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Abstract

The development of a machine vision system to monitor plant growth
and health is one of three essential steps towards establishing an
intelligent system capable of accurately assessing the state ofa
controlled, ecological life support system for long-term space
travel. Besides a network of sensors, simulators are needed to
predict plant features, and artificial intelligence algorithms are
needed to determine the state of a plant based life support system~

Multispectral machine vision and image processing can be used to
sense plant features, including health and nutritional status.
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Lo,w""pass, spectral f±lte.rs added toa CGO c:ame'ra and digital image
processing, were ~sed' tosenset.hemuJit.rsp,ec:t*,al reflectance from
potato leaves and meas~~ements w·e<r;e e:ompared to laborator~ stanci·ard.
refl~ctors and to a multispectral senS0r. The techniques, developed
for mUltispectral imaging' s:atisfact;:ox;:ily: measure leaf reflectance.
'rhe resU1ts rOlf black and white. images were well correlated to" the
multispec·tral $ensolf f0r brig·ht sur£a.ces', but not so ·well ford<;1rk
ones. E't.Vll,. 24·--.l;>it color images w;ith spectral filters coul,di be
useo 1:::0· fUXi'the.r e}:{pJ;Qre theaP,P.~i.catiioIl of n\q;Chin.e vision to, sense
plant lne-alth and' fl\;ltx;ition statu:s·. ' .
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1.1 Plants

INTRGDtJ,CllION.

1

Plants grown for food, are nec:essary cQmpqp.~p.t.~ ofli~e suppoJ;:'t
systems for long-term,. manned SPace voya,ges. Current research on
controlled, ecological life support systems (CELSS) ha~ shown that
plants grawn in liquid cl,q.t.ures may rapidly, dEZV~+Qphealth o.r
nutrient problems which degrade the performa,i,nce Qf a,. CELSS. If
this situatiop we.re to o.ccuI:' on a,. J,.ong term V:Q¥alj3"e, ~t. WOl,lld pose
a serious th:r;eat to the. crew" s faoet supply and life support system.

1.2 Sensors

Sensors which monitor plant featl,lres could be used to provide
feedback to environmental contro.lS and to the nvtr,ient delivery
system. Ala,rms could be act~V!a,·t.e:d ~hep· Plant.~e·atures exceed
predetermined limits. Active monitoring of the plants provides
positive feedback for control~y~te:IJ1S! Sensors; Wtnich monitor
environmental conditions (carbon dioxide, oxygen" ethylene, etc.)
or nutrient concentrations are ind.irectly mos~tOl;'~lilg the plants and
the data may be difficult to' inteJ;:'p:i<et!! F017 instance, does an
increase in ca.rb,o:n dioxide; le:v;e:l mean the plants al;'e fixing les.s
carbon' from the atmosphere, or that plant respiration has·~',:

increased? or that respiration has increased in a bioreactor
digesting inedible plant materials?

Many features of plants are sensible. Plants grow in size and
change shape with age~ leaves mOVie in response to ligiQt,. stems and
leaves shrink and swell with water content. Root tips of healthy
plants grow approximately 3 microns per minute. Plant nutrient
deticiencies ~,Al-~bas, et a)." 19:74) and molds ~Ruiz and Chen,
19;82), have, be,en sensed by measu:rriJil'g t~e spe,ctral reflection of
light from leaves. Stutte, Bars and. Stutte, 1989, measured
decreases in Jreflectance lpetween 710J to, 1100 nan,ometers 7 days
before symptoms of I'litrogen deficiency were visible in laboratory
gro.wn plants. r:1iles, 1989, used machine vision to quantify iron,
nitrogen, and potassium deficiencies, and water stress in wheat
seedlingiS.

1.3 Information

The data from sen,sors, inCluding: ma,\chine V1.S1.on, must be processed
to extract des,ire.d features and to resolve conflicts between
sensors. This processing provides know:ledge of conditions such as
severity of moisture stress and stage of growth. Miles, 1989, used
a Sobel operator to detect edges of leaves, then compared the
absolute and relative amounts. of green in the imag,e to determine
nutrient stresses. Additional algorithms could perform operations
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such as edge following to detect features such as marginal necrosis
which is a symptom of potassium deficiency in wheat.

1.4 Intelligence

The ultimate use of a sensor is to provide the basis for
determining the state of a CELSS: Good, Bad, or Ugly. When the
life support system is on course, that is, conditions are good,
nothing needs to be done. When the life support system is off
course, but knows what has happened and is correcting back to
course, conditions are bad. When the life support system has
failed, or failing, that is, it is lost, then conditions are ugly.
Classifying the CELSS into one of these states requires not only
the basic data and information, but the intelligence to know where
the life support system should be. This requires algorithms to
distinguish features well enough to identify the source of the
problem. For example, lower levels of green in a leaf image may be
due to nitrogen deficiency; but is that caused bya lack of an
essential nutrient in the solution feeding the plant roots, or is
it due to a deficiency of oxygen to the roots (such as occurs when
field crops "drown" with excess water) .

Intelligence also requires a system of differential equations
relating plant growth and development to environmental conditions,
ie, a model. Such a model must be able to predict the magnitude of
sensible features, thereby providing a targeted course for
comparison.

One form of intelligence is an expert system such as the muskmelon
disorder diagnostic system written in CLIPS, a C-based development
shell (Latin, et al., 1989). In such a system, rules are built in
the form: IF ... THEN ... ELSE. When the if conditions are met, then
the action is taken. The action could be to fulfil the conditions
of another if statement. Ultimately the rules seemingly provide
the intellect process of an expert when confronted with the same
set of conditions.

1.5 Solution

Determining whether the state of a CELSS is good, bad, or ugly
requires a three pronged effort. The first is to develop an
integrated network of sensors monitoring the plants and
environmental conditions. This will include but not be limited to
machine vision systems. The second effort must be the development
of models which predict the occurrence and magnitude of features
such as leaf area, flowering, and so forth. Equations in the
models may well predict other, internal (not sensible without
destructive sampling) parameters, but the essential output is
detectible features. The third effort is to develop an intelligent
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program capable of interpret.inginformation from the sensor
network, comparing it to model predictions and assessing the state
of the system. The program could be a combination o£ numerical
simulation, expert systems, neural networks and other artificial
intelligence algorithms. .

This work will focus on the development of a sensor to monitor the
growth, health, and nutritional status of plants.

1.6 Objectives

The objectives of this project are:

1. Develop techniques to capture and process spectral images
using machine vision, and

2. Determine the relationship between the machine vision
sensor and a multispectral sensor.
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PROCEDURES

2.1 Plants

Norwood potatoes were grown in Chamber 5, Hanger L, at elevated
levels of carbon dioxide (10000 ppm). Normal chamber lighting was
provided by a combination of Vita~Lite and Daylight fluorescent
bulbs. The spectrum of the incident light (Figure 1) was measured
with a LICOR spectral radiometer. For half the images, an Halogen
lamp was used to illuminate the potato leaf.

INCIDENT RADIATION SPECTRUM
5...------------------------.

11001000900600 700 SOO
WAVELENGTH, NM

V'

V
/\1 A

O+--..c,..--..----r----,---==r::=a.::""""r":lro---.,..w..--l
300 400 500

Figure 1. Incident Radiation Spectrum in Chamber Produced by
Vita-Lite and Daylight Fluorescent Lights.

2.2 Machine Vision

Images of a Norwood potato leaf (Figure 2) were sensed by a
Panasonic CCD camera. The VHS output of the camera was digitized
by a Videopix frame grabber installed in a Sun Microsystems Spare

/~ 2 workstation. Software supplied with the Videopix card, vfctool,
was used to capture and store the image as an 8 bit black and
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white, tiff file. Melles Griot 40 nanometer wide band-pass filters
(450, 550 and 650 nanometers) were secured in a modified step ring
and attached to the front of the camera lens to provide the
filtered images. An 850 nanometer filter was tried, but the
resultant image was too dark to distinguish any of the plant
features, so it was not processed.

. .

2. Norland Potato Leaf With Standard Reflectors.

Laboratory standard reflectors were placed around the leaf to
provide calibration data. In Figure 2, the standards are from left
to right, 2%, 25%, 75% and 100%.

After the images were captured and stored on disk, sunvision was
used to position a window 50 x 50 pixels over each standard
reflector and over the right, middle and left sections of the
center potato leaf. The menu-driven ip software contained in
sunvision was used to compute the maximum, minimum, median, mean
and standard deviation of the gray level values in each window.
Because only the 8-bit black and white image was saved (a 24-bit
color image from the Videopix card requires over 900 K bytes of
storage), the maximum gray level value is 255. Statistics for the
left, middle and right windows of the leaf were summed and divided
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by three to compute an average.

2.3 Agave Multispectral Sensor

6

Just before and after the machine vision data were captured,
personnel from Agave Analytics used a multispectral sensor (a
SpectronModel CE 390 wideband camera) to record the entire spectra
of light, reflected from the potato leaf and each of the standards.
The results reported are the weighted average of the reflectance
spectrum of the leaf over the wavelength range of the corresponding
filter. The product of the reflectance of the leaf and that of the
filter was summed over the wavelength ranges 401 to 501, 502 to
604, and 605 to 700 nanometers for the 450, 550, and 650 nm
filters, respectively. The reflectance of the filter is actually
a transmittance spectra obtained by ratioing the spectrum for the
100% standard with the filter, to the 100% standard without the
filter. The no filter data were calculated by summing the
reflectance for the leaf over the interval 401 to 700 nm with a
weight factor of one, then dividing by the number of channels (102)
to average.

RESULTS AND DISCUSSION

3.1 Machine Vision

Figures 3 and 4 illustrate the relationship between the average
gray level values obtained by the machine vision system and the
laboratory standard reflectors for the normal chamber lighting and
the added Halogen light treatment. The no filter gray level values
are universally greater than any of the filtered curves. Between
25% and 100% reflectance, the relationship appears to be linear,
but the 2% reflectance values deviate considerably from the
straight line model. The addition of the Halogen lamp did not
increase the gray level values; in fact they decreased, for some
unknown reason. The barcharts in Figures 5, 6, 7 and 8 compare the
filter perf6rmance for each reflectance standard. In general, the
longer wavelength filter apparently reduces the gray scale values,
with the exception of the 550 filter where the values are slightly
higher than the 450 and 650 ones. The filters do have a
significant affect on the gray levels recorded by the machine
vision system. The reflectance standard also has a significant
affect on the gray scale values. The machine vision system appears
to be very sensitive to the low reflectance, that is the dark
standards. Most of the change in gray level values occur between
2% and 25% reflectance.
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BMlIMAGES
FWORESCENT LIGHTS

~l92F'~~~9i>1 '.
~ 128+-"--'+-h'-7"=---l

?c
!§ 1I4t.f7.j-------------j

7

o 25 50 75
..l#l~~rwmH9F1$T~E;S

100

Figure 3. Machine Vision Measurement of
Standard Reflectors with Fluorescent
Lights.

BMlIMAGES
FLUORESCENT +HALOGEN LIGHTS

INOFR..TER I

o 25 50 75
lAB STANDAAD REFlECTANCES

100

Figure 4. Machine Vision Measurement of
Standard Reflectors with Fluorescent and
Halogen Lights.
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B!'N LEAF IMAGES
LAB STANDARD 75%

Hen 4SO 5/iO 650
FLTER (WAVElENGTH)

Figure 5. Machine Vision Measurement of
75% Reflector.

B!'N LEAF IMAGES
LAB STANDARD 100"4

Hen 4SO 5/iO 650
FLTER (WAVElENGTH)

Figure 6. Machine Vision Measurements of
100% Reflector.
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B/tN lEAF IMAGES
lAB STANDARD 25%

Figure 7. Machine Vision Measurement of
25% Reflector.

B/tN lEAF IMAGES
LAB STANDARD 2%

Wli2

~
w
~ 128

>-

~ 64

Figure 8. Machine Vision Measurement of
2% Reflector.
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Figures 9 and 10 present the gray scale reflectors for the potato
leaf. In general, the values are much less than the standards, and
indicate the leaf reflects approximately 25% as much as the white
reflectance. The middle window of the leaf has slightly higher
gray scale values than the left or right windows, possibly because
it contains the midrib. When Halogen light is added, the
difference between the middle and sides is even greater. This may
mean that differences in the reflectance of light in the near
infrared region may be a means of identifying the midrib feature in
machine vision images of potato leaves. For the purposes of this
study, the differences were considered small, and an overall leaf
average used in the remaining comparisons. Figure 11 compares all
the reflectance standards to the leaf for the no filter treatment.
From this figure it is apparent that leaf reflectance is between
the 2% and 25% standards.

BI'N LEAF IMAGES
FLUORESCENT LJGHTS

~1
>
w

~ 128

>-
~ 60&

"
Nor-. 4SO 550 1150

FLTER (WAVEl£NGTH)

Figure 9. Machine Vision Measurement of
Potato Leaf with Fluorescent Lights.
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LSl00

B!'N IMAGES
NO ALTER

Figure 10. Summary of Machine Vision
Measurements without a Filter.

AGAVE SENSOR
FlUORESCENT LIGHTS

100

450 550

~=======::::::::660
25 50 75

lABORATORY STANDARD REFlECTORS, %

~ 1.OT------------------:II'

~.
a: 0.
o
~!06

iO.•
C/) 0.
W

~ O.O+-------,.-----r------~----__i
°

Figure 11.
Measurement
Fluorescent

AGAVE Multispectral Sensor
of Standard Reflectors with
Lights.
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3.2 Agave MUltispectral Sensor

12

Figures 12 and 13 contain the results for the Agave mUltispectral
sensor measurements of the standard reflectance surfaces. The no
filter readings are significantly higher than the filtered
treatment readings. The 450 and 550 nm readings are practically
identical to each other. The Halogen light did not add much to the
readings. From 25% to 100% reflectance, the multispectral readings
increase, but in a nonlinear fashion.

STANDARD REFLECTORS
FLUORESCENT LIGHTS

l/l 256r----:--------:;o====<jo
~
>
~ 192

).,

~ 128

~
> 64

I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

NJAVE SENSOO READING. NOR~AU2ED

Figure 12. Machine
Multispectral Sensor
Standard Reflectors
Lights.
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Figure' 13. Machine Vl.S'±8tl'.vers'tis Uttltispectral Sensor
Measurert'ient of Norland p'o'tatB t~af wit.H FJitiorescent Ligh.t.

3.3 Machine v!sidti 'V11'tl§U\iit!j'l~tt~lSensor

Figures 14 and 15 Compare the trracl-dne vision g-ray scale va.lues to
thereadiilgs obtain'ed from. t.he .... multispectral sensor for the
standard reflectors • For mUl~isPectral readingsaoove ... 3, there
appe'ars to be a strong, positive correlation. Ho,w~ver, below that
point, there ate soine disturbing variations. Equatio'ns 1 and. 2
have R2 values .,. greater. than 0.92;. but most .Of the variance is at
the low readings of the multispectral sensor.

255



Multi~pectral Image Processing for Plants
Gaines E. Miles

POTATO LEAF
FLUORESCENT +HALOGEN LIGHTS

0 256,-------------------,

~
~ 192

~
>
~128

~
~ 64

~
::E

.00 0.01 0.02 0.03. 0.04 0.05 0.06 0.07 0.08 0.09 0.10
AGAVE SENSOR READING, NORMAUZED

Figure 14. Machine Vision versus
MUltispectral Sensor Measurement of
Norland Potato Leaf with Fluorescent and
Halogen Lights.

STANDARD REFLECTORS
FLUORESCENT + HALOGEN LIGHTS

o 256i....-------------------,
UJ

~
~192

~
>
~ 128

~

~ '64

~
~
::E

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/ltGAVE SENSOR READING, NORMAUZED

Figure 15. Machine Vision versus
MUltispectral Sensor Measurement of
Standard Reflectors with Fluorescent and
Halogen Lights.
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Y=-135. 51Xil ·+2.53 .'16X+130. 94, R2 =() .92

15.

That's the range of leaf reaq.;j..n~$,~s seen in Figl,lres 16 and 17.
The scales of these two figures have been changed to illuminate any
relationship. It does not appear thattbe relationship between the
machine vision sensor and' the multispectral. sensor is strongly
correlated for leaf reflectors. Equations 3 and 4 have R2 values
of .8 or less.

Y=-O. 0001753X2+o. 001942X+46. 51,R2 =0. 70
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POTATO LEAF
FLUORESCENT LIGHTS

(/)256....-------------------,
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~192
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.00 0.01 0.02 0.03 0.04 0.05 0.06 0.Q7 0.08 0.09 0.10
AGAVE SENSOR READING, NORMAUZED

16

Figure 16.
Multispectral
Norland Potato
Light.

Machine
Sensor

Leaf

Vision versus
Measurement of

with Fluorescent

POTATO LEAF
FLUORESCENT + HALOGEN LIGHTS

(/) 256..--------------------,
w

~.
>
~192

>,

~128

~~
~
:::IE

.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
AGAVE SENSOR READING, NORMAUZED

Figure 17. Machine Vision ve'rsus
Multispectral Sensor Measurement of
Norland Potato Leaf with Fluorescent and
Halogen Lights.
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The process of digitizingi i.mag,es W',d;-~h, a Videopix card, then
windowing and analyz±ng· po:rrt';±ons ef the image''lJ,sing sunvision'
appears te satisfy t.he first, ol1>j,ective., ,The" Ccallable image
processing library availailt>le W'iith sUPlvision makes it: attractive for
use with CLIPS or other C-basedi e~pert system sh$ll~ Using nar~ow,

band-pass optical filters pll'oveq successful for wi:lvelengths less
than 850 naI1:omet:iers. .

The machine vis,ion: (j"iray ,sC:Q.':!;e< wa;:!414:es,!alfl,Q· the AgaVe ,multispectral
sensor appear tQ cOt're:lat!ie well fQ~h'i.91~,l,¥>r~~leGttiv;esurfaces, but
n0t so well fOir low-er J$efleQt;eors,,. wbie;h' i;,nclud~: leaves. The
differences in these senSQ'rs 1ll.~s,tbe resolved be:€'ore proceeding
with the development of a machine vision sensorfolt monitoring the
health and nutriticmalstatu'S qi:fj'Pi~~~ts~. E'act;;cp;rs which may have
contributed to diffeFences±'mc<hi(;fed' the lac;k of precise control
over field of view and view angle for bot11 sensors, and the fact
that the multispectral. se'9:sor 'rea.c.iing:fo.reach " wavelength ,was
computed for a band of a;pF>:r6xinla<t:;:ely 5.Q ~a,~:ometer$ei ther side of.
the central wavelength. The optical, }Pandpass filters used for the
machine vision system have significant attefl'.t,-uatj,;on beyond 20
nanometers either side of the center wavelength. The difference
caused by the angle of view can }Pe seen in the potato leaves shown
in Figure 2. This inqicate.s t~~t; a l~s'e~ or qther structured light ..-.,:
source will }Pe required to, determine t.1?-e three-dimensional leaf
surface, and th~:r;eby enable the sens.or to be pOqitioned normal to
the surface. Further $tudies. are necessary t,0 quantify the
differences due to view angle ?-tld to gevise means of controlling
view angle.

The results reported here we:r;e based on blgck and white images.
There is considerable me,rit in exploJ?iI1g the use of' the red, green,
and blue planes: of a color image. The videopix image digitizer,
the Panasonic ceD camera;;, and sutwi.sion softw~re are capable of
color image pr6~essing and further res~arch w~th this system is
urged. '
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