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In the previous semi-annual report, a Fourier analysis method for unsteady

aerodynamic modeling was presented in the AIAA paper No.91 -2867 (Ref.1 , a copy of the

version that was accepted by the AIAA Journal being attached.). The results from a set

of test data for a 70-deg. delta wing reported in Ref.2 as well as two other sets of test

data for two-dimensional airfoil sections reported in Ref.3 had been used to verify this

method of modeling responses of harmonic motions at different reduced frequencies. In

addition, some other cases for a 70-deg. delta wing's harmonic ramp motions also were

calculated by indicia! formulation in the past work.

During this reporting period (9/1/91 -2/29/92), two more sets of test data obtained at the

NASA Langley Research Center have been used to show the generality of the Fourier

analysis method and validate the indicial formulation of time integration. They are

discussed below.

1 . Fourier Functional Analysis

In the present method, the aerodynamic response can be written as

E-nd + E21cx + C-| * (Hiioc + H2icc ) * (1 - PD-|)

p p

E-|2d2
 + ^22"2 + C2 * (H-| 2" + H22(X(X + H32(X )

* (1 - PD2)

E13d3 + E23a3 + C3 * (H13a
3 + H23a

2d + H33ad
2 + H43d

3)

* (1 - PD3)



From the past experience of analyzing five sets of experimental data, it was found that the

final values of Ey and Hy could change significantly by using different initial values for Ey

and Hjj as well as different reference values for C:. This was mainly because that the

gradient method for finding the best Ey and Hy was unable to locate the global minimum.

Furthermore, the denominator of the Pad6 approximant must have negative roots only so

that in time domain the corresponding exponential terms will die out at large time. This

requirement can be regarded as a constraint in the optimization process.

To remedy these two problems and also make the present method more general and

user-friendly in analyzing any given set of test data, another optimization loop has been

added outside the existing loops for the purpose of choosing proper initial values for Ey

and Hy and the best C: automatically.

Other task to improve the accuracy of the present method is to include the static test

data as additional dynamic stall data at a very low reduced frequency, such as k=1 .OE-6.

The main purpose of this implementation is to avoid possible poor extrapolations at low

k in the integration of indicial integral.

Two sets of harmonic motions test data ,one for a 70-deg. delta wing and the other for

a F-18 model, were analyzed by the updated version of the present method. The results

are presented in Figs.1 and Figs.2 respectively. Five Fourier terms are used in this

analysis. All results were done by the same set of build-in initial data for Ey.Hy and C:

without any try-and-error effort by users. The results show that the updated version of the

present method is able to capture all hysteresis effects. Comparing with the up-stroke

data , most of the down-stroke data are modeled with less accuracy. The reason is that

the trend of the hysteresis behavior on down-strokes is not as consistent as those on up-



strokes (see Figs.7). This may imply that a higher order Pad6 approximant could be

needed to model responses which have more complicated hysteresis effects. It is noted

that the mismatched part of F-18 Cm response at k=0.0075 is due to the even more

inconsistent trend of the hysteresis behavior occurring in the region of high angles of

attack.

2. The validity of indicial formulation of time integration

As indicated in Ref.1, an indicial formulation for any arbitrary motion is written as

/ m

- CL|ndlclal[t'-T, a(t), aCe^o + Cave + E (E^dj + E2jaj)

To show the validity of the above formulation, three types of motion have been analyzed.

(1) Harmonic motion and harmonic ramp motion:

The first type of motion is used to compared with Fourier modeling results; meanwhile,

the second one is used to show the agreement with the static value at the time when the

motion stops.

As it was known in the past study, discontinuity could happen in the calculation of time

integral if the given motion has a sudden change in d . This can be easily solved by

slightly increasing the amplitude of original model (a0; see Eq. 3a), such as by 2.5

degrees. In the following calculations, the amplitude of harmonic model which originally



was 30. degree has been set to be 30.5 degree for harmonic ramp motions and 32.5

degree for constant rate pitching motions respectively. It should be emphasized that this

does not change the actual instantaneous values of a and a in the indicia! time

integration. It merely changes the values of equivalent frequency (k) and phase angle (<j>).

The results of harmonic motions and harmonic ramp motions are plotted in Figs. 3 for

the delta wing and Figs. 4 for the F-18 model respectively. In the harmonic ramp

motions, all responses eventually approach the static values corresponding to the angle

of attack when the motion stops.

(2)Constant rate pitching motion:

This is used to compare with test data at the same pitch rate.

Two special treatments about this type of motion should be mentioned. First of all, an

arbitrary motion has to be represented locally by a cosine function in order to utilize the

results of harmonic modeling. At a certain time of arbitrary motion, a and cc can be

described by the cosine and sine functions as

a1 - am+a0cos(kf +<{>) - am+a (3a)

<x - -a0ksin(kf +$) (3b)



By knowing the harmonic model's mean angle of attack^) and amplitude(a0), an

equivalent reduced frequency k and an equivalent phase angle <j> at that given time t' can

be solved by Newton's method. Near the two ends of a harmonic model's a range, for

example 2.5 deg. or 62.5 deg. in the present test model, the equivalent k tends to be high

because of large d and/or a. From the experience with constant rate pitching motions,

it was found that an unreasonably extrapolated high value of k at a starting point would

lead to an unacceptable result in simulation. So, one of the variables, am and a0, must

be treated as an unknown, instead of k, when the extrapolated k-value is greater than a

given allowable value kmax. Through a series of tests, the mean angle of attack o^ was

chosen as the other unknown in case the extrapolated k-value exceeds a given allowable

kmax-

Secondly, as the constant-rate pitch-down motions start at a high a, the time integration

should start from a static value by setting f -»°° to the first term of Eq. (2).

The results of the constant rate pitching motions are presented in Figs.5 for the delta

wing and Figs.6 for the F-18 model respectively. As expected, all results for pitch-up

motions are well predicted except in the region near the starting point, in particular for CD.

The reason for this is again the equivalent frequency being too high. Investigation is

underway to find an improved solution. On the other hand, some of the results for pitch-

down motions are not as good as those for pitch-up motions. The discrepancies in

predicting pitch-down motions can be attributed to the poor numerical modeling of

harmonic motions on down-strokes,especially at low and moderate reduced frequencies.

The latter is, in turn, caused by the non-smooth variation of the response from one



frequency to the other, as can be seen from Figure 7.

3. Work Underway

Additional investigation is underway to compare the computed response with data

when the mean angle of attack and amplitude are significantly different from those used

in building up the model.

4. References

(1) Chin, S. and Lan, C. E., "Fourier Functional Analysis for Unsteady Aerodynamic

Modeling." AIAA Paper 91-2867.

(2) Soltani, M.R.; Bragg, M.B.; and Brandon, J.M., "Experimental Measurements on an

Oscillating 70-Degree Delta Wing in Subsonic Flow." AIAA Paper 88-2576.

(3) McAlister, K.W.; Pucci, S.L; McCroskey, W.J.; and Carr,LW.,"An Experimental Study

of Dynamic Stall on Advanced Airfoil Sections. Volume 2:Pressure and Force

Data." NASA TM-84245, Sept. 1982



2.5

2.0

1.5

CL 1.0

0.5

0.0

-0.5

k=0.0

10 20

I

30 40

a

50 60 70

2.5

2.0

1.5

\ 1.0

0.5

0.0

-0.5

r> O O

k=0.0131

10 20 30 40

a
50 60 70

(a)Lift Data

Figure 1 Analysis of 70-deg. Delta Wing Dynamic Stall Data



2.5

2.0

1.5

CL 1.0

0.5

0.0

-0.5

k=0.0278

j_

10 20 30 40 50 60 70

a

2.5

2.0

1.5

'L 1.0

0.5

0.0

-0.5

k=0.0484

a
(a)Lift Data

Figure 1 Continued

10 20 30 40 50 60 70



2.5

2.0

1.5

1.0

0.5

0.0

-0.5

k=0.0678

10 20 30 40 50 60 70
a

2.5

2.0

1.5

1.0

0.5

0.0

0.5
10 20

k = 0.0969

30 40
a

(a)Lift Data

Figure 1 Continued

50 60 70



2.5

2.0

1.5

k=0.0

Cn 1.0

0.5

0.0

o o o

-0.5
10 20

I

30 40
a

50 60 70

2.5

2.0

1.5

k=0.0131

'o 1.0

0.5

0.0

-0.5
10 20 30 40

a
(b)Drag Data

Figure 1 Continued

50 60 70



I . , . , I , , , , I , . I I I 1 . , I . , I , I , , . ,

2.5

2.0

1.5

Co 1.0

0.5

0.0

-0.5
10 20

k=0.0484

30 40
a

(b)Drag Data

Figure 1 Continued

50 60 70



2.5

2.0

1.5

Cn 1.0

0.5

0.0

-0.5

k=0.0678

I I

0 10 20 30 40 50
a

60 70

2.5

2.0

1.5

CD 1.0

0.5

0.0

-0.5
i i i t I i i i i

10 20 30 40
a

(b)Drag Data

Figure 1 Continued

50

k=0.0969

60 70



m

1.0

0.6

0.2

-0.2

-0.6

k=0.0

-1.0
10 20 30 40

a
50 60 70

1.0

0.6

0.2

m

-0.2

-0.6

k=0.0131

-1.0
10 20 30 40 50

a
(c)Pitching Moment Data

Figure 1 Continued

60 70



m

1.0

0.6

0.2

-0.2

-0.6

-1.0
j_

= 0.0278

j_ I

0 10 20 30 40 50 60 70
o

m

1.0

0.6

0.2

-0.2

-0.6

-1.0

k = 0.0484

10 20 30 40
a

(c)Pitching Moment Data

50 60 70

Figure 1 Continued



m

1.0

0.6

0.2

-0.2

-0.6

-1.0

k=0.0678

I

10 20 30 40 50 60
a

70

m

1.0

0.6

0.2

-0.2

-0.6

-1.0

1 ' ' '

0 10 20

k = 0.0969 -

i t i i i i i i i

30 40 50
a

(c)Pitching Moment Data

Figure 1 Concluded

60 70



2.5

2.0

1.5

1.0

0.5

0.0

k=0.0

-0.5
10 20 30 40

a
50 60 70

2.5

2.0

1.5

1.0

0.5

0.0

-O

= 0.0075

-0.5
1 0 20 50 60 7030 40

a

(a)Lift Data
Figure 2 Analysis of F-18 Dynamic Stall Data



2.5

2.0

1.5

'L 1.0

0.5

0.0

-0.5

k = 0.0160

10 20 30 40 50 60

a

70

2.5

2.0

1.5

1.0

0.5

0.0

k = 0.0279

o o o o o o o

10 20 30 40 50 60 70
a

(a)Lift Data

Figure 2 Continued



2.5

2.0

1.5

L 1.0

0.5

0.0

-0.5
10 20

I I

30 40

a

50 60 70

2.5

2.0

1.5

c, 1.0

0.5

0.0

-0.5

k=0.0558

10 20 30 40
a

(a) Lift Data

Figure 2 Continued

50 60 70



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5
10 20 30 40 50

a

k=0.0

60 70

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

k=0.0075

10 20 30 40
a

(b)Drag Data

Figure 2 Continued

50 60 70



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

k = 0.0160

0 10 20 30 40 50 60
a

70

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

k=0.0279

10 20 30 40
a

(b)Drag Data

Figure 2 Continued

50 60 70



3.0

2.5

2.0

1.5

i
1.0

0.5

0.0

-0.5

k = 0.0391

j_ I

0 10 20 30 40

a
50

i i __| 11 i

60 70

3.0

2.5

2.0

1.5

1.0

0.5

0.0

•0.5

k = 0.0558

10 20 30 40 50 60 70
a

(b)Drag Data

Figure 2 Continued



1.0

0.6

k=0.0

m

0.2

-0.2

-0.6

-1.0
I I I I _l_ I I I I

10 20 30 40 50 60
a

70

1.0

0.6

alpha increasing
0 alpha increasing data
— alpha decreasing
* alpha decreasing data

k = 0.0075

m

0.2

-0.2

-0.6

-1.0
I I i I l l l l l t l l l l l l l

10 20 30 40 50
a

(c)Pitching Moment Data

Figure 2 Continued

60 70



1.0

0.6

alpha increasing k = 0.0160
° alpha increasing data

alpha decreasing
A alpha decreasing data

m

0.2

-0.2

A A_A A__ A "*"

_ Q _ O _ O O O o c

-0.6

-1.0
10 20 30 40

a
50 60 70

1.0

0.6

alpha increasing
° alpha increasing data

alpha decreasing
A alpha decreasing data

k=0.0279

m

0.2

-0.2

-0.6

o o c
•~
* A A.

-1.0
10 20 30 40

a

(c)Pitching Moment Data

Figure 2 Continued

50 60 70



m

1.0

0.6

0.2

-0.2

-0.6

-1.0

alpha increasing
0 alpha increasing data

alpha decreasing
A alpha decreasing data

k=0.0391

10 20 30 40

a
50 60 70

m

1.0

0.6

0.2

-0.2

-0.6

-1.0

alpha increasing
° alpha increasing data
— alpha decreasing

A alpha decreasing data

k=0.0558

~o o u—o—o~

10 20 30 40 50 60 70
a

(c)Pitching Moment Data

Figure 2 Concluded



harmonic motion k=0.0969
2.5

2.0

1.5

1.0

0.5

0.0

-0.5
20

time integration
modeling results

40 60 80

nondimensional time t'

100 120

harmonic ramp motion k=0.0484
2.5

2.0

1.5

1.0

0.5

0.0

-0.5

steady state C at a = 62.5°

harmonic ramp up to a = 62.5

20 40 60 80 100 120 140 160

nondimensional time t'

(a) Lift Data

Figure 3 Delta Wing Responses by Time Integration for Harmonic Motion
and Harmonic Ramp Motion



harmonic motion k=0.0969
2.5

2.0

1.5

CD 1.0

0.5

0.0

-0.5

time integration
modeling results

20 40 60 80

nondimensional time t'

100 120

harmonic ramp motion k=0.0484
2.5

2.0

1.5

1-0

0.5

0.0

-0.5

" ' ' ' steady state CDat a = 62.5

harmonic ramp up to a = 62.5

i i I i i i I t

20 40 60 80 100
nondimensional time t'

(b)Drag Data

Figure 3 Continued

120 140 160



1.0

0.6

0.2

m

-0.2

-0.6

-1.0
20

harmonic motion k=0.0969

time integration
modeling results

40 60 80
nondimensional time t'

100 120

m

1.0

0.6

0.2

-0.2

-0.6

-1.0

harmonic ramp motion k=0.0484

stigdy state C at a = 62.5'
m

harmonic ramp up to a = 62.5

ill i t i i i t

20 40 60 80 100

nondimensional time t'
(c)Pitching Moment Data

Figure 3 Concluded

120 140 160



harmonic motion k=0.0558
3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

time integration
modeling results

20 40 60 80

nondimensional time f
100 120

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

harmonic ramp motion k=0.0279

steady state CL at a = 62.5°

harmonic ramp up to a = 62.5°

20 40 60 80 100 120 140 160

nondimensional time t'

(a)Lift Data

Figure 4 F-18 Responses by Time Integration for Harmonic Motion
and Harmonic Ramp Motion



harmonic motion k=0.0558
3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5
20

time integration
modeling results

40 60 80

nondimensional time t'

100 120

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

harmonic ramp motion k=0.0279

" " " steady state CQ at a = 62.5

harmonic ramp up to a = 62.5

20 40 60 80 100

nondimensional time t1

(b)Drag Data

Figure 4 Continued

120 140 160



harmonic motion k=0.0558

m

1.0

0.6

0.2

-0.2

-0.6

-1.0
20

time integration
modeling results

40 60 80
nondimensional time t'

100 120

m

1.0

0.6

0.2

-0.2

-0.6

-1.0

harmonic ramp motion k=0.0279

steady state C at a = 62.5°7 m

harmonic ramp up to a = 62.5°

i t i i i I i

20 40 60 80 100
nondimenional time t'

(c)Pitching Moment Data

Figure 4 Concluded

120 140 160



2.5

2.0

1.5

\ 1.0

0.5

0.0

-0.5

- o

pitch-up q=0.0135

10 20 30 40

a

50 60 70

2.5

2.0

1.5

1.0

0.5

0.0

-0.5
10 20

pitch-up q=0.0269

50 6030 40
a

(a)Lift Data

Figure 5 Delta Wing Responses by Time Integration
for Constant Rate Pitching Motion

70



2.5

2.0

1.5

\ 1.0

0.5

0.0

-0.5

pitch-up q=0.0404

t ! ___ . I I I I I

10 20 30 40 50 60 70

a

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0135

OO O

10 20 30 40

a
(a)Lift Data

50 60 70

Figure 5 Continued



2.5

2.0

1.5

pitch-down q=-0.0269

1.0

0.5

0.0

-0.5

o O O O O O O o O

10 20

I I

30 40

a

50 60 70

2.5

2.0

1.5

1.0

0.5

0.0

pitch-down q=-0.0404

O O OO

-0.5
10 20 30 40

a
(a)Lift Data

Figure 5 Continued

50 60 70



2.5

2.0

pitch-up qrO.0135

1.5

'D 1.0

0.5

0.0

•Q ° ° 00 00 i

-0.5
10 20 30 40

a
50 60 70

2.5

2.0

pitch-up q=0.0269

1.5

CD 1.0

0.5

0.0

-0.5
10 20 30 40

a
(b)Drag Data

Figure 5 Continued

50 60 70



2.5

2.0

1.5

'D 1.0

0.5

0.0

-0.5

_o o

pitch-up q=0.0404

I I

10 20 30 40 50 60 70
a

2.5

2.0

1.5

'D 1.0

0.5

0.0

-0.5

-o

pitch-down q=-0.0135

i i ii

10 20 30 40 50 60 70
a

(b)Drag Data

Figure 5 Continued



2.5

2.0

1.5

'D 1.0

0.5

0.0

-0.5

-00 O.

pitch-down q=-0.0269

-o o

I I I

10 20 30 40 50

a
60 70

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

_ O O 0

pitch-down q=-0.0404

_ _ ! _ . . . I . _ _ I t 1 1

10 20 30 40
a

(b)Drag Data

Figure 5 Continued

50 60 70



m

1.0

0.6

0.2

-0.2

-0.6

pitch-up q=0.0135

-1.0
10 20 30 40

a
50 60 70

m

1.0

0.6

0.2

-0.2

-0.6

pitch-up q=0.0269

-1.0
10 20 30 40 50

a

(c)Pitching Moment Data

Figure 5 Continued

60 70



m

1.0

0.6

0.2

-0.2

-0.6

pitch-up q=0.0404

-1.0
10 20

I I

30 40

a

50 60 70

m

1.0

0.6

0.2

-0.2

-0.6

pitch-down q=-0.0135

-1.0
10 20 30 40 50

a
(c)Pitching Moment Data

Figure 5 Continued

60 70



m

1.0

0.6

0.2

-0.2

-0.6

-1.0

oo o

I

pitch-down q=-0.0269

I O O O O OO

I , , I I I I1 I I I I I I

10 20 30 40 50 60 70
a

m

1.0

0.6

0.2

-0.2

-0.6

-1.0
10 20

pitch-down q=-0.0404

O O O O OQo

30 40
a

(c)Pitching Moment Data

50 60 70

Figure 5 Concluded



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-up q=0.0077

O__O

10 20 30 40 50 60 70
a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5
10

pitch-up q=0.0155

20 50 6030 40
a

(a)Lift Data

Figure 6 F-18 Responses by Time Integration for
Constant Rate Pitching Motion

70



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-up q=0.0232

10 20 30 40
a

50 60 70

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0077

o o o
00

10 20 30 40
a

(a)Lift Data

Figure 6 Continued

50 60 70



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0155 -

o o o o o o o o o o o

I I . I , I . , , . I . , . I I , I , , I , , , . I , , . I

10 20 30 40 50 60 70
a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0232

o o o

10 20 30 40
a

(a)Lift Data

Figure 6 Continued

50 60 70



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

- o o o

pitch-up q=0.0077

10 20 30 40

a

50 60 70

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-up q=0.0155

o o

10 20 30 40
a

(b)Drag Data

Figure 6 Continued

50 60 70



pitch-up q=0.0232

-0.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0077

10 20 30 40
a

(b)Drag Data

Figure 6 Continued

50 60 70



3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0155

10 20 30 40 50 60 70
a

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

pitch-down q=-0.0232

oooo o o o o

I I

10 20 30 40
a

(b)Drag Data

Figure 6 Continued

50 60 70



m

0.4

0.2

0.0

-0.2

-0.4

o o

pitch-up q=0.0077

o oo 0 c b o o o
JO

-0.6
10 20

I I

30 40

a

50 60 70

0.4

0.2

pitch-up q=0.0155

m

0.0

-0.2

-0.4

-0.6
i t i i I i t

10 20 30 40
a

(c)Pitching Moment Data

Figure 6 Continued

50 60 70



0.4

0.2

pitch-up q=0.0232

m

0.0

-0.2

-0.4

-0.6
10 20 30 40

a

50 60 70

0.4

0.2

pitch-down qr-0.0077

m

0.0

-0.2

- o

-0.4

-0.6
10 20 30 40

a
(c)Pitching Moment Data

Figure 6 Continued

50 60 70



m

0.4

0.2

0.0

-0.2

-0.4

-0.6

pitch-down q=-0.0155

O O o

10 20 30 40
a

50 60 70

m

0.4

0.2

0.0

-0.2

-0.4

-0.6

pitch-down q=-0.0232 "

i I i i i

10 20 30 40
a

50 60

(c)Pitching Moment Data

Figure 6 Concluded

70



03
03
O
O9

oo
3

I

O

en GO
en CD
CO -»-

Figure 7 Test Data for the C Response of an F~18 Model
L



Fourier Functional Analysis

for

Unsteady Aerodynamic Modeling

Suei Chin and C. Edward Lan

The University of Kansas

Lawrence, Kansas 66045

Abstract

A method based on Fourier analysis is developed to analyze the force and moment

data obtained in large-amplitude forced oscillation tests at high angles of attack. The

aerodynamic models for lift, drag and pitching moment coefficients are built up from a set

of aerodynamic responses to harmonic motions at different frequencies. The final

expressions for the models involve time integrals of the indicia! type. Results from linear

two- and three-dimensional unsteady aerodynamic theories as well as test data for a 70-

deg delta wing are used to verify the models. It is shown that the present modeling

method is accurate in producing the aerodynamic responses to harmonic motions and the

ramp-type motions.

Nomenclature

A; coefficient of cosine Fourier series

B: coefficient of sine Fourier series

C01,0 average value of constant terms in the harmonic oscillation responses
clVG

CQ drag coefficient
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c. 2-D lift coefficient.
I!

CL 3-D lift coefficient.

0^ variation of lift coefficient with respect to angle of attack

CT variation of lift coefficient with respect to pitch rate

Cm pitching moment coefficient

E- constants associated with the zero-lag response

HJJ constants in amplitude functions

i imaginary part of a complex number

j index

k reduced frequency (=0)^^,)

M Mach number

n index for reduced frequency. Also index for the coefficients in Pad6 approximants

N number of frequencies

PD- Pad6 approximants

P- coefficients in Pade approximants

q pitch rate in rad/sec

t time

t' nondimensional time (=1 /̂4)

v,.,,, free stream velocity

a variation in angle of attack (=aQcoskt')

al = am+a

aQ amplitude of angle-of-attack variation

o^ mean angle of attack

6: time rate of change in angle of attack



{ reference length

t dummy time integration variable

^ running variable in time

0 =kt'

Introduction

Due to the requirement of increased performance and maneuverability, the flight

envelope of a modern fighter is frequently extended to the high angle-of-attack regime.

Vehicles maneuvering in this regime are subjected to nonlinear aerodynamic loads. The

nonlinearities are due mainly to three-dimensional separated flow and concentrated

vortex flow that occur at large angles of attack. Accurate prediction of these nonlinear

airloads is of great importance in the analysis of a vehicle's flight motion and in the

design of its flight control system. As Tobak and Schiff mentioned in ref. 1, the main

difficulty in determining the relationship between the instantaneous aerodynamic load on

a maneuvering vehicle and the motion variables is that this relationship is determined

not only by the instantaneous values of motion variables but also by all of the prior states

of the motion up to the current state. With the advanced computing techniques, one

straightforward way to solve this problem is to solve the flow-field and the flight dynamic

equations simultaneously. However, this is obviously a very costly approach. In

particular, at high angles of attack the aerodynamic loads depend nonlinearly on the

motion variables. Under such conditions, even if the vehicles start from closely similar

initial conditions, they may experience widely varying motion histories. Thus, a

satisfactory evaluation of the performance envelope of an aircraft may require a large

number of coupled computations, one for each change in initial conditions. Furthermore,



since the motion and the aerodynamic response are linked together in this approach,

there can be no reutilization of the previously obtained aerodynamic reactions.

To avoid the disadvantage of solving the coupled flow- field equations and aircraft's

motion equations, an alternate approach is to use a mathematical model to describe the

steady and unsteady aerodynamics for the aircraft's equations of motion. Ideally, with a

mathematical model, an evaluation of the aerodynamic terms specified by the model

would be required only once. The specified model can be reutilized to solve the aircraft's

equations of motion over a range of motion variables and flight conditions.

In the classical linear potential flow theory2'3, researchers in the field of

aeroelasticity used the Fourier transform to relate the aerodynamic response of step

change in angle of attack of a wing to that of harmonic oscillatory motions. The transient

aerodynamic reaction to a step change is called the "indicial function" and has been

calculated for several classes of isolated wings . By a suitable superposition6 of these

results, the aerodynamic forces and moments induced in any maneuvers can be studied >3

. Tobak applied the indicial function concept to analyze the motions of wings and wing-

tail combinations . Later, based on a consideration of functional, Tobak and his

coworkers1'8 extended the concept of indicial function into the nonlinear aerodynamic

regimes, even with aerodynamic bifurcations . The simplest nonlinear aerodynamic

model proposed in ref. 1 has been applied by several authors10"14 to perform the analysis.

However, that simplest model is accurate only to the first order of frequency. It needs to

be improved for a more general response.

Aerodynamic forces and moments acting on a rapidly maneuvering aircraft are, in

general, nonlinear functions of motion variables, their time rate of change, and the history

of maneuvering. How these unsteady aerodynamic forces and moments may be



represented in a form suitable for flight dynamic simulation becomes uncertain, in

particular at high angles of attack. For a certain type of nonlinearities produced in an

experiment with small-amplitude oscillation, the analysis has been accomplished by

separating the time-history data into in-phase and out-phase components . When large-

amplitude forced oscillations are employed in the wind-tunnel testing at a large mean

angle of attack, the aerodynamic phenomena may involve dynamic stall and/or strong

vortex flow, with or without vortex breakdown. In this case, higher harmonic components

in the aerodynamic response are expected to exist16 and the phenomenon of aerodynamic

lag would be important. Therefore, a more general modeling technique is needed.

In this paper, a numerical method will be developed to analyze the nonlinear and

time-dependent aerodynamic response to establish the generalized indicial function in

terms of motion variables and their time rates of change.

Theoretical Development

In existing flight simulation, two common ways are used to treat high-angle-of

1 *7
attack aerodynamics. One is to use tabulated quasi-steady data and the other is to use

a local linearized model which form a piecewise continuous fit of the nonlinear response .

In the present approach, a formula involving time integration will be developed.

Based on functional analysis, Tobak and Schiff developed a fundamental

formulation of aerodynamic response for arbitrary motion. Summing incremental

responses to small step changes of a and qfi/v^, at time i, an integral form for CL at time

t is obtained

CL(t) - CL(0) + CLjo^), q(S); t, T] d

(1)
— C^Crtcx^), o(4); t, T] ̂  d T
v JQ q <IT



where £ is a running variable in time over the interval 0 to t, { is a reference length and

V^ is the freestream velocity.

To have practical applications, the functional integral form needs to be simplified.

By assuming that a and q are analytical functions in the neighborhood of i;=t, variables

a and q can be expanded by their Taylor series at £=r. The indicial responses CT , for
a

example can be expressed as

), q($); t, T] - Cijt, t; <X(T),

q(t),

If only the first two coefficients are retained in the above Taylor series expansion, the

integral form of eq. (1) becomes

dx

Eq. (3) is applicable to the study of rapidly varying maneuvers, where hysteresis

phenomena are known to exist. However, it is difficult to implement eq. (3). By assuming

a slowly varying motion, Tobak and Schiff neglected the dependence of the indicial

response on a and q . By further assuming that the indicial response is a function of the

elapsed time t-r instead of t and T separately, a simplified expression of eq. (1) can be

written as

dt

Although the form of eq. (4) represents a great simplification over that of eq. (1), the

equation still includes the full linear form as a special case.

Jenkins1** applied a local Taylor expansion to indicial response CL and used that

Taylor expansion form to fit numerical indicial responses calculated from a program called

6



NLWAKE. By substituting CL into eq. (4), Jenkins was able to predict the oscillating

motion for airfoil at low frequencies.

In the present investigation, the hysteresis effect is included and the assumption of

low frequencies will be removed. Therefore, a form between eq, (3) and eq. (4) is written

as

CL(t)-CL(0)+CtCr[t-T; CC(T),
(5)

+J_ftCLn[t-t; a(T), OC(T), qd), q(t)] ^
v^ q dx

In wind-tunnel testing, the q effect cannot be separated from that of cc . Since the

method developed in this study will be used first to analyze the wind tunnel data, a will

be used instead of q in the following investigation . The effect of tt (i.e. q ) is included in

the response without aerodynamic lag, such as the virtual mass effect in incompressible

flow. Since the zero-lag response does not involve the aerodynamic lag, it is removed out

of the time integral. Then eq. (5) is rewritten for the present study as

zero-lag response

~dc (6)

„ , , A*e~\
+— ^CL Jt-t; a(T),

The main objective in the present investigation is to find a suitable form for the integrand

of eq. (6). The basic building blocks of the present method are a set of aerodynamic

responses to harmonic motions at different frequencies. These responses serve as a

linearly independent set of functions upon which the response to an arbitrary motion can

be built.

In the linear theory^1 , the aerodynamic response can be separated into a product

of an amplitude function and a phase function in harmonic motion. The amplitude

7



function depends on motion variables and their time rate of change. On the other hand,

the phase function is a function of frequency and accounts for any phase lag between the

response and the excitation. In a two-dimensional linear theory, the phase function is

given by Theodorsen's circulation function '3. After response is obtained at different

frequencies with the same amplitude in harmonic oscillation, the phase function can be

determined numerically. After use of reciprocal relations , the indicial function can be

defined by numerical means. This approach has been used for numerical determination of

indicial lift for plunging airfoils^ and for plunging wings .

The method for the linear theory is generalized as follows. Instead of assuming

that the aerodynamic response is a product of an amplitude function and a phase

function, it is taken to be a sum of the products of amplitude functions and phase

functions in harmonic motion; i.e.,

CL-Co+£(amplitude function)j * (phase function)j (7)
j

In the linear theory, j equals 1 in the equation. To determine the form of the

amplitude functions as functions of a(t) and a (t), and the phase functions, a functional

analysis is needed. A practical method for this purpose is the Fourier analysis of forced

oscillation data. The motion is assumed to be of the form:

6:-(-a0k)sin(kt/)

where k is the reduced frequency, t' is the nondim ensionalized time, o^ is the mean angle

of attack and cc0 is the amplitude of angle-of-attack variation. The first step is to Fourier-

analyze the response over one period. Let

8



C L-AQ + Ajcos6 +A2cos26 + A3Cos39
(9)

From the past experience2 ', it was found that Pad6 approximants provide an accurate

approximation of the theoretical phase function. Therefore, Fade" approximants will be

used in the present model as phase functions. Following the classical airfoil theory, the

analysis is best performed in complex algebra. For this purpose, eq. (9) (or the

experimental oscillatory results) is rewritten in a complex form, as follows:

CL-A0+(A1-iB1)e
ikt/

+(A2-iB2)e
i2kt/

+(A3-iB3)e
i3kt/ + . . .

It should be kept in mind that only the real part of the response has a physical meaning.

The reason to use the complex form is to benefit from the mathematical convenience of

the eikt notation. If a is rewritten as

a = aQ elkt>

and

a = (ia0k) eikt'

then the classical airfoil theory suggests that the response can be put in the following

form involving the products of amplitude functions and phase functions as

CL = Ao(k)

+ Eno: + E21& + G! * (Hncx + H21& ) * (1 -

E22&2 + C2 * (Hi2Ct2 + H22ao:

. (1 - PD2)

E23&3 + C3 * (H13a
3 + H23a

26: + H33ao:2 + H436;3)

* (1 - PD3)

9



where PD's are Pad6 approximants of order 2 and are defined as

PDj - —i
P3j (ik)* + (ik) + P4j

Ei i a j + E21 & • etc. are the zero-lag response. The variables a • and & • are defined as
• ^ J J J J

and

to be consistent with higher order terms. When j=l in the above equations, a. ̂  = a and

& i = a . In addition, H21, H22, H23, etc., are related to the pitch-rate effect. It should be

noted that those terms inside the parentheses following Cj, C2, C3, such as (H11a +

H21a ), represent the magnitude (or amplitude) and (1 - PDp represents the unsteady

aerodynamic lag (or phase) in response. Therefore, the present assumed form for

aerodynamic modeling encompasses the classical linear theory and is capable of

representing a complete set of harmonic-oscillatory data with different frequencies in one

expression. It should be noted that in eq. (11), the contribution to each mode is summed

in complex form. The response in time domain is given by the real part, similar to

obtaining eq. (9) from eq. (10).

C- are the reference values used to normalize the lift given by A: - i B- in the least

squared-error method, j is the index consistent with the exponent of the exponential

terms in eq. (10). For example if the j's term in eq. (11) represents the coefficient of e *,

then j is 1. If the j's term in eq. (11) represents the coefficient of ei2kt' then j is 2, etc.

The first term, A^k), in eq. (11) is a constant term, supposedly a function of frequency.

From available experimental data for a delta wing22, A^k) can be assumed to be constant

approximately. The unknown coefficients P^, P2j, P3- and P4j are calculated from the

10



least squared-error method. Ellf E21, H^, H12, etc., are obtained separately by

minimizing the sum of squares of errors. This is equivalent to a two-level optimization

method to determine the unknowns in eq. (11). That is, E, H, etc., are assumed first.

Then Py, etc., are determined by minimizing the sum of squared errors. The values of

E11, H11? etc., are varied next so that the sum of squared errors is minimized based on a

gradient method. It was found that this approach is more effective in determining a

global minimum solution for the unknowns than a straightforward optimization (one

level) method because of nonlinearity in the unknowns in this optimization problem. It

should be noted that in the literature the phase function has been typically determined by

the response to plunging motions, not pitching motions. Therefore, those terms associated

with a in eq. (11) do not appear. This would very much simplify the mathematics of

determining the Fade* approximants. The details of the present method are discussed in

the following.

Least-Square Method

By choosing proper values of E^, H^, H12, etc., in eq. (11), the corresponding A: -

i Bj term in eq. (10) is then divided by the amplitude function. The result will appear as

V- + iW- - 1 - AJ - iBJ - E * - E <-k2)
J J (amplitude function);

(13)
J (ik)2 + P2j (ik)

P3j (ik)2 + (ik) + P4j

If both sides of eq. (13) are multiplied by the denominator of the Fade" approximant and

separated into real and imaginary parts, then

Re = P^k2 - P3jVjk2 + P4j Vj - Wj k = 0 (14a)

and

Im = P2jk + P3jWjk2 - P4jWj - Vjk = 0 (14b)

11



The sum of squared errors is defined as

Err = E Re(kj)2 + E ImCkj)2 (15)

By equating the first derivatives of squared errors (eq. 15) with respect to variables

PJJ, P2j, P3j and P4- to zero, the unknown coefficients P^, P2j, P3j and P4- can be

determined from

Ekf 0 -EVtkf EV^f

0 Ekf EWikf -EWjki

-EVikf EW^f E(vfkf+wfkf) -E(vfkf+wfkf)
9 9 9 9 9 9 9

EVikf -EWjkj E(Vfkf +wfkp E(V; +wp

plj"
p2j
P3j
P4j.

EWjkf

0

0

(16)

where i varies over the range of input frequencies, and the mode subscript j on V and W

has been omitted.

Gradient Method

After the unknown coefficients Py, P2j, P3j and P4j have been found, a one-

dimensional gradient method is used to find E and H values which will make the sum of

the squared errors minimum. The E or H value is perturbed first by a small amount AE

or AH to find the gradient of the sum of squared errors. If the gradient tends to reduce

the error, then the E or H value is perturbed further until several iterations has been

reached (it is set to be 5 iterations in the current program). After that, the same

procedure is applied to other E or H. Then the whole procedure is repeated again for

several iterations.

Indicia! Formulation

To express the aerodynamic response in time domain (eq. 6), the phase function, as

represented by the Fade" approximants, is inverted from frequency to time domains by

inverse Fourier transform. The Fade" approximants are first factored as follows:
r

12



(ik)2 + P2j (ik) _ i _ ikaij _ ik a2j (

P3j (ik)2 + ik + P4j
 ik + a3j ik + a4j

and then it is inverted based on a step input to be

_
2* ik - p3j(ik)2 + ik + p4j

- a2j e
The final form for the aerodynamic response in time domain for arbitrary motion is

therefore given by

CL(t') - CLindicial[t'-T, a(T), (5c(T)]t.0 + Cave + E (Eyctj + E2j&j)
j-l

. _E Jf . ( l - a l j e - - - a 2 j e - )

» J.1 ft' d(a-f->i.n-. -°3j(t'-T).
Vooj-i-'0 d 6: J J dT

where the amplitude functions (a.f.) are given by those H-terms in eq. (11) and Cave is the

average of AQ and is a function of o^. It should be noted that a in eq. (19) denotes a

perturbation from o^. The first term in eq. (19) is the amplitude of CL (eq. 11) when a is

abruptly changed to a(0) at T = 0 and represents an initial value in the indicial lift

formulation (see eqs. 5.370 and 5.382 of Ref. 2). Again, each mode is evaluated in

complex form and the real part of the result is taken as the response in time domain.

To perform the time integration in eq. (19), the 3-point Simpson rule is used in the

present method. Since the amplitude functions are determined in the frequency domain

using complex algebra, for an arbitrary motion an equivalent frequency k and phase angle

<j> at T must be obtained by matching the given o^ and a ± as follows:

13



ai(i)-am+a0cos(kr+<j>) (20a)

<*!—a0ksin(kT-n|>) (20b)

Eqs. (20) are solved by Newton's method. It should be noted that k and <$> are needed

merely to simulate an equivalent harmonic motion in the present formulation. The

resulting k and $ are then used to determine the magnitude of the amplitude function

using complex algebra.

Results and Discussions

Because appropriate high-alpha experimental data to apply the present modeling

method are limited, the present method will first be tested with linear theoretical results.

Linear Results

Several cases in the two-dimensional and three-dimensional linear flow at different

Mach numbers have been studied to verify the present method of aerodynamic modeling.

The oscillatory 2-D results are computed from a 2-D unsteady quasi-vortex-lattice method

(QVLM)24 as input data for the current model. Through numerical experimentation, it is

found that six frequencies are needed to have accurate results. In the present model (eq.

11), only the coefficients E^, E2i> Hj^, H21 and P^ are not zero. Three Mach numbers,

0, 0.2 and 0.4 are employed. The results at M=0.4 are presented in Fig. 1. It is seen that

the present modeling method is very accurate for harmonic motion. The modeling method

is further verified with a 70-degree delta wing which oscillates from 0 to 20 deg. in angle

of attack about the mid-root chord:

ax = 0.17453 + 0.17453 cos kt' (in radian)

This means that the mean angle of attack is 10 deg. (0.17453 radian) and the amplitude

of the oscillation is also 10 deg. (0.17453 radian). The aerodynamic responses are

calculated from a 3-D unsteady QVLM code . Through numerical experimentation, it is

14



found that the responses at low frequencies do not change significantly, so that accuracy

in modeling would be reduced. To have more accurate approximation, high frequencies'

responses are needed. Seven reduced frequencies (k = 0.01, 0.1, 0.2, 0.6, 1.0, 2.0, 2.5) are

used in this 3-D attached flow case. The results for CL at M=0.4 from modeling are

plotted in Fig. 2 and show very good agreement again with results from the 3-D unsteady

QVLM program.

Nonlinear Results
oo

The forced-oscillation test data for a 70-deg delta wing in pitching oscillation are

used to validate the present nonlinear aerodynamic model. The angle of attack which

describes the pitching motion is given as

ccj_ = 27.5 - 27.5 cos kt' (in degree)

which means the delta wing oscillates from 0 to 55 deg. in angle of attack and then back

to 0 deg. for one cycle. The pitching center is at 57 % of the root chord. The reduced

frequency k is nondimensionalized based on wing's root chord. Five sets of data

corresponding to 5 different frequencies are available and they are used as the input data

to calculate the coefficients for the current aerodynamic model with 5 Fourier terms. The

lift coefficients obtained from the aerodynamic model (eq. 11) are compared with the

original test data in Fig. 3 with good agreement. Expressions for CD and Cm similar to

eq. (11) are obtained with the same procedures as those used for CL- The modeled

harmonic results are compared with data in Figs. 4 and 5 for Cp and Cm, respectively.

Again, the good agreement indicates that the present aerodynamic model is accurate in

representing the experimental harmonic data. The coefficients for CL are tabulated in

Table 1.

To check the validity of indicia! formulation (eq. 19) for the present nonlinear
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response, two oscillatory cases in Fig. 3 will be used. That is, by assuming oscillatory

motion in eq. (19), the time-integrated lift response should agree with the forced-

oscillation results. The lift coefficient by integrating eq. (19) for the same 70-deg.

oscillating delta wing with k=0.098 is plotted in Fig. 6. Compared with the results from

aerodynamic modeling, the integrated lift shows good agreement.

To verify the aerodynamic models further, aerodynamic responses to harmonic

ramp motions for a 70-deg delta wing reported in ref. 26 will be employed. The ramp

motions start from a = 0 to 35, 45 and 55 deg. In the present calculation based on eq.

(19), the same harmonic data shown in Figs. 3-5 and reported in ref. 23 are used. That

is, the data are based on harmonic motions from a = 0 to 55 deg. The results for C^ are

presented in Fig. 7 for a reduced frequency of 0.0714. It is seen that the present

aerodynamic model is fairly accurate if the harmonic ramp motion is from a = 0 to 55 deg.

However, the final CL is overpredicted if the ramp motion stops at an a less than 55 deg,

even though the peak CL is still well predicted. A possible reason for this is that the

harmonic data based on a = 0 - 55 deg. contain dynamic effect on vortex-breakdown

characteristics at a < 55 deg. Therefore, the results for CL at a final steady a = 35 or 45

deg. should be higher.

The corresponding drag and pitching moment coefficients at one reduced frequency

are presented in Figs. 8 and 9, respectively. The drag coefficient is not as well predicted

in ramp motions as in harmonic motions (see Fig. 4). It is not known whether this is

caused by differences in the test models and test Reynolds numbers. The test model for

the harmonic motions (ref. 23) has two-sided chamfered leading edges with a thickness of

0.5 inch at a Reynolds number of 1.64xl06 based on the root chord. The model for the

ramp motions (ref. 26) is chamfered only on the lower surface of the leading edge and has

16



a thickness of 0.25 inch, and tested at a Reynolds number of 1.54xl06. The pitching

moment coefficient appears to be well predicted except at small time.

To illustrate the present aerodynamic model (eq. 19) for arbitrary motions, a linear

ramp motion is assumed in the integration. The results are compared with those in a

harmonic ramp motion in Fig. 10. It is seen that the linear ramp motion tends to produce

higher CL beyond the peak value because it has a higher value in 6: .

Although verification of the present model was presented only with one set of a.Q

and o^, some preliminary results with different aQ and o^ indicate that eq. (19) could

still produce good results if a new ex-range is within the test range used in setting up the

model.

Table 1 Model Coefficients for CL for the 70-deg Delta Wing

Cave = 0.6451

j
1
2

3

4

5

j

1

2

3

4

5

Ci
1.0

1.0

1.0

5.0

30.0

PIJ
-5.788

4.947

3.561

24.424

6.127

EH

-0.389

0.212

-0.368

0.025

0.186

PSJ
-0.453

-1.387

0.653

3.412

1.604

E9j

1.062

0.250

0.118

-0.063

0.039

P3j
5.520

15.243

4.383

21.343

1.244

HIJ
0.700

-0.700

-0.970

-0.100

0.096

P4i
0.030

0.001

0.041

0.001

0.025

**2j

0.463

0.500

0.534

0.400

0.588

aij

-0.402

-1.437

0.866

3.541

1.545

H*j

0.600

0.995

0.400

-0.015

*2j

-0.646

1.761

-0.054

-2.396

3.379

H4j

-1.019

1.000

-0.020

»3j

-0.037

-0.001

-0.053

-0.001

-0.026

H*j

0.000

.0009

a4j

-0.144

-0.065

-0.175

-0.046

-0.778

Hfij

.0007
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Conclusions

A Fourier analysis method was developed to analyze harmonic forced-oscillation

data at high angles of attack as functions of the angle of attack and its time rate of

change. The resulting aerodynamic responses at different frequencies are used to build

up the aerodynamic models involving time integrals of the indicial type. An efficient

numerical method was also developed to evaluate these time integrals for arbitrary

motions based on a concept of equivalent harmonic motion. The method was verified by

first using results from two-dimensional and three-dimensional linear theories. The

developed models for C^, CD and Cm based on high-alpha data for a 70-deg delta wing in

harmonic motions showed accurate results in reproducing hysteresis. The aerodynamic

models are further verified by comparing with test data using ramp-type motions.
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Figure 1 Unsteady Lift Coefficient for a 2-D Flat Plate Pitching about Midchord at M =

0.4

Figure 2 Unsteady Lift Coefficient for a 70-deg Delta Wing Pitching about Mid-root Chord

at M = 0.4

Figure 3 Unsteady Lift Coefficient for a 70-deg Delta Wing Pitching about 57% of Root

Chord at Low Speed and Various Frequencies. Re = 1.64xl06

Figure 4 Unsteady Drag Coefficient for a 70-deg Delta Wing Pitching about 57% of Root

Chord at Low Speed and Various Frequencies. Re = 1.64xl06

Figure 5 Unsteady Pitching Moment Coefficient for a 70-deg Delta Wing Pitching about

57% of Root Chord at Low Speed and Various Frequencies. Moment Center at 25%

of Root Chord. Re = 1.64xl06

Figure 6 Unsteady Lift Coefficient from Numerical Modeling and Indicial Time

Integration for a 70-deg Delta Wing in Harmonic Pitching Oscillation about 57% of

Root Chord at Low Speed. Re = 1.64xl06 and k = 0.098

Figure 7 Unsteady Lift Coefficient from Indicial Lift Model and Experiment for a 70-deg

Delta Wing in Harmonic Ramp Motion at Low Speed. Re = 1.54xl06 and k =

0.0714

Figure 8 Unsteady Drag Coefficient from Indicial Drag Model and Experiment for a 70-

deg Delta Wing in Harmonic Ramp Motion at Low Speed. Re = 1.54xl06 and k =

0.0714

Figure 9 Unsteady Pitching Moment Coefficient from Indicial Pitching Model and

Experiment for a 70-deg Delta Wing in Harmonic Ramp Motion at Low Speed.

Moment Center at 25% of Root Chord. Re = 1.54xl06 and k = 0.0714

Figure 10 Unsteady Lift Coefficient from Indicial Lift Model in Harmonic and Linear

Ramp Motions for a 70-deg Delta Wing at Low Speed. Re = 1.54xl06 and k = 0.0926
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