output in the former file system.

6.4 Architecture-Specific Name Spaces

Jade allows a logical name space to be mounted into another name space. Using this

scheme, users can create auxiliary name spaces for special purposes. This technique can

113

be used to hide hardware heterogeneity.

Consider a user who uses either a MIPS or a Sun SPARC workstation, both running

Unix. The user might have a primary name space main, which includes binaries for

both architectures. However, the user can also create architecture-dependent name spaces

spare and mips, each of which consists of skeleton directories pointing to the proper

directories in the name space main as illustrated in Figure 6.2. In the name space main,

the directory /bin/mips includes binaries for the MIPS architecture, while the directory

/bin/spare consists of binaries for the SPARC architecture. The name space spare

(mips) has two skeleton directories: root "/" pointing to the root of the name space

main, and /bin pointing to /bin/spare (/bin/mips) of the name space main. When

the user logs onto the workstation, the appropriate name space (either mips or spare)

is initiated automatically,3 and the user can use the same name to address the binary

regardless of which of the two workstations he or she is using.

spare name space main name space mips name space

Figure 6.2: Architecture-Dependent Name Spaces

In Unix, a simple routine in .cshrc file can perform the initialization.

114

This example takes advantage of the fact that a skeleton directory may contain other

skeleton directories as its children. That is, although the root of spare refers to the root

of main, it contains a skeleton directory /bin. Therefore, the directory /bin in main is

completely hidden from users, and /bin in spare refers to /bin/spare in main instead.

Finally, it is worth noting that it is impossible to implement this example using symbolic

links.

6.5 Version Control

This section discusses how a version control mechanism can easily be built on top of

the Jade file system. Jade allows users to build their own views of a set of files. The

refinement of the mount operation encourages users to reorganize the structures of files in

the logical layer rather than the physical layer. It thus provides a framework for a software

development and maintenance environment that allows several programmers to work on

a set of source files simultaneously.

In a large software project, there may exist more than one version of the software, e.g.,

one or more release versions, a testing version, a working version for each programmer. In

addition to multiple versions, there may be multiple programmers working simultaneously.

There are two contradictory tasks in designing a software development environment. First,

the system should let users share files on different versions and switch between versions

easily. Second, the system should provide a mechanism to let each user build a private

working area, without worrying about interference from other programmers. Traditional

version control software like SCCS[Allm86] require that a complete copy of all the source

files be made every time a new working area is needed. It is very expensive to copy files,

especially for a large set of source files.

Recall that Jade pathnames are resolved relative to private name spaces, and that

the multiple references associated with one skeleton directory provide a hierarchical view

of a set of files located in different physical directories (even on different hosts). For

example, Figure 6.3 shows a software development environment in which two program-

mers, John and Mike, share files located in different versions. There are four versions lo-

cated on different file systems: meg:/jade/release_version/src for the release version,

115

dc:
/jade/working/john/src

jag:
/jade/woriring/mike/src

pn&h main.c ish.c pnsd.c

Figure 6.3: Software Development Environment

116

zep:/jade/test_version/src for the testing version, cic:/jade/working/john/src for

John's working version, and jag:/jade/working/mike/src for Mike's working version.

Both John and Mike have their own private name spaces. Consider the skeleton directory

/Jade/src in John's name space, which consists of three references: The first points to

jag:/jade/working/john/src, the second refers to zep:/jade/test.version/src, and

the last points to meg:/jade/release_version/src. John's resulting hierarchy is shown

in Figure 6.4.

The system also lets users adjust their view as well as get more information about this

view. For example, John can change his current view from the one he is working on to

the test version simply by removing the first reference in the order list.

—

—

— — .

(S
V£

/-

' — — .
John's name space Jag:/jade/working/John/src np:/jadefcst_vcrsian/src meg-./jade/release_version/src

£ Logical Node

(D Physical Node pointed to by Logical Node

O ^dcal Node hidden by other Phyrfcal Node

Figure 6.4: Overlaid View

Checking in and out files from different versions located on different file systems is

very straightforward in Jade. By mounting the file system where the version is located on

a temporary directory, users are able to access one particular version directly. Users can

then copy files with the regular command (e.g., cp). For example, Mike can check out the

117

file rnain.c from meg:/jade/release_version/src by issuing the following sequence of

commands:

% mount /tmpjnount meg:/jade/release_version/src
% cp /tmp_mount/main.c /project/src/main.c
% unmount /tmpjnount

Indeed, the physical file system where a file is located can easily be found by the command

"Is -1", and therefore, the command checkin and checkout can be implemented by simple

shell scripts.

Korn and Krell's 3-D File System[Korn90] and Sun's Translucent File Service

(TFS)[Hend90] are designed for software development. Both 3-D and TFS use the view-

path mechanism to support union mounts. Section 5.3 have compared union mounts with

Jade's multiple mounts. Both 3-D and TFS also provide a copy-on-write semantics in

that only the first file system defined in the viewpath is writable; all other file systems are

read-only. Consequently, when users modify a file located on the file system other than

the first one, the file is copied to the first file system before it is modified. The drawback

for the copy-on-write semantics is that when intermediate directories of the visited file do

not exist in the first file system, the system needs to create each of these directories in

the first file system before the writable copy can be made. It would be very expensive

to access files with long pathnames. Jade does not support the copy-on-write. This is

because Jade is designed for general use, not just for software development.

118

6.6 Global Name Space in Jade

Jade's naming scheme is able to support the construction of an internet-wide, global name

space. This section presents an example of a global name space that is built on top of

the Jade file system without any modification to Jade. This global name space glues

together a collection of logical name spaces by introducing a set of naming conventions.

All logical name spaces in the environment are organized into three layers. The first

layer consists of logical name spaces belonging to individual users, called principal name

spaces. The second layer includes a set of backbone name spaces, called ce//name spaces,

for individual autonomous administration units (e.g., departments). The third layer has

only one backbone name space, called the root name space, including all cell name spaces.

Figure 6.5 presents one instance of this global name space.

Each cell name space is addressed by its domain name[Mock87j. For example, the

cell name space with the name cs.arizona.edu is the backbone name space for the De-

partment of Computer Science at the University of Arizona, while the cell name space

cs.purdue.edu is for the Department of Computer Science at Purdue University. Each

cell name space mounts all principal name spaces available in the local site onto skeleton

directories under the root (/). As in this example, the pathname /mike in the cell name

space cs.arizona.edu refers to the root of the principal name space for Mike, while the

pathname /John points to John's name space. Each principal name space, on the other

hand, mounts its cell name space onto the skeleton directory /©. Therefore, the path-

name /©/john/foo in Mike's name space points to the same file as the pathname /foo

in John's name space. In fact, pathnames with the prefix as

/©/principaLname

are considered cell pathnames and have global meaning within the cell. That is, the

pathname /©/john/foo always refers to the same file regardless of what principal name

space in the cell is used. Also, principal name spaces can make a shortcut path by mounting

the root of their name space under the directory /©. For example, the skeleton directory

/'©/mike in Mike's name space refers to the root of his name space, and therefore,

pathnames starting with /©/mike in Mike's name space can be resolved within Mike's

119

bob

cs.arizona.edu
^^

mike job*' \ cfcarizona.edu

Root Name Space

Figure 6.5: Global Name Space in Jade

120

name space without consulting the cell name space at all.

The root name space includes cell name spaces available in an internet. It mounts cell

name spaces under the root directory. Each cell name space mounts the root name space

onto its root (/). A global pathname is a pathname with the prefix as follows:

/©/cell_name/principal_name

and it refers to a principal name space principaLname in the cell named celLname. A

global pathname refers to the same file regardless of what principal name space is used.

Like the shortcut path used in principal name spaces, cell name spaces mount themselves

under the root directory. That is, the skeleton directory /cs.arizona.edu in the cell name

space cs.arizona.edu points to its root.

Consider resolving the following five pathnames from Mike's name space. In partic-

ular, we focus on the logical name spaces in the calling sequence in order to resolve a

given pathname. Table 6.1 summarizes the discussion. The first pathname /src/bar,

which is a regular pathname, can be resolved in Mike's name space without invoking

other logical name spaces. The second pathname /©/mike/src/bar, which is a princi-

pal pathname, still can be resolved within Mike's name space because of the shortcut path

/©/mike in Mike's name space pointing to its root. The third pathname /©/john/foo

points to a node in John's name space; logical name spaces in the calling sequence in-

clude Mike's name space, the cell name space cs.arizona.edu, and John's name space.

The next pathname /@/cs.arizona.edu/john/foo is a global pathname of the previous

pathname from Mike's name space, but because of the shortcut path /cs.arizona.edu/

in the cell name space cs.arizona.edu, consulting the root name space is avoided and

the same sequence of logical name spaces as in the previous example is invoked. Finally,

the pathname /©/cs.purdue.edu/bob/bar is a global pathname and it needs to invoke

Mike's name space, the cell name space cs.arizona.edu, the root name space, the cell

name space cs.purdue.edu, and Bob's name space.

In summary, this design introduces a bottom-up naming scheme in that the path to

resolving a pathname starts from the bottom of the global naming tree—the principal name

space. It walks to the middle—the cell name space—and to the top—the root name space.

121

Pathname
/src/bar
/©/mike/src/bar
/©/john/foo
/©/cs.arizona.edu/john/foo
/©/cs.purdue.edu/bob/bar

Logical Name Spaces invoked
Mike
Mike
Mike, cs.arizona.edu, John
Mike, cs.arizona.edu, John
Mike, cs.arizona.edu, root, cs.purdue.edu, Bob

Table 6.1: Pathname Resolutions in the Global Name Space

It may go down either from the cell name space to a principal name space, or from the root

name space to a cell name space and to a principal name space. In comparison with this

bottom-up method, the naming schemes suggested by Cheriton and Mann's Decentralized

Naming[Mann87][Cher89] and the Cellular Andrew Environment[Zaya88] are top-down in

that pathname resolutions always start from the root of the global naming tree. The major

advantage of the bottom-up naming is its high locality in that the majority of pathname

resolutions can be done in principal name spaces without invoking cell name spaces or the

root name space.

123

CHAPTER 7

CONCLUSIONS

This dissertation presents the design and implementation of the Jade file system, which

provides a uniform mechanism to name and access files in a heterogeneous internet envi-

ronment. This chapter summarizes the contributions and discusses future research.

7.1 Contributions

Most distributed file systems fail to scale from local area networks to an internet. This

thesis identifies four characteristics of scalability: size, wide area, autonomy, and hetero-

geneity. Because of size and wide area, techniques such as broadcasting, central control,

and central resources, which are adopted by many other file systems, are not adequate for

an internet file system. An internet file system must also support the notion of autonomy

in order to scale well in practice. Finally, heterogeneity is the nature of an internet file

system not only because of its size but also because of its autonomous property.

The primary goal of this research is to design a file system for the internet environ-

ment that is both scalable and practical. In order to achieve this goal, we have designed,

implemented, and evaluated the Jade file system. The naming scheme invented for Jade

not only is useful to access internet files, but also is applicable to a variety of applications.

7.1.1 Jade is Scalable.

In order to achieve the goal of scalability, Jade is partitioned into a collection of per-user,

autonomous, logical file systems, each of which consists of a set of physical file systems and

a dedicated logical name space. With the per-user approach, Jade fully decentralizes the

construction and maintenance of name spaces from system administrators to individual

users.

Instead of introducing a new file system, this research focuses on accommodating exist-

PRECEDING PAGE BLANK NOT FILMED

124

ing distributed file systems. Particularly, Jade emphasizes the integration of heterogeneous

file access protocols.

Jade also generalizes logical and physical file systems. It allows one logical file system

to be mounted into another logical file system, in the same way that a physical file system

can be mounted into a logical file system. This feature not only supports a simple method

to facilitate file sharing, but also provides a tool to link logical file systems.

By mounting other file systems, a collection of logical file systems can be joined together

to form a bigger, global system. The relationship among all logical file systems is, however,

arbitrary and voluntary without central authorities, specific configurations, or any kind

of built-in naming conventions. Chapter 6 presents an example of a global system that is

built on top of Jade without any modification to the file system.

7.1.2 Jade is Practical.

Jade is practical in two respects. First, Jade provides complete autonomy. It is designed

under the restriction that the software and administration policy of the underlying physical

file systems may not be changed. The underlying physical file systems treat an instance

of Jade as a regular file system user without any special privileges. More precisely, Jade

is implemented, as well as installed, on client workstations without any modification to

the software or administration policies of the servers. Therefore, Jade is more practical

than file systems built from scratch that require considerable modifications to each of the

underlying file systems.

Second, experiments with the prototype demonstrate that the design of the Jade file

system has an acceptable performance. Statistics show that network latency, which is

not an issue in local area networks, becomes an important factor of performance in the

internet. .In Jade's design, we paid careful attention to avoiding unnecessary network

messages between clients and file servers in order to achieve acceptable performance.

To reduce network traffic, Jade adopts techniques of caching entire files and local

pathname resolutions. For whole file caching, opening a file causes it to be cached in its

entirety, on some nearby disk. Reads and writes are directed to the cached copy without

involving the original servers. The valid cached copy can be used for further opens as well.

125

Jade uses the local resolution method and caches directory entries. Because of a high

locality of per-user file access patterns, a directory cache has a high hit ratio, and much

of the network traffic for importing directory entries from remote file systems is avoided.

7.1.3 Rich Naming Facilities

Jade provides a rich set of naming facilities, including:

• Fine-grain logical name space;
• Mounting logical file systems;
• Name Space Stack;
• Multiple mounts;
• A generalization of a symbolic link and a directory.

In Jade, we extract the notion of logical name spaces from the physical construction

of file systems. Jade allows users to form their own views of a collection of file systems by

constructing their private name spaces. The ability to mount logical name spaces allows

users to overlap a set of logical name spaces in order to have a mixed view among them. It

then encourages users to generate multiple name spaces, each of which is dedicated to one

special task. Jade provides the Name Space Stack as a simple way to group a set of logical

name spaces. With the Name Space Stack, users are also able to perform checkpoint

and rollback functions on mount operations. With multiple mounts, multiple file systems

can be grouped under one directory. Finally, the notion of the skeleton directory is a

generalization of symbolic links and directories. Like a symbolic link, it refers a node to

another node; like a directory, it has local entries. Chapter 6 illustrates several examples

that take advantage of these naming faclities.

7.2 Future Directions

The preliminary experience on the prototype has shown that Jade is a good start toward

an internet-wide file system. We have demonstrated that the design of Jade is scalable

as well as practical. However, a full test of Jade would require implementation at several

sites with active user communities. The feedback from the users would help in refining the

design. In particular, it is very important to understand the patterns by which users access

126

files located on the internet. File access patterns in local area networks have been stud-

ied by Floyd[Floy86a][Floy86b], Ousterhout et a/.[0ust85], and Satyanarayanan[Saty81].

Characteristics of internet applications in general have been investigated by Caceres et

a/.[Cace91] and Paxson[Paxs91]. We anticipate that the majority of file access in an inter-

net invokes viewing, editing, and compiling a small set of files, whereas commands used to

invoke these files are located in local area networks. The study of access patterns would

benefit the design of cache mechanisms and therefore improve performance.

Most software located in the internet for public access are stored as compressed

archives. In particular, they are in the form of compressed tar files. In order to ac-

cess this software, users need to make a local copy, uncompress it, and extract desired files

out of it. It would be much easier to access such data if the archives could be mounted

directly as if they were regular physical file systems. In order to support this function, a

new kind of agents, called format agents, would be needed in addition to protocol agents

for access protocols. The new format agent would transform files between different storage

formats. Other examples of format agents are agents for SCCS[Allm86] and RCS[Tich85].

The SCCS agent, for example, would handle the process of checking in and out files from

a SCCS directory. In order to access a given file system, it could need a protocol agent

to interact with the file server and a format agent to extract (add) files from (to) the

file server. For example, a file system is accessed by NFS and is stored under a SCCS

directory; another file system is accessed by FTP and is stored in a compressed tar file.

The challenge of designing format agents is how to incorporate them with protocol agents.

As indicated in Chapter 4, Jade distinguishes between the protocol used to access

remote resources and the protocol used to access files in the cache server. This approach

could be used to name and access resources other than textual files, such as mailboxes

and printers. The cached copy in the cache server is considered as a local image for the

remote resource. The protocol agent not only handles the transmission between the local

image and the source, but also deals with the conversion of formats between them. For

example, when opening a mailbox, a file-like image is created on the cache server. When

closing it, however, the agent transforms the local image into a message by appending the

proper header, and invokes the mail protocol (i.e., SMTP[Post82]) to deliver the message

127

to the remote mailbox.

In fact, the abstraction of agents is general enough to support a variety of resources.

For example, it would be straightforward to implement an IPC agent for interprocess

communications. An IPC channel is associated with a named file and put on the name

space. When opening a file, the Access Manager establishes the connection and returns

the handle of the channel for the Request operation. Subsequent operations on files are

operations on channels. The Access Manager terminates the channel when the file is

closed. This feature is similar to the one suggested by Presotto and Ritchie[Pres90].

Jade caches entire files on nearby disks. Consistency of multiple cached copies located

on different cache servers is a problem. In order to support more complicated applica-

tions, there is a need for an access control mechanism. The other side of this problem is

availability. A file is said to be available if it can be accessed whenever needed, despite

machine crashes and communication faults. This property is particularly important to the

internet file system because the reliability of an internet is much less than that of local

area networks. In order to increase availability, replicating files on different file servers is

essential. In general, a single file may have multiple cached copies as well as multiple repli-

cated copies. The ideal access control mechanism should also handle consistency among

replicated copies on different file systems with different.access protocols.

Finally, the ultimate goal of this research is to study access to internet

resources[Hutc89b][Pete90]. Workstation users connected to the internet have access to

significantly more resources than are available on local area networks. The NREN, for

example, connects users throughout the country to file systems, databases, directory ser-

vices, information archives, supercomputers, and other special hardware. The availability

of resources on such national networks will grow as network bandwidth and connectivity

increase. Jade is a good start toward this goal, and it also serves as a vehicle for further

study in this area.

129

APPENDIX A

JADE NAMING PROTOCOL SPECIFICATION

The Jade Naming Protocol (JNP) provides transparently remote access to a Name

Space Manager. The protocol is designed on top of Sun's Remote Procedure Call

(RPC)[Sun86b] and External Data Representation (XDR)[Sun90]. It is specified using

Sun's RFC data description language[Sun90j.

/* The maximun number of bytes in a name argument. */
const MAXNAMELEN = 255;

/* The maximun number of bytes in a pathname argument. */
const MAXPATHLEN = 1024;

/* The maximun number of bytes in an arguement. */
const MAXLINE = 255;

/* The size in bytes of the opaque file handle. */
const FHSIZE = 32;

typedef string filename-t < MAXNAMELEN >;
typedef string user_t<MAXNAMELEN>;
typedef string path.t<MAXPATHLEN>;
typedef string host.t < MAXPATHLEN >;
typedef string arg8.t<MAXLINE>;
typedef opaque jdhandle_t[FHSIZE];

/*
* jdstat is returned with every procedure's result.
* JD.OK indicates that the call completed successfully and the result is valid.
* The other value indicates some kind of error occured on the server side
* during servicing of the procedure.

*/
ernrm jdstat {

JD.OK = 0,
JD.ERROR = 1,
JD .NOUSER = 2,
JD.NONODE = 3,

PRECEDING PAGE BLANK NOT FILMED

130

JD.NOPATH = 4,
JDJS.SK = 5,
JD JS_N_SK = 6,
JDJSTACK .EMPTY = 7

/* The enumeration fsprot defines the access protocol */
enum fsprot {

JD.UNKNOWN = 0, /* the type is unknown; */
JD JFS = 1, /* Jade Naming Protocol; */
JD.UFS = 2, /* Unix File System; */
JD_NFS = 3, /* Network File System; */
JD_FTP = 4, /* File Transfer Protocol; */
JD.AFS = 5 /* Andrew File System. */

/*
* timeval is number of seconds and microseconds since midnight 1/1/1970,
* Greenwich Mean Time.
* It is used to pass time and date information.
*/
struct timeval {

unsigned int sec;
unsigned int usec;

/* jdattr contains the attributes of a file. */
struct jdattr {

host_t a_host;
patH_t a_path;
jdhandle.t a_fh;
fsprot a_prot;
uJong a_mode;
uJong a-uid;
uJong a-gid;
uJong ajsize;
struct timeval a_atime;
struct timeval a_mtime;

/* jdpath specifies a path in a logical name space named as user. */
struct jdpath {

user.t user;
path_t path;

131

/* jd2path is used in JDJlename operation. */
struct jd2path {

user_t user;
path_t pat hi;
path_t path2;

/* jddirargs is used in JD-SetAttr operation. */
struct jddirargs {

struct jdpath jp;
struct jdattr at;

/* jdmkdir is used in JD_MakeDir operation. */
struct jdmkdir {

struct jdpath jp;
int mode;

/* jdref specifies a reference to a named file. */
struct jdref {

host.t host;
path.t path;
jdhandle-t fh;
fsprot prot;
struct timeval times tamp;

/* The results o/JD-Lookup operation are returned in jdrefres. */
union jdrefres switch (jdstat stat) {

case JD.OK:
struct jdref ref;

default:
void;

/* jdmountargs is used in JD_Mount operation. */
struct jdmountargs {

struct jdpath jp;
args.t line;
args.t mode;

132

/*
* jdentryres is used for directory entries returned for
* JD_GetEntries operation.

*/
typedef struct namenode *namelist;
struct namenode {

filename.t name;
namelist next;

union jdentryres switch (jdstat stat) {
case JD.OK :

namelist list;
default :

void;

/* jdskres is used for the results o/JD_GetSkeleton operation. */
struct jdsk {

namelist sklist;
struct jdref refs<>;

};
union jdskres switch (jdstat stat) {

case JD.OK :
struct jdsk sk;

default :
void;

/* jdattrres is used for the result of JD.GetAttr operations. */
union jdattrres switch (jdstat stat) {

case JD.OK :
struct jdattr at;

default :
void;

133

/* Service routines. */
program JD_PROC {

version JD.VERSION {
void JD_Null(void) = 0;
jdrefres JDJLookup(jdpath) = 1;
jdattrres JD.GetAttr(jdpath) = 2;
jdstat JD-SetAttr(jddirargs) = 3;
jdstat JD-Hemove(jdpath) = 4;
jdentryres JD.GetEntries(jdpath) = 5;
jdstat JD_MakeDir(jdmkdir) = 6;
jdstat JDJlemoveDir(jdpath) = 7;
jdstat JD_Rename(jd2path) = 8;
jdstat JD31ount(jdmountargs) = 9;
jdstat JDJBide(jdmountargs) = 10;
jdstat JD.Unmount(jdpath) = 11;
jdskres JD_GetSkeletons(jdpath) = 12;
jdskres JD JSInfo(jdpath) = 13;
jdstat JD-NSPush(void) = 14;
jdstat JD-NSPop(void) = 15;
jdstat JD-NSDump(jdpath) = 16;
jdstat JD-NSLoad(jdpath) = 17;

} = i;
} = 20000201;

135

APPENDIX B

JADE ACCESS PROTOCOL SPECIFICATION

The Jade Access Protocol (JNP) provides transparently remote access to a Access
Manager. The protocol is designed on top of Sun's Remote Procedure Call (RPC)[Sun86b]
and External Data Representation (XDR)[Sun90]. It is specified using Sun's RFC data
description language[Sun90].

/* The maximum number of bytes in an arguement. */
const AC-MAXLEN = 255;

/* The size in bytes of the opaque file handle. */
const ACJFHSIZE = 32;

typedef string ac_user_t<AC_MAXLEN>;
typedef string ac_path.t<AC_MAXLEN>;
typedef string ac_host.t<AC_MAXLEN>;
typedef opaque ac_handle_t[AC_FHSIZE];

/*
* ac-stat t5 returned with every procedure 's result.
* AC-OK indicates that the call completed successfully and the result is valid.
* The other value indicates some kind of error occured on the server side
* during servicing of the procedure.
*/
enum ac_stat {

AC.OK = 0,
AC-ERROR =1,
AC.UNMODE = 2,
AC .FETCH JAIL = 3,
AC-RESTORE.FAIL = 4,
AC.UNJNODE = 5

/* The enumeration fsprot defines the access protocol */
enum fsprot {

JD.UNKNOWN = 0, /* the type is unknoion; */
JD JFS = 1, /* Jade Naming Protocol; */
JD.UFS = 2, /* Unix File System; */
JD-NFS = 3, /* Network File System; */
JD_FTP = 4, /* File Transfer Protocol; */

PRECEDING PAGE BLANK NOT FILMED

136

JD.AFS = 5 /* Andrew File System. */

/* The enumeration ac_rq_flag defines the type o/ACJlequest operation. */
enum ac_rq_flag {

ACJUquestJO) = 0,
AC-Request_WR =1,
AC_Request_RD.WR = 2

/* The enumeration ac_rl_flag defines the type o/AC_Release operation. */
enum ac_rl_flag {

AC_Release_none= 0,
AC_Release.Syn = 1,
AC_Release_ASyn = 2

/*
* timeval is number of seconds and microseconds since midnight 1/1/1970,
* Greenwich Mean Time.
* It is used to pass time and date information.

*/
struct timeval {

unsigned int sec;
unsigned int usec;

/* acjref specifies a reference to a named file. */
struct ac_ref {

ac_host_t a_host;
ac.path.t a_path;
ac_handle_t a_fh;
fsprot a_prot;
struct timeval a_timestamp;

/* ac_refres is used in AC-Request operation. */
struct ac_refres {

ac_ref attr;
ac_rq_flag flag;

137

/* ac.jid refers to a cached copy in the cache server. */
struct ac.jid {

ac_path.t path;
int jnode;

/* ac_res is used for the result o/JDJElequest operation. */
union ac_res switch(ac_stat stat) {

case AC.OK :
ac.jid id;

default:
void;

/* acJabel is used in JDJlelabel operation. */
struct acJabel {

int jnode;
acjrefres label;

/* as-rel is used in JDJlelease operation. */
struct acjel {

int jnode;
ac_rl_flag flag;

/*Service routines */
program AC.PROC {

version AC-VERSION {
void AC.Null(void) = 0;
ac_res ACJlequest(ac_refres) = 1;
acjstat ACJRelabel(acJabel) = 2;
ac-stat AC-Release(acjel) = 3;
ac-stat AC_Output(ac_path_t) = 4;

} = i;
} = 20000202;

139

REFERENCES

[Allm86] Allman, E. An introduction to the source code control system. In Unix
Programmer's Manual Supplementary Documents Volume 1. University of Cal-
ifornia at Berkeley, April 1986.

[Bach86] Bach, M. J. The Design of the Unix Operating System. Prentice-Hall, 1986.

[Bara87] Barak, A. and Kornatzky, Y. Design principles of operating systems for large
scale multicomputers. In Nehmer, J., editor, Experiences with Distributed
Systems, pages 104-123. Springer- Verlag, Berlin, 1987.

[Birr82] Birrell, A. D., Levin, R., Needham, R. M., and Schroeder, M. D. Grapevine:
An exercise in distributed computing. Communications of the ACM, 25
(4):260-274, April 1982.

[Cabr88] Cabrera, L. F. and Wyllie, J. Quicksilver distributed file services: An archi-
tecture for horizontal growth. In Proceedings of the 2nd IEEE Conference on
Computer Workstations, pages 23-37, Santa Clara, CA, March 1988.

[Cace91] Cacerest, R., Danzig, P., Jamin, S., and Mitzel, D. Characteristrics of wide-
area TCP/IP conversations. In Proceedings of the SIGCOMM '91 Symposium,
1991. To appear.

[Cher89] Cheriton, D. R. and Mann, T. P. Decentralizing a global naming service for
improved performance and fault tolerance. ACM Transactions on Computer
Systems, 7(2):147-183, May 1989.

[Come85] Comer, D. and Droms, R. £. Tilde trees in the Unix environment. In Pre-
ceedings of Winter Usenix, pages 23-29, January 1985.

[Come86] Comer, D. and Murtagh, T. P. The Tilde file naming scheme. IEEE Trans-
actions on Software Engineering, pages 509-514, 1986.

[Come91] Comer, D. E. Internetworking with TCP/IP Volume I Principles, Protocols,
and Architectures. Prentice Hall, second edition, 1991.

[Ever90] Everhart, C. F. Conventions for names in the service directory in the AFS Dis-
tributed File System. Technical report, Transarc Corporation, March 1990.

[Floy86a] Floyd, R. Directory reference patterns in a Unix environment. Technical
Report TR 179, Computer Science Department, The University of Rochester,
August 1986.

PRECEDING PAGE BLANK NOT FILMED

140

[Floy86b] Floyd, R. Short-term file reference patterns in a Unix environment. Tech-
nical Report TR 177, Computer Science Department, The University of
Rochester, March 1986.

[GifF88] Gifford, D. K., Needham, R. M., and Schroeder, M. D. The Cedar file system.
Communications of the ACM, 31(3):288-299, March 1988.

[Gros86] Grosling, J. SunDew—a distributed and extensible window system. In
Methodology of Window Management. Springer-Verlag, 1986.

[Hend90] Hendricks, D. A filesystem for soft ware development. In Proceedings of Sum-
mer Usenix, June 1990.

[Howa88] Howard, J. H., Kazar, M. L., Menees, S. G., Nichols, D. A., Satyanarayanan,
M., Sidebotham, R. N., and West, M. J. Scale and performance in a dis-
tributed file system. ACM Transactions on Computer Systems, 6(1):51-81,
February 1988.

[Hutc89a] Hutchinson, N. C., Peterson, L. L., Abbott, M. B., and O'Malley, S. RFC in
the x-Kernel: Evaluating new design techniques. In Proceedings of the Twelfth
ACM Symposium on Operating System Principles, pages 91-101, December
1989-

[Hutc89b] Hutchinson, N. C., Peterson, L. L., and Rao, H. The z-Kernel: An open oper-
ating system design. In Second Workshop on Workstation Operating Systems,
pages 55-59, September 1989.

[Kaza90] Kazar, M. L., Leverett, B. W., Anderson, 0. T., Apostolides, V., Bottos, B. A.,
Chutani, S., Everhart, C. F., Mason, W. A., Tu, S., and Zayas, E. R. DEco-
rum file system architectural overview. In Proceedings of Summer Usenix,
July 1990.

[Korn90] Korn, D. and Krell, E. A new dimension for the Unix file system. Software—
Practice and Experience, 20(Sl):Sl/19 - SI/34, July 1990.

[Lamp86] Lampson, B. W. Designing a global name service. In Proceedings of Fifth
Symposium on the Principles of Distributed Computing, pages 1-10, August
1986.

[Lede89] Lederberg, J. and Uncapher, K. Towards a national collaboratory. Report
of an Invitational Workshop At The Rockefeller University, March 1989.

[Leff89] Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. The
Design and Implementation of the j.SBSD Unix Operating System. Addison-
Wesley Publishing Company, 1989.

[Lein87] Leiner, B. M. Network requirements for scientific research. Request For
Comments 1017, USC Information Sciences Institute, Marina del Ray, Calif.,
August 1987.

141

[Levy90] Levy, E. and Silberschatz, A. Distributed file systems: Concepts and exam-
ples. ACM Computing Surveys, 22(4):321-374, December 1990.

[Mann87] Mann, T. Decentralized naming in distributed computer systems. PhD the-
sis, Stanford University, Palo Alto, CA, May 1987.

[Mock87] Mockapetris, P. Domain names—implementation and specification. Request
For Comments 1035, USC Information Sciences Institute, Marina del Ray,
Calif., November 1987.

[MuU85] Mullender, S. J. and Tanenbaum, A. S. A distributed file service based on
optimistic concurrency control. In Proceedings of the Tenth ACM Symposium
on Operating System Principles, pages 51-62, Orcas Island, WA, December
1985.

[Nels88] Nelson, M. N., Welch, B. B., and Ousterhout, J. K. Caching in the Sprite
Network File System. ACM Transactions on Computer Systems, 6(1):134-
154, February 1988.

[Neum89] Neuman, B. C. The need for closure in large distributed systems. Operating
Systems Review, 23(4):28-30, October 1989.

[NSF89] NSF Network Service Center, BBN Systems and Technologies Corporation.
The Internet Resources Guide, 1989.

[Orga72] Organick, E. I. The Multics System: An Examination of Its Structure. MIT
Press, Cambridge, Massachusetts, 1972.

[Oust85] Ousterhout, J. K., Costa, H. D., Harrison, D., Kunze, J. A., Kupfer, M., and
Thompson, J. G. A Trace-Driven analysis of the Unix 4.2 BSD file system.
In Proceedings of the Tenth ACM Symposium on Operating System Principles,
pages 15-24, December 1985.

[Paxs91] Paxson, V. Measurements and models of wide area TCP conversations.
Technical Report LBL-30840, LBL Computer Systems Engineering Group,
1991.

[Pete90] Peterson, L. L., Hutchinson, N. C., O'Malley, S. W., and Rao, H. C. The
x-Kernel: A platform for accessing internet resources. IEEE Computer,
23(5):23-33, May 1990.

[PikeQO] Pike, R., Presotto, D., Thompson, K., and Trickey, H. Plan 9 from Bell Labs.
In Proceedings of the United Kingdom Unix Users Group, London, England,
July 1990.

[Pope85] Popek, G. J. and Walker, B. J. The LOCUS Distributed System Architecture.
The MIT Press, Cambridge, Massachusetts, 1985.

[PostSl] Postel, J. Transmission control protocol. Request For Comments 793, USC
Information Sciences Institute, Marina del Ray, Calif., September 1981.

142

[Post82] Postel, J. Simple Mail Transfer Protocol. Request For Comments 821, USC
Information Sciences Institute, Marina del Ray, Calif., August 1982.

[Post83] Postel, J. and Reynolds, J. TELNET Protocol Specification. Request For
Comments 854, USC Information Sciences Institute, Marina del Ray, Calif.,
May 1983.

[Post85] Postel, J. and Reynolds, J. File Transfer Protocol (FTP). Request For
Comments 959, USC Information Sciences Institute, Marina del Ray, Calif.,
October 1985.

[Pres90] Presotto, D. L. and Ritchie, D. Interprocess communication in the ninth
edition Unix system. Software—Practice and Experience, 20(Sl):Sl/3-Sl/17,
June 1990.

[Pres91] Presotto, D., Pike, R., Thompson, K., and Trickey, H. Plan 9, a distributed
system. Technical report, AT&T Bell Laboratories, 1991.

[Ritc78] Ritchie, D. M. and Thompson, K. The Unix Time-Sharing System. Bell
System Technical Journal, 57(6), July 1978.

[Salt78] Saltzer, J. H. Naming and binding of objects. In Bayer, R., Graham, R.,
and Seegmuller, G., editors, Operating Systems: An Advnaced Course, pages
99-208. Springer-Verlag, New York, 1978.

[Salt84] Saltzer, J. H., Reed, D, P., and Clark, D. D. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 4(2):277-288, November
1984.

[Sand85] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B. Design and
implementation of the Sun Network File System. In Proceedings of Summer
Usenix, pages 119-130, June 1985.

[SatySl] Satyanarayanan, M. A study of file sizes and functional lifetimes. In Pro-
ceedings of the Eighth ACM Symposium on Operating System Principles, pages
96-108, December 1981.

[Saty85] Satyanarayanan, M., Howard, J. H., Nichols, D. A., Sidebotham, R. N., Spec-
tor, A. Z., and West, M. J. The ITC distributed file system: Principles and
design. In Proceedings of the Tenth ACM Symposium on Operating System
Principles, pages 35-50, December 1985.

[Saty89a] Satyanarayanan, M. Distributed file systems. In Mullender, S., editor, Dis-
tributed Systems, pages 149-188. ACM Press, 1989.

[Saty89b] Satyanarayanan, M. A survey of distributed file systems. Technical Report
CMU-CS-89-116, Carnegie-Mellon University, February 1989.

[Saty90a] Satyanarayanan, M. Scalable, secure, and highly available distributed file
access. IEEE Computer, 23(5):9-21, May 1990.

143

[SatyQOb] Satyanarayanan, M., Kistler, J. J., Kumar, P., Okasaki, M. E., Siegel, E. H.,
and Steere, D. C. Coda: A highly available file system for a distributed
workstation environment. IEEE Transactions on Computers, Special Issue
on Fault-Tolerant Computing, 39(4):447-459, April 1990.

[Scha90] Schatz, B. R. Interactive Retrieval in Information Spaces Distributed across
a Wide-Area Network. PhD thesis, Department of Computer Science, Univer-
sity of Arizona, December 1990.

[Sche86] Scheifler, R. W. and Gettys, J. The X window system. ACM Transactions
on Graphics, 5:79-109, April 1986.

[Schr85] Schroeder, M. D., Gifford, D. K., and Needham, R. M. A caching file system
for a programer's workstation. In Proceedings of the Tenth ACM Symposium
on Operating System Principles, pages 25-34,1985.

[Shel86] Sheltzer, A. B., Lindell, R., and Popek, G. J. Name service locality and cache
design in a distributed operating system. In Proc. 6th Int. Conf. on Dis-
tributed Computing Systems, pages 515-523, Cambridge, Massachusetts, May
1986.

[Side86] Sidebotham, B. Volumes: The Andrew File System data structuring primi-
tive. In European Unix User Group Conference Proceedings, 1986.

[Side89] Sidebotham, B. Rx: A high performance remote procedure call transport
protocol. Technical report, Information Technology Center, Carnegie Mellon
University, February 1989.

[Sun86a] Sun Microsystems, Inc., Mountain view, Calif. Network File System, February
1986.

[Sun86b] Sun Microsystems, Inc., Mountain view, Calif. Remote Procedure Call Pro-
gramming Guide, February 1986.

[Sun88] Sun Microsystems, Inc., Mountain view, Calif. Shared Libraries, May 1988.

[Sun90] Sun Microsystems, Inc., Mountain View, Calif. External Data Representation
Standard: Protocol Specification, March 1990.

[Svob84] Svobodova, L. File servers for network-based distributed systems. ACM
Computing Surveys, 16(4):353-398, December 1984.

[Tane90] Tanenbaum, A. S., van Renesse, R., van Staveren, H., Sharp, G. J., Mullen-
der, S. J., Jensen, J., and van Rossum, G. Experiences with the Amoeba
distributed operating system. Communications of the ACM, 33(12):46-63,
December 1990.

144

[Terr85]

[Terr87]

[Tich85]

[Walk83]

Terry, D. B. Distributed Name Servers: Naming and Caching in Large Dis-
tributed Computing Environments. PhD thesis, Univerity of California, Berke-
ley, 1985. Available as UCB/CSD Technical report 85/228, and as Xerox
PARC Technical report CSL-85-1.

Terry, D. B. Caching hints in distributed systems. IEEE Transactions on
Software Engineering, SE-13(l):48-54, January 1987.

Tichy, W. F. RCS—a system for version control.
Experience, 15(7):637-€54,1985.

Software—Practice and

Walker, B., Popek, G., English, R., Kline, C., and Thiel, G. The LOCUS
distributed operating system. In Proceedings of the Ninth ACM Symposium
on Operating System Principles, pages 49-70, October 1983.

[Welc86] Welch, B. B. and Ousterhout, J. K. Prefix tables: a simple mechanism for
. locating files in a distributed system. In Proceedings of the 6th Conference on

Distributed Computing Systems, pages 184-189, May 1986.

[Welc89] Welch, B. B. and Ousterhout, J. K. Pseudo-File-Systems. Technical Report
UCB/CSD 89/499, University of California Berkeley, Berkeley, Calif., 1989.

[Zaya88] Zayas, E. R. and Everhart, C. F. Design and specification of the Cellular An-
drew environment. Technical Report CMU-ITC-070, Information Technology
Center, Carnegie Mellon University, August 1988.

