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Abstract

During the past decade, advances in processor and memory technology have given rise to

increases in computational performance that far outstrip increases in the performance of secon-

dary storage technology. Coupled with emerging small-disk technology, disk arrays provide the

cost, volume, and capacity of current disk subsystems but, by leveraging parallelism, many

times their performance. Unfortunately, arrays of small disks may have much higher failure

rates than the single large disks they replace. Redundant Arrays of Inexpensive Disks (RAID)

use simple redundancy schemes to provide high data reliability. This dissertation investigates

the data encoding, performance, and reliability of redundant disk arrays.

Organizing redundant data into a disk array is treated as a coding problem in this disserta-

tion. Among alternatives examined, codes as simple as parity are shown to effectively correct

single, self-identifying disk failures.

David A. Patterson



The performance advantages of striping data across multiple disks are reviewed in this

dissertation. For large transfers this parallelism reduces response time. Striping data also

automatically distributes independent, small accesses across disks to increase throughput This

dissertation evaluates the performance lost to the maintenance of redundant data. This loss is

negligible for large transfers but can be significant for small writes because of increases in

aggregate disk service time.

Because disk arrays include redundancy to protect against the high failure rates caused by

large numbers of disk components, it is crucial that disk failures be characterized. This disser-

tation provides evidence that disk lifetimes can be modeled as exponential random variables.

Building on an exponential model for disk lifetimes, this dissertation presents analytic

models for disk-array lifetime, evaluates these against event-driven simulation, and applies

them to an example redundant disk array. These models incorporate the effects of independent

and dependent disk failures (shared support hardware) as well as the effects of on-line spare

disks. For the example redundant disk array, these models show mat a 10% overhead for an

N+l -parity encoding plus a 10% overhead for on-line spares can provide higher reliability than

the 100% overhead of conventional mirrored disks.
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CHAPTER 1

Introduction

' '[Memory is] the treasury and guardian of all things."
-Cicero

In the electronic world of digital information, Cicero's insight is quite literally true; the

memory of a computer system is responsible for containing and protecting all information.

Among the many things this responsibility implies is that computer memory must be readily

accessible and solidly dependable. This dissertation is concerned with the accessibility and

dependability of the outermost recesses of on-line memory: secondary storage. This is the

bulwark upon which memory's performance and reliability ultimately depends. Although

today's secondary storage systems are the results of years of extraordinary research efforts,

society's accelerating dependence on increasely high-performance and cost-effective computers

precludes a single optimal design. It is my thesis that the burgeoning demand for reliable,

high-performance secondary storage can and will be met by redundant disk arrays.

A disk array is a collection of physically small magnetic disks that is packaged as a single

unit but operates in parallel Disk arrays capitalize on the availability of small-diameter disks

from a price-competitive market to provide the cost, volume, and capacity of current disk sys-

tems but many times their performance. Unfortunately, relative to current disk systems, die

larger number of components in disk arrays leads to higher rates of failure. To tolerate failures,



Metric

Disk Units
Formatted User Data Capacity (MB)
Number of Useful Actuators
Avg. Access Time (msec)
Max. Read I/Os/sec/Box
Max. Write I/Os/sec/Box
Max. Transfer Rate (MB/sec)
Disk Power Consumption (W)
Volume for Disks (cubic feet)
Mean Time To Data Loss (1,000 hours)
Component Disk Costs ($1,000)
Customer Price ($1,000)

IBM
3390

1
22,700

12
19.7

609
609

15
2.900

97
50-250

?
156-260

Redundant
Disk Array

70+7+7
22,400

77
19.8

3.889
£972

130
1,000

11
6.600

67
?

Table 1.1: Comparison of a Strawman Redundant Disk Array to an IBM 3390. A "straw-
man" redundant disk array constructed with 84 IBM 0661 model 370 (3'A-inch) disks has many
advantages over IBM's top-end disk product, the IBM 3390. This disk array configuration is
developed in Chapter 5 as a running example. It has. the user capacity of 70 disks; its overhead
is 7 disks (10%) for redundant data and 7 disks (10%) for on-line spares. Because parity data is
distributed among 77 of the disks and because user data is not stored on spare disks, only 77
disks contribute to its performance. For the maximum I/O accesses per second calculation, the
transfer unit is a single sector. For the maximum transfer rate calculation, the transfer unit is a
track from every disk that contains user data (77 disks). Most metrics apply to disk components
only and may be degraded when controller and host effects are included. The IBM 3390 mean
time to failure is not publicly known but can be expected to be better than IBM's previous top-
end product, which is reported to have had a mean time to failure of53,000 hours [BalansonSS].
To compare costs, I show the price a disk array manufacturer would pay for comparable 3'A-
inch disks from Seagate and the price range that IBM's best customers pay for a maximally
configured IBM 3390 and half of an IBM 3990 (disk controller). This table is constructed from
the data and results in Tables 32,3J, 5.1 .and 52 and Figure 3.10.

redundant disk arrays devote a fraction of their capacity to an encoding of their information.

This redundant information enables the contents of a failed disk to be recovered from the con-

tents of non-failed disks. This dissertation will highlight the simplest and least expensive

encoding for this redundancy, known as ff+1 parity. In addition to compensating for the higher

failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be

built much more cost-effectively than is now achieved in conventional duplicated disks.

Disk arrays that combine redundancy with the parallelism of many small-diameter disks

are often called Redundant Arrays of Inexpensive Disks (RAID) [PattersonSS]. This combina-

tion promises improvements to both the performance and the reliability of secondary storage.



For example, Table 1.1 compares IBM's premier disk product, the IBM 3390, to a redundant

disk array constructed of 84 IBM 0661 3Vi-inch disks. The redundant disk array has compar-

able or superior values for each of the metrics given in Table 1.1 and appears likely to cost less.

I present this table here to demonstrate the potential advantages of redundant disk arrays; I wfll

explain performance and reliability in detail in the rest of mis dissertation.

To support my thesis, I make three principal contributions in this dissertation.

(1) I demonstrate that secondary storage systems must inevitably rely on redundant arrays of

small-diameter disks.

(2) I provide a broad understanding of alternative, redundant data encodings and of the rela-

tionship between parallelism, redundancy, and performance in disk arrays.

(3) I make possible the three-way optimization of cost, performance, and reliability by

developing analytic estimates for the reliability of redundant disk arrays.

1.1. Overview of the Dissertation

Collectively, the four principal chapters in this dissertation demonstrate the performance

and reliability advantages of redundant disk arrays. Individually, they explain my motivation

for research into Input/Output architectures, introduce and explore coding and performance in

redundant disk arrays, present a self-contained analysis of disk-failure data, and model the relia-

bility of a redundant disk array with an N+l-parity encoding.

In Chapter 2 I review secondary storage and place emphasis on techniques and technolo-

gies important to the performance of computer systems. Beginning with secondary storage's

role in the memory hierarchy and its access gap problem, I enumerate conventional approaches

to improving performance. Secondary storage's problems are growing, as I next show, because

processor performance advances at a much faster rate than disk performance. Fortunately, disk

technology is advancing in ways that can be exploited, as the following section shows. Finally,



I look to the time when secondary storage wfll be entirely solid-state, and magnetic disks will

be obsolete. Because this time appears to be quite distant, however, disk arrays will be needed

for the foreseeable future.

In Chapter 3 I explain redundant disk arrays, their encodings, and their performance. I

begin with a look at the basic arguments for disk arrays, then turn to the threat to reliability

posed by large numbers of small disks. To cope with this threat, I examine prediction-based

and off-line techniques for improving reliability. Finding these insufficient, I focus on on-line

redundancy - a coding problem. Of primary interest here are the inexpensive, single-erasure-

correcting codes based on parity, but I also examine binary and non-binary double-erasure-

correcting codes that may be needed for very large or very highly reliable disk arrays.

Disk array performance is the topic of the rest of Chapter 3. I begin this topic with a dis-

cussion of the performance of a non-redundant disk array, because it is in this context that basic

performance expectations for aH disk arrays can be established. The key to exploiting the

inherent parallelism of a non-redundant disk array is data striping, and critical to data striping is

the size of the interleaving unit. After reviewing this important issue, I turn to the performance

consequences involved in maintaining redundant data. Except for random writes of small

amounts of data, these redundancy-maintenance penalties are not large. For small, random

writes, however, 50% to 75% of the total disk array bandwidth can be spent on redundancy

maintenance. Fortunately, related research in file systems offers the possibility of eliminating

small, random writes altogether.

In Chapter 4 I break from disk arrays to examine the disk failures that redundancy is

intended to tolerate. After describing common models for the distribution of disk lifetimes, I

review the meager sources of public data on disk lifetimes I was able to find. Fortunately, I am

next able to present data about a sample of 1350 disks observed over a period of 18 months. I

use this data to explore the fit of exponential and Weibull distributions for disk lifetimes. An

exponential distribution turns out to be plausible, and mean lifetimes vary between 80,000



hours (nine years) and over 300,000 hours (34 years).

In Chapter 5 I examine the reliability of data in disk arrays with detailed models for the

time until data is lost After characterizing the behavior of the reliability metric, reviewing

related work, and discussing the tools and methods I use in that chapter, I present four models

for single-erasure-correcting redundant disk arrays. The first of these models treats all failures

as independent disk failures, and this simplest of models has a well-known solution. In addition

to presenting this solution, I introduce the approximate modeling techniques used in later sec-

tions. The next model recognizes that the subsystem hardware supporting an array's disks -

organized into strings - suffers failures affecting multiple disks simultaneously. Redundancy

groups must be organized carefully to avoid data loss when these failures cause multiple disks

to fail dependently. I then construct a model for disk-array lifetime in the presence of these

dependent disk failures. The next two sections are devoted to including on-line spare disks into

the prior two models. With on-line spares when there are no dependent failure modes, I am able

to construct a model describing all possible contingencies for spare-pool size and replacement-

disk order policy. With on-line spares and dependent failure modes, I provide a more restrictive

model that estimates lifetimes for arrays with zero, one, two, and infinitely many extra strings

containing on-line spare disks and with a replacement policy that orders new disks immediately

after every failure. Throughout this chapter, I illustrate these models by applying them to a

"strawman" disk array. The result of this ongoing analysis of a particular redundant disk array

is shown above in Table 1.1.

1.2. A Personal Note

Before studying disk arrays I participated in the design and implementation of a shared-

memory multiprocessor workstation [HU186, Taylor86, Gibson87. Hill87, Jeong90, Wood90a].

This research project, carried out at the University of California at Berkeley, was called Sym-



bolic Processing Using RISC (SPUR), and it involved the development of three VLSI chips, a

processor board containing about 300 MSI chips, and a memory bus protocol. I was responsible

for the design and implementation of the memory bus [Gibson89a] as pan of the cache con-

troller VLSI chip design [Wood87]. Happily, our five-processor prototype correctly imple-

mented a snooping bus protocol [Eggers89] while co-existing with memory boards and ethemet

ports that did not

My experience with SPUR taught me many things, not the least of which was the great

increase in complexity induced when requirements call for a complete, functional system rather

than a paper design or even a marginally functional prototype. However, one thing in particular

that SPUR made clear was that a high-performance system based on multiple microprocessors

could be constructed inexpensively, but such a system could not be provided inexpensively with

comparable increases in network and I/O bandwidths. Fresh from my efforts with the pan of a

memory system between the processor cache and main memory, I turned to the question of

high-performance, cost-effective secondary storage.

My research into secondary storage, in collaboration with David Patterson and Randy

Katz, led to our 1987 paper that named, described, and compared different organizations of

Redundant Arrays of Inexpensive Disks (RAID) [Pattersons?]. This launched a broader

research project [Katz89a] whose initial goal was a disk-array prototype that was constructed

from off-the-shelf disks, controllers, and a host processor. Imprimis (now Seagate) donated 32

5%-inch disks and Sun Microsystems donated a Sun 4/280 file server. This prototype, known

as "RAID the First" or RAID-I, is now complete [Lee90, Chervenak90, Chervenak91] and

operates as a file server in Berkeley's networked environment. Figure I.I shows a picture of

RAID-I while it was being tested.

While RAID the First was under development, the RAID research project blossomed

[Gibson89b, Gibson89c, Katz89b, Ousterhout89, Schulze89, Chen90a, Chen90b, Katz90,

Rosenblum90, Seltzer90a, Seltzer90b, Stonebraker90b, Lee91, Miller91], and was incorporated



into a multi-dimensional project at Berkeley called XPRS that studied shared-memory mul-

tiprocessor databases operating on top of a general purpose, network-based operating system

that exploits high-performance I/O systems and networks [StonebrakerSS]. These other two

component projects are, respectively, POSTGRES [Stonebraker90a], a descendent of INGRES,

and Sprite [OusterhoutSS] which originated with the SPUR project

The RAID project is now designing a second prototype. Known as "RAID the Second"

or RAID-n, this prototype includes the design and implementation of a custom disk-array con-

troller. RAID-n's controller is connected to an UltraNet 100 MB/sec token-ring network by

HTPPI interface boards that were donated by Thinking Machines Corporations. The controller

contains 64 to 256 MB of buffer memory donated by IBM and accesses up to 120 3Vi-inch

disks, also donated by IBM, that are controlled by up to four Array Technology RAID+ SCSI

host bus adapters. RAID-n is controlled by the Sprite operating system executing on an

attached (multi-) processing system. The central idea in RAID-n is to make supercomputer file

servers with a higher level of performance by providing a high bandwidth path (220 MB/sec)

between disks, network, and file cache.

April 24,1991.

The research'-wa£'ftmdea't>y£NSF grant MTP-8715235, NASA/DARPA grant NAG 2-591, a Com-
puter Measurernent\Grpup' fellowship, and an IBM predoctoral fellowship. Additional funding and/or
equipment came from IBM, Imprimis, Digital Equipment Corp., Sun Microsystems, Thinking Machines
Inc., Array Technologies, Ultranet Corp., Hewlett-Packard, Intel Scientific, Kodak, NCR, Control Data
Corp., and StorageTek.



Figure 1.1: "RAID the First" Prototype. The first prototype constructed by Berkeley's RAID
project is composed of a Sun 4/280 host processor donated by Sun Microsystems, 28 S'/i-inch,
WREN IV disks donated by Imprimis, and four Jaguar disk controllers (employing the SCSI inter-
face protocol). In this picture, the top two (of three) shelves of disks are pulled out from their
chassis allowing an ANCOT SCSI analyzer (resting on top of the top shelf) access to their ca-
bling. Each shelf has two sets of four disks, mounted with their platters spinning perpendicular
to the plane of the floor. One set faces the front of the chassis and one set faces its back. The last
four disks sit on top of the chassis (invisible in the darkness of this image). Notice that the right-
most disk on the top shelf is a S'/t-inch, IBM 0661 Lightning. RAID-I's Sprite operating system
includes a special "RAID driver" module that implements N+l-parity redundancy. This
machine is currently being used at Berkeley as a file server in a cluster of Sprite workstations.
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CHAPTER 2

The Importance of Input/Output

Why should I study Input/Output (I/O)? The answer to this question is that I/O is an

important and neglected portion of computer design. As Patterson and Hennessy write:

"Input/Output has been the orphan of computer architecture" [Patterson90 pp499]. With the

research presented in this dissertation, I hope to encourage more computer architects to

"adopt" I/O systems into their portfolio of systems deserving design creativity.

The basic problem is that when a computer designer sets out to build a faster computer,

faster is often taken to mean more instructions per second at peak performance. Faster should,

however, mean more instructions per second for my tasks, and, if possible, for your tasks too.

Where these tasks involve peripheral devices, overall performance will be influenced by I/O

performance; designers should be engaged in improving I/O performance in parallel with their

efforts to improve processor performance.

I have chosen to study I/O because

(1) the rates at which processor performance and main memory capacity increase far outpaces

the rate at which I/O performance increases,



(2) a large class of applications continues to depend on 1/0 performance, and

(3) technological trends suggest that there is a window of opportunity for architectural inno-

vations for I/O.

I will concentrate on one particular I/O technology in this dissertation, the magnetic disk,

because on-line file data is primarily stored on magnetic disks and because file access is the I/O

event most likely to be critical to performance.

This chapter begins with a review of the memory hierarchy, the longstanding access gap

between main memory performance and magnetic disk performance, and common techniques

for compensating for this access gap. Then I examine the rapid growth in processing power that

aggravates the access gap problem and a similar problem I call the transfer gap. Next I

describe the evolution toward small-diameter disk technologies that offer new approaches to

overcome these access and transfer gaps. Finally, because replacing magnetic disks with solid

state memory would be a simple solution to both gaps, I estimate when this might become cost

effective.

2.1. Revisiting an Old Problem

The performance problems associated with delays for the mechanical positioning of a

magnetic disk's read/write heads are not new. This section reviews the problem and existing

approaches to reducing it

2.1.1. Memory Hierarchies

It has always been extremely expensive to construct a memory system that satisfies all

memory references without stalling its processor. This observation was first made by computer

pioneers [Burks46], and it led directly to the use of memory hierarchies. Memory hierarchies

work by satisfying most memory references in fast levels of the hierarchy, whereas slower
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levels of the hierarchy provide more storage capacity at a much lower cost per bit It might

seem that memory hierarchies should not work; if memory accesses are randomly distributed

throughout memory and only a small fraction of memory is supported by fast levels of the

hierarchy, then the average access time should be little shorter than the access time of the

slower levels. But memory accesses are not randomly distributed throughout memory. They

exhibit both temporal locality and spatial locality [DenningVO]. Temporal locality means that

recently accessed locations are likely to be rereferenced and spatial locality means that locations

near recently accessed locations are likely targets for new references. Locality is exploited by

maintaining "recently-used data" in faster levels of the memory hierarchy. This way faster

levels of the hierarchy satisfy a much larger fraction of new references than their relative size

indicates, and average access time is much closer to the time to access the fastest level.

Traditionally, the memory hierarchy is divided into primary, secondary, and tertiary lev-

els based on their increasing access times and decreasing cost per bit The slowest level, terti-

ary memory, is the least expensive. Usually constructed of magnetic tape, tertiary memory is

removable and does not lose information when its power is turned off (non-volatile). Secondary

memory, composed of mainly fixed-head magnetic disks, is the fastest media that is non-

volatile. Because a magnetic disk cannot be removed from its recording mechanism, this on-

line storage medium is not susceptible to human mistreatment or misplacment. Primary

memory, once composed of magnetic cores and now almost universally Dynamic Random

Access semiconductor Memory (DRAM), was traditionally the level of storage first accessed by

every memory reference made by a program. Today, because processor speeds have grown so

quickly relative to DRAM speeds, primary memory has been further divided into on-cnip pro-

cessor caches, first and second level off-chip processor caches, and main, or DRAM, memory.

In this study I will use the term I/O to refer mainly to secondary memory references

because these have the largest impact on computer performance. However, an I/O event is

really a reference to either non-primary memory or any peripheral device. This concept has
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been blurred because portions of secondary memory are now used to expand a program's virtual

image of primary memory [DenningVO] and portions of primary memory are now used to buffer

peripheral data and files [Powell??]. Intercomputer network traffic is a form of peripheral I/O

mat is becoming increasingly important to computer performance, particularly for systems that

operate as multiprocessors. Although networking is also the object of substantial research

efforts [Amould89, Computer90], it will not be studied here.

2.1.2. The Access Gap Problem

The access gap has been defined as the ratio between the average access time of magnetic

disk and the average access time of main memory [PughTl]. The value of this ratio is fre-

quently between 2,500 and 70,000. The magnitude of this ratio gives only part of the reason

that magnetic disk performance is important to computer system performance. For example, if

all accesses were satisfied in main memory, the access gap would not matter to overall perfor-

mance. To best assess the importance of magnetic disk performance, I must examine its contri-

bution to the average time it takes to access memory.

Average memory access time is the best metric for the success of a memory hierarchy

architecture [Liptay68]:

Average Memory Access Time = TRefFrac (/ ) x Hit (/ ) x HUTime (I) (2.1)

where RefFrac (/) = H(l-/to (/ )) and RefFrac (1) = 1 .

In this expression, the slowest and cheapest level of the memory hierarchy is level L, and the

fastest is level 1. RefFrac (I) is the fraction of processor references that are not satisfied before

memory level /, Hit (I) is the fraction of references to level / that are satisfied by level /, and

Hi(Time(l) is the duration of a reference satisfied at level /. If magnetic disk is at level d, then

the contribution of magnetic disk performance to average access time is

12



RefFrac (d) x Hit (4) x HitTime (d).

To see how the access gap is related to overall performance, I should express magnetic

disk's contribution relative to main memory's contribution (where main memory is at level

m = d-1):

[fid-Mi(fid-Hit (i))] x Hit (d) x HitTime (d)

Hit(m)

which is the product of the access gap, HitTime (d)IHitTime (m), the success of main memory

at satisfying references to it, (l-/ftr (m))/////(m), and the success of magnetic disk at satisfying

references to it, Hit(d).

Because this derivation applies to any pair of levels in the hierarchy, there really are a

number of access gaps, HitTime(l+\)lHitTime(l), between successive levels, / and 1+1.

Access gaps at different levels of the memory hierarchy vary widely. For example, between

first level caches, which usually employ Static Random Access Memory (SRAM) technology,

and main memory, which usually employs DRAM technology, access times increase by a factor

of up to 20. As I mentioned above, the access gap between DRAM main memory and magnetic

disk is often between 2,500 and 70,000. Finally, in those cases where tertiary storage is used as

an on-line archival repository, the access gap between disk and tape is usually 500 to 10,000.

With memory-disk access gaps of four orders of magnitude, the contribution to overall

latency from the disk in the memory hierarchy could be quite large unless the fraction of pro-

cessor references not satisfied by main memory is very small More specifically, if a disk's con-

tribution is to be comparable to that of main memory, then main memory's hit ratio needs to be

between 99.96% and 99.999%. This shows how a large access gap puts substantial pressure on

main memory's hit ratio.
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2.1.3. Overlapping I/O with Computation

The pressure on main memory's hit ratios lessens when I/O operations overlap with useful

computation. When many programs compete for processing resources, a processor idled by an

I/O operation can save its current state and resume execution of a different program [Codd60].

This multiprogramming approach generally increases the response time of every program, but

because processor resources are idle less frequently, it completes a large group of programs in

less total time. Multiprogramming's more efficient use of traditionally scarce processor

resources was an important reason for its adoption in almost all general purpose computing

environments.

Unfortunately, scientific supercomputing or single-user workstation workloads frequently

have only one task awaiting execution. In these cases, the only option is to overlap I/O with the

same task's computation. Large scientific supercomputer programs explicitly overlap computa-

tion with asynchronous I/O requests; that is, applications pre-fetch data and deposit them into

privately maintained buffer pools [CraySS]. On-line transaction processing systems have also

made extensive use of asynchronous I/O and application buffer pools [Effelsberg84].

There are two ways to automatically overlap a single task's I/O and computation: read-

ahead and write-behind [Feiertag?!]. Read-ahead succeeds if the correct data can be pre-

fetched. Fortunately, many applications process file data sequentially, giving read-ahead wide

applicability. A simple way to achieve moderate levels of read-ahead is to double or quadruple

the size of blocks in a file system [McKusickSS]. In contrast, write-behind allows a task to con-

tinue without waiting for the completion of each write operation. Since there is no prediction

involved, write-behind has even wider applicability. Unfortunately, because it also reduces the

likelihood that data is secure on a stable storage media, many applications, notably databases,

require mechanisms to bypass write-behind or to force immediate writes [StonebrakerSl]. Both

read-ahead and write-behind combine profitably with the file or disk caching techniques

described in Section 2.1.5.
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2.1.4. Lowering I/O Response Time

The most direct way to battle the problem of access gap is to reduce magnetic disk's aver-

age access time. In the context of magnetic disks, access time is usually referred to as the time

until the disk responds to an access, or its response time. Each transfer's response time is the

sum of time spent during operating system overhead, disk contention, seek positioning, rota-

tional positioning, and data transfer. In the last three decades, a substantial amount of research

has been devoted to reducing most of these delays. This section reviews the most important

reductions proposed by these efforts.

When accesses contend for a disk, devastating response time penalties result As disk util-

ization approaches 100%, the average number of requests waiting for service and the average

waiting time that results grow without bound. This is the reason that some systems with high

I/O loads purchase more disks than they need for a given storage capacity [Gray90]. It is also

for this reason mat systems with high I/O loads periodically redistribute data to balance these

loads across all disks [Geist82].

The problem of disk contention is aggravated by I/O architectures with shared disk inter-

connects and no buffering at each disk. The problem is that the interconnect must be available

when the disk reaches the requested data or the transfer must be retried. IBM's I/O architecture,

for example, has this problem. Because they overlap one disk's positioning delay with

another's transfer on the shared interconnect, IBM disks signal the interconnect managing dev-

ice, called a storage director, shortly before the disk's read head reaches the requested data

[Aheam72]. This early warning capability is called Rotational Position Sensing (RPS). If the

storage director does not become free soon after it receives a RPS warning signal, tile signaling

disk's reconnection will fail, and it must try again after another rotation. As each disk's utiliza-

tion increases, the probability of contention over shared interconnect rises, and the delays

resulting from each retry after an RPS reconnect miss seriously degrade latency [Buzen86,

BuzenSTJ. A rule of thumb used for IBM systems in the 1970s was to distribute files or pur-
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chase new disks until shared interconnect was utilized less than 30% of the time and disks were

utilized less than 40% of the time [Beretvas78]. Managers of large IBM systems still follow

these rules [Peters87],

One way to reduce the unnecessary revolutions induced by a busy interconnect is to pro-

vide a small buffer between the disk and the interconnect As long as the interconnect becomes

available before a disk's buffer overflows, that disk is not required to retry its transfer. Because

disk-to-host interconnect can easily be made faster than disk transfer rates, buffering at each

disk allows greater use of disks [HoutekamerSS]. Although non-IBM systems have incor-

porated buffering at the disk [Massiglia86 pp 242], IBM's policy of backward compatibility

makes per-disk buffering difficult in IBM systems [CormierSS, HoutekamerSS]. Until IBM can

move its application programs to a higher level of I/O abstraction - for example, their current

System Managed Storage (SMS) interface [Gelb89] - they must rely on disk load balancing and

disk caching (discussed in the next section) [Goldstein87] to avoid RPS reconnect-miss delays.

Another way to reduce disk access times is to reorder outstanding disk accesses [Den-

ning67, Toerey72]. This method can be highly advantageous when disk queues are deep,

because disk positioning times are a major contributor to disk access times. Deep queues also

mean long contention delays, however, and in systems without buffering at the disk, severe

delays caused by RPS reconnect misses result Capacity planners use rules of thumb, such as

those given above, specificly to reduce such delays. Because these rules often result in shorter

disk queues [Lynch72], request reordering has little benefit Request reordering is still pursued

[Bates89, Geist87, SeltzerPOa] because under particular circumstances, such as the write-behind

of many files from a large file cache, it can be effective.

One approach to reducing positioning time that works well when queues are shallow relies

on multiple copies of the data. By selecting the copy mat is "closer," both seek [BittonSS] and

rotational [Scheffler73] delays can be reduced. Although most users find the cost of multiple

copies prohibitive, systems that already employ duplication for high reliability can easily
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exploit these benefits.

When transfer units are about the size of a disk track, rotational positioning delays can be

nearly eliminated by reading data in the order it is observed by the disk head and then recon-

structing it in memory [Salem86J. This approach, called zero latency reads, is particularly

advantageous because per-disk buffers are usually large enough to store at least one track. For

access units that are a fraction, /, of the size of a track, the average rotational latency plus

transfer time is reduced by /2/2 revolutions1 by zero latency reads. This reduces rotational

latency plus transfer time by at much as 33% when the access unit is a full track.

Since many user requests involve data that has been dispersed to a variety of locations

across the disk, overall latency can be improved by merging the many accesses needed to

retrieve this data. The benefit of this merging operation, also called chaining [Buzen75], is the

result of avoiding the software overhead involved in returning to the user task and issuing the

next request A more powerful method for merging requests is not to split data at all. If disk

capacity allocation is the reason data is split, a variety of allocation schemes exist that will

encourage contiguity: file system blocks can be enlarged [McKusick83], users can be required

to preallocate space [BohlSl], or file systems can employ allocation-clustering algorithms

[Koch87, McKusick83, Powell??]. Unfortunately, these mechanisms suffer from wasted capa-

city because of fragmentation.

Even if requested data is contiguous on disk, allocation schemes can shorten positioning

time. For example, by locating more frequently accessed data in the center of a disk's surface it

can be favoured with typically shorter seeks [StaelinPO]. Similarity, average seek times may be

reduced if a disk's heads are returned to the center of the disk surface whenever the disk has no

1 Without zero latency reads, the average rotational latency plus transfer time is 1/2+/ revolutions
because, with probability (I-/), a transfer rotates an average of (I-/)/2 revolutions and, with probability
/, it rotates an average of (1-//2) revolutions, to reach the data, and then rotates / revolutions to
transfer it With zero latency reads, the average rotational latency plus transfer time is l/2+/-/2/2 be-
cause, with probability (I-/), a transfer rotates an average of (l-/)/2 revolutions and, with probability
/, it rotates exactly 1 revolution because it collects the end of the data first
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accesses to perform2 [King87].

Another technique for reducing I/O response time is to reduce the operating system's

overhead. The basic metric for this overhead is the average number of instructions executed by

the operating system on behalf of a user's I/O request, known as the I/O path length. Unfor-

tunately, many other techniques for reducing I/O response times, such as file caching and

request reordering, usually increase I/O path lengths.

One cost on which supercomputer applications have focussed is the conversion between

internal (usually binary) and external (usually ASCII) formats [Abu-Sufah86, White84].

Significant savings are possible in this area because about 25% of a Fortran program's execu-

tion time is spent formatting [DitzelgO, KnuthTl], and unformatted I/O can be as much as 130

times faster than formatted I/O in Cray Fortran programs [Cray88].

Offloading format conversion from the central processor is one example of the potential

advantages of peripheral, or I/O Processors (IOP). lOPs can be as simple as Direct Memory

Access (DMA) devices that copy data from peripheral devices to memory by "stealing" proces-

sor cycles [Astrahan57, Serell62], or they can be as complex as processing units with separate

instruction sets and memory [Brown72, Thomton64]. Although many functions offloaded are

best executed on lOPs because of their simplicity and frequency of occurrence, the decision is

not as clear with more complex functions. Peripheral processors that have simple or inaccessi-

ble debugging features are also typically less powerful; code migrated to an IOP is more

difficult to debug and frequently runs more slowly than on the central processor.

Extreme examples of offloading function from the central processor to improve a user's

overall response time can be found in various processor-per-disk-track [SlotnikTO] and

processor-per-disk-head [Kannan78] database machines. Although these designs promise sub-

stantial parallelism to decrease overall execution time, they can also generate more work. For

2 This technique works best when there is little locality in the disk workload.

18



example, using the search function in IBM disk controllers to select the disk sector with a

matching key can be slower than a main memory search [Buzen75] because the search function

requires each record be stored in a separate sector, wasting the data capacity of a track with

intersector gaps. A main memory search, in contrast, allows each track to be packed with a few

multiple-record sectors, thus allowing more data to be searched with each disk revolution.

Perhaps most important, however, is the cost of these designs; special-purpose disks are more

expensive and system costs are dominated by disk costs. The success of parallelism in database

machines really depends of the availability of a vast I/O bandwidth [BoralSSJ.

Disk designers have also introduced products with architectural modifications intended to

reduce average access time. Disk transfer time can be sharply decreased by transfering from all

magnetic surfaces in parallel if read/write circuitry, normally one module in a disk, is replicated

for each surface [BucherSO, Kryder89]. To reduce average seek times, some disks have two

heads on each surface positioned over different tracks [Massiglia86]. This configuration either

restricts the number of tracks each head manages or provides disk scheduling software a choice

of the closer head. Such disk-based architectural changes are expensive because they have gen-

erally been restricted to high-performance markets where the number of units sold is low and

cost is high. They are also narrowly focussed changes; if a disk has eight parallel heads, it can

transfer eight times faster, but not more or less.

A more flexible method for increasing architectural parallelism in secondary storage sys-

tems is the disk array [Jilke86]. Disk arrays have two powerful advantages: they increase the

ratio of disk heads to user data so that disk contention is reduced [PattersonSS], and they stripe

files across multiple disks so that large accesses are serviced in parallel [Kim86, Livny87,

Salem86]. Chapter 3 discusses in-depth the advantages of disk arrays and expectations for their

performance.
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2.1.5. Lowering Memory Miss Ratios

A powerful technique for overcoming the access gap problem by exploiting locality is file

or disk caching [OusteihoutSS, Powell??, SmithSS]. Caching is a well-known'and well-used

technique for increasing hit ratios based on the principles of temporal and spatial locality. If the

right, small subset of memory hierarchy level /+! is kept in memory hierarchy level /. then the

traction of processor references satisfied at level / can be increased. This technique is so suc-

cessful that most levels of the memory hierarchy now function as caches for slower and larger

levels.

Main memory was first used in earnest as a form of cache for disk storage when program

working space became larger than the available main memory. Although at first some contested

that only a programmer could optimize the moving of program overlays between disk and main

memory, today most of main memory is devoted to caching portions of each task's virtual

memory automatically [Denning70]. Although virtual memory is a technique that allows pro-

grams to escape the confines of physical memory rather than a technique for caching disk

resident objects, it is an important contributor to I/O traffic. Substantial research has been

devoted to the algorithms for selecting which portions of what tasks should be kept in main

memory [DenningSOJ. While it is unlikely that new methods for reducing virtual-memory disk

traffic will be forthcoming, increasing DRAM density and decreasing DRAM cost-per-bit is

leading to larger main memories. Unfortunately, the size of the average program is growing at

50% to 100% per year [Patterson90 pp 16]. Since this rate of growth is comparable to that of

DRAM density, any lowering of page-fault rates is most likely to be the result of decreasing

numbers of users per system.

As the size of main memory increases, designers of operating systems have begun to use

portions of it to cache file data normally stored on disk. Hies that are frequently used for

research and engineering workloads tend to be small and short lived [Ousterhout85, Powell??].

For these files a relatively small portion of main memory can be quite effective for reducing
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disk traffic, especially when disks are on the other side of a local area network [Lazowska86,

NelsonSS]. Disk caching serves the same purpose as file caching but maintains the cache at the

disk controller. Although this is a less efficient use of DRAM and can degrade performance by

increasing controller utilization [Buzen82], it is easier to integrate with existing operating sys-

tems, it increases user confidence that recently written file data wfll not be corrupted by

software crashes, and it avoids the problem of consistency that arises if multiple processors

cache data in main memories they do not share [Grossman85, SmithSS].

Disk or file caching in larger and cheaper main memories, unfortunately, will not compen-

sate for the memory-disk access gap experienced by all applications programs. Database sys-

tems, especially on-line transaction processing systems, frequently access customer data from

large databases in essentially random patterns [Garcia-Molina84]. For example, because a

customer's bank balance is not accessed frequently, each transaction requires at least one disk

access [AnonEtAISS]. In applications like these, response time is directly sensitive to disk per-

formance and contention.

Scientific computing applications can also defeat caching because data objects are often

significantly larger than main memory [Kim87a]. In such cases, Kung has shown that to match

an increase in processor speed by a factor of a requires main memory size to increase by

approximately a factor of a2 for Gaussian elimination, and by a power of a for Fast Fourier

Transforms (FFT) [Kung86]. Since main memory costs are a major portion of a system's total

cost, it is prohibitively expensive to reduce I/O traffic mis way. Additionally, as systems

acquire more and faster processors, many scientific applications simply increase the problem

size [GustafsonSPJ. This increase can lead to huge data objects spread across many processors.

The Uliac IV was used in such a way, and it spent as much as 40% of its time loading and

unloading data [Feierbach79].

Even in general engineering workloads where caching satisfies most read requests, mere is

still a need for high bandwidth for disk writes. For reasons of security, write-behind caches
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periodically write all recently written data because software crashes are too frequent to trust

copies in main memory. Recently, effort has gone into designing a new file system, called the

log-structured file system, that optimizes write bandwidth by structuring the file system as an

append-mainly log [Ousterhout89, Rosenblum90]. This approach has the advantage that all

writes should be sequential and large.

2.2. Rapidly Growing Processor Performance

Not only is the access gap problem between memory and disk far from solved, it is getting

worse. Very Large Scale Integration (VLSI) technologies and multiprocessing are providing

vast increases in processing capabilities per dollar [BellSS, Burger84]. The microprocessor

developers at Intel [Gelsinger89, Moore75, Moore79, Myers86] have increased performance at

a rate of 37% per year while holding chip costs nearly constant since they introduced their 8080

chip in 1974. They believe that "every concept proven useful in mainframe or minicomputers

has migrated or will migrate onto the microprocessor." They also expect that multiprocessing,

which has improved minicomputer and mainframe performance by 20% per year, will soon be

used internally on a microprocessor, and they envision 2000 VAX MIPS on a chip by the year

2000. To achieve this goal, microprocessor performance must grow at about 65% per year dur-

ing the 1990s. And rapid growth in processing power is not confined to microprocessors; Bell

[Bell89] projects that multiprocessor supercomputer performance wfll grow at about 175% per

year in the early 1990s.

As processor performance grows rapidly, comparable speedups in the execution of pro-

grams should be expected. Alas, if programs spend part of their execution time waiting for disk

accesses to complete, overall speedup can fall far short of expectations. Amdahl [Amdahl67]

noticed this phenomenon! in the context of overall speedup in a parallel system .when a portion

of execution was serial. His observation, known as Amdahl's law, has been generalized to state
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that, "the performance improvement to be gained from using some faster mode of execution is

limited by the fraction of time the faster mode can be used" [Patterson90 pp 8]. In the context

of I/O, this means that improving only the processing speed of a system will not proportionally

improve the execution rate of programs that perform I/O.

In contrast to processor performance, the access time for a magnetic disk, which is con-

trolled mechanically, has been decreasing much more slowly. For example, in the last two

decades, IBM increased the seek speed of their main disks by a factor of three, increased their

rotational speed by 20%, and increased their data transfer rate by a factor of five [HarkerSl,

IBM3380, IBM3390]. In other words, the time to seek from a random cylinder to a random

cylinder, rotate half a revolution, and transfer four kilobyte decreased by 60% in 18 years - only

5% per year! Even if processor performance grows only at 37% per year for 10 years, process-

ing speed should increase by more than a factor of 20, but disk speeds wfll not even double.

It is interesting to note that the growth of DRAM performance, about 7% per year [Patter-

son90 pp426], is only slightly faster than the growth of magnetic disk performance, so the

memory-disk access gap is not widening quickly, and the increasing gap between processor and

disk speeds is actually widening the relatively small gap between cache and memory perfor-

mance much more quickly. System designers have been compensating for this widening

cache-memory access gap with larger caches to further exploit locality, with larger transfer

units to amortize initial access overhead, and with increased memory parallelism to overlap

multiple accesses. The success of these techniques passes the pressure of processor perfor-

mance improvements onto I/O performance. Consequently, the same techniques need to be

applied to I/O systems. The previous section discusses the application of the first of these tech-

niques - the exploitation of locality with disk and file caching - and Section 2.1.4 discusses

approaches for increasing transfer unit size using read-ahead and write-behind. The final

approach, parallelism internal to the disk system, is one of the goals of disk array research. The

success of this last technique is discussed in Section 3.4.
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As the performance of the interconnection between processors and main memories is

expanded, it widens the difference between processor-memory bandwidth and memory-disk

bandwidth. I call this difference the memory-disk transfer tap. The transfer gap adversely

affects the performance of applications that issue large I/O requests, and it hinders the perfor-

mance of optimized designs such as the log-structured file system mentioned in the previous

section.

2.3. New Opportunities in Secondary Storage Technologies

Although disk technology is not improving its performance as quickly as is processor

technology, it has not been stagnant either. The industry of mass data storage is growing at a

rate of 30% per year and currently accounts for 20% of computer revenues [Bortz90]. During

the past 30 years the storage density of a disk's surface has increased at an average rate of 22%

per year, and in the last 20 years the rate has increased to 26% per year [Frank87]. There is no

reason to assume that this growth will not continue:

The fundamental limit for information density in magnetic recording technology, for example, is
at least four orders of magnitude beyond what has been achieved in the commercial devices, and
laboratory demonstration devices indicate that there are no overwhelming obstacles to continued
improvement at high rates for the remainder of the twentieth century [Bortz90].

In fact, IBM recently demonstrated a laboratory disk system with a storage density of over

one Gbit per square inch, 18 times greater than that of their newly introduced top-end 3390

[Wood90b]. At a density growth rate of 26% per year, this technology will be "on time" even

if it takes 12 years to reach the market. Because one Gbit per square inch is the projected norm

by the year 2000 [Kryder89], the growth rate of surface density must increase about 30% per

year during the 1990s.

Until recently, magnetic disk technology was driven by the high-performance computer

market and produced expensive, large-diameter (14-inch) disk systems. The consumer market
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for personal computer storage products has changed the industry, however. For now and at

least for the near future, a large consumer demand will continue to create a competitive market

for high-density, small-volume magnetic storage products.

As the market for small-diameter disks developed, at least three trends became clear.

First, small volume is much more important in small-diameter disks than in large-diameter

disks, so aggregate small disks can achieve greater capacity in similar sized boxes [Jilke86].

Second, because small-diameter disks have shorter seek distances and lighter moving parts,

"tolerance demands on electro-mechanical systems are more easily achieved in small form fac-

tors" [6ortz90]. Finally, sensitivity to price in the burgeoning personal computer and consu-

mer electronics markets is streamlining the industry [HoaglandSS]:

Magnetic recording data storage thus not only has a level of R&D characteristic of a high technol-
ogy, but also responds to a commodity market, more normally associated with a mature technolo-
gy-

These trends have combined to change the magnetic disk:

(1) the large diameter disks (14-inch) are disappearing;

(2) the best price per megabyte is presently found in the 5'/4-inch diameter disks and is

expected to move to the 314-inch diameter disks soon; and

(3) disk reliability, weight, and power consumption have all rapidly improved.

While these changes are auspicious for the personal computer and laptop markets, they

seem incongruous when compared with the needs of large systems. Small-diameter disks have

lower capacities and slower data transfer rates. These characteristics would appear to be exactly

the wrong ones to satisfy the trend toward rapidly growing processing performance. However,

many small-diameter disks can be packaged into an array with significantly superior perfor-

mance relative to the large-diameter disks they replace [Jilke86, PattersonSS]. This crucial

feature of disk arrays is discussed in detail in Chapter 3.
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2.4. Replacing Magnetic Disks with DRAM: How Soon?

The ideal and, perhaps, inevitable way to make sure that programs run fast is to make

main memory large enough to store all on-line data. Twenty years ago main memory was about

2,000 times as expensive per bit as a magnetic disk [Pugh71]. Today the difference is down to

a factor between 10 and 40. Despite this large decrease in the relative cost of main memory, it

is still too expensive to replace disks with DRAM. With 40% to 60% of all but the least and

most expensive systems' cost invested in disk storage [Bodega89], replacing disks with DRAM

increases the total cost of a system by a factor between 5 and 25!

The price gap between magnetic disks and DRAM has been rapidly narrowing. Between

1977 and 1986 the price per bit of DRAM decreased by 38% per year [Yeack-Scranton90]

while disk prices per bit were decreasing by 23% per year [Hoagland89]. As Rgure 2.1a shows,

if this pricing trend continues for the next few decades then the price-per-bit of DRAM will

cross disk's price-per-bit in 11 to 17 years (2001 to 2007). When DRAM pricing approaches

disk pricing, their strong performance advantages will be sufficient reason to replace magnetic

disks. From these estimates, the demise of magnetic disk storage should be expected in 11 to

17 years or less.

However, magnetic disks may survive much longer than 17 years. First of all, DRAM

prices did not decrease at 38% per year during 1986 through 1988; in fact, prices rose in what is

now referred to as "a temporary excess of demand relative to available supply" [PattersonPO

pp 55], or in other quarters as "gouging" [Yeack-Scranton90]. This price increase had the

effect (shown in Figure 2.la) of stalling the crossover date by about five years. Since the disk

market is relatively diverse and stable, high-stakes international battles for the DRAM market

may lead to similar abnormalities in the future, each one delaying the crossover date still

further.

Another obstacle to an early pricing crossover date is that equivalent capacity in the form

of a collection of DRAM chips does not make a secondary storage system. In addition to basic
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Figures 2.1a and 2.1b: Extrapolations for the Ratio of DRAM to Disk Price per Bh. These
two figures show the ratio between DRAM and disk price-per-bit against the year extrapolated to
2020. In Figure 2.1 a on the left is an estimate favoring DRAMs. Using a range on the 1990 ratio
of 10 to 40, it assumes that the rate of improvement for DRAM price-per-bit is 38% per year after
1988 and that the corresponding rate of improvement for disk price-per-bit is 23% per year. With
this model, the date that the price-per-bit of DRAM crosses the price-per-bit of disks is between
2001 and 2007. In Figure 2.1b on the right is an estimate favoring disks. Using a range on the
1990 ratio of 20 to 50. it assumes that the rate of improvement for DRAM price-per-bit slows from
38% to 35% per year in 1995 and that the corresponding rate of improvement for disk price-per-
bit rises from 23% per year to 26% per year in 1984. then to 30% per year in 1990. With this
model, the date that DRAM price-per-bil crosses the price-per-bit of disks is between 2027 and
2040.

enclosure, power, and cooling costs, replacing magnetic disks with DRAM should provide the

familiar sense of confidence users experience when they know that their data is stored on a

non-volatile medium. Although the technology to make DRAM as reliable as magnetic disks is

not challenging - built-in battery and magnetic tape backup systems will suffice - the addi-

tional cost will further delay the pricing crossover date. Representatives from the disk industry

estimate that in 1991 DRAM secondary storage will cost at least a factor of 50 more than the

best price for 3V4-inch magnetic disks purchased in large volumes. Beginning with this factor

of 50 between DRAM and disk, the earliest crossover date is 2009.

Additionally, some people object to extrapolating the pricing trends from before 1986 into

the 21st century. This objection stems from the fact that prior to 1986, magnetic disk prices
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were not under any pressure from DRAM. Restricting attention to the portion of the magnetic

disk market that was under heavy pricing pressure, the small-diameter disks demanded in the

personal computer market, disk pricing decreased at 26% per year [Hoagland89}, faster than in

the magnetic disk industry as a whole. This trend has been extrapolated to suggest that prices

per bit will decrease by up to 30% per year in small-diameter disks [Bortz90]. At this rate,

DRAM will take until 2022 to overcome its price-per-bit disadvantage, which now stands at a

factor of 50.

As the DRAM price disadvantage decreases, it will capture an inflating portion of the disk

market If the magnetic disk market begins to shrink, then the number of disk manufacturers

and the size of their profits should shrink as well, and the technology growth rate would prob-

ably slow. Why then is the demand for disk capacity growing at 40% per year [HoaglandSS]?

Today, only 1% of stored information employs a magnetic medium; about 95% is still found on

paper [Kryder89]. While DRAM pricing chases disk pricing, both are rapidly decreasing; mere-

fore, more and more data is worth storing on-line - a situation that provides lucrative growth

opportunities for the magnetic storage industry as well as the DRAM industry.

Finally, taking a closer look at the technological obstacles that will be encountered by

DRAM and magnetic disk technologies prior to the crossover of their price-per-bit, mere may

be reason to expect that this date will slide further into the future. Although there are no major

obstacles to continued disk technology improvements over at least the next decade, DRAM

technology will have to make the transition from optical lithography to ultraviolet and X-ray

lithography [HodgesT?, Kryder89, Wariaumont89]. Because of this transition, it is likely that

the rate at which DRAMs will improve in price-per-bit will slow. It has been suggested that X-

ray lithography will be used only in a niche market for high-performance, high-cost integrated

circuits and, because continual reductions in feature size will aggravate reliability problems in

semiconductor materials, that increases in DRAM capacity will soon come from alternative

technologies such as multichip modules [Hodges90]. In this case, the rate of decrease in
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DRAM price-per-bit will slow and the pricing crossover date may very well be delayed or can-

celled. Figure 2.1b shows the trend in DRAM price-per-bit relative to disk price-per-bit for

cases like these. DRAM's rate of price-per-bit decrease slows to 35% per year,'and the cross-

over date is 2027.

Semiconductor technology may eventually provide secondary storage systems with lower

costs as well as better performance than do magnetic disks, although probably not before 2000

and maybe significantly later. Until that time, exploding processor performance will exacerbate

the already large access and transfer gap problems, placing even greater importance on research

to Input/Output architectures.

2.5. Summary

In this chapter I have addressed the reasons for pursuing research into Input/Output, par-

ticularly into secondary storage on magnetic disks. Certainly, the gap between memory speeds

and disks speeds has been and continues to be a major problem for computer systems.

Traditional approaches for coping with this gap include multiprogramming, asynchronous

I/O, disk load balancing, rules of thumb that limit utilization, request reordering, contiguous file

allocation, special-purpose disk devices, and file and disk caching. Because none of these

solves the problem for all important applications, new solutions remain desirable.

In addition, the access gap problem is worsening because the rapid growth of computa-

tional performance induced by VLSI and multiprocessing is not being matched by performance

increases in secondary storage technologies. There is also an emerging transfer gap between

memory bandwidth and disk bandwidth that promises problems for applications that issue large

transfers. The good news, however, is mat the trend toward small-diameter magnetic disks pro-

vides a new opportunity for architectural parallelism in the I/O system, the disk array. In the

next chapter, I will delve more deeply into the advantages and disadvantages of disk arrays.
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Finally, alternative technologies, particularly solid-state disks, are not expected to be

cost-effective replacements for magnetic disks for at least one and probably several decades.
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CHAPTER 3

Redundant Disk Arrays

This chapter provides a broad understanding of redundant disk arrays. It focuses on the

factors that make disk arrays an inevitability, the alternative encodings that provide failure pro-

tection for the array's data, and the performance that can be expected from redundant disk

arrays. Much of the material in this chapter reviews previously published research of which I

was an author.

In Section 3.1 of this chapter I explain how disk arrays exploit the emergence of high-

performance, small magnetic disks to provide cost-effective disk parallelism that combats the

access and transfer gap problems. The flexibility of disk-array configurations benefits manufac-

turer and consumer alike. In contrast, I describe in Section 3.2 how parallelism, achieved

through increasing numbers of components, causes overall failure rates to rise. Failure predic-

tion is very useful for anticipating many of these failures, but it cannot guarantee that data wfll

not be lost Data backups have traditionally been used for reducing the amount of data lost dur-

ing failure. Backups are becoming unmanageable, however, because of the volume of on-line

storage, the rate that on-line storage changes, and the requirement for minimal interruption of

service during failure recovery. Redundant disk arrays overcome these threats to data reliability

by ensuring that data remains available during and after component failures.

31



As far as the organization of redundant data in a disk array is concerned, I treat it as a cod-

ing problem in Section 3.3. The redundancy internal to a disk corrects non-catastrophic failures

and identifies catastrophic failures, whereas redundancy at the disk-array level corrects catas-

trophic disk failures. Codes as simple as parity, which is not a single error-correcting code, can

provide single-failure protection because of this internal redundancy and its ability to identify

failed disks. More complex and expensive codes can be used to provide multiple-failure correc-

tion in very large or very reliable disk arrays.

In Section 3.4,1 review the performance expectations for redundant disk arrays. Disk

arrays derive their performance advantages by "striping" the data across multiple disks. The

greatest benefit of striping is mat it decreases transfer times for large requests. In addition, strip-

ing automatically distributes independent accesses to balance the workload across disks.

Because each disk access involves substantial overhead, the unit of striping must be carefully

chosen to avoid a mismatch with the array's workload. Redundant data reduces some of the

performance benefits of data striping, however, because this redundant data must be updated as

user data is updated. Without assistance from file system or application software, the main

penalty to performance is as little as one and as much as three extra accesses that must be per-

formed with every small, random access. In contrast, with a file system that groups small write

accesses into large write accesses, an N+l-parity redundant disk array with block-interleaved

striping can provide nearly all of the performance of its disks as well as inexpensive, high relia-

bility.

3.1. The Emergence of Disk Arrays

The performance of secondary storage systems is not improving fast enough. In Chapter 2

I outline the access and transfer gap problems and discuss classes of important applications for

which conventional approaches do not overcome these problems. Although magnetic disks
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Characteristics

Disk Diameter (inches)
Formatted Data Capacity (MB)
MTTF (1,000 hours)
Number of Actuators
Max I/Os/sec/Actuator
Max I/Os/sec/Box
Transfer Rate (MB/sec)
Power/Box (W)
Volume (cubic feet)

IBM
3380

14
7.500
-

4
50

200
3

1,650
56

Fujitsu
M2361A

10V4
600
35
1

40
40
2J

640
3.4

Conner
CP3100

3V4
100
30
1

30
30
1

10
0.13

Table 3.1: 1987 Magnetic Disk Technology Comparison. This table compares the relative
price, reliability, performance, capacity, volume, and power specifications for specific examples
from three classes of disks. An IBM 3380 Model AK4 is a large, high-performance disk used ex-
tensively in mainframe computer systems. A Fujitsu M2361A "Super Eagle" is a disk of inter-
mediate size and performance thai is used in minicomputers and workstation file servers. A
Conner Peripherals CP3100 is a small disk used in workstations and personal computers. Most
data is taken from manuals {ConnerSlOO, Fujitsu2361, IBM3380J. The 3380's capacity is based
on a single 47,476-byte sector per track; tfa 3380 is formatted with 512 byte sectors to match the
smaller disks, its capacity is reduced to 51% of its listed value. Mean Time To Failure (MTTF) is
not specified for the 3380. Its design goal calls for 98% of 3380 spindles to survive at least seven
years [Mitoma90J. If spindles have exponential lifetimes, then the MTTF of either spindle in a
3380 is about 1300.000 hours. Section 42 reports that 3380 units suffered failures at a rate of
about one in six years [BalansonSSj. This data suggests 3380 MTTF was about SOjOOO hours.
Maximum 11 Os per second, per actuator refers to the maximum number of single-sector accesses
per second that can be performed by each actuator, where each access requires a seek from a
random cylinder to another random cylinder plus a rotational latency delay to a random location
on the target track. The 3100's volume is based on the shelf dimensions in Berkeley's "RAID the
Second" prototype: nine disks on a 19-inch by 30-inch shelf with a 3'/*-inch shelf pitch. The data
in this table is derived from [Patterson87] and was collected in 1987.

may eventually be replaced by much faster main memory, this eventuality is decades away, as

is demonstrated in Section 2.4. Until that time, arrays of magnetic disks offer parallelism that

can be exploited for substantial improvements to secondary storage performance. This section

presents the reasons, including but not limited to increasing performance, why secondary

storage systems must inevitably employ disk arrays.

From my perspective, the primary reason for adopting disk arrays into secondary storage

is the parallelism that is achieved by an appropriate distribution of data over many disks. The

large number of disks that enable this parallelism are by no means new to secondary storage.

Traditionally, large collections of disks, sometimes called disk farms, arose to satisfy the need

to store large amounts of data on-line. With capacity as the main reason for building a disk
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farm, its component disks are generally large and, as a result, expensive. Disk arrays, on the

other hand, are composed of many small-capacity disks, so they deliver the same level of paral-

lelism at a much lower capacity and cost or provide a much higher level of parallelism at the

same capacity and similar cost

To exploit the parallelism inherent in either disk farms or disk arrays, data must be distri-

buted appropriately. Traditionally, the distribution of data across a disk farm gives rise to sub-

stantial differences in the utilization of individual disks [Friedman83, Kim87b]. To support a

large throughput for the small, random accesses typical to database applications, data that is fre-

quently accessed should be distributed or balanced over many disks as evenly as is possible. In

disk farms, this is explicitly done by application programs or customers [Gray90, LivnyS?

Characteristics

Disk Diameter (inches)
Formatted Data Capacity (MB)
MTTF (1,000 hours)
Number of Actuators •
Max. I/Os/sec/Actuator
Max. I/Os/sec/Box
Transfer Rate (MB/sec)
Power/Box (W)
Volume (cubic feet)

IBM
3390

10%
22,700

—12
50

600
4.2

2,900
97

Seagate
ST41600

5>/4

1,350
150-250

1
55
55

3-4.4
37
1.0

IBM
0661

3V*
320
150

1
45
45

1.6
12
0.13

IBM
WDA-260

2%
63
45

1
35
35
1.1
3
?

Table 3.2: 1990 Magnetic Disk Technology Comparison. Since the data in Table 3J was col-
lected. IBM has introduced the IBM 3390 [1BM3390] as its new, top-end mainframe disk subsys-
tem, the IBM 0661 model 370 "Lightning" [IBM0661J as its high-performance low-end disk sub-
system, and, most recently, the IBM WDA-260 as its portable computer disk. With the 3390, IBM
takes a step toward arrays of smaller disks. With the 0661 and WDA-260, IBM demonstrates that
small disks can be almost as fast and reliable as their larger competitors. The 3390 capacity as-
sumes maximum size sectors; see the note about 3380 capacity in the caption to Table 3.1. Again,
as with the 3380, the 3390 does not have a specified MTTF, but each spindle is designed to sur-
vive seven years with a 98% probability. This suggests that the 3390 MTTF for spindle failures is
designed to be about 500,000 hours; including failures in the electronics can be expected to sub-
stantially reduce (perhaps more than halve) this MTTF. Seagate's ST41600 "Elite" is one of the
largest and highest-performing S'/t-inch disks lSeagate90]. The range of its MTTF distinguishes
an office environment from a computer room environment and the range of its transfer rate distin-
guishes the amount of data stored on the inner tracks from the amount stored on the outer tracks.
Volumes for the 5'/*-inch and 3'h-inch disks are taken from Berkeley's disk array prototypes. The
caption in Table 3.1 describes the 3'A-inch volume calculations. For the volume of the 5'/*-inch
disks, Berkeley's prototype disk array, called "RAID the First," contains 24 5'/t-inch disks in a
six-foot high. 19-inch by 30-inch cabinet (one cubic foot per disk).
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pp72], but in disk arrays, it is automatically done by striping data over multiple disks

[Salem86]. Striping can also counter the transfer gap problem experienced by workloads that

feature large sequential accesses [Kim87a, Reddy89]. This is done in Cray supercomputing

systems by striping data on their swap storage disks [Johnson84]. In Section 3.4 I examine

striping's exploitation of disk parallelism for improving performance in more detail

A second reason for the inevitability of secondary storage systems built of disk arrays is

the impending demise of large-diameter disks. Section 2.3 describes how the state-of-the-art in

magnetic disk technology has moved from large, nigh-capacity disks to smaller, lower-capacity

disks. Tables 3.1,32, and 3.3 show particular comparisons of some of the premier products of

each diameter. With IBM's move to 10%-inch disks in its top-end product, there is no longer

any active development of 14-inch disks. Moreover, the performance of each of the 10%-inch

disks in IBM's 3390 is inferior to Seagate's 5V4-inch Elite disk. These comparisons are indica-

tive of the overall trend in the disk industry; by most metrics 5Vi-inch disks are currently the

best, and most disk designers expect that 3V4-inch disks will soon be supreme. But if large-

capacity disks are being phased out and if customers' requirements for on-line storage continues

Disk Diameter (inches)

Disk Unit Cost ($/MB)
Disk Unit Price ($/MB)

10%

$1.00
$6-$10

8

$1.80

5»/4

$1.25
$1.60

3V4

$1.60
$2.50

2V*

$4.00
$8.10

Table 33: 1990 Magnetic Disk Cost and Price. This table shows the variation in cost per
megabyte [Mitoma90] and the price per megabyte [Lomas91J of different diameter disks. Cost
numbers include disk electronics and are based on industry wide analyses (they are not necessari-
ly IBM costs). Price numbers for the smaller four diameters are based on first-quarter 199J
discount rates available on large purchases from Seagate. For the price per megabyte of 10-inch
products, the IBM 3390 has a list price of about $10/MB [Mitoma90]. The range I report as-
sumes that IBM's best customers are able to get discount rates as large as 40%. Magnetic disks
achieve a low cost per megabyte because disk platters are inexpensive and. in 1990. contain 50 to
80 megabits per square inch. Although 5'/>-inch and 3'/>-inch disks contain much less recording
surface, their prices can remain low because of very high manufacturing volumes. It is estimated
that in 1989.12 million 3'A-inch disks and 63 million S'A-inch disks were shipped, but only 0.6
million 8-inch or larger disks were shipped. The 2'A-inch disk costs are high now because this
product has not yet been produced or snipped in sufficient numbers. By 1992, the cost of2'/i-inch
disks per megabyte should be below two dollars lMitoma90}.
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to increase as rapidly as it has over the past decade, the number of disks in secondary storage

systems must swell

Although replacing large disks with many smaller ones is inevitable, rapidly expanding

disk farms are logistically undesirable. For example. Table 3.2 shows that an IBM 3390 unit

contains 12 separately-accessed volumes with a total storage capacity of up to 22.7 gigabytes.

Seventy-one, 320-megabyte, 3V*-inch IBM 0661 disks are required to replace each IBM 3390;

hence cabling, controllers, and administrative domains are all increased by a factor of six! For-

tunately, disk arrays resolve these problems.

The disk array alternative is suggested by packaging because a single package with the

storage capacity of previous large-diameter disks, but built with smaller capacity and smaller

diameter disks, contains an array of disks [Jilke86, Kim86, PattersonSS]. By using striping to

make many disks appear as a single, larger disk, a disk array provides the opportunity for access

and data parallelism without intervention by users of arrays or by administrators. The number

of cables and controllers can be kept from growing as quickly as the number of disks by con-

necting many disks to the same interconnect and controller. This sharing of cabling and con-

trollers can be problematic, however, because of the delays caused by the RPS reconnect misses

that arise when multiple disks share the same cable and controller. This problem, described in

Section 2.1.4, can be overcome with buffering and intelligence embedded into each disk.

Fortunately, most small-diameter disks connect to their controllers across intelligent inter-

faces, such as the industry standard Small Computer System Interface (SCSI) [ADS8S,

ANSI86] or Intelligent Peripheral Interface (IPI) [Allan83, ANSI87], or proprietary protocols

such as Digital Equipment Corporation's Mass Storage Control Protocol (MSCP) [Massi-

glia86]. Intelligent interfaces are feasible in inexpensive disks because a significant portion of a

disk's controller function can be merged into a small number of VLSI chips and embedded in

the disk package at little additional cost With a dedicated controller and a small amount of

buffering in each disk, the disk-to-computer interconnect can be designed independently from
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the disk recording and reading process. This allows multiple devices to share a fast intercon-

nect without the delays associated with RPS reconnect misses.

A miid reason for the emergence of disk arrays as the preferred architecture for secondary

storage components is the opportunity for manufacturers to spread research and development

costs over a wide product line. Traditionally, a range of price and performance products is

achieved by offering a variety of disk products that are designed separately with different diam-

eters. Figure 3.1 shows how disk arrays can be configured with a variety of different numbers

of component disks to provide a complete family of products all based on the same small-

diameter disk. With disk arrays, a vendor can concentrate design talent on the single, small-

diameter disk that will be used in all products [Mitoma89]. Thus, the required ranges of price

and performance can be provided in much the same way that the design of a single processor

can provide a range of computing power in a family of multiprocessor products. In this way,

disk arrays reduce the development cost of a secondary storage product and shorten its time to

convential product line

tow end 3.5

product

14"

disk array product line

high end

product

Figure 3.1: Disk Array Configuration Flexibility. Instead cf funding four research and
development efforts to produce a family of disk products with different diameters, a disk array
vendor can focus disk design talent on a single, small-diameter disk and use a variety of disk ar-
ray configurations to provide a product family.
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market

The fourth major reason for relying on disk arrays in secondary storage is the opportunity

they provide to achieve high-reliability at low-cost Conventional systems offer two choices for

the control of reliability; either accept the inherent reliability of a disk or continually maintain a

duplicate of its data on a second disk that can replace the first in the event of its failure. If the

inherent reliability of a disk is not high enough, customers are obliged to double their costs and

take the possibly overdesigned, much higher reliability that comes with duplication. Because

disk arrays contain many more disks operating in conjunction and centrally controlled, a less

expensive "N+l" parity encoding for redundancy can be employed to achieve high reliability.

This encoding maintains the parity of N disks on a single parity disk that can be used to recover

the contents of any single disk failure. For disk arrays organized into redundancy groups with

10 data disks, this approach reduces the overhead cost for high reliability from 100% to 10%.

Redundancy in disk arrays is the theme of the rest of this dissertation; its encoding choices, per-

formance expectations, and reliability estimations are covered in detail in later sections and

chapters.

Another advantage of the disk array approach to parallelism in secondary storage is its

physical space efficiency. Because small disks have a large capacity per unit volume, a disk

array can provide a large capacity and a high degree of parallelism in a small box.

For tile aforementioned reasons many vendors have products in the disk array market

They include Array Technology, Auspex, Gprico. Compaq, Cray, Datamax, IBM, Imprimis,

Intel Scientific, Intellistor, Maximum Strategy, Pacstor, SF2, Storage Concepts, Storage Tech-

nology, and Thinking Machines. Some customers, notably the NASA Ames NAS project and

the Minnesota Supercomputer Center, have developed internal redundant disk arrays to meet

their I/O needs [KlietzSS. PostonSSJ. Nevertheless, this market is developing slowly, in large

part because incompatibility problems at the application, operating system, controller, and disk

interface levels blocks full exploitation of disk arrays. Moreover, customers unfamiliar with the
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multitude of tradeoffs in the configuration of disk arrays, such as the appropriate redundancy

versus performance versus cost tradeoff, have contributed to a general "wait and see" attitude.

In the last year, however, market forecasts have improved dramatically [Devlin90]. The

installed base is nearing 4,600 arrays, mainly in local area networks for personal computers, and

is projected to be 10,000, 30,000, 60,000, and 110.000 in 1991.1992.1993, and 1994 respec-

tively.

3.2. Disk Arrays As a Threat To Data Reliability

Although the large number of disks employed by a disk array improves performance, it

also threatens data reliability since systems with more parts have more frequent failures. If a

disk array's performance is an order of magnitude larger than that of a single large-diameter

disk because the array employs an order of magnitude more disks, then the rate of failures in an

array may also be an order of magnitude larger than that of a single disk. Some form of com-

pensation for these higher failure rates is required since large increases in disk parallelism are

unlikely to succeed commercially if secondary storage data reliability is adversely affected.

Before examining such compensation schemes, I discuss the failure modes of magnetic disks.

Disks fail in a variety of ways [GloverSS, Schulze89]. The most frequent failures are indi-

vidual bits read incorrectly off the surface. These transient errors are handled by circuits inter-

nal to each disk using a "check sum" code computed and stored at the end of each sector. Usu-

ally this code allows some bit errors to be corrected directly, rather than waiting for the much

slower process of rereading.

The frequency of undetected or miscorrected errors is and must be low because such

unnoticed errors will wreak havoc in an application. For example, the WREN IV SVi-inch disk

miscorrects less than one sector in 1021 bits transferred [CDC88]. While the detecting and

correcting codes associated with each sector of existing disks suffer undetected or miscorrected
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errors with low probabilities, increasing processing speeds increase the rate at which data stored

on disk is accessed, and this increases the opportunity for bit errors to occur. For this reason,

and because each new generation of disks packs bits closer together, progressively more power-

ful codes are introduced into new disk products.

The frequency of detectable, but uncorrectable, permanent errors is higher than the fre-

quency of undetected or miscorrected errors. Detectable, permanent errors are usually detected

by factory tests. Once identified, the sectors containing these errors are marked so that the disk

will use an alternate sector anytime a user request attempts to access a defective sector. From

time to time, these flaws "grow" during operations leaving the user with a sector of corrupted

data. Most disks allow these bad sectors to be dynamically remapped to other sectors nearby,

but data is still lost In addition to protecting against data loss on the occurrence of catastrophic

failures of entire disks, redundant data schemes described in Section 3.3 also handle the loss of

individual sectors quite well by recovering their contents from other data and parity disks.

Data coming from or going to disks can also suffer transient bit losses on datapaths or in

buffers. Parity, or more powerful codes, on each path or buffer can capture most of these prob-

lems. Systematic failures in latches or error-detection/correction hardware, however, are more

serious problems. Higher-level, end-to-end error-detection codes are the best method of han-

dling these problems [GloverSS, Massiglia86 pp 148 and 220]. Additionally, by embedding

end-to-end detection codes into user data blocks, there is a second opportunity to detect those

rare but important bit errors mat the disk's internal error-correcting logic either did not detect or

miscorrected. Because of this feature, per-sector and end-to-end codes should be designed to

complement each other's detection and correction capabilities [GloverSS pp xiii].

Finally, there are complete failures of disk electronics or head-disk-assembly failures,

such as head crashes. Such catastrophic failures are self-identifying, either by internal failure

detection, end-to-end tests, or device-interface protocol violations. Although many catastrophic

failures do not actually destroy data, long repair periods can be as damaging because "the
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greatest fear that an on-line system user has is that 'die data base is down* [Dolotta et aL,

1976]" [Katzman77pp450].

In this dissertation, I am mainly concerned with the effects of catastrophic disk failures on

the reliability of data stored in disk arrays.

3.2.1. Avoiding Catastrophic Failures with Prediction

The occurrence of transient and correctable errors during disk operations provides infor-

mation that may be used to diagnose the status of individual disks and to potentially predict

imminent failures. Prediction is a special case of the diagnosis of computer system malfunc-

tions from component-error reports logged in a central file [Billmers84. TendolkarSS].

Lin's [Lin88] examination of on-line diagnosis for failure prediction delineated two

approaches to automatic diagnosis: specification-based and symptom-based. Specification-

based diagnosis employs an expert system to apply collected information to an abstract model

of the target machine's structure. This type of diagnosis has not been widely used because of

restricted fault models and extensive learning times.

Lin focused instead on symptom-based diagnosis because trends in system behavior are

good predictors of system failures [Lin88 pp 6]:

Research in trend analysis is based upon two observations. First, most failures are preceded by a
period of deteriorating behavior prior to turning into a permanent failure [Tsao83]. Furthermore,
the occurrence of intermittent faults increase as circuits age [Breuer76]. Second, any sufficiently
"large" system always has some latent problems [ShebellgS]. If any of these cases can be
detected at an early stage through extensive error logging, warning can be issued prior to catas-
trophic failure, and service can be started to minimize system unreliability and maximize the
system's effective availability.

Lin presented a set of heuristic rules for predicting the imminent failure of a component

based on logged errors. These rules, called the "Dispersion Frame Technique," look for two

failures in one hour, four failures in 24 hours, or three conditions that indicate increasing rates

of errors [LinPO]. Lin applied these rules to data collected from 20 workstation-years of error
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logs taken from 13 Sun2 and Sun3 file servers. Without additional kernel instrumentation to

collect detailed error records, the rules had little prediction success. With such additional

instrumentation, however, 15 out of 16 permanent failures would have been predicted with only

five false alarms. Although this data sample is small, it suggests that data reliability may be

enhanced with intelligent error-monitoring software.

To this end, DEC has developed a monitoring and diagnostic tool, the VAX System

Integrity Monitor PLUS (VAXsimPLUS), initially addressing only magnetic disk failures

[Emlich89]. It is built using the earlier, knowledge-based diagnostic tool SPEAR [Billmers84].

The rules used by VAXsimPLUS are also heuristic and based on daily error-collection statistics.

Depending on the type of error, diagnosis is triggered when a single day *s error count exceeds a

25-day average by more than a given threshold. Once triggered, diagnostic tests are performed

on various components until a failure theory is developed and a faulty field-replaceable unit can

be predicted.

Because DEC is sensitive to its customer's perceptions of quality and to the cost of field

visits, false prediction and excessive reporting are highly undesirable. Towards these goals,

their diagnostic tools have been quite effective. For example, during seven million disk hours,

VAXsimPLUS identified 150 disk failures and generated only three false alarms (2% of all

triggers were false alarms). Although a faulty component was correctly predicted in 95% of

cases, in those cases where data was at risk only 85% of the predictions were made early

enough to allow a disk copy to be made [Lary89].

Predictive diagnosis is one component in a data reliability strategy rather than a complete

solution on its own [Emlich89]. It is limited because some errors will escalate to failures too

quickly to be predicted and averted, and because even under direction, human intervention to

affect repair is itself prone to error. Moreover, prediction does not provide any guaranteed level

of data reliability. For these reasons, predictive diagnosis must be augmented by more direct,

data-protection mechanisms in a highly reliable secondary storage system.
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3.2.2. Protecting Data Reliability with Off-Line Redundancy

The primary method of compensating for increased secondary-storage failure rates engen-

dered by increased disk parallelism is to ensure that failure does not destroy data. Data, such as

program output files, may be entirely re-creatable in specific cases. Although this recovery pro-

cedure can be expensive and prone to error, it is not uncommon for systems to rely on manual

re-creation of at least the most recently modified data. Fortunately, most computer systems

depend on one or more forms of redundant data storage for longer-term protection.

One form of data redundancy employed in most systems is off-line, or backup copies, of

secondary storage contents. Recording backup copies limits the amount of data exposed to loss

to incremental data changes in the event of a disk failure. Backups are usually made when com-

puters are not in use, and thus the time interval between the capture of backup copies is usually

fixed. Therefore, backups cannot easily compensate for large increases in secondary storage

failure rates.

In fact, backups are becoming less effective and less desirable for several reasons. First,

the opportunities to make a backup copy of secondary storage without affecting user perfor-

mance are decreasing because computer systems are being used more continuously. This

increasing use of computer resources may result from offering 24-hour service to users or from

judiciously scheduling batch computation into time slots that are commonly under utilized

(such as the middle of the night). Each backup can also be expected take longer to capture as

computers become faster and generate more new data per day. Finally, capturing a backup copy

onto off-line storage oftens involves expensive and error-prone human intervention. Thus, not

only do backups fail to compensate for increases in secondary storage, but the desire to reduce

the dependency on backups encourages secondary storage to become more reliable.
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3.3. On-Line Redundancy: Encoding Data into Disk Arrays

Since off-line redundancy will not solve these increasing failure rate problems, automatic

redundancy is needed within secondary storage. With this class of failure protection, user data

is encoded into a form that occupies more storage capacity but allows data lost during certain

combinations of one or more catastrophic disk failures to be recovered from the surviving disks.

Encoding data to increase the probability that it can be reliably transmitted or stored, usu-

ally called error-correcting or error-control coding, is a well-developed branch of mathemati-

cal theory. There are many good treatments of introductory [Tang69, AraziSS], computer-

specific [Rao89], and comprehensive [Peterson72, MacWilliams77] error-control coding. The

search for codes appropriate to particular transmission channels or storage mediums began in

earnest with Shannon's fundamental theorem [Shannon48]. This theorem states that the proba-

bility of erroneously decoding data encoded and transmitted through or stored in a noisy

environment can be made arbitrarily small, provided that the ratio of the amount of user infor-

mation to the size of resulting encoded data is less than the inherent "capability" of the

transmission or storage channel. Because the characteristics of transmission channels and

storage media change with technology, research into appropriate codes is continuous.

Multiple metrics are needed for the selection of a strategy for encoding redundant data

onto the disks of a redundant disk array. The effect on data reliability remains a primary con-

cern because it is the reason for introducing redundancy. In error-correcting code theory, the

basic metric for a code's reliability is the number and type of errors that decoding is guaranteed

to correct When the location of the error can be identified by some mechanism external to the

code, then the error is called an erasure, and its correction is generally easier than the correction

of an error whose location is not externally identified. As Section 32 explaines, catastrophic

disk failures are self-identifying so the codes employed in redundant disk arrays correct erasures

instead of arbitrary errors. In the next section, 3.3.1,1 present alternative organizations for data

redundancy mat correct single-disk erasures, and then in Section 3.3.2. I examine double-
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erasure-correction encodings that may become necessary if large numbers of disks are used or if

users require very high data reliability. In these discussions I will review and follow the con-

straints and terminology of Gibson, Hellerstein, Karp, Katz, and Patterson [Gibson89b].

In addition to a code's ability to enhance reliability, there are three other metrics that I

will use to measure the quality of a code:

(1) a code's affect on user performance during normal operation should be minimi*^,

(2) its need for additional storage capacity should be minimized, and

(3) its affect on user performance during the recovery of the contents of a failed disk should

also be minimized.

The first of these metrics should be used to insure that during normal operation, when all

disks are fully functional, the performance penalty for maintaining redundant data is minimal.

To this end, all codes should record user data in an unencoded form so that reads suffer no per-

formance penalty. Because writes must affect redundant data as well as user data, codes should

minimize the number of additional disk accesses required for maintaining redundancy. As a

measure of this cost, the number of additional disks updated when one byte of user data is

changed is called the update penalty of that change and, where different changes induce dif-

ferent update penalties, the maximum update penalty for any data change is the update penalty

of the code.

The second quality metric applies to the additional storage required for redundant data. I

measure the ratio of the amount of additional capacity used to store redundant or "check" data

to the amount of capacity needed to store unencoded user data, and call this metric the check

disk overhead. Of course, an encoding does not operate on an entire disk at time. Rather it

treats a disk as a sequence of symbols1 that are separately encoded. A -word in the code or code-

1 In the binary codes described in this section, a symbol is a single bit However, in the non-binary
codes of Section 3.3.2.2, a symbol may be two or more bits.

45



word is the set of symbols, one from each disk, that are related because the check symbols in

this set are determined by the values of the set's data symbols. In any codeword, certain disks

contain check symbols and others contain user symbols, so I can count the ratio of check disks

to non-check disks. This ratio does not change from codeword to codeword, although the iden-

tity of the disks containing check symbols may change (see Section 3.3.12). For this reason, I

measure overhead in terms of check disks instead of check symbols or check megabytes. In the

terminology of information and check symbols, blocks of unencoded user data are information

blocks and blocks of redundant data are check blocks. Clearly, codes with low check disk over-

heads are desirable.

My third quality metric is concerned with the impact of failure recovery on user perfor-

mance. Although erasure-correction encodings allow users to access their data while a failed

disk is repaired or replaced and then recovered,2 many systems will not use this feature because

it is simpler to halt operation until the correction is complete [TBMAS400]. Some applications,

however, have such high requirements for availability that they will be sensitive to a redundant

array's performance for user accesses while it is recovering a failed disk. A detailed model of

performance during recovery has been developed for a version of N+l-parity encoded disk

arrays [Muntz90j. For the purposes of comparing encodings of redundant data, I will instead

use a simpler measure: the the minimum number of disks required to recover a single failure,

called a disk's recovery group size. This measure indicates the proportion of the array that is

degraded during a particular correction. The maximum size of a recovery group across all disks

is equal to the size of the code's recovery group. The size of a disk's recovery group also indi-

cates the number of disks that are more vulnerable to loss of data caused by subsequent failures

during correction; larger recovery group sizes are likely to reduce data reliability. Chapters is

devoted to estimating reliability as a function of parameters that an array designer manipulates

2 Recovery is the process of rederiving the contents of a disk that has been repaired or replaced;
however, sometimes the term repair includes both of these steps.
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such as the recovery group sizes in a single-erasure correcting, redundant disk array.

33.1. Single-Erasure-Correcting Encodings

Since the probability of catastrophic disk failure in any short period of time is small, the

probability of a second failure during the repair and recovery of a first failure is also small.

Hence, the vast majority of repairs will be applied to single failures. The probability of a

second failure is increased, however, if there are many disks in the array or if the first failure

causes the second. These two cases are addressed in Sections 3.3.2 and 5.5 respectively. In this

section, I examine the codes for redundant disk arrays that correct all single-disk failures.

I begin by describing a full duplication code commonly called mirroring. This code has

good data reliability, simple and fast normal operation, and fast recovery, but it also has a high

overhead cost. Less expensive codes based on simple overall parity, called N+l-parity codes,

exploit the nature of catastrophic disk failures. Because allocation of user data to disks affects

the operation of an N+l-parity redundant disk array, I address byte-interleaved striping, block-

interleaved striping, and non-striped data allocation separately.

3.3.1.1. Mirroring

Protecting disk subsystems from loss of data caused by the failure of a single disk is often

accomplished by the complete duplication of all data. Shown in Figure 3.2a, this method has

been alternatively called mirroring [Katzman77, Gray90], duplexing [DishonSS, Ng91], and, in

its more general, multiple-copy form, shadowing [Bates89, BittonSS]. It is fairly common in

systems with extremely valuable data. Each data write is applied to both disks in a pair and, in

some systems, each data read chooses the disk with the shorter seek distance to the data [Bit-

tonSS, Gray90]. High data reliability and availability is achieved when complete duplication of

data is accompanied by complete duplication of control software, datapaths, controllers, chan-

nels, and hosts [Katzman??]. Unfortunately, 40% to 60% of a system's costs are often attribut-
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Mirrored Byte Interleaved Block Interleaved

bill I

Figures 3.2a, 3.2b, and 3.2c: Striped Disks with N+l Parity, fa) Mirrored disks store a copy
of each byte on two identical disks, (b) byte-interleaved disk arrays allocate successive bytes (bO,
bl....) alternately to data disks (two in this case), and (c) block-interleaved disk arrays allocate
successive bytes to the same disk, switching to another disk at the end of the block (with 512
bytes per block in this case). In the latter two cases, parity (P(x,y)) is computed from
corresponding units on the physical disks, though the logical address of these units is different in
the two schemes.

able to its magnetic disks [Bodega89]. Therefore, complete duplication of may increase a

system's costs by 40% to 60%.

Although a mirroring code is so simple that no further explanation is necessary, I present

its analysis here to demonstrate the logic of the steps which I follow for the other cases.

Each word of a mirrored code contains two bits; the check bit is both an identical copy of

the information bit, and, because the parity of one bit is the same as the value of that bit, the

check bit is also the parity of the information bit Because each codeword's check bit is identi-

cal to its information bit, the update penalty associated with changing a codeword's information

bit is a single write to correspondingly change the codeword's check bit With a codeword of

two bits, half stored on one disk and half stored on another, the check disk overhead is 100%.

When a disk fails, one-half of every codeword stored in this recovery group of two disks

may be destroyed. If the failing disk was not identified by mechanisms internal to the disk, then



a mirrored code would not provide failure correction because the non-failed bit in each code-

word would not be identified. However, disk failures are identified by mechanisms internal to

the disk, so the location of the non-failed bit in each codeword is known, and, consequently, the

value of the bit lost from each codeword is also known. With a mirroring code, data is not lost

until the second disk in a recovery group fails before its contents can be copied onto a replace-

ment disk for the recently failed, first disk in the same group.

3J.1.2. N+l Parity

A less costly approach to single disk-failure protection can be achieved by using a parity

code [ArulpragasamSO, Park86, PattersonSS]. In a parity code, also called an N+l-parity code,

each codeword contains one bit from each of N data disks and one bit from a single redundant

data, or parity, disk. The value of the bit from the redundant data disk is equal to the

exclusive-or of bits from the data disks. If a disk is erased, a single identified bit is lost from

each codeword; the value of the lost bit is simply the value necessary to make the parity of the

data bits equal the value stored in the parity disk. While N+l parity decreases the check disk's

overhead from mirroring's 100% to 1/N, it increases the size of the recovery group from two to

N. The update penalty, however, is the same as its value for the mirroring code, because there

is only one parity bit in each of this code's words.

In a mirroring code, the relationship between the contents of the two bits in a codeword is

clear: both bits contain the same data. In contrast, in the N+l-parity code it is not clear whether

the bits of a codeword are consecutive, regularly separated, or arbitrarily separated in the file

system's address space. These three alternatives correspond to disk arrays that are striped with

a single bit interleaving unit, striped with a block interleaving unit, and not striped, respectively.

Because these three alternatives include most disk arrays of practical interest today, the next

three sections look at each more closely although the performance of redundant disk arrays is

not addressed properly until Section 3.4.2.
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3J.1.2.1. Byte-Interleaved Striping

A straightforward implementation for N+l parity would follow the example of memory

and bus data protection and bit-interleave data over the disks in an array [Kim86]. In practical

systems, however, data is more likely to be byte-interleaved because controller electronics are

more commonly designed to operate on bytes. Because an interleave unit of one byte is much

smaller than the minimum unit of modification on a disk (a sector), the characteristics of byte-

interleaved striping and bit-interleaved striping are essential the same.

Figure 3.2b shows an example of a small, striped disk array that interleaves data in byte

units across all disks. Because the interleaving unit is small, the information bits required to

compute an individual parity bit are spread over a small span of user data. Thus, parity can be

computed in a small buffer as data streams into the array. With this organization, the system

views an array as a single logical disk, and each access involves all disks.

Disk arrays employing byte-interleaved striping should synchronize the spindle motors on

each disk. This can be seen because each request into such a disk array is striped over all disks

at the same angular location, so there is no advantage to and considerable penalty from operat-

ing each disk independently. The penalty results from the fact that if N disks start searching a

track on their respective disks at random angular offsets and the data they are searching for is at

the same angular offset on each track, then the last disk to reach the data sought will have

searched an average of N/(N+1) tracks. On the other hand, if the spindle motors on all disks are

synchronized, then each disk begins and ends its search at the same location, searching 1/2 of a

track on average. With data striped over 10 or more disks, on average, the slowest of unsyn-

chronized disks requires 80% more searching than do synchronized disks.

The byte-interleaved organization presents an interface to its system similar to that of con-

ventional disks, but it transfers data much more quickly. Because N of the N+l disks in each

recovery group contain data, the data transfer rate for a request striped over one redundancy

group is N times larger than the transfer rate of a single disk. With synchronized spindles, a
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conventional interface, and a constant, fast transfer rate, a disk array with byte-interleaved strip-

ing functions as though it was a single disk with densely packed bits (fast transfer, high capa-

city, but the same rotational delay). Therefore, the byte-interleaved organization is the disk

array implementation of a Parallel Transfer Disk [BucherSO, Fujitsu2361, KryderSP] with the

addition of disk failure protection. Many of the initial offerings for commercial disk arrays, for

example, the Micropolis 1804, the Storage Concepts 51, and the Imprimis Arraymaster are of

mistype.

An important weakness of this type of disk array organization is the parallelism it wastes

by forcing every access to involve all disks. Because the time required to seek to a random

track and then search for specific data is usually much larger than the time it takes a single disk

to transfer one or a few sectors, the time taken by this type of disk array to service a small, ran-

dom access is little better than the time taken by a single disk. In contrast to executing only one

of these small, random accesses at a time on a byte-interleaved disk array, a non-striped collec-

tion of N+l disks can execute N+l small, random requests in about the same amount of time.

Therefore, a disk array with byte-interleaved striping is unable to exploit its inherent parallelism

to attain a high throughput for small, random requests. Exploiting parallelism for these work-

loads is the primary motivation of the organizations in the next two sections.

33.1.2.2. Block-Interleaved Striping

For arrays to support multiple, independent, small accesses in parallel, each access should

be confined to a single disk. Figure 3.2c shows that this can be done by allocating a block of

logical data to each drive. The unit of interleaving, a block, is one or more disk sectors in this

configuration.

Because the bits of one codeword in this code are widely but regularly separated in the file

system's address space, a small buffer on the datapath will not suffice for computing parity as

the data blocks are transferred to the disks. Instead, the computation of parity must be done in a

buffer at least as large as the unit of interleaving under the control of disk-controller firmware or
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device-driver software.

For writes large enough to change the entire "stripe" of one data block on each informa-

tion disk, firmware or software can precompute the new parity while the new information is in

memory, and the disk bandwidth spent to maintain the parity code is no more than mat required

to overwrite the associated parity data. For small writes, however, parity management can cost

as much as four physical accesses: a pre-read of both old information and old parity, a write of

the new information, and a write of the new parity. The new parity is then computed as the

exclusive-or of old parity, old information, and new information. Section 3.4.2.3 discusses

optimizations that reduce the cost of small writes.

Another problem arises if all parity data is located on one physical disk. Since all writes

would have to access this disk, its write workload would be increased by a factor of the number

of other disks, creating a bottleneck. As shown in Figure 3.3, however, the location of parity

can be shifted, and the bottleneck reduced on successive rows of one block from each disk.

This block-interleaved organization of redundant arrays is currently employed by the

NASA Ames NAS project [PostonSS] and has begun to appear in commercial products such as

Array Technology's RAID+. Lee and Katz [Lee91] examined how performance is affected by

diskO diskl disk 2
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P(b2049.b2561)
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• stripe
of one block
per disk

Figure 33: Striped Disks with Block-Interleaving and Distributed Parity. To avoid a small-
write bottleneck on the parity disk in a block-interleaved redundant array, successive stripes (the
set of corresponding blocks on each disk) allocate parity (P(x,y)) on different disks. The layout
of data and parity shown in this figure is called a "left-symmetric" placement [Lee90j.

52



the various ways parity blocks are placed. They found that the rotated parity organization in

Figure 3.3. which they call left-symmetric [Lee90], is one of the best alternatives. Although

there is little difference between alternatives at most request sizes and loads, the response time

for requests large enough to access one block from every disk can vary by as much as 30% with

different parity placements when the array is initially idle.

33.1.2J. Non-Striped

Gray, Horst, and Walker [Gray90] explored the use of redundant disk arrays with N+l

parity in systems featuring traditional database applications. Although their customers were

eager to switch from mirroring to N+l parity to reduce the cost of higher data reliability, they

were not eager to have their data automatically striped. Their customers' small and randomly

located requests did not need the high transfer bandwidth achievable by striping large files.

Furthermore, the automatic load balancing also provided by striping was unnecessary because

their database systems already provided tools to achieve evenly loaded disks.

In the absence of a good reason to stripe data automatically. Gray et aL proposed an N+l-

parity code that did not stripe. Shown in Figure 3.4, they called this scheme parity striping;

Figure 3.4: Non-Striped Disks with Distributed Parity. Because some conventional database
users do not benefit from striping, a non-interleaved N+l-parity scheme called "parity striping"
has been proposed [Gray90]. In this scheme, host file systems see each disk as a separate device
with (N-l)IN times as much data as the underlying disk can store. In this example, each of three
disks stores separate data: A, B, and C. Parity, P(x,y), is still spread evenly across disks, but it is
clustered on each disk in one large block.
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data is not interleaved, although parity remains spread over all disks so that parity updating

woik can be evenly distributed. Their parity striping scheme also allocates an of the parity in

one large block on each disk. This simplifies the integration of N+l-parity disk arrays into

existing disk management software because all of the location specific code is unaffected. For

example, code that translates a file read into a list of disk blocks to be read does not need to

know about interspersed parity blocks.

Although the block-interleaved striping organization shown in Figure 3.3 shows parity

blocks interspersed among data blocks, this is not necessary. Lee and Katz [Lee91] found this

organization for parity to be one of the best alternatives, but they also found an organization

analogous to parity striping (where parity is allocated in one extent on each disk) to be another

of the best alternatives. This latter organization is called flat-left-symmetric by Lee and Katz.

Relative to the left-symmetric parity placement shown in Figure 3.3, flat-left-symmetric parity

placement leads to better performance for large, sequential reads because interspersed parity

blocks do not have to be skipped over, and it leads to poorer performance for large, sequential

writes because it causes extra, long seek between writing information data and writing parity

data.

In Section 3.4.1.1 examine the advantage to performance provided by Gray's organization

for workloads with large numbers of small requests evenly distributed across all disks.

33.2. Multiple-Erasure-Correcting Encodings

Figure 3.5 describes an estimate for the mean time to data loss (MTTDL) in single-

erasure-correcting I/O systems suffering catastrophic disk failures [PattersonSS]. (Chapter 5

explores estimates for data reliability in more detail) As the number of disks soars, reliability

plummets; even with single-erasure correction, an I/O system of more than one thousand disks

with daily repair is less reliable than a single disk!
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Figure 3.5: Larger Redundant Disk Arrays Have Lower Reliability. The most optimistic esti-
mate for the mean time to data loss in a single-erasure-correcting array is MTTDL = (MTTFjurf
/(ffDisks X W xMTT/? ), where MTTF&t is the mean Itfetime of an individual disk, VDisks is the
total number of disks. N is the number of information (user data) disks associated with each redun-
dant data disk, andMTTR is the mean time required to repair and recover a failed disk. Chapter 5
analyses this and more complex models for array reliability. In the figure above. MTTDL is shown
in terms of the number of individual disk's mean lifetimes, each 150,000 hours, that are expected to
pass before the array suffers an unrecoverable failure. The array shown has 10% as many redun-
dant data disks as information disks; that is, it has N+l = 11. Two values for mean repair and
recovery time are shown. One hour repair requires on-line "hot spare" disks or continuous human
maintenance. A simpler scheme in which repair is carried out during daily visits by maintenance
personnel, has a mean time to repair of 12 hours.

The problem for a single-erasure-correcting code with increasing disk parallelism is an

increased frequency of multiple failures within a small span of time. Data will be lost the first

time a second disk fails in a recovery group that has not finished the recovery of an earlier failed

disk.3 If the frequency of failures rises, then the probability of closely-spaced failures also rises,

and loss of data becomes much more likely. For this reason, and for those applications that

have more stringent requirements for data reliability, redundancy encodings that protect against

3 If a sector of data on an otherwise functional disk cannot be read during the recovery of a failed
disk, then two sectors of data are lost the sector that cannot be read and its corresponding sector on the
disk being recovered. Although this destroys a relatively small amount, and will happen much less fre-
quently in a redundant disk array than in a single disk, it is considerably more likely than the loss of an
entire disk's data because the inherent rate at which disks fail to read a sector's data is quite high in a
large, busy disk array.
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multiple coincidental failures may be useful The next two sections discuss codes that correct

all double-disk failures.

332.1. Binary Symbol Codes

An array is much like a memory chip; a codeword is the set of bits at the same position in

each chip or disk. Bearing in mind this analogy to a memory system, it can be seen that the

single-erasure-correcting codes of the last section correspond to the addition of a single bit of

parity on each memory codeword. A lost disk's data can be recovered with parity protection

because, unlike memory chips, the failures covered by this encoding are all self-identifying, so

that the lost bits' values are whatever is necessary to make the parity of the data bits equal to the

values in the parity bit

Codes that compute check bits as the parity of subsets of data bits, including the single-

erasure-correcting codes of the previous section, are called binary linear codes. The present

section presents binary linear codes for double-erasure correction that minimize parity update

penalties while either maximizing data reliability or minimizing check-disk overhead. Non-

binary linear codes for double-erasure correction are discussed in Section 3.32.2.

33.2.1.1. Examples: Hamming and Two-Dimensional Parity Codes

By using the analogy to a memory system once again, it becomes clear that an obvious

candidate code is a extended binary Hamming code [MacWilliams77 pp 27]. In a main memory

system, a binary Hamming code with c check bits corrects any single error in 2c-c-l informa-

tion bits. The binary Hamming code can be extended by one more check bit to correct all single

errors and detect all double errors. A typical memory system protected by an extended Ham-

ming code might use 7 check bits with 32 data bits and provide correction for single, non-self-

identifying errors and detection for double, non-self-identifying errors. Although such a code

can and has been directly used as a single-disk failure-correction encoding [TMC87], it ignores

information identifying failed disks. In fact, the Hamming code that detects any two errors can
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be used to correct any two erasures. Any code that detects all t non-self-identifying failures can

also be used to correct all t self-identifying failures [Gibson89b, Peterson72 pp 305]. This

means that the unextended Hamming code is double-erasure-correcting and the extended Ham-

ming code is triple-erasure-correcting. Figure 3.6 shows a Hamming code with four check disks

mat protects 11 data disks with double-erasure correction.

To correct four or more simultaneous erasures, Hamming codes can be generalized to

Bose-Chaudhuri-Hocquenghem (BCH) codes [Peterson72 pp80]. Although this provides

greater correction capability and higher cost than I seek, a subclass of these codes, the Reed-

Solomon (RS) codes, are useful non-binary codes, which are discussed in Section 3.3.22.

Hamming codes are not the only ones that provide double-erasure correction. Another

straightforward approach called two-dimensional parity [Gibson89b] uses two orthogonal,

N+l-parity codes (as shown in Figure 3.6) to ensure that any two failures can be decomposed

Extended Hamming 2d-Parity
~ 'information

duck
check

— I

Figure 3.6: Double-Erasure-Correcting Code Examples. With self-identifying disk failures, or
erasures, the common, single-error-correcting Hamming code can be used as a double-erasure-
correcting code. On the left in this example is a Hamming code thai doubly protects 11 data
disks with four check disks. The relationship between data and check disks is shown with dashed
lines; disk 3 is part of the parity calculation for check disks B. C, and D. An alternative double-
erasure-correcting code is achieved by extending a single-erasure-correcting parity code to two
dimensions. By including every data disk into two parity groups that overlap on only that data
disk, any two disk failures can be recovered as two separate, single erasures in different groups.
For example, on the right, a two-dimensional parity encoding protects nine data disks •with six
check disks. In this case, disk 3 is pan of the parity calculation for check disks B and D.
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into two separate single failures. The two-dimensional parity code has also been called a

cross-parity code [Rao89 pp 65] and is a special case of a product code [Peterson72 pp 131].
?

Binary, d-dimensional product codes compose d component codes so that the codewords of

each dimension intersect codewords of other dimensions at exactly one bit

Figure 3.6 also shows a two-dimensional parity code with six check disks that corrects any

two failures in nine information disks. This code has a higher check-disk overhead than does

the Hamming code example beside it: 6/9 versus 4/11. If one byte on one data disk is changed,

however, a two-dimensional parity code will update exactly two check disks to maintain the

code, whereas the example Hamming code will update at least two and as many as four check

disks (with an average update penalty of 2.5). Hamming codes with more disks have even

higher update penalties. For redundant disk arrays whose requests always access every disk,

such as those that use byte-interleaved striping, the update penalty is not an important metric.

But for redundant disk arrays that support small, random accesses, the update penalty indicates

the number of disks not available for other requests during a single disk update. By this metric,

a two-dimensional parity code performs better than does a Hamming code.

33 J.1.2. Optimal, Double-Erasure-Correcting Binary Codes

Gibson, Hellerstein, Karp, Katz, and Patterson [Gibson89b] examined double- and triple-

erasure-correcting binary codes to find those that minimize the update penalty associated with

the change of a single data byte. They demonstrated that any code that guarantees correction

for all double erasures must update at least two check disks with each data-disk update.

Because there are codes that guarantee correction for all double erasures with exactly two

check-disk updates per data-disk update, two-dimensional parity codes for example, their search

was restricted to these minimal update-penally codes.

Within the class of codes that minimize update penalties to two, they found codes that

achieve minimal check-disk overhead by maximizing the number of data disks protected by a

given number of check disks. For double erasures, these codes are called full-2 codes. For a
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given number of check disks, c, a full-2 code has one information disk for every different com-

bination of two check disks. The check-disk overhead for these codes is 2/(c-l).

Although full-2 codes are optimal with respect to update penalties and check-disk over-

head, they do not ensure the best data reliability. Because all double erasures are correctable in

a double-erasure-correcting code, maximum data reliability depends on the fraction of three or

more erasures that are correctable [Peterson72 pp 100]. Gibson et al. sought minimal update-

penalty codes that maximized the fraction of correctable triple erasures because mis is the most

common number of erasures not guaranteed to be correctable. There is at least one set of

uncorrectable triple erasures for each data disk because an update to one data disk updates a par-

ticular set of two-check disks; the definitely uncorrectable set of three erasures formed by a data

disk and the two check disks updated together were called bad three-erasures.

Among two-erasure-correcting codes, the two-dimensional parity code corrects all three

erasures except for bad three-erasures. Moreover, mere is no other two-erasure-correcting code

that has a lower check-disk overhead, corrects as many three-erasures, and has the same number

of check disks.

Our other metric for selecting a code was the recovery group size. This metric is the

number of disks involved in recovering a single failed disk. For systems with on-line applica-

tions, the recovery group size indicates the fraction of the array whose performance is degraded

during the repair and recovery of a single failure. There is a basic tradeoff between three of

these codes' metrics, which can be described as:

check disk overhead x (average recovery group size -1)
= number of erasures guaranteed correctable. (3.1)

This implies that across all double-erasure-correcting codes with minimum update penalties,

codes that have lower check-disk overhead require more disks to recover a single failure. Con-

veniently, higher check-disk overhead can be traded for lower recovery group sizes by using

more check disks and subsetting the associated longer code so that all disks have nearly the
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same recovery group size. This way the maximum recovery group size is only slightly larger

than the average group size, and the average itself is lower [Gibson89b].

3J.2.2. Non-Binary Symbol Codes

A code whose codewords include a multiple-bit symbol from each disk is called a non-

binary code. Non-binary codes can achieve much lower check-disk overhead than binary codes.

They do this by encoding more information into the same amount of check data. The example

in Figure 3.7 demonstrates this advantage using a non-binary code based on two-bit symbols.

modulo 2
•Hci

modulo 4

HC2

Binary (b=l)

Cl = C2 = (A+B)mod2

A = f(Cl,C2)?

B = g(Cl,C2)7

A, B, Cl, C2:1 bit symbols

Nonbinary (b=2)

Cl=(A+B)mod4

C2 = (A+2B) mod 4

4
A = (2Cl-C2)mod4

B = (C2-C1) mod 4

A, B, Cl, C2:2 bit symbols

Figure 3.7: Contrasting Binary and Non-Binary Codes by Example. In a binary code that
corrects all double erasures, if two data disks (A andB) share the same pair of check disks (Cl
and C2) then the failure of the two data disks leaves two copies of their parity accessible but it
leaves no way to extract the failed disks' separate values (one equation in two unknowns). How-
ever, in a non-binary code that corrects all double erasures, two data disks can share the same
pair of check disks. In this example, each symbol on disk B is doubled (modulo 4) before it is ad-
ded (also modulo 4) to the corresponding symbol from disk A and stored onto check disk C2. In
this case, the loss of both data disks is correctable because the contents of the two check disks
differ significantly (two independent equations in two unknowns). In fact, for each pair of check
disks, a non-binary code can support as many information disks as there are distinct pairs of in-
dependent equations in two unknowns in the field of integers modulo 2b, where each symbol con-
tains b bits.
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Where a binary code cannot recover the contents of two data disks that share the same pair of

check disks, a non-binary code can weight the contribution of the two data disks differently for

each check disk; thereby, storing on the check disks two independent equations for die data

disks' values. If the two data disks are concurrently failed, the lost disks' values in this exam-

ple are recovered using a little bit of linear algebra in the field of integers modulo four.

Let me explain this little bit of algebra more explicitly. All linear codes compute check

symbols as a linear combination of data symbols over a particular field. For the binary codes of

Section 3.3.2.1, this field is the integers modulo 2; mat is, check bits are computed as the

exclusive-or of subsets of data bits. In a non-binary code, mis exclusive-or simplification is

lost If symbols are selected to be b bits long and operations done in the field of the integers

modulo 2b, then check symbols are computed as the sum of a multiple of each data symbol

modulo 2b. For example, Figure 3.7 computes each symbol of disk C2 as the modulo-four sum

of two times the value of the corresponding symbol on disk B and the value of the correspond-

ing symbol on disk A. If in a particular codeword, disk A's symbol has value 1 and disk B's

symbol has value 3, then check disk C2's value will be 3=1+2x3 (mod 4), and check disk Cl's

value will be 0=1+3 (mod 4). If the two data disks, A and B, fail simultaneously, then their

values for the above symbols can be recovered according to Figure 3.7 as 1=2x0-3 (mod 4), and

3=3-0 (mod 4), respectively. Although computation in the integers modulo 2* is not difficult to

design, it is much more expensive than parity computation, and its cost grows proportionately

withb.

Nonbinary codes can achieve much lower check-disk overhead than binary codes. For

example. Table 3.4 shows the number of data disks that can be protected from all double eras-

ures by the non-binary Hamming code over the integers modulo 2b with c check disks. This

code provides a powerful way of lowering check-disk overhead: increase the size of the per-disk

symbols in each codeword. In particular, by enlarging the symbol size, any number of informa-

tion disks can be protected from all double erasures with only two check disks!
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Check

Disks

c

2
3
4
5
6
7

Number of data disks protected by double-erasure correction

Computation in field of integers modulo 2b

b=l

1
4

11
26
57

120

b=2

3
18
81

336
1359
5454

b=4

15
270

4365
69900
IxlO6

2xl07

b=8

255
65790
2xl07

4x10*
IxlO12

3xl014

b=16

65535
4x10*
3xl014

2xl019

IxlO24

SxlO28

b=32

4X109

2xl019

SxlO28

SxlO38

IxlO48

6X1057

Table 3.4: Check-Disk Overhead Limits for a Non-Binary Hamming Code. Using a non-
binary Hamming code with computations in the field of integers modulo 2b and c check disks,
(2efc-l)/(2*-l) - c data disks can be protected from all double erasures [Peterson72 pp 120].

A different code that has nearly as low check-disk overhead for double-erasure correction

and extends to correct more than two erasures with comparably low check-disk overhead is the

Reed-Solomon code4 [MacWilliams77 pp294]. Reed-Solomon codes have been used for

correcting burst and random errors in magnetic and optical disks [Deodhar83, GloverSS, Massi-

glia86]. Because of their wide-spread use, highly-integrated encoding and decoding chip sets

for Reed-Solomon codes have been implemented [Rao89 pp 114, ShaoSS]. The availability of

these compact, encoder/decoder chip sets and the wide range of industrial experience with

Reed-Solomon codes has led to the use of a variation of the two-check-symbol, Reed-Solomon

code in a disk array product under the name of P+Q parity [ATC90]. This implementation uses

b=4 bit symbols to provide double-erasure correction for up to 13 data disks.

One drawback to attaining low check-disk overhead through non-binary codes with only

two check symbols is a large recovery group size; any single-disk failure will involve an disks

in its recovery. Reducing recovery group size by increasing the number of check disks intro-

duces another problem; with more than two check symbols, these codes will generally not have

4 The number of data disks that can be protected from c-erasures in a Reed-Solomon code with b-bit
symbols and only c check disks is 2* - 1-c. For c=2, this is only two disks fewer than the non-binary
Hamming code.
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the minimal update penalty of two. However, there is a non-binary analogue to the binary fuH-2

code. This non-binary full-2 code protects up to c(c-lX2*-l)/2 data symbols against double

erasures with c check symbols. Like the binary full-2 code, the non-binary full-2 code protects

the largest number of data symbols of any double-erasure-correcting code with minimal update

penalties and with the same values for c and b. The non-binary full-2 code also abides by the

relationship binding recovery group size to check-disk overhead given in the last section. Using

this relationship, the average recovery group size can be adjusted by changing the number of

check disks, c, where

average recovery group size = 1+2 klc (3.2)

where k is the number of data disks protected.

Another drawback to attaining low check-disk overhead through non-binary codes is that

there are new sets of uncorrectable three-erasures other than a data disk and its two check disks.

The opportunity for more than one data disk to share the same pair of check disks gives rise to

the increased number of data disks protected. However, it also introduces these new sets of

three-erasures that are not correctable. Figure 3.7 illustrates the problem because the loss of

disks A, B, and either Cl or C2 is an uncorrectable three-erasure that is not a bad three-erasure

(a data disk and its two check disks). It turns out that any double-erasure-correcting non-binary

code with minimal update penalties cannot achieve a check-disk overhead that is lower than the

appropriate binary code unless it fails to correct all three-erasures (except bad-three erasures).

Further research into the tradeoff between check-disk overhead and reliability for non-binary

codes with minimal update penalties is needed.

Section 32 describes how a disk's internal, error-correcting codes manage the most fre-

quent and non-catastrophic disk failures. Disk-array encodings that assume the presence of

these internal codes permit catastrophic failures to be identified. Kim and Patel [Kim85.

Kim86] proposed to eliminate these internal, error-correcting codes in the disks of an array with

a non-binary encoding across disks. Their code is derived from one designed for bubble



memories [Patel82]. It uses eight-bit symbols, a single check disk, and a multi-codeword,

overall parity byte embedded in the data to protect up to 31 data disks against single, random-

bit errors in each codeword or a single, non-self-identifying disk failure. This code provides the

same failure-correction capability as N+l parity, and it improves on N+l parity by recovering

the space on each disk used to store its internal redundancy. However, overall it is significantly

less powerful than N+l parity because high-density disks frequently suffer losses of multiple

bits, called bursts, which a disk's internal redundancy is specifically designed to correct.

3.3.3. Encoding Summary

Because the inclusion of redundant data in a disk array can be viewed as a coding prob-

lem, the selection of a best organization of user data and redundancy can be approached as a

code search. For performance reasons, candidate codes should be linear, and if high-access

bandwidth is required, codes should not update more check disks with each data-disk update

than they guarantee correctable.

When repairs are short or arrays are not large, single-erasure-correcting codes should pro-

vide sufficient data reliability. Mirroring, the traditional mechanism for single-erasure correc-

tion in disk subsystems, has high overhead costs that can be reduced with N+l-parity codes.

The characteristics of these N+l-parity codes depend on the organization of user data in the

array. Although some self-tuning database applications prefer not to automatically stripe data,

most disk arrays rely on striping to improve performance by balancing the load across disks and

enabling the parallel transfer of large requests. Byte-interleaved striping provides increased

transfer bandwidth without increasing access bandwidth in a manner analogous to, but more

flexibly than, the way that parallel transfer disks increase transfer but not access bandwidth. In

contrast, block-interleaved striping provides both high-transfer and high-access bandwidth at

the cost of greater software complexity.
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For large arrays or where high data reliability is required, codes that guarantee correction

of simultaneous double failures may be employed. Using simple, binary-parity computations,

codes with minimal check-disk overhead are available. These codes have been called full-2

codes. For higher data reliability, two-dimensional parity codes, ones that maximize the fraction

of correctable triple failures, do not have much higher check disk overhead. Both of these

codes can be pared down to a subset to trade higher check-disk overhead so that a smaller frac-

tion of the array is degraded during the repair and recovery made necessary by a failure.

Even lower check-disk overhead can be achieved with double-erasure correction based on

non-binary codes. By expanding the encoding and decoding hardware, the number of check

disks can be kept to two for any number of data disks. With these codes, however, large frac-

tions of data are degraded during repair and recovery caused by a failure, and a greater variety

of triple failures are uncorrectable.

I will examine the reliability of N+l -parity-encoded disk arrays in more detail in

Chapters.



3.4. Performance of Redundant Disk Arrays

Disk arrays derive their performance advantages from disk parallelism. Parallelism and

the performance advantages it brings are further increased when large diameter disks are

replaced by arrays composed of physically small disks with small capacities. Increases in paral-

lelism improve the performance of two very different types of workloads: large numbers of

small, random accesses and individually large, sequential accesses. The former are measured

by an array's access throughput in units of I/Os per second. The latter are measured by an

array's transfer throughput in units of megabytes per second, although the latter are sometimes

also measured by the response time of each access.

By increasing the number of disks in an array, the peak number of small random I/Os per

second is increased accordingly. This is basic benefit to access throughput; more disks can sus-

tain a workload with more I/O requests per second. Alternatively, without a heavier workload,

increased numbers of disks mean each disk will have less work to do, and this will result in

shorter queues, fewer queueing delays, and lower response times.

The successful extrapolation of these benefits depends on the even distribution of accesses

across disks. Requests are more likely to be evenly distributed when data is striped across small

disks because large files are spread over many disks, and small files are allocated to disks

without regard to logical relationships (such as directory membership, for example). An even

distribution is the secondary benefit of disk parallelism for workloads that emphasize many

small, random accesses per second.

Increasing the number of disks also increases the transfer bandwidth for individually large

accesses if data is striped over many disks. For example, if requested data occupies multiple

tracks on each disk, then response time will be decreased nearly linearly in the number of disks.

This decreased response time has been the strongest motivation spurring the development of

disk array products. The next section examines effects of data striping on non-redundant disk

array performance.
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The benefits of data striping in a redundant disk array are reduced by the maintenance of

redundancy. Because redundant data must not be located on the disks whose data it protects,

changes in user data must cause associated changes in redundant data on another disk. The

extra work generated by each data update consumes access throughput and, to a lesser degree,

transfer throughput This is the primary penalty to the performance of redundant disk arrays.

The second subsection of this section discusses the performance lost to the maintenance of

redundant data and techniques to minimize this loss.

3.4.1. Benefits of Data Striping

Section 3.3.1.2 above introduces the differences between byte-interleaved striping, block-

interleaved striping, and non-striping disk arrays with emphasis on their interaction with an

N+l-parity encoding for redundant data. In the subsections of this section, I expand on my ear-

lier discussion of the performance implications of different types of data striping. My purpose

here is to provide a broad understanding of the effects on performance that result from the

interaction between striping parameters, workload characteristics, and effective disk optimiza-

tions without consideration for redundancy. The effects of redundancy on performance are the

subject of Section 3.42.

In the following subsections I discuss how data striping is most successful at decreasing

tiie response time of large accesses by transferring I/Nth of a request from each of N disks in

parallel, and also how it increases the rate at which small, random accesses can be serviced

without exceeding an average response time goal by automatically load balancing these

accesses over all disks. Then I explain how data striping invokes more disk-head-positioning

operations than a non-striping organization for most workloads, and how these extra positioning

operations can limit or eliminate both of the aforementioned benefits of striping. After review-

ing the more effective optimizations for reducing the penalties of these extra positioning opera-

tions, I demonstrate how the unit of interleaving in a striped disk array can interact with the
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array's workload and have a negative effect on performance. Finally, I report the results of a

study that shows how to select the unit of interleaving, or striping unit, to minimize these nega-

tive effects on performance.

3.4.1.1. Striping for Parallel Transfer

The major benefit of data striping is a reduced transfer time for large accesses [Johnson84,

Kim87a, Salem86, Reddy89]. By spreading the data of a single large access over N disks, the

time required to transfer this data in parallel is reduced by a factor of N. If the response time of

a access to a single disk is dominated by data transfer, then striping this data over multiple disks

dramatically decreases response time. This reduced response time benefit is delivered by both

byte-interleaved and block-interleaved striping.

The advantages of striping for large accesses are well-demonstrated. For example, the

swap files in a Cray supercomputer are large and transferred contiguously, striping these files

over multiple disks improves the performance of programs with large memory requirements

substantially [Johnson84]. In fact, scientific computation, which includes most of the Cray pro-

grams that benefit from striping swap files, is the most common example of an application that

benefits from striping. In separate studies, Kim, Nigam, Paul, and Flynn [Kim87a] and Reddy

and Banerjee [Reddy89] have demonstrated the effectiveness of data striping for scientific com-

putations that manipulates large data files.

Striping to increase transfer rates is successful in applications other than scientific compu-

tation in proportion to the frequency with which these applications operate on large files. Obvi-

ous candidate applications are database systems [BoralSS, Livny87, Salem86], and image pro-

cessing and visualization [Bailey91], but recent, innovative research into general-purpose file

systems promises to combine many small write accesses into single large write accesses that

will be able to exploit the parallel access provided by striping [Rosenblum90].
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3.4.1.2. Striping for Disk Load Balancing

Block-interleaved striping can also benefit workloads that feature small, random accesses

because a small access requires service from only one disk, so N disks can perform N different,

small accesses in parallel. In this case, the benefit of striping is that it provides automatic

balancing of the workload over all disks.

Disk-load balancing is important because most non-striped collections of disks suffer sub-

stantial imbalance between the amount of work required of the most and least busy disks. This

problem is referred to as the "skewing" of disk accesses [Friedman83, KimSTb, Livny87,

McNutt86]. In IBM systems disk skewing has been well-documented; a typical skew might be

70% of the accesses access 30% of the disks [KimSTb]. McNutt models skewing data captured

from large disk farms, and, for example, predicts that a 64 disk system sustaining an average of

8 accesses per second per disk will have at least one disk that is the target of an average of more

than 40 accesses per second, and that over 80% of the disks will be required to deliver less than

the average of 8 accesses per second. With this kind of skewed access, the maximum rate at

which an I/O system can perform small, random accesses with reasonable response times is

determined by the disks with the heaviest load. Therefore, non-striped disk farms achieve far

lower access throughputs than is possible if their workload were balanced over their component

disks.

Block-interleaved striping balances a workload over its disks by spreading the contents of

large files over multiple disks, and by allocating small files to different disks in a uniform

fashion. As long as the striping unit is small relative to the size of files that cannot be effec-

tively cached, the data that is accessed most frequently should be uniformly distributed across

disks.5

5 It is possible that striping data will not lead to uniform access, but most counter examples are quite
pathological. For example, if every Nth block in a particular file is much more likely to be accessed than
the rest of this file's blocks AND the file is striped over N disks, then the disk load will not be uniform
[Chen90b],
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Uniform distribution is not as good as a completely even load on all disks, but it is the

best that can be expected in absence of specific knowledge of the woridoad's access patterns.

Where such specific workload knowledge is available, such as in special-purpose database

applications, striping might actually lower access throughput [Gray90].

3.4.1 J. Extra Positioning Operations

Striping, however, is not without drawbacks. Whenever it uses more than one disk to per-

form an access that would otherwise have been performed by a single disk, it increases the

amount of positioning overhead associated with that access. This overhead can adversely affect

both of the above described benefits of striping [Chen90b, Gray90, Kim87b, Reddy89,

Salem86]. This section demonstrates that this problem can be severe, and the following sec-

tions discuss methods to limit its effects.

The reduction in response time that striping provides for large accesses can be diminished

by an uneven distribution of the positioning times of each disk involved in the parallel access.

This uneven distribution arises if each disk in a parallel transfer has a different distance to move

its read-write head and a different angular offset from the data once its head is at the correct

track. Bitton and Gray have shown that if N disks, whose heads are located at randomly distri-

buted cylinders, all seek to a specific cylinder, the maximum seek distance, as a fraction of the

total number of cylinders, is approximately [BittonSS]:

i _ 2 4 ... 2N ,,~
3 5 2N+1 • C3'3)

This means that where the average fraction of the total cylinders that a single disk must travel is

1/3, this fraction for the longest seek among 10 disks is nearly 3/4. For the disks modeled by

Gray [Gray90], this maximum of 10 seeks takes 25 msec to perform, larger than the single disk

average seek time by 8.3 msec. Even if an N disks are already at the correct cylinder, Section

3.3.1.2.1 shows if their spindle motors are independent, the head that spends the longest time

positioning, searches through an average of N/(N+1) tracks. Relative to an average search time
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for a single disk of 8.3 msec, again using Gray's disks, the average time for the longest of 10

searches is 152, ms - longer by 6.9 msec. With the last of N disks completing its overall posi-

tioning later than would a single disk by times on the order of 10 msec or more, the amount of

data to be transferred will have to be quite large if the overall response time is to be reduced

nearly as much as the data transfer time is reduced by data striping. For example, with 10 of

Gray's disks, the amount of data that an access must request in order for parallel transfer to

achieve a speedup of at least 9 over a single disk, if the overall positioning time of a parallel

transfer is 10 msec larger than that of a single disk, is 4,600 KB!6

The effects of increasing the number of positioning operations also adversely affects the

access throughput of striped disks. Because positioning is a disk operation that does no useful

work (it does not transfer data), the more disk seconds that are spent positioning, the fewer that

are spent on doing the requested work. If the positioning operation on each disk involved in a

parallel access over N disks takes the same amount of time as the positioning operation of an

equivalent non-parallel request, then the total amount of non-useful disk busy time is increased

by a factor of N. This loss of useful disk operating time means that the maximum throughput of

a striped array will be smaller than the maximum throughput of a non-striped array (that has a

completely even distribution of its workload) [Gray90]. Disk arrays with block-interleaved

striping can ameliorate this decreased access throughput by choosing a striping unit large

enough that most of the smaller accesses are serviced by a single disk; Sections 3.4.1.4 and

3.4.1.5 demonstrate how this is achieved.

' This estimate is based on solving for the Size of an access such that parallel transfer yields a
Speedup £ 90% of N, where N - 10 disks, and

c j _ single disk response time _ 16.7+5«g/2.0 ^ n ovzpeeaup - '

71



3.4.1J.1. Synchronizing Disk Spindles

The most direct way to reduce the effect on response time of the longest of multiple posi-

tioning operations is to synchronize the operation of all disks. Fully synchronized disk arrays

have the read-write heads of all disks at the same track with the same offset in that track at all

times. This avoids penalties to response time by insuring that parallel positioning takes the

same amount of time on all disks, but it does not overcome the loss of access throughput that

arises from the increased number of positioning operations of striped disks relative to non-

striped disks.

A byte-interleaved striping disk array with synchronized spindle motors is an example of a

fully synchronized disk array. It appears to its host as though it were a parallel transfer disk

[BucherSO, Fujitsu2361, Kryder89]. This configuration is discussed in Section 3.3.12 and,

more thoroughly, in Kim's work on this subject [Kim86].

Although synchronizing the spindle motors of multiple disks is not difficult [Sierra90

pp 208], in many disk systems it is not possible to synchronize actuator motion. Instead, read-

write heads may be logically synchronized by issuing the same seek command to each indepen-

dently actuated disk. A block-interleaved striping disk array with synchronized spindles wfll

operate this way if its requests are large enough to call upon an disks. This configuration can be

beneficial for the performance of large accesses in a disk array with low load (as Figure 3.8

below shows), but at high loads with varying access sizes, the logical synchronization of heads

over tracks is lost unless disks are (unprofitably) inhibited from operating independently when

requests do not require all disks to perform identical operations. In this latter case, because

each disk may have a different operations to perform, even if some of those operations

correspond to a parallel transfer on all disks, it is unlikely that all disks initiate and complete

seeks at the same time, so spindle synchronization may not be exploited.

Although a definitive treatment of the benefits of spindle synchronization when actuators

are not synchronized is not known to me, it appears that opportunities to exploit its benefits are
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few except in specialized workloads.

3.4.132. Shortening Positioning Distances

If the techniques for reducing positioning times described in Section 2.1.4 are applied to

striped disk arrays, the degradation on response time and access throughput caused by data

striping can be reduced. Zero latency reads and anticipatory seeks are the most appropriate of

these techniques for the issues. With zero latency reads and striping units near the size of a

track, synchronized spindles are not needed to minimize rotational delays; once the head is at

the correct track, it can immediately begin to transfer data [Salem86]. Section 3.4.13 shows

that a good choice for a striping unit is the size of a track. Anticipatory seeks that return all

disks heads to the center of their respective surfaces helps in two ways: they may reduce the

average seek distance, and they insure that all disks experience the same seek distance on a

parallel transfer.

3.4.1.4. Interaction Between Striping Unit and Workload

A paper by Gray, Horst, and Walker argued that data striping adversely affects the perfor-

mance of an array of disks in an on-line transaction processing system [Gray90]. Their paper is

nominally about redundant disk array organizations, and is discussed further in Section 3.4.2.

However, its analysis pertains mainly to striping performance, and I review it here because it

demonstrates the tradeoff between striping unit size and performance under different workloads.

In the next section I present work by Chen and Patterson that shows how to select a "best"

striping unit

Because the applications examined by Gray et aL employed disk load-balancing software,

they believed that maintaining a balanced load is better done explicitly on non-striped disks

than automatically by a striped disk array. If a non-striped set of disks has a balanced load, then

a striped array will get lower throughput at most request sizes because of the additional seeks it

must perform. Since their application concerns largely small requests with high concurrency,
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Figure 3.8: Disk Array Performance with 1 KB Striping Unit Cray's model for response
time in an idle disk array with 11 disks is shown on the left [Gray90J. The non-striped, or "pari-
ty striped"' response time, shown by the thinner solid line, assumes that all data for each request
is heated on a single disk. As long as there is only one request at a time, an array with byte-
interleaved striping, shown by the dotted line, has the lowest response time. The other two lines
both model disk arrays with synchronized spindles and block-interleaved striping. If all requests
are the same size, shown by the thick solid line, then large accesses will not suffer positioning
time delays and response time will match the array with byte-interleaved striping. However, as
shown by the dashed line, if most requests access only 1 KB, then the infrequent larger accesses
suffer the penalties associated with positioning widely distributed read/write heads. On the right,
the maximum number of accesses per second for the same array organizations is shown assum-
ing that each disk is 50% utilized. In this case, an array with byte-interleaved striping spends
more disks' efforts positioning heads, so its throughput is lower than a non-striped array with
evenly balanced disk load. There is only one line for arrays with block-interleaved striping on
the right because this model assumes all requests access the same amount of data. See Figure
23 for this evaluation applied with a 32 KB block size.

they believed that throughput, measured in accesses per second at 50% disk utilization, is an

important metric.

Gray et al. presented a simple model for response time when all disks are initially idle and

for throughput at 50% disk utilization7. They used this model to compare 11 non-striped disks

with a balanced load to an 11-disk array with block-interleaved striping and synchronized spin-

dles. Their disks were Tandem's XLSOs which have an average seek time of about 16.7 ms, a

7 Their model is for redundant anays, but because redundancy has no effect in the read request case,
the model evaluates non-redundant striping performance as well.
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rotation time of 16.7 ms. and a data transfer rate of 2 MB/s. They deliberately used a small

striping unit (1 KB) to demonstrate that fine-granularity striping is a bad tradeoff for on-line,

transaction processing systems.

Figure 3.8 includes some of their results and adds a synchronized disk array with byte-

interleaved striping. It shows the response time for a request of a particular size when the disks

are initially idle and the accesses per second when the disks are 50% utilized. I have presented

two response-time curves for block-interleaved striping with synchronized spindles; the first,

following Gray et al., assumes that before every large request, all disk read/write heads are at

random locations. This assumption is valid if nearly all requests are single-block accesses so

that disk activity immediately before a large request has been independent on each disk. How-

ever, if every request has the same size and requires multiple disks, read/write heads of many

disks will be left by each request at the same location on each disk. The second, block-

interleaved striping response-time curve incorporates the expected positioning time based on

the average number of seeks of different distances that would be expected. Figure 3.8 shows

that for small requests 1KB, block-interleaved striping is slower than non-striping, and for all

sizes it achieves substantially less throughput at 50% utilization of the disks.

Figure 3.9 applies the model of Gray et aL to block interleaving with a striping unit of 32

KB (about one track). In this case, non-striped disks do not display a better idle-array response

time than that of block-interleaved striping at any request size, and the 50% utilization

throughputs are much closer together. Because evenly-balanced, non-striped disks are rarely

the case [Friedman83, KimSTb, Livny87, McNutt86], there seems to be little performance

advantage for non-striped disks over that of block-interleaved striping with synchronized spin-

dles and a striping unit of 32 KB.

Figures 3.8 and 3.9 also demonstrate the importance of selecting the correct striping unit

for a particular workload. If that workload has many small, random accesses, a large striping

unit seems best, and if that workload has fewer, large accesses, a small striping units seems
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Figure 3.9: Disk Array Performance with 32 KB Striping Unit The models shown in Figure
3.8 with a 1 KB block size are repeated here with a 32 KB block size. The next section shows
that this is the size of block that Chen et al. [Chen90b] recommend for the disk parameters used
by Gray et al. [Gray90] if the array's workload in unknown. In this case, accesses per second in
an array with block-interleaved striping, on the left, is much closer to a non-striped array with
evenly loaded disks, and is the same for request sizes less than 32 KB. However, request sizes
between 32 KB and 320 KB have longer response times at low load with this block size than with
the 1 KB block size of Figure 3.8.

best. The next section reports the results of a fonnalization of these expectations.

3.4.1.5. Selecting a Best Striping Unit

Because the interaction between workload and striping unit can have a substantial effect

on the performance of a disk array with block-interleaved striping, Chen and Patterson

developed rules of thumb for selecting a striping unit [ChenPOb], Their simulation-based model

evaluated a spindle-synchronized disk array of 16 disks with block-interleaved striping. They

used four, stochastic distributions describing the size of each request These distributions had

mean sizes of 4 KB, 16 KB, 400 KB, and 1500 KB. They also varied the number of concurrent,

independent requests from 1 to 20. Their goal was to derive the size of a striping unit that gives

the largest throughput for an incompletely specified workload. For example, when the con-

currency of the workload was known, they found a striping unit that provided 95% of the max-
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imum throughput possible for any particular request distribution. The size of this striping unit

is

1 sector + -i x average positioning time xdata transfer rate x(concurrency-I) (3.4)
4

where the average positioning time is an average seek time plus an average rotational delay. A

striping unit selected by this expression is small when the concurrency is low so that every

access can utilize all disks, and larger when the concurrency is high so that more different

accesses can be serviced in parallel.8 Intuitively, the product of average positioning time and

data transfer rate balances the benefits and the costs of striping data [ChenPOb pp 329]:

The benefit is the decreased transfer time of a single request, which saves approximately die
transfer time of a stripe unit The cost is the increased disk utilization which arises from an addi-
tional disk positioning itself to access the data.

The constant, 1A, is sensitive to the number of disks in the array, they are currently engaged in

research into this relationship.

A good size for a striping unit can also be provided when request sizes are known but con-

currency is not, although throughput close to maximum will not be assured. For this reason

they concluded that a workload's concurrency is more important man its request sizes for

selecting a striping unit

If nothing is known about a workload's concurrency or request size distributions, they

proposed that a good compromise size for a striping unit is

ry

± x average positioning time x data transfer rate . (3.5)

Again, research into the relationship between the number of disks in the array and the constant,

%, is in progress.

1 Applying this expression to the model studied by Gray et al., the recommended striping unit is
12.8x(concurrency-l) + 0.5 KB. For an average concurrency of 10, Chen et al. recommend that Gray
et. al employ a striping unit of about 3V4 tracks, and if the average concurrency is 30, the recommended
striping unit is about one third of a cylinder (virtually assuring that all accesses involve only one disk).
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Because the data transfer rate of a disk is approximately its track capacity divided by its

rotation time and because an average rotation time is one-half a full rotation time, this

compromise striping size is

which will frequently be close to the capacity of one track because average seek time is compar-

able to rotation time.9 This compromise size is also appropriate when average seek time is

replaced by observed, typical seek time, which is frequently much shorter than a seek from ran-

dom cylinder to random cylinder [Scranton83].

Together, expressions 3.4 and 3.5 provide powerful tools for the designer of an non-

redundant, striped disk array. The next section presents the effects of redundancy on disk array

performance.

3.4.2. Performance Lost to Maintaining Redundancy

Redundant disk arrays are able to recover failed disks because they maintain an encoding

of user data on one or more disks separate from the disks containing the protected user data.

The consistency of this redundant data relative to the data it protects must be maintained con-

tinually. The effect of performing mis maintenance on the performance of a redundant disk

array is the subject of this section.

I begin with a simple, fundamental comparison between the conventional organization of

redundancy in disk farms and the two striped, N+l-parity disk arrays described in Section

3.3.1.2, and follow this comparison with the results of a measurement experiment that validates

it The result of these sections is that except for the performance of small, random write

accesses, N+l-parity disk arrays with block-interleaved striping have persuasive advantages.

9 Applying this to the model studied in Gray et al., the recommended striping unit is 34 KB - almost
exactly the size of a track and very close to the striping unit used in Figure 3.9.
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Consequently, I follow these sections with a discussion of three different approaches to over-

coming the performance problems of small write accesses: caching and hints for avoiding

unnecessary accesses, a "floating parity" organization that allows parity blocks to be updated

in the time of a single access, and a new file system design that converts all small writes into

large writes. I finish this section with a discussion of the performance of redundant disk arrays

with double-erasure correction; it is little different from those with single-erasure correction

except that small write accesses require 50% more accesses to maintain redundant data.

3.4 J.I. Fundamental Differences For Single-Erasure Correction

Figure 3.10 presents a performance comparison between the single-erasure-correcting,

redundant disk array organizations discussed in Section 3.3.1. This example uses 10 data disks

per array, and assumes saturated disks that perform an average seek during every access. Data

is striped across all disks in all three cases. It reports performance in terms of efficiency

expressed as a ratio of the accesses per second in the redundant array to accesses per second in a

non-redundant array with the same number of disks.
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Figure 3.10: Fundamental Redundant Disk Array Performance Comparison. This com-
parison of user capacity and performance efficiency in an N+l-parity redundant disk array is
derived from Patterson, Gibson, and Katz (PattersonSSJ. Each array has 10 data disks and
enough work to fully saturate it. User capacity (C) is the ratio of the total number of user data
bytes to the total number of bytes on all disks. Performance for large reads (R), small reads (r),
large writes (W), and small writes (w) is expressed as a fraction of the corresponding perfor-
mance metric in a saturated non-redundant array of the same total number of disks. Large
accesses touch 10 consecutive user data blocks aligned to access exactly those blocks associated
with a single parity block (a stripe).
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During reads, mirrored disks can use every disk to access user data (because the model

assumes enough work to saturate all disks), so 100% efficiency is secured. Byte-interleaved

arrays have one disk, the parity disk, with no user data on it, so they achieve only 91%

efficiency. Unfortunately, if a read requests the amount of data in the minimum unit of access

on a disk, a sector, a byte-interleaved array will utilize all drives for as long as any single disk

takes to read the data (because the minimum access unit is at least one sector per disk). Hence,

no parallelism is available, and its efficiency is only 9%. Block-interleaved arrays have data on

every disk because the parity is evenly distributed. As a result their efficiency should be 100%

on read accesses, both large and small.

During writes, mirrored disks must do two physical writes for every user write, so

efficiency on all writes is 50%. Writes large enough to change a parity stripe (one block on

every data disk) only waste the bandwidth of the one parity disk in both the byte-interleaved

and block-interleaved arrays. Thus, these writes achieve 91% efficiency. Small writes in the

byte-interleaved arrays require a preread, merge, and overwrite of all disks, so their efficiency is

5%. Small writes in the block-interleaved array require the four accesses described in Section

3.3.1.2.2, so they get 25% efficiency.

3.4.2.2. Experimental Validation

In an experiment using an Amdahl 5890 mainframe and twenty Amdahl 6380 disks, Chen,

Gibson, Katz, and Patterson [Chen90a, Chen89] measured mirroring and block-interleaving

redundant arrays. The results of their experiment, summarize in Figure 3.11. showed the above

model to be generally correct In this experiment, a workload was generated stochastically. To

equalize response times while allowing for access parallelism, the workload was regulated so

that 90% of all accesses responded in less than four times the response time of an access of

average size in an idle system. Large accesses were distributed around an average size of 1.5

MB and small accesses distributed around an average size of 0.006 MB (6 KB). They found

mirrored disks were 20% more efficient than the model predicted for small reads because the
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Figures 3.11a and 3.11b: N+1-Parity Performance Measurements. This shows the main
results of o stochastic measurement study using an Amdahl 5890 with 20 Amdahl 6380 disks
[Chen89, Chen90aJ. On the left. Figure 3.11a shows that, for large accesses, block-interleaved,
N+l-parity disk arrays outperform mirrored disks. In this figure, access sizes are distributed
around an average of 15 MB per request, or about ISO KB per data disk. The fraction of reads
(as opposed to writes) is a major factor in the throughput of large accesses block-interleaved ar-
rays, contrary to the assumptions of the simple model, because large writes are rarely aligned on
parity stripes, and data must be preread to update parity at the beginning and end of the data in
each request. On right, Figure 3 Jib shows that, for small accesses, mirrored disks outperform
block-interleaved, N+l-parity disk arrays because updating redundant disks requires two instead
of four accesses. When almost all accesses are reads, mirrored disks also benefit from choosing
to read the closer copy. Access sizes are distributed around an average of 6 KB per request. In
both graphs, the depths of disk queues were regulated so that 90% of all response times were less
than four times the idle-system response time of an average size access, and results are shown in
terms of the user data rate attained divided by the total number of disks (including redundant
disks). Notice that on the right the scale is 10 times smaller than on the left.

opportunity to choose a shorter seek provided significant advantages when transfer time was

small [BittonSS]. They also found that large writes in block-interleaved arrays lose about 30%

of the model's predicted efficiency because the access unit is rarely aligned to an integer

number of stripes; most writes will begin and end in the middle of a stripe. Writes averaged 1.5

MB, about four logical blocks (in this case, tracks) from each disk, so on average three full

stripes were overwritten and two partial stripes required prereading to update parity.
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3.4.2J. Optimizations for Small Write Accesses

Except for the additional woik involved in a small, random write access, Figures 3.10 and

3.11 show that N+l-parity disk arrays with block-interleaved striping are comparable or supe-

rior to mirrored disk arrays. This section describes three approaches for limiting or removing

this additional work: exploiting applications hints and caches to avoid unnecessary accesses,

dynamically reorganizing parity locations so that read-modify-write operations can be per-

formed in little more than the time of one access, and massively reorganizing the file system to

avoid performing small write operations in the disk array entirely.

3.4.2.3.1. Caching and Hints

First of all, once data to be written is copied into the file system's cache, the program issu-

ing the write can continue. This means that the response time of a write access experienced by

applications programs can be fast regardless of the amount of work involved in propagating the

write to the disk array. Then, because these propagated write operations are delayed, they may

benefit from file cache optimizations such as deletion without ever being written [NelsonSS],

and from request reordering when a large group of cached blocks are eventually written to disk

[Bates89, Geist87, Seltzer90a].

In many applications that feature small, random accesses, (on-line transaction processing

for example) most writes are the second half of a read-modify-write sequence. These applica-

tions, therefore, have sufficient information to maintain a copy of the data as it was on disk, and

provide to the file system both the old and new data when it issues the write access. This

reduces the number of physical operations done by an N+l-parity disk array while processing

the write access from four to three.

In practice, it is more beneficial if old copies of read data are maintained in the file system

instead of the user's buffers because the integrity of the disk array's redundancy depends on the

old copy of the data being a current image of its corresponding disk block. Moreover, the file
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system cache may also have a copy of the data's old version because the space it is occupying

in the cache has not yet been reused. To increase the chance that the data's old version is in the

cache, an application initiating a read-modify-write sequence can inform the file system that it

intends to rewrite the data. This information allows the file system to make extra efforts to hold

the original copy of the data until the rewrite is issued.

In these ways the use of caches and hints hide the latency of small, random writes from

applications and potentially eliminate and unnecessary reread operation during a read-modify-

write sequence.

3.4.232. Floating Parity

Menon and Kasson proposed a variation on the organization of parity data in an N+l-

parity disk array that shortens the read-modify-write of parity data changed by a small, random

write to little more than a single disk access time on average [Menon90]. Their recommended

scheme, called floating parity, can be viewed as an extension of an N+l-parity disk array with

distributed parity (striping is incidental). In a floating parity organization, parity blocks are

clustered into cylinders each containing a track of unallocated blocks. Whenever a parity block

needs to be read, modified to reflect a data block change, and rewritten, the new parity block

can be written on the nearest unallocated block following the old parity block. Menon and Kas-

son show mat for disks with 16 tracks in a cylinder, this nearest block is immediately following

the parity block being read on one of the tracks in the parity cylinder with probability 0.65, and

that the average number of blocks that must be rotated past to get to this nearest block is

between 0.7 and 0.8 in practice. With such large probabilities of finding an unallocated block

nearby the parity data being read, the rewrite can be done immediately, and the entire read-

modify-write is done in only a few milliseconds longer than is taken for the read access alone.

For example, the read-modify-write of a parity block on a Tandem XL80 disk (described in

Section 3.4.1.4 above) would take an average of 42 msec without floating parity and an average

of 25.7 msec with floating parity. Because the average time to simply read a block from one of
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these disks is 25.1 msec, the floating parity scheme effectively completes two disk accesses in

the time necessary for only one!

To implement their scheme directories for the locations of unallocated blocks and parity

blocks must be stored in main memory (or controller memory). These tables are about 1 MB in

size for each disk array containing 4 to 10 disks each with a capacity of 500 MB. Their scheme

also surrenders space to the management of parity, but this is a small fraction (1 to 2% for their

examples) of the array's capacity. To exploit unallocated blocks immediately following the

parity data being read, however, this data must be modified and the disk's head probably must

be switched to another track before the head rotates though an inter-sector gap on the disk's sur-

face. Because of these deadlines, and because a disk controller is more likely to have exact

knowledge of each disk's geometry, implementation of a floating parity scheme is likely to be

found in disk controllers. Still, their scheme looks like a powerful way to reduce the time

required to update parity to about the time of a single access.

3.4.2J.3. Log-Structured File System

Although the combination of caches, hints, and floating parity may reduce the cost of a

small, random write in a block-interleaved, N+l-parity disk array to about the same as that of a

mirrored disk array, much larger savings are possible by modifying the operation of the file sys-

tem. Ousterhout, Douglis, and Rosenblum proposed such a modification they call a log-

structured file system [Ousterhout89, Rosenblum90]. Their system collects data to be written

and then writes it all in a large, contiguous disk access. Because rewritten data does not

overwrite its previous location on disk, the file system stored on disk is organized as a "log" of

created and changed data. To be useful, a log-structured file system must be able to scavenge

the space that stores versions of files that have been rewritten later in the log. Rosenblum and

Ousterhout proposed doing this by partitioning disk space into large segments and moving data

that has not changed in a long time into segments that are dedicated to mis land of 'long-lived"

data [Rosenblum90]. This way, the log can simply skip over these segments with little loss in
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write bandwidth.

A log-structured file system converts all user writes into very large disk writes that can

easily be aligned to stripes in an N+l-parity disk array. Not only does this avoid read-modify-

write sequences for small-random-writes, but it also fully exploits the large write bandwidth

advantage of N+l-parity. Log-structured file systems do not require disk arrays to improve over

existing file systems, but in concert, these two technologies provide an I/O system that effec-

tively counters the transfer gap problem described in Section 22.

3.42.4. Double-Erasure-Correcting Codes

The recipient of much less research, the performance of redundant disk arrays with

double-erasure-correcting codes is analogous to that of single-erasure-correcting redundant disk

arrays.

As in single-erasure-correcting codes there is an interaction with the organization of data

across disks. If data is byte-interleaved across the disks of an array with double-erasure correc-

tion, performance is essentially the same as that of N+l-parity except that more disks are

engaged in accessing check data. For block-interleaved disk arrays with double-erasure correc-

tion, response times and access bandwidth for read accesses and large write accesses are the

same as that of block-interleaved, N+l-parity disk arrays with the same number of disks.

For small, random write accesses, all the double-erasure-correcting codes suggested in this

chapter must update two check disks for each data disk update, so up to six accesses must be

done: preread and overwrite each of the affected data block and its two associated check blocks.

All of the optimizations described in the last section, however, are also applicable to double-

erasure-correcting codes, so the cost of an application requested read-modify-write operation

can be reduced to two more access than would be done in a non-redundant array, and with the

log-structured file system, all small writes can be converted to large writes.
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3.5. Summary

Disk arrays are the inevitable result of the magnetic disk industry's move to disks with

smaller diameters. They provide both manufacturer and customer with a flexible configuration

and an impressive environmental efficiency. Because each disk has a smaller capacity, disk

arrays with capacities equivalent to the secondary storage systems they replace will have many

more independently operable disk units. This increased disk parallelism promises to improve

response times for large sequential accesses if data is striped over many disks. It also promises

to improve access throughputs for small random accesses if requests are distributed evenly over

all disks.

However, increased disk parallelism also brings increased failure rates. While predictive-

monitoring software, like DEC'S VAXsimPLUS, can help prepare for these failures, it does not

guarantee to preserve data threatened by failures. Such guarantees are provided by more expen-

sive data storage approaches, such as on-line redundancy. The first level of protection, single-

failure correction, can be provided by the well-known, but expensive, mirrored-disks technique.

To reduce costs, an N+l parity approach also provides single-failure correction. The data relia-

bility of these redundant disk arrays is examined in Chapter 5.

In large arrays or arrays with high reliability requirements, double-failure correction may

be necessary. Double-failure correction can be provided by simple binary codes such as the

low-cost, full-2 codes or the very high data reliability, 2-d parity codes. In either case the

redundancy-maintenance penalty induced by updating a single data block is the modification of

at least two other disk blocks. Non-binary codes use more expensive encoding and decoding

logic than that of binary encodings but offer the capability to correct all double failures with

only two more disks than are needed in a comparable non-redundant disk array. However,

non-binary codes involve a much larger fraction of the array in each recovery and suffer a

greater variety of uncorrectable triple failures.
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The performance advantages that come with increased disk parallelism largely depend on

data striping. Block-interleaved striping automatically distributes data so that many small, ran-

dom accesses can be serviced in parallel, although database applications that have explicit disk,

load-balancing software may be better able to do this in non-striped arrays. The unit of inter-

leaving, or striping unit, is important to high throughput for small random accesses; a striping

unit size with wide success in the absence of workload knowledge is about the capacity of one

track.

For workloads that emphasize large sequential transfers, byte-interleaved striping with

synchronized rotations and seeks offer the largest decreases in response time. However, byte-

interleaved organizations have a much lower throughput for small random accesses. A block-

interleaved striping organization provides nearly as low response times and much higher access

throughputs as do byte-interleaved organizations.

Maintaining redundant data incurs costs unavoidably, but these costs can be contained.

Because large updates frequently change all the data associated with a block of redundant data,

the new values for this block of redundant data can be precomputed without reference to prior

values, so, relative to a non-redundant array, there is no response time penalty, and little degra-

dation in throughput For workloads that emphasize small, random accesses, the cost of main-

taining redundant data, which can be as large as four disk accesses for each user-requested data

modification, can be ameliorated by caching, applications hints, and floating parity organiza-

tions, or completely overcome by a new file system design. With these performance expecta-

tions and the much lower cost for redundant data, an N+l-parity disk array with block-

interleaved striping is the best organization for a single-erasure-correcting redundant disk array.
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CHAPTER 4

Characterizing Disk Lifetimes

Although anecdotes of disk failure models abound, little concrete data has been widely

published, and there is no consensus among the many vigorously pressed opinions. Yet the dis-

tribution of magnetic disk lifetimes is critical to the proper design of failure-tolerant disk sys-

tems. This chapter is a self-contained examination of the distribution of disk lifetimes. It

serves to provide an underpinning for the disk array reliability modeling of the next chapter.

After a discussion of commonly-used models for lifetime distributions a recounting of

some the disk lifetime anecdotes, and a discussion of the recent, rapid rise in disk manufactur-

ers' advertised mean lifetimes, I offer an analysis of two particular populations of S'/i-inch disks

observed over 18 months beginning in 1987. These two populations, totaling 1350 disks, have

significantly different lifetime distributions. For example, assuming an exponential distribution

for lifetimes and ignoring failures during an initial "breaking in" period, the mean time to

failure (MTTF) of the newer product is 115,000 hours while the older product has a 368,000

hour MTTF. These differences are probably derived from the greater maturity of the manufac-

turing process for the older of these two disk models.

Because the assumption of exponential lifetimes is often suspected of being chosen

largely for its mathematical tractability, an important goal of the analysis in this chapter is to



test the fit of an exponential model to the observed data. I execute this test by fitting the data to

a Weibull distribution model This model for lifetime distributions has the property that it

includes an exponential model as a particular value for its "shape" parameter. Testing the

Weibull shape parameter of the data for these two disk populations indicates that the more

mature product has lifetimes that are plausibly exponential, but the less mature product's life-

times are less likely to be described by an exponential distribution.

The "breaking in" or "bum-in" period is commonly thought to be complete by the time

the customer receives a disk, but this is not the experience of the data in this chapter. If failures

occurring in the customer-directed bum-in test of these disks is included in the lifetime model

then greater probabilities must be assigned to short-lived disks. In this case an exponential dis-

tribution model estimates a 80,000 hour MTTF for the less mature disks and a 338,000 hour

MTTF for the more mature disks. If a customer begins to use disks as soon as they are received

from the factory, this is the appropriate model for lifetimes.

4.1. Characterizing Catastrophic Disk Failures

The cost-effectiveness of storing redundant information in a disk array, so that failures can

be tolerated during repair or replacement operations, is quite likely to be sensitive to the indivi-

dual lifetimes of each disk. To use one horrific example, suppose disks really did fail soon after

their warranty expired. This would mean that if all drives are purchased from the same

manufacturing lot so that they age together, redundancy would be unused until the warranty

expires. Then the greater chance of multiple failures in a short period of time might render par-

ity protection, or even complete duplication, futile. Such a scenario would be a data manager's

nightmare! (It would also be cheaper and more effective to replace disks just before their war-

ranty expired and not bother with redundancy.) Fortunately, such an eventuality uses an

unlikely distribution of disk lifetimes. Unfortunately, however, the true distribution of disk life-
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times are not well-known.

Figure 4.1 shows the commonly used bathtub representation for the instantaneous failure

rate of an item [Lawless82]. Mathematically, the product of instantaneous failure rate at time t

and dt is the probability of failing between time t and t+dt for those devices that are still

operational at time t. The function that describes instantaneous failure rate over time is called

ihe failure or hazard rate function, h (x). It uniquely describes a lifetime distribution because

-jA(z>fa (A i\
Reliability at time t =R(t) = Piob(Ufetime>t)-e * v ' '

Disk designers prefer to use failure rate functions rather man reliability functions to describe

lifetime distributions because these designers have better intuition about the change in failure

rate over time than they do about the probability of failure at or before a particular time.

The bathtub shape for failure rates is used to describe the lifetimes of systems as diverse

as humans [Lawless82 pp 11] and semiconductor components [Siewiorek82 pp 9]. It is particu-
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Figure 4.1: The Bathtub Lifetime Distribution. The instantaneous failure rate of semiconduc-
tor components in particular, most manufactured devices in general, and even human lives, can
be loosely illustrated by a bathtub curve. New items have a higher frequency of failure as defec-
tive ones expire, and old items have a higher frequency of failure as wear overwhelms function.
Between infancy and wear-out, failure rates are often relatively constant.
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larly useful if a lifetime is to be measured from creation to failure without any initial culling or

terminal retirement If a lifetime is defined to begin after a device bum-in test that culls defec-

tive devices and to end with obsolescent disks' retirement prior to the onset of wear-out, then

instantaneous failure rates may be relatively constant with time.

One of the simplest and most commonly used approximations for lifetime distribution is

derived from a constant failure-rate function giving rise to the exponential lifetime distribution:

RE(t) = Pmb(Exponential>t) = e-"*mjf. (4.2)

The exponential distribution is characterized more fully in Section 5.1.

The exponential distribution's constant failure rate constrains the probability that it is a

good approximation for an arbitrary lifetime distribution. Two more powerful distributions also
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Figures 4.2a and 4.2b: Examples of Exponential, Weibull, and Gamma Lifetime Distribu-
tions, The failure rales of three common lifetime distributions are shown here. On the left in Fig-
ure 4.2a, the mean lifetime is 50.000 hours (5.7 years), and, on the right in Figure 42b, it is
150,000 hours (17J years). The exponential distribution (Exp) has a constant failure rate equal
to the reciprocal of its mean lifetime. Both the Weibull (Weibull(5topew)) and Comma
(Gamma(5/uzpec)) distributions have two parameters, but because I have fixed their mean life-
time, only one parameter is free to vary. For these two distributions, I show curves with their
shape parameters set to 03 and 2.0. Although this graph does not show ages large enough, the
Gamma failure rate approaches the exponential failure rate as age approaches infinity. On the
other hand, the Weibull failure rate approaches 0 if its shape is < 1 and infinity if its shape is > 1,
as age approaches infinity.

91



commonly-used to model lifetimes are the Weibull and the Gamma distributions [Lawless82].

(4.3)

where MTTFw = scalewxTQ+Msfapew) and

tlttalto

RG (f) = Prtto(Gamma >t) = 1 - -
T(shapec )

where MTTFc = shapecxscalec •

Figure 4.2 shows the failure rate of an exponential distribution in comparison with the Weibull

and the Gamma distribution. Both of these latter two distributions have parameters called

shape and scale, names which were derived from their effect on the distributions' Probability

Density Function (pdf). The shape of the pdf is controlled by the distribution's shape parameter

and the time axis scale is determined by the distribution's scale parameter [Lawless82 pp 16].

In Figure 4.2a and 4.2b I have fixed mean lifetime to be 50.000 hours and 150,000 hours respec-

tively. With a fixed-mean lifetime, I have determined the scale parameter as a function of its

shape parameter and then displayed the failure rates for shapes equal to 0.5 and 2.0. The

exponential distribution, however, is a special case of both the Weibull and Gamma distribu-

tions; when either of these has a shape of 1.0, they reduce to an exponential distribution and

their scales become equal to one over their MTTF. Figure 4.2 shows that over 10 years, if shape

is less than 1.0, failure rates increase with age, and if shape is greater than 1.0, failure rates

decrease with age. The Gamma distribution also has the property that as age grows to infinity,

failure rates return to the failure rate of an exponential with the same mean. But, as Figure 4.2

shows, this is unlikely to effect the useful life of a disk with an hour-mean lifetime between

50,000 and 150,000 hours. The Weibull distribution with a shape of less than 1.0 has the unat-

tractive feature (shared with another common distribution, the log-normal distribution [Law-

Iess82 pp 24]) that, as age increases, the instantaneous probability of failure continues to

decrease asymptotically to zero. As a result, care must be taken when using these models to

avoid drawing conclusions sensitive to their unintuitive failure rates at large ages.
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Section 4.4 of this chapter applies a Weibull model to data on 1350 5Vi-inch magnetic

disks. I have also applied a Gamma model to this data, but its results were not enough different

from the results of the Weibull model to warrant inclusion.

4.2. In Search of Public Data on Lifetime Distributions

From the earliest stages in my research, I sought data on mean disk lifetimes and their

lifetime distributions to form the basis for modeling disk array lifetimes in Chapter 5. Because

published data was scarce, I asked disk manufacturing companies for theirs. Although these

companies apparently have the data I sought, most considered it proprietary and hence too valu-

able for general publication. Nevertheless, I have collected some overall statistics that pertain

to large disk populations.

Section 3.2.1 contains evaluation statistics for the VAXsimPLUS disk-monitoring and

failure-prediction software. In that evaluation, 150 disk failures were observed during

7,000,000 disk hours [Lary89]. If the lifetimes for these disks are exponential, then their mean

lifetime is 46,667 hours or 5.3 years.

During a presentation in November 1988 [BalansonSS], a representative of IBM's disk

products division gave the rate of failure in their then top-end product, the 3380, as one every

six years. This rate reflects a mean time to failure of about 53,000 hours. An IBM 3380 con-

tains two separate disk enclosures, each with its own spindle and platters. Balanson also said

that each of these enclosures had an average lifetime of fifteen years, and that power supplies

and control electronics contributed substantially to failures. From this I computed mat the

mean time to failure of an IBM 3380 disk enclosure was about 131,000 hours and. if failures in

different components are independent and exponentially distributed, power supplies and control

electronics had a mean time to failure of about thirty years or 263,000 hours. Although there is

no information on lifetime distribution either in this data or in that for VAXsimPLUS. both are
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useful for establishing a mean lifetime in products upon which many companies rely heavily.

Another IBM representative reported that some IBM 2314 disk drives, first shipped to cus-

tomers in 1966, were not retired until 1980. At retirement, their failure rates were not substan-

tially larger than those of the same model after infant mortality subsided [Brady89]. While

increases in the wear-out failure rate had apparently not begun, these disks were fifty times less

dense with ten times slower transfer rates and four times slower seek times than those of the

models replacing them [IBM80]. This example provides evidence that obsolescence occurs ear-

lier than wear-out in the lifetimes of disks.

In the IBM-compatible peripheral market, the value of a customer's investment in disks

and the competition between vendors is large enough that a company was formed to collect

failure data from its clients and report summaries back to them. This company, R+, distills data

written into a log file by status system software. The data reported represents the ratio of error

activity to use; mat is, it gives an overall failure rate. In February 1988, they switched from

measuring device operations to measuring actuator months. Actuators are the rigid structure of

read/write heads that seek together. Since there are two actuators in each 3380 disk enclosure,

there are four actuator hours per hour in a 3380 "box." The switch to measuring actuators

represents the collective opinion that a disk wears with each passing revolution more than with

each user requested transfer, in particular, a disk whose average workload is half that of another

disk is not expected to survive twice as long, and a disk spinning unaccessed will not last for-

ever.

Because old and new drives are treated identically, R+ data gives no evidence about

changes in the rate at which an individual disk fails with age. However, it does give evidence

on the relative failure rates of different products. It also gives evidence about the maturity of

the manufacturing process for a particular product By examining product reports spanning

several years, then the maturity of the manufacturing process is displayed by trends in average

failure rate. As the number of units produced (yielding more experience with thea product)
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increases, their average failure rate should drop. Similarly, as the model is superseded by

newer technology, the number of units produced decreases and average failure rates increase.

During 1988, various IBM 3380-compatible products were reported by /?+ to operate

between 100 and 400 actuator months per hard failure. With 730 hours in a month, this indi-

cates that the mean time between failures ranged between 100 x 730 or 73,000 and 400 x 730 or

292,000 hours per actuator or 18,000 and 75,000 hours per 3380 box. The older IBM 3350 disk

model was in the twilight of its production; with less than 10% as many disks reporting, the

3350 actuators failed once every 30,000 hours.

One source of published data providing some lifetime distribution information described

seven Fujitsu Eagle [Fujitsu2351] failures that occurred in a system of 13 Sun2 and Sun3 file

servers observed for an average of 19 months each between February 1986 and December 1987

at Carnegie Mellon University [Lin88]. Lin applied a Weibull model to this small sample of

failures. The maximum likelihood estimator obtained for the Weibull shape parameter was

0.92. Because 1.0 was included in the 95% confidence interval around the shape, Lin accepted

the possibility that the lifetimes of these disks were exponentially distributed, with a mean life-

time of 86,900 hours. Because these disks are advertised as having a mean time to failure of

only 20,000 hours [Fujitsu2351], Lin's results suggest mat estimated mean lifetimes

significantly underestimate actual mean lifetimes. Some representatives of disk manufacturers

have also suggested, and quite tantalizingly, that observed average lifetimes are much higher

than is claimed by product specifications for mean time to failure. Their contention has been

borne out by a leap in advertised mean lifetimes to a range of 100,000 hours to 250,000 hours.

Section 4.3 explains how this change was largely the result of changes in the way that adver-

tised mean lifetimes were calculated.

After encountering the intransigence of disk manufacturers and discovering the expense of

tracking reliability, I was not surprised to find that computer users with large collections of

disks were also unable to provide data appropriate for describing distributions of disk lifetimes.
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It seems that although accounting and security departments might track devices by serial

number, service and repair departments rarely do. Even when operations staff do maintain

records, they are often uninterpretable and irreconcilable.

4.3. Improving Disk Mean Lifetimes

A scan through specifications sheets for disk products introduced during the last decade

reveals an intriquing trend. Until 1989, the mean lifetimes of disks were specified to be

between 20,000 hours to 40,000 hours, but, beginning in the second half of 1989, specifications

for mean lifetimes jumped to 150,000 hours, and in a few cases 200,000 hours or more

[EET89]. If similar improvements for the mean lifetimes of disks can be expected to occur in

the near future, is it possible that disk arrays will not need to be redundant?

A closer examination of the events of 1989 reveals that most of the improvement is

caused by changes in the way that mean lifetime specifications are calculated. Two of the more

important changes were the inclusion of data from failed disks returned to the manufacturer and

a reduction in the expected frequency with which disks are turned off and on. Taken together,

these "one time" changes make the methods for calculating mean lifetimes much more

optimistic.

Before 1989 mean lifetimes were estimated by a conservative, theoretical model of the

component parts in a disk product In 1989 the producers of 5 V4-inch disks at Hewlett-Packard

began to include data on the failed drives that had been returned to them into their estimates for

mean lifetime. These returned disks are called field returns, but they do not include all failed

disks. There are many reasons that failed disks may not be returned; for example, their warran-

ties may have expired, they may have been employed at a "secure site" such as a military intel-

ligence organization, or their owner may have violated conditions of their warranty. Because

field returns underestimate the number of failures that have occured, mean lifetime estimates
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based on them are much more optimistic than the estimates of a purely theoretical model

The other important change in methods for estimating mean lifetime was a reduction in

the frequency that customers are expected to cycle the power to their disks. Because all but

disks with the smallest diameter are usually employed in systems that operate 24 hours a day,

disk designers decided that their prior estimates for the frequency of power cycling were too

high. Because turning power off and on is a particularly stressful operation for electronic parts,

eliminating power cycles greatly improves their reliability. Similarly, turning the power off and

on causes a disk's platters to stop and then start spinning. When a disk's platters stop spinning,

its read-write heads "land" on the platter's surface; these heads must "take-off* again when

power is reapplied. Reducing the frequency of power cycles greatly enhances mechanical relia-

bility because one of the most important causes of mechanical failure is the inability of the

heads to "take-off* (called the stiction problem). It is no surprise then that by assuming custo-

mers power cycle their disks less frequently, manufacturer's theoretical estimates for the mean

lifetimes of disks were also substantially improved.

Although these changes have had a "one time" effect on the specifications for the mean

lifetime of disks, other changes are causing on-going improvements to disk reliability. Primary

among these latter changes is the increasing number of disks built each year by the major

manufacturers. With larger numbers of disks being built every year, the cost of research and

development of more reliabile disks contributes less to the cost of each disk. Similarly, the

more disks that get built, the better the manufacturing process can be expected to become.

Additionally, with more disks being sold, the cost of retroactively correcting a design fault

becomes so prohibitive that product must be more exhaustively tested before being shipped to

customers.

Finally, the magnitude of 1989's change in mean lifetime specifications stirred consider-

able interest for more highly reliable disks among disk customers. Manufacturers now compete

for the priviledge of offering the disk with the highest reliability. Although this is not expected
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to caused mean lifetimes to jump in the way they did in 1989, it does mean that reliability

should improve more quickly than it had been in the decade before.

Returning to the question with which I began this section, the recent improvement in disk

product specifications for mean lifetimes is largely a "one time" change. Although residual

emphasis on mean lifetime specifications and the increasing volume of disks being manufac-

tured will cause continued improvements in disk reliability, this effect will not overcome the

increasing numbers of disks in arrays designed to match the growth of performance in processor

and multiprocessor technology.

4.4. A Sample of Lifetime Data

One productive approach to collecting data was canvassing the vendors of computer sys-

tems who purchase disks to resell in their own products. Even in this case most companies did

not track disk failures by serial number. I was fortunate to find that Thinking Machines Cor-

poration, a computer company specializing in massive parallelism, had tracked failures in two

different 5V4-inch disk products used in their systems [TMC87]. From January 1989 to June

1990 inclusive, they collected statistics from an in-house, bum-in screening test and from custo-

mers who returned field failures. These statistics, shown in Tables 4.1 and 4.2, were made

available for publication with the understanding that the identities of disk vendors and Thinking

Machines Inc.'s customers were to remain private.
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In-house Bum-in Testing

Test
Quarter

Ql/89

Q3/89

04/89

Ql/90

Q2/90

Disk
Count

3
45

45
210

1
1
1

44
42+

1
1
1

88
45
48
56

1
45
45
45
46
45

Observation
Hours

500+
500+

100
7

240+
240+
240+
220

7

348
500+

1500+
142
348

500+
1500+

112
112
225

100+
70

213

Failure
Time

?
no fail

no fail
no fail

47
48

240
no fail

?

310
343

1440
no fail
no fail
no fail
no fail

93
no fail
no fail
no fail
no fail
no fail

Table 4.1: Lifetime Data Sample One. This
table shows the burn-in testing and field return
results qfS'A-inch disks with about one-third of a
gigabyte of capacity. A total of 859 disks went
through burn-in testing; 10, or 1.16%, failed. Of
the disks that passed burn-in testing, 821 have
been operational in the field, and 23, or 2£0%,
failed prior to the end of June 1990. Disks that
did not fail during the observation period have
"no fail" in their Failure Time column. Unk-
nown data is indicated with a "?". Where a
number is followed by a "+" the actual value
may be larger than is shown. All times are ex-
pressed in units of hows. The burn-in testing in-
formation for the last entry in Q4I89 has been
misplaced, although at least 42 disks were pur-
chased and installed in a customer site. Field
data is shown for the quarter thai disks went into
service. Failed disks returned on the same day
are assigned the same lifetime, so multiple identi-
cal lifetimes are more likely to indicate return
logistics than coupled failures. In addition, the
number of newly purchased disks that were "dead
on arrival" in each of the quarters shown in the
in-house, burn-in testing table was 0,0,0,1,4, 7,
and 0, respectively. These are not included in the
analyses that follow.

Field Return Results

Install
Quarter

Ql/89

Q2/89

Q4/89

Ql/90

Q2/90

Disk
Count

2
1
2
1
1
1
1
1
1
2
1
2

34

1
1
2
2
1
1

38

1
1
1
1

40

1
1
1
1
1
1
2
1
1
2
1
1
1
2

41
41
39
81
42

42
84
84
42
42

126

Observation
Hours

12792
12792
12792
12792
12792
12792
1608
1992
2616
4776
6672

12000
12792

10536
10536
10536
2472
4608
7488

10536

5448
5448
2616
3288
5448

2568
3552
3624
3624
3624
3576
3576
2568
360

1680
1728
2088
2112
2472
2568
3552
3576
3624
3960

72
624

1536
1560
1800
1824

Failure
Time

792
6120
8016

10176
10800
11184
no fail
no fail
no fail
no fail
no fail
no fail
no fail

3048
5928
8064

no fail
no fail
no fail
no fail

2160
2832

no fail
no fail
no fail

0
1080
1152
1512
1536
1848
1896
2208

no fail
no fail
no fail
no fail
no fail
no fail
no fail
no fail
no fail
no fail
no fail

no fail
no fail
no fail
no fail
no fail
no fail
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In-house Bum-in Testing

Test
Quarter

Ql/89

Q2/89

Q3/89

Q4/89

Ql/90

Q2/90

Disk
Count

?
?

1
1
1
3
7

1
1

43

3
7

1
7

?
?

Observation
Hours

7
?

900+
900+
900+

7
7

900+
7
7

7
7

7
7

7
7

Failure
Time

7
no fail

45
47

140
fcfled?
no fail

187
360

nofaO

failed?
no fail

failed?
no fail

?
no fail

Table 4.2: Lifetime Data Sample Two.
This table shows the burn-in testing and
field-return results of 5'A-inch disks with
about one-fifth of a gigabyte of capacity.
The data on in-house, burn-in testing is
sparse, but 18 failures were observed in
the field between January 1989 and June
1990 from a population of at least 523
operational disks installed after January
1987. The asterisk marks an infeasible en-
try, originally 18048, assumed to have a
transcription error in the 2nd digit. In
Q3/89, four or 82%, of the newly pur-
chased disks were "dead on arrivoT';
after Q3/89 no new disks of this type were
purchased. For more comments, refer to
the caption on Table 4.1.

Field Return Results

Install
Quarter

Ql/87

Q4/87

Ql/88

Q2/88

Q3/88

Q4/88

Ql/89

Q2/89

03/89

Q4/89

Ql/90

02/90

Disk
Count

42

42

42

1
1
1
1

80

1
1
1

81

1
2
1
1
1
1

77

2
1

42
1

39

1
1

42
2

2

Observation
Hours

30264

22248

20088

19344
19344
19344
19344
19344

15672
15672
15672
15672

13488
13488
13488
13488
13488
13488
13488

12744
12744
11328
11520
12744

10032
10536

7656
7968

5088
4968
5112

2472
2616
2736
3672
4416

440
792
816

1608
2112

Failure
Time

no fail

no fail

no fail

8808
14232
14376
16728
no fail

4152
5640

12000
no fail

10752
11376
11880
12672
12696

13048*
no fail

4776
10272
no fail
no fail
no fail

no fail
no fail

no fail
no fail

672
no fail
no fail

no fail
no fail
no fail
no fail
no fail

no fail
no fail
no fail
no fail
no fail

My primary interest in this data was to estimate the distribution of disk lifetimes. First I

estimated an exponential model for disk lifetimes. Then I estimated parameters for the more

general Weibull model and used this model to test the hypothesis that the data is not taken from

an exponential distribution. While this procedure assumes that asymptotic large-sample results
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apply, it could (but did not) provide strong evidence against using an exponential distribution

for disk lifetimes.

Considering the data from field returns in Tables 4.1 and 4.2, if I wished to compute the

average observed lifetime. I would get 4.310 and 10.013 hours respectively. But this result

ignores the hundreds of field disks that did not fail! To properly calculate the average lifetime

for this sample, I would need to wait for each drive to fail. Because this is clearly not feasible, I

needed statistical techniques to incorporate what I know about the lifetimes of disks that did not

fail while under observation. This kind of lifetime data is said to be type I or time censored

[Lawless82 pp 34]. Fortunately, there are techniques for handling type I censored data, if there

is enough data and if particular distributions, including the exponential and Weibull distribu-

tions, are under consideration. In the next three sections I examine the data in Tables 4.1 and

4.2 using well-known model estimation techniques [Lawless82].

An important problem with the data from the field returns in Table 43. is mat they include

systems installed before data collection began in January 1989. Therefore, all failures occurring

before 1989 were not recorded. If I had a large amount of data I could have simply excluded all

disks installed before the data collection period. Unfortunately, such a strategy applied to Table

4.2 would eliminate all but four failures - too few to obtain statistically significant estimations

of a lifetime distribution. Alternatively, I could have optimistically assumed that no failures

occurred before data collection began. In Section 4.4.41 examine the effect of these data com-

pletion treatments in comparison to the extrapolation treatment described next.

I used a third alternative for treating incomplete data; I estimated failures that occurred

before data collection began. I used the number of failures in the population, observed over

their initial lifetimes, to estimate the number of failures occurring in the unobserved period.

After including these estimated failures into the data, I repeated the process for successively

longer unobserved periods. The description that follows reflects the adjustments I made to the

field returns data in Table 4.2. Because the 84 disks installed in the fourth quarter of 1988 were
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unobserved for their first 408 hours and because there were no failures in the 145 disks that

were observed during their first 408 hours, I estimated zero additional failures in the fourth

quarter of 1988. By repeating this with the 84 disks installed in the third quarter of 1988, the

145 + 84 = 225 disks observed in their first 2592 hours suffered one failure, I estimated

84/225 =0 additional failures for these disks before 1989. For the 84 disks installed in the

second quarter of 1988, the 313 disks observed in their first 6264 hours suffered five failures,

and so I estimated 5x84/313 = 1 failure from these disks before 1989. I then placed this

estimated failure in the middle of its unobserved period at 3132 hours. As for the 42 disks

installed in the first quarter of 1988, the 397 disks observed in their first 7008 hours suffered six

failures, therefore I estimated 6x42/397 = 1 failure at 3504 hours. Once again for the 42 disks

installed in the fourth quarter of 1987, the 439 disks observed in their first 9168 hours suffered

eight failures. From this, I estimated 8x42/439 = 1 failure at 4584 hours. Finally, for the 42

disks installed in the first quarter of 1987, the 481 disks observed in their first 17184 hours suf-

fered 21 failures, and so I estimated 21x42/481 = 2 additional failures. I placed these failures at

one-third. 5728 hours, and two-thirds, 11456 hours, during their unobserved periods.

4.4.1. Empirical Reliability

A general way to look at lifetime data is to compute and graph the empirical reliability or

survivor function, R(t). When data has no censoring, this can be computed as the number of

lifetimes greater than or equal to t divided by the number of disks under observation. With cen-

sored data, an alternative formulation, called the product-limit (PL) estimate of the reliability

function, is needed because the number of lifetimes longer than t is not generally known

[Kaplan58 from Lawless82 pp 71].

The PL reliability function estimate is defined as a group of n disks observed to collec-

tively suffer one or more deaths at each of k distinct times, /i<r2< •••</*. The number of

deaths at time r, is deathsj. Also, popj, the number of items at risk at r,, is defined to be the
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Figures 43a and 4 Jb: Product-Limit Estimates for Reliability. These two figures show
product-limit estimates, K(t),for the reliability function on the field returns data in Tables 4.1
and 42 respectively. Reliability at time t, R(t). is the probability that an item will survive at least
until t. Also shown is the standard deviation on the PL estimate for R(t). There are 36525 x 24.
or 8766, hours in a year.

number of items operational and under observation (uncensored) just prior to f/. The PL esti-

mate of the reliability function is then,

(4.5)

The estimate produced by this formula converges to the true reliability function, independent of

any assumed or modeled distributions, in large data samples. This property of the estimator

means that without knowing the true distribution, the PL estimate of the reliability function can

be used to look for possible distributional matches.

Figures 4.3a and 4.3b show the PL estimate of the reliability function, together with its

standard deviation, for the field return results in Tables 4.1 and 4.2 respectively. Even though

the data in Table 4.1 covers less than half as much observation time as the data in Table 4.2, it

is noticeably less reliable. Because the disks noted in Table 4.1 are newer and denser products

than the disks in Table 42, their lower reliability is probably attributable to a less mature

manufacturing process. I would like the distributions of their disks' lifetimes to be apparent
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from these figures, however, there is not enough data to make any models obvious. Probing

further, I assumed particular distributions and assessed their match with the data.

4.4.2. Exponential Model

If the true distribution of disk lifetimes is exponential, then its true reliability function is

*(r) = «-*'e. (4.6)

where 6 is a parameter that is equal to the mean lifetime (MTTF) for this distribution. In this

case. -Log(£ (r)) should be linear in /, pass through the origin, and have a slope of 1/6.

Figures 4.4a and 4.4b show -Log(/f (r)) corresponding to Figures 4.3a and 4.3b respec-

tively. While the data in Figure 4.4b may be linear in t, it is less clear that the data in Figure

4.4a is linear in t. Also shown in these figures are the maximum likelihood estimators derived

next.

Assuming that the true distribution of disk lifetimes is exponential, the maximum likeli-

hood estimator (mle) of mean lifetime is the total observation time, T, over the number of

failures, r. The total observation time is the sum of the lifetimes of disks mat were observed to

fail plus the sum of observation times for disks that were not observed to fail To obtain

confidence intervals for mean lifetime with this data I must assume that I have a large sample of

data; however, a simple transformation of the statistics has been shown to be accurate for the

kind of small samples I present here [Lawless82, Sprott73]. Using mis transformation, the

statistic

3(<M>)/(<^). where 4> = MTTF-™ and 4 = (7/r)-1*, (4.7)

has a normal distribution with a mean of zero and a standard deviation of one. The 95%

confidence interval for the standard normal distribution, -1.96 to 1.96, is men put through an

inverted transformation again to give a 95% confidence interval on the mean lifetime of these

disks.
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Figures 4.4a and 4.4b: Graphical Estimation of Exponential Reliability. These figures show
the negative natural logarithm ofR(t) against t corresponding to Figures 43a and 43b respec-
tively. If disk lifetimes are exponential, these figures should look approximately linear in t. The
dashed lines show maximum likelihood estimations for K(t) assuming lifetimes are exponential.

Data Source

Table 4.1

Table 4.2

Data Type

Field Returns
Opt. Bum-in

Merged

Field Returns
Opt Bum-in

Merged

MTTFmle

115,000
24,000
80,000

368,000
40,000
338,000

95% conf. int.

78,000-178,000
14,000-48,000

58,000-115,000

251,000-571,000
13,000 - 255,000

234,000-516,000

Table 4J: Exponential Lifetime Distribution Maximum Likelihood Estimates. Assuming
Tables 4.1 and 42 show data that are type I-censored samples of an exponential lifetime distribu-
tion, this table shows the maximum likelihood estimation of the mean lifetime and its 95%
confidence interval. Because burn-in data has so many unknown entries, 1 have made optimistic
assumptions where possible. In particular, J assumed that failure occurs, if unknown, at the end
of the test. I also assumed that burn-in observation periods were 100 hours for all of the Q3/89
data in Table 4.1 and 900 hours for the Q3/89 data in Table 42. However, where the numbers of
disks tested and failed were not known, I did not include these entries; this causes me to neglect
the last entry in the fourth quarter of Table 4.1 's 1989 burn-in data and all but the third quarter of
Table 4.2's 1989 burn-in data. With these deletions, the burn-in results for Table 42 are not very
significant because only two failures were included. The "merged" set of estimations assume
that the field disks and burn-in failed disks are independent samples from the same population
and combines their statistics.
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Table 4.3 shows the results of these statistical techniques. Based on this analysis, the in-

house, bum-in test is useful because it culls disks with much higher failure rates than are ordi-

narily seen in the field. Since most customers do not conduct an in-house, bum-in test of all

disks they purchase, I have assumed that the field disks and the bum-in disks that failed are

independent and estimated the exponential mean lifetime for their merged statistics. In this cal-

culation I have neglected the disks that passed bum-in testing because they became the disks in

the field. Based on these results, I model the lifetime of a newly delivered disk as exponential

with a mean between 58,000 and 115,000 hours for the disks in Table 4.1 and between 234,000

and 516,000 hours for the more mature disks in Table 4.2. It should be remembered, however,

that field-return data errs on the optimistic side as I explained in Section 4.3. In the next sec-

tion, I give evidence that exponential lifetimes for both populations of disks are plausible.

4.4.3. Weibull Model

Fitting the data in Tables 4.1 and 4.2 into a Weibull distribution offers an alternative

model for disk lifetimes. More importantly, it offers a technique for testing the hypothesis that

the data fits an exponential distribution because it includes the exponential distribution as a spe-

cial case.

In the same way that I graphically compared the PL estimate of the reliability function

with an exponential distribution in the previous section, I can now compare the reliability func-

tion with a Weibull distribution. For the Weibull distribution, the reliability function is

(4.8)

so Log(-Log(/ (t))) should be linear in Log(r), have a slope shapew, and have an x-intercept

equal to \jog(scalew). Figures 4.5a and 45b show graphs of Log(-Log(/?(f))) against Log(r)

corresponding to the data of Figures 4.3a and 4.3b, respectively. Because both figures are plau-

sibly linear, a Weibull model seems to be appropriate for both disks' field-returns data.
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Figures 4.5a and 4.5b: Graphical Estimation of Weibull Reliability. These figures show the
natural logarithm of the negative natural logarithm ofR(t) against Log(r) corresponding to Fig-
ures 43a and 43b respectively. If disk lifetimes fit a Weibull distribution, these figures should
look approximately linear in Log(f). The dashed lines show maximum likelihood estimations for
R (t), assuming disk lifetimes have a Weibull distribution.

The theory for determining maximum likelihood estimators for Weibull parameters

shapew and scalew is more complex man that for the exponential parameter 6. If there are n

disks of which r fail under observation, let x, be either the lifetime of the ith disk, if mis disk

fails, or its censoring time, if it does not. Recall that an observation is said to be censored if it is

not seen to fail; the censoring time for any observation is the end of the observation period.

Also, I define the mutually exclusive sets Deaths and Censors to be the disks that fail under

observation or are censored before failing, respectively. The maximum likelihood estimator, (5,

for the Weibull shapew parameter is obtained by solving, iteran'vely,

) = 0 (4.9)

for (3. Then the maximum likelihood estimator, a, for the Weibull scalew parameter is calcu-

lated as
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(4.10)

Because one of my goals for building a Weibull model was to test the hypothesis that the

data is appropriately modeled by an exponential distribution, I also needed to compute

confidence intervals on shapew- (A 95% confidence interval on shapew that does not include

1.0, indicates strong evidence against an exponential distribution.) As I did in the previous sec-

tion for computing confidence intervals, I also assumed that large data samples are available.

However, the method I used, based on the log-likelihood ratio statistic

. where (4.11)

l-rpLoga + (£-l) y LogCx,)-yOt,-/cOp. (4.12)
itDealhs til

has been shown to be fairly accurate when as few as 20 failures were observed [Lawless82

pp 178]. Under the hypothesis that shapew = Po, A is distributed as a chi-squared random vari-

able with one degree of freedom, x2(i), where

i

$\*LL *. (4.13)

*

The 95% confidence interval on shapew is then the set of Po that satisfies A£ X2d)..os = 3.841.

With a computational tool that manipulates and solves mathematical expressions, these calcula-

tions are quite manageable. I used the Mathematica mathematics package [WolframSS] whose

plotting and root-finding facilities, and special functions library greatly enhance exploratory

data manipulation.

Table 4.4 shows the results of my computation on the data in Tables 4.1 and 42. Because

all of the 95% confidence intervals on shapew in Table 4.4 include the value 1.0, there is not

strong evidence against the hypothesis that this data is taken from an exponential distribution.

Because of this result, I use an exponential model for disk lifetime in Chapter 5.
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Data
Table

4.1

42

Data
Type

Field
Merged

Field
Merged

shapew
mle

1.2
0.8

1.2
0.9

95% conf.
inL

0.85 - 1.56
0.59 - 1.04

0.78 - 1.66
0.62 - 1.30

MTTFinL
(1,000 hours)

221-34
1,037-71

1.000-100
3.220-160

R(l year) int.

0.933-0.905
0.924-0.894

0.973-0.985
0.967-0.979

Data
Table

4.1

4.2

Data
Type

Field
Merged

Field
Merged

shape?!
70% c.i.

1.00-1.40
0.68 - 0.92

0.95 - 1.42
0.75-1.11

MTTFint
(1.000 hours)

114-45
418 - 107

441 - 137
1.105-244

R(l year) inL

0.926-0.911
0.918-0.902

0.975 - 0.982
0.970 - 0.976

Table 4.4: WeibuII Lifetime Distribution Maximum Likelihood Estimates. Assuming Tables
4.1 and 42 show data that are type I censored samples of a Weibull lifetime distribution, I show
the maximum likelihood estimators for the shape parameter and ranges for the shape parameter,
the corresponding MTTF, and one-year reliability intervals. The first table shows ranges that
have a 95% confidence of containing the actual shape parameter's value. This range is quite
large because the collected data is not large enough to tightly describe Weibull parameter values.
For a tighter range, the second table shows ranges that only have a 70% confidence of containing
the actual shape parameter's value. The MTTF, and, in some cases, the one year reliability inter-
vals, are inverted so that their left endpoint corresponds to the left endpoint of the 95% confidence
interval around the shape. The Weibull shape, and not the scale parameter, is shown because it is
not likely that the data is drawn from an exponential distribution when its value is unlikely to be
1.0. The "merged" set of estimations assume that the field disks and burn-in failed disks,
described in the caption to Table 43. are independent samples from the same population, and
thus merges their statistics.

A closer examination of the results in Table 4.4, however, reveals less positive support for

an exponential model. Because the 90% confidence interval on shapew for the merged data in

Table 4.1 is 0.617 to 0.998, excluding 1.0, there is good evidence that this data is not taken

from an exponential distribution. Similarly, the 70% confidence interval on shapew for the

field-returns data in Table 4.1 barely includes 1.0, so mere is some evidence that shapew is

larger than 1.0. Not only do these two results present evidence against an exponential distribu-

tion, they actually argue for opposing types of lifetime distributions. While these field-returns

results hint at an increasing failure rate distribution (shape > 1.0), the inclusion of early deaths
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overwhelms this effect and suggests a decreasing failure rate distribution (shape < 1.0) overall.

What has happened here is that the Wiebull lifetime model is not appropriate for the

merged data. A Weibull model allows either strictly increasing or strictly decreasing failure

rates, but this data suggests that the failure rate is initially decreasing and is eventually increas-

ing. That is, the merged data for these disks has a pronounced "bathtub" shape. The Weibull

model's weakness is demonstrated by the counter intuitive increase in mean lifetime when the

short lifetimes of bum-in testing are added to the field-returns data. Notice that this is also true,

to a lesser degree, of the data in Table 42.

One way to deal with this discrepancy would be to "stitch" together two separate failure

rate curves, one representing infant failure rates and the other representing field failure rates.

Because an exponential lifetime approximation is satisfactory for my purposes, I have not pur-

sued this further.

4.4.4. Sensitivity

The field-returns data in Table 4.2 reports failures in systems installed before the start of

the data collection period. Table 4.5 presents the sensitivity in the exponential and Weibull

lifetime models to three alternative treatments of the unobserved period. In the previous sec-

tions, I have extrapolated the collected data by estimating unobserved failures from data on

fully-observed disks, which I described when I introduced Table 42. Table 4.5 shows results

from previous sections using this extrapolation in the entry labeled "extrapolation." The obvi-

ous way to avoid data with unobserved periods is to neglect all observations that begin before

January 1989. Unfortunately, mis reduces the number of observed field failures to four. Such a

small sample means that the methods of likelihood ratio that I used to estimate confidence inter-

vals should not be regarded as useful. Despite this, however. Table 4.5 presents confidence

intervals under this treatment of the unobserved period in the entry labeled "pessimistic." The

smallness of the sample is evident in the largeness of the width of these confidence intervals in
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Exponential Model of Table 4.2 Data

Data Type

Field

Merged

Modification

Pessimistic
Truncated

Extrapolated
Optimistic

Pessimistic
Truncated

Extrapolated
Optimistic

MTTFmle

350,000
367,000
368,000
470,000

233,000
330,000
338,000
423,000

95% conf. int.

150,000-1,150,000
239,000-607,000
251,000-571,000
305,000-778,000

115.000-593,000
219.000-531,000
234,000-516,000
280.000-682.000

Weibull Model of Table 42 Data

Data
Type

Field

Merged

Modification

Pessimistic
Extrapolated
Optimistic

Pessimistic
Extrapolated
Optimistic

shapew
nile

0.9
12
13

0.5
0.9
0.9

95%
conf. int.

030-2.10
0.78 - 1.66
0.82-1.92

022-1.06
0.62-1.30
0.60-1.37

MTTFint.
(1,000 hours)

1300.000-56
1,000-100
1,070-88

24,000.000-196
3220-160
3.714 - 179

R(l year) int.

0.973-0.980
0.973-0.985
0.979-0.991

0.960 -0.963
0.967 - 0.979
0.973-0.984

Table 4.5: Parameter Estimates for Alternative Data Extensions. This table shows the effect
three alternative treatments have upon the unobserved period in the field-returns data in
Table 42 on exponential and Weibull lifetime models. A pessimistic approach neglects all obser-
vations that began before data collection. This is ineffective because it reduces the sample size
below a useful level. An optimistic approach assumes no field failures occurred prior to the be-
ginning of data collection. Where disk lifetimes are thought to be strictly exponential, truncating
a period from the beginning of a lifetime is a rigorously correct alternative. The data extrapola-
tion used in the previous sections is shown for the sake of comparison.

the Weibull model.

If the only lifetime model under consideration is the exponential one, I can use the

memoryless property of an exponential random variable to correct for the unobserved period.

Exponential random variables are said to be memoryless because the distribution of remaining

lifetime of a disk that is currently operational is the same as the distribution of its lifetime from

birth. More precisely, the probability of surviving for time t+s, given that a disk has survived

for time s, is the same as the probability of surviving for time t from birth. This means that I

can truncate the unobserved period from the data, or in other words, I can assume all disks that
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were put into service before 1989 actually went into service at the beginning of 1989. The entry

labeled "truncated" in the exponential model of Table 4.5 shows the mean lifetime MLE and

95% confidence interval under mis treatment The strong agreement between results for this

treatment and the extrapolation I have used in previous sections occurs because the disks in

Table 4.2 are plausibly exponential, and the extrapolation procedure adequately estimates

failures during the unobserved period according to data in the observed period.

A third and optimistic treatment for the unobserved period assumes that there were no

failures before January 1989. Table 4.5 shows the exponential and Weibull lifetime models

under flu's assumption in the entry labeled "optimistic." In comparison to the extrapolation I

used in previous sections, this optimistic treatment has more effect on an exponential lifetime

model than on a Weibull lifetime model. In the exponential model, it increases mean lifetime

by 25% and widens confidence intervals by 115% and 43%. In the Weibull model, this optimis-

tic assumption widens the confidence intervals only slightly and increases one-year reliabilities.

The difference in the effects on exponential and Weibull models is attributable to the greater

freedom in which to fit the data provided by the additional parameter in the Weibull model

Although the extrapolations I have used to estimate failures in the unobserved period for

the data in Table 42 are not rigorous, they do not change the plausibility of an exponential

model for the lifetime of these disks and, in a strictly exponential lifetime model, they match

the more rigorous truncation treatment.

4.5. Summary

In this chapter I examined the lifetimes of magnetic disks using a conventional model for

disk lifetime distributions - an exponential random variable. This model is mathematically

convenient and has been successfully used in a wide variety of lifetime models including mag-

netic disk lifetimes. A popular alternative lifetime model is the Weibull random variable. A
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special characteristic of the Weibull model is its ability to provide evidence against an exponen-

tial model; if there is little chance that data is modeled by a Weibull random variable with a

shape parameter value of 1.0, then there is little chance that the data is modeled by an exponen-

tial random variable.

Summary data from large populations of high-performance disks suggests that the mean

lifetime for disks is about 50,000 hours if these lifetimes have an exponential distribution. I

also quoted evidence for an exponential distribution with a mean lifetime of 86,900 hours from

a small sample of disks used in a popular minicomputer. Additionally, anecdotal evidence indi-

cates that device wear-out did not significantly affect IBM 2314 magnetic disk drives even

when these units were severely obsolete.

Disk reliability specifications have greatly increased in the past few years. Although the

bulk of this change results from changes in the way that mean lifetimes are calculated, there

was an acceleration in the underlying rate of improvement in disk reliability.

In most of this chapter, I explored an exponential model for disk lifetimes through the

examination of data on 1350 samples from two 5V4-disk products. This data was collected by

Thinking Machines Corporation between the first quarter of 1989 and the second quarter of

1990. There is reasonable evidence to indicate that the lifetimes of the more mature of these

products can be modeled by an exponential distribution with a mean lifetime of over 200,000

hours. For the less mature of these products, there is evidence that an exponential random vari-

able is too simplistic a model, although it cannot be ruled out The less mature disk product,

without customer burn-in testing, has a Weibull shape parameter between 0.59 and 1.04 and at

least a 89% chance of surviving its first year (with 95% confidence). At a 70% confidence level,

this data has a Weibull shape parameter between 0.68 and 0.92, and its disks have more than a

90% chance of surviving their first year. If lifetimes for this disk product are modeled with an

exponential distribution, there is 95% confidence that the mean lifetime is between 58,000 and

115,000 hours with a best estimate of 80,000 hours.
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Although I conclude that an exponential distribution for the lifetimes of these disks is

plausible, a more careful examination of the Weibull model results indicates that both an

exponential and a Weibull model do not have enough degrees of freedom to model the lifetimes

of disks not subjected to customer burn-in testing. In this case two distinct failure rate models

could be stitched together, or perhaps a three parameter model found, that would be more accu-

rate.
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CHAPTERS

Reliability Modeling

Recent advances in computing speeds can be matched by the I/O performance afforded by

parallelism in striped disk arrays. Arrays of small disks further utilize advances in the technol-

ogy of the magnetic recording industry to provide cost-effective I/O systems based on disk

striping. But because arrays of small disks contain many more components than do larger sin-

gle disks, failure rates can be expected to rise. For most users, increased failure rates are incom-

patible with secondary storage systems because secondary storage is thought to be the stable

pan of a computer system - the part expected to survive periodic malfunctions.

In our information society, malfunctions in computational components threaten the pro-

cess by which new information is generated. But losses suffered by long-term storage com-

ponents are even more debilitating because these destroy assets. It is no surprise then that insti-

tutions often consider the reliability of long-term storage crucial to their operation. Unfor-

tunately, increasing reliability usually also increases cost

The goal of this chapter is to facilitate the cost-effective design of reliable secondary

storage by developing analytic models of the reliability of redundant disk arrays. The models

include a wide spectrum of disk array designs so that individual designers will be able to

characterize the reliability of the system they want to build. I use Markov-model-solving
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software and simulation in this chapter largely to validate the models I present

In this chapter I present four models for the reliability of redundant disk arrays mat correct

all single disk failures. The most fundamental model considers the effect of independent, ran-

dom disk failures on an array's data lifetime. The lifetime of data in an array ends when a

failed disk's data is lost. This first reliability model is based on a well-studied Markov model

and yields a simple expression for reliability. A cost-effective method for improving reliability

by maintaining a small number of on-line spare disks is addressed in a second, more complex

model It yields an analytic expression for reliability by solving separate submodels for data

loss derived from spare-pool exhaustion and concurrent, independent disk-failures. A third

model uses similar methods to address dependent disk failures induced by sharing interconnect,

controller, cooling, and power-supply hardware (collectively called support hardware).

Although N+l -parity protection only insures the correction of a single disk in a parity group,

disk arrays can be organized so that each disk in a support-hardware group is contained in a dis-

tinct parity group. In this way, dependent disk failures are tolerable because they affect at most

one disk per parity group. Finally, the fourth model bounds the reliability of disk arrays that

incorporate on-line spare disks with dependent and independent disk failures. These bounds

allow estimates of reliability with no on-line spares and with sufficient on-line spares to provide

one- and two-spare, support-hardware groups. These four models show how disk arrays can

provide high reliability with modest amounts of redundancy.

I use these models and simulations to explore the cost-reliability tradeoffs between arrays

with different levels of redundancy. Traditionally, redundancy has been provided by full dupli-

cation, or mirroring, without on-line spares. Although this type of organization provides higher

reliability than an N+l-parity organization of the same user capacity without spares, the addi-

tion of a few spares reverses this relationship. One of the most important results of this chapter,

specific to the design of practical disk arrays, is that an N+l-parity disk array with a few spares

can yield greater reliability at lower cost than traditional mirrored disk arrays.
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Metric

Units
Formatted Data Capacity (MB)
Number of Actuators
Avg Access Time (msec)
Max I/Os/Sec/Box
Track Transfer Rate (MB/sec)

IBM
3390

1
22700

12
19.7
609
15.3

IBM
0661

70
22400

70
19.8

3535
118.3

Table 5.1: Comparison of Strawman Disk Array to IBM 3390. An array of 70 IBM 0661
disks is used in this chapter to exemplify reliability models. This "strawman" was selected to
match the capacity of an IBM 3390 disk subsystem, IBM's high-end disk product. This table
shows that the strawman array has superior throughput and comparable response time. Relative
price is not as clear, but, according to Table 33 in Chapter 3, 70 3'A-inch disks will cost a disk
array manufacturer about 22,400 MB x 2 J $/MB - $56,000 whereas IBM's best customers must
pay almost three times this price for an IBM 3390 and a portion of an IBM 3990 controller.

Throughout this chapter differences in reliability models will be exemplified by their

effects on an array of 70 3V*-inch disks. Table 5.1 shows that this disk array is selected to

match the capacity of an IBM 3390 disk subsystem with 70 IBM 0661 (Lightning) disks.

Because the 3390 is IBM's newest, largest, and most expensive disk product, there is a lucrative

market for a disk array that can exceed the performance and reliability of the IBM 3390 while

matching its cost per megabyte.

Without redundancy, this example disk array unfortunately has virtually no chance of sur-

viving three years without data loss because of the aggregate failure rate of its large number of

components. With as little as 10% overhead for parity information, however, mis disk array can

be made about as reliable as a single disk. Then, if the failure of support hardware does not

damage multiple disks simultaneously, the addition of a single on-line spare disk yields a mean

time to loss of data that is about 10 times larger than a single disk. With two on-line spare

disks, the mean time to loss of data in this disk array is marginally less than if it had an infinite

number of on-line spare disks, specificly, about a factor of 20 times larger than a single disk.

Even if this disk array is subject to dependent disk failures, an orthogonal arrangement of parity

groups and support hardware groups and a single on-line spare disk yield about an 80% chance
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that data is not lost in 10 years. If this is not satisfactorily larger than the 56% chance that a sin-

gle disk survives 10 years without data loss, raising the overhead for on-line spares to 10%

allows failed support hardware to be replaced immediately and delivers a 98.7% chance of sur-

viving 10 years without data loss.

5.1. Reliability Metric

The Reliability* of a system is defined for any target lifetime, t, as the probability that an

individual system survives for time t given that it is initially operational [Siewiorek82 pp 7]:

R(t) = Prob( lifetime > t I initially fully operational ). (5.1)

In stochastic terminology, R(t)=\-F(t), where F is the cumulative distribution function

(CDF) of system lifetimes:

F(r) = ProtX lifetime < t I lifetime > 0) = 1 -R(r). (5.2)

In this work, survival means all user data is available or recoverable, so the reliability at time t

is the proportion of systems that have not lost any user data in time t.

Because a function can be a cumbersome metric, reliability is frequently quoted as a sim-

ple probability with an implied time interval. For example, designers may be most interested in

a system's one-year reliability (R (\year)), or, for the pessimistic among us, the probability that

it will survive the duration of its warranty. Where I do not have a complete description of R(f)

or where its presentation involves too much data, I use estimates of the system's 1-, 3-. and 10-

year reliabilities.

Perhaps the most commonly encountered measure of a product's reliability is its Mean

Time To Failure, MTTF, or its Mean Time Between Failures, MTBF. As Chapter 3 shows, this

metric does not give much information unless the lifetime distribution is known. Fortunately,

1 The use of the term reliability as a mathematically defined metric and as an intuitive concept can
lead to ambiguity. I have chosen to follow the former convention and avoid the latter use.
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Figure 5.1: Exponential Reliability versus Ratio of Time to Mean Lifetime. This figure
shows the reliability of a system with exponential lifetimes with time expressed as a multiple of
the system's mean lifetime, M. I have marked a few interesting points; the system has a 90%
chance of surviving 0.1 M,a61% chance of surviving 03 M. a 37% chance of surviving 1.0 M. a
14% chance of surviving 2.0 M, and a 5% chance of surviving 3.0 M. I have also marked the
median lifetime, the time yielding a 50% chance of survival, which is 0.69 M.

little strong evidence against an exponential model for disk lifetimes was found, so the MTTF

of a disk drive may be assumed to imply a complete reliability function. The current chapter

shows that under most conditions, the lifetimes of disk arrays have an approximately exponen-

tial distribution, so that the equivalent metric. Mean Time To Data Loss, MTTDL, is a complete

description of a disk array's reliability. Because exponential lifetime distribution plays a prom-

inent role in this chapter, I include a close examination of its characteristics.

Where lifetimes are distributed exponentially as random variables, /?(f) has an exception-

ally simple form fully described by the product's mean lifetime, M:

*«p(0 = e'iat . (5.3)

Figure 5.1 shows the reliability of a system with exponential lifetimes as a function of time,

which is expressed as a fraction of the system's mean lifetime. There is a 10% chance that this

system will have a lifetime less than one-tenth its mean lifetime, a 37% chance of surviving one

mean lifetime, and only a 5% chance of surviving three mean lifetimes.
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Figure 5.2: Exponential 1-, 3-, and 10- Year Reliabilities versus Mean Lifetime. This figure
shows the reliability of a system with exponential lifetimes over 1,3, and 10 years as a function
of the system's mean lifetime (in IjOOO hours, where there are 8,766 hours in a year). The x-axis
scale is logarithmic. With a mean lifetime ofSOjOOO hours, the system has an 84% chance of sur-
viving one year, a 59% chance of surviving three years, and a 17% chance of surviving 10 years.
If the mean lifetime can be increased to 150,000 hours, the chance of surviving one year rises to
94%, the chance of surviving three years rises to 84%, and the chance of surviving 10 years rises
to 56%. To achieve an 80% or 90% chance of surviving 10 years, the mean lifetime must exceed
390,000 hours or 830,000 hours, respectively.

Figure 5.2 shows the reliability over 1,3, and 10 years for a system with exponential life-

times as a function of its mean lifetime. This figure underscores the attractiveness of extremely

high mean lifetimes. Although it may seem silly to spend time and money changing a MTTF

from 6 years (50,000 hours) to 45 years (390,000 hours) or 95 years (830,000 hours) because

most products are obsolete in less than 10 years, these changes increase the probability of sur-

viving the first 10 years from 0.17 to 0.80 or 0.90, respectively.

A powerful property of exponential lifetimes is their age-independence. For exponen-

tially distributed lifetimes, the probability of surviving time t given that the system has sur-

vived time s, s<t, is exactly the probability of surviving time t-s. Thus, if the system is

currently operational, its remaining lifetime has the same distribution as its initial lifetime, and

its age is not important. Although this assertion is counter-intuitive for real systems, it provides
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the basis of many common reliability approximations. Specifically, age independence indicates

that an exponential distribution's failure rate, \IM, is constant (This is also discussed in Sec-

tion 4.1 of Chapter 4.) Age independence leads to the simple approximation R(r) = l-t/M as

long as the time period, t, is small relative to the mean lifetime, M. This approximation

underestimates R (t) by less than 1% when t < 0.13 M and by less than 10% when t < 0.39 M.

For example, if a system's mean lifetime is greater than 5,500 hours, its one-month reliability is

no more than 1 % larger than 1 - (365.25x 24/12)/M = 1 - 730 J/M.

Another useful way to look at this approximation is

ProbC'death" before r) = l-R(t) - tIM (5.4)

which means that doubling the mean lifetime, M, halves the chance of "death" in time periods,

t, that are small relative to M. This approximation overestimates \-R(t) by less than 1%

when r < 0.02 M and by less than 10% when t < 0.19 M. For example, if a system's mean

lifetime is greater than 37,000 hours, the probability that it win "die" in one month is no more

than 1% larger than (365.25x24/12)/Af = 730.5/Af.

The failure rate of a lifetime with an exponential distribution is the reciprocal of mean

lifetime, I/A/. Failure rate is a metric often preferred over that of mean lifetime because of the

R(t )= l-t/M approximation. In this work I will use whichever of these is most intuitive to

the matter at hand.

5.2. Related Work

The reliability of computer systems is a widely researched field. But because my goals in

this chapter are specific to the reliability of disk arrays only, I will not attempt a complete

review of it here. An excellent treatment of the field can be found in the book by Siewiorek and

Swarz [Siewiorek82]. In addition to presenting design methodologies and detailed case studies,

this book contains a practical discussion of frequently used mathematical techniques including
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the basic ones I employ in this chapter. Briefer treatments of the reliability of computer sys-

tems can be found in Avizienis's classic survey [Avizienis78] and Nelson's up-to-date overview

[Nelson90]. More detailed understanding of the modeling mathematics can be found in a

variety of textbooks [Bhat72, RossSS, Wolff89] and survey articles [Geist90].

One result important to understanding the reliability of disk arrays relates to the distribu-

tion of the time until failure of a system with redundant parts and dynamic repair. In mis case,

the system fails when too many components fail before repair can be completed. Arthurs and

Stuck develop intuition for this distribution in a paper modeling the reliability of a machine

with a single backup machine and a dedicated repairman[Arthurs81]. They show that the distri-

bution of the time until both machines are concurrently being repaired approaches the exponen-

tial distribution as the probability that one machine will fail before the other is repaired

approaches zero. Moreover, they show that this is true regardless of the distributions of the

time until machine failure and of the time until repair is complete. Their result can be general-

ized to apply to any system experiencing short periods (e.g. repair) during which it is vulnerable

to improbable events [Wolff91].

The result obtained by Arthurs and Stuck is important for my research because it is appli-

cable to repairable, redundant disk arrays. These systems suffer infrequent failures and can be

repaired within a small number of hours by replacing the failed component and recovering any

affected data. With their result, I expect that the time until a disk array suffers a failure causing

some data to be unrecoverable - the time until data loss - will be approximately distributed as

an exponential random variable. This approximation improves when repair is made faster or

failures are made less frequent. Although I will present evidence throughout this chapter that

this expectation is borne out by my simulations, it should be remembered that my premise is not

sensitive to the distributional assumptions I use.

The conventional method for constructing redundant disk systems is based on duplication

[Katzman??]. The reliability of duplexed, or mirrored, systems and of the closely related
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Triple-Modular-Redundant (TMR) systems have been well studied [Siewiorek82 pp262].

These are both special cases of the disk-array reliability model mat I examine in Section 5.4.1.

Duplexed disks, however, double disk costs. But, as I discuss in Section 3.42. they can also

improve performance. To extend these performance advantages, rather than to enhance reliabil-

ity, some researchers have suggested disk systems with more than two copies of every disk [Bit-

ton88, Matloff87] and, although costly, this is available in Digital Equipment Corporation's

disk subsystem products [Bates89]. Because the cost of duplicating data is prohibitive for most

systems, I will concentrate on the less expensive N+l-parity encoding for redundancy in disk

arrays.

In an early paper on repairable, redundant disk arrays, Park and Balasubramanian present

an optimistic estimate for the mean time until data is lost [Park86] - optimistic because their

model underestimates the period of time that a disk array is vulnerable during a disk repair.

Section 5.4.1 examines a more appropriate model for N+l-parity disk arrays that was first

applied to disk arrays by Patterson, Gibson, and Katz [Patterson88]. Although Park and Balasu-

bramanian discuss both failures in the hardware that supports disks and the inclusion of on-line

spare disks, they do not model the effect these factors have on disk array reliability. Sections

5.5 and 5.6 in this chapter do, however, model the effects on reliability of each of these factors,

respectively, and Section 5.7 examines their combined effects. These sections show that

although failures in disk-support hardware can drastically reduce the reliability provided by

redundant data, these effects can be substantially overcome. I have previously presented prel-

iminary analysis of these factors [Gibson89c].

Ng has studied Section 5.4.1's model for reliability in a disk array and extensions for

including on-line spare disks [Ng90]. By employing a Markov model simulation tool, he deter-

mined that there is little benefit from including more than one spare disk in a disk array of a sin-

gle parity group of up to 32 disks. In Section 5.6,1 present an analytic model that substantiates
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and extends his result.

5.3. Tools and Methods

In my quest to quantify reliability, I developed and used three different types of stochastic

tools. The most general tool is an event-driven simulator I wrote called RELJ. RELI explicitly

generates failure events in a specified disk array from its installation until the first time a failed

disk's data cannot be recovered. Each of the durations from installation until data loss is a sam-

ple lifetime of the specified disk array. RELI samples enough lifetimes to be able to estimate a

reasonably narrow confidence interval for the expected lifetime of the specified disk array.

RELI is described more fully in Appendix A.

The second tool I used was a software package called Sharpe that solves Markov models.

(Shaipe is distributed by Duke University [Sahner86, SahnerS?].) It generates a cumulative dis-

tribution function for array lifetimes from a completely specified Markov model. To provide

results without the trouble of developing programs, my final tools are fully-parameterized ana-

lytic expressions. These expressions can be evaluated with simple programs or hand-held cal-

culators.

The greatest advantage of simulation is that it allows complexity to be modeled realisti-

cally, although complex simulators are vulnerable to lurking bugs. Markov models are well-

understood (and the more widely-used tool, Sharpe, can be expected to have fewer bugs), but

the specification of a complex Markov model frequently requires many arguable approxima-

tions, and its specification task is nearly as difficult as coding a simulator. Furthermore, the

solution of Markov models by a tool such as Sharpe requires all parameters to be fully specified,

and it generates numeric results. For highly reliable designs, moreover, Sharpe's general solu-

tion technique suffers from numerical approximation problems, and it becomes necessary to

resort to separate solutions for each point in time of interest For these reasons I use Markov
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models mainly to verify simulation and analytic models.

In contrast to either Markov models or simulation models, analytic models offer simpler

computation and greater intuitiveness. Unfortunately, they offer point estimates only and usu-

ally rely on arguable simplifications. A major goal of mis chapter was the development of ana-

lytic models to obtain these computational and intuitional advantages, but I rely on more com-

plex simulation models to provide information about distributions and to support assumptions

in analytic models.

As this chapter proceeds, I use a general technique with which to compare models. First I

construct a large number (thousands) of sets of the models' parameters. This defines the

"design space" within which I desire agreement among my analytic, Markov, and simulation

models. Then I randomly sample this design space for about 100 parameter sets. For this col-

lection of parameter sets, I evaluate both (or all) models. If the models define a single value, I

show a scatter plot of the relative differences between pairs. Where the models define a reliabil-

ity function, R(t\ I evaluate the agreement between two curves with the root-mean-square

(RMS) of the difference between curves. Because nearly all computer components are obsolete

and replaced in less than 10 years, I evaluate only the root-mean-square difference over the first

10 years (87,660 hours). This gives an "average" absolute difference between the two reliabil-

ity curves and, once again, I display the results of each root-mean-square comparison in a

scatter plot
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5.4. Independent Disk Failures

The simplest model for single-erasure-correcting arrays of redundant disks is based on a

three-state Markov model with independent and exponential disk lifetimes and exponential

repair durations. This is a specific application of a model that has been featured in stochastic-

process textbooks and which exemplifies simple redundancy in a collection of identical, repair-

able equipment [Bhat72 pp 268-272]. Using the well-known solution for this model, I evaluate

the reliability of a single parity group of disks. To extend my solution to a disk array containing

multiple parity groups, I approximate the time until data is lost in a single parity group as an

exponential random variable and evaluate the time until the first parity group losses data. This

section ends with the application of these models to my strawman disk array.

5.4.1. Markov Model for a Single Parity Group

For a single-erasure-correcting group of N+\ disks, where disk lifetimes are exponential

with mean MTTF&sii s 1/X and repairs are exponential with mean MTTR^t = 1/u,, Figure 5.3

Figure S3: Data Loss Model for Independent Disk Failures in a Single Parity Group. A sin-
gle disk-array parity-group ofN+1 disks can be modeled by a three-state Markov model if disk
lifetimes are exponential with mean MTTF&ti = 1/X and disk repairs are exponential with mean
MTTRduk = 1/U- The states are labeled with the number of disk failures evidenced by the array.
When there are no failures, the rale of failure isN+l times the rate of an individual disk failure,
X. When there is one failure, the rate of repair is \i and the rate of a second failure is Af/X.
Once there are two concurrent failures, data has been lost, and there are no more transitions.
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shows a three-state Markov model labeled by the number of concurrent failures. Using Laplace

transforms on Pn (t ), the probability of being in state n at time / after originating in state 0 has

been shown to be

(5.5)

where

and

The reliability, K(t), is the probability that no data has been lost during time r. With this

expression the mean time until a group suffers data loss, MTTDL , is

The mean time until a group suffers data loss is simply the expected time beginning in state 0

and ending on the transition into state 2 in Figure 5.3.

If R (r) is not necessary, MTTDL can be found more easily. Beginning in a given state / ,

the expected time until the first transition into a different state j can be expressed as

E[state i to state j ] = E[time in state i per visit]

+ Y, P(transition state i to state k ) E[state k to state j] (57)

where

E[time in state i per visit] =
2 rates out of state i

and
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PCtransition state / to state *)= rateof transition to state*
grates out of state i

The solution to this system of linear equations includes an expression for the- expected time

beginning in state 0 and ending on the transition into state 2, that is, for MTTDL . For the Mar-

kov model in Figure 5.3, this system of equations is

E[state 0 to state 2] = - + ±- E[state 1 to state 2]

E[state 1 to state 2] = — j-=- + — ̂ rr- E[state 0 to state 2]

E[state 2 to state 2]

E[state2tostate2] = 0.

Solving, the above expression for MTTDL is, happily, rederived as

MTTDL =E[state 0 to state 2]

The expressions for reliability, R (r), and mean time to data loss. MTTDL, in this section

are exact with respect to the Markov model in Figure 5.3. The methods used to derive these,

particularly that used to derive MTTDL, will be used in later sections without displaying inter-

mediate results explicitly.

5.4.1.1. Approximations and Simplifications

Although the reliability, R (r), given in the previous section is exact, it is not computation-

ally simple. However, the value of £ is likely to be much larger than £ because all variables are

positive, and \i = l/MTTR^t is much larger than X= l/MTTF^k • As a result, it is reasonable

to assume that the reliability function, /?(/) would be well-approximated by an exponential

function, R/Hdtp(t) = e-"tfm>L
t with the same mean, MTTDL. Figure 5.4a compares R(t) with

such an exponential approximation over a collection of 94 parameter sets selected at random.

For each parameter set, the root-mean-square of the difference between R (r) and Rtmu^t) intui-

tively represents the average distance between these two curves. For example, the largest root-

mean-square difference in Figure 5.4a is less than 0.0004, so the difference between /?(r) and
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Figures 5.4a and 5.4b: Single Parity Group Reliability versus Approximations. Figure 5.4a,
on the left, shows the root-mean-square difference between the exact reliability function for the
Markov model of Figure S3 and an exponential approximation with the same mean. The root-
mean-square difference is evaluated over the first 10 years of operation. There are 94 comparis-
ons shown, one for each of 94 parameter sets selected at random. Figure 5.4b, on the right,
shows the relative difference between the exact MTTDL and its simplified approximation
MTTDLj^dif over the same 94 parameter sets.

is no more than 0.0004 on average. Because this average difference is small, R(t) can

be well-approximated by an exponential function with the same mean.

As to the exact value of MTTDL, another approximation is appropriate. Because

(2/^-»-l)X = (2N'fl)/Af7TF<tojk should be much less than l/MTTR^ = n, the mean time until

data is lost can be approximated as

Figure 5.4b shows the difference between MTTDL i^p relative to MTTDL for the same 94

parameter sets used in Figure 5.4a. Because the approximation is pessimistic by less than 6%

for all of these parameter sets, I will adopt this expression for the mean time until a single parity

group loses data.

Together, these two approximations are
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(5.9)

5.4.2. Multiple Parity Groups

In practice, a disk array is composed of more than a single parity group. If each group

fails independently, the time until data loss in a multiple-group disk array is the time until the

first component group fails. Given that the lifetime of a single-erasure-correcting group can be

modeled as an exponential random variable, the lifetime of a disk array has the same distribu-

tion as the shortest lifetime of its component groups. Conveniently, one of the properties of

exponential random variables is that the minimum of multiple exponential random variables is

MTTR = 4 hours
MTTR = 24 hours

^ MTTR = 168 hours

17432 35.064 5^S96 70,128 f7,660 Han
2 4 6 I 10 Yens

Age of Example Disk Array

Figure 5.5: Reliability Example for Multiple Parity Groups. Using the exponential approxi-
mation for multiple parity groups, this example shows the reliability of 70 data disks organized
into seven parity groups over 10 years. All disks have average lifetimes of ISOjOOO hours.
Separate curves are shown with 4, 24, and 168 hours as the average duration of disk repairs.
With seven groups of 10 data disks each, there are 10% more disks for redundancy. The age of
this example disk array is shown in hours, where there are 365.25x24=8766 hours in a year.
Note that this x-axis, the age of an individual disk array, is different from the x-axis in Figure 52,
the mean lifetime of a collection of disk arrays, which is also expressed in hours.
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also an exponential random variable whose rate is the sum of the component groups' rate.

Hence, a disk array composed of G single-erasure-correcting groups each containing N+l disks

has

(2N+DX+U -

or

U - toll* disk*

and

**+#)- i - * * . (5-12)

Figure 55 shows an example of these approximations for the reliability of multiple parity

groups. Seven groups each with 10 data disks are protected by one parity disk per group. Each

disk has a MTTF^t of 150,000 hours and three average repair durations, MTTRjuk , of 4 hours,

24 hours, and 168 hours. This example shows the advantage of fast repair, Section 5.6 presents

a model for array reliability where repair times are accelerated by a pool of on-line spare disks.

5.4.3. Calibrating Consistency with Simulation

In order to evaluate the match between these equations and direct simulation of an array's

lifetime, I have collected 94 simulated estimates for MTTDL and matched mem to the equa-

tions' estimates. Because the simulation is driven by exponential disk lifetimes and exponential

repair times, this comparison, shown in Figure 5.6a, can be viewed as a consistency check

between the simulation code and the Markov model. The 94 parameter sets are the same as

those used in Figures 5.4a and 5.4b.

Because the simulation is stochastically driven, its estimates of MTTDL will vary from

the true MTTDL. To control this variation, the simulator collects independent lifetimes until

the size of the 95% confidence interval on MTTDL is no more than 10% as large its estimate of

MTTDL. Figure 5.6b shows a graph similar to that in Figure 5.6a where I have replaced each
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Figures 5.6a and 5.6b: Error in Estimated MTTDL Relative to Simulation. On the left in
Figure 5.6a. I show the error in MTTDL as estimated by MTTDLiHup in Equation 5.11 relative
to simulation. The horizontal lines in this figure border the region for the 95% confidence interval
on MTTDL. The simulation parameters are selected randomly from a large group of parameter
sets that yield an estimated MTTDL between WjDOO and 1000,000 hours. On the right in Figure
5.66, / show the same calculation for 100 samples taken from a population where, instead of
simulation estimates, MTTDL is estimated by sampling an exponential distribution whose mean is
equal to MTTDL î p. The similarity between these two figures provides evidence that the varia-
bility shown on the left arises from variability in simulation estimates.
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Figure 5.7: Estimated versus Simulated Reliability. For each of the 94 simulations I plotted
estimations of its 1-, 3-, and 10-year reliabilities. Solid lines are all 94 simulation estimations for
a particular reliability duration. Dotted lines are the exponential estimations for 1-. 3-, and 10-
year reliabilities.
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simulation lifetime with a sample from an exponential distribution whose mean equals the

equation's estimate for AfTTDL. The similarity between Figures 5.6a and 5.6b shows that vari-

ation in Figure 5.6a does not indicate error in the approximate estimate, MTTDLj^up, but

instead indicates variability in simulation's MTTDL estimate.

Given that simulated and calculated MTTDL agree to a degree comparable to the variation

inherent in simulation, it remains to be shown that simulated lifetimes are exponentially distri-

buted. Figure 5.7 shows the 1-, 3-, and 10-year reliabilities collected during simulation in com-

parison to corresponding estimations Rindent) at 1,3. and 10 years. This figure shows that the

simulation estimates for reliability are well-matched by an exponential approximation at least

for these three points in time.

In another approach to demonstrating that simulated lifetimes can be suitably modeled by

an exponential distribution, I have applied the well-known Pearson's chi-square (x2) goodness-

of-fit test to the simulation data [KirkSO pp 533, Lawless82 pp441]. (An explanation of this

procedure appears in Appendix C.) Because this test is actually designed to provide evidence

against an assumed distribution, the correct way for me to report the results of this test is to say

that I did not find strong evidence against the hypothesis that simulated disk array lifetimes are

exponentially distributed which agrees with my expectations discussed in Section 52.

5.4.4. Implications for the Design of Disk Arrays

Figure 5.8 shows how 10-year reliability in arrays degrades with increasing numbers of

disks and decreasing parity overhead. In this figure it is assumed that each disk has an exponen-

tial lifetime with a mean of 150,000 hours. Small arrays attain high 10-year reliabilities with

small overhead for redundant disks. Large arrays are more reliable than a single disk at less

than 50% overhead for redundant disks. By comparison, the 10-year reliability of 10 data disks

with no redundancy is less than 0.003; that is, there is a 0.3% chance that 10 disks with

exponential lifetimes having a mean of 150,000 hours will run for 10 years without any failure.
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Figure 5.8: Reliability versus Redundancy Overhead. This graph shows the trend for the 10-
year reliability in a disk array suffering only independent exponential failures when each disk has
a mean lifetime of 150,000 hours and it takes an average of 24 hours to repair each disk failure.
Three array sizes are shown: 10,100, and 1000 data disks per array. The size of a parity group,
N+l, is related to the parity overhead expressed as a percent, O,byN = 100/0 Recall from Fig-
ure 52 that a single disk with exponential lifetimes and a mean lifetime oflSOjOOO hours has a
10-year reliability of 056 (dotted line). Therefore, even a disk array with 1JDOO data disks can be
made more reliable than a single disk at about 20% overhead!

0 100 200 MO 400

Average Repair Time (Hours)

Figure 5.9: Strawman Reliability versus Repair Time. This figure shows the probability that a
disk array containing seven parity groups of 10 data and one parity disk survives 10 years
without loss of data. Each disk has an exponential lifetime with a mean oflSOjOOO hours. This
figure shows the dramatic effect on reliability of decreasing the average time it takes to repair a
disk. Three specific, average repair times are highlighted. With an average disk-repair time of 2
weeks (336 hours), there is a 36% chance of surviving 10 years of operation. If the average
disk-repair time is reduced to 3 days (72 hours) or 1 day (24 hours), then the chance of surviving
10 years rises to 80% and 93% respectively.
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There is virtually no chance of 100 or 1000 of these disks surviving 10 years without loss of

data.

Figure 5.9 shows how the 10-year reliability of my stawman disk array example depends

on the average disk repair time. I have partitioned 70 data disks of this array into seven groups

(G=7) of 10 data disks and a parity disk (W=10). This organization has a low overhead cost

amounting to 10% extra storage for redundancy. Because each of these disks has a mean life-

time of 150,000 hours, the mean time until data is lost is MTTDL = 29,200,000/MTTA. Figure

5.9 shows the effect of repair time on the 10-year reliability for this array. An average repair

time of two weeks (336 hours) yields a 10-year reliability as low as 0.36, an average repair time

of three days (72 hours) yields a much better (0.80) 10-year reliability, an average repair time of

one day (24 hours) yields a 0.93 10-year reliability, and an average repair time of four hours

yields a 0.99 10-year reliability. This example demonstrates the advantages of fast repairs,

which can be achieved by maintaining off-line or on-line spare disks. Section 5.6 presents the

effect of spare pool depletion on this estimate for reliability with fast repair.
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5.5. Dependent Disk Failures

In the previous section 1 calculated the reliability of a disk array based on the optimistic

assumption that all failures are independent However, most I/O subsystems require support

hardware mat is shared by multiple disks. For example, power supplies, cabling, cooling, and

controllers are often shared across multiple disks. Figure 5.10 shows an example of such sup-

port hardware and their failure rates for commonly available components that might be used in

AC Power
MTTF = 4,300 hours

Power
Supply

300W Supply
MTTF= 123,000 hours

SCSI Host Bus Adapter
MTTF= 120,000 hours

SCSI Cable (7 disk drives)
MTTF = 21,000,000 hours

Power Cable (7 disk drives)
MTTF = 10,000,000 hours

Disk

Disk

Fan
MTTF =195,000 hours

Disk Drive
MTTF = 150,000 hours

Figure 5.10: Example or Support Hardware Shared by Multiple Disks. Disk subsystems are
usually partitioned into strings that share datapath cabling and controllers. Although it is possi-
ble for different collections of disks to share power supplies and cooling support, this figure shows
an example of a single string where cabling, controller, power, and cooling are all shared by the
same disks. Sample component reliability figures are shown for a relatively low-cost, SCSI inter-
face design [Schuhe89]. Assuming that the support hardware's components have exponentially
distributed lifetimes, the overall failure rate of the non-disk portion of a string is the sum of its
components' failure rates. For high data reliability it is essential that the external power grid be
isolated from the system. Using this data and assuming (possibly battery-backed-up) power sup-
plies uneffected by power grid irregularities, the mean time to failure of a string is about 46jOOO
hours. This estimate can be easily increased by using more reliable and expensive parts or by in-
corporating redundant support hardware components, but its low value relative to mean disk life-
times suggests thai dependent disk failures can have a severe effect on reliability. In the rest of
this chapter I use 150,000 hours as the mean time to string failure in my examples of a strawman
disk array.
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a disk array. This figure assumes that the disks that share cabling also share power and cool-

ing. I call such a configuration a string. Strings may fail if any of the support hardware fails,

but, for purposes of this analysis, not because of disk failures. String failures can render many

disks unavailable. In these cases multiple disks cannot be said to fail in an independent manner.

Since RAID parity groups only guarantee recovery of a single disk failure, dependent disk

failures may defeat my redundancy scheme.

String failures can severely limit the reliability of a disk array because each failure may

render data unavailable for a sufficiently long period that this data is declared effectively lost2

Assuming that the time until a string fails is exponentially distributed, string failures cause the

rate of data loss to be larger than that of the previous section by up to the rate of string failures

(Caring tMTTFaring ),

_ G (N+l)(N+2)MTTRdisk~

where Caring is the number of strings. String failures limit MTTDL to a maximum of

MTTFltring /Goring , regardless of redundancy among the disks.

The standard approach for limiting loss of data caused by string failures is to duplicate

power, cooling, and controller components so that AfTTF .̂̂  is maximized. Although full

duplication substantially improves the reliability of strings, it is an expensive solution that

reduces the frequency of, but does not tolerate, string failures. A more powerful solution capi-

talizes on the larger number of identical components in a disk array.

With smaller and more numerous disks, an array is likely to contain a sufficient number of

strings so that parity groups can be organized with no more than one disk from each group on

2 There are a variety of reasons for assuming that string failures "erase" the data on their disks.
First of all, some string failure, such as power failure, increase the probability that each disk will not res-
tan when power is next applied. More significantly, applications such as on-line transaction processing
may stand to lose many times the value of their computer systems when data is unavailable. However, in
situations where string failures are non-threatening, the model in the next section will be more appropri-
ate.
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Figure 5.11: Orthogonal Organization of Parity and Support Hardware Groups. By organ-
izing support-hardware groups orthogonal to parity groups, the failure of a support-hardware
group, or string, will destroy at most one disk in each parity group. Since parity-based redun-
dancy schemes handle one failure per group, single-string failures are survivable.

Figure 5.12: Markov Model for an Orthogonal Disk Array. In this model C parity groups
have G+3 stales. In state DL data has been lost. In state SR a string is under repair. In each of
the other states, i. i e {0,\,...,CJ, there are i different parity groups recovering the contents of a
single failed disk. Transitions from state i to i+1 occur if a disk fails in a group that has no other
currently failed disks; otherwise, data is lost. The reverse transition, from state i+1 to i. occurs
when disk repair and recovery is completed. When a string fails the system enters state SR if all
disks under repair are contained in the newly failed string; otherwise, data is lost. After a string
is repaired, the contents of each of its disks may need to be recovered, so the model enters state
G.
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any one string. As shown in Figure 5.11, this orthogonal organization of strings and parity

groups guarantees that a single string failure can be endured as long as no other disk or string

failure occurs before the string is repaired.

Repairing a failed string is more complex than repairing an independently failed disk. It

involves a service visit or replacement operation for the component of the string that failed and

then the recovery of multiple disks. This latter step may be necessary because the disks dam-

aged or rendered unavailable by string failure have been replaced during repair of the string. It

may also be necessary because the contents of these disks have been outdated by changes

applied to parity disks instead of to the unavailable string-failed disks. Because of the multiple

disk recovery step, the array may lose data if other components fail before the slowest disk

recovery is complete.

5.5.1. Markov Model for Orthogonal Disk Array

Modeling the reliability of an orthogonal disk array with dependent failures is more com-

plex than the independent disk-failures model of Section 5.4 Parity groups cannot be modeled

individually because string failures cause all groups to experience a failure simultaneously. In

Figure 5.12,1 show a Markov model for a disk array with G groups organized orthogonally.

This Markov model would yield complete solutions by the methods used to solve the simpler

model of Section 5.4, but this cannot be done without assigning values to most parameters, and

it requires messy inverse Laplace transformations. Instead, I have employed the Sharpe reliabil-

ity and performance evaluation software package developed at Duke University [Sahner87] to

evaluate the models of Figure 5.11. When Sharpe is given a model and values for all parame-

ters, it will produce a MTTDL, a variance, and & finite exponential polynomial representation

for the cumulative distribution function (CDF). The CDF evaluated at time t represents the pro-
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bability that loss of data will occur before time r. Sharpe produces CDFs that can take the form

>' = 1 -R(t)CDF(t)= 1 - £ f l , r > '
i

where f £ 0 and ;' , 0, , kj , and bj are parameters estimated by Sharpe.

I have also applied Sharpe to a version of Figure 5.11 appropriate for my strawman disk

array of seven parity groups with 10 data disks and a parity disk spread orthogonally over 11

strings of seven disks each. Once again mean disk lifetime, MTTF^i, is 150,000 hours.

Although Figure 5.10 suggests that mean string lifetime, MTTR^-^g , might be as low as 50,000

hours, I will optimistically assume that string components of higher quality lead to a mean

string lifetime of 150,000 hours. For repair processes, I use an average disk repair time of 24

hours, MTTRduk , and an average string repair time of 72 hours, MTTRari^ . I further assume

that string repair is a more complex operation - more likely to require a qualified repairperson's
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Figure 5.13: Reliability for Strawman with an Orthogonal Organization. This figure shows
the probability that my strawman disk array will survive its first JO years with an orthogonal or-
ganization. This reliability function is derived from Figure 5.11's Markov model by Sharpe. My
strawman disk array has seven parity groups of JO data disks and a parity disk each. Disk life-
times and repair times are exponential with means of J50,000 hours and 24 hours, respectively.
String lifetimes and repair times are exponential with means of 150.000 hours and 72 hours,
respectively. An exponential approximation with the same mean is in such close agreement that
the two lines overlap.
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visit For this example, Shaipe reports a MTTDL of 186.900 hours and

CDF(r)= 1 -( 1.0003e-5J523*l(Hr - S.OWSxlQ-'e-0-014606' -

-2.6833xl(T6e-ao83938/ + 1.1164xlO-<ie-a12526' -4.0830xlCr7e-<UCT46'

Figure 5.13 shows this example's reliability, R(t) = l-CDF(r), over 10 years. An exponential

approximation with the same mean, K«p(0 = e-"186-900, differs from R (i) by less than 0.04%

over this range. Because this difference is so small, it is reasonable to expect that the models in

Figure 5.11 will lend themselves to exponential approximations. To provide stronger evidence

for this, I selected a random sample of 99 parameter sets constrained to yield an estimated

MTTDL of between 10,000 and 1,000,000 hours and solved each with Sharpe. Because of

Sharpe's limits on the number of states in a Markov model, 12 parameter sets could not be

evaluated. For each of the remaining 87, 1 evaluated the root-mean-square difference between

Sharpe's estimated R(t) and an exponential approximation, /?«p(0. with the same mean over
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Figure 5.14: Exponential Estimate versus Markov Solution for Reliability. This figure shows
the root-mean-square difference between the reliability estimated by Sharpe, K(t), and an ex-
ponential approximation, /?«p(f )./<"" 87 parameter sets selected at random and constrained to
have MTTDL of between 10,000 and 1,000,000 hours. The parameter set with the largest root-
mean-square difference has a maximum difference between Markov and an exponentially-
approximated reliability of only 3% over the first 10 years.
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the first 10 years. Figure 5.14 shows that the largest root-mean-square difference is less than

0.002; the maximum difference between Sharpe's R(t) and an exponential approximation,

^ «p(0. for the parameter set with the largest root-mean-square difference is 3%. This evidence

supports an exponential approximation for array lifetimes modeled by Figure 5.12 provided that

a close approximation of MTTDL is available. The next section presents an estimate for

MTTDL.

5.5.2. Estimating Mean Array Lifetime

Figures S.lSa and 5.15b: Submodels for Data Loss in Orthogonal Disk Arrays. The two
sources of data loss in Orthogonal disk arrays are failures during a disk repair and failures dur-
ing a string repair. The ambitious reader could derive the results presented in this section by ap-
plying the method of Section 5.4.1 for estimating MTTDL to each of these Markov models. Figure
5.75a, on the left, shows the sub-model for data loss in a single parity group caused by a second
failure during a (non-string-failed) disk repair. Each of the N+l disks in a parity group fails in-
dependently with MTTFduk = 1A^ and is repaired with MTTRjut = 1/pj. While a disk is being
repaired, the failure of any of the other N disks or their strings causes data loss. (This model is
the same as the model of Figure 53 with different transition rates.) Figure 5J5b, on the right,
shows the sub-model for data loss caused by a second failure during a string repair. Each of the
N+l strings in the array fails independently with A/TTF^^ = 1A» and is repaired with
MTTRtoixt ~ llM*- During the repair of a string, the failure of any of the other N strings or the
remaining CN disks will cause data loss. Once a string is repaired, the data on its disks is
recovered either because the repaired string has new disks or because user data has been updat-
ed for the repaired string's disks using the array's parity disks. The average recovery time of a
disk after a string repair, MTTRj^-rta^rf = 1/M* > may be less than the average disk repair time,
MTTDdat - 1/M4. because the string repair process is likely to include necessary disk replace-
ments. While the disks of a recently-repaired string are recovering, the renewed failure of the
same string reinitiates string repair. To avoid data loss after a string repair all G disks must
complete recovery; therefore, the transition rale to state tffisthe reciprocal of the expected max-
imum of G disk repairs, MTTRcuaia - $/M*, where 4> = 1/1+1/2+...+1/G. The factor $ also
modifies the rate of data loss during string-induced disk recovery to account for the reduced vul-
nerability to other disk failures as indvidual recoveries are completed.
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One approach to estimating MTTDL begins by recognizing that failures, particularly

closely-spaced double failures, are rare in real disk arrays. Where failure events are rare, I

assume that different types of data loss are mutually exclusive and sum their rates. There are

two sources of data loss in an orthogonal disk array: component failures during the repair of a

disk and component failures during the repair of a string. Figures S.15a and 5.15b describe

sub-models for these two sources of data loss, respectively. Considering each of these cases

separately, I apply the methods given in Section 5.4 for obtaining a mean lifetime without a

complete solution for the reliability function. The contribution to the overall rate at which data

is lost arising for vulnerabilities initiated by a disk failure is

G N(N^\)(\IMTTFdisk^\IMTTFttring yMTTF^t
' ^ '

Add to this the contribution arising from vulnerabilities initiated by a string failure,

MTTFaring _ l+MTTRrfv _ (5.15)
N+l

aring

MTTRariHg =

' **

Summing these contributions and inverting this sum, the mean time to data loss, MTTDLortho.

MTTFdisk
2

_ GN(N+l)MTrRdisk _
1-KXf

F

where

(5.16)

Figure 5.16a contrasts MTTDLonju, given in Equation 5.16 against its error relative to a

Sharpe evaluation of Figure 5.12. Differences in the MTTDL estimate are no larger than 9%

across the 87 randomly-selected parameter sets that Sharpe was able to evaluate. In fact, there

is only one estimate with more than 4% error and it has the unlikely combination of a 72-hour
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Figures 5.16a and 5.16b: Orthogonal Estimated MTTDL versus Markov Solution. Using a
Sharps evaluation of Figure 5.12 as the correct value for MTTDL, Figure 5J6a shows the rela-
tive error introduced when both sources of data loss are assumed to be independent, individually
modeled using the methods of Section 4.4, and merged by summing their rates. From a random
sample of 99 parameter sets constrained to yield estimated MTTDL between 10,000 and
1,000,000 hours, I show the 87 parameter sets that Sharpe was able to evaluate (12 parameter
sets exceeded Sharpe's limits on states in a Markov model). Figure 5.16b shows the root-mean-
square difference over 10 years between Sharpe's estimate ofR (/) and the exponential estimate,
Kontu,(t), which uses the MTTDL estimated by the Equation 5.16. The increase in RMS values
from Figure 5.14 to those in this figure, both of which use the same set of test cases, shows the ef-
fect of differences between estimations of MTTDL given in Figure 5.16a.

disk-repair time, and a two-hour string-repair time, with an estimated disk-array lifetime of

about 10,000 hours.

Using MTTDLonho as an estimate of the correct MTTDL and following Figures 5.13 and

5.14 by assuming that time-to-data loss is an exponential random variable, reliability can be

modeled as

K0«*(0 = e-'/"77W~'. (5.17)

Figure 5.16b shows the root-mean-square differences between Sharpe's estimate for R(t) and

its exponential approximation, Rortho(*)- In contrast to Figure 5.14, this figure has much larger

RMS values for the same set of 87 parameter sets. Because both of these figures compare solu-

tions of the same Markov models to exponential approximations, this difference in RMS values
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is the manifestation of the differences between MTTDLoniio and Sharpe's estimate for MTTDL .

Appendix B demonstrates the effect of errors in MTTDL estimates on exponential reliability

functions.

Although Equation 5.16 is accurate, it is certainly not simple! The values of e<u , €„ , e*j ,

and £* are expected to be small because they are ratios of a mean repair duration to a mean

time until failure. If each £ is assumed to be zero, MTTDLonho simplifies to

onto
( l + o,(1+-1-+-L.

(5.18)

As can be seen by comparing Figure 5.17a to Figure 5.16a, this expression has a substantially

larger relative error. While in some cases the simplicity of this expression makes it preferrable
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Figures 5.17a and 5.17b: Simplified Orthogonal MTTDL Estimate versus Markov Solution.
Letting each e go to zero. Figure 5J7a shows that the relative errors of Figure 5J6a increase
significantly. About one-third of the estimated MTTDL is more than 10% in error relative to the
Markov model of Figure 5J2. Figure 5.J7b shows the rooi-mean-square differences in
corresponding reliability functions over 10 years. In contrast to Figure 5J6b, the much larger
RMS values in this figure reflect the increased error in estimated MTTDL. This figure's x-axis
begins at 3,000 hours, lower than the x-axis on Figure 5.16b, because the large errors in estimat-
ed MTTDL shift points around. Because this error is so pronounced, I wilt not use this simplified
estimate for MTTDL in any other part of this chapter.
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to Equation 5.16,1 will not use this estimate further. The well-versed reader may note that an

earlier version of mis expression [SchulzeSP, Gibson89c] neglected to differentiate the disk-

repair time after a string repair from the isolated, independent disk-repair time.

Now that I have demonstrated a good match between Sharpe's solution of the Markov

model in Figure 5.12 and the Rorttu>(t) estimation. I turn my attention to the agreement between

simulation and estimation by first examining their respective estimates for mean lifetime. Fig-

ure 5.18a shows the relative error between simulated and Markov-modeled estimates for

M7TDL. Because simulation provides an estimate ofMTTDL whose 95% confidence interval

is ± 5% of MTTDL, errors of ± 5% are to be expected. Figure 5.6b was presented in Section

5.4.3 to show the type of error I expected between a mean lifetime estimated by simulation and

its true mean lifetime. The similarity of these two figures indicates a high degree of agreement

between simulated and Markov-modeled estimates for MTTDL.

To round out the comparison between simulation and estimation, I calculate their root-

mean-square difference. Figure 5.18b shows this difference between a Markov-modeled relia-

bility function and an exponential approximation with the mean lifetime estimated by simula-

tion. In contrast to Figure 5.16b, this figure shows that an exponential approximation for relia-

bility with the simulated mean is as good a match to the Markov-modeled reliability as an

exponential approximation for reliability with the MTTDLomu, estimate for its mean.

Figure 5.14 shows that the Markov model yields exponential reliability functions for the

87 parameter sets tested. Consequently, I expect simulated lifetimes to also have an approxi-

mately exponential distribution. Following the methods described in Appendix C, I again

applied Pearson's chi-square, goodness-of-fit test As in Section 5.4.3, this test does not yield

strong evidence against the hypothesis that simulated disk-array lifetimes are exponentially dis-

tributed.

More positive evidence that simulated disk-array lifetimes have an exponential distribu-

tion is found in Figure 5.19. This figure shows simulation statistics estimating the 1-, 3-, and
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Figures 5.18a and 5.18b: Simulated Orthogonal MTTDL versus Markov Solution. Figure
5.75s shows the relative error in MTTDL between a simulated estimate and Sharps's Markov
solution. Figure 5.18b shows the corresponding root-mean-square differences between K(t) and
R of(t) with the simulation's estimate for MTTDL.
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Figure 5.19: Simulated 1-, 3>, and 10-year Reliability. This figure shows the 1-. 3-, and 10-
year reliabilities computed during simulation against the MTTDL computed for the same simula-
tions. For the purpose of comparison, the dotted and largely obscured lines show the 1-, 3-, and
10-year reliabilities for lifetimes that are exponentially distributed. The close match of these
curves is good evidence that simulated disk-array lifetimes are exponentially distributed.
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10-year reliabilities of each of the 87 parameter sets used in previous figures beginning with

Figure 5.14. These simulated estimates are plotted against their simulated MTTDL. Also plot-

ted with dotted lines are the 1-, 3-, and 10-year reliabilities of an exponential distribution. The

fact that these dotted lines are nearly obscured constitutes strong evidence that simulated disk-

array lifetimes are exponentially distributed.

5.5.3. Separating Disk Repair into Replacement Delivery and Recovery

This section demonstrates that the expression for MTTDLontu>, the mean lifetime of an

orthogonal disk array, can be adapted for a more realistic, non-exponential disk-repair time

composed of two parts. The first pan of a disk repair process is a fixed delivery time at the end

of which the failed disk is replaced.3 Following this replacement, the second pan of disk repair

is an exponential disk-recovery time. For example, if a particular parameter set in the last sec-

tion had an average disk-repair time of 24 hours, I might allocate 20 hours to a fixed-length

delivery time and then set the average disk-recovery time to four hours. For each of these 87

parameter sets, I simulate a repair process whose replacement delivery time is 10%, 33%, 66%,

90%, and 99% of the total repair time. In each case, during a string repair all affected disks are

replaced so that disk repair after string repair does not involve any replacement-delivery time.

The simulator also assumes that if a disk fails while another failed disk's replacement is await-

ing delivery, the second replacement can be added to the existing order and arrive with the first

replacement disk. This is a good model for replacements delivered by a repairperson because

service personnel are likely to bring a few extra disks when they visit customers. This optimiza-

tion causes the average replacement-delivery time experienced by a failed disk repair process to

be shorter than the actual fixed-length delivery time.

3 Calling a fixed-length delivery time more realistic is perhaps a poor choice of words; in fact
delivery does not take the same amount of time on each occasion, but it is substantially less variable than
an exponential random variable. Recovery, on the other hand, will sometimes occur while the disk array
is idle, and other times, it will occur during peak user load If user requests are given priority, then
recovery time will be highly variable, a much better match to an exponential random variable.
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Figure 5.20: Partitioning Disk Repair into Replacement and Recovery. This figure shows the
agreement between simulation's estimate for MTTDL and MTTDLont*, when disk repair is split
into replacement delivery and disk recovery. For each of the 87 sample parameter sets, simula-
tions have been run with replacement delivery time set to 0%. 10%, 33%, 66%, 90%, and 99% of
the average disk-repair time used in previous sections. Because simulation satisfies all outstand-
ing replacements at the end of a fixed-length delivery period, the average delivery time experi-
enced by a failed disk is less than the actual delivery period.

To account for replacement-delivery times that are shortened because disk failures happen

close together, I examine each replacement delivery process. Most disk failures initiate an

order for a replacement disk because there is no outstanding order. During the fixed-length

period, D, until a replacement arrives, each of the other G(W+1)-1 disks may fail. Because

each other disk fails independently with probability 1 -. e~
D'*rrnf*t, the expected number of

additional failures is (G(N+iy-l)(l-e'^>'ifnF^). If the number of disks in the array, G(tf+l),

is large relative to the number of disks expected to fail during a delivery, then subsequent

failures form a Poisson process, and their arrivals are uniformly distributed over the delivery

period [Ross83 pp 37]. For this case the average time a failed disk waits until it is replaced is

half the actual fixed-length delivery time. Including the delivery-initiating failure, the average

delivery time is

Average delivery time = Expected total delivery time
Expected total failures
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(5.19)

To incorporate these calculations into my estimate, MTTDLontu, given in Equation 5.16,1

set MTTRjuk-rtcovtry to the mean disk-recovery time and set Af77X<£,* to the average delivery

time plus the mean disk-recovery time. Figure 5.20 shows the agreement between MTTDLoniu>

and the simulated estimate of MTTDL for the 87 parameter sets at each of five partitions

between replacement and recovery time. Although there is wider variation between simulated

and estimated MTTDL than in Figure 5.18a, the vast majority of comparisons differ by less than

±5%.

5.5.4. Implications for the Design of Disk Arrays
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Figures 5Jla and 5.21b: Repair Durations in Orthogonal Strawman. The MTTDL and 10-
year reliability of my strawman disk array are sensitive to their repair durations. Figure 521a
shows MTTDL and Figure 531b shows 10-year reliability as they are effected by both average
string-repair time and replacement-disk delivery time. The strawman disk array has an orthogo-
nal organization of seven parity groups of 10 data disks plus a parity disk. Disks and strings both
have mean lifetimes of 150.000 hours. Average disk-recovery time, excluding replacement-
delivery time, is one hour.
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Applying the orthogonal estimate for the mean lifetime of a disk airay to my strawman

example, I show the importance of fast string repair and fast disk delivery in Figures 52la and

5 Jib. The strawman disk array has an orthogonal organization with seven groups of ten data

disks, a parity disk, and no on-line spare disks. Each disk has a mean lifetime of 150,000 hours

and a mean recovery time of one hour. Each string has a mean lifetime of 150.000 hours and

induces all disks on it to recover after its repair is complete.

Figures 5.2la and 5.2Ib demonstrate two significant characteristics of orthogonal disk

arrays. First, string repair as slow as two weeks does not provide reliability at least as good as a

single disk. Second, even if string repair is relatively fast, the delivery time of replacement

disks must still be minimized to achieve high reliability. Fast repair processes can be expen-

sive if they call for immediate attention of qualified service personnel. A small pool of on-line

spare disks can effectively provide much faster repair without immediate attention from service

personnel by reducing disk-delivery time to zero in most cases. The next section estimates the

effect of a pool of on-line spares on the reliability of a disk array when string failures do not

affect the integrity of disks' data. Then Section 5.7 estimates the reliability of a disk array that

has on-line spares when string failures do affect data integrity.
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5.6. Independent Disk Failures with On-line Spares

Figures 5.2la and 5.2Ib above suggest that on-line spare disks can significantly improve

MTTDL and reliability. In this section I reduce average disk-repair time by employing a pool

of on-line spare disks, which is not a continuation of the model in the last section because I do

not include the effects of dependent disk failures. The combined effects of dependent disk

failures and on-line spare disks are addressed in Section 5.7.

On-line spares reduce average disk-repair time because a failed disk can be replaced with

a spare in the time it takes to change the software mappings for the location of the failed-disk's

data. In this way disk-repair time is just the time it takes to recover a disk's contents by reading

all other disks in a group, computing the exdusive-or, and writing these values to the recover-

ing disk. Because mere is no immediate need for a person to insert a new disk to replace a

failed one, not only is repair and recovery time reduced, but opportunities for human error are

eliminated. But, because on-line spares increase the cost of a disk array, their number will be

limited, and disk failures will occasionally be exposed to longer periods of repair when the

spare pool is exhausted.

My disk-array simulator can explicitly maintain a pool of spare disks. It uses a threshold

parameter to decide when to issue an order for disks to replace spares now acting in place of

recently failed disks. It also delivers enough disks to completely replenish the spare pool when-

ever a replacement order is filled.

5.6.1. Estimating Mean Array Lifetime

In all disk arrays protected with N+l parity, data will be lost whenever two disks in one

group fail before the first has been repaired. The state of the spare pool affects the repair rate,

however. While there are spares, repair is fast and loss of data is unlikely, but while there are

no spares, repair is slow and loss of data is much more likely. A complete Markov model for

this involves a state for each combination of the number of groups recovering and the number
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of spares available. Such a model has many transition rates, each of which offers an opportun-

ity for modeling error. Since closely-spaced double-disk failures and spare-pool depletion are

both likely to be rare events of relatively short duration, I expect the distribution of time-to-data

loss to be roughly exponential. With this expectation I can model reliability by estimating

MTTDL. Since sources of data loss are rare, I estimate the reciprocal ofMTTDL by separately

modeling each source of data loss and summing their rates of loss:

1 Independent disk-failure data-loss rate

+ Spares-exhausted data-loss rate. (5.20)

The data-loss rate while on-line spares are available is given Equation 5.10 in Section

5.4.2 with MTTR^k set to the average time it takes to remap and recover a failed disk onto a

D D

Figure 521: Example of Spare-Pool Depletion and Data Loss. As disks fail the number of
spares decreases from its maximum, S.toa threshold, T, at which time an order for more spares
is issued. Orders take time D to be filled and result in a completely refilled spare pool. Until the
order is filled disks may continue to fail. Additional failures consume the remaining T spares and
then expose the array to a high level of vulnerability. This figure shows three opportunities for
data loss during three successive orders. The first does not empty the spare pool, the second
empties the spare pool then suffers and survives one additional failure, and the third suffers data
loss because loo many failures occur before the order is delivered.
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spare one. M7T/?<il̂ _r,e<7veo,. To estimate the data-loss rate arising because the spare pool

periodically empties, I treat each period between the refilling of the spare pool as an indepen-

dent opportunity to lose data. Figure 522 shows a sequence of examples where three opportun-

ities for losing data occur during orders. The time until data loss caused by spare-pool exhaus-

tion will be a geometric random variable with mean equal to the average time between spare-

pool refilling divided by the probability of data loss during the delivery of an order.

Spares-exhausted data-loss rate = Probability of data loss per order (5 21)
Average time between filled orders

Putting these terms together, the mean lifetime of a disk array suffering only independent disk

failures and augmented with an on-line spare pool is MTTDLiMUpSparv :

= (5.22)

1 _
GN(N+l)MTTRdisk _ + P( data loss per order) '

Average time between filled orders

where MTTRdist is the mean time for disk recovery excluding replacement-disk delivery time.

To compute the probability of data loss per order, I need the probability that at least one

group will have suffered two or more failures in a disk array containing G parity groups of N+l

disks that has run out of spares and has suffered an additional q failures. For this calculation I

neglect data losses caused by conflicts with recovering disks; that is, I assume failed disks that

obtain an on-line spare are instantly recovered. With this model, when q < 1 data cannot be

lost, and when q > G data must be lost When 2 £ q S G the probability of data loss is 1

minus the probability that all failures will fall in distinct groups. The number of ways to assign

q failures to distinct groups is the product of the number of ways of selecting q different groups

and the number of ways of assigning q failures, one to a group. Then the probability that all

failures will fall into distinct groups is the number of ways to assign q failures to different

groups divided by the total number of ways of assigning q failures in G (N+l) disks.

154



P( data loss I 2 S q £ G unspared failures) = (5.23)

iGl

To derive the probability of data loss while an order for replacement disks is outstanding,

I condition on the number of disk failures that occur while an order is being delivered:

G(w+i)tT
P( data loss per order) = £ P(data loss ̂  9 failures in order ) x P( q failures in order)

«-o
G(N+\\±T

= V P( data loss I 9 failures) x P( q failures < D )

Because data cannot be lost until the first T+l disks have failed, and if the summation index, q,

is changed to exclude the first 7 failures, this expression becomes:

G(tf+i>fr
= £ P( data loss I q failures )xP( q failures <D )

«4"*2

GW+I)
= 2L P(dataloss I T+q failures)xP(T+q failures

Moreover, after the first T+G+l disks have failed data must be lost, so this expression

becomes:

= * P( data loss I q unspared failures) x P( T+q failures < D )

CW+l)
+ Y p( 7+tf failures < D )

failures < Z) ) x

failures<D). (5.24)
f - t - i

To derive the probability of T+l disk failures during the delivery of replacement disks, I

use the fact that all operational disks have identical distributions for their remaining lifetimes.

In particular, because each disk has die same failure rate, they all have the same probability of

failing during the delivery of an order,

p - P( each disk fails in order) = 1 - f*° (5.25)
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where X = \IMTTFdut • This means that the probability of exactly q failures in a fixed-length

delivery time has a binomial distribution,

P( q failures from Q disks )= \Q\ pi (l-p ^

(5.26)
y- J J

Because there are G(N+iy+T disks operational when an order to replenish the spare pool is

issued, the probability of data loss during an order becomes4

,P( data loss per order) = £ [

Finally, the average time between successive refillings of the spare pool is the time it

takes to deliver replacement disks plus the expected time for the failure of the number of disks

required to diminish the spare pool to its threshold. This latter is the expected time until the

first 5-7 disks have failed beginning with G(N+I>f5 operational disks.

Average time between filled orders=D + AfTTF^* Y 4- (5.28)
j^/5/kffi \J-T-LI I

To evaluate this estimate for the mean lifetime of a disk array that does not suffer string

failures but does have an on-line spare pool, I selected 100 parameter sets at random from a

large collection constrained to estimate mean lifetime between 10,000 and 1,000,000 hours.

For each of these parameter sets, I simulated an estimate for mean time until data is lost so that

I could compare this number to the MTTDL^^itpSpartt estimate. Figure 5.23a shows the result of

that comparison. As in previous sections, some difference arises from the inherent variability

in the simulation. Although more of the differences are outside the ± 5% bracket than in Figure

5.18a, these parameter sets are still well-modeled by the MTWl^mitpSpart* estiiestimate.

4 This expression assumes S >0. However, setting S=0 and 7=-l yields an approximation to
Equation 5.11 in Section 5.42 modified to separate replacement-disk delivery and disk recovery, as is
done in Section 5.43.
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Figures 5.23a and 5.23b: Simulatation versus Estimatation with Spares. On the left, Figure
5.23a shows the relative difference between the mean array lifetime estimates by simulation and
by Equation 522 for 100 parameter sets selected at random. Recalling the variability inherent
with simulation shown by Figure 5.66, Figure S23a shows good agreement. On the right, Figure
523b shows the simulated 1-, 3-. and 10-year reliabilities in comparison to those appropriate to
exponentially distributed lifetimes (largely obscured dotted lines). Again, this is solid evidence
that simulated lifetimes have an exponential distribution.

Based on the findings in previous sections, I expect that disk-array lifetimes under this

model have an exponential distributioa Figure S.23b shows the simulated 1-, 3-, and 10-year

reliabilities against the corresponding simulated MTTDL. As in previous sections, the exponen-

tial 1-, 3-, and 10-year reliabilities are shown by the largely obscured dotted lines. This consti-

tutes strong evidence that for flu's model as well as for previous models simulated disk-array

lifetimes are exponentially distributed. To pursue this further, Appendix C presents an applica-

tion of Pearson's chi-square goodness-of-fit test As I expected, this test does not yield strong

evidence against the hypothesis that simulated disk-array lifetimes have exponential distribu-

tions.
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5.6.2. Implications for the Design of Disk Arrays

Investigating the effects of this estimate for the mean lifetime of a disk array, I apply

MTTDLinjtpSparu to my strawman example. Figures 5.24a and 5.24b show the MTTDL and the

10-year reliability as a function of the size of an on-line spare pool. In this figure, replacement

disks are not ordered until all spares have been assigned to replace failed disks. This reorder

policy will amortize the cost of delivering a set of new spare disks over the number of disks in

this set This can yield substantial savings beause field-service visits may cost between on tenth

and one half of the cost of a disk [Ng90].

Although the improvement in MTTDL with increasing spare disks is much less than with

longer disk-delivery times, the 10-year reliability exceeds 0.90 with only one spare disk even if

the disk-delivery time is 336 hours (two weeks)! If a replacement disk is ordered as soon as a
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Figures 5.24a and SJ4b: Evaluating Benefits of a Small Pool of Spare Disks. A small pool of
spare disks alleviates the effects of disk-delivery time in my strawman disk array if it is not subject
to string failures. On the left, Figure S24a shows the MTTDL against the maximum (and initial)
number of spare disks. On the right. Figure 5.24b shows the 10-year reliability for the strawman
disk array against the same metric. Recall that this array has seven parity groups of 10 data
disks and a parity disks. Each disk has a mean lifetime of 150,000 hours. When a disk fails and a
spare is available, disk recovery takes one hour on average. Replacement disks for the spare pool
are ordered when the last spare is assigned to replace a failed disk and are delivered in 24 (one
day). 72 (three days) or 336 hours (two weeks).
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disk fails instead of after the last spare is assigned to a failure, then all three MTTDL curves

achieve 29,000,000 hours with only four spare disks, and all three reliability curves exceed 0.99

with only two spare disks!

Figures 5.25a and 5.255 depict the relationship between the disk-delivery time, the

replacement-order threshold, and the maximum number of spares for my strawman disk array.

Because an order delivery involves a person meddling with the disk array, a high maximum

number of spares and a low reorder threshold reduces the frequency mat the disk array is

exposed to human error. However, a large spare pool increases disk and support-hardware costs

and a low threshold requires faster disk delivery to avoid lowered reliability. Both figures

display the maximum number of hours that disk delivery can take without causing the 10-year

reliability to drop under 0.995. Figure 5.25a shows that when the maximum number of spares

is three or more and the order threshold is two or more, any reasonable disk delivery time will
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Figures 5.25a and 5.25b: Pool Size, Reorder Threshold, versus Disk Delivery Time. These
two figures show maximum disk delivery time that yields a 10-year reliability greater than or
equal to 0.995 in my strawman disk array. This array has seven parity groups of 10 data disks
and a parity disk. Each disk has a mean lifetime of 150,000 hours and a mean recovery time of I
hour. A low threshold leads to less frequent orders. Although this requires faster disk delivery
or larger spare pools, it also reduces the frequency that error-prone humans tamper with the disk
array.
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ensure that 10-year reliability exceeds 0.995. This reduces disk delivery costs, but does not

minimize the frequency that orders are placed and deliveries arrive. Figure 5.25b concentrates

on disk delivery times between a day and a few weeks. With a maximum of four spare disks in

this array of 70 data disks, a disk delivery time of less than about 100 hours allows mis 10-year

reliability goal to be met with minimal reorder threshold of zero. For less pressure on disk

delivery time, an reorder threshold of one is a good compromise between infrequent orders and

inexpensive disk delivery.

These figures show the substantial benefits provided by even a small pool of on-line

spares. However, this model fails to consider the negative consequences of string failures

demonstrated in Section 5.5. The next section addresses this problem.
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5.7. Dependent Disk Failures with On-line Spares

This section examines disk array reliability under the influence of dependent disk failures

and with the benefit of on-line spare disks. Section 5.5 shows that dependent disk failures,

although tolerable, can dramatically reduce the reliability that would be expected from the same

disk array suffering only independent failures. On the other hand. Section 5.6 shows that a

small number of on-line spares can dramatically improve the reliability of a disk array suffering

only independent disk failures. Naturally, I would like to use on-line spare disks to overcome

the limitations imposed by dependent disk failures.

string of spares

parity group

Figure 5.26: Two Failed and Spared Disks Example. This example of an orthogonal disk array
has suffered two disk failures at different times in the same parity group (N+l=6). In this case
the second failure did not happen until after the first failure's assigned spare disk completed re-
covering the first failure's data. Because the two failure recoveries did not overlap, the disk ar-
ray remains operational without loss of data. Notice that the two assigned spares are physically
in the same string and logically in the same parity group. Until the failed disks are replaced and
rebuilt (by copying from their respective spare disks or by another recovery operation), this array
is not orthogonal. While it is not orthogonal, it is not protected against loss of data because the
isolated failure of the string of spares may erase two disks in one parity group. This period of
vulnerability can be reduced, but not eliminated, by manually removing the failed disks, moving
two of the unassigned spare disks into the vacated positions, and copying or recoverying the as-
signed spare disks' contents onto the correctly-located disks. This operation to reduce vulnera-
bility is an unnecessary, and possibly error-prone, human interaction with the disk array; I will
not explore this method further in this work.
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parity group

Figure 5.27: String Failed and Spared Example. This example shows the effect on orthogonal-
ity of a string failure when on-line spare disks are allocated one to a string (unlike the case
shown in Figure 526). Although there are enough spares to replace all data and parity disks af-
fected by this string failure, until the failed string is repaired every other string has two disks that
are logically in the same parity group.

By including on-line spare disks into an orthogonal array, a few new issues are introduced

because on-line disks must be attached to support hardware somewhere in the array. Figure

5.26 shows how an orthogonal array with spare disks may surrender its orthogonality while

waiting for recently failed disks to be replaced. A second issue is the allocation of spare disks

to strings. I may choose to allocate spare disks together in one string, as I have done in Figure

5.26, or spread them out over strings that also contain data or parity disks. For a small number

of spares, these two choices yield comparable reliabilities. When the number of spares is equal

to or larger than the number of disks attached to a string, however, a string containing only

spare disks effectively replaces a failed string without disturbing the array's orthogonality. In

contrast, if on-line spare disks are allocated one to each string then the failure of a string may

negate orthogonality until the failed string is repaired and its disks's contents recovered. Figure

527 shows an example where a string has failed in an orthogonal array with spare disks allo-

cated one to each string. In this case, there are enough spare disks to immediately replace the
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failed string, but each spare is assigned into a parity group already represented on the spare's

string. Until the failed string is repaired, a second string failure will cause data to be lost even if

no recoveries are in progress. Because of this increased vulnerability, I allocate' spare disks to

strings containing only spare disks for the rest of this chapter.

Because the lifetimes of simulated disk arrays were found to be distributed exponentially

in Section 5.5, where the effects of string failures were modeled without spares, and in Section

5.6, where the effects of on-line spare disks were modeled without string failures, I also

expected simulated lifetimes in arrays with on-line spares and string failures to be distributed

exponentially. Figure 5.28 provides strong evidence for the correctness of this expectation. It

shows the 1-, 3-, and 10-year reliabilities for a collection of 100 parameter sets each simulated

with about eight different spare pool sizes. As in previous sections, the 1-, 3-, and 10-year relia-

bilities for an exponential random variable with a mean equal to the simulation's estimate
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Figure 5.28: Simulated versus Exponential 1-, 3-, and 10-year Reliabilities. This figure shows
that simulated 1-, 3-. and 10-year reliability estimates closely approximate exponential 1-, 3-.
and 10-year reliabilities. I collected these estimates for 100 parameter sets selected at random,
each simulated with about eight different spare pool sizes. Each simulated reliability estimate is
plotted as a function of its simulated mean lifetime estimate. Simulated reliability estimates are
connected by a solid line and the corresponding exponential reliabilities are connected by a dot-
ted line.
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(shown by the obscured dotted lines) approximate the simulation's estimates accurately. Also

following the methods of previous sections, Appendix C presents the results of applying

Pearson's chi-square goodness-of-fit to simulated lifetime data, Again, this test does not pro-

vide evidence against the hypothesis that the lifetimes of disk arrays in this section have

exponential distributions.

I conclude that simulated lifetimes in arrays with on-line spares and string failures are dis-

tributed exponentially. This means that a complete reliability model depends only on the mean

disk-array lifetime, MTTDL:

fl(,) = e-</«7TOZ, (5.29)

The following sections estimate MTTDL.

5.7.1. Modeling Mean Array Lifetime

A complete Markov model for dependent disk failures and on-line spare disks has an enor-

mous number of states. As a result, not only would the task of specifying transition rates be

error-prone, but tools like Sharpe would be unable to solve the models. For these reasons I have

not developed a complete Markov model.

One alternative to developing a complete Markov model is to apply the approach used in

Section 5.6. To do this, I would need to compute the expected time between instances where

the disk array is fully populated and properly orthogonal and the probability that data is lost in

each of these intervals. At this time, I have not found a model that accurately estimates the

mean lifetime of a disk array for each configuration of the spare pool. Instead, I describe the

effect that on-line spare disks have on the mean lifetime of a disk array for particular numbers

of spare disks. This model, albiet an incomplete one, describes the general form of the mean

time until data is lost as a function of the number of spare disks.

Figures 5.29a, 5.29b, and 5.29c show examples of a simulation's estimates for the mean

lifetime of three different disk arrays as a function of the ratio between the maximum number of
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Figures 5.29a, 5.29b, and 5.29c: Effect of Spares on Mean Lifetime. As the vertical dotted
lines show, these three simulation examples suggest that MTTDL does not benefit from more than
one string of on-line spare disks. These figures also show that some configurations approach that
peak with only a few spare disks while others do not approach that peak until the number of spare
disks fills a string. These three figures are examples from the 100 randomly selected parameter
sets used to verify models in this section. On the left, Figure 529a displays a configuration of 50
parity groups of three data disks and a parity disk. Because it is orthogonal, this disk array has
SO disks on each of its four strings. For this figure, mean disk lifetime is SOjOOO hours, mean
string lifetime is ] 00,000 hours, mean disk recovery time is one hour, mean string repair time is
72 hours, and replacement-disk delivery time is 72 hours. In the middle, Figure 529b displays a
configuration of five parity groups of 16 data disks and a parity disk (17 strings with five disks on
each). For this figure, mean disk lifetime is 50,000 hours, mean string lifetime is 1JOOO.OOO hours,
mean disk recovery time is 05 hours, mean string repair time is 24 hours, and replacement-disk
delivery time is 72 hours. On the right. Figure 529c displays a configuration of 15 parity groups
of 12 data disks and a parity disk (13 strings with 15 disks on each). For this figure, mean disk
lifetime is 200,000 hours, mean string lifetime is 200,000 hours, mean disk recovery time is two
hours, mean string repair time is two hours, and replacement-disk delivery time is 24 hours. In
all three cases an order is issued whenever a disk fails; that is, the reorder threshold is one less
than the maximum number of spare disks. Vertical bars display the 95% confidence interval com-
puted for the data point of each simulation.
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spare disks in the array and the number of disks on a string. I selected these three examples to

show that some configurations achieve their maximum mean lifetime with only a few spares

and other configurations do not approach their maximum mean lifetime until they include many

spares. In all three cases, however, increasing the number of spare disks beyond one string of

spare disks does not significantly improve mean lifetime. This observation, that one string

populated with on-line spare disks appears to be all that is needed to maximize the mean life-

time of a disk array, is the basis of this section's model, and is illustrated in Figure 5.30. It esti-

mates MTTDL when there are zero, one, two, and an infinite number of strings populated with

on-line spare disks. In most cases, one string of spare disks yields as high an MTTDL as two

strings of spare disks, and in almost all cases two strings of spare disks yield as high an MTTDL

MTTOL

Infinite Strings of Spuet

Two Suingi of Sptrei

0.0 05 1.0 1.5 2.0 Z5
Maximum Spue Duki /Diiki per String

Figure 530: Generic Model for MTTDL. This figure shows the general form of this section's
simple model for the MTTDL of a disk array that suffers string failures as well as individual disk
failures but has the benefit of on-line spare disks. This model estimates MTTDL when there are
no on-line spare disks, when there is one string populated with on-line spare disks, when there
are two strings populated with on-line spare disks, and when there are an infinite number of
strings populated with on-line spare disks.
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as infinitely many strings of spare disks.

5.7.2. Infinite Spares Bound

In this section I present an upper bound on MTTDL (and. consequently, reliability) in a

disk array that suffers both independent disk failures and string failures but that has the benefit

of on-line spare disks. This upper bound models the case where there are infinitely many

strings fully populated with spare disks. As in Section 5.5, the sources of data loss are secon-

dary failures during an individual disk repair or an individual string repair. Because concurrent

double failures are rare, I separately model these two cases and estimate the overall rate at

Figures 531a and 5 Jib: Submodels for Orthogonal Disk Arrays with Infinite Spares. These
models are similar to those in Section 552, Figures 5.15a and 5.756, •which model data loss
sources in an orthogonal array without on-line spare disks. In both cases the two sources of data
loss in orthogonal disk arrays are additional failures during a disk repair and additional failures
during a string repair. Figure 531 a. on the left, is the same as Figure S.lSa except that disk re-
placement is immediate, so disk repair requires recovery only. It shows the submodel for data
loss in a single parity group caused by a second failure during a (non-string-failed) disk recovery.
Each of the N+l disks in a parity group fails independently with MTTF&i = 1A* and is
recovered with MTTRjak-nce**? - l/M«fr- While a disk is being repaired, the failure of any of the
other N disks or their strings causes data loss. There are C instances of this sub-model contri-
buting to the overall data loss rate because there are C parity groups in the disk array. Figure
531 b, like Figure 5.756, shows the submodel for data loss caused by a second failure during or
soon after a string repair. Because an infinite number of spare disks and strings are available,
string replacement is immediate. In this case the only period of vulnerability is the time required
to recover of each of the disks on the replaced string. This means that after one of the N+l
strings, each with MTTFffing - \fi*. fails, the array remains vulnerable to data loss on the next
failure until all G disks on the replacement string have recovered. As in Figure 5.756, the rate at
which the slowest ofC disk recoveries takes to complete is the reciprocal of the expected max-
imum of G disk recoveries, MTTRcdat, = <J>/Hdr, where 4>= 1/1+1/2+...+1/G. While at least one
disk is still recovering, data will be lost with the failure of any of the other N strings or the failure
of any other disk in a parity group that is still recovering. The average number of parity strings
vulnerable while at least one disk is still recovering is C /$.
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which data is lost as the sum of the rates of data loss arising from each of these component

models. Figures S.Sla and 5.31b show sub-models for data losses initiated by individual disk

failures and individual string failures, respectively. Applying the methods of Section 5.4.1 and

5.5.2, a bound on the mean lifetime of a disk array of G parity groups, each containing N+l

disks plus an infinite number of spare disks and strings, is:

1+Otf

Where ttr - ^77y<to* &. . - ^^^dist-reeover,wnerc up — .«_-,. - . fc del -- ISTTZT
MTTFaraig

«**.!+£+!+...+£.
Mean array lifetime closely approaches this bound with at most two strings of spare disks and

more often with only one string. The next sections present estimates of mean array lifetime

with one and two strings of spare disks and contrast these estimates to simulation and to this

infinite spare disks bound.

The simple model shown in Figure 5.3 of Section 5.4.1 provides an alternative approxima-

tion for mean array lifetime when there are an infinite number of spares. Because each string

failure induces each of the disks attached to it to recover, the rate at which each disk fails in the

simpler model of Figure 5.3 can be increased by the rate at which each string fails. Mean life-

time and reliability are then given by Equation 5.11 in Section 5.42, with MTTF&sk set to the

reciprocal of this increased rate of failures and with MTTR^k set to the mean disk-recovery

time. This approximation is pessimistic because it assumes the disk recoveries that are induced

by a string failure occur at different times. Spreading these disk recoveries over time causes the

array to be vulnerable to second-failed-string data losses for a larger fraction of time. Neverthe-

less, if the number of disks on a string is small or the mean string lifetime is long relative to the

mean disk lifetime, this approximation is accurate. For example, it yields a mean lifetime
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within 10% of MTTDLinfauuSparu in my strawman disk array5 as long as mean string lifetime

exceeds 250,000 hours.

5.7.3. One String of On-Line Spare Disks

In this section I present an estimate for the mean lifetime of an orthogonal disk array with

one string of on-line spare disks. Once again I estimate the contribution to the overall rate at

which data is lost from each source of loss separately and then sum these estimates. In mis case

I consider three submodels for data loss: the infinite-spare-disks model from Equation 5.30 in

the last section, the independent-disk-failures-with-spare-disks model from Equation 5.22 in

ATA,
(1-8)W+1)A, +GN\t

Figure 532: Submodel for Orthogonal Array with One String of Spares. When there is only
one string of spare disks, not all string failures will find a replacement string available immedi-
ately. This figure shows a Markov model for data losses that occur while a failed string is forced
to wail for a replacement string. While there is one spare string available, state 1SS, each of the
N+2 strings fails with MITF*,̂  - 1A« and is repaired or replaced with AfTTX^u, = 1/M«- //
one of the remaining N+l strings fails, it causes data loss with probability 6 because individual
disk repairs were in progress. With probability 1-6. a second string failure while the first is being
repaired is survived. Similarity, data losses can be caused because other disks fail independently
in any one of an average of 6' groups being repaired. While there are two strings being repaired,
state -1SS, each at rate A/TTV?*^ = l/mu,, any other string failure or individual disk failure on
another string will cause data loss.

5 Recall that my strawman disk array has seven parity groups of 11 disks each. Each disk has an ex-
ponential lifetime with a mean of 150,000 hours; mean disk-recovery time is 1 hour.
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Section 5.6, and a new model that accounts for data losses triggered by the failure of one or two

more strings during a string repair. The mean lifetime of an orthogonal disk array with one

string of spare disks, MTTDLoiteSpanStrini»is then:

.~^.rvr * e Infinite-spares data-loss rate + Spares-exhausted data-loss rate
MTTDLortpartStriHg

+1 Spare-string-repairing data-loss rate (5.31)

Figure 5.32 describes the model for the data-loss rate arising from additional string failures dur-

ing string repair. Using the method given by Equation 5.7 in Section 5.4.1 for deriving the

mean time until data is lost beginning with an extra string of spare disks, the third component of

the rate of data loss in this section is:

1 Spare-string-repairing data-loss rate =-=—=—. x I J « 3A<™'4^—. _ (5.32)
A.I iA.**^A.i V^A.'iiA.'^^VLjt^ll.i \-t [I n f j l i J AI ' • * •

«,h0«, i - (W+2) i _ (W+lXl-S) ^ _ N j. CN\vi*crc ^wi ^~ — i»»^^^» *vy. ^™ :• • ̂ »^^^^^» _ ^*3 ^™ * ^^^^^

m^^*r*r^ TJ^ t f*J ™" B ̂ *r*i'r> * CU1U f*2 ^

In this model I use two parameters, 6 and 5', to approximate more complex interactions

between string failures and the replacement of failed data disks. Figure 5.33 shows a more

accurate representation of this interaction. Because the number of states in this Markov model

is dependent on the number of disks attached to a string, C, which is potentially large, it is

much less convenient than the model in Figure 5.32. I present mis more complex model to help

me explain the values of 6 and 5' in Equation 5.32.

The top row of states in Figure 5.33 represent an expanded version of state 1SS in Figure

5.32. This expansion models string failures that find the spare string with a full complement of

spare disks and those that find one or more replacement disks on order. The second row of

states in Figure 5.33 represent an expanded version of state OSS from Figure 5.32. This expan-

sion tracks the number of failed data disks in the array that do not have a spare disk recovering

their contents or acting in their place. While in these states, the failure of a second string will
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Figure 533: Detailed Submodel for Orthogonal Array with One String of Spares. This Mar-
kov model includes more detail of the interaction between spare components and component
failures. Its much greater level of detail is unnecessary except as an explanation for the transi-
tions depicted in Figure 532. The top row of states represents the number of spare disks avail-
able on a single spare string. As independent disk failures are recovered by spare disks, the size
of this spare pool decreases: it is refilled by deliveries of replacement disks. In this section, re-
placement disks are immediately reordered (threshold equal to one less than maximum number
of spare disks). Although in simulation deliveries refill the entire spare disk pool on each arrival,
I approximate refilling as separate concurrent orders for each replacement disk, each order
delivered in an exponential time with mean equal to the average time between the assignment of
a spare disk and the arrival of its replacement. When a string fails the system moves to the
second row of states. In these stales there are no spare disks. If the number of spare disks on the
spare string is less than G, the number of disks on a string, when a string fails or if individual
disks fail during a string repair, there will be one or more parity groups repairing a failed disk
by first waiting for a replacement disk and then recovering the failed disk's contents onto its re-
placement. During this slow disk repair process, the completion of a string repair refills the
spare pool after providing a replacement disk for all disks actively being repaired. On the other
hand, a second string failure will cause loss of data unless there are no disks being actively
repaired. Similarly, while parity groups are repairing slowly because no spare disks are avail-
able, additional independent disk failures in the same groups cause the loss of data.

cause loss of data if any failed data disk has not been assigned a spare disk,6 The parameter 5

represents the probability that the array is in any of the states, -1, -2,.... -G, when a second

string fails during the repair of a first failed string. Similarity, the independent failure of a data

6 The models of Figures 532 and 5.33 are only concerned with data losses originating with a string
failure. While there are available spare strings and disks, the infinite spares model of the previous section
represents losses of data caused by a second string failures during the recovery of the disks on the first
failed string or by a second disk failure in one parity group during the recovery of a first failed disk.
Similarly, the model in Section 5.6 represents losses of data caused by double-disk failures in one parity
group while the spare disk pool has been emptied by independent disk failures.
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disk in the same parity group as any already failed data disk that has not been assigned a spare

disk will cause loss of data. The parameter 8' represents the expected number of unspared

failed disks when a second string fails during the repair of a first failed string.

To estimate 5 and 6', I assume that the threshold for ordering replacement disks is one less

than the maximum number of spares; that is, an order for a replacement is issued immediately

after each failure (unless there is already an outstanding order). This assumption is not unrea-

sonable because Section 5.6 and Figure 5.25 show that immediate reorder maximizes mean life-

time and reliability. My estimate is based on the steady state proportion of time the system

spends in each of the states on the second row of Figure 5.33, and ignores transitions out of this

row.7 In this case transitions from state -i to -O'+l) occur with rate (G-fXN+tyMTTF'dak and

transitions from state -i to -</-!) occur with rate HD where D is the average delivery time

approximated by Equation 5.19 in Section 5.5.3. With these transition rates, the steady state

proportion of time spent in state -/, «,-, is found by solving the system of equations,

1=0,1,2 G-l:

- — c
and

The solution for this system is

' W+DD1''.

J f fGl f w+nDVl-1

"ISt'J MTTF^l [ 'I l J J

8 = 1 - Jt0, and 8' = Yi Jt/ • (5.33)

Figure 5.34a shows that this model for mean time until data is lost with one string of spare

disks agrees with the simulation's estimates within the inherent variation of simulation. As I

have done in earlier sections, this comparison is made for 100 parameter sets selected at random

7 This is not correct because string repairs should shift probability mass toward states with fewer un-
spared, failed disks. Fortunately, the error in this approximation is quite small for the range of parameter
values that are conceivable in disk arrays.
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Figures 5 J4a and 534b: MTTDL with One String of Spares. On the left, Figure 534a shows
the relative difference between the mean lifetime of disk arrays with one string of spare disks es-
timated by simulation and by Equation 531. On the right. Figure 534b shows the relative differ-
ence between the estimate for mean lifetime with one string of spare disks given in Equation 531
and the estimate for mean lifetime with an infinite number of strings of spare disks given in Equa-
tion 530. Both figures employ the same 100 parameter sets selected at random from a large col-
lection of conceivable parameter sets. One parameter set is not included in Figure 534b be-
cause its relative difference is 520%. This parameter set has unusually frequent and long string
repairs. Its values are: three parity groups of 21 disks each, an MTTFf^ oflOOjOOO hours, an
MTTFin^ of 50,000 hours, an MTTR&k-ncoHv tf0-5 *OMri-m MTTR*ri*t of 168 hours, and
a replacement-disk delivery time of 8 hours.

from a large set of conceivable values. The selected parameter sets are not intended to represent

typical choices; in fact, they are intended to stress reasonable choices for parameters to test that

the models are accurate for a range of choices from poor to good. Therefore, I do not claim that

the relative difference between the infinite-spares estimate for MTTDL in Equation 5.30 and

this single-string-of-spare-disks estimate is representative of their relative difference in a set of

good choices for disk array parameters. Nevertheless, Figure 5.34b shows their relative differ-

ence in this collection of 100 parameter sets. The infinite-spares estimate is more than 10%

larger than the single-string-of-spare-disks estimate in 19 of the 100 parameter sets. This sug-

gests that in some cases there is a potential for significant benefit from more than one string of

spare disks.
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The next section provides an estimate for mean lifetime in a disk array with two strings of

spare disks and shows that the two-strings-of-spare-disks estimate is approximately equal to the

infinite-spares estimate for all of these parameter sets.

5.7.4. Two Strings of On-Line Spare Disks

In this section, I develop a model for mean time until data is lost in a disk array with two

strings of on-line spare disks. This model is a straightforward extension of the model in the last

section. Again, I model the same three sources of data loss separately:

1
MTTDLfTwoSpareStrings

Infinite-spares data-loss rate + Spares-exhausted data-loss rate

+ 2Spare-string-repairing data-loss rate (5.34)

And, again, the rate at which data is lost with infinite spares is given in Equation 5.30 of Section

5.7.2 and the rate at which data is lost arising from independent disk failures emptying the pool

of spare disks is given in Equation 5.22 of Section 5.6. Although the rate arising from string

failures exhausting the pool of spare disks is not the same as the equation derived in the last sec-

Figure 535: Submodel for Orthogonal Array with Two Strings of Spares. This model
represents data losses that occur because of vulnerabilities arising while two strings of disks are
waiting for repair or replacement. This extension of the model in Figure 532 adds a state, 2SS.
representing the disk array while it has two strings of spare disks available to replace failed disks
and strings immediately. State transitions are almost the same as those in Figure 532. In partic-
ular, the parameters 8 and 6' have the same meanings and values.
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tion, it is quite similar. Figure 5.35 shows that the model I use in this section is a simple exten-

sion of the model in Figure 5.32. Applying the same methods, this model estimates:

2Spare-string-repairing data-loss rate = (5 .35)

wherewhere _(Ar+lXi-8)

1

The two parameters, 5 and 5', have the same values as they had in the last section. Equa-

tion 5.33 gives these values.
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Figures 5J6a and 5J6b: MTTDL with Two Strings of Spares. On the left. Figure 536a
shows the relative difference between the mean lifetime of disk arrays with two strings of spare
disks estimated by simulation and by Equation 534. On the right, Figure 536b shows the rela-
tive difference between the estimate for mean lifetime with two strings of spare disks given in
Equation 534 and the estimate for mean lifetime with an infinite number of strings of spare disks
given in Equation 530. Both figures employ the same 100 parameter sets also used in Figure
534. The parameter set excluded in Figure 534b is included here. It is the only parameter set
with a relative difference larger than 1%.
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Figure 5.36a shows that this estimate for mean lifetime in a disk array with two strings of

spare disks is in good agreement with simulation's estimates. Figure 5.36b shows that, except

for one of the 100 parameter sets evaluated, two strings of spare disks yields a mean lifetime

within 1% of the mean lifetime in an array with an infinite number of spare disks and strings.

Even the one parameter set that has a relative difference larger than 1% only differs by 15%.

Based on the data in this section and the last section, the mean lifetime of an array with an

infinite number of spare disks and strings is frequently achieved with one string of spare disks

and is almost always achieved with two strings of spare disks.

5.7.5. Implications for the Design of Disk Arrays

In this section I present analysis of four issues important to the design of my strawman

disk array when it employs on-line spare disks:

(1) using spare disks with large parity groups to achieve higher reliability than is provided by

arrays with a higher fraction of redundant disks,

(2) reducing disk-recovery time to dramatically improve mean disk-array lifetime in arrays

with one or two strings of on-line spare disks,

(3) determining limits on reliability benefits provided by adding redundancy to disk-support

hardware, and

(4) examining reliability when strings of spare disks are partially populated and replacement-

disk reordering is not done immediately after each failure.

I evaluate the first three of these issues using the models developed in the last sections. Because

the fourth of these issues does not meet the assumptions of these models, I explore it with simu-

lation results.

All four of these issues are explored using the context of the strawman disk array I intro-

duced in Table 5.1 of the introduction to this chapter. Unless I explicitly vary a parameter, my
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strawman disk array has seven parity groups with 10 data disks and a parity disk in each. Each

disk and each string has an expontentially distributed lifetime with a mean of 150,000 hours.

Disk recovery and string repair also have exponentially distribued durations with means one

hour and 72 hours, respectively. Replacement-disk delivery time is the minimum of 72 hours or

the time until an already ordered replacement disk arrives.

5.7 J.I. Higher Overhead for Redundancy May Not Improve Reliability

More redundancy should yield higher reliability. For example, the simple disk array life-

time model given in Equations 5.10 and 5.11 of Section 5.42 shows that MTTDL is inversely

proportional to the number of disks in a parity group; larger parity groups have lower overhead

and lower reliability. In this model, a disk array with mirrored disks is more reliabile than a

disk array with N+l -parity redundancy. But the array with mirroring contains up to twice as

many disks so its higher reliability is achieved at a substantial cost This section shows that a

disk array with N+l-parity redundancy and on-line spare disks can provide higher reliability at

lower cost than a mirrored disk array with the same amount of user data.

Figure 5.37 shows that my strawman disk array with on-line spare disks achieves better

reliability than a comparable mirrored disk array. With only one string of spare disks, a N+l-

parity disk array with a 72-hour replacement-disk delivery time is more reliable than a mirrored

disk array with either a 72- or an 18-hour replacement-disk delivery time. Even if the mirrored

disk's replacement-disk delivery time is reduced to 4 hours it is still less reliable than my straw-

man disk array with a 72 hour replacement-disk delivery time and one string of spare disks

unless mean string-repair time in both is less than seven hours. Additionally, my strawman disk

array with one string of spare disks, a 72 hour replacement-disk delivery time, and a 72 hour

mean string-repair time is as reliable as a mirrored disk array with a four hour replacement-disk

delivery time and a 11 hour mean string-repair time. Because reducing disk-replacement and

string-repair time requires increased availability of expensive human service, the cost advantage

of my strawman disk array is even better than is suggested by the comparison of its 84 disks to
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Figures 5 J7a and 5 J7b: N+l Parity versus Mirrored Reliability. Figure 537a. on the left,
and Figure S37b, on the right, show the effect of string repair time and replacement-disk
delivery time on mean lifetime and reliability, respectively, in N+1-parity and mirrored disk ar-
rays. My strawman disk array contains seven parity groups each with 10 data disks and a parity
disk (7(10*1)). Each disk and each string has an exponentially distributed lifetime with mean
150,000 hours and disk recovery time is exponentially distributed with mean one hour when a
spare disk is available. The figures show two examples of my strawman disk array: one with one
string of spare disks (+7s) and the other with two strings of spare disks (+14s). In both cases,
replacement-disk delivery takes 72 hours (D-72). A comparable mirrored disk array has 70
parity groups each with one data and one duplicate disk (70(1+1)). Because each string con-
tains seven disks, the mirrored disk array has 20 strings. These figures show three examples of a
comparable mirrored disk array with replacement-disk delivery times of (D-) 4, 18, and 72
hours. In all arrays string-repair time is exponentially distributed with its mean displayed on the
x-axis.

the mirrored disk array's 140 disks!

The reliability advantages of N+l parity are even better if two strings of spare disks are

included. In this case my strawman disk array still has a 91 disks to 140 disks cost advantage

over the mirrored disk array and its reliability is insensitive to mean string repair times as large

as two weeks. Unless the mirrored disk array has a replacement-disk delivery time of four

hours or less and a mean string-repair time of less than seven hours, my strawman disk array

with a replacement-disk delivery time of 72 hours has better reliability.

Figure 5.37b shows the probability that these N+1-parity and mirrored disk arrays survive

10 years of operation without data loss. All configuration have a better than 75% chance of
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surviving 10 years and, if the mean string-repair time is less than 37 hours, all configurations

have a better than 90% chance of surviving 10 years. These 10-year reliabilities are substan-

tially higher than the 56% chance that a single disk with a 150,000 hour mean lifetime survives

10 years.

Because four of the five configurations shown in Figure 5.37b have almost the same 10-

year reliability, there seems little reason other than cost to prefer one configuration over others.

In particular, the relatively large differences in mean lifetime shown in Figure 5.37a do not

appear in Figure 5.37b. These differences in mean lifetime are significant, however, if I con-

sider the fraction of disk arrays that suffer data loss in 10 years. Equation 5.4 in Section 5.1

shows that doubling the mean lifetime of a disk array will halve the expected number of

"angry" customers even though the probability that an individual disk array survives all 10

years without data loss is only increased a small amount For example, 2.2% of all mirrored

disk arrays with a replacement-disk delivery time of four hours and a mean string-repair time of

25 hours will lose data in 10 years, but only 1.0% of all N+1-parity disk arrays with two strings

of spare disks, a replacement-disk delivery time of 72 hours, and a mean string-repair time of 72

hours, will lose data in 10 years.

These figures show the superior reliability of N+1-parity disk arrays with spare disks in

comparison to mirrored disk arrays without spare disks. This is a reasonable comparison

because N+1-parity disk arrays are less expensive than mirrored disk arrays even with spare

disks. If comparable numbers of spare disks are added to mirrored disk arrays, increasing the

cost differential, then mirrored disks achieve superior reliability.

5.7.5.2. Higher Reliability Through Faster Disk Recovery

To recover the contents of a failed disk in an N+1-parity disk array, all remaining disks in

the failed disk's parity group must be entirely read and the failed disk's replacement must be

entirely written. Before a block can be written to the failed disk's replacement, the correspond-

ing blocks from each of the rest of the disks in the parity group must be have been read and
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Figure 538: Disk Recovery Time versus On-line Spares. This figure shows the effect on the
mean lifetime of an N+J-parity disk array of faster disk recovery. My strawman disk array usual-
ly assumes an average disk recovery time of one hour. In this figure the disk recovery time is
varied from about six minutes to four hours. It presents seven variations on my strawman disk ar-
ray: arrays with zero, one, and two strings of spare disks are shown with replacement-disk
delivery times of 18 hours and 72 hours

their collective parity (exclusive-or) must be computed. This collective parity is exactly the

failed disk's missing data, so the collective parity is then written to the failed disk's replace-

ment disk.

If the array controller or host computer managing a failed disk's recovery has sufficient

control, transfer, and exclusive-or bandwidth to read all remaining disks and write the replace-

ment disk in parallel, a failed disk's recovery can be completed in about six minutes [Sierra90

pp 224]. This maximum recovery rate is rarely attained because many systems are not designed

with sufficient bandwidth. Even if high speed recovery is possible, it would block all user

accesses into the entire parity group for the duration of the recovery. In many computer sys-

tems, the unavailability of user data for many minutes or tens of minutes is tantamount to data

loss because (1) the unavailable data may be out-of-date before it again supports user accesses

or (2) the financial penalties derived from stalling accesses until recovery is complete are unac-

ceptably high. Systems with these kind of high availability requirements may demand that user
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accesses be served during disk recovery. This will cause a failed disk's recovery be slowed

down. Because the failed disk's data can be recovered block-by-block in any order, user

accesses for any data in the effected parity group can be serviced, albiet at reduced performance

[Muntz90].

Figure 5.38 shows the effect of changing the mean disk-recovery time on the mean disk-

array lifetime. If there are no spares in an N+l-parity disk array, then the array's vulnerability

to data loss is largely determined by replacement-disk delivery time. In this case, disk recovery

can be slowed to one or four hours on average to accomodate user accesses without significant

effect on reliability. If, instead, there are two strings of spare disks in the array, the array's vul-

nerability to data loss is largely determined by disk-recovery time. In this case, increasing the

mean disk-recovery time by a factor of 10 from six minutes to an hour reduces mean lifetime by

a factor of 10 which, in turn, increases the expected fraction of disk arrays that will lose data by

the same factor of 10. With just one string of spare disks this effect is less pronounced, but it is

still important for high reliability to minimize disk-recovery time.

5.7.5.3. Higher Array Reliability Through Higher String Reliability

As I mentioned in Figure 5.10 of Section 5.5, the conventional approach for avoiding low

reliability in disk-support hardware is to employ more reliable, and more expensive, parts. For

even higher string reliability, at even higher costs, support-hardware components can be made

redundant. Because the fraction of a disk array's cost that is attributable to support-hardware is

not likely to be large, it is reasonable to evaluate the contribution to array reliability that results

from increased string reliability via higher quality pans or redundancy.

Figure 5.39 shows the effect of varying string reliability on the mean lifetime of my straw-

man disk array. If the unenhanced mean string lifetime is low - in this example, less than

100,000 hours - then doubling it doubles the mean lifetime. This effect is more pronounced in

arrays that have one or more strings of spare disks. When mean string lifetime approaches or

exceeds 1,000,000 hours, however, increasing it further provides little benefit for array
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Figure 5.39: Diminishing Effect of More Reliable Strings on Array Reliability. This figure
shows the effect of string reliability on the mean lifetime of my strawman disk array. Seven varia-
tions for the disk array are shown. These are the same configurations presented in Figure 538 of
the last section. In this figure, however, mean disk-recovery time is again fixed at one hour and
mean string lifetime is varied instead. The dotted vertical line shows the default mean string reli-
ability in my strawman disk array.

reliability. Unless the unenhanced string reliability is very low and the cost of increasing mean

string lifetime by a factor of 100 or 1,000 increases array cost by less than 10%, adding a string

of spare disks is a more effective method of increasing reliability than is increasing mean string

lifetime.

5.7.5.4. Partially Populated Spare Strings and Low Reorder Thresholds

In contrast to figures in the last three sections, mis section presents simulation data instead

of model estimates. It investigates aspects of the reliability of my strawman disk array that do

not meet the assumptions of my models. In particular, this section explores two design alterna-

tives:

(1) One or two extra strings partially populated with spare disks are desirable because disks

are expensive.
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Figures 5.40a and 5.40b: Partially Populated Spare Strings and Low Reorder Thresholds.
This figure shows simulated mean lifetime, on the left in Figure 5.40a, and 10-year reliability, on
the right in Figure 5.40b,for my strawman disk array as a function of the maximum number of
spare disks. When the maximum number of spare disks is less than 7 or between 7 and 14, there
is a string partially populated with spare disks. Three variations are presented based on the
reorder threshold: first, a threshold of one less than the maximum number of spare disks (immedi-
ate reorder), second, a threshold that is the integer part of half of the maximum number of spare
disks (half-empty reorder), and third, a threshold of zero (empty reorder). Each estimated
MTTDL generated by simulation is marked by a vertical bar showing the 95% confidence inter-
val. Note that these curves may not be strictly mono tonic increasing because of this variance in
simulated estimates. Dotted lines show modeling estimates for zero, one, and two strings of spare
disks.

(2) a reorder threshold that does not cause an order to be issued immediately after every disk

failure is desirable because it reduces the frequency that service personnel interacts with

the disk array and because it delays the purchase of new disks.

Figures 5.40a and 5.40b show simulated estimates of mean lifetime and 10-year reliabil-

ity, respectively, for my strawman disk array. Figure 5.40b shows that incorporating a single

spare disk increases the chance that an individual disk array will survive 10 years without data

loss from 52% to 80% and that incorporating one string of spare disks increases the chance of

surviving 10 years without data loss to over 90% for all three reorder thresholds. Toward the

basic goal of providing better reliability than a single disk drive, which has a 56% chance of

surviving 10 years without failure, these results indicate that a small pool of spare disks with
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any reorder threshold is all that is necessary.

Figure S.40a addresses high reliability in my strawman disk array. This figure shows that

an immediate reorder policy achieves maximum reliability levels with substantially fewer spare

disks than the delayed reorder policies. It also shows that high reliability is not achieved with

any less than a fully populated string of spare disks.

Intuitively. I understand this figure by estimating the average number of spare disks in the

spare pool. Because replacement-disk delivery time is much shorter than the expected time

until the next disk failure, the average number of spare disks on hand is about half way between

the maximum number of spare disks and one more than the threshold. This means that with

immediate reorder, the array can nearly always immediately replace all disks on a failed string.

This also explains why a half-empty reorder policy achieves the reliability of one string of spare

disks with an immediate reorder policy once it has about one and a half strings of spare disks.

This intuition is not satisfactory for explaining the reliability of the empty reorder policy

because it incorrectly suggests that two strings of spare disks would be sufficient to achieve the

reliability of one string of spare disks with an immediate reorder policy, which is inaccurate.

The benefit of a delayed reorder policy is largely derived from a reduction in the fre-

quency that service personnel interacts with the disk array. The average rate of these interac-

tions is the average rate of disk failures divided by the number of disks that must fail before

replacement disks are reordered.

Average human interactions per hour = (5.36)

GW+2W5+7+1V2 1 1

When my strawman disk array has one string of spare disks and an immediate reorder policy

(5=7,7=^), this rate is 182/150,000. When it has one and a half strings of spare disks and a half

empty reorder policy (S =11,7^5), this rate is 1867(5x150,000), nearly five times lower without

loss of reliability! Finally, when it has two strings of spare disks and an empty reorder policy
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(5=14,7=0), this rate is 1847(14x150,000), 14 times lower than when the array has one string of

spare disks and an immediate reorder policy. Unfortunately, the reliability of this third case is

also substantially lower.

The results in Figure 5.40a indicate that my strawman disk array needs at least one string

of spare disks to achieve high reliability. With four more spare disks and a policy of reordering

spare disks when the pool is half empty, the frequency of human interaction with the array can

be reduced by a factor of five without sacrificing reliability.
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5.8. Summary and Conclusions

5.8.1. Summary of Reliability Models for Redundant Disk Arrays

In this section I restate the equations for each of the models for disk-array reliability found

in this chapter. In all cases, the reliability of a disk array's data over a period of time of length t

is:

where MTTDLcauneit is an appropriate estimate of the mean time until a disk array suffers a

failure that causes data to be destroyed or unavailable for a long period of time (a data loss).

The reliability of a disk array over a period of length t is the probability that no failure causes

data loss during that time period. The form of this equation is equivalent to stating that the time

until data is lost in a disk array has an exponential distribution. This is not so much an assump-

tion as an approximation that I demonstrated in prior sections to be appropriate because of the

nature of disk array component failures [ArthursSl].

In all models I assume that disk lifetimes have an exponential distribution. Chapter 4

presents data suggesting that this is a reasonable assumption. I also assume that the lifetimes of

non-disk components of a disk array's support hardware are exponentially distributed. This is a

common assumption for electronic components.

All of the models in this chapter assume that each disk array has redundancy capable of

recovering the contents of any single disk erasure. I assume that the time required to recover

the contents of a failed disk from data on other disks has an exponential distribution. This

assumption may not be accurate because the time required to recover a disk in an idle system

should be short and deterministic. However, if disk recovery has lower priority man user data

accesses, then, depending on system load, recovery time will be generally short and occasion-

ally quite long - much like an exponential random variable.
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In a redundant disk array that does not suffer dependent, or coupled, failure modes that

damage multiple disks at the same time, the mean lifetime estimate from Equations 5.10 and

5.11 of Section 5.42 is:

MTTDLL!*UP

In this expression G is the number of parity groups in the array, AT+1 is the number of disks

(including the parity disk) in each parity group, MTTF^k is the mean lifetime of each disk, and

MTTRdak is the mean time required to repair a failed disk. Repair involves the replacement and

recovery of the failed disk and is assumed to take an exponentially distributed amount of time.

If there are an infinite number of on-line spare disks then replacement time is zero and

MTTRdak becomes MTTRd^k-rtcovery^ the mean time required to recover a disk's contents. If

replacement time is the minimum of a deterministic delivery period, D , and the time until a

yet-undelivered replacement arrives, then AfTTR^t is Ihe sum of 3f777?<£rf-r«<»«ry ^d ^

average delivery time, D , given in Equation 5. 1 9 of Section 5.5.3:

Average delivery time = D = D«GW+l)-W^-»«"*>)DI2
1-KG (N+l)-lM-e ")

If a redundant disk array that does not suffer dependent failure modes is augmented with a

less than infinite number of spare disks, then the mean lifetime of its data is given by Equations

5.22, 5.27, and 5.28 in Section 5.6.1.

l P( data loss per order)
Average time between filled orders

where MTTRjut in MTTDLî Uf should be set to A/TTK^t _„«„,»,,. The probability of data loss

per replacement-disk order and the average time between each replacement-disk order arrival

also depend on the maximum number of spare disks in the spare pool, S, and the number of

spare disks in the spare pool when an order is issued for replacements, T. These expressions are

P( data loss per order ) = £ f G W*W\ (I- e-*>F««e-w«W+'>«> l-£&(. T+q j I
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and

1 GvY+l>*S 1
Average time between filled orders = D + -4- V -4

* j-G<Fl+iy*T+l J

where X is a space-saving notation for

Considering a redundant disk array without on-line spare disks, but suffering dependent

failures caused by support-hardware failures, Section 5.5 suggests that support-hardware

failures should be isolated into "string" groups orthogonally from parity groups as shown in

Figure 5.1 1. In this case, the mean time until data is lost is given in Equation 5.16 as

MTTDLonho =

• • • •ftring Ml IKariag Mil Rduk-rtcovtry

MTTRduk __ rw _ _
~ ' ~ '

and $ - " " " " ' ' " "

In this expression MTTR^k is the sum of MTTRduk-rwntry and the average delivery time, D ,

given in Equation 5.19 and repeated above.

Finally, Section 5.7 presents a bound and two estimates for the mean time until data is lost

in a disk array mat suffers dependent failure modes and has been augmented with a pool of

spare disks. Mean time until data loss is bounded by assuming an infinite pool of spare disks.

Equation 5.30 in Section 5.12 reports:

GN (N +DM7TRdisk-r,co*ery
— — '

1+Of
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where * - - . and

If the array contains one string fully populated with spare disks, then mean time until data is

lost is estimated by Equations 5.31. 5.32 and 5.33 in Section 5.7.3:

where 71.- (N+2> V-W+1X1-8) i,- N GN
l ~ MTTF^ * A2" MTT ' 3 ~

* ' ̂

o— 1 — i z^\ . - i i . 1 r t «"«* « — j-.*\ i Ctf+lYD '

This estimate, and the next, assume that a replacement disk is ordered immediately after each

disk fails.

Finally, if the array contains two strings fully populated with spare disks, the mean time

until data is lost is estimated by Equations 5.32,5.33,5.34, and 5.35 in Section 5.7.4:

I = J * 1 *
MTTDLrwoSpareStrings

^Q*+W

where ^ = 0^+3) , ^ = W+2) , ^ = W^Xl-S) ?
MTTF ttring Ml 1 F tiring Af / 1 'ttring

MTTF 4*1 '

3

MTTRftrinf ml I R

Although these last two models do not estimate mean array lifetime when the maximum

number of spare disks is not exactly enough to populate one or two strings, Section 5.7.5 shows

how they can be used to make disk-array design decisions. In particular, one or two spare disks

frequently make a big difference to the chance of surviving 10 years without data loss, but it is

likely that a fully populated string of spares is needed to achieve close to the minimum fraction
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of disk arrays that will loose data in 10 years.

5.8.2. Design of A Strawman Redundant Disk Array

Throughout this chapter I have used a strawman disk array to exemplify my models and

explore array design issues. Table 5.1 in this chapter's introduction presents the strawman disk

array as an attractive alternative to IBM's top-end disk subsystem, the IBM 3390. Table 5.2

summarizes estimates for the strawman disk array's mean time until data is lost and its 1-, 3-,

and 10-year reliability that were presented in Sections 5.4.4,53.4,5.6.2, and 5.7.5. This table

shows that without redundancy the strawman disk array has virtually no chance of surviving

three or more years without data loss. This is the primary reason for including redundancy in a

MODEL M1TOL

|| (hours)

RELIABILITY |

1 year 3 year 10 year |

OVER-

HEAD

No Redundancy

One Disk II 150,000 II 0.94
Seventy Disks || 2,143 || 0.02

0.84
0.00

0.56 |
0.00 |1 0%

0%

Independent Disk Failures Only, (N+l « 1 1, D = 72, MTTRdat-nuntry •= 1)

0 Spares
1 Spares, 0 Thresh.
2 Spares, 0 Thresh.
2 Spares, 1 Thresh,

oo Spares

411,444 0.98
12,734300 0.9993
17,568,200 0.9995
28,758,300 0.9997
29224,900 (I 0.9997

0.94
0.9979
0.9985
0.9990
0.9991

0.81
0.9931
0.9950
0.9970
0.9970 1

Independent and Dependent Disk Failures, (AfTTF,̂  c 150,000, \mRftriltg

0 Spares
7 Spares, 6 Thresh.

14 Spares, 13 Thresh,
oo Spares

133.235
6,594,890
8,665,860
8,673,790

0.94
0.999
0.999
0.999

0.82
0.996
0.997
0.997

0.52
0.987
0.990
0.990

10%
11%
13%
13%
oo

«72)

10%
20%
30%

oo

Table 52: Summary of Reliability Estimates for Strawman Disk Array. This figure summar-
izes mean time until data is lost and reliability estimates from each of the models in this chapter
applied to my strawman disk array first presented in Table 5.1 of the introduction to this chapter.
The last column shows the overhead cost of redundancy as a percentage of the non-redundant
disk array cost. In this table 'Spares' is the maximum number of spares and 'Thresh.' is the
reorder threshold. This disk array has 70 data disks organized into an orthogonal array of seven
parity groups with JO data disks and a parity disk in each group. Disks have exponentially distri-
buted lifetimes with a mean of 150,000 hours. Strings have exponentially distributed lifetimes
with the same mean. Disk recoveries and string repairs have exponentially distributed durations
with means one hour and 72 hours, respectively. Replacement-disk delivery time is the minimum
of a fixed 72 hour period, D, or the time until an already issued order arrives.
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disk array. Table 5.2 also shows that, in addition to overcoming this basic threat to data relia-

bility, redundancy can provide high reliability with low overhead costs.

In the data of Table 52,1 have used 10% overhead for the parity redundancy. This level

of protection more than compensates for threats to reliability from independent failures alone

and nearly compensates for the threats to reliability from independent and dependent disk

failures without requiring on-line spare disks. If the only threats to data reliability are from

independent disk failures, high reliability is achieved with only one on-line spare disL In this

case two on-line spare disks are approximately as useful as an infinite number of on-line spares.

Where dependent disk failures also threaten data reliability. Section 5.7.5.4 shows that just one

on-line spare disk achieves higher reliability than provided by a single disk and high reliability

is provided by one string fully populated with on-line spare disks. In this case, two strings

populated with on-line spare disks provides as high reliability as an infinite number of strings

populated with on-line spare disks.

Section 5.7.5 examines the design of my strawman disk array in greater detail It shows

that with one string of on-line spare disks, the strawman disk array achieves higher reliability

than a comparable collection of mirrored disks at lower cost and with less expensive repair

processes. Section 5.7.52 then looks at the effect of varying disk recovery time that would

result from varying the priority of recovery relative to normal user accesses. It finds that

without on-line spare disks, reliability is insensitive to changes in the disk recovery rate, but

with on-line spare disks, slowing the disk recovery rate substantially decreases the mean time

until data is lost The next section, 5.7.5.3, shows that adding on-line spare disks is generally

more effective for improving the mean time until data is lost than is improving individual string

reliability. Finally, Section 5.7.5.4 examines the possibility of reducing costs and opportunities

for human error by delaying replacement-disk reordering until the spare pool is half full. It

finds that with one and half strings of on-line spare disks, the mean time until data is lost in an

array with a half full reorder policy is comparable to an array with an immediate reorder policy
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and one string of on-line spare disks. This means that the frequency of replenishing the spare

pool can be reduced by a factor of five at a cost increase of less than 5% of the cost of the non-

redundant airay.

The net implication of this chapter's reliability models is that my strawman disk array can

be made more reliable than a mirrored IBM 3390 disk subsystem at a cost less than one IBM

3390!

5.8.3. Conclusions

This chapter evaluates the reliability of disk arrays that employ N+l -parity redundancy to

tolerate catastrophic failures. Because arrays of small diameter disks contain many more com-

ponents than the large diameter disks they replace, their non-redundant reliability is unaccept-

ably low. This is the primary need for redundancy; to insure that disk arrays are at least as reli-

able as the single disks they replace. Secondarily, many owners of computer systems have

much higher reliability requinnents for their storage systems. These customers have tradition-

ally doubled their expenditures for magnetic disks and duplicated all of their data. Redundant

disk arrays offer the opportunity to provide such customers the high reliability they seek at a

much lower cost

In this chapter I present models for disk array reliability. These models are analytic

expressions based on Markov models of each source of data loss. They account for dependent

disk failures, such as support-hardware failures that effect multiple disks, as well as independent

disk failures. They also incorporate the benefits of on-line spare disks. These models have

been validated against a detailed disk-array lifetime simulator for a wide variety of parameter

selections. Agreement in most cases is within the simulator's 95% confidence interval.

The models I present in this chapter show that a redundant disk array can easily be

designed to provide higher reliability than a single disk. Moreover, with a small overhead for

parity and spare disks, a redundant disk array can achieve very high reliability. For some
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configurations including my strawman configuration, a N+1-parity disk array with on-line spare

disks achieves higher reliability than the more expensive mirrored disk array.

As more and more reliability is required of more and more general purpose computer sys-

tems, reliability-cost tradeoffs will become critical. The models and design implications

developed in this chapter will enable secondary storage system designers to achieve reliability

goals with cost-effective redundant disk array solutions.

193



"*

CHAPTER 6

Conclusions

It is my thesis that the burgeoning demand for reliable, parallel secondary storage can and

will be met by redundant disk arrays. In support of my thesis, this dissertation makes three

principal contributions. First, I argue that redundant arrays of small-diameter (inexpensive)

disks are the heir apparent of secondary storage. Second, I provide a broad understanding of

alternative redundant data encodings and of the relationship between parallelism, redundancy,

and performance in disk arrays. Finally, I make possible the three-way optimization of cost,

performance, and reliability for I/O systems designers by estimating analytically the reliability

of redundant disk arrays.

The ascent of redundant arrays of magnetic disks is the inevitable result of three trends in

computer technology. First, magnetic disk technology continues to dominate secondary storage

systems, and the premier and most populous classes of magnetic disks are becoming physically

smaller and lower in capacity. Capitalizing on this trend, disk arrays satisfy growing demands

for capacity with increasing numbers of the technologically superior and more cost-competitive

disks with smaller diameters. Second, the improvement in computational power of each new

computer generation over that of its predecessor far surpasses the performance improvement of

each new generation of magnetic disks over that of its predecessor. Disk arrays counter this
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growing gap by exploiting the parallelism inherent in their large number of component disks.

Third, as society becomes irreversibly more dependent upon computerized mechanisms, its

need for trustworthy systems intensifies. Disk arrays fulfill these needs cost-effectively by

broadening the flexibility available to systems designers for balancing the cost of redundant

data against the reliability induced by that redundancy.

Disk arrays achieve a high level of performance when many disks operate in parallel.

Although there are some applications specially designed to redistribute data among disks

dynamically so that user accesses evenly load all disks, the vast majority of systems do not have

effective provisions for adjusting their allocations of data according to disk utilization. A more

general approach to overcoming this problem in disk arrays employs disk striping, a process by

which each user file is broken into relatively small pieces that are automatically allocated

evenly among multiple disks. In this way, a large number of small accesses will apply a uni-

formly distributed load on the array's disks, and a single large access will transfer data from all

disks in parallel. Although the performance of striped disk arrays is sensitive to the size of the

pieces into which each file is subdivided, reasonable choices, such as the size of a disk track,

deliver a large fraction of the disk array's potential performance.

Both performance and reliability are affected by encoding data in a redundant disk array.

The simplest and least expensive encoding, called N+l -parity, stores data equivalent to the

capacity of N data disks and its bitwise exclusive-or into a parity group of N+l disks. Because

catastrophic disk failures are self-identifying, a code that is single-error detecting, such as par-

ity, provides single-erasure correction. In its simplest form, the disks of a parity group act as a

single, virtual disk. But this sacrifices the potential to execute more than one small access on

different disks of the parity group in parallel Greater access rates can be achieved if each disk

in a parity group is operated independently. In this case the group's parity information should

be distributed evenly across all disks so that each bears an equal portion of the redundancy-

maintenance overhead. For relatively long sequential accesses, this overhead is minimal, but
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for random writes of a small amount of data, this overhead can be as large as three times the

amount of work done in a non-redundant disk array. Fortunately, new research into file systems

with large caches promises to group random writes into large sequential ones, effectively avoid-

ing redundancy-maintenance overheads.

In arrays with very large numbers of disks or in disk arrays with very high reliability

requirements, the single-erasure correction provided by N+l-parity may not be sufficient;

double-erasure correcting codes may be necessary instead. For very large disk arrays, a two

dimensional N+l-parity encoding promises extremely high reliability. The penalty to perfor-

mance of a two-dimensional parity encoding is a minimal redundancy-maintenance overhead

that is at most five times the amount of work done in a non-redundant disk array. In smaller

disk arrays with very high reliability requirements, non-binary codes can satisfy reliability

requirements with only two disks of redundant information and the same minimal redundancy-

maintenance overhead of two-dimensional parity.

Users' confidence that their data will not be lost rests on secondary storage more than on

most other parts of a computer system. This confidence, in other words, is the true measure of

data reliability. Its importance is comparable to the importance of cost and performance in

secondary storage systems and should be an integral pan of the system's design. Expanding the

analysis of cost-performance tradeoffs to incorporate data reliability requires simple reliability

estimates that operate on architectural parameters. In this dissertation, I develop models of the

reliability of disk arrays that employ an N+l-parity encoding for redundant data. Based on

Markov models of component failure and repair, my models take into account dependent failure

modes arising from failures in shared support hardware. These dependent failure modes defeat

data redundancy unless the set of disks affected by a dependent failure, called a string, is

orthogonal to the parity groups that overlap it With these models, designers of disk arrays can

bypass the tedious task of programming a reliability simulator and concentrate on their

product's development decisions.
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To provide a concrete example of the use of these models, I analyze the design of a

"strawman" disk array that is an attractive alternative to IBM's top-end disk, the 3390. Sum-

mary results for this comparison are reported in Tables 1.1 and 5.2. In short, the strawman disk

array exceeds the access and transfer throughput of the 3390 by up to a factor of 6 and 8.

respectively, while vastly exceeding the reliability of the 3390 and promising a comparable or

superior cost. In fact, with the addition of at most two strings of on-line spare disks, my straw-

man disk array with N+l-parity encoding can achieve higher reliability than conventional and

more expensive mirrored disk arrays.

The number of products offered in the disk array marketplace has begun to swell during

the course of my research, and many other organizations have exploratory projects underway.

This trend, coupled with the strong interest in disk arrays expressed by users whose needs

emphasize business and scientific computing, is already fulfilling some of the tenets of my

thesis. As a result of these encouraging signs, I am confident that future computer systems will

boast reliable, parallel secondary storage based on redundant disk arrays.

Now that I have reviewed this dissertation, let me speculate about topics of future

research. Because redundant disk arrays are a relatively new topic for research, their interaction

with operating systems, network architectures, and archival systems is not yet fully understood.

Additionally, there is ample opportunity for researchers to optimize the performance and relia-

bility of these arrays. The issues that follow are a sampling of my personal concerns and

interests.

One of the forces causing rapid increases in the computational power of new computer

systems is multiprocessing. Collectively, the processors in a massively parallel machine create

a large demand on secondary storage. One way to satisfy this demand, the approach taken by

Berkeley's RAID prototypes, is to build a high performance server for secondary storage that

employs redundant disk arrays and to locate it on a fast, central network. An alternative model,

particularly appropriate where each node in the parallel machine is a general purpose processing
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system, is to connect a few disks to each node. This superimposition of a disk array onto a mul-

tiprocessor has advantages and disadvantages. On the positive side, it provides large aggregate

computational power for controlling the disk array and data transfer bandwidth for accessing the

disk array. On the negative side, it has a non-homogeneous distribution of data relative to a

particular processor, if each processor's pattern of data access does not favor the disks attached

to it, then significant computational and communication resources may be spent dynamically

redistributing data. Hence, methods for effectively integrating I/O into massively parallel

machines deserves investigation.

The distribution of function among client operating system, disk array controller, and

disk-embedded controller is an issue worthy of research. On one hand, operating systems or

user programs may exploit detailed knowledge of and control over a disk array to globally

optimize performance. On the other hand, trustworthiness of secondary storage is maximized

by isolating the control of disk arrays behind a simple, explicit interface. From the viewpoint of

market acceptance, this issue is more complex because a disk array may be judged inadequate if

its host software poorly "optimizes" the array's performance. An important example of this

problem is the location, capacity, and function of data caching. It is quite likely that there will

be caches in each disk, each array controller, and each host operating system. How then should

this storage be controlled and in what ratios should its capacity be allocated?

With redundant disk arrays, secondary storage designers are well-positioned to satisfy

rapidly growing demands for performance and reliability. But what about tertiary storage? The

devices currently employed by tertiary storage systems are significantly slower and usually

more manual than those in secondary storage. As a starting point, Stonebraker and Schloss

have explored one way to adapt disaster recovery procedures to much larger on-line storage sys-

tems [Stonebraker90b]; further questions might be: will backup procedures be needed less often

or must they become better integrated into the normal operation of the computer system?
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There remain many issues related to reliability on my agenda. Muntz and Lui have begun

examining the interaction between reliability and performance during the recovery of a failed

disk's data [Muntz90]. This function may be amenable to optimization both at the level of the

disk-embedded controller and at the level of the operating system's disk scheduling. More

relevant to the specific material in this dissertation, however, is the need for more redundant

disk array modeling. Partially populated strings of spares, non-immediate reorder policies,

double-erasure-correcting codes, spare pools shared over multiple arrays, and more detailed

hardware and software failure modes are all candidates for additional modeling.
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APPENDIX A

Reliability Simulation

A.I. Introducing RELI

An important tool in my disk array reliability analysis has been a detailed, event-driven

simulator (apatheticly called RELI). RELI simulates a disk array by explicitly modeling a col-

lection of parity groups imposed on a set of strings of disks. Disks and strings are modeled as

operational or under repair, RELI does not model the workload on these components, nor does

it model a host computer's operation (or the host's hardware and software failures).

The array begins fully stocked with on-line spares and operational data disks (all disks in a

parity group are referred to as data disks because this simulator only need distinguish between

spares and non-spares). Disk and string lifetimes are stochastically assigned, as are disk and

string repair durations. The pool of on-line spares is replenished by the arrival of newly ordered

disks explicitly ordered when the spare pool size falls below a specific threshold, or implicitly

ordered by the arrival of a string repairpersoa

The simulation proceeds from event to event Events are primarily disk failures, string

failures, string repairs, disk recoveries, or new disk arrivals. Simulation ends when at least one

parity group has more than one (data) disk failed at the same time.
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The simulator is instrumented to collect a variety of statistics, the most important being

the array lifetime and its 1-, 3-. and 10-year reliabilities, but also metrics such as fraction of

time with one or more disk in recovery, the average number of on-line spares, the average

arrival rate of new disks, and the average recovery time.

Because lifetimes and repair durations are stochastically assigned, two invocations of

RELI with all parameters identical except the random number generator seed will yield dif-

ferent array lifetime statistics. To provide confidence that the statistics reported are good esti-

mations of their true averages across all sequences of disk and string lifetimes and repairs, RELI

repeatedly simulates array lifetimes for each of many different random number sequences

before reporting average statistics.

A.2. Parity Group Organization in a Set of Strings

Each disk in an array is connected to a particular string, and is either an on-line spare or

belongs to a particular parity group. RELI can either cluster the data disks from one parity

group on the same string or spread the disks of each parity group out over as many strings as

possible. The former is called a string parallel mapping and the latter is called a string orthog-

onal mapping. The orthogonal mapping yields higher array lifetimes because string failures

often involve no more than one disk from each parity group.

An array can accomodate a maximum number of on-line spares (defined by the reorder

threshold + the number requested in a reorder). In the string parallel mapping, spares will be

clustered on the last strings. In the string orthogonal mapping, spares will be spread over all

strings. There is a third mapping, string orthogonal with separate spares, which clusters spares

on the last strings while spreading data disks across the remaining strings. This mapping

encourages string failures to be recovered by a separate string of spares so that the distribution

of parity groups across strings remains widely spread. Figures 5.26 and 5.27 show examples of
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these mappings.

A3. Modeling Repair, Recovery, and Spare Pool Replenishing

The idea behind on-line spares is that physical disk repair (most likely done by immediate

replacement) may take a long time, but the recovery of its data onto an available on-line spare

should be much faster. Once a failed disk's contents have been recovered on a spare, that spare

now replaces the repairing data disk and the associated parity group is no longer vulnerable to

data loss if another disk were to fail.

However, the data replacing spare is frequently not located on the same string as the

repairing disk it replaces. In particular, it may be located on a string with other data disks (or

other spares replacing data disks) from the same parity group. If this mapping persists then this

parity group is vulnerable to immediate data loss if the wrong string fails. For this reason, the

spares contents should end up back on the string holding the disk it is replacing. Figure 5.26

shows an example of this effect

RELI explicitly models an operator visit (by default, at random in the 24 hours after the

initial data disk failure). Whenever an operator visits the array, all spares replacing data disks

are moved from their current string locations to the locations of the data disks they replace. At

this point the replacing spare has become the replaced data disk and there is an empty slot on a

string for a spare.

When a string fails (because of power, cabling, controller, or cooling component failures),

it is possible that some or all of its disks are also damaged. Certainly their data is not available

through that string's datapath. Because string failure may involve substantial replacement or a

repairperson visit, RELI attempts to find a spare for each disk on the failed string. Unfor-

tunately, during a string repair, a replacing spare cannot be physically moved onto the repairing

string so string failed disks are exposed to abnormal mappings for longer periods than simple
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failed disks.

Because personnel is available at the array whenever a spare order is delivered or a siring

repair completes, all replacing spares are moved to the replaced disk's proper position at these

times. A string repairperson is assumed to bring enough spare disks to replace all string failed

data disks. KELI further assumes that both string repair and order delivery personnel bring

enough extra spares to fill all failed or empty disk slots. However, if an order is delivered while

a string is waiting repair, RELI assumes that the delivery personnel is not equipped to complete

the string repair.

If more than one parity group is recovering the contents of a failed data disk in that group

onto a spare disk concurrently, then these recoveries proceed either serially or in parallel By

default RELI will serialize recoveries because many I/O systems have too little bandwidth to

perform parallel transfers of the entire contents of many disks.

A.4. Verifying RELI

Each time I write a simulator for a complex system that has no measurable implementa-

tion and whose output is only statistics, I am struck by the problem of determining correctness.

What is needed is some confidence that the simulator models a reasonable system, and that its

outputs are correctly derived from that reasonable system.

Of course, at first simple test cases and hand verified traces suffice. But the most interest-

ing and complex aspects of the system may only occur under duress, so another answer is

needed for validating these operations. I view this as a question of correct programming and

have appb'ed multiple strategies. First, throughout the code I introduce assertions of invariants

that are tested as the program runs. If an invariant assertion fails, the program aborts immedi-

ately. Whenever the simulation clock is advanced, a special set of invariants testing the state of

all disks, parity groups, and strings is applied. A second strategy collects statistics whose
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values have known expected values; for example, the disk and string failure rates are computed

and compared to the corresponding input parameters.

A more powerful approach, albeit substantially more expensive, is to implement the simu-

lator twice can compare results. Because I implemented both simulators, the second uses a dif-

ferent, simpler structure: no global state or event lists are maintained. The second simulator

examines an event trace written by RELI and verifies that the given event is legal at that time.

Extensive invariant state checks are made in the second simulator, it runs between one and two

orders of magnitude slower than RELI. RELI's event trace includes overall statistics at the end

so that the second simulator can verify these to within 0.001%. This verification scheme was

responsible for uncovering a large fraction of the bugs in RELI.

Only a small fraction of the data collected for this research came from RELI runs verified

by the second simulator, but a substantial peppering of the input parameter space was verified

without disagreement (after both progams stabilized).

A.5. Terminating RELI

The simulation of an individual array's lifetime is a sample of the underlying distribution

of array lifetimes modeled by the simulator. Sample values will vary; in fact, because data loss

depends on the occurrence of two disks in one group in recovery at the same time when

recovery and even replacement is very much faster than failure, opportunities for data loss are

rare. Processes based on rare events tend to have large variation in their samples. Disk array

time until data loss has such large variation.

To get a good estimate of the underlying model's mean time to data loss (MTTDL), RELI

samples the distribution (by simulating an array from birth to data loss) until a stopping condi-

tion is met. The purpose of the stopping condition is to make sure that the final statistics

reported are good estimators of the underlying model's average statistics; that is, how many
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arrays must be simulated to data loss before the average time until data loss and other important

metrics are trustworthy.

The approach used in RELI is to stop as soon as a particular confidence interval on

MTTDL is no larger than a given fraction of the current MTTDL estimate. By default, RELI

stops when the 90% confidence interval is no larger than [ 0.9*MTTDL, 1.1*MTTDL ], how-

ever, all data reported in Chapter 5 continued simulation until the 95% confidence interval was

no larger than [ 0.95*MTTDL, 1.05*MTTDL ]. RELI's stopping condition does not test any

other measured statistic largely because MTTDL is the most important and one of the most

likely to be variable.
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APPENDIX B

Effect on Reliability of Error in MTTDL

10-yeu Reliability

3-ytaiReliiWity

0.0
10 32 100 316

Mem Lifetime (1,000 boua)

1.000

Figure B.I: Effect of 10% Error in Estimated MTTDL on Reliability. The relative error in a
system's 1-, 3-, and 10-year reliability resulting from a 10% underestimation of mean lifetime is
shown by solid lines as a function of the true mean lifetime. For example, if the true mean lifetime
of a system is 200,000. then underestimating it by 10% (to 90,000). will underestimate the
system's 10-year reliability by less than 10%. This kind of error should be ejected from simulat-
ed estimates for mean lifetime because their 95% confidence interval has a width that is 10% of
its estimate. Overestimates for the mean lifetime of 10% overestimate the system's reliability by a
similar amount. The dotted lines approximate of this error with the function tf>/(l±$)M where
100J} is the percent error in the estimated mean and M is the true mean. This approximation for
the error is no more than 10% optimistic for the relative error in the 10 year reliability when the
true mean is larger than 50270 hours and is underestimated by 10%.
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APPENDIX C

Goodness-of-Fit Testing

This appendix strengthens Chapter 5's conclusion that the lifetimes of redundant disk

arrays have an exponential distribution. In Chapter 5, Figures 5.7, 5.19, 523, and 5.28 show

that the 1-, 3-, and 10-year reliabilities of an exponential random variable concur on a graph

with these reliabilities estimated by simulating disk array lifetimes. Taken with the thoeretical

expectation, given in Section 5.9, that disk array lifetimes should have an exponential distribu-

tion, these figures make an intuitive case for exponentially distributed lifetimes for disk arrays.

This section presents statistical evidence for this result by applying Pearson's chi-square (x2)

goodness-af-fit test [Kirk90 pp 533, Lawless82 pp 441] to the data generated by simulation.

There are many sets of data to which I have applied this goodness-of-fit test Each of Sec-

tion 5.4,5.5,5.6, and 5.7 has tested a model against about 100 different parameter sets, selected

at random.1 For each of these parameter sets, RELJ has simulated about 1,000 to 1,500 disk

arrays from installation to data loss. It is these collections of individual lifetimes (one collec-

tion per parameter set per section) that can be tested with the goodness-of-fit test because each

lifetime in one collection is a separate sample for the same disk array.

1 A parameter set is an assignment of a value to each variable in a particular disk array model. For
example, in Figure 5.9 of Section 5.4, a particular parameter set for the strawman disk array is: G «= 7 par-
ity groups, N = 10 data disks in a parity group, MTTF^a = 150,000 hours for the mean lifetime of a di<fr.
and MTTRjb* = 72 hours for the mean repair time of a disk.
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Hypothesis - Simulated Lifetimes are Individually Exponential

X2

p-value

0.01
0.05
0.10
0.25
0.50
0.75
1.00

§5.4

* %

0 0.00
3 0.03

11 0.12
22 0.23
54 057
75 0.80
94 1.00

§5.5

* %

1 0.01
3 0.03
7 0.07

21 021
46 0.46
77 0.78
99 1.00

§5.6

# %

0 0.00
6 0.06

12 0.12
31 0.32
57 0.58
76 0.78
98 1.00

§5.7

# %

11 0.01
45 0.05
93 0.11

229 0.27
464 0.54
668 0.78
857 1.00

Table C.I: Goodness-of-Fit Tests on Each Set of Simulated Lifetimes. Pearson's chi-square
goodness-of-fit lest was applied to the 1.000 to 7,500 simulated lifetimes of each parameter set
for all four sections. This table shows a cummulative distribution of these p-values. Each row
shows the number of and fraction of tests whose p-values are less than 0.01. 0.05. 0.10, 025.
0.50.0.75. and 1.00 for each section. The bold row show the number of and fraction of tests that
give evidence against an exponential distribution for lifetimes with a 95% confidence level.

The procedure for computing Pearson's statistic on a sample from an exponential distribu-

tion yields a random variable that has a x2 distribution. This means that if the lifetimes simu-

lated for one parameter set have an exponential distribution, men computing the Pearson's

statistic on a sample of these lifetimes is the same as sampling a single value from a x2 distribu-

tion. Because tables of and programs for the x2 distribution are available,21 then compute the

probability that a single sample from this distribution would be at least as large as the

simulation's sample statistic. If this probability, which is often called the test's p-value, is quite

small, then it is unlikely that the simulation's sample statistic is a random sample from a x2 dis-

tribution, and, therefore, it is unlikely that the lifetimes of disk arrays with this particular

parameter set have an exponential distribution.

2 When this test involves alot of data, it is likely that the degrees of freedom for the x2 distribution
exceed 20 or 30. Because most tables for this distribution do not contain entries for such high degrees of
freedom, I have used the Wilson-Hilferty transformation [Lawless82 pp 513] on the X2 statistic. This
transforms a x2 random variable to a standard normal random variable (having a normal distribution with
a mean of zero and standard deviation of one).
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I have computed the p-values for the simulation data of each parameter set in each section.

Table C.I shows the number (#) and fraction (%) of parameter sets whose p-values are less

than 0.01,0.OS, 0.10,025,0.50,0.75, and 1.00 for each section. Bold entries in this table show

the number and fraction of parameter sets whose p-values are less than 0.05. For these 57 cases,

the hypothesis that disk-array lifetimes have an exponential distribution would be rejected with

a 95% confidence level Before concluding that these parameter sets give rise to disk arrays

whose lifetimes do not have an exponential distribution, let me review what it means to reject a

hypothesis with a 95% confidence level.

For a single goodness-of-fit test, Pearson's statistic should take a value with the same dis-

tribution as a x2 random variable. The test rejects its hypothesis with a 95% confidence level if

the probability that a single value from a x2 distribution exceeds the computed statistic is less

than 0.05. This means that the hypothesis is falsely rejected with probability 0.05. So if the test

is repeated many times on sets of data that all meet the hypothesis, then about 5% of these tests

can be expected to yield false rejections. Because Table C.1 shows that the 57 cases that would

be rejected with a 95% confidence level represent around 5% of their respective sections, it is

plausible that these rejections are simply the expected false rejections.

I formalize this argument by stating a broader hypothesis: that for each section, the life-

times of disk arrays constructed with all parameter sets have exponential distributions. If this

Hypothesis - Simulated Lifetimes are Collectively Exponential

X2

p-value

§5.4

0.39

§5.5

0.82

§5.6

027

§5.7

0.53

Table C.2: Goodness-of-Fit Tests on All Simulated Lifetimes in Each Section, Using the
Pearson statistics computed for Table CJ, I test that in each section these statistics have a chi-
square distribution. This table shows the p-value for each of these four tests. None of these tests
yield evidence against the hypothesis that all lifetimes simulated in each section have exponential
distributions.
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hypothesis is true then each Pearson statistic, computed for the simulated lifetimes of a particu-

lar parameter set, has a x2 distribution, as explained above. I test that the Pearson statistics

have this distribution by applying (recursively, if you will) Pearson's chi-square goodness-of-fit

test This results in a single p-value for each section; shown in Table C2, none of these four p-

values are small enough to be rejected with a 95% confidence level, so the hypothesis that life-

times for all parameter sets have exponential distributions is not rejected.

Based on these goodness-of-fit tests, I cannot find evidence against the hypothesis that the

lifetimes of disk arrays modeled in Sections 5.4, 5.5, 5.6, and 5.7 have exponential distribu-

tions.
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APPENDIX D

Comparison Data for Chapter 5

In this section I present tabular versions of data shown graphically in some of the figures

of Chapter 5. For convenience, the major parameters are redefined here.

G is the number of parity groups in a disk array.

N is the number of disks in a parity group, excluding the parity disk.

DiskMTTF

is the mean time to failure of an individual disk, expressed in 1,000 hours.

DiskMTTR

is the mean time to repair an individual disk, expressed in hours.

String MTTF

is the mean time to failure of any component other man a disk in a string of support

hardware, expressed in 1,000 hours.

String MTTR

is the mean time to repair of an individual string, expressed in hours.

Order Hires.

is the size of the on-line spare pool at which an order for more spares is issued.

Order Size

is the minimum number of new disks that are provided by an order for more spare disks.
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More precisely, this is the difference between the order threshold and the maximum

number of on-line spare disks that the array can hold.

Order Time

is the period of time before an issued order is delivered, expressed in hours.

MTTDLMarkv

is the mean time to data loss that is estimated by Sharpe's solution of a Markov model,

expressed in 1,000 hours.

MTTDL Est, Ortho, Ortho'

is the mean time to data loss that is estimated by the models presented in Chapter S,

expressed in 1,000 hours.

MTTDL Simul

is the mean time to data loss that is estimated by my RELI simulation software, expressed

in 1,000 hours.
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Table D.I - Data for Section 5.4, Rgures 5.6 and 5.7, part 1

Parity

Groups (G)

1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5

10
10
10
10
10
10
10
10
10
10
10
10
10
15

Group

Size (N+l)

4
5

21
51
51
9
9

17
21
51
51
51
51
5
9

13
13
17
21
9
9

13
13
13
13
17
21
21
21
51
51
51
5
9
9

13
17
17
21
21
51
2
5
5
9
9
9

13
17
51
51
51
51
51
5

Di

MTTF

20
20
50

100
100
20
20

100
50
20

200
200
500
20
20
20

100
100
20
50

100
20
50
SO

100
50
50
50

200
100
200
200
20
50

100
20
20
20
50
50
20
20
20

100
20
20
SO
20
SO
20
50
50

100
200
20

isk

MTTR

72.0
24.0
8.0
8.0

24.0
24.0
72.0
72.0
8.0
1.0
8.0

24.0
72.0
8.0
8.0
8.0

72.0
72.0
0.5

72.0
72.0
2.0

24.0
72.0
72.0
24.0
8.0

72.0
24.0
24.0
8.0

72.0
72.0
72.0
72.0
8.0
2.0

24.0
2.0

72.0
2.0

24.0
72.0
72.0
8.0

24.0
8.0
1.0
8.0
1.0
1.0
8.0

24.0
24.0
2.0

Mean Air

Estimate

463.0
8334
744.0
490.2
1634
115.8
38.6

2553
372.0
784

9804
326.8
680.9
8333
231.5
106.8
296.8
170.2
634.9
120.6
4823
320.5
166.9
55.6

222.6
95.7

186.0
20.7

992.1
40.9

490.2
54.5
55.6
96.5

385.8
64.1

147.1
123

595.2
16.5
15.7

8334
27.8

694.5
694
23.1

434.0
2564
114.9
15.7
98.0
123
163
654

666.7

ly Lifetimes

Simulation

4744
8364
728.1
510.9
164.2
119.7
402

2613
3904
783

1012.0
325.7
670.9
833.6
2362
110.9
3054
1793
625.5
128.8
492.4
328.0
169.9
572

2153
97.9

182.9
213

9983
422

485.7
59.0
55.5
96.8

386.9
632

1462
124

604.0
17.1
15.8

810.6
27.8

6842
673
24.0

437.9
' 2584

117.5
16.5
98.7
133
16.6
64.7

654.1
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Table D. 1 - Data for Section 5.4. Figures 5.6 and 5.7, pan 2

Parity

Groups (G)

IS
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
50
50
50
50
50
50
50
50
50
50
SO
50
SO

100
100
100
100
100
100
100
100
100
100

Group

Size(N+l)

13
2
4
4
4
9
9

17
17
17
21
21
21
21
21
51
2
2
4
4
5
9

13
13
17
17
17
21
21
4
4
4
9
9
9

17
17
21
21

Di

MTTF

50
50
20
50

100
100
200

SO
100
100
20
20
50
50

200
500
20
20
50

100
20
50

100
200

20
20
50
50

100
20
50
50
20

100
200
50

200
50
50

sk

MTTR

8.0
72.0
8.0

24.0
72.0
8.0

72.0
0.5

24.0
72.0

1.0
2.0
05
1.0
8.0

24.0
8.0

24.0
24.0
72.0
0.5
8.0

24.0
8.0
0.5
1.0
2.0
0.5
8.0
0.5
8.0

72.0
0.5
8.0

72.0
2.0
2.0
0.5
1.0

Men Am
fa^mmtf

1335
868.1
2083
434.1
578.8
868.1
385.8
919.1
76.6
255
47.6
23.8

595.2
297.6
595.2
2043
500.0
166.7
173.6
2315
800.0
86.8
534

641.0
58.8
294
91.9

238.1
595

666.7
2604
28.9

111.1
173.6
77.2
46.0

7353
119.0
595

ry lifetimes

' Simulation

129.0
888.7
203.0
437.1
584.6
854.1
386.4
905.4
76.2
26.2
49.2
23.7

5925
319.4
597.8
203.0
491.6
163.9
1745
219.4
7917
87.7
53.6

663.2
56.1
30.1
91.9

2410
583

649.2
263.7
27.6

110.7
1745
77.8
46.7

7015
111.0
60.4

Table D.I: Raw Data for Figures 5.6 and 5.6 in Section 5.4. These 94 data sets each
represent a comparison between the estimate of mean time to data loss (MTTDL)
derived in Section 5.4 and the corresponding estimate generated by simulation. In this
model, there are no dependent disk failures and no on-line spare disks. These 94
parameter sets were selected by first generating the cross-product of sets of conceivable
values for each parameter, then selecting approximately 100 sets at random. The units
for "DiskMTTR" is hours, and for "DiskMTTF," "MTTDL Estimate." and "MTTDL
Simulation" it is 1,000 hours. The expression for "MTTDL Estimate" is found in
Equations and in Section 5.4. Simulated MTTDL has a 95% confidence interval that
extends ±5% of its value.
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Table D.2 - Data for Section 5.5. Figures 5.18 and 5.19. part 1

G

2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5

N+l

9
13
17
17
17
21
21
4
4
5
9
9
9
9
9

17
21
21
21
21
5
5

13
13
13
17
21
21
9

13
13
13
13
13
17
17
17
17
17
21
21
21
5
5
5
9

13
17
17
21
21

Disk

M
T
T
F

100
100
20

100
500
20

500
20
20
20
20
20
50

100
200
50
50
50
50

100
20

200
20

200
500
500
20
50

200
20
20
50

100
100
20
20
50

200
500
50
50
50
20
20

100
20

100
200
500
50

500

M
T
T
R

2.0
710
24.0
72.0
03
8.0

72.0
24.0
24.0
72.0
2.0
2.0

24.0
24.0
8.0

72.0
2.0
8.0

24.0
24.0
72.0
2.0
1.0

710
72.0
8.0
8.0
1.0
1.0
10

24.0
24.0
1.0
8.0
03
1.0
03

710
710
8.0
8.0
8.0
8.0

24.0
10
1.0
8.0
10
8.0
1.0
03

Siring

M
T
T
F

100
50

500
100
50

100
50

200
200
500

1000
50

200
100
50

1000
500

1000
1000
1000
100
50

200
1000
100
50
50

100
200
50
50

1000
50

100
100

SO
200
500
100

1000
200
100
200
50
50

200
200
500
50

500
200

M
T
T
R

168
8

24
24
72
72
8

168
8

168
168
72
2

168
24
8
8
2

168
24
2

168
168

2
24
8
8

72
168
24
2

24
24
72
24
24
24
24
72

168
168

2
24

168
168
72
2

72
168

2
168

MTTDL

M
A
R
K
V

420.6
973
56.9

115.2
120.9
35.9
663

369.8
564.4
123.2
550.1
78.0

465.7
214.2
6123
60.7

9183
336.2
90.0

383.1
67.8

431.4
59.9

840.9
246.7
3054

17.6
50.1

676.8
473
14.8

1474
2073
1416
68.9
32.1

332.2
258.7
962
97.8
319
833

335.1
39.7

2193
147.0
7144
870.8
37.6

847.0
2003

O
R
T
H
O

420.4
94.9
56.7

1119
121.0
353
643

367.9
563.8
1216
5493
77.8

464.9
2119
6153
60.4

917.6
336.0
893

3812
67.2

431.7
59.8

838.8
246.9
308.1

17.4
50.0

676.8
473
143

147.0
2073
141.9
68.8
310

3310
256.4
94.7
97.1
314
818

3343
38.8

2193
146.7
714.4
870.1
373

846.6
2003

O
R
T
H
0'

403.6
92.1
54.6

1094
115.2
33.1
62.1

3573
559.0
118.1
5073
713

460.7
203.0
609.2
57.6

9143
333.7
84.9

378.0
64.7

415.1
46.0

830.0
2413
3053
16.9
44.9

6502
44.7
13.9

144.9
202.7
135.6
63.9
293

321.8
251.6
903
85.9
262
81.9

331.0
34.0

2063
130.0
711.7 .
844.0
33.0

8452
187.6

S
I
M
U
L

429.8
98.9
563

1173
115.8
34.8
64.9

374.4
586.6
120.8
564.1
76.7

457.8
2083
643.0
61.4

924.1
342.7
87.4

379.6
66.0

404.8
58.4

8203
253.4
307.4

17.8
47.8

673.0
472
14.4

145.1
207.8
149.1
70.0
33.0

321.8
255.9
93.8
97.0
310
832

332.4
383

221.8
1443
6914
874.9
39.0

837.7
1883
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Table DJ2 - Data for Section 5.5, Figures 5.18 and 5.19, pan 2

G

10
10
10
10
10
10
10
10
10
10
10
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
20
20
20
20
20
20
20
20
20
20

N+l

5
5
9
9

17
17
17
17
21
21
21
2
2
2
4
4
4
5
9
9

13
17
17
17
17
21
5
9

13
13
17
17
17
17
21
21

Disk

M
T
T
F

SO
100
50

100
20
50
SO

100
100
200
500
20
20
20
20
SO

500
50

200
200
20
20
50

100
200
20

200
20
20
20
SO

100
200
500

SO
500

M
T
T
R

72.0
2.0

24.0
8.0
8.0
0.5
1.0

24.0
8.0

72.0
1.0
1.0

72.0
72.0
03
2,0

72.0
1.0
2.0
8.0
2.0
1.0
8.0

24.0
24.0
1.0

24.0
8.0
03
1.0

24.0
1.0

72.0
72.0
8.0

24.0

String

M
T
T
F

500
200

SO
500
100
500

1000
1000
1000
1000

50
200
200
100
200
100
100

SO
200
100
200
100
200

SO
500

1000
SO

100
500
200
500
500
50

500
1000

50

M
T
T
R

168
168
24
24
8

168
24

168
8

168
168
168

8
72
24
24

168
72

168
168
168

8
2
2
2
2
8

72
72
24
2

72
2
2

72
2

MTTDL

M
A
R
K
V

127.8
580.8
35.2

8683
12.0
79.8

415.7
903

230.4
773
21.0

824.6
155.8
120.0
770.1
857.7
603.1
1143
222.2
97.6
19.4
343
49.6
183

222.7
59.1

305.4
14.6
62.1
423
163

1403
10.4

2073
27.8
32.6

O
R
T
H
0

126.0
S803
344

8662
11.8
79.6

414.9
88.9

229.8
75.4
21.0

824.0
154.9
1183
7693
857.4
616.6
1142
221.8
97.1
19.1
343
492
17.6

221.0
59.0

313.0
14.1
61.8
42.1
163

139.9
9.6

203.8
274
32.1

O
R
T
H
0'

120.7
5412
32.9

857.9
11.4
523

3983
80.2

228.2
70.1
174

735.8
152.6
114.9
736.6
8413
601.1
104.1
1994
863
8.8

324
48.6
16.8

2183
58.8

3092
10.8
37.4
353
15.8

115.2
83

198.9
24.0
30.8

S
I
M
U
L

1253
581.0

35.6
837.0
11.8
77.1

401.9
94.1

2243
75.9
213

7812
1562
120.7
789.0
876.6
602.9
118.6
221.6
94.1
19.0
34.7
51.8
18.4

2263
583

3114
13.9
653
41.7
16.4

145.1
10.4

2133
28.9
33.7

Table D.2: Raw Data for Figures 5.18 and 5.19 in Section 5.5. These 87 data sets
each represent a comparison between the estimate of MTTDL derived in Section 55 and
the corresponding estimate generated by simulation. In this model, there are dependent
disk failures but no on-line spare disks. The caption to Table D.J describes the parame-
ter set selection method. Because the Sharpe software has limits on the number of
states in the models it can solve, the 12 parameter sets with 50 parity groups could not
be solved. The units for "DiskMTTR" and "String MTTR" is hours, and for "Disk
MTTF," "String MTTF." and all four "MTTDL" columns, the units is IjOOO hours.
The Markov model for "MTTDL Markv" is shown in Figure 5.12). and the expressions
for "MTTDL Ortho" and "MTTDL Ortho'" are found in Equations 5.16 and 5.18,
respectively. Simulated MTTDL has a 95% confidence interval that extends ±5% of its
value.
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Table D.3 - Data for Section 5.6, Figure 5.23, pan 1

Parity

Groups (G)**• **•*!** \**/

1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5

10
10
10
10
10

Group

Size(N+l)

9
9

13
17
21
21
5

13
13
13
21
21
21
21
21
2
5
5

13
13
21
21
21
5
5
9
9
9

13
13
13
13
17
21
21
21
21
21
21
21
5
5
5
S

13
13
17
17
21
21
2
9
9

13
13

I>

MTTF

20
20
50

100
20

100
20
20
20
SO
20
20
SO

100
200
20
SO
50
20

100
20
50

100
20
20
20
20
20
20
50
50

100
SO
20
50
50
50

100
200
200
20
20
20
50
20

100
20

100
50
50
20
20
20
50
50

isk

MTTR

2.0
710
72.0
24.0

2JO
72.0
24.0
24.0
24.0
72.0
0.5
2.0

72.0
24.0
72.0
72.0

1.0
72.0
24.0
24.0
0.5
2.0

24.0
1.0

24.0
1.0
2.0
2.0
2.0

24.0
72.0
24.0
24.0
2.0
2.0

72.0
72.0
24.0
24.0
72.0
24.0
72.0
72.0
72.0
0.5

72.0
24.0
72.0
2.0

24.0
72.0
0.5

24.0
2.0

72.0

Three.

0
3
4
0
1
1
0
3
0
2
0
2
1
4
0
3
0
0
1
1
0
0
1
0
2
0
8
0
4
4
0
4
1
0
0
0
7
7
2
0
8
4
1
0
0
3
0
1
0
1
1
0
1
1
0

Order

Size

0
1
6
0
1
7
0
1
5
6
1
6
9

0

9
8
0
3
0
3
0
2
8
1
4
1
1

19
1
0
0

13
1
2
0

12
16
1
1
0
1
1
7
0
3
1
0
1
1
0

Time

4
72
24
24
12
36
12
36
4
4

24
48

168
168
36
72
48
4

24
24
12
72
72

168
168
24
4

168
48
24
48
12
36
12
24
12
24
12
72
4

72
72

168
48
4

72
24
4

24
12
48
4

12
36
4

MT

Ftfifnitfd

928.1
81.9

230.6
7713
478.1
3403
2803
55.0
5S.O

1153
4413
239.0
43.7

501.0
669.9
936.0
859.9
586.2
36.7

895.7
599.6
28.8

333.8
33.1

2103
57.2

695.6
264.9
3213
168.9
56.7

671.8
973

104.4
58.8
18.6
21.9

2503
997.0
317.7
1683
574
56.5

348.9
114.9
1813
122

104.6
473
50.6

280.7
124.6
23.6

7834
21.8

TDL

Simulation

9653
82.0

233.1
774.2
484.0
333.4
287.5
56.0
54.2

116.0
446.0
238.8
45.7

5163
671.2
930.2
854.7
565.5
37.2

891.8
578.1
28.7

340.7
32.8

213.7
53.5

713.8
259.8
313.9
164.6
55.6

674.1
94.7

104.1
58.5
19.1
223

256.6
1007.8
312.4
175.6
58.9
56.7

356.9
116.8
190.1
12.1
99.5
46.1
S0.2

281.9
124.8
23.6

759.7
22.7
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Table D.3 - Data for Section 5.6. Figure 5.23, pan 2

Parity

Groups (G)^*****"X*<* \™*/

10
10
10
10
10
10
10
20
20
20
20
20
20
20
20
20
20
20
20
20
20
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

Group

Size (N+l)

13
17
21
21
21
21
21
5
5
5
9
9

13
13
13
17
17
17
21
21
21
2
2
5
5
5
9
9
9

13
13
13
13
17
17
17
17
21
21
21
21
21
21
21

Di

MTTF

500
100
20
20
SO
50

100
20
20
50
50

100
20
50
50
50

200
500
50

200
200
50
50
20
20
50
20
20

100
20

100
100
200
20

100
100
500
20
50

100
200
200
200
200

*k

MTTR

OS
24.0
0.5
2.0

24.0
24.0
2.0
2.0
2.0

24.0
24.0
72.0
2.0
03
2.0
1.0
2.0

72.0
2.0

72.0
72.0
24.0
72.0
0.5
2.0

72.0
03
2.0
2.0
03

24.0
72.0
2.0
03
1.0

72.0
24.0
03
2.0
03
1.0
10
2.0

72.0

Tbres.

0
6
4
1
4
1
0
4
4
0
4
0
2
0
1
3
0
0
0
0
1
1
3
8
7
1
0
1
1
0
2
7
0
2
2

10
2
0
0
1
0
0
1
0

Order

Size

0
14
1
1
1
4
8
1
4
1
1

10
3
0
1
1
0
1
1
8
4
1
1
2
1
1
2

19
4

20
18
1
0
6
6

10
2
1
8
1
1
1
1
8

Time

168
24
48
36
36
4

72
48
36
4
4

48
48
36

168
36
48

168
24

168
24

168
168
36
72

168
4

36
168
48
4
4

24
12
12

168
48
4

24
48
36

168
24
4

MT
PftfPi«t»d •

9753
1544
1902
373
253
253

890.7
500.4
500.4
261.4
72.9
973
61.0
24.0
72.1

4593
1532
572.6
74.4
63.9
67.1

954.6
348.7
8002
2002
313

189.6
514

5773
232
53.7
18.1

2043
57.9

7353
103

7672
223
44.0

2814
494.0
46.7

9274
26.8

IDL

Simulation

9443
1533
1784
36.6
243
252

889.0
5283
508.8
2653
692
963
60.6
23.9
694

464.8
1503
572.6
743
64.7
664

944.0
3503
7573
196.9
29.7

183.7
50.4

6072
23.8
554
183

2053
594

7162
10.9

7903
223
43.6

273.8
484.9
47.9

9443
26.0

Table D.3: Raw Data for Figure 5.23 in Section 5.6. These 99 data sets each
represent a comparison between the estimate of mean time to data loss (MTTDL)
derived in Section 5.6 and the corresponding estimate generated by simulation. In this
model, there are no dependent disk failures but there are on-line spare disks. These 99
parameter sets were selected by the method described in the caption to Table D.I. The
units for "Disk MTTR" and "Order Time" is hours, and for "Disk MTTF," and both
"MTTDL" columns, the units is 1,000 hours. Expressions for "MTTDL Estimated" are

found in Equations 5.22,5.27, and 528. Simulated MTTDL has a 95% confidence inter-
val that extends ±5% of its value.
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Table D.4 - Data for Section 5.7, Figures 5.34 and 5.36, pan 1

G

1
1
1
1
1
i
i
i
i
i
i
i
i
i
i
i
i
i
2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

2
2
2

N-H

5
5
5

9
9
9

9
9
9

9
9
9

9
9
9

17
17
17

17
17
17

17
17
17

21
21
21

21
21
21

21
21
21

21
21
21

21
21
21

21
21
21

D
M
T
T
F

50
50
50

20
20
20

100
100
100

400
400
400

800
800
800

50
50
50

100
100
100

100
100
100

20
20
20

50
50
50

50
50
50

100
100
100

100
100
100

200
200
200

ok

M
T
T
R

24.0
24.0
24.0

8.0
8.0
8.0

8.0
8.0
8.0

8.0
8.0
8.0

24.0
24.0
24.0

2.0
2.0
2.0

2.0
2.0
2.0

72.0
72.0
72.0

1.0
1.0
1.0

1.0
1.0
1.0
2.0
2.0
2.0

1.0
1.0
1.0

24.0
24.0
24.0

1.0
1.0
1.0

Stri

M
T
T
F

1000
1000
1000

500
500
500

200
200
200

50
50
50

100
100
100

100
100
100

500
500
500

500
500
500

1000
1000
1000

100
100
100

1000
1000
1000

50
50
50

500
500
500

100
100
100

ng
M
T
T
R

24
24
24

72
72
72

8
8
8

24
24
24

168
168
168

2
2
2

2
2
2

72
72
72

2
2
2

24
24
24

24
24
24

24
24
24

24
24
24

8
8
8

T
H
R
E
S

0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
3
0
1
3

0
1
3
0
1
3
0
1
3
0
1
3
0
1
3
0
1
3

Order

S
I
z
E

0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1

T
I
M
E

72
72
72

72
72
72

24
24
24

8
8
8

24
24
24

8
8
8

8
8
8

72
72
72

72
72
72

72
72
72

8
8
8

72
72
72

72
72
72

72
72
72

MT1

E
S
T

12333
46882
4744.6

693
559.7
6452

2329.4
7708.9
7728.1

915.7
3415.0
3438.7

641.8
43593
4590.1

514.7
20383
2045.6

14313
64303
64322

943
182.9
1833

7.8
373.1
458.6

26.0
1060.6
1361.1

2543
1349.8
1352.8

394
1109.0
1487/4

993
349.7
350.7

192.0
5661.8
5956.0

rDL

S
I
M
U
L

12063
4810.9
4555.8

693
557.9
6142

22373
77914
7414.0

920.1
34874
35612

649.9
4392.6
4475.6

4974
2097.7
20714

13992
6509.1
6385.9

944
1833
190.0

74
3833
469.6

26.0
1052.6
1345.9
247.1

13833
1403.8

38.9
1108.8
1432.9

96.6
3473
358.6

1823
57482
61543
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Table D.4 - Data for Section 5.7. Figures 5.34 and 5.36, pan 2

G

3
3
3
3
3
3
3
3
3
3
3
3

3
3
3

3
3
3
3
3
3
4
4
4

4
4
4

4
4
4

4
4
4

4
4
4

4
4
4

4
4
4

N+l

4
4
4

4
4
4

5
5
5

13
13
13

13
13
13

21
21
21

21
21
21

2
2
2

5
5
5

5
5
5

5
5
5

13
13
13

17
17
17

17
17
17

Di

M
T
T
F

50
50
50

200
200
200

100
100
100

200
200
200

200
200
200

100
100
100

100
100
100

20
20
20

20
20
20

20
20
20

20
20
20

200
200
200

20
20
20

50
50
50

isk

M
T
T
R

72.0
72.0
72.0

72.0
72.0
72.0

24.0
24.0
24.0

8.0
8.0
8.0

72.0
72.0
72.0

03
0.5
05

8.0
8.0
8.0

24.0
24.0
24.0

03
03
03

2.0
2.0
2.0

8.0
8.0
8.0

2.0
2.0
2.0

1.0
1.0
1.0

2.0
2.0
2.0

Soi

M
T
T
F

500
500
500

100
100
100

1000
1000
1000

100
100
100

500
500
500

50
50
50

100
100
100

100
100
100

200
200
200

500
500
500

200
200
200

200
200
200

200
200
200

50
50
50

ng
M
T
T
R

168
168
168

72
72
72

72
72
72

168
168
168

72
72
72

168
168
168

168
168
168

24
24
24

72
72
72

2
2
2

72
72
72

2
2
2

24
24
24

24
24
24

T
H
R
E
S

0
2
5

0
2
5

0
2
5

0
2
5

0
2
5

0
2
5

0
2
5

0
3
7

0
3
7

0
3
7

0
3
7

0
3
7

0
3
7

0
3
7

Order

S
I
Z
E

0
1
1

0
1
1

0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1

T
I

M
E

24
24
24

8
8
8

8
8
8

24
24
24

72
72
72

8
8
8

8
8
8

24
24
24

8
8
8

72
72
72

24
24
24

72
72
72

24
24
24

72
72
72

MT1

E
S
T

541.7
807.9
8083

1402.7
20904
20923
3705.8
5770.6
5771.7

13U
1269.8
1438.8

3244
6316
633.7

16.6
3453

1868.9

33.9
240.7
2762

743.0
14713
1472.6

307.0
79442
8299.0

69.1
23133
23152

118.7
5172
520.7

426.6
90823
91092

132
292.0
305.6

14.0
276.9
3272

T>L

S
I
M
U
L

551.0
849.7
8333

13352
2078.1
2054.6

36743
6028.8
56973

130.1
1284.0
13782

3273
637.0
647.7

16.0
3393

1784.6

34.0
2442
269.8

7473
1466.0
14763

3103
7948.7
8332.1

65.7
2428.6
2284.7

120.9
5054
5304

4493
87932
9434.6

13.0
284.1
3034

14.0
281.6
3232
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Table D.4 - Data for Section 5.7, Figures 5.34 and 5.36. part 3

G

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

5
5
5

5
5
5

5
5
5

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

N+l

17
17
17
17
17
17

21
21
21
21
21
21

21
21
21
21
21
21
4
4
4
4
4
4

4
4
4

5
5
5

5
5
5

9
9
9

13
13
13

13
13
13

D

M
T
T
F

100
100
100

400
400
400

20
20
20

50
50
50

800
800
800

800
800
800

50
50
50

100
100
100

400
400
400

200
200
200

800
800
800

400
400
400

50
50
50

200
200
200

isk

M
T
T
R

72.0
72.0
72.0

24.0
24.0
24.0

2.0
2.0
2,0

2.0
2.0
2.0

8.0
8.0
8.0

24.0
24.0
24.0

24.0
24.0
24.0

24.0
24.0
24.0

24.0
24.0
24.0

8.0
8.0
8.0

72.0
72.0
72.0

8.0
8.0
8.0

2.0
2.0
2.0

8.0
8.0
8.0

Stri

M
T
T
F

1000
1000
1000

500
500
500

1000
1000
1000

500
500
500

200
200
200

1000
1000
1000

200
200
200

1000
1000
1000

50
50
50

50
50
SO

100
100
100

100
100
100

500
500
500

50
SO
SO

°£
M
T
T
R

72
72
72

72
72
72

24
24
24

8
8
8

24
24
24

72
72
72

72
72
72

168
168
168

168
168
168

72
72
72

168
168
168

72
72
72

168
168
168

72
72
72

T
H
R
E
S

0
3
7

0
3
7

0
3
7

0
3
7

0
3
7

0
3
7

0
4
9

0
4
9

0
4
9

0
4
9

0
4
9

0
4
9

0
4
9

0
4
9

Order

S
I
Z
E

0
1
1

0
1
1

0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1

T
I
M
E

72
72
72

8
8
8

24
24
24

72
72
72

72
72
72

24
24
24

8
8
8

72
72
72

8
8
8

8
8
8

8
8
8

24
24
24

8
8
8

24
24
24

MT]

E
S
T

563
108.7
108.8

967.5
2094.6
20983

9.7
1143
114.9

207
611.9
618.5

5584
2732.2
27564

21017
5417.1
5426.6

643.8
1140.1
11417

1349.8
5761.8
5776.8

5867
2356.7
2420.8

5913
30157
3075.6

946.9
19393
1950.0

587.7
3345.7
3416.9

127.0
1290.6
1331.9

70.0
374.9
3964

PDL

S
I

M
U
L

56.5
107.7
1097

909.0
2103.6
2148.8

9.8
112.7
120.5

194
6197
631.5

581.7
2804.9
2775.1

2156.7
5353.1
5553.5

6384
11563
11547

1310.0
5674.8
5522.8

5837
2334.8
24313

611.8
30037
2956.7

946.9
1956.4
1983.1

590.0
3245.1
34054

133.1
1300.9
1365.6

69.8
395.6
388.1
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Table D.4 - Data for Section 5.7. Figures 5.34 and 5.36. pan 4
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7
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7
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9
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8.0
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24.0
24.0

2.0
2.0
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2.0
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2.0
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8.0
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8.0

1.0
1.0
1.0
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1.0
1.0

24.0
24.0
24.0

Stri

M
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T
F

1000
1000
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100
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50
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100

200
200
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500
500
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200
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200
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200
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R
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8
8
8

24
24
24
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6
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0
6
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0
6
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0
6
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6
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I
Z
E
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1
1

0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
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0
1
1
0
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1
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72
72
72

72
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72

24
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72
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24
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72
72
72

72
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72
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8
8

72
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8
8
8

24
24
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24
24
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72
72
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72
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MT1

E
S
T
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3165.1
3339.9

14.7
106.9
109.8

53.1
1702.6
21535

37.9
1694
1817

31.7
379.8
3903

1652
1271.8
1274.8

67.1
22815
2290.7

3005
47443
4748.6

194.7
5822.9
58652

9565
20635
2064.0

10403
60625
61335
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1724
174.9

37.7
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1560.0

28.8
104.8
1064
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S
I

M
U
L

24.0
3238.1
3317.8

15.6
107.6
109.6
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1693.0
2188.8

39.0
1732
184.4

32.4
3853
397.5

168.8
1276.7
12518

64.5
22123
2274.9

304.8
4631.8
4661.6

191.6
5962.0
5985.1

9852
2066.1
2065.4

1033.8
6129.0
6241.8

8.0
174.5
181.9

37.7
15610
1543.7

29.7
104.9
104.4
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Table D.4 - Data for Section 5.7. Figures 5.34 and 5.36. pan 5
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0
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0
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0
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0
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0
9

19

0
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0
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0
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0
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0
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0
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8
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8
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8
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223
486.8
558.6
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1772.6
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Table D.4 - Data for Section 5.7, Figures 5.34 and 5.36. pan 6

G
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5
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2
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9
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500
500
500
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0
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0
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0
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0
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E
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9.5
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1118

4.2
87.8
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287.9
2124.4
2159.6
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257.4
258.0

5023
68716
6933.6

283.8
32819
3288.4

306.5
2653.7
2656.6
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721.5

615.9
727.1
727.1
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1255.8
1696.9
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6693.6
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M
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L
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1423
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99.8
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6.9
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87.6
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2075.7
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251.9
248.1
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6965.8
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3343.9
3302.8

309.7
2640.0
2651.0

15.8
7003
7142
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7443
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6800.6
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Table D.4 - Data for Section 5.7, Figures 5.34 and 5.36, part 7
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1.5
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55.9
481.4
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32.9
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918.0
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25.0
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8.1
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1.5
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476.5
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890.0
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13Z9
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34.4
235.9
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5342
572.5

244



Table D.4 - Date for Section 5.7, Figures 5.34 and 5.36, pan 8

G
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0
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0
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S
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30.2
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Table D.4: Raw Data for Figures 534 and 536 in Section 5.7. These 300 data sets
each represent a comparison between the estimate of mean time to data loss (MTTDL)
derived in Section 5.6 and the corresponding estimate generated by simulation. In this
model, there are both dependent disk failures and on-line spare disks. These parameter
sets correspond to 100 collections of three sets. In each group of three, one parameter
set has no on-line spare disks, one has one string of on-line spare disks, and one set has
two strings of on-line spare disks. The values for the remaining parameters in each
group of three sets were selected by first generating the cross-product of sets of conceiv-
able values for each parameter, then selecting approximately 100 sets at random. The
units for "Disk MTTR," "String MTTR," and "Order Time" is hours, and for "Disk
MTTF," "String MTTF," and both "MTTDL" columns, the units is IjOOO hours. Ex-
pressions for "MTTDL Estimated" are found in Equations 5.16,5.19,530,531,532,
5.33, 534, and 535. Simulated MTTDL has a 95% confidence interval that extends
±5% of its value.
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Table D.5 - Data for Section 5.7, Figure 5.40, part 1

G
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F
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M
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T
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1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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150
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150
150
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150
150
ISO
150
150
150
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R
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72
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72
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0
0
0
1
0
1
2
0
2
3
0
2
4
0
3
5
0
3
6
0
4
7
0
5
9
0
6

11
0
7

13

S
I
z

- E

0
1
2
1
3
2
1
4
2
1
5
3
1
6
3
1
7
4
1
8
4
1
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5
1
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6
1

14
7
1

T
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M
E
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72
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72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
72
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M
T
T
D
L

130.9
389.9
429.1
464.5
4783
518.9
546.6
5563
626.2
710.1
635.9
734.1
860.7
801.6
983.0

1215.1
1146.6
1790.5
6825.9
1394.7
28414
8117.9
2019.5
5105.7
8200.2
24544
8462.7
8628.7
3165.7
8867.2
8730.8

R
E
L
1
0

0499
0.805
0.812
0.825
0.846
0.843
0.852
0.867
0.869
0.885
0.878
0.887
0.886
0.897
0.912
0.925
0.929
0.955
0.981
0.945
0.961
0.992
0.963
0.983
0.989
0.967
0.992
0.991
0.974
0.992
0.990

Table D.5: Raw Data for Figure 5.40 in Section 5.7. These 31 data sets describe esti-
mates of mean time to data loss (MTTDL) generated by simulation and presented in Fig-
ure 5.40 of Section 5.7. This data represents the reliability of various configurations of
the strawman disk array first introduced in Table 5.1. The units for "Disk MTTR,"
' 'String MTTR," and "Order Time" is hours, and for "Disk MTTF," "String MTTF,"
and "Simul MTTDL' columns, the units is IjDOO hours. Using Equations 5.16, 5.19,
5.30, 531,532,533, 534, and 535, estimates for MTTDL are 133JOOO hours with no
spares, 6^95,000 hours with one string of spare disks (7) and a threshold of 6 spare
disks, and 8,666,000 hours with two strings of spare disks (14) and a threshold of 13
spare disks. Simulated MTTDL has a 95% confidence interval that extends ±5% of its
value.
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