
EXPERT SYSTEM VERIFICA TION
AND VALIDATION

GUIDELINES/WORKSHOP TASK

— -
u c-
rs o

o*
o

LL < O
>-< 1— (/)
QC
LJ CL Z
> O "— '
X -I

I to uu
LU ̂ Q

M
00 O D

to >
v.

Z >
t-i
_j to a.

-̂4 « •—.

O •
z >

o >~
^ < _i r>

<: _> j* ">
i—i 3
_J O

Z Z UJ I
»-• < Q ̂ ^

Deliverable #1 - ES V&V Guidelines

Scott W. French
International Business Machines Corporation

September 3, 1991

Cooperative Agreement NCC 9-16
Research Activity No. AI.16

NASA Johnson Space Center
Information Systems Directorate
Information Technology Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

TECHNICAL REPORT

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the computing and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to jointly define and manage an integrated
program of research in advanced data processing technology needed for JSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such research
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCLand its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being
implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered Into a special partnership with Texas A&M University to help
oversee RICIS research and education programs, while other research
organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, workingjointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the research and Integrates
technical results into the goals of UHCL, NASA/JSC and industry.

EXPERT SYSTEM VERIFICATION
AND VALIDATION

GUIDELINES/WORKSHOP TASK

Deliverable #1 - ES V&V Guidelines

Preface

This research was conducted under auspices of the Research Institute for
Computing and Information Systems Scott W. French of the International Business
Machines Corporation. Dr. Terry Feagin and Dr. T. F. Leibfried served as RICIS
research coordinators.

Funding has been provided by the Information Technology Division, Information
Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between the
NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
technical monitor for this activity was Chris Culbert, of the Software Technology Branch,
Information Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

ES V&V Guidelines/Workshop Task
RICIS Contract #69

Deliverable #\ - ES V&V Guidelines

September 3, 1991

Scott W. French

IBM Corporation
Federal Sector Division

3700 Bay Area Blvd. Houston, Texas 77508-1199

PAGE ii

Preface

This document contains a first draft of information developed to support the ES V&V

Guidelines/Workshop task under RICIS contract #69. The information contained herein is evolutionary

in nature. Continuous revisions will be made based on feedback from participants in the workshop and

NASA.

Preface PAGE

Knowledge Based System V&V Guidelines Workshop

Contents

Introduction 1

Key Terms 5

Validation Overview 6

Statistical 7

Integration/System Test 9

Unit Testing/Architectural Testing 11

Architectural Design 14

Problem Solving Method 15

Specifying the Problem 16

The Traffic Controller Problem 17

Validation Techniques Overview 22

Integration/System Testing 23

Statistical 24

Unit Testing/Architectural Testing 25

Architectural Design 26

Problem Solving Method 27

Specifying the Problem 28

References 29

Conventional V&V

Introduction

Goals

1. To show that verifying and validating a software
system is a required part of developing software

2. To show that verifying and validating a software
system directly impacts its design and structure

Justification of Goal 1

>• Validating software is in the interest of the
user/customer

— Incorporates the user/customer perspective

H-» Does this system solve the problem - un-
validated systems provide fuzzy answers to
this question

— Installation and checkout can be done reliably

— System reacts in a predictable fashion

Less risk that a failure in the system could
pollute other un-related processes

Other processes can interact with the
embedded system in predictable ways.

Conventional V&V

Introduction

Justification of Goal 1

*• Verifying software is in the interest of the developer

— Saves money over the life-cycle of the product

i-» development is easier

H-» maintenance is easier

h-> easier to manage

Conventional V&V

Introduction

Justification of Goal 2

>• Technique:

— Describe how a software system can be validated

— Separate this description from the similar
description of designing a software system

*• Perspective:

— Approach this purpose based on the goal

i-> Given that validated software is the goal —>
What should be done to meet the goal?

Validated System

••Statistical-*-
(MTTF)

-Integration Test
(System Test)

Architectural Test* Unit Testing
(Static/Dynamic)

I I
Architectural Design-* ^Problem Solving

4 Method

Specifying the Problem

— Avoid advocating a particular process model

Conventional V&V

Introduction

Justification of Goal 2

*• Discussion

Identify 7 major Tasks to satisfy the goal of vali-
dating a software system

What are the characteristics?

What are the inputs?

What are the implications?

Identify Techniques to support implementing
those Tasks

Special emphasis on finding errors early in
the process

• Cheaper to fix

• Eases verification burden of later tasks

Conventional V&V

Key Terms

Dynamic Testing A type of testing involving execution of the
software and analysis of the results of that
execution

Module

State

Static Testing

Unit

Validation

Verification

A conceptual element that captures a set of
states along with specific operations for
changing state and accessing state information

Data that persists over time

A type of testing done via inspection of the
software as opposed to execution of the soft-
ware

A low-level function that when combined with
other units in a controlled fashion implements
the solution to a problem

Showing that the completed software is a
correct solution

Showing that the software is being built cor-
rectly across all phases of a project

1 These definitions reflect how these terms are used in the discussion that follows.
They are not intended to reflect an industry accepted standard definition.

Conventional V&V

Validation Overview

Validated System

•Statistical**-
(MTTF)

•Integration Test
(System Test)

Architectural - Unit Testing
(Static/Dynamic)

Architectural Design-* ^Problem Solving
Methodt

Specifying the Problem

Conventional V&V

Statistical

Characteristics

+- Given the "system" is valid

— Reliability should be predictable

— Reliability should be measurable

— Reliability should be repeatable

Inputs

+- Collection of success criteria

— What does it mean for the system to be accept-
able?

*• Operational scenarios (nominal/off-nominal)

— Validation test suite

^ Operating modes

>• Metrics defining the quality of the system

— Mean-time-to-Failure (MTTF)

Conventional V&V

Statistical

Implications

+- Easier to handle when a repository of test cases for a
given product delivery exists

*• Easier when operational scenarios are identified (e.g.,
in requirements)

— driven by definition of succcess criteria

8

Conventional V&V

Integration/System Test

Characteristics

>• Does the "system" do what it is supposed to?

— Is the response correct for each stimulus?

i-» e.g., Running tests and evaluating responses

>• "How" a response is generated is not important at
this level

s
t
i
m
u
1
i

System

" B l a c k B o x "

R
e
s

P
o
n
s
e
s

Stimuli tend to fall into "classes" or "groups"

Changes in stimulus result in response changes

— sensitivity to change

— demonstrate predictable behavior

Conventional V&V

Integration/System Test

Inputs

*• Identification of state/function groups - units

— e.g. - in shuttle, there are many "principal" func-
tions

*• Stimulus histories for each group

Implications

*• Easier to analyze these "classes" separately with
respect to the functions or data - i.e., unit testing

*• Only required to show that collecting the "pieces" to
form the "system" has not introduced error

10

Conventional V&V

Unit Testing/Architectural Testing

Characteristics

>- Given that "classes" of stimuli exist

— the "system" can be viewed as containing units2

>• these units have stimuli and responses

— therefore, they have su bun its

*- the "system" has many "states"

>• some kinds of state are related

System Units-

Modules

Table

1 2 13

Modify

New
Item

Item
Exists

Table
Full

U

Table
Not
Full
U
5

Change
Item'

2 This makes testing easier. This can be done regardless of how the system is actu-
ally implemented. For example, the Space Shuttle Flight Software (FSW) is tested by
principal function even though this may not correspond to how it is implemented.

11

Conventional V&V

Unit Testing/Architectural Testing

Characteristics

— similarity within classes imply commonality

H-» commonality can be partitioned out to
reduce verification burden

H-» lower level units/modules exist which are not
explicit in the problem space

— stimulus changes alter units required to generate
a response

Inputs

*• Specifications of expected behavior to achieve solution

— For units

i—> Stimulus histories for each unit

h-> How a unit is related to another unit

i-» Relationship to state (expected state transi-
tion)

— For modules

i—* Relationship of module to problem space

"Links" between different modules

Allowable state transitions

12

Conventional V&V

Unit Testing/Architectural Testing

implications

*• Design can be done in small steps by mapping con-
ceptual entities to software entities - modularity

— can reduce the verification burden by easing the
effects of changes to stimuli

— a design "architecture" can be defined to elicit
module relationships

— bridges gap between problem and tested solution

modularity makes both jobs easier

A structured control mechanism exists for using
"modules" to achieve desired function - problem
solving method

A process of refining units into subunits exists

A process of "linking" modules together exists

13

Conventional V&V

Architectural Design

Characteristics

*- differing levels of abstraction

*• information hiding

*• abstract interfaces

*• encapsulation

Inputs

>• mapping between problem and solution spaces

Implications

>• a thorough understanding of the problem is needed in
order to define the mapping - "specifying the problem"

+• makes mapping from problem space to solution space
explicit

>- makes the taxonomy of modules explicit

14

Conventional V&V

Problem Solving Method

Characteristics

>• units control other units to accomplish their function

- is the method appropriate for the problem?

- is the method acceptably efficient?

*• a mapping exists between units of function and "what"
the system is supposed to do

*• units interact with "state"

Inputs

>• Allowable state transitions

>• Stimulus histories

+~ Mapping to the problem being solved

Implications

>• a thorough understanding of the problem is needed in
order to define the mapping and refinement

*• structured refinement reduces complexity of control
structure

*• limiting the kind of structures used eases analysis

>• how to interface with elements of the problem space
that have been captured as modules

15

Conventional V&V

Specifying the Problem

• Characteristics

*• complete description of the problem to be solved

— direct correlation to stimuli (operating environ-
ment)

— direct correlation to response (what to do in that
environment)

>• complex systems are too hard to understand taken all
at once

• Inputs

*• customer wants/desires

*• knowledge of experts in the application domain

• Implications

>• partitions are necessary to break-down complexity

— refinement

— abstraction

*• documenting all this is a major key to success

— should describe the problem space while leaving
freedom for the designer to pick the appropriate
solution

— should be traceable

16

Example

The Traffic Controller Problem

Consider the following problem:

A simple traffic light controller at a four way intersection
has car arrival sensors and pedestrian crossing buttons. In
the absence of car arrival and pedestrian crossing signals,
the traffic light controller switches the direction of traffic
flow every 2 minutes. With a car or pedestrian signal to
change the direction of traffic flow, the reaction depends on
the status of the auto and pedestrian signals in the direc-
tion of traffic flow; if auto pedestrian sensors detect no
approaching traffic in the current direction of traffic flow,
the traffic flow will be switched in 15 seconds, if such
approaching traffic .is detected, the switch in traffic flow will
be delayed 15 seconds with each new detection of contin-
uing traffic up to a maximum of one minute.

Take a few minutes and write down the key tasks the
"traffic controller" is to do

Exchange your descriptions with a neighbor and then
spend a few minutes deciding how well their description fits
your understanding of the "traffic controller"

*• is this a testable description of the system?

17

Example

The Traffic Controller Problem

Initial "black box" view of system testing

Stimuli

no car arrivals or
pedestrian crossing

signal

(car arrival or
pedestrian signal)

and no approaching
traffic

Responses

(car arrival or
pedestrian signal)

and approaching traffic

System

"Traffic

Light

Controller"

-*• switch traffic flow
every 2 minutes

-*• wait 15 sees then
switch traffic flow

-*• wait 15 sees for each
approaching vehicle
up to 1 minute then
switch traffic flow

18

Example

The Traffic Controller Problem

Refine Requirements based on further understanding of the
problem

State becomes evident

*• See Refinement of the initial 'black-box' view

>• What is the color of the light in a given direction?

>• How long has the controller waited to switch the light?

State helps identify and classify stimulus/response histories

*• See Identification of 'classes' based on state

*• The state remaining the same might imply testing one
scenario verifies the other scenario as well

Continuing this refinement will lead to a more organized
test approach

*• operational scenarios can be constructed/selected

19

Example

The Traffic Controller Problem

Refinement of the initial 'black-box' view

Notation:

WE : West-East
NS : North-South
L: Light
AutoS: Auto sensor
PedS : Pedestrian sensor
td : time controller has delayed since sensor

Stimulus

NS-L : Green
WE-L : Red

State of the light

WE-AutoS -> car arrives at time tw
NS-AutoS -> car arrives at time tn

where tw < tn ̂ tw+15s
and td * 1m

System

"Traffic
Light

Controller"

Response
delay switching NS-L for another 15s

20

Example

The Traffic Controller Problem

• Identification of 'classes' based on state

Stimuli

| NS-L : Green, WE-L : Red + State of the light

1 WE-AutoS -> car arrives at time tw

NS-AutoS -> car arrives at time tn
where tw * tn s tw+15s

and td s im

I NS-L : Green, WE-L : Red State of the light

2 WE-PedS -> pedestrian arrives at time tw

NS-AutoS -> car arrives at time tn

where tw * tn £ tw+15s
and td ^ 1m

{Si,S2}

Respon:

delaj

;es

f switching NS-L fc

System

I

(

Traffic
Light

:ontroller"

— 1
>r another 15s 1

delay switching NS-L for another 15s 2 {Ri .Rz}

21

Conventional Techniques

Validation Techniques Overview

Validated System

•Statistical'*-
(MTTF)

•Integration Test
..(System Test)

Architectural Test-*- - Unit Testing
(Static/Dynamic)

Architectural Design- -•-Problem Solving •*-
Method

t
Specifying the Problem

Dynamic
— Testing

Static
Analysis

Requirements
Analysis

22

Conventional Techniques

Integration/System Testing

Criteria for Selecting Methods

>• Techniques that do not dependent on viewing the sys-
tem's internal structure are required

— Internal structure is hidden due to the
"black-box" view

>• Active Interface Testing

Methods

** Realistic Testing2

>- Stress Testing2

>• Functional Testing2

— Box-structured analysis

— Specification-based testing'

>• Performance Testing2

*• Metric-based Testing2

*• Statistical Record-keeping2

>• Active Interface Testing2

23

Conventional Techniques

Statistical

Criteria for Selecting Methods

*• Same criteria as Integration/System Testing, plus ...

+- Techniques that focus on identifying operational sce-
narios that provide statistically random sampling

Methods

*• Random Testing2

*• Regression Testing2

^ Software Reliability Estimation2

^ Realistic Testing2

24

Conventional Techniques

Unit Testing/Architectural Testing

Criteria for Selecting Methods

>• Techniques must provide for analysis of the structure
of the system - both from a data and function perspec-
tive

— Internal structure is visible due to "white-box"
view

*• Techniques must provide for analysis of integrating
units and modules

Methods

^ Reliability Testing2

*• Structural Testing2

*• Mutation Testing2

*- Error-introductionTesting2

>• Functional Testing2

25

Conventional Techniques

Architectural Design

Criteria for Selecting Methods

+- Techniques should show that the design maps to the
problem

> Techniques must be "static" in nature

- nothing "executable" has been built at this point

Methods

** Data Analysis'

>• Inspections (Formal or Walkthrough)1

*• Input Space Partitioning'

— Domain analysis'

— Partition analysis'

>• Object-Oriented Analysis

*• Entity/Relation Analysis

26

Conventional Techniques

Problem Solving Method

Criteria for Selecting Methods

*• Techniques should elicit levels of refinement

^ Techniques should apply to showing that a specifica-
tion is correct

Methods

^ Inspections (Formal or Walkthrough)1

>• Defect Analysis2

>• Control Analysis2

— Structured Analysis1

— Data-Flow Analysis1

— Step wise Refinement

*• Algorithm Analysis1

— Symbolic Execution

— Mathematical Theorem proving

*• Design Simulation2

+- Design Compliance Analysis2

27

Conventional Techniques

Specifying the Problem

Criteria for Selecting Methods

*• Methods should be selected that ability to comprehend
the problem to be solved

*• Methods should be chosen that provide a format that
is easily traceable in later tasks

Methods

+- Requirements Language Analysis2

^ Requirements Language Processing2

*• Mathematical Verification of Requirements2

>• Formal Requirements Review2

** Requirements Tracing/Traceability Analysis2

28

References

References

1. Boeing Aerospace Company. "Software Test Guide."
Software Test Handbook Rome Air Development Center
Report RADC-TR-84-53. Air Force Systems Command,
Griffis Air Force Base, NY: March 1984.

2. Science Applications International Corporation. "Task 1:
Review of Conventional Methods." Guidelines for Verifi-
cation and Validation of Expert Systems. Document #
SAIC-91/6660, April 19, 1991.

29

Copies of this publication have been deposited with the Texas State Library in
compliance with the State Depository Law.

