
A Reproduced Copy

L

LIBRARY COP"!
JUL 3 '1 1992

UNGLf3 RESEARCH CENTER
LIBRARY NASA

HAMPTON, VIRGINIA

Reproduced for NASA

by the

Center for Aerospace Information

This microfiche was
*

produced according to
E

ANSI I AllM Standards
and meets the

quality specifications
contained therein. A
poor blowback image

is the result of the

t

characteristics of the
original document.

G

PROCEEDINGS OF THE FIFTEENTH ANNUAL
SOFTWARE ENGINEERING WORKSHOP

November 28-29,1990

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

. -..q-.&.T-m -.;m,'<.. , . FFyY- . . - : .- ,
- . - F. f -* .;.. -.&ZywLC. C . :j :;' 'i-.;rCyJp-.-'.- *--, :-..,.&4-y-i.:7 -.rv.Y ,+6. - - --c~-&<. - . . . -:

,.-- *,- ..-,,,*.>,-.... > ~ . > ' f .:.:;?--V.<- ;. .?-) . ..--.-.n.:~~.:>~-*x*..,,- -A"<~.\+$:~.;?.,: . ..r> ,- .'. 4
. ; ;;:-i ;:td+:..,:-;;.. :I,., *,; .,,: . . > .. :;%?,&:-.q:;:c yv<,k.- ,- .%

SF';-,--. ..; ;L-.; >j$,?$,~*, .::' > .' .,: -,.-' . . , , .<!, -:.-
#. '-:.i;, ., ,:.:*;, : ~ ~ ~ ~ ~ . ~ * ; ~ ~ $;.:;+ . . ,. - -

,! 5 '.:. r ; ~ . . ::--..:'.'.. rr; -. . . - . - -.,,-.' - 4
. . . . , r...- .p .,;,..: . .' l...:c.,- . * '

- . a - - - :-,- ,--. ? I . . . 3 1 :;!> ?:>+A <>;*~2;:: : . * . ' . . . <.. --;-. ;. ' , . .-s . . . ,;::.:: ;;.; :.. :.:-.,: ;. .:::;,;,;;;;;. . : '"~>?,'i;: j ..: -. - d,..?-i;'i,.. (.,.,.. ...".. - .. - , .:, ' :.; ,;;,.:,.. ! .::;,? 2 ., .s..d'+.-;..-. - t -. .? . .,- .-,-; 2 : ..: -->. :..:. 4 !. 1
.* - 6 .,tr,,.;. ..,p, ,,., ,:, - 7.,a-;, ..-::: ,.-.:... . r , ' ;:-; ;;;;,?<,...,. ,* 4 -, 1 : . , . . ' -*.. - ' . . ':. . .. ,. -:\ ~<7~; .~ . - ' ' . . ,. 7

. ' . ..: .- -- - . : . . .,,: . '- . .. *
, . .;d:,we . , . < ' . . - . 1 3 . . -I. -:.(r. .' , . ; . . ,* .; ' , , .,?. . . . , , . . . , - .. '. . , ,.; ' - 5 . - A , , : -. , _..1- ' . . , .; j

' ; 1
, .+: . - . .' <--.; : /

-: , - ' , ,,,j--</. - -1.- -:. - . . * ?

. -.. - *
, .

. " . a , I .- ' . .
. ! p . : . big:;: , . . , :-" . , . . . 1

. @ , i , \ . I a . . . - . , . > . = ' . , . . . _ . .
.. y:. ,

. - . - . . . - . . . _

; I . .

I
. .

i l . , PROCEEDINGS OF THE
FIFTEENTH ANNUAL

$

I SOFTWARE ENGINEERING . -

WORKSHOP - ; -
i j

.:.
.

' I
J

. ; - . ,

... NOVEMBER-I990 , -

: 1. . .

. . . . ', - . --, . .
. . . . - il , : . . - . . , - , . - - I .> - . - - T . . ' . , . 1 ' . . .-. : - I - - : '

. - - & - - 1 . I . . :. ' . * ' - ,: . . '., . ' . 7 I XI:--

. I ,.

* ' . : . .: 1 1 '; CL ' . ' . . ' ' - 1 :- ,-, : .
J i l i l I5

. : I . ; ; ;- : > 4 A -

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the National
Aemaautics and Space Adrninistration/Goddard Space Flight Center (N W G S F C) and
created for the purpose of investigating the effdvencss of software engineering technologies
when applied to the development of applications software. The SEL was created in lW and
has three primary organizational members:

NASAIGSFC. Systems Development Branch

The University of Maryland Computer Science Department

Computer Sciences Corporation. Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the GSFC
environment: (2) to measure the effect of various methodologies. tools. and models on this
process: and (3) to identify and then to apply successful development practices. The activities.
findings, and recommendations of the SELare recorded in the Software Engineering Labom-
tory Series. a continuing series of reports that includes this document.

Single copies of this documtnt can be obtained by writing to

Systems Development Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

- (i ~ ~ : ~ i : , F ~ ~ * . ~ -
iii m=iN(I PAGE BUNK NOT n L M E D

62€%4

AGENDA

FIFTEENTH ANNUAL SOFZWARE ENGINEERING WORKSHOP
NASAiCODDARD SPACE FLIGHT CENTER

BUILDING 8 AUDITORIUM
NOVEMBER 2%29,1990

S u m of Prrstntatioas

I D. K. Cover and E. J. Smith (Computer Sciences Corporation)

-
Topic The SEL .t Age 15

I Towad a M m Murnuement Environmen!
V.R. Basili (University of Maryland)

I Impacts of a Procem Improvement Progmm in a Production Environment
G. 1: Page (Computer Sciences Corporation)

Rcnrlts of 15 Ycan of Memmment in the SEL
E E Mdiarxy (NASAIGoddard Space Flight Center)

Session 2

- Topic Process Improvement

7 A FmmewcnG forAsussing the Adequacy and Eflectivcness of Sojhare Development Methodolo-
sies
J. D. Arthur and R. E. Nance (Virginia Polytechnic Institute)

J A Method for Tailoring the Infomarion Content of a S o m a n Process Model
- M. B. Arends (McDonnell Douglas)

S. Perkins (University of Houston)
T

1 Software Technology Insehn . A Study of Success Factors
R. Lydon (Raytheon)

I Session 3

- Topic Measurement

. Pragmatic Qdiiy Metria for Evolutionary Sofiare Development Models
w. Roy= WW)

R WP Projed Ada Development Mmicr and Obsavations
R. E. Loesh (NASNJet Propulsion Laboratory) - PRECEDiNG PAGE BLANK PiGT FiLMED

\1 *;, : u , b * % * d &-

Eoriy Expcrienca Building a S0ftk.m Quai& Predicnbn Model
W. W. Agrtsti. W. M Evanco. and M. C. Smitn (The h4llRE Corporation)

Topic: Reuse

Biar and Design in Softwan Specifications
P. A Straub and M. V. Zelkawitz (University of Maryland)

SEL Ado Reure Analysir and Repmentotion
R. Kester (Computer Sciences Corporation)

Reure Mctnctncs -d Mmunmenfs: A Fmmework
D. Reifer (Reiter Coasdtants. Incorporated)

Session 5

Topic Process Assessment

Cost and Qualify Planning for Lage NASA Programs
K. Y . Rone (IBM)

Effect of Fomral Specifications on Progmm CompleLfy and Relinbilify: An Experimenfd Study
A. L Goel and S. N. Sahoo (Syracuse University)

An Analysk of Dcfect Demeties Found Dwing Softwan Inspecrions
3. C. Kelly and J. Hops (NASAlJet Propulsion Laboratory)
J. S. Sherif (California State University)

Panel 1

Topic: Experkma in Implementing an Enective Measurement Program

Michael DasMantonakis (Motorola)
Bob Grady (Hewlen-Packard)
Ray Wohrerton (Hughes Aircraft Company)
Mitsuru Ohba (IBMIJapan)

Topic: Software Engine* in the 1980s: Most Sipilkant AchievementsIGreatest
Disappointments

Barry Bothm (Defense Advanced Research Projects Agency, Information Sciences Tichnol-
w Offie)

Larry Dnrffel (Software Engineering Institute)
Manny Lchman (Irnpcrial College)
Harlan Mills (Software Engineering lkhnology, Inc)
Vic Basili (University of Maxyland)

Appendix B-Standard B i b i m p b y of SEL L i t t m t ~

vii

SUMMARY OF PRESENTATIONS AND PANELS

Donna Cover
Elizabeth Smith

COMPUTER SCIENCES CORPORATION

SUMMARY OF THE F'IlTEENTH ANNUAL SOITWARE
ENGINEERING WORKSHOP

On November 28 and 29,1990. approximately 500 anendees gathered in Building 8 at the National
Aeronautics and Space Administration (NASAYGoddard Space Flight Center (GSFC) for the
Fifteenth Annual Software Engineering Workshop. The meeting is held each year as a forum for
information exchange in the measurement. utilization, and evaluation of software methods, models.
and tools. It is sponsored by the Software Engineering Laboratory (SEL). a cooperative effort of
NASAIGSFC, Computer Sciences Corporation. and the University of Maryland. Among the audi-
ence were representatives from approximately 10 universities. 30 government agencies. 9 NASA
centers. and 100 private corporations and institutions. Fifteen papers were presented in five ses-
sions:

The SEL at Age 15

Process Improvement

Measurement

Reuse

Process Assessment

The sessions were followed by two panel discussions:

Experience; in Implementing an Effective Measurement Program

o Software Engineering in the 1980s: Most Significant Achievements/Greatest Disappoint-
ments

A summary of the presrnt~tiocs and panel discussions is given on the following pages.

Frank McGarry of GSFC introduced the workshop, welcomed attendees. and gave a brief overview
of the SEL He noted that on this 15th annivasary of the SEL it is appropriate to look back on what
has been kamed: Huw has th model of software p r a m improvement evolved? Whzt impact
have tbe !XI, experiments had an the prodrrtion environment? What has the govenuxmt learned
about sofiware from these experiences ovcr 15 years?

The three spkexs for this scssioa wen Viaor Basili of the University of Maryland, Gerald Page of
Corn* Sciences Corporatioa. and Frank Mctiarry of the Goddard Space Flight Center.

Basifi di- the SEL a -ch perspective, focllsing Onsoftware measurement maturity.
He indicated that a problem in software engineering is that mast of the research being done is
'bottom-up." that is. researchen arc packaging pieces of technology that can't be put together very
easily. Tht software enginarhg community needs to create a "top-dom" experimental, evolu-
tionary framework that can be focused bgically and physically integrated to produce quality
software productivity. and evaluated and tailored for the particular application environment. In
short, whaf is needed, said Basili, are more experimental laboratories conducting SEL-type aaivi-
tits

From a ;crtarchds point of view. the SELis a laboratory that helps the researcher to understand
the various software processes and products. With this understanding. the researcher builds de-
scriptive models of the processes and products that promote even greater understanding and
deeper analysis, Bvili outlined three phaxs in the evolution of the SEL During Phase 1. the em-
phasis - on - the enviroancnt and measurement. Phase 2 focused on improving
the process .nd tbe product. Phase 3 invdved packaging the SEL experiences for reuse, recogniz-
ing what was appropriate for thcSEL and implementing improvements to the SEL environment
He strcssai that the SEL proass is a hiauchy: improvement depends on understanding. and
assessment and improvement afways p r d e packaging.

Basili upbined that the SEL h e w o r k is based on three evolving concepts: the Quality Improve-
ment Pardgtn, the Goal-Question-Metric (GQM) paradigm, and the experience factory. These
concepts support the basic SEL belief that experimentation is necessary: no piece of rochnology.
method, tool, or process modd works under all circumstances.

One -le of SEL experimentation is the current evaluation of the Cleanroom process to drter-
mine its applicability for building flight dyixamics software. A small. controlled Cleanroom experi-
ment was N#rssfully run a t tk University of Maryland. From this experiment, it was determined
that tbc aacept of 'm programmer testing* enforces better code reading. that the Cleanroom
process is quite effective for small projeas and t t i t formal methods were hard to apply and re-
quired a Erir amount of skill. Building oa this initial work the Cleanroom experiment was then
~~toaIargcrcascs tudyafNASA. Kqfe~~~11skarned from thisstudywere that itis possible
to scale up from a smaller project to a larga one and that the use of Ckanroorn techniques survived
very dl in an enviroamcnt with changing requirements. Overall. there were increased productiv-
ity and a bwer error rate. A negative lessoa learned was that b e a r training was needed. An even

ltsson was that s u d softwarf engineering rquires allowing for change.

Basili stared that packaging technology requires two things: (1) the continual accumulation of
evaluated experiences in a form that can be effectiveiy understood and modified and (2) their
collection into a repository of integrated experience models. The experience factory concept sup
ports technology packaging by analyzing and synthesizing all kinds of experience models. acting as
a repitory for such experience, and supplying information on that experience to various projects
upon demand.

What is needed now. according to Basili, is a set of experience factories in a variety of domains, each
focused oa packaging local experiences. building and tailoring local models, integrating technolo-
gies, studying the issue of scale up, and developing automated aids. Basili encouraged researchers
to take advantage of the experimental nature of software engineering to provide gains both to indus-
uy and to the research domain in a symbiotic relationship; he further encouraged them to learn
from and build on the experiences of the SEL.

in a Production Enn nt P w 'mnment
Gaaubgs

In assessing the impact of a process improvement program in a production environment Page's
presentation a d d r d the question "Are we [CSC as part of the SEL] any better for trying to create
an optimizing process?" Page explained that the SEL proms improvement environment has been
c h a r a c t e d by a conscious, continuous effort to build higher quality systems by (1) understand-
ing the environment (2) proposing changes to that environment and then measuring and evaluating
those changes against baselines, and (3) capturing and packaging that experience to optimize the
p r o m and anticipate uncontrollables. These continuous efforts to improve have led to numerous
changes over the last 15 years.

Following are three views of the types of changes made in the SEL

a Life-Cycle Process C!mqcs: Testing activity was identified as a weak arm for the SEL
Investigations of various testing techniques, including the independent verification and
validation methodology (lV&V), were conducted. IV&V was judged to be inappropri-
ate for the SEL but code reading. found to be by far the most cost-effective testing tech-
nique, was added to the SEL process.

Tcchnology/Methodology Changes: Small improvements were experienced from simply
introducing a disciplined methodology into the environment, bur it was concluded that
gaining s i g n i w t improvement would require dramatic changes in the methodology.
technology, or organizational structure of the SEL The subsequent introduction of Ada
technology in the SEL produced very promising results in software reuse. leading to fur-
ther attempts to optimize the process. Cleanroom techniques have also recently been
successfulty used.

Organizational Changes: Three organizaclonal changes were involved: staff turnover or
growth. staff background, and dcnain growth.

- The problems presented by staff turnoverIgrowth were addressed by creating new
standards and guidelines and augmenting existing ones. These standards have
created a more homogeneous environmenf in which the use of consistent terminol-
ogy and procedures minimizes disruptions due to staff turnover. A Software Man-
agement Environment (SME) tool has also proven useful in allowing a manager to
compare a current project with past projects to determine the outcome for any new
project thought to be deviating from the process models.

- Staff background has changed over the 15 years from primarily mathematics and
physics to primarily computer science. The necessary flight dynamics training has
been provided through a required training program designed to help software
developers understand the engineering applications in the SEL environment.

- Domain growth (requiring a staffing increase from 35 to approximately 2q devel-
opers over l5 years) has been addressed by augmenting the SEL methodology.
making it more flexible and able to handle new applications.

Page identified several ways in which CSC has capitalipd on the learning from these experiences
and changes:

a A system dcvelopment methodology has been devised based on the SEL experience.
with standards and procedures developed to make that methodology more effective.

The SEL experience with quantitative management has been packaged in a manager's
handbook and in the "Data Collection Analysis, and Reporting Handbook" This gives
managers guidact; on how to monitor a project and how to predict what's going on.

Required training proynms have been developed for the different roles in system devel-
opment: analysis engineers, developers. testers, integrators. and managers.

Measurement-ba&d engineering process groups (researchers, experience factory
people, experimenter teams) have been established. These groups recommend changes.
develop measures to evduate the changes, and then package the information to institu-
tionalize the improvements found.

Citing statistis in several categories. Page related that although system complexity. general re-
quirements. and system size: have doubled. error ratcs have gone down. the cost of code has re-
mained relatively constant, and effort and schedule estimating are irnpr~ving. Therefore. the
answer to the question "Are we any better off?" is a resounding 'W."

ts o f 15 Years o f -
McGany's presentation focused on what has happened in the SEL over the past U years and dis-
cussed areas in which SEL measurement efforts have made substantial contributions to NASA1
Goddard's understanding of so- engineering.

During this mod of time, wer 75 to 85 projects supporting NASA missions in a production envi-
roament have been studied in SEL experiments. From these experiments, a large amount of soft-
ware metrics data has been extracted to generate the SEL data base. In addition. 150 to #)O reports
have been produced d-bing experiences and results of the experiments. McGany snted that
the S U has gained seven major insights from these project experiments and reports, with each of
the points substantially confirmed by multiple experiments and documented in the SEL literature.

Masuremati is an essential element of software process irnprov~cnt. McGany stressed that
measurement is critical in developing a baseline, in understanding changes to an organization's
process, and in assessing impacts of -hese process changes on its products. Betause of measure-
ment in the = impacts of process changes have been observed and determinations made if the
changes have in fact lead to improvements. Measurement has also proven valuable as a manage-
ment aid; for example. measuring error rates has provided an early indication of software quality.

Many pdential diversioas exist that can sidetrack a measurement-based process improvement
p v . The SEL has apcrienced three such areas of diversion: accssive planning and replan-
ning. over dependence on statistical anaiysis, and spending too much time looking at methodolo-
gies and technologies that in the end don't improve the process. McGarxy cautioned that these and
ather diversions should be watc'hed for and avoided.

Peop1e are tbe most important rcsource/technology. There is 3 tremendous difference in people's
potential. However. prudently applied methodolo~es/technologies can optimize the potential of
people. and this is where the focus should be.

EnvirwmenW chararttiistics should dictate the selected sohare engineering techniques. Spe-
cific measures/tcchniques may not apply to all domains. Methodologies and technologies must be
tailored to the environment with associated standards and policies tailored to optimize the partic-
ular processes found to be effective in that environment. The SEL definition of effective standards
reqGres that they be wrinm. u n d e d . legacy-bared, enforced, and memuruble.

Automation ism instrument of process improvement, not a replacement for process understand-
ing. Ody those processes that are very clearly understood and that can be done manually can be
automated. Tools can provide significant benefit to a well-defined experience base. and effective
tools must address defined process needs. Immature processes are not automatable.

The k i tage ofam enviroPmcnt wil l drollgiy influence the process followed. It was found that
making significant changes to the process nonetheless induces very& changes in the environ-
ment and the products generated. because corporate memory remains the overriding principle of
the way softwarr is dcvebped in that environment Significant process change also requires a sig-
nifi;ant apendimrc of effort and time.

Sohare aa k improved through tbe appropriate use of available technologies. A
combination of the appropriate software methodology and technology can produce a significant,
favorabk impact on the way software is developed Examples of technologies that have worked

successfully in the SEL arc code reading. design criteria. use of Ada. objected-oriented techniques,
Cleanroom. and management through measurement. Code reading has repeatedly been shown to
i m p s o h e rdiability a~essentially no additional cost. Design criteria standards have been
demonstrated to produce m m error-free software. Use of Ada and object-oriented design have

4 yielded substantial cost benefits through reuse. The Cleanroom technology has shown improve-
ment in reliability and produaivity and has helped reduce computer resources consumption. Fi-
nally. major changes in planning. adjusting, and control techniques have improved cost and
schaiuk estimatioa

McGarq stated that NASA's investment in the SEL has been substantial. but comparing various
aspectsof softwaredevelopment in the 19761980 timeframe with those of the 1986-1990 timeframe
demonstrates that there have also been many benefits. McGarry specifically cited such benefits as
vem cwtmlled. pxuiictable cast per line of code: increased reliability increased reuse; and de-
cr-d rcworlc Ocher major improvements have been increased manageability, with less depen-
d e n a oa the capabilities of the personnel; the production of more predictable and consistent
softwax and the ctivelopmenr of a rationale for the methods used.

ON 2 - PROCESS ~ O V E ~
-

Marvin Zelkowi~ of the University of Maryland chaired this session. In his opening ranark. he
I stated that the papers in W session addressed the following probkm: If most organizations use
- the typical "waterfallw software life cycle, what variations in the process will improve the qualiry of

the software developed?

?he three speakers in this session were Richard Nance of the Virginia Mytechnic h t i tu te (VPI), - Mark Arcnd of McDomell Douglas, and lbm Lydon of Raytheon

Naace reported that this work arose when his group was asked to A e w two sofovarc dcwlopmnt
methoddogies (A and B); to compare and evaluate thtm; and to assess the a#& and benefits of
continuing with both, using only one, or merging the two in some tashioa T k major neps in che
study were determining an evaluation approach. developing an d u a t i o a pnrcdurc. applying the
evaluation procedure, and summarizing the results

Nan- explained that since no comparative development procedures wen found documented in t!e
litcramre. a relevant d u a t i o n procedure was first dmloped and then applied The rationale for
VPrs evaluation procedure was the following: A project-level s o h a r e development mahodobgy
should have a set of clear objectives a process that clearly dcfina the principles nedcd to reach
those objectives: and. finally. adherence to a process utilizing these principles that produces a prod-
ucr with certain identifiable attributes. This philosophy must be tempxed by practical concerns.
such as keeping the framework open, adjusting to differing priorities, recognizing attribute Sam-
pling and being flexible in evaluation procedure application.

The study team determined a statement of objectives principles. and attn'buta for methodologies
X and B; identified objectives at the project level that led to principles at the praxss level; md lastly
defined attributes at the product level. The objectives and principles were then linked. showing a
high degree of interplay among principles. Properties, the measurable things that reflea the pres-
ence or absence of the desirable or beneficial attributes in the product. werc also dew.

Linkages between objectives and principles and between principles and atm3utes werc defrned
and substantiated. The evaluation procedure was then applied in a topdown approach to derer-
mine the adequacy of a methodology. Assessing the effectiveness of methodobgies A and B was
achieved through a bottom-up evaluation process.

Finally, Nana presented the results from comparing methodologies A aad B using this procedure.
He stated that one of the cvaluation procedure's greatest strengths was being a b k to describe
thing in terms that management could readily understand Future efforts win include atending
this evaluation approach to the issue of software quality assessment

Arend's presentation discussed a procedure for tailoring the documentation products and portions
of a methodology dictated by a given software process model. Tailoring is the act of taking a fully
defined software process model or methodology and selecting those items that are necessary based
on the nature of the specific product to be developed. Arend stressed that software quality, the
degree to which software matches the customerluser needs, is an important consideration that
must be ensured whenever tailoring is employed.

Arend explained that tailoring is usually guided by personnel experience. ability, and tradition. and
that the McDonnell Douglas team found no formal guidelines for tailoring methodologies. The
procedure they subsequently developed and foUowed in their study was a step-by-step, cohesive
approach to tailoring, one that had customer needs and product quality requirements as the driving
factors. Customerluser nee& were identified and an approach used to reflect these needs in a
subset of information products extracted from all possible information products identified in their
process model.

To characterize customer/user needs, s o h a r e quality assurance (SQA) concepts were applied.
SQA invokes defining quality factors and quality criteria. User-oriented quality factors were cap-
tured through the use of questionnaires and customerluser interviews. Quality criteria generally
more software oriented and more closely related to sofovare testability, were directly derived from
the quality factors. Once a g d set of factors that the user wanted in the sofnvare were identified. a
larger set of criteria supporting :he existence of those factors was identified. Development and
management techniques were then selected that would ensure the presence of these quality criteria.

In the ky step of the tailoring procedure. information products that matched or supported the
chosen development and management techniques were selected and tailored. Arend explained that
information products act as specific vehicles that force us to recognize. formalize, and adhere to
techniques to specify. design and implement software of appropriately selected quality. Therefore.
an appropriate subset of all possible information products becomes a significant aid in reaching
the goals of the given software project and especially in satisfying customer needs. k e n d also
stated that if a design methodology is not already imposed, one can be selected based on matching
the information pmducts chosen from a methodology with those recommended to achieve the
product's quality profile.

Steps remaining to be applied include refining the quality requirements questionnaire. devising a
way to weight questionnaire responses to quantify products' quality profiles. and developing a list
of information products sorted by quality criteria.

Software technology insertion (!XI) in this study consisted of two parts: (1) selecting a new technol-
ogy, typically a method or tool, and (2) creating an opportunity to insert that new technology in a
new or ongoing sortware project. Lydon clarified that successful SII can be a perceived success
(the user's sense of labor, computer cost. and time savings) or a real, measured success. This study
concentrated on perceived success by the actual project users.

For the purposes of this study, an STI case applied a single technology to a single project. usually
within a single development phase. The study involved U different projects with a variety of project
characteristics, 21 new software technologies, and numerous study factors. among them technology
type, maturity, insertion method, and project size.

l b o key people (the lead engineer and the department manager) for each project were surveyed for
their perceptions of success or failure. Based on these surveys and on responses to six study ques-
tions, each STI test case was ranked and evaluated. A close examination of the top 11 rated STI
cases indicated that the main reasons for success were (1) synergy within 3 project (a good relation-
ship between the using and supporting organizations and a positive attitude by the affected rnan-
ager), (2) critical need for the capability, (3) synergy between two technologies. and (4) use of a
mature and powerful tool. It was significant that three of these factors were organizational in na-
ture. with only one factor related to what was inherent in the technology. In these 11 cases. saving
computer costs may or may not have occurred, and meeting expectations was not so important as
the perception of time or labor savings or quality improvement.

In the bottom seven rated ST1 cases, the main reasons for "failure" were (1) the technology was
immature. (2) interface problems arose. (3) the technology was judged to be "not neededw by the
lead engineer, and (4) the wrong technical solution was used. For these least successful cases. the
technologies being tried-may ormaynot haveimproved quality butwere judged to have failed in
saving time. saving labor, and in meeting expectations.

Lydon reiterated that this study had focused on success factors and on perceived STI success. He
summarized the results as follows:

Saving schedule time and labor costs was the driving force behind the successful STJ
wes.

Improving quality seemed to be a necessary but not sufficient condition for successful
m.
Exceeding users' expectations was not necessary for successful Sn. but not meeting ex-
pcct.tioas was sufficient for failure. The lesson is that a support group or organization
must control people's expectations.

There was much greater success for competence-enhancing (incremental) improve-
ments than for competence-destroying technologies.

There was greater success with mature versus young or old technologies.

There was somewhat greater success for in-bouse versus outside supported technole
gies.

Lydoa ~ l a d that the next step is to lfnk perceived success with real success via software metric~
cdection. Rayrhon is irnpkmenting corporate-wide, automatic soilware mctrics collection as a
by-product of dcvtloprnent

The Session 3 chairman was John W e n of the Goddard Space Right Center. The three papen in
this session addressed different aspects of software measurement: Walker Royce of Taw dis-
cussed quality meuics and how they might be utilized. Bob Loesh of NAWJPL presented results
from a specific measurement effort, and Bill Agresti of the Mitre Corporation discussed using &-
sign measures to predict system quality. These measziement activities share the ultimate goal of
showing how measurement can be used to better understand and imprwe a software product

-tv Metrip for -re Develwent Mod& -
Royce's presentation discussed experiences on a 1-million-line Ada projecf entitled the Command
Center Processing and Display System Replacement (CCPDS-R). undertaken for the United
States' Ballistic Missile Early Warning Center. TRW recognizd that its transition to developing
this and other such large Ada systems would require significant internal research to identify
changes necessary for their existing software development and meuics ~ollection/analysis a p
proaches. Several such changes included adopting an evolutionary versus canonical waterfall de-
velopment approhch. using Ada as a compilable design language as well as implementatioa
language, and adjusting cost and schedule estimating techniques accordingly. A 350.WIine sub-
system was used as the pilot for selecting meaningful metrics, collecting data. and analyzing results.

The main objective of adopting the evolutionary development approach was to minimize rework
This required fucing things early and designing for change to accommodate requirements volatility.
The focus of TRW's sofovare quality metrics (SQM) was maintainability-how easy would it be to
change the software throughout the lifecycle. Interpersonal communications were also minimized
using a small. expert design team; a layered architecture; and Ada as a selfdocumenting, life-cycle
language.

Quality was defined as the degne of compliance with customer expectations offunction, pertom
ance, cost, and schedule. Quality metrics were derived from measuring the amount of rework and
plotting these measures as they evolved over time. The evolutionary development approach s u p
ported this quality assessment by permitting tangible insight into the end product beginning with
the very earliest stages of the program. For example. because a significant amount of coding. test-
ing. and product demonstration had already been conducted by critical design review (CDR). the
CCPDS-R approach allowed prediction in some objective terms of the future maintainability and
reliability of the software.

Development progress over the life cycle of the program included approximately six builds. reach-
ing 1Wpercent development around month 35. Royce related that fewer than 0.5 problems per
1000 lines of code occurred during the development and test phases. Addressing difficult design
issues early to avoid major "breakage" later, when there would be a larger configuration to main-
tain was a major project goal in containing rework Tracking total rework versus closed rework
provided useful data as a progress indicator. Insight into the activities of the test and maintenance
organizations and reacting to problems before they escalated were also important to the success of
the program.

Royce summarized some of the metrics from the effort. Rework Proportions: 6.7 percent of the
total manpower devoted to software was spent doing rework on configuration baselines. Approxi-
mately 135 percent of the total product had to be reworked prior to being delivered. Modularity

The average breakage per change was appr~mately 53 SLOC per system change order (SCO).
Chngeabili@ The average SCO took approximately 2 mandays to resolve and fz Change effort
became quite prrdictabk and stabilized over time. demonstrating the success of the approach and
theuscfulncssof the memcs. MabUhability: Maintainability was defined as a normalized rework
productivity. The softwan in this effort was determined to be approximately one-half a? complex to
change as it was to d h p from scratch.

R o p conclukd that sckcting and implementing meaningfbl softwan quality meuics require con-
sisrmcy of application. tSe use of amomated tools. and management and practitioner acceptance.
Onc advantag of the TRW approach was that it produced quantitative data for decision making
and for determining requirements compliance in areas such as maintainability. modularity. and
adaptability. It also provided historical data for better future planning. The bottom line is that
s ~ x h quality mctrics can be and arc being used effectively on large projects.

Loesh's presentation discussed metrics experiences cn the Real-time Weather Processor (RWP)
System being developed by JPL for the Federal Aviation Administration (FAA). The software-
intensive system. comprised ofappraximately 97,000 Ada statements and 280.000 lines of commer-
ciaL off-the-sheif software (COTS) implemented in C, has been installed on commercially available
hardware. Over the project's >year development period. JPL intensively tracked Software Prob-
lem Failure Report (SPFR) activity and performed extensive analysis of error counts, time-to-fi
requirements documents changes. and system specification changes.

According to Loesh approximately 40 percent of the 222 issues addressed by the design team dealt
with interface concerns, asnength predicted by Ada advocates and clearly exploited by RWP devel-
opers. W n g a slightly different perspective. nearly 66 percent of the total issues were identified by
people preparing test descriptions and procedures. This surprising statistic highlighted a major
lesson learned on the project: write the initial version of system test procedures as early as possi-
ble. The scope of the rework associated with such twt-procedures-related problem reports is nar-
rower because test procedures are written relatively early in the development cycle. when the
immature system is still of manageable size.

Loesh focused on data collected in the areas of system growth as a function of the number of
changes applied to the system and of testing and test strategies. Of the approximately 2100 SPFRs
generated to date. he stated that the majority have been submitted in the system integration testing
phase (SO percent) and in the CSCI integration phase (18 percent). When JPL observed through i ts
metrics program that only 9 percent of tile errors were uncovered during individual CSCI testing.
this type of activity was shortened because of the Icw return for the effort invested. This allowed
JPL to concentrate its effort on the more revealing CSCI integration and system integration tesring
phases.

During system integration testing for the Ada code, about 5 errors per 1000 Ada statements were
recorded, and there were approximately 23 errors per 1OOO camage returns. These numbers are
nearly one-half the rate typically found in JPCs FORTRAN projects of similar size. Loesh stressed
that this result demonstrated the benefit of Ada: product quality improvement is notable. even i f
transitioning organizations are stiil struggling with extended schedules and higher costs.

Loesh concluded with a discussion of error correction counts and the associated effort required.
observations relating to portability issues. tools used to support J P h portability analysis. and
levels of risk involved toconvert portions of the RWP code to increase its portability. At this point.
Lwsh steted that the RWP team. incorporating X Windows and placing emphasis on designing for
portability, has achieved approximately 75-percent to 90-percent portability for the future.

F i m , he stressed that the project's metrics analysis is considered preliminary. with adjustments
expected s h o w when the entire project is completed.

Agresti discussed an ongoing research project whose primary objective is to test the hypothesis that
Ada software qualiq factors can be predicted during the design phase. Project goals include devel-
oping a set of diagnostic capabilities and determining ways to quantitatively assess the designs of
large systems. The technical approach taken was to build multivariate models to estimate rcliabil-
ity and maintainability and to emnine the characteristics of the software design itself as captured
in the Ada design language. Agresti emphasized that since this project is still in the early stages, the
results given in this presentation were preliminary.

The study postulated that by analyzing a software system's static design structure. examining such
attributes as design cornplaity, coupling, and cohesion. researchers a u l d predict the quality
(number of errors) expected for a finished system. To test this notion the experiment looked at the
basic architectural decision choices possible in Ada designs.

Two estimation models were developed, one for reliability and one for maintainability. To allow for
several definitions of rcliabiliry and maintainability and to accommodate a variety of measures.
each of the quality factors was modeled as a function of several parameters. including design char-
acteristics, environmental facton. model parameters, and an error tenn. Design characteristics at
the architectural level are the features extracted from the design artifact. such as context coupling
and visibility, while environmcatal hcton include items extraneous to the artifact such as thevola-
tility of changes to the software and the reuse level. The error term accounts for any unexplained
variation

A simple notion of a static ALa architecture was used. in which Ada structures were composed of
design units from a "parts" bin and design relations from a "connections" bin. This required care-
ful consideration of the many different types of "parts" and the various kinds of "connections"
possible.

"Legal" Ada compilation units were composed from these parts and conaections and were used as
a framework to evaluate ?rojecc data on 21 Ada subsystems from the SEL data base. In particular.
the study looked at the software's reliability (error counts) and maintainability (tirne-to-
isolate-and-fm) data tracked by the SEL In general. there was good variability in reliability and
maintainability. the dependent variables. In some of the subsystems. compilation units were parti-
tioned into library unit aggregations. and the pattern of information access throughout these units
was also studied.

As an important part of the study, the team examined the number and scope of declarations made
visible to the units of a libraxy aggregation (via a "with" clause), looking for the effect that the num-
ber of imported and exported dedarations may have on a system's future reliability and maintain-
ability. The basic idea was to identify from where and at what levels external resources were
accessed for that unit aggregation. As a result of such analysis. simple sbtic measures including
the number of imports the number of exports, and the number of cascaded imports were compiled
and studied

Results from the wfy modeling efforts are still preliminary due to a limited amount of data. How-
ever. Agmti provided initid findings for the reliability modelcase, in which the dependent variable
is errors per 1OOO lines of code the relevant variables are context coupling. visibility. and volatility.
X good fraction of the variation in error rate is being explained [RZ = 0.72 (adjuted)]; context
coupling and change rate arc significant in explaining the variation.

I
! Since system and acceptance testing erron mi&t bcner reflect the architectural issues of interest

(i.e., the interunit relations captured in the design). a preliminary reliability model was determined

i for errors recorded in these phases (unit testing enor counts were excluded here). The error rate
variation again seemed well explained [R2 = 0.78 (adjusted)]. The context coupling and visibility
design characteristics contributed. but the major tnviroamcntal factor was reuse; custom code

I . was a strong indicator in explaining the variations in the data.
!

Agresti related that the team's ear@ results in formulating estimating models for reliability and
maintainability have been enanuaging. and that they look forward to exploring additional hypothe-

1 KS and to developing more robust models that can be subjected to validation.

Session 4 addressed software reuse. Sharon Waligora of Computer Sciences Corporation chaired
the session and gave some opening remarks on the reuse issue. One of the biggest challenges facing
software engineers and managers today is the ever-increasing demand to build larger. more com-
plex systems with more limited resources. If the cunent trend cc3tinucs. it is expected that both
adequate funding and qualified people will becomt more scare in the future. Industxy leaden are
looking to software reuse to help meet this chaIlenge. Some believe that lode reuse is the answer.
while othm believe that reuse can be maximi& only through changes to the early phases of the life
cycle. The thra speakers in this session addressed three aspects of reuse. Pablo Straub of the
University of Mary!and discussed the need to imprwe specifications so that designers are free to
create rcusabk components. The second speaker, Rush Kester of Computer Sciences Corpora-
tion, d m i an effort to chdracterize suarssfui Ada code reuse in the SEL environment as a
basis for devdopingguidelines for creating reusable components in the future. The final speaker in
the session was Don Reifer of Rcifer Consultants. Incorporated; his talk addressed reuse meuics
anu the resulting lessons learned.

In Software
l3!bsm&

Specification reuse has betn recognized as a key to achieving significant increases in software
reuse. However. specification reuse can be difficult because specifications are often subliminally
tied to p a r t i a h implementations. Straub addressed this problem by studying implementation
bias, or overspecification, which may be translated as the tendency for z specification to implicitly
direct the details of an implementation. His study produced a classification of requirements whose
goal is to define a framework to explain the nature of implemenution bias. The theory yields a
precise d e f ~ t i o n of bias and demonstrates that despite efforts to the contrary. bias is inherent in
specificatiom

Unlike the canonical software life cycle in which "specification" appears as only *he first phase.
Straub chose to regard the produa of each phase as the specification for the next phase. Straub's
successive refinement of the original specification (or 'staged specification" approach). and the
inherent potential for introducing new or expanding existing errors at each subsequent step, high-
lighted the need for high qudity, abstract (general). and complete specifications. Other desirable
qualities arc that specifications be coo~istent. correct, reusable. and tractable.

Straub explained that typically the rule to avoid overspecification or bias has been "Specify what
the system should do. not borr to do i t " But he also stated that keeping these terms clear in every-
one's mind especially through successive phases, isn't always easy and that the result of such confu-
sion is often thc werse of implementation bias. i.e, undenpecification. Underspecification in turn
leads to assumptions about the final product or may introduce other errors into the software.

To address tk over-venus-under specification problem Straub's study defined a framework for
classifying the requirements in a specification He discwed interrelationships among the many
elements of t l i is classificatioa scheme. stressing that among other things. an malyst's aim should be
to produce spccificatioru fra of atrameous attributes (those arising from misconceptions) or im-
posed attributes (those resulting from a restriction in method or language). Otherwise, the wnse-
qucocc of bias is that the sdution adopted is not the op9mal one. Additionally, he stared. bias
cannot be cornplete iy elirninatcd; as long as there are noocrplicit requirements. which is always the
case becaw specifications are rarely compkte. there will be a potential for bias.

Other considerations need future effort: the term requirement must be formally defined: a method
to identify bias must be developed; and a formalism to write specifications with attributes, such as
the origin of the requirement must be devised.

Another side effect of this research is estzblishing a relationship between bias and software de-
fects. Errors can be related to fictitious requirements; and faults can be related to bias, where bias
is a minor fault that doesn't make the system unacceptable but does make it nonoptimal. Within
this context. failure can be linked with inefficitncy.

Future efforts will focus on testing these ideas by measuring bias in a specific. sizeable project and
on exploiting the relationship betweea errors and bias.

The focus of this presentation was a description of graphical representations and analysis tech-
niques developed to study the reuse of Ada source code across 1990 Ada components irr the SEL
Reuse has been an imponant part of the culture in Goddard's Flight Dynamics Division (FDD)
environment throughout its entire history because of the assumption that there are economic bene-
fits directly related to the amount of code reused without change. With high-level. verbatim reuse.
systems can be delivered sooner and at lower cost; can be improved incrementally; and are more
reliable. One motivation for this study was to understand the effect of introducing Ada and
object-oriented design (OOD) in the SEL. which significantly increased the potential for code
reuse. A high degree of reuse was expexted due to the nature of Ada and OOD and to the clear
focus of the FDD application domain; however. the goa; of this study was to conJimr this hypothesis
through objective techniques.

Kester stated that this Ada reuse study was still in the "understanding and characterizing stage" of
the SEL's process improvement paradigm. The priinary goals of the current phase of the study were
to determine the patterns and trends of reuse and to understand the characteristics that distinguish
the reused from the nonreused components. Secondary goals were to identify candidate compo-
nents for a reuse library, identify the applicable domain of a componen:'~ reusability within the
environmenf and address some reuse-related configuration management issues.

Kester related that the FDD environment is mostly F0RTRA.N-oriented. and that FORTRAN
projects do em?hasis reuse but have not been so successful as the Ada projects. He illustrated this
by citing that some of the recent Ada sysitms are approaching 100 percent total reuse. with SI) to
M percent reuse without change.

Kester presented a summary of six types of analysis reports. many of them graphical representa-
tions. that were used in the study. These reports identified producer and consumer projects:
showed-the steady increse in reuse fro- one generation of ar! application to another; highlighted
component lineage, both forward and backwad; identified the granularity of reuse for a particular
project: depicted the leve: of functionality that .was being reused (i.e.. just a single component or an
entire branch of the call tree); and finally, reflected couuling between various compona;'s through
the Ada compilation order.

Some reuse patterns and trends have been observed. Initially. application-independent cc. ..;?e
nents. mostly utilities. were reused: now most reused components reflect the flight dyramics
domain. Also. Ada "generics" had significant impact on the amount of reuse without changing
components. and OOD significantly improved modularity and allowed component reuse from one
project to anotfier.

Future efforts wil l include developing guidance fcr improving the way software is designed to in-
c rese reuse to promote further economic benefit and investigating the characteristics that distin-
guish reusable components.

Reifer reported on the culmination of 3 years' work in reuse metrics ccnducted by a n a t i d team
of 40 finns under the auspices of theloint Integiated Avionics Workkg Group (JIAWG), chanered
by Congress to achieve commondicy in avionics systems acmss ali new-generation aircrait In this
effort. a shared technol~gy base is being used to achieve high degrtes of reuse on major p r q p m s

Reuse efforts over the past 20ycars have becn disappointing, in part kcaw many dnrralcorrsid-
erations impede government programs. Examples of these considerations include t!!e xed for
financial incentives for contractors to reuse software, thc lack of a functioning nuse identification-
insertion-maintenance framework in the s o h a r e industry. and the lack of a high-level govanmcnt
advocate to champion reuse. Despite these dificult challenges to achieving effective reuse Rdfer
stated that the advent of systematic reuse via an objected-oriented paradigm icvolving repsenla-
tions. languages. and technologies holds promise for the future. The significanceof w t r i a related
to reuse will likewise grow dramatically. These metrics wiil be used to govern fees in conmcts to
determine the efficiency and effectiveness of libraries. and td judge the quality of reusablesoftware
objects against minimum standards of acceptability.

Reifer reiterated that metrics are key to achieving successful reuse. but that for these memcs to be
applied effectively. they must be conlpatible with DOD processes. e3sy to collect and undusmd.
objective and unbiased in nature. predictive of the future. and incur a minimum cost for m u r e -
ment. He indicated that the JIAWG is working in several areas to define such comprdxnsive.
quantitative metrics, and he discussed two topics particularly important to the pmicipaats: the
acquisition ratio and :he reuse ratio. The object acquisition ratio is a weighted average involvins
the number of reusable c3fware objects (RSOs) acquired per collection in relation to other attrib-
utes of :he collection. ["RSOs" were defined as lifecycle products developed to 'be reusea(su& as
designs. algorithms. code, and test cases) and a "collectionv was defined as a homogeneous group-
ingof clustered objects (such as test casesj.] Similarly. the object r e w ratio inwlves the number of
reused objects in a collection as a ratio of the total number of objects in that collection, the number
of col!ections. and a weighting factor for each collection.

The study found that the cost of packaging reusable objects varied from 10 percent (for limited
reuse packaging) to 36 percent (for extensive reuse packaging). when a reuse-iasertion i n k t r u c -
ture was already operational. Costs would be higher without such a fullctioning infrastructure.
However. the benefits gained from reuse mnged from Bpercent savings (for planned =use) to
@percent savings (for optimized. domain-specific reuse). Ratios were also used to obtain a
multiple-instance reuse economic model to look at cost benefits across multiple deliveries m a r ~ o r -
tize ;he cost within and across projects. The group continues to refine this model to predict cost
savings as a function of the number of reuse instances and to indicate the breakeven point Quanti-
fying and analyzing software quality factors. such as correctness and testability. and defining simi-
lar quality criteria for large reuse libraries are additional areas of importance to the JUWG.

Because of the wide range of metrics efforts described. Reifer stated that r e w across 143 a m -
pieted Ada projects has increased from lo-percent nominal in 10 qplication domains in 1987 to
21-percent nominal this year. To funher improve these reuse percentages. theJIAWG is attacking a
number of nontechnical bamers that inhibit the effective use of the technology base.

Based on this strong track record. Reifer concluded that the JIAWG isnot just studying re=-it is
doing reuse.

W I O N 5 - PROCESS ASS-m

Session 5 was chaired by Rose Pajerski of the Goddard Space Right Center. The presentations in
this session focused on software process assessment and the need to have an understanding of the
local environment before an attempt is made to improve any part of the development process. The
first presentation, given by Kyle Rone of IBM. covered the entiresoftware life cycle. The other two
presentations in the session invoked more specific pans of the process. Amrit Goel of Syracuse
University discussed process assessment activities in the specifications phase, while John Kelly of
N W J P L addressed the implementation phase.

Cost a n d t v P l f o r NASA
Kikm!x

Building large, complex programs is very difficult but earlier and better planning can help mini-
mize or avoid some typical problems. Rone's presentation addressed how to do planning for cost
and qualityon such large programs as the Space Station and Earth Observing System (EOS). which
require very particular and careful planning.

Several essential considerations are key to successful planning: (1) ensuring a compliant product.
(2) generating the product within budget and within schedule. and (3) producing a product with the
appropriate quality level. These requirements must be integrated and planned concurrently and
consistently across releases.

Rone stressed that once models of an organization's process have been defined and tested. manag-
ers must be able to calibrate their models to reflect process changes. identify project considerations
different from experiences on previous projects that may also induce changes in the models. snd
periodically revise the set of management and planning techniques to reflect their environment
more realistically.

As an illustration of the evolution and refinement of IBM's estimating models. Rone reported that
size estimates for Shuttle flight sohware progressed from + 11 percent using the early model to
-6 percent using the middle model. to only -2 percent on later missions. More astonishingly.
ground system estimates came within 1 percent of actuals overall. Discrepancy report dam from
the Sbuttle were also plotted over time and produced a well-defined Rayleigh curve. These curves
were used to estimate error estimates across the process.

Given a set of models that truly reflected the processes of the environment. a methodology was
followed for doing both software cost engineering and software life-cycle quality management. For
cost engineering. user requirements were broken int J a set of functions and the system size was
estimated Estimation models were used to predict the labor effort, phase it across time using a
Rayleigh curve. and develop the resultant schedules. Other cos&such as subcontractors and over-
head. were also added, resulting in a project cost plan. Periodic feedback and replanning allowed
requirements changes to be incorporated and opcrational increments to be factored into the plan.
Rone stressed the critical importance of measurement as the cornerstone oftheir assessment and
replonning cycle. A similar process was followed for somwPrc life-cycle quality management

Rone cited an asymptotic curve relating the product error rate to the percent of the project budget
spent on independent testing (W&V) as a particularly beneficial result of planning based on
metrics. It was found that spending much below 10 percent on TV&V yielded an unsatisfactorily
high enor rate. Above that basic figure. the optimum percent spent depends on the quality

requirements (criticality) of the particdar project. For less critical projccts such as tods and mis-
sion control systems, 10 to 20 percent yields good quality (one error per KSLOC) for the kast expen-
diture. For highly critical projccts such as a Shuttle model, 80 percent is spent for IV&V to reach an
error rate of only 0.1 e m r s per KSLOC. Spending more than that is counterproductive since small
gains in quality require enonnous deltas of apenditure.

'Ihe software tool "Squeeze" supported Rone's team in performing software cost and quality engi-
neering for this study and took into account such project characteristics as requirements, corn
plaity, size, and criticality, as well as process and environmental charactuistics,.

Rone concluded that managers must plan and continu* replan and that well-developed metria
are an essential element of this cycle. The essence of metric management is to demand thaa meas-
urement k used to assess process changes and to provide a more disciplined framework necessary
for effective@ managing large projects.

The objectives of Goel's experimental study were (1) to investigate the effect of using formal specifi-
cations on project productivity, reliability, and complexity and (2) to compare the results with
project versions developed from infonnal specifications. Formal Z specifications were developed
from infonnal specifications for the NASA Launch Interceptor Program (LIP). These formal spec-
ifications were then used to develop three independent versions of LIP in "C". Each study version
was tested against a set of 54 test cases from a previous experiment involving LIP and was also
executed for 1 million tcst cases to simulate operational testing.

Goel presented a table comparing program metrics from three different programmers writing "C"
code from Z specifications 1 enus three other programmers writing Ada code from informal speci-
fications. Metrics included the number of source lines of code each produced. the numbcr of com-
ment lines, and the system complexity (a combination of internal and external complexity, where
the external complexity measured module inter-relationships). The "C" programmers produced
source lines of ;ode ranging from 373 to 669. with system complexity ratings ranging from 53 to 81.
while the Ada programmers produced source lines of code ranging from 691 to 85L with system
complexity ratings ranging from 297 to 334.

Productivity numbers were examined, and consideration was given for the time that some of the
study team programmen needed to learn the Z formalisms and towrite the Zspecifications. Goel's
analysis of development effort figures indicated that a considerable amount of design work had
actually occurred during the specification phase. somewhat skewing the analysis. The ngrnber of
errors (not including compilation errors) found by the programmers was also tracked. Program-
mers A and C. who had written their own Z specifications. found all errors in the development and
unit testing phase. while programmer B found most errors in the later, functional testing phase.

Z specifications were judged to be helpful in several areas: certain ambiguities were resolved by
looking at the problem more formally; it was possible to express some invariant properties of the
system more clearly; and some types of analytical faults were avoided as a direct result of using very
fonnal specifications. The use of Z specifications also exploited the repetitiveness of certain launch
conditions; this was helpful in designating functional groupings for design and testing.

Goel drew the following conclusions from this study:

a Use of Z specifications was clearly helpful in reducing errors.

a Based on a few metria. it appears that the complexityof code developed from Z specifi-
cations was 1011~.

a The total effort involved, including learning Z formalisms and developing the formal
specifications, was comparable to that for developingvenions from informal specifiu-
tions.

However, Goel stressed that this was a very small experiment and did not provide conclusive evi-
dence about the superiority of formal specifications over informal ones. Further work is necessary
to explore the feasibility and usefulness of Z for large problems (scalability) and to investigate the
reusability of such formal specifications.

Kelly presented resubs of a 3-year effort at JPL to analyze data assessing the value of software in-
spections. IPL inspaaim are detailed technical reviews performed on intermediate engineering
products (im-phase rwicws); t h y are highly structured and well defined. carried out by a small
group of peers, and controlled and monitored through metrics and checklists. The 203 softwan
inspections involved in the study represented approximately 5500 h o w of worktime and included
examinatioas of requirements, architectural design, detailed design, source d c test plans. and
test procedures.

Inspection elements tailored to the JPL environment included participants and team composition.
training, and support documentation. In addition. a shoe optional "third-hour" phase was some-
times used during the inspection mating to clear up discrepancies and to discuss possible fixes fgr
the defects found. Appraximatcly fivt team members were used for an inspection, with a total staff
time of around 28 h a m . Input to the process generally included about 35 pages of documentation
or code and the output from the process was about 35 pages of documentation or code less 4 major
defects and about U minor defects (where a major defect was defined as one that would cause the
system to Eiil or to miss a requirement minor defects were all other nontrivial defects).

One major memc ustd to monitor and control inspections was the number of defects found per
page Defects found per page versus pages per inspection tapered off as more pages were covered
in a £ixed 2-hour insptioa. It was determined that to maintain quality, limiting an inspection to a
maximum of 40 pages optimized tbe ef?ort. Another nrajor metric was defect density versus
inspection type. AnaIysis showed that a significantly higher number of defects existed in mquire-
menu than incode. and asignificantly higher number of defects existed in high-level test plans than
in low-level test plans. ?his indicated that the m j o r quality problem at JPL during code develop
ment is thewriting of rcquirtments. Predictive modeling of the defect density versus the inspection
rjpe showed an expcmentially decreasing density of defects as the code level was approached.

Kelly reported that generally about V2 hour was required to fuc a defect found early in the life cycle
compared with 5 to 17 hours to fix a defect found during test. Even if the time to find the defect is
added to the lf2 hour time to f% it is much cheaper to fa the defect early than it is to fix it during
testing. One rationak is that defects multiply themselves as the phases move on, creating a "tree-of
defects. Inspection dm the defect to be found at its root node and to be rued there, which is
much less expensive

Major conclusions of this study were the following:

A wider spectrum of errors was found using inspections than was found with previous
techniques the most p r d e n t types of errors were in the areas of clarity, logic com-
pleteness. consistency. and functionality.

Increasing the number of pages in a single inspection decreases the number of defects
found with about 40 pages being optimal.

llx hi* defect density was obsened duriog requirements inspections.

Larger team sizes (6 to 8 people) see3 to be justified for higher level inspections (re-
quircrnents inspections), because they provid9 a broaderviewpoint and seem to provide
an increased defect finding capability.

Code inspecrions were superior cmr a single-person 'code audit. However. future rr-
search may be able to increase the return on investment in code inspections through the
use of ammated sappcur.

livo panels w e n added this year to the Software ~n~ineer ing Workshop. The first panel addressed
how to establish a successful measurement program. ?he second panel was designed to stimulate
discussion by highlighting the opinions of ape% in the field of software engineering.

The first panel of the workshop involved discussion by four distinguished panelists who have done
extensive work in areas of software engineering such as measurement, experimentation, and data
coilaxion: Michael Daskalantonakis of Motorola Bob Grady of Hewlitt-Packard Ray Wotverton
of Hughes Aircraft Company. and Mitsuru Ohba of IBWJapan. Frank McGarry of the Goddard
Space Flight Center moderated the panel. Each panelist was asked to relate his experiences in
defining and working with a successful measurement program and to convey his experiences ta
other practitioners who may want to implement such a facility in their own organizations. Some of
the considerations of interest are what does the measurement program look like, what obstacles
had to be overcome. what were the costs and benefits, and what is the long-range outlook

Motorola

&ginning in 1988. a company-wide program on software metrics was established at Motorola. The
primary emphasis oi this program has been establishing an organizational infrastructure to sup-
port the use of software measurement technology across the product groups and to ensure that they
use tbc measurement technology effictively to obtain the maximum benefits. Three important ac-
tivities have been key in Motorola's successfully launching its metrics program: (1) establishing a
Metria Working Gmup (MWG) across all Motorola business units to design a standard set of
metria; (2) creating a Meuics Users Group (MUG) to provide a focus for implementing software
metria on the projects. to look into automation (tools), and to serve as a foruin for exchanging
ideas; and (3) identifying meuics champions within the corporate research and development
groups uld within business units. Important 2-day training workshops were held to promote the
eff& use of metrics on the projects. and followup consultation was also provided. A minimum
set of software metrics, now required by the Motorola Quality Policy for Software Development,
was defined and additional metrics were used by projects as necessary.

Daskalantonakis sumrnarited the overall philosophy of the measurement program at Motorola:
The gal is not measurement. Tbe gorl is improvement through measurement, analysis, and feed-
back.

While its program is currentiy considered a success, Daskalantonakis discussed two obstacles
Motorola cxpcricnced in establishing its measurement infrastructure.

a A "system" had to 3c set up to collect the software metrics data and to analyze the data
for process improvement This required obtaining tools to automate mrrrics collection
and analysis activities.

a Software developers and managers had to be convinced and reassured that meuics data
would not be inconsistently reponed. misused. or misinterpreted and that the collection
effort c w t would not unduly burden projects. lfaining and additional guidelines are
being used to cddress these culturally related issues.

There have been cwts to establish the program as well as operational costs. Program costs include
man-hours for MWG and MUG m e t i n g and tool development costs. Operational costs for the
metrics program from sample Motorola divisions have been 1 percent or less of resounrs. Post-
release metrics costs have been insignificant compared with benefits, but more work needs to be
done on automation. In general, DasMantonakis related. the w e d l cost is considered to be ac-
ceptable md justified.

The benefits realized by Motorola have dearly justified its investment in a metrics program:

a Software Quality Awareness: People have started thinking about the software process,
tbe quality of that procas, and the quality ofthe resulting product. Metrics data have
helped the understanding of several problems have demonstrated the severity of these
problems, and have spurred actkn toward solutions.

a Establishing Baselines and Goals: Metrics have helped establish baselines to identify
current progress and to set up aggressive goals. leading to significant quality and pro-
ductivity improvements.

It is not the metrics themselves that have made the difference. but the actions taken as a result of
looking a t the data; the benefits stem from analyzing the data and feeding back information to im-
prove the process. In addition. thenare many indirect benefits, such as improved acceptance crite-
ria and improved schedule estimation.

-Daskalantonakis concluded with a discussion of several areas expected to yield long-term benefits
to Motorola as a consequence of its metrics initiatives:

a Learning From Mistakes Future problems can be avoided by iooking at metrics data
from previous projects and learning from their mistakes.

a Improvement in Customer Satisfaction: Improved product quality will promote im-
proved customer satisfaction.

a Cost Reduction: Improved quality and reduced rework cost will lead to significant cost
reductions. In addition. resources will be freed up for new software development work.

a Cycle l ime Reduction: Productivity improvement is expcctzd to reduce the cycle time.
allowing products to reach the market in a timely manner.

Again, Daskalantonakis emphasized that metrics can only highlight the problems and suggest
ideas as to what can be done. It is the action taken thar brings the benefits.

Hewlitt-Packard began its metrics program about 7years ago as part of an overall productivity and
quality improvement initiative. The starting point was a standard, although primitive, set of mct-
r i a consisting of codc volume, effort, and defect definitions. Over the past 7 years, a supporting
infrasuucwc has bten put in place, with activities at tbe corporate level to support the metrics
effort and to provide divisional process assessments. Most of the productivity and quality improve-
ment programs are brought together at the product group lcvcL At the division level. metrics efforts
are well supported through the quality managen and productivity mnagm. the quality managers
focus on the quality of the product, whereas the productivity man- focus on the efficiency of the
processes. lb support all of these measurement efforts, training needs have bten addressed
through an internal 2-day metrics class that has evoked wer t i m

At the corporate levet two major software goals, identifia-i as "10X improvanents," were estab-
lished in 1986. The htst goal was to improve by8 fector d 10 tbe portrrlase product defect density
over a %year period. The second goal was to improve by 8 factor d l 0 tbe number of open serious
and critkd dcfccts, also wer a 5-year period. 'Ihis second goal axnplernents the first one. Both
were dirccdy tied to defects, rather than cost, assuming that there is an indirect relationship to cost.
?here has been progress toward meeting both goals.

Grady described the Hcwlitt-Packard metrics program in terms of a hierarchy. He identified five
different stages:

Acceptance of measurement

Availability of project trend data

Use of common terminology necessary for data cornpaisons

Experimenting to validate the best practices

Performing analysis and automated data collection with expert system support

In the Hcwlitt-Packd arpcriencc, the first three stages were accomplished relatively quickiy,
within the fint 2years. Now, much time is spent with ctpcrimentsvah'dating the best practices and
in understanding those things that are going right. The fifth stage wil l take more time to achieve.

Grady discussed four obstacles to establishing a rnetrics program that were more cultural than
technical in nature:

Paceptions of Meuics: The basic perception had to be crrrercome that memcs were fo-
cused only on code analysis. In the industrial area. the fcding is that metrics are driven
fran business types of practices in terms of project Mcldnq. However, many other items
such as effort, quality, and productivity projections venm actuals are also nccasary.

Promotion: Three separate Hcwlitt-Packard groups (top management, project manag-
m. and engineers) had to be convinced of the benefits of metria and had to be shown
hoar to use them correctly.

l'bo-Rapid Change: Grady cautioned against the tendency to ay to chang things uw,
rapidly in what is essentially a slowly changing process. For example. the Hcwlia-
Packard metrics effon found the Goal-Question-Metric paradigm useful in overcoming
the "leap before you look" ,qndrome. Other driven influencing w r a p i d change wen
the "more is better" and "desperation for a breakthrough" syndromes.

Orpizational Changes: Organizational changes c a w problems in transitioning new
managers into an already-established merrics program. Getting a baseline in place can
help with this kind of problem.

Grady next shared aperiences in six arcas that Hewlitt-Packard considers successes in its pro-
gram:

Bottom-Up Approach With Metrics Council: A hand-picked meuics council was
formed, involving approximately 20 of the more experienced midline managen. Their
goal was to identify a set of measures that they felt would be useful and meaningful in
managing projects. This approach promoted "ownershipw and participation in the pro-
gram

Started Small: The effon started small, using the set of th ra primitive metria &-
scribed earlier. It is felt that starting small and building on that foundation was the cur-
rect approach.

Creating an Environment for Reinforcing Success: This invoked (1) putting in place a
2-day training program for all functional managers in the company, with the primary
focus of teaching them a b u t the fundamentals of software development as well as met-
r i a : (2) establishing internal Sofnvare Engineering Productivity Conferences. with em-
phasis on reporting pradid, rneaswable improvements in quality or productivity; and
(3) identifying productivity managers.

Establishing a Metrics Class.

a Providing Good Tool Support: A good set of minimal but adequate tools was developed
to suppon the metrics collection effort.

Grady coilveyed that talking about specific costs and benefits misses the real issue; there is. in fact.
no choice. Those organizations that do make the invesunent in a metrics program to better under-
stand and improve their development process will have a more informed basis for making decisias
and. thus. will have a competitive advantage.

He cited a specific example of the benefits of Hewlitt-Packard's applying metrics w the area of
failure analysis. The causes of defects were tracked and categorized into &fect types such as error
checking. logic implementation. user interface. integration software testing, standards, and dam
definition. Also identified were the software development phases. such as spea'ficatioas/
requirements. design. code. and ekronmental suppon in which the enon were occurring. This
provided an wemew of the major types of defaxs for each division. allowing improvement efforts
to be focused in those areas with the most errors.

Future benefits are expected born continued uw of failure analysis, u well as frcm mnthusd PUT-

suit of 10X improvement goals. A h . the long-term wend of reduced defects will have a s i @ i m t
impact in remu of shifting s o b e effort from maintenance to new development.

I l a l k a m

Wolverton presented an overview of the I?T programming measurement effort conducted from
1981 to 1986 at its Programming Advanced Technology Center. The g d was to invest SlDO million
over a 5-year period and earn the con;pany a return of $1.1 billion through productivity impmve-
ments. Wolverton's particular job was t o p m e the actual cost savings. Programming measurement
invoked developing yearly baselints for progress comparison. a project performance reporting sys-
tem for management, forecasting and diagnostic mauremcnt procedures for use by project per-
sonnel, and an enhanced integrated measurement system. Over a Iyear period information from
106 projects supported data collection, cost model develop men^ and cost and quality trends dem-
onstrations. A lesson from this experience was that undertaking such an ambitious metries pro-
gramrcqaimtime.

There were many programming measurement objectives, but four were the most prominent

Provide an early warning of project productivity, quality. schedule, or cost difficulties

Improve the development and defense of competitive bids

Compare I?T performance with overall industry performance

a Improve the allocation of resources

The measurement strategy involved dividing responsibilities between the "Programming" (metric
study) group and the "Unit" group (individual lTI' companies). The Programming group estab-
lished and enhanad the methodology and tools and insul?ctcd the Units in their use. The Units
established their responsibilities and collected and analyzed the data.

Activities needed to achieve the program's objectives included identifying baselines and leading
performance indicators; formulating resource estimating techniques and quality profiles promot-
ing programmerlmanager development in the metrics area; and conducting programmer compe-
tency and task analyses. Wolverton indicated W s priority focused on identifying leading
indicators: they wanted an online tool that would allow Il'T world headquarters to determine at will
the performance of any of its world-ivide units.

The overall strategy to study these performance factors involved the use of an online network meas-
urement questionnaire. The effort collected basic data (defects, resources. and costs) and environ-
mental data (requirements, practices. and products) and organized this information into a data
base. Univariate analysis of these data highlighted U major factors found to affect programming
productivity, quality, and cost. These factors included modem programming practices. program-
ming personnel, the organizational structure, available tools, project complexity, and computer
availability. Multivariate analysis was then performed by product category to produce the !.litid
model.

The research identified strongiy correlated groups of productivity factors. Higher produdvity was
influenced by many factors, including requirements specifications factors (personnel experience
and the number of rewrites n e c c s q k higher usage of modem programming practices higher
client experience and partidpation; lower sMing level; and larger target and development
computers. It was also found that dI k t o r s Cb8C improved productivity olso improved quaIity. In
addition. the presence of one productivity factor was not sufficient to assure higher productivity1
quality, but the lack of that factor was enough to guarantee the lack of high productivityflow error
rates. Productivity mends .and constraints were tracked to validate the results.

F m r s wen categorized as cootrollable (such as staffing level and nperiencc. the devdopnent
computer, requirements specifications) unmtrdloble (such as the target computer. timing,
memory utilization, and the application complexity); and other nrhbles (such as incomct data,
newness of application/desigs and documentation requirements). This categorization grarped
information in terms that managers could understand ?be U productivity factors explained 213 of
the variation in productivity; when combined with developed statemarts the l3 productivity fac-
tors explained 90 percent of the variation in the effon Knowing wlmt a n k coatroUed is impor-
tant: this effort determined that about l/3 of the impact on productivity can be con-

One key finding identified by Wolverton's effort was the relationship between productivi y and
quality, with quality defined as "reduced defects." The number of testing dcfects/KLOC were
plotted versus a productivity measure. A quality baseline was determined to be 20 emn/KLOC.
based on the cumulative experience of the study; 90 percent of the projects experienced tbis defect
level or less. Xvo projects were much higher in the number of defects in both of these projects,
there was a great deal of r e w . Wohrenoncautioned t ! t latent erron in untested reused code can
cause this kind of result.

The Units reacted positively to the introduction of the rnetrics program. but indicated that many
factors inhibited its effective application (insufficient resources and no time to collect data). How-
ever, when one Unit achieved positive results, other Units became interested in creating tbe same
environment. Following initial negative feelings related to the effort and time required for acquir-
ing data and testing proposed measures, the Units gained more confidence in the program and
chase to continue an R&D phase of the project.

The Japartcse generally believe that "the thing other people do are the right things to do." In the
software con= "other people" could mean other organizations within a division. other divisions
within a company, other companies in the industq, or other industries. Ohba explained that this
belief promotes a p t deal of learning from othm, and that software measurement and analysis
activities in particular have bcdned from such a perspdw.

The foltowing are the standard measurements used in Japanese software measurement programs:

Size 0: Nonawmented aura lines of cock including reused source

A-od~'vity: LOC per programmer month

Quality: Errors p e r m

These measures are conceptually the same as tbose used in tbc United States and Europe.

%establish a measurement system. there had to beagreement onwhat should be measured. includ-
ing

a What kind of data should be collected

How data should be analyzed (modds techniques)

How results should be fed back into the management and development processes

The answers to these questions vary. becaw no standard measures exist. This has been a major
obstacle for the IBMIJapan program. Much time has also been spent on determining the methods
for data anaiysis. Software moddsare being heavily used to estimate the number of errors remain-
ing in a program and to estimate the required maintenance effort. However. because so many com-
mercial models are available. clxxxiing the most appropriate models to be used requires much
discussion

Ohba discussed several activities a cenualizui organization must perform to establish an effective
measurement program: define mcasures and evaluation systems define the data to be collected.
choose simpk methods for a d y z k g data. develop tools for collecting and analyring data. maintain
the data base, and provide education. In Japan. measurement systems zre defined either by (1) a
central s o h e technology support group or (2) a quality assurance or equivalent organization
?hese groups define the measures and the way data arc collected based on de f- standards or on
working papers from various committees. Data collection and analysis are done by project groups,
not by the centralized group. With all of these required activities an effective measurement pro-
gram is expensive.

Ohba stated that it typically takes at least 3 years to see the changes or benefits from a mcasiument
program but by implementing a consistent measurement system, IBWJapan has acliieved the
following gains:

a Management by quantitative objectives: setting objectives and reviewing achievements
(c-g., software reliability growth estimation)

a Standard and coasistent control of the software process by defining the upper and lows
amml limits

a Incremental and continuous process improvement by setting an annual goal for an orga-
nization

As a result of IBWJapan's applying such software measurement techniques and
measurtment-based management approaches over the last 10 years, their defect rate has been re-
duced from 5 errors per KLOC to 0.1 error per KLOC.

tBM/Japan's long-range goal is the optimization of its software process. This would involve the
foilowing

a Design the best process for a project based on past experiences

a Properly monitor and manage that process based on quantitative data analysis/
assessment

a Reconfigure the process dynamically, if needed, based on the data analysis results and
experiences

Ohba d-bed the "software factory" as an overlapping set of three elements: a process, methods1
techniques used to implement the process, and tools/measurements to support the methodst
techniques. In a specific application domain these elements and their region of intersection can be
standardized. This ideal "software factory" is the long-term benefit that can be achieved based on
this measurement system.

The second panel of the workshop irrvolved discussion by five experts in the field of soitware engi-
neering. The fint four panelists were Barry Boehm of the Defense Advanced Research Projects
Agcrq Information Science and Technology Office (DARPA ISTO), Larry Druffel of the Software
Engineering Institute (SEI) . Manny Lefiman of the Imperial Coilege, and Harlan Mills of Software
Engineering Technology, Ioc. (SET). Vic Basili of the University of Maryland provided input as a
fifth panelist and also moderated the panel. Each was asked to assess the rrogress of software
engineering in the 1980s by addressing the following questions:

What have been the most significant achievements for soitware engineering in the past
10 years?

What have been the greatest disappointments for soitware engineering in the past
10 years?

What are the objective or subjective criteria supporting your assessments?

What soitware engineering advances will make the most significant contribution in the
next 5 years?

The panelists found amazing similarities in their views of achievements and disappointments in
software engineering in the 1980s. Top achievements agreed upon by most of the panelists included
the study of process to'improve it, the evolution toward object-oriented notions. the creation and
standardization of Ada, the establishment and importance of metrics, the evolution of formal
methods. the creation of the Software Elgineering Instiiute, the improvement of life-cycle models.
and tbe availability of CASE tools in industry. However, there was a dark side to many of the
agreed-upon achievements. The disappointments most often cited were in Ada use and Ada edu-
cation. CASE tool integration standards and use. and the lack of understanding and implementa-
tion of s o w a r e engineering as a discipline in both industry and education.

Looking forward the panel suggested the areas of most progress in the next decade. These include
the maturation of objectsriented techniques. a focus on software architecture and the true engi-
neering ofsoftware. more use and consistency of metrics. and process improvement through meas-
urement.

In the lively question and answer session that followed, the panelists conjectured on how to imprcve
futuresoftware. Barry B o e h focusedon people: 'Double your salary structure. and get rid of your
unproductive people," he said, to the delight of the audience. Harlan Mills felt that we must in-
crease the use of mathematical and formal approaches: he said. "We're not doing things the right

. . way," but also agreed with Boehm that "We're not using the right kind of people." Larry Druffel
. . suggested that designers must build changeability into the original design to lower maintenance

costs (agreeing with Boehm that older sofnvare should be "obliterated" rather than maintained).
. - Manny Lehman further supported this point by stating that. because society is becoming more and

more dependent on soitwarr. we must also minimize the response time to change; he said that fu-
ture software must be designed so that "changes can be made in real time." in response to the

. . changing world that soitwaresupports. Vic Basili offered that we need to focus on process imprwe-
rnent. so that we can "predict and control future software development".

' .
Detaikd summaries of each panelist's presentation follow.

BARRY Born

Barry Boehm, currently direstor of the Defense Ad-
vanced Research Rojecu Agcncy Informatioa
Sciences ~ o l o g y Oflice (DARPA IFTO), was
formeriy chief scientist at TRWk Defcme Systems
Group. He has authored smal books and m n nu-
merous awards in the amas of software engineering
and s0ftm.m measumncnt

Boehm summarized his list of the primary disappointments and achievements in softwart engi-
neering during the 1Ws as follow, noting that then axe correlations between thenr

STARS

W R ACHIEVEYZNTS

STARS

OBJECT-ORIENTED METHODS

M E SOFWARE ENGINEERING
FJslmJE W)

C

Boehm stated that the Software Technology for Adaptable and Reliable Systems (STARS) program
had a promising start in 1982. but, due to a variety of factors. progress in the mid- to late-198Q was
disappointing. Now, however. Boehm feels that STARS is achieving progrtss in both the software
engineering process and product areas. In D86. the suucture for defining the products sought by
STARS was revised. These products would now be software support mecfiarzisms focused pri-
marily on tools but also on software reuse and the process bywhich tools should be applied. STARS

MAJORDWIPWI)(TYLNTS

STARS

MEIRICS USAGE

SOITWARE ENGINEEMNO
EDUCATION

placed particular emphasis on choosing really wellqualified people to perform tbc work Cmtrac-
tors were selected based on demonstrated ability and th i r commitment to building a commcrci&

PROJECTIONS FOR THE WTURL

CONTINUED PROGRESS THROUGH THE SEl

MATURATION OF OBJECT-ORIENTED TECHNIQUES

viable software support environment Today, &rnpanics such as XBM. Unisys. &ing and DEC
are well on the way to producing the kinds of software environments that support reuse and provide
good process models.

Boehm stated that great progress was made in software process assessmat during the 198Ils. At
the beginning of the decade, almost nothing was being done in this area The Air Fora Aertmauti-
01 Systems Division did produce some good checklists for capability assessments and a team from

the SEX created the SEI q u e s t i d r e for software Frocess self-assessment. The thoroughness of
the SEX'S assessment questions and the fact that there is a bit of a camt-stick approach involved
prompted people to taLe software process concerns scriousl~. (carrot = 'bcre are some thing
thatwill make you better"; stick = 'DODwill use these bsues from time to time as sourceselection
criteria? Companies that haw taken these considerations seriously arc now doing a much better
job of pmducing software.

Howmr. Bcchm feels the aciskvantnt in process assessment is mt yet Nlyconsummated SEI
p r o m maturity k l s L 2, and 3 are defined quite well. but the definition of Level 5 is not very
extensive. Thought is needed on ciarifying t5c ultimate god in terms of a sobare organization's
proccss maturity expectations.

One of the biggest disappointments for the software engineering community was the assessment
results. Eighty-five percent ot tbe software organizations that arcre involved in self-auessment
came out at the Level L or "chaotic* stage, the lowest kvel of the scde. Analysis of these results
showed that it is easy to publish policies and standards and to do good briefings. but it is dificult
and it takes a p a t deal of commhmerrl for a company to follow though on tkse things and really
use tbcm to produce better software. The canot-stick philosophy is helping to improve this defi-
ciency.

Boehm went on to explain that one important characteristic of tk top levels of the SEI software
process maturity scale is that one's procss be a mcssrutd, optimized proccss. This necessitates
that a well-defined rnetrics program be integral to the software organization's manner of doing
business. One of the biggest disappointments. however. is the lack of such metrics ?ragrams
throughout the indusq. In Boehm's opinim people attending NMNGoddard's Software Engi-
neering Laboratory (SEL) conferences during the 1980s seem to bcthe only exception to this. Dur-
ing the period of 1979-1981, considerable excitement and interest insofnvare metn'cs followed the
introduction of the COnstructive Cost MO&l (COCOMO). but since then relatively feworganin-
tions have adopted really comprehensive rnctrics collection and analysis programs. Reliability is
the only area that appears to have received attention. In general. little progms has been made in
convintingorganirations that it is in their best interests to collect this information and analyze it as

prerequisite to improving their software process.

According to Bochrn, there was tide in 1980 that represented a different paradigm around which a
software product could be designed and organized. However. object-oriented methods teshnolo-
gies. and program languages gained prominence and began substantially to alter system designers'
and developers' thinking. Potentially, a sipifcant achievement in the 1990s is fully developing all
of these object~nented technologies into an integrated juppofi environment.

Boehm indicated that another huge disappointment has k n software engineering education. In
1980. a working group put together the IEEE model cumculum for a master's degree in software
engineering that resulted in a careful. well-rounded program. Unfonunatdy. the IEEE did not
follow through on it. A curridurn was subsequently created at tht Wang Imtitute. where it was a
strong success until the Institute's dissolution. Fortunately. the seeds of that work are reflected in

c o v e r h t h
CsC

62896 37 of 48

tbc SETS curriculum f a a maszr's degree in so- engineering. However, software engkmring
education at the undergraduate k c 1 is still abysmal-people are taught programming, not soft-
ware e n &

A s i g d h n t achievement is that the SEI has picked up the gauntlet on such topics as education.
process assessment, and researching real-time Ada systems development issues. Because of this
progress, the s o k e engineering community has a far better understanding of and access to these
arras than was possible at the beginning of tht 1980s. However, Boehm felt there is still much to be
doae and that the SEI will be a major contributor in the 1990s.

LARRY D R U m L

Larry Druffel is the Director of the Software Engi-
neering Institute. He has been associated with Ada
since l978 and was the first Director of the Ada Joint
Program Office.

Druffel's presentation discussed four major disappointments and six major achievements in soft-
ware engineering during the 1980s:

Druflel briefly addressed tirst the achievements and then the disappointments:

Y I J O R ACHIEVEMENTS

C9A

FOCUS ON PROCESS

SOFWARE ENGINEERING EDUCATION

SOFWARE ARCHITECTURE

SOFWARE ENGINEERING ENVIRONMENTS

OBJECT-ORIENTED DESIGN NOTION

a Ada: Druffel stressed that the adoption of Ada as an ANSI and IS0 standard must be
considered one of the major achievements of software engineering in the 1980s. Benefits
of the Ada standard are the tremendous strides s e n in reuse and transportability and
the enormous amount of private investment that has been made in the development of
tools, the maturation of compilers, and the support of optimization techniques.

Y U O R OISIPPOINTMENTS

M A

S U M ACCEPTANCE OF SOFIWARE
ENGINEERING EDUCATlON

LACY OF TOOLS INTEGRATION AND
STANDARDIZATION

CODE REUSE

e Focus on Process: The focus on the software engineering process is an outstanding
achievement. He cited the Space Shuttle work as a particularly good example of the pro-
gram improvements achievable through such a focus. Druffel stressed that it is impor-
tant that this fccus on process be supported by measurement and education. Tfie most
successful efforts in improving process have had at least ad hoc measures to support
them.

PROJECTIONS FOR THE FUTURE

SOFWARE ARCHITECTURE OESCFIlPnON

MATURATION OF OBJECT-ORIENTED TECHNIQUES

IMPROVED DATA COLLECTION

a Sohare Engineering Education: The principal achievement in the area c. software en-
gineering education has been the emergence of the idea that there is now enough

codified information that software e n g k e h g cia be taught. The notion has become
accepted and there are people willing to teach software engineering.

So* Architecture: Perhaps one of the greatest achievements is that there is now a
realization that software architecture nctds attention-real analysis on the structure of
a system.

SoChre E q h e r i r y En-nts: There has been marked progress in the past dec-
a& in recognizing the need for improved software engineering environments. In the
past, everything was ad lux, using a simpk set of tools. with little or no appreciation for
integrating these tools into a cohesive environment

Object-Oriented Design Notioa: Dntffel stated that we have seen the emergence of a
whole new notion of managing objects and designing systems by objects. even though the
notion of an object is not yet clearly understood or universally defined. The appearance
of these object-oriented techniques and the wa:: they are changing our approach to sys-
tems development are very important advanes.

Druffel's list of major disappointments included the following

Adx The Ada program has also yielded a major disappointment as wen as major
achievements during the 1980s. In Druffel's opinion, the major disappointment has
been the failure of the software engineering community (including DOD. indusuy, and
particularly the academic world) to take advantage of Ada as fully and as rapidly as
could have been done.

Lack of Acceptance of S o h e Engineering in the Academic Community: The disap-
pointment in software engineering education is that the academic commmity at large
doesn't seem to want to accept the idea of engineeringso~am. Druffel stated that this
limited perspective-is-holding-the industry back

L r k of Standadbation in tbc Integration of Computer-Aid& S o h a m Engineering
Tools: Great progress has been made in the development of computed-aided software
engineering tools. However. it is a disappointment that there has been a lack of any
standardization to enablt effective use on a project without a lot of manual intervention

Code Reuse: As in the decade of the 70s, code reuse remains a major area of disappoint-
ment. Some progress is visible in narrow application domains, but wider reuse will not
be realized until domain analysis and designing for reuse are given more emphasis.

SOFTWARE ENGINEERING ADVANCES IN THE NEXT 5 YEARS

Druffel discussed several projected software engineering advances for the coming decade:

SomvPrt Architecture: Druffel postulated that software architecture description may
be one of the major achievements in the next 5 yean. There will be the capability to
describe s o h a r e architecture, agreement on the language and symbolic representation.
and the development of analytical techniques to determine for which applications an
architeetun is appropriate and for which it is not

Object-Oriented Dtsign: There should be a tremendous maturation of object-oriented
design and related object-oriented techniques. allowing for their effective use.

Cdleetiw. The next 5 years should see data collection follow a m r e structured
a p p m x h and the development of consistent definitions to allow reasonable analysis
across projects. This will be possible only because of the work done through N W
Goddard's series of Software Engineering Laboratory workshops and the contributions
of those at thc University of Maryland and the SEL to this effort.

MANNY LEHMAN

Manny Lehman is a professor of Computer Science
at the Imperial Coilege in England. He has done con-
siderable work in software measurement and has au-
thored over 100 technical papers.

Lehm presented his initial list of the most significant achievements and disappointments in soft-
ware engineering during the 19809, placing Computer Aided Softwart Engineering (CASE) took in
both categories:

RECOGNITION AND ACCEPTANCE OF THE LACK OF CASE PENETRATION INTO
EVOUmOHARY NATURE OF SOWARE THE INDUSrrW

FOCUS ON PROCESS AND PROCESS INADEQUATE CASE SUP WRT
ENVIRONMENTS

MORE DlSCrWNED SOFTWARE INADEQUATE UNDEASTANDING OF
ENGINEERING PROCESS SORWARE ENGINEERING

IWfWVED. INTE

I n COST EFFECTlVENESSTHROUGH CASE

Lebman's discussion of the most significant achievements included four items all interrelated in a
logical progression:

The software engineeringcommunity is demonstrating an increasing appreciation of the
intrinsically cvdutionary nature of software.

Clear evidence aists that the community has recogiiked the significance of the software
dcrdopmcnt process and of process models.

Wider appreciation and acceptance have been evident in the academic and research
communities (and arc now emerging in industry) of the importance of discipline,
method, formdi@ and mech.nitation in the software process.

?he community has recognized the need for significant CASE tools and the integrated
support enviroPwnts to promote their effective use.

Accading to Lehman, altbough there may be a very solid understanding of a process. turning the
procas into reality and executing itwith precision require discipline method, and formality. These
requirements dear@ indicate the need for automated support. and while niany tools have been
emeaging. industry has not yet provided the integrated support environments necessary to expbit
their pcmr.

CASE devdopment has primariiy arisen from the search for productivity growth in software devel-
opment. Gmscquently, m a n sees the largest disappointment to be the Coilwe of CASE to &-
!her this &dent productivity growth. Precisely because CASE tools have not shown the desired
productivity benefits. their use hasn't penetrated widely or deeply into the industrial or commercial
sofrware development arc^^.

Another disappointment has been the very slow development of satisfjictory, comprehtnsive,
t raderdie , d u d e support environments. Lehman believes, however, that the reasons for
this are n w sufficiently well understood. He projected that WCT the next decade there wiU be ad-
vances in this area. and that much wider penetration of CASE tools will then follow.

A final major disappointrrmt has bem the failure to achieve wide industry appreciation of the true
meaning olsomvPre engbcriag and the role of software engiocm. The community at large seems
to use the terms 'software engineer' and 'programmer' interchangeably. Lehman stressed that
these terms are not the same; they arc two quite different yet complementaq roles. Rogramrning
and the programmer an product oriented. The software engineer is primarily a process engineer,
focusing on designing the processes the programmers use, on the methods to be followed on the
tools that can be applied and on the organizational aspects of software development projects.

Lehman concluded with his prediction that CASE progress in the coming years will be significant,
but only if people understand what CASE really is, how it can be transferred ro indusuy, how it can
be applied cfiectively, and how and when benefits can be assessed. Central to achieving this prog-
ress is the need for industry to develop the proper types of CASE environments through the itlregm-
tian of existing tools, crating comprehensive software development support environments.

In summary, Lehrnan emphasized that the primary goal of CASE cannot be immediate productiv-
ity growth, cost reduction or visible improvements in produa quality. Ironically, early CASE use
will lead to increased costs. because training, tool and workstation acquisition. and production m e
mentum loss atl have an initial cast. What needs to be considered is what will happen in the long
trim: improved cost-dl&encss over time associated with higher quaIity, more reliable, and
more adaptable so* is the ultimate benefit. R e d i n g this benefit depends on using CASE
long enough to aggregate mrall. invisible benefits into larger, visible bel'efits. The goal of CASE is
institutionalizing a pro- that achieves and maintains user satisfaction with the software product.
ultimately kading to productivity growth and revenue growth.

Despite its gnat potential, however, Lehman cautioned that obstacles to CASE progress include a
long lead time before benefits will be realized; the need for major financial investments by the user;
diflicuit cosr-benefit a d y s a because of the many imponderables related to CASE; and a delay in
truly quantifying the benefits of CASE until the industry gains significantly more experience in its
W.

HARLAN MILLS

Harlan Mills is currentdy the president and chief
technical officer of Software Engineering Tech-
ndogy, rnc. (SET). He has had a distinguished tech-
nical career, has authored wer 50 refereed papers,
and has won numerous software-related awards.

Several of the advanas idcntiKed by Mills addressed process and methodology topics. while the
disappointments cited defiEiencics often characteristic of delivered software products:

Mlls discussed four areas he felt have represented significant achievements in s o h a r e engineer-
ing over the past decade:

Y L J O R l i L m l M Y ~

SP~RAL DEVELOPMENT MOD^

M m C S

! S O M E ENClVlEWlNG I- (SEJ)

CLEANROOM DEVELOPMENT
METHO WLOGY

Spiral Modd: The spiral model of software development articulated best by Barry
Boehm, may replace the traditional waterfall model.

Y U O R DlSAPPOlPrrYEHtS

LACK Of ENGINEERING DlSClWNE
FOR SOFIWARE DEVELOPMENT

P O O R - Q W SOFWARE

LOW F'RODUmvm

MISSED SCHEDULES

a Metrics: Significant developments in meuics for software technical management have
emerged from Barry Boehrn, Vic Basili. and other people in the field.

PROJECTIONS FOR THE FUTURE

FORMAUZATlON OF SPIRAL MODELS

se GROWTH

IMPROVED METRICS

EXPANDED USE OF CLEANROOM METHODOLOGY

SEI: A national resource !as been established in the Software Engineering Institute.

a Cltanroom Methodology: Encouraging progress has been seen in applications of the
Cleanroam approach to the engineering of software under statistical quality conuoL
emphasizing the quality of people.

Mills' list of the greatest disappointments over the past decade stems from the following observa-
tion:

"Sobare e q k & n g is used as a buzzwork Software engineering isn't being
treated as a real engineering discipline."

Mills feels that the people called "software engineers" today arc typically programmers, and that
they should be upgraded in somc way through better training and the introduction of more disci-
pline and mathematical formalism into the software development process. Mills continued that
this perspective has led to the continued, widespread. and unnecessary existence of threc condi-
tions:

Poor quality, unrdkMe s o m

Iarr productivity in softwan dtvdopmco(: It has been demonstrated that improvement
in productivity by factors of 5 and 10 can be achieved when people "learn to do it right"
as prcfcssionals.

Midscd schedule ofsoftware deliveries: Getting thing done on time is rarely achieved in
the industry.

To further support his position. Mills discussed the properties of Cleanroom engineering and why
this method is worthwhile:

S w i s t k l Usage !3pcdicatioas (As W U as Pcrfonnance and Functional Specifica-
tions): lb talk about the reliability of software, Mills feels we n e d to know the ways in
which that software is to be used. This knowledge will better guide us to test particular
portions of the software more rigorously than other portions. We're testing in the wrong
kinds of ways in the development shops and are waiting to see how the customer actually
urs the software to determine where testing is really needed.

So- kvelopment in a Pipeline of Increments with Separate Certificatian Soft-
ware engineers are learning to avoid the need to debug programs. Cleanroom involves a
pipeline of increments (such as 10.000 lines of code) that can be written without debug-
ging and that are very close to error free.

Saltd-up Informal Vtrilicatioa of So- to Meet Specifications: This involves using
mathematical ideas. such as scaling up using axiomatic verification, etc., on 100.000 or
M0.000 line programs.

Producing Software without Private Debugging &fore Public Certification Testing.
The people who cerhfy the software do the testing.

Mills identified four areas of potential, significant achievement in software engineering over the
next -tie:

F d i z a t i o n of Spiral Models of Softwan Development for Procurement1
Maaagemcnt: Software engineering has to have a mathematical foundation, and this is
one good area with which to begin.

Metria: Continued development of metrics for software technical management.

C o a t i a d Growth ofthe SEX: This involves extending its influence over software end-
naring.

Exp.rrdtd Use of S o h u e Engineering UDdv Cleanroom Engineering (or Something
SimiIar), with Statistial Quality Contrd: This requires using real engineering and riot
cut-and-dried programming.

Vic Basili professor of Computer Science at the Uni-
versity of Maryland, has authored over 100 papers in
software enginaring metrics, and methods, and is
editor-inchief of ?fansactiom on Software Engi-
neering.

As the facilitator for this panel and one of the principals in 15 years of SEL research, Vic Basili
presented the SELviewpoint on the most significant achievements and greatest disappointments in
softwart enginaring over the past 10 years:

Some of the earfer panelists hadclassified a given itemas both an achievement and a disappoint-
ment Basili mted that this was often because the item was an 'achievement" but it hadn't moved
fast enough or been adequately assimilated into the community and so was also considered a disap-
pointment. Basili discwed the achievements in two categories:

W O R ACHIEVEMENTS

IMPORTANCE OF PROCESS AND
FORMAL MEMODS

COWUNllY RECOGNITION OF NEED
FOR MULTIPLE UFE-CYCLE MOOUS

MEASUREMENT AND METRICS

OBJECT-ORIENTED M E M O S

ADA

t

- Process and Metbods: Increased recognition of the importance of process and for-
mal methods has been a major achievement over the past 10 years. The SEI proc-
ess assessment has raised the level of concern about process and formal methods
such as verification and Cleanroom haw shown movement in the right direction.

YIJOR MSAPPOINTMENTS

MTURINQ TAKlNQ TOO LC>IG

INAMQUATE UNDEkSTANOlNG OF
TECHNOLOGY BUILDING'

MEASUREMENF NOT sumammy
WOESPREAD

UMmD AUTOMATED SOFWARE
DMU)PMENT SUPPORT

FEW ADVANCES It' TESnNG T'ECHNIQUES

PROJECTIONS FOR THE M U R E

FOCUS ON ENGINEERING S O W A R E

WID3 USE OF MEASUREMENT

RNSNG PACKAGED MPER:PICE

MATURING OF PERSONNELSKIUS

INCREASED AUTOMATED SUPPORT

- Multiple Iik-Cycle Models: Recognition ofthk need for multiple lifecyckmodels
and methods has been another major area of prgress. There is no longer only a
waterfall model; a spiral model and prototyping mode5 have also betn introduced.
There are different ways of doing things. Tbere is no longer a one-model mentality
in the community.

- Masurrmcnt/Metrics: Measurement and memcs taduiqucs have matured. and
the community now better understands how to apply them. The use of measured
metrics may not be widespread enough. but h m an SEL perspective the technol-
ogy exists to do the kinds of thing needed to reach Level 5 of the SEI software
development zuturity matrix.

- Ohject-Orimttd Techtiqua The use of data abstractions and object-oriented
methods has significantly altered the way current systems are being designed and
implemented.

- Adn: Ada's benefits are as much related to its promoting wider use of improved
software engineering techniques as they are related to the language-specific fea-
tures of Ada.

Basili discussed several disappointments, many of them parallel to items included in his achieve-
ments list

Maturing has taken so long.

Some people are ttill looking for "magic'*-a ''silver bullet" that will provide a qulckcure
for our software development problems. What we must realize is that process improve-
ments require tcchwlogy building, maturing, edution, and evaluation.

Atthough some or-tions have implemented measurement progTams, a general lack
of measurement d formal wthods pe~vades the industry.

Too tittle effective urtom~ted support for software development exists. CASE is an ex-
ample of a disappointment in this category. CASE is a bottom-up issue, where pieces of
technology have been dealt with but CASE hasn't solved what people are actually trying
to do.

WhiIe much attention has been given to the design and implementation areas of soft-
ware developmenf few advances in testing practices have been made. There are many
tcst techniques in the literature, but most are not available in practice. This is partly
because the tests exist only at an academic level rather than as pragmatic ways of doing
testing in the real-wrld.

Basili categorized future achievements as those to be attained over the next 5 years and those to be
attained over the nad 10 years.

- Focus on engineering software: This is the issue of discipline and evolutionary
process.

- Measurement: Wider evidence of pnxrss impmnment throagh masr~cmcnt is
expected.

- Reuse of packaged experience: This includes codc as long as it is done in the right
context. i.e, as long as reuse is done for a product unit in thc cmtext of architeuurc
and in the context of processes that produce the appropriate kinds of wful ob-
jects.

- Real autamated support: This will require the natural d d o n of supporting
processes.

- Maturing of personnel: The indusay needs staff with consistent backgrounds.
Over a long period of time, people who speak the same language and have similar
kinds of training will become more prevalent in the software cnginaring commu-
nity.

SESSION 1 -THE SEL AT AGE 15

V. R. Basill, University of Maryland

G. T. Page, CSC

F. E. McGarry, NASA/GSFC

VlEWGRAPH MATERIALS

FOR THE

F. MCGARRY INTRODUCTION

TO SESSION 1

SOFTWARE ENGINEERING
LABORATORY (SEL)

SOFTWARE ENGINEERING LABORATORY (SEL)
BACKGROUND

a EARLY 1970's
- INCREASING REALIZATION OF SOFTWARE ROLE (COST, IMPORTANCE, ...)
- NUMEROUS SOFlWARE TECHNOLOGIES EVOLVINGIMATURING

TOOLS (DEBUG AIDS, CODE ANALYZERS, ...)
STRUCTURED DESIGNIANALYSISIIMPLEMENTATION...
TESTINGIVERIFICATION TECHNIQUES
MANAGEMENT METHODS AND AIDS

- NO GUIDANCE FOR SELECTINGIAPPLYING EVOLVING SOFWARE TECHNIQUES
LIMITED EMPIRICAL EVIDENCE
OVER DEPENDENCE ON MOST VOCAL ADVOCATES

1975 - 76'
- PARTNERSHIP BETWEEN NASAIGSFC AND UNIVERSITY OF MARYLAND FORMED

EXPERIMENT WITH AVAILABLE TECHNIQUES IN PRODUCTION ENVIRONMENT (NASAIGSFC)
0 DETERMINE WHICH TECHNIQUES ARE EFFECTIVE (MEASUREMENT)

INFUSE IDENTIFIED TECHNOLOGY BACK INTO PROCESS (PROCESS IMPROVEMENT)
- CSC - AS PRIMARY FLIGHT DYNAMICS SOFTWARE CONTRACTOR BECOMES 3rd PARTNER

2 z 7 1976 - 90'
2 C % - CONSISTENT PARTNERSHIP IN SEL (NASAIUMICSC)

- EVOLUTION TOWARD UNDERSTANDING SOFMlARE AND OPTlMlZlNG PROCESS "I

- t.--* . .-, - , : . ". ..-. --. ----- - .. . --.. - .---. __-. -.----- a. --- - - - - -
' 1 I I . '

SOFTWARE ENGINEERING LABORATORY
ESTABLISHED 1975 - 76'

GOALS
- UNDERSTAND THE SOITWARE PROCESS IN A PRODUCTION ENVIRONMENT
- DETERMINE IMPACT OF AVAIIABLE TECHNOLOGIES
- INFUSE IDENTIFIEDIREFINED METHODS BACK INTO DEVELOPMENT PROCESS

a APPROACH
- IDENTIFY TECHNOLOGIES WITH HIGH POTENTIAL
- APPLY AND EXTRACT DETAILED DATA IN PRODUCTION ENVIRONMENT (EXPERIMENTS)
- MEASURE IMPACT (COST, RELIABILITY, QUAUTY, ...)

SIGNIFICANT CONSIDERATIONS
- CANDIDATE PROJECTS (IMPACTSICOSTI ...)
- DATAIINFORMATION (DEFiNlNGIPROCESSINGNALIDIN/...)

~ $ 2 - EXPERIMENTAL DESIGN (CLASSES OF STUDIESIDOMAIN ANALYSIS ...)

SEL
PRODUCTION ENVIRONMENT

S O W A R E CHARACTERISTICS
SCIENTIFIC (FLIGHT DYNAMICS)
GROUND BASED (NON-EMBEDDED)

a INTERACTIVE

LANGUAGES
a 75% FORTRAN

('HOMOGENEOUS CLASS
OF S O W A R E

15% Ada
a 10% OTHER (C, PASCAL, LISP, ...)

*CONSISTENT SUPPORT) ENVIRONMENT

PROJECT CHARACTERISTICS "CONTROLLED PROCESS
TYPICAL

• DURATION (MONTHS) 24-40
EFFORT (STAFF YEARS) 30-45
SIZE (KSLOC) 100-300
STAFF (FTE) 5-15

ill *SEVERAL PROJECT EXCEED 200 STAFF YEARS
"I *SEVERAL LESS THAN 3 STAFF YEARS

A498.006

SEL
EVOLVING "PROCESS IMPROVEMENT" ENVIRONMENT

WHAT HAS BEEN LEARNED?

1. HOW HAS THE MODEL OF PROCESS IMPROVEMENT EVOLVED?
- PHASES TOWARD PROCESS IMPROVEMENT
- WHAT CLASSES OF EXPERIMENTSISTUDIES ARE NEEDED
- DO WE UNDERSTAND THE IMPROVEMENT PARADIGM BElTER TODAY

2. WHAT IMPACT HAS THE EXPERIMENTATION HAD ON A PRODUCTION ENVIRONMENT?
- IS SOFTWARE DEVELOPED DIFFERENTLY NOW (BETTER?)
- HAS THERE BEEN A CHANGE IN ATTITUDE OF DEVELOPERS
- WHAT CHANGES HAVE BEEN MADE AS A RESULT OF 'STUDIES'

3. WHAT HAS BEEN LEARNED FROM THE STUDIES?
- ARE THERE TECHNIQUES THAT HELP (WHICH ONES)
- WHAT ARE KEY ASPECTS OF PROCESS IMPROVEMENT
- WHAT ARE MAJOR IMPACTSILESSONS FOR NASA

,/ -5 , / 7 ~ '

Towards a Mature
Measurement Environment:

N9Z-1Lg4&1 n : ' - C

Creating a Software Engineerlng Research Environment ' 1

Victor R. Basili
Institute for Advanced Computer Studies C

Department of Computer Science
University of Maryland

Software Engineering Research

Software engineering researchers are building tools, defining methods and models.
However. there are problems with the nature and style of the research. Tha research is
typically bottom-up, done in isolation so the pieces cannot be easily logically or
physically integrated. A great deal of the research is essentially the packaging of a
particular piece of technology with little indication of how the work would be integrated
with other pieces of research. The research is not aimed at solving the real problems
of software engineering, i.e., the development and maintenance of quality systems in
a productive manner. The research results are not evaluated or analyzed via
experimentation or refined and tailored to the application environment. Thus, it cannot
be easlly transferred into practice. Because of these limitations we have not been able
LO understand the components of the discipline as a coherent whole and the

I

relationships between various models of the process and product.

What is needed is a top down experimental, evolutionary framework in which research
can be focused, logically and physically integrated to produce quality software
productively, and evaluated and tailored to the application environment. This implies
the need for experimentation. which in turn implies the need for a laboratory that is
associaled with the artifact we are studying. This laboratory can only exist in an
environment where software is being built, i.e., as part of a real software development
and maintenance organization. Thus we propose that Software Engineering
Laboratory (SEL) type activities exist in all organizations to support software
engineering research.

In this paper we will try to describe the SEL from a researchefs point of view. Jerry
Page and Frank McGany will discuss the corporate and government benefits of the
SEL I will try to focus my discussion on the benefits to the research community.

The SEL as a Research Laboratory

The SEL is a laboratory that allows us to understand the various software processes,
products and other experiences, build descriptive models of them, understand the
problems associated with building software, develop solutions focused on the

V. B a d 1
Unir. o(.Uu).lud
Page I d 4 2

problems, experiment with the proposed solutions and analyze and evaluate their
effects, refine and tailor thsse solutions for continual improvement and effectiveness
and enhance our understanding of their effects, and build relevant models of software
engineering experiences.

The SEL has been in business for over 15 years and, based upon our experiences, its
activities have evolved over time. In this section, I will describe the activities as they
progressed over three phases.

The first phae l will call the understanding phase because we worked on
und~rstanding what we could about the environment and measurement. During this
period we measured what we could, used available models to explain the
environment and our behavior, and built descriptive baselines and moclels typifying
our environment.

In retrospect we made several mistakes. We collected too much data, i.e., because we
did not know what was important we tended to collect all kinds of data hoping they
would give us insights into the environment. We often blindly applied models and
metrics without understanding the subtle assumptions and whether they were relevant
in our environment. In a sense, we tried to evaluate things before we had built a deep
understanding of what we were evaluating. We finally began to understand that
measurement needed to be based upon models and goals. We established goals and
a mechanism for generating measures based upon those goals, the first. primitive
version of the GoaVQuestionIMetric Paradigm. This provided an informal zpproach to
organizing our data. Based upon our goals, we began to build environment specific
models by accumulating knowledge on individual projects and building baselines
across multiple projects. Eventually we developed descriptive models that
characterized the ecvironment. These models included models of resources, defects.
and product characteristics.

Once we had an understanding or characterization of the environment and the
projects we were developing, we were able to begin the process of evaluation by
comparing n9w projects against our baselines. This allowed us to proceed to phase
two where the focus was on improving the process, product. and environment.
During this phase, we continued to build up our data base of baselines and models,
but we also evaluated and fed back information to the project. Many of these early data
models were informal. The data was saved in a data base but the models existed
mostly in documents. We began to experiment with various technologies to
understand their effect, i.e. how they changed the baselines or the models we had. In
order to provide a learning process across projects that would allow us to take
advantage of what we had learned and evolve, we developed the Quality
Improvement Paradigm, which is based upon an evolutionary, experimental approach
to software improvement based upon both project and organizational feedback loops.
The GoaVQuestion/Metric Paradigm continued to evolve to recognize different types of
goals and questions and take advantage of the multi-project perspective. We began

2

formalizing process, product, knowledge and quality models.

This need for formalization within the context of the Improvement Paradigm led to the
concept of packaging models of our experiences so they were reusable on other '

projeds. During this third phase we worked on choosing potentially reusable
experiences, recognizing what was appropriate and relevant for the SEL We began
studying notations and mathematical formalisms for defining experiences.

There are several examples of current research projects in packaging experiences.
For example, we are working on a project characterization model that allows us to
recognize project patterns so that we can predict which projects look like the one we
are working on. This allows us to package data for use as cost estimation models
based upon our relevant past history [Briand, Basili, Thomas!. Having recognized that
most experiences need to be modified for use, we have been defining models of
tailorable experiences. For example, we are working on a tailorable test method
[Basili, Martschenko, Swain]. The method allows one to choose the appropriate test
techniques based upon the defect history of similar projeds and the success rate of
the techniques in that environment. Another example is the development of a model cr
reference architecture for different types of software factories [Basili, Caldiera and
Cantonel. We are defining process models for reusing experience. We have
developed a reuse- oriented evolution model [Basili and Rombach] and are working
on integrating experience models [Oivo and Basili]. We have developed the concept 3f
an Experience Factory, whose goal is to package software experiences and provide
them to projects upon demand and have integrated the concept with an evolved QIP
and GQM.

Packaaina
SEL Ada Process
SEL Cleanroom Process
SME
Managers Handbook
Experience Factory

Methodology Evaluation Ada
Cost Model Analysis 000
Test Technique Analysis Cleanroom
QIP CASE

a
Modeling environment Design Measures Test Method
Data Collection (GQM) Cost vs. Size Complexity Reuse
Resource Baselines
Defect Baselines

Figure 1. Evolution of Measurement/Studies in the SEL

Figure 1 represents some of the studies we performed and the hierarchy of the
process, one phase based upon the other. That is, there was an understanding
process (Phase I) , followed by an improving process (Phase 2), followed by a
packaging process (phase 3). You can't improve until you understand, and you can't
package until you can assess and improve. We are still understanding and trying to
improve; these activities, along with packaging, will go on forever.

The Research Framework Concepts

We have evolved to a framework [Basili b] that is based on three basic concepts, each
of which is itself evolving:

o The Qualitv lm~rovement Par- (QIP), an evolutionary improvement paradigm,
based upon the scientific method, tailored for the software engineering,

o The SpaVQueWnIMetri~ (GQM) paradigm, an approach for establishing project,
corporate, and research goals and a mechanism for measuring against those goals,

o The F, an organization that supports research and development
by studying projects, developing and refining models, and supplying them to projects
for further analysis and refinement.

The Quality Improvement Paradigm consists of the following steps:

o Characterize the current project and its environment with respect to a vanety of
models.

o Set the quantifiable goals for successful project performance and improvemen:.

o Choose the appropriate process model and supporting methods and tools for this
project.

o Execute the processes, construct the products, collect and validate the prescribed
data, and analyze it to provide real-time feedback for corrective action.

o Analyze the data to evaluate the current practices, determine problems, rscord
findings, and make recommendations for future project improvements.

o Package the experience in the form of updated and refined models and other forms
of structured knowledge gained from this and prior projects and save it in ZI
experience base so it represents our current stafe of knowledge and is available for
future projects.

The research emphasis is on taking each of these issues associated with the QI?, (e.g.,

characterizing, goal setting, choosing process. execuD'ng, analyzing, and packaging).
and formalizing and integrating them. Each of these Steps has evolved over the years
We have been building models of charaderization. For example. what are good
models that allow me to recognize what kind of software project I have and what
projects are similar? Based on data, we are using pattern recognition techniques to
recognize where to find the most appropriate kinds of experiences related to the
current project [Briand, Basili. Thomas].

Goal setting has become a process of integrating models. A goal typically takes the
form of analyzing some form of object from some perspective. I need models of both
the object of study and the various perspectives of interest on that object.

We want to choose processes. A key issue here is that process is a variable; that I
need to select, manipulate and change processes based on the characterization of the
project and the environment and the goals established for this particular project.

Execution needs automated support. An autcmated system, SME, has been
developed to support the accessing of data in a packaged form. The analysis and
packaging issues are tha major focuses of this paper.

The Goal/Questlon/Metric Paradigm is a mechanism for defining and interpreting
operational and measurable software goals. Goals may be defined for any object, for t
variety of reasons, with respect to various models of quality, from various points of
view, relative to a particular environment. A particular GQM model combines models c i
an Uct of s w , e.g., a process, product, or any other experience model 2nd Dne cp
more focuses e.g., models aimed at viewing the object of study for particular
characteristics, such as models of cost. consctness, defect removal, changes.
reliability, user friendliness,. etc. This implies that there are models of these quality
perspectives developed and avadable for use at anytime.

These modsls can be analyzed from a QQ& of view e-g.. the perspective of the person
needing the information, which orients the type of focus and when the interpretation of
the information is made available and for any Quroos?, e.g., characterization.
evaluation, prediction, motivation, improvement. which specifies the type of analysis
necessary.

The result is a GQM model relative to a particular environment. Environments are
distinguished based upon a variety of factors, e.g., problem factors. people factors,
resource factors, process factors, etc.

Exper imental Approaches

Given a form of the scientific method, in the guise of the QIP, a mechanism to Generate
research hypotheses. in the guise of the GQM. what kinds of experimentation can we
perform? The chart in Figure 2 offers four asses of studies that we can and have

5

performed. The approaches can be characterized by the number of teams replicating
each project and number of different projects analyzed.

1 One 1 More than
I I one

I I I
of I One I Single Project I Multi-Project

I I (Case Study) I Variation
Teams I

I I I
Per (More than I Replicated 1 Blocked
Projed I one I Project I Subject-Pmjea

Figure 2. Classes of Studles and Scopes of Evaluation

The single project case study is where most people begin. There is a prcject and
someone has deaded to study it. The results can provide some insight into projed
development in the environment.

A multi-project variation type study involves the measurement of several projects
where factors, such as a method, can be varied across similar type projeds. This
allows the experimenter to study the effects of variations lo the extent that the
organization allows them to vary on different projects. In fad, that's literally what we do
in the SEL We have a large number of projects, we have standard baseines of how
things should happen, and we start to perturb them by making changes u ld studying
the effects of those changes.

The replicated project study involves several replications of the same prcgct by
diiferent subjects. Each of the issues studied is applied to the project by several
subjects but each subject applies only one of the technologies. tt permits the
experimenter to establish control groups.

The blocked subjed-project study allows the examination of several factcrs within the
framework 61' one study. Each of the issues studied is applied to a set of projects by
several subjects and each subject applies each of the technologies under study. tt
permits the experimenter to control for differences in the subject populaticn as well as
study the effect of the particular projects.

There are two problems with the controlled types of experiments: (1) they are rather
expensive and (2) if done for large pieces of software, for example, one year duration
projects, they are hard to control, especially over several replications. Therefore,
even though these types of experiments generate stronger anfidence in the results
than the noncontrolled type experiments, they must be performed on small projects so
the results do not scale up. If, however, these experiments are run on a small scale
achieving reasonable statistical results, then there is motivation to experiment with the
technologies on a larger scale in either a case study or a multi-project variation.
Combining the resutts of the controlled experiment and the large- scale case study or
multi-project variation, we can gain confidence in the validity of the experimental
results.

It is clear in the SEL that we are avid believers in experimentation. We do not believe
that any technology, method, tool, process model, etc. works under all circumstances.
Everything has limits, areas where it works well or pool'ly. If we are dealing with
technologies, we know they have limits. Experimentation is important in
understanding those limits.

Single Project 1 Multi-Project
(Case Study) 1 Variation

Independent V&V I Effect of Methodology
Cleanroom Process I Resource Model Studies

Defect Analysis Studies
Adatobject Oriented Design

- . - Code Reuse in AddFortran

~eplicated
Project

1 Blocked
I Subject-Project

Effect of Methodology I Reading vs. Testing
Cleanroom Process
Ada/O-0 Design

I
4

I
. .
. - Figure 3. Example Classes of Studies

Figure 3 contains several example studies we have performed in the SEL. These - . . studies cut across various experimental classes. When we have found somsthing
effective as a case study, we eventually turn it into a multi-project variation because it

Y
. - 7
1

is effective for the environment.

An Example Set of Studies

As an example of an effective process with which we have performed multiple types of
experiments, consider the Cleanroom approach to software development, as
suggested by Harlan Mills. We first ran a replicated project study at the University of
Maryland that showed that the approach was very effective. We then decided to run a
case study here in the SEL, which again was success!~l. We have since begun two
new projeds using the approach and will eventualfy have enough projects for an
analysis based upon multi-project variation.

The key elements of the Cleanroom Process [Dyer], include a mathematically-based
design methodology which includes: function speafication for programs, state
machine specification for modules, reading by stepwise abstraction, correctness
demonstrations when needed, and top-down development. The implementation is
done without any on-line testing by the developer. There is statisticalfy-based,
independent testing, based on anticipated operational use. Testing is done from a
quality assurance orientation.

The replicated Cleanroom study had as its goals to evaluate the Cleanmom process
with respect to its effects on the process, product and developers relative to differences
from a non-Cleanroom process [Belby, Basili, Baker]. The experiment was run at the
University of Maryland with 15 three-person teams,lO using Cleanroom. The project
was an electronic message system (- 1500 LOC). The teams were permitted 3 :a 5
test submissions and the data collected consisted of background and atitude surveys.
on-line activities of the developers, and test results.

The effect of the Cleanroom approach on the process was that the Clearoom
developers (1) felt they more effectively applied off-line review techniques. while
others focused on functional testing, (2) spent less time on-line and used fewer
computer resources, and (3) tended to make all their scheduled deliveries.

The effect of the Cleanroom approach on the product with regard to static propeties
was that the products developed using the Cleanroom approach had less dense
complexity, a higher percentage of assignment statements, more global data, and
more comments. With regard to operational properties, Cleanroom products more
completely met requirements and had a higher percentage of test cases succeed

Based on these results, we decided that it was worth running a case study in the SEL
to sea if the approach scaled up and how it worked with changing requirements. h
applying the approach in the SEL, you will see an application of the QIP with regvd to
improving process. We begin with the characterization step which asks the questjon,
"what relevant models exist that are available for reuse?' There were three models:
the standard SEL model, which defines how software gats developed in the SEL in a

8

FORTRAN environment; the IBM FSD C~eanroom model that was w l i e d on a prior
project, and the experimental model we used for the replicated project.

The SEL goak were to characterize and evaluate the Cleanroom wproach in generaL
and spedficaBy with regard to changing requirements In prior appkations,
Cleanroom had been used on projects where the req?irements were basically fixed a
the beginning of the sWdy. One of the questions we were often asked after tts
replicated project study was Would this tf3cftnology survive in an wironmerd with
changing requirements?" Since we had not experimented with changing
requirements, we could nat answer the question with much confidence.

What had been learned from the IBM/Cleanroorn model application was the basic
process model, methods and techniques and that the process very effecb've in the
given environme;lt. From the UoWCleanroom model ~pfication. we learned that no
devebper testing enforces better reading, the process is quite effective for mal l
projeds. formal methods are hard to apply and require skill, and there may be
insufticient faihre data to effectively measure reliability.

Based upon the existing models, out goals, and the lessons learned from pricr
applications of Cbanroorn. we defined an initial SEL Cleanroom prccess model. We
stole what was most effective from prior application^; for example. the training was
consistent with t t a University of Maryland course and we emphasized reading by at
least two reviewers.

Beczuse this was a real project, and there was concern on the part 3f some cf the
developers &ut the effectiveness of reading, e.g.. that you needed to test certain
algorithms, we *wed back-out options, 0.g-. you could request pennis:on mr unit
test certain types of algorithms. These back-art options were never csed, but 3ey did
provide a comfort level for the developers. When we Wn't know huw to hande some
a s p a of the approach in this environment we applied the standard SEL proess
model as long as it didn't conflict in prinaple with what we were --king to do. Vie
monitored and made changes to the process model in real-time. We wrcte lessons
learned, and we redefined the process for the next time out

Some of the major positive results of the application of Cleanroom in the SEL rnctude:
the approach scales up to a 30,000 SLOC project. it can be used with changkg
requirements, prcdilctivity increased by about 3096, the failure rate &ring test reduced
to close to 50%. there was a reduction in rework effort (95% of the fixes, as opcosed to
58%. took < 1 hour to fix), only 26% of faults found by both readers (inplying m
readers are important), there were effort distribution changes, e.g.. more time 'n dwiqn
and 50% of code time spent reading. code appears in library later thm normal and
more ike a step function, there was less computer use by a factor of 5-

Negative lessons learned include the fad that better training was needed for t t ~
methods and techniques The kind of training we had a! the university wasn't p o d

9

en~ugh. For example, we provided training where the examples were stacks, etc.
This was not appropriate for the application. (One thing we have done on the second
two Cleanroom projects is reuse parts of the first project as examples in the training.)
We needed better mechanisms for transferring code to testers and the testers need to
add requirements for output 2nalysis of code. As expected, we did not have enough
error data (with a 30,000 line project) to seed the reliability model so there was no
payoff in reliability modeling in the SEL.

A side effect of this project was that it generated much more interest in improving the
requirements. This requirements problem existed independent of Cleanroom, but the
approach exposed the problem. So there has been a genuine push in having better
defined requirements.

These results were for a 30,000 line project and a particular application. Is that the
size limit for the Cleanroom process? Suppose we try a 100,000 line project ... what
are the limits of this particular technology? When does it start to fall apart? Even if it
doesn't work for a given size project, that's okay ... we now understand the bounds on
that technology. It should not be expected that a technology works under all
circumstances, every time, and every place. We have to understand as a community
that technology has limits and that we have to select, and modify processes
appropriate for the situation.

The next two experiments will emphasize the application of the fonnal models more,
we are using the box structure approach, a change in the application domain for one
project, and a scale up to a 10Q KLOC for the other project.

This has been an example of the Quality Improvement Paradigm in terms of a
particular process, and in terms of experimental design moving from controlled
experiments to case studies in a real environment, and moving from case study to
multi-project environment.

And we continue to evolve.

Packaging the Experience

We have just discussed a form of packaging, the documentation of the Cleanroom
process model. We currently have a working document that represents the model as
we understand it today. But it will change as we learn!

Packaging experience requires the continual accumulation of evaluated experiences
(learning) in a form that can be effectively understood and modified (experience
models) into a repository of integrated experience models (experience base) that can
be accessed and modified to meet the needs of the current project (reuse).

Systematic learning requires support for recording experience off-line generalizing
10

V. Bprlll
f niv. d .Wy).(rd
Rgc 10 dR I

and tailoring of experience formalizing experience. Off-line is a key word here.
Packaging cannot be done as part of a project development. Someone cannot
perfom this analysis and build models at the same time they are building software.
There needs to be a separate organization, either physically or logically separate.

Packaging useful experience requires a variety of models and an experience base.
The models require formal notations that are tailorable, extendible, understandable,
flexible and accsssible. An effective experience base must contain accessible and
integrated set of analyzed. synthesized, and packaged experience modsls that
captures the localexperiences.

The Experience. Factory is a logical and/or physical organization (sepa ate from
the project organization) that supports projed developments by analyzing and
synthesizing all Zdnds of experience models acting as a repository for such experience
supptying that experience to various projects on demand. It packages experience by
building infomal. formal or schematized, and productized models and measures of
various software processes, products, and other forms of knowledge via people,
documents, and automated support.

There are a variety of softwace engineering experiences that we can package:
resource baselines and models, change and defect baselines and models, produd
baselines and models, process definitions and models, method and technique madeb
and svaluations, products. lessons learned, quality models, etc. In the SEL, they exist
in the form of standards, policies, tools. The documents range from sets of lessofis
learned to a manager's handbook.

There are many forms of packaged experience. We can use mathematical equaticrrs
defining the relatbnship between variables, e-g., Effort = a'sizeb. We can present
raw or analyzed data in the form of histograms orpis charts, e.g.. % of each class of
fault We can plat graphs defining ranges of 'normal", e.g., graphs of size growth over
time with confidence levels. We can write specific lessons learned associated with
project types, phases, or activities, e.g., reading by stepwise abstraction is most
effective for finding interface faults, or in the form of risks or recommendations, e.g..
definition of a unit for unit test in Ada needs to be carefully defined. We can create
models or algorithms specifying the processes, methods, or techniques, e.g., an
SADT diagram defining Design Inspections with the reading technique a variable
dependent upon the focus and reader perspective.

For example, in the SEL we have a whole set of equations that define the relationships
between a variety of van'ables [Basin. Panlilio-Yap]. Management can use these
equations to understand, predict, and evaluate. In the SEL, example packaged
relationships include:

Effort = 4.37 + 1.43devlines
Effort = 5.5 + 1 .5newfines

Docpages = 99.1 + 30.9 devlines
Numruns = -108 + 15ldevlines

For projects under 50 KLOC we have:
Effort = .877 + 1.5newlines

while for projects over 50 KLOC we have:
Effort = 66.9 + .003 numruns

We have been able to demonstrate that methodology favorable impacts software cost
and quality but cumulative complexity unfavorable impacts these factors [Basili a].

We have fault profiles that allow us to compare and analyze environments and
projects. For example, what percent of faults of a particular type, based on a particular
classification scheme, occur during a standard FORTRAN development. Are the
percentages the same for an Ada development? We have been able to show that Ada
reduces the percent of interface faults, but not by the amount one might expect based
upon the ability of Ada compilers to check for interface faults [Brophy].

Conclusions

Based upon our experiences, we need a set of experience factories or SELs, each
focused on packaging local experiences by building and tailoring local models.
integrating technologies, studying scale-up, building experience bases, and
developing automated aids.

It is still hard to answer questions like: how big should an SEL be? should the
experience fadory only be domain specific, should it focus on a homogeneous
environment?

If the SELs are focussed on homogeneous environments, we will need to integrate
these local experience factories into a high level experience factory that abstracts from
local experiences, looks for patterns across environments, and generates the basic
models of the science. But how is this accomplished?

What we can do now is take advantage of the experimental nature of software
engineering. Processes, products, and environments can be measured and can be
used to support practical development and research. The integration of the
Improvement Paradigm, the GoaVQuestionIMetric Paradigm, and the Experience
Factory Organization can provide a framework for both development and research.

Based upon our experience, it helps us derive descriptive models of our experiences,
understand our experiences and our problems, evaluate and learn from our
experiences, and build effective prescriptive models of our experiences and our
quality objectives. It can and should be applied today and evolve with technology.

Taking advantage of the experimental nature of software engineering has provided a
winning situation for research and dev~knment. From a researcher's perspective the

12

SEL has been a smashing s w x s s . Its evolution has been slow, we have made many
mistakes, but we have learned a lot.You don't have to make the same mistakes we
did, you can learn from our experiences.

References

[Briand, Basili, Thomas]
Briand, L.C., Basili, V. R., Thomas, W. M., A Data Analysis Procedure for an Effective
Application of the Improvement Paradigm. University of Maryland Technical Report,
March 1991.

[BasilU(a)
V. R. Basili, "Can We Maasure Software Technology: Lessons Learned from 8 Years
of Trying," Proceedings of the Tenth Annual Software Engineering Workshop, NASA
Goddard Spa- Flight Center, Greenbelt. MD, December 1985.

[Basili](b)
V. R. Basili, 'Software Development: A Paradigm for the Future," Proc. 13th Annual
International Computer S~ftware & Applications Conference, Orlando, FL, September
20-22, 1989

[Basili, Martschenko. Swain]
Basili, V. R., Martschenko, W. N., and Swain, B. J., A Framework for Goal Directed
Process Planning, University of Maryland, working paper.

[Basili, Caldiera and CantoneJ
V. R. Basili, G. Caldiera, and G. Cantone, A Reference Architecture for the Com~onent
Factory, University of Maryland Technical Report CS-TR-2607, March 1991

[Basili, Paniilio-Yap]
V. I?. Basili. N. M. Panlilio-Yap, 'Finding Relationships Between Effort and Other
Variables in the SEL,' IEEE COMPSAC. Odober 1985.

[Basili, Rombach]
V. R. Basili and H. D. Rombach. 'Support for Comprehensive Reuse," accepted for
publication in Software Engineering Journal, IEE and British Computer Society, July
1991, and also UMIACS-TR-91-23, CS-TR-26061, February 1991

[Dyer1
M. Dyer, "Cleanmom Software Development Method,' IBM Federal Systems Division,
Bethesda, Maryland, October 14, 1982.

[Oivo and Basili]
ES-Tame: A Prototype Implernent~on of the TAME Experience Base, University of
Maryland. working paper.

13

V. Bvll i
Univ. d Maryland
Paw if d P Z

[Selby, Basili, Baker]
R W. Selby, Jr., V. R. Rasili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation," IEEE Transactions on Software Engineering, Voi. 13 no. 9.
September, 1987, pp. ! Q27-1037.

[Brophyl
C. Brophy, 'Lessons Learned in the Transition to ADA from Fortran at
NASNGoddard," UMIACS-TR-89-84, CS-TR-2305, August 1 989

v. n u 1
Uah. d .-md
Rlc I4 d l 2

- +.

.1
rn

VIEWGRAPH MATERIALS

FOR THE

M BASIL1 PRESENTATION

Towards a Mature
Measurement Environment:

Creating a Software Engineering
Research Environment

V-ictor R. Basili

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland

Software Engineerin~ Research

There is a great deal of software engineering

research going on, i.e., people are building

technologies, methods, models, etc.

What is the problem?

The research is mostly bottom-up, done in isolation

It cannot be easily loqically or physically integrated

It is not aimed at solving the big problem

It is not evaluated or analyzed via experimentation

It is not refined and tailored to the application
environment

It cannot be easily transferred into practice

We cannot understand the relationships between
various models of the process and product

Software Engineering Research

J !

What is needed?

A top down experimental, evolutionary framework

in which research can be focused, logically and

i physically integrated to produce quality software
L

productively, and evaluated and tailored to the

application environment

An experimental laboratory that is associated with

the artifact we are studying

We need SEL type activities to support software
engineering research

What is the S E L
from a researchers point of view?

A laboratory that allows us to

understand the various processes, products and

other experiences and build descriptive models

understand the problems associated with building

software

develop solutions focused on the problems,

experiment with them and analyze and evaluate

their effects

refine and taiior these solutions for continual

improvement and effectiveness .3nd enhance our

understanding of their e f fk - i s

build models of software engineering experiences v

How have the act-ivities evolved?

Evolving concepts for over 15 years

Phase 1

Worked on understanding what we could about the

environment and measurement

measured what we could

collected too much data

used available models

blindly applied models and metrics

tried to evaluate before understanding

built descriptive baselines and models

studied individual projects

tried to characterize the environment

developed the Goal/Question/Metric Paradigm

informal approach to organizing data

How have the activities evolved?

Phase 2

Worked on improving the process and product

evaluated and fed back information to project

mostly informal data models

data automated but not the models

experimented with technologies

began to understand effects locally

developed the Quality Improvement Paradigm

informal applied for cross project learning

evolved the Goal/Question/Metric Paradigm

recognized types o! goals and questions

began- formalizing process, product, knowledge

and quality models

! How have the activities evolved?
' ,

Phase 3
1

fl

Working on packaging experiences for reuse

choosing potentially reusable experiences

recognizing what is appropriate for SEL

studying notations for defining experiences

a project characterization model

defining models of tailorable experiences

a tailorable test method

product reuse modelslarchitectures

defining process models for reusing experience

defining a reuse oriented evolution model

working on integrating experience models

developed the Experience Factory concept and

integrated it with an evolved QIP and GQM

Evolution of MeasurernentlStudies in the SEL

Packaginu
SEL Ada Process
SEL Cleanroom Process
SME
Managers Handbook

Experience Factory

Methodology Evaluation Ada
Cost Model Analysis 00D
Test Technique Analysis Cleanroom
QIP CASE

Understandina
Modeling environment Design Moasures Test Method
Data Collection (GQM) Cost vs. Size Complexity Reuse
Resource Baselines
Defect Baselines

' I '

I

4
i!

Overview of the Current

Framework

Quality Improvement Paradigm

an evolutionary improvement paradigm, based upon
the scientific method, tailored for the software
engineering

GoaIIQuestion/Metric Paradigm

an approach for establishing project, corporate, and
research goals and a mechanism for measuring
against those goals

Experience Factory

an organization that supports research and
development by studying projects, developing and
refining models, and supplying them to projects for
further analysis and refinement

v. Bulll
Udr. d.Warylurd
Page 23 d 4 2

Quality Improvement Paradigm

Characterize the current project and its
environment with respect to a variety of models.

Set the quantifiable goals for successful project
performance and improvement.

Choose the appropriate process model and
supporting methods and tools for this project.

Execute the processes, construct the products,
collect and validate the prescribed data ,and analyze
it to provide real-time feedback for corrective
action.

Analyze the data to evaluate the current
practices, determine problems, record findings, and
make recommendations for future project
improvements.

Package the experience in the form of updated and
refined models and other forms of structured
knowledge gained from this and prior projects and
save it in an experience base so it represents our
current state of knowledge and is available for
future projects.

The Goal Question Metric Paradigm

A mechanism for defining and interpreting
operational and measurable software goals

It combines models of

an object of s tudy, e.g., a process, product, or
any other experience model and

one or more focuses, e.g., models aimed at viewing
the object of study for particular characteristics

that can be analyzed from a po in t of view, e.g., the
perspective of the person needing the information,
which orients the type of focus and when the
interpretationlinformation is made available

for any purpose, e.g., characterization, evaluation,
prediction, motivation, improvement, which
specifies the type of analysis necessary

to generate a GQM model,

relative to a part icular environment

V. Bun
Cnir. d.U-d
-2Sd42 .

Classes of Studies
Scopes of Evaluation

One I More than
I one

of One Single Project I Multi-Project
(Case Study) I Variation

Teams . ,- -----I----I----------

1 ,

per : More than Replicated I Blocked
Project : one Project I Subject-Project

V. B u i l i
Unlv. d.Uuylurd
P g e 26 d 4 2

Classes of Studies
Examples

Single Project
(Case Study)

(Multi-Project
I Variation

lndependent V&V I Effect of Methodology

Cleanroom Process
I
I Resource Model Studies

Defect Analysis Studies

Addobject Oriented Design

Code Reuse in AddFortran

Replicated
Project

I Blocked
I Subject-Project

Effect of Methodology

Cleanroom Process

I Reading vs. Testing
I
I
I

Ada/O-0 Design 1

Cleanroom Process

Key components:

Mathematically-based design methodology

Function specification for programs

State machine specification for modules

Reading by stepwise abstraction

Correctness demonstrations when needed

Top-down development

Implementation without any on-line testing by

developer

Independent testing

Statistically based on anticipated

operational use

Quality assurance orientation

1
a Replicated Cleanroom Study

. .

J i
Study Goal:

Analyze the Cleanroom process to evaluate it
I .
. - with respect to the effects on the process,
I

product and developers relative to

differences from a non-Cleanroom process

Environment:

University of Maryland

Electronic message system (- 1500 LOC)

15 three-person teams (1 0 used Cleanroom)

Empirical study:

3 to 5 test submissions

Data collected

Background

Attitude survey

On-line activity

Testing results

V. n u l l
Cnlv. d Mufland
P q e 29 d 42

Replicated Cleanroom Study

EFFECT ON PROCESS

Cleanroom developers felt they more effectively
applied off-line review techniques, while others
focused on functional testing

Cleanroom developers spent less time on-line and
used fewer computer resources

Cleanroom developers tended to make all their
scheduled deliveries

EFFECT ON PRODUCT

Static properties:
Less dense complexity
Higher percentage of assignment statements
More global data
More comments

Operational properties:
Product more completely met requirements
Higher percentage of test cases succeeded

DEFINING AN SEL CLEANROOM
PROCESS MODEL

Existing models: standard SEL model,
IBMIFSD Cleanroom Model
experimental UoM Cleanroom model

Goals: characterize and evaluate in general,
and with respect to changing requirements

IBM/Cleanroom model lessons learned:
basic process model, methods and techniques
process very effective in given environment

......
IJobl/Ci~anroon model lessons learned:

no te.cting el orces better reading
process quite effective for small project
formal methods hard to apply, require skill
may have insufficient data to measure

reliability

DEFINING AN SELICLEANROOM
PROCESS MODEL (Cont.)

Define SELlCleanroom process model:
Use informal state machine and functions
Training consistent with UoM course on process

model, methods, and techniques
Emphasize reading by two reviewers
Allow back-out options for unit testing certain

modules . . .
When no new information, use standard SEL

activities
Monitor and make changes to the process model in

real time

Write lessons learned for incorporation into next
version

Redefine process for the next execution of the
process model

V. O a d i
Unlv. d M u j z n d
Page 32 d 4 2

Q

• SOME LESSONS LEARNED USING
CLEANROOM in the SEL

i
I

Can scale up to 30KLOC

Can use with changing requirements

!
Failure rate during test reduced to close to 50%

Reduction in rework effort
95% as opposed to 58% took c 1 hour to fix

Only 26% of faults found by both readers

Productivity increased by about 30%

Effort distribution changes:
more time in design
50% of code time spent reading

Code appears in library - later than normal
more like a step function

. -
!

Less computer use by a factor of 5

SOME LESSONS LEARNED USING
CLEANROOM in the SEL (Cont.)

Better training needed for methods and techniques

Better mechanisms needed for transferring code to
testers

Testers need to add requirements for output
analysis of code

No payoff in reliability modeling

Side effects:

Caused more emphasis on requirements analysis

Define next experiments:

Apply formal models more effectively - use box

structure approach

Change application domain and keep size the same

Scale up to a 1 OOKLOC project

Packaging the Experience

Packaging requires the
continual accumulation of evaluated experiences

(learning)
in a form that can be effectively understood

and modified (experience models)
into a repository of integrated experience

models (experience base)
that can be accdssed and modified to meet the

needs of the current project (reuse)
I
I

Systematic learning requires support for
recording experience
off-line generalizing and tailoring of experience

I

formalizing experience

Packaging useful experience requires
a variety of models and formal notations that

. . are tailorable, extendible, understandable,
flexible and accessible

An effective experience base must contain
. . accessible and ifitegrated set of analyzed,

synthesized, and packaged experience models
that captures the local experiences

*

v. B&i
Univ. d . W a q l d
Page 35 d 42

The Experience Factory

Logical andlor physical organization (separate from
the project organization) that supports project
developments by

analyzing and synthesizing all kinds of
experience models

acting as a repository for such experience

supplying that experience to various projects
on demand

It packages experience by building

informal, formal or schematized, and
prcductized models and measures

of various software processes, products, and
other forms of knowledge

via people, documents, and automated support

V. B u l l 1
L'nlv. d M u w d
P q c 36 d 42 D

' 1

I What kinds of experience can we
1 package?

I - Resource Baselines and Models
I

i
! Change and Defect Baselines and Models

I
I
i Froduct Baselines and Models

I

Process Definitions and Models

Method and Technique Models and Evaluations

Products
I

i

I
Lessons Learned

! - - Quality Models

i ‘ In the SEL, they exist in the form of standards,
, - policies, tools
b

Forms of Packaged Experience

Equations defining the relationship between
variables,

e.g. Effort = a'Size b

Histograms or pie charts of raw or analyzed data
e.g. % of each class of fault

Graphs defining ranges of "normal"
e.g. graphs of size growth over time with

confidence levels

Specific lessons learned
associated with project types, phases, activities

e.g. reading by stepwise abstraction is most
effective for finding interface faults

in the form of risks or recommendations
e.g. definition of a unit for unit test in Ada

needs to be carefully defined

models or algorithms specifying the processes,
methods, or techniques

e.g. an SADT diagram defining Design
Inspections with the reading technique a
variable dependent upon the focus and
reader perspective

v. Bull1
Unh. o(Maqlad
Page 38 d 4 2

D

d

In the SEL,

PACKAGING EXPERIENCE:
RESOURCE MODELS

Example packaged relationships include:
Effort = 4.37 + 1.43devlines
Effort = 5.5 + 1.5newlines
Docpages = 99.1 + 30.9 devlines
Numruns = -1 08 + 1 Sldevlines

Projects under 50kloc:
Effort = .877 + 1 .Snewlines

Projects over 50kloc
Effort = 66.9 + .003 numruns

Factors that affect cost and quality are:
+methodology (favorable impact)
-cumulative complexity (unfavorable impact)

CLASSES OF ERROR*

FORTRAN Ada

*ERROR PROFILES QUITE SIMILAR; EVEN FOR DIFFERENT LANGUAGES
*Ada SOMEWHAT FEWER INTERFACE ERRORS

,

'BASED ON E A R M FROM 5 M a AND 8 FORTFUN PROJECTS

Research Laboratory Needs

We need a set of SELs or Experience Factories

each focused on packaging local experiences by

building and tailoring local models

integrating technologies

studying scale-up

building an experience bases

developing automated aids

How big should an SEL be?

Should it only be domain specific?

and

the integration of these !ocal experience factories

into a high level Experience Factory that

abstract from local experiences

looks for patterns across environments

generates the basic models of the science

How is this accomplished?

Conclusions

We can take advantage of the experimental nature of
software engineering

Process, product, environment can be measured and
can be used to support practical development and
research

Integration of the
Improvement Paradigm
GoallQuestion/Metric Paradigm
Experience Factory Organization

provides a framework for both development and
research

Based upon our experience, it helps us
derive descriptive models of our experiences
understand our experiences and our problems
evaluate and learn from our experiences
build effective prescriptive models of our
experiences and our quality objectives

Should be applied today and evolve with technology

You don't have to make the same mistakes we did,
you can learn from our experiences

IMPA(3T OF A PROCESS IMPROVEMENT PROGRAM IN A
PRODUrnON S O r n A R E ENVIRONMENT:

ARE WE ANY BE'ITER?
. /

Gerard H. Heller
Gerald T. Page

COMPU'IER SCIENCES CORPOFWIION
GreenTec II

10110 Aerospace Road
Lanham-Seabrook, MD 20706

(301) 794-4460

ABSTRACT

For the past U years, Computer Sciences Corporation (CSC) has participated
in a process improvement program as a member of the Software Engineering
Laboratory (EL.), which is sponsored by the National Aeronautics and Space
Administration (NASAYGoddard Space Flight Center (GSFC). This paper
analyzes the benefits CSC has derived from involvement in this program In
the environment studied it shows that improvements were indeed achieved. as
evidenced by a decrease in error rates and costs over a period in which both the
size and the complexity of the developed systems increased substantially. The
paper also discusses the principles and mechanics of the process improvement
program. the lessons CSC has 1e:med. and how CSC has capitalized on these
lessons.

Computer Sciences Cs,-r;oration (CSC) had
some compelling motivations to join with
the National Aeronautics and Space Adrnin-
ismtion (NASAYGoddard Space Flight
Center (GSFC) and the University of Mary-
land 15 years ago to form the Software Engi-
neen'ng Laboratory (SEL). In the contexc of
1976 and our partnership with GSFC. we
wanted to study our overall flight dynamics

software development process closely
enough to be able to refine and improve it.
Even then. we knew we had to be able to ac-
curately describe and measure that process
before real improvements could be made.
Slowly and steadily. we embarked on a con-
scious process improvement program that
would help us produce the larger and more
complex flight dynamics ground systems rc-
quired to suppon the more sophisticated
spacecraft being built

We wanted to build these complex systems
with more reliability and greater economy.
Our personnel were already committed tc
building quality systems; what we needed
now was to build quality systems more pro-
ductively. We also needed to expand the
skills of our current personnel and to attract
and retain new personnel who would ezjoy
the twin challenges of doing flight dynamics
worl. and simultaneousty uying to improve
the methack used to do that work

ki competition to provide flight dynamics
services incr-sed both here and abroad.
CSC became more ambitious in efforts to
improve its processes and products and
more committed to allocating :he resources
neded to make these improvements. We
wanted to validate our belief that higher
quality at lower casts was ilot a contradic-
tion. We wanted to show that. in fact. those
traits go hand in hand and that high-quality
soinvare redly does cost less.

Sound business practices showed a need to
move forward not only w improve on our
current work but to seek new opportunities
as weil. One way to enter these new bciness
areas was to objectively demonstrate
superior products and performance in our
work with GSFC. Another way was to pur-
sue and achieve formal recognition by other
members of our industry. Our motivations
for the SEL partnership were clear and
compelling. From our participation in the
SEL we expected to capture specific gains,
to learn some vital lessons. and to demon-
strate, over time. that we were truly "getting
better" at doing flight dynamics work

Have we achieved these goals after I5 years
of participation in the SEL? The rest of this
paper answers this question. It describes
the principles and mechanics of the SEL
process impmvement program. including
examples of the program in action: examines
what we have learned from our role in the

program and how we have capitalized on
that learning; arad analyzes trends over the
past 15 yean to determine quantitatively
whether or not we have met our objectives.

SEL BACKGROUND

The SEL

The SEL (Reference 1) is a research project
sponsored by NASAJGSFC and supported
by the Computer Science Department at the
University of Maryland and by CSC. The
S E f i mission is to understand and improve
the overall software development process.
To do this. the SEL conducts experiments
with production software projects. measures
the effect of the techniques applied. and
then adopts the most beneficial methodolo-
gies for future projects.

The SEL Environment

The production software environment stud-
ied by the SEL is .A environment of similar
flight dynamics applications developed by
GSFC for such spacecraft problems as atti-
tude and orbit determination and control.
mission planning. and maneuver control.
These applications are largely scientific and
mathematical. with moderate reliability re-
quirements and severe development time
constraints imposed by a fixed spacecraft
launch date. Table 1 summarizes the current
characteristics of this environment.

The SEL Process Improvement
program

The SEL prccess improvement program is a
conscious. continuous effort to build higher
quality systems at lower costs by under-
standing the environmenf measuring and
evaluating the results of planned proces:
changes. and capturing and packaging expe-
zcnce to optimize the process and to antici-
pate uncontrollable changes.

G. H e k
G. P a g
CSC
20f 25

m l e 1. Churcterlrtlca of the
Devaloprnent Envlrcnrnent
Studled by the SEL

For a process improvement program to
succeed. it must

Characreristics

Orglniution d m

Qmputlng mwimnment

-%I@¶

A p p i i i r n

Average system size

Average pro* duation

Averagr staff level

Staff backgmnd

Bc a COILKWU~ effort. Improve-
ments will not happen by themselves:
resources must be allocated to make them
happen.

Current State

>250 p.oplr

HOS 8063 (I8M 3083)
VAX 8820.1 lI780

FORTRAN, Ada

Primuily rtlitudr; some
orbit and mission
analysis

180 KSLOC

2 yean

15 to 20 pecple

Computer S d e m .
Mathematia. PhysKJ

Bc a contiruwcrr eflorr. Even very
mature processes need to be refined in the
face of changing environments and ad-
vances in technology.

Be built on a sdid &fading of
the m*inuynml This includes characteriz-
ing the products produced and processes
w d .

Aci r i rwun, iCntandingI rJ ,~~-
mcnt and d& The parameten of the
environmect must be quantified to evaluate
the effectiveness of changes made to it.

M b a c k C c s s o n s L T h e r e -
sults of measurement and evaluatioo must
be fed back into the p r o w to optimize it. . ~ l a r o n r l e o r a e d . Experi-
en- must be packaged so that managn
can appiy them to their day-to-day chal-
lenges and can antidpate changss outside of
their control thus p r m ' n g corporate
legacy when experienced peopk lea=

EVOLVING TO m
OPTIMIZMG ENVIRONMENT

Given the principles of the SEL pro- im-
provement program. we can now lookat that
program in action over the SEI5 first
15 years. For convenience. SEL activities
are grouped into three b r a d classes:
evaluating changes to life-cyde processs,
evaluating changes to technology and meth-
odology, and providing support tc the devel-
opment organization.

Changing Life-Cycle Processes

A first goal of the SEL was to establish a
measurement program to capture and quan-
tify the characteristics of the enviroament
including all its processes and products.
The SELspent much of the first 5 years sim-
ply laming how to collect an-. and in-
terpret data. This early anaiysis showed that
testing was one of the w&t activities in
the tlight dynamics development process.
and it set the stage for sevtral early q e r i -
ments in changing a l i f e q ~ l e process.

The goal in changing a life-qde procas is to
identify a particular l i feqdc phase or activ-
ity as acandidate for imprmmec: vary just
that one element of the process. and then
measure the impact on tbe p r o a s and
product. If tk analysis shows that the
change favorably affects quality andlor pro-
ductivity, it is incorporated into the process.
In essence. this type of change can be viewed
as 'fine-tuning" an existing process.

In 1981, in a step to understand the weak-
nesses perceived in testing, the SEL eval-
uated the impact of independent verification
and validation (IV&V) in the flight
dynamics environment (Reference 2). It
applied IV&V techniques on four flight dy-
namics projects, defined metrics for a n a l p
ing the changc and compared these metrics
with those of earlier projects that did not use
N&V. The results showed little or no signif-
icant improvement in quality and reliability
and, at the same time, reflected a substantial
increase in development cost The study
concluded that IV&V was nc?t cost effective
for use in the SEL flight dynamics envirou-
ment

In 1984, continuing its quest to improve test-
ing. the SEL compared three different soft-
ware verification techniques (Reference 3).
It trained a p u p of professionai program-
mers in structural testing, functional testing,
and the peer review technique of code read-
ing, and then gave them programs that had
been seeded with errors on which to apply
these techniques. After the experimenters
calculated such meuics as the number of er-
rors found and the average effort expended
to find each error. they concluded that code
reading was the most cost-effective tech-
nique for uncovering errors in software
units. 4s a result. code reading was incorpo-
rat(as a formal activity into the flight dy-
nau 'cs software development process.

By participating in these life-cycle process
change experiments, CSC has learned
several lessons:

a To effectively evaluate and imple-
ment life-cycle changes, resources must be
allocated; that is. an independent organiza-
tion like the SEL must be designated to
focus on measuring and evaluating impacts.
The job is too big for managen to do in their
"spare time." We have carried this lesson
beyond the SEL environment by establish-
ing software engineering p roms groups to

perform this type of analysis across the
entire Systems, Engineering, and Analysis
Support (SEAS) contract (Reference 4) cur-
rently being performed for GSFC.

a Peer review techniquts are a
costcffcctive method for isolating errors
early in the development life cycle. We have
made such techniques a fundamental part of
our SEAS System Development Method-
ology (Reference 5).

Changing Technology/Methodology

After about the first 5 years of studying the
flight dynamics environment and its devel-
opment process and experimenting with
life-cycle process changes, the SEL looked
back on its experiences and drew some basic
conclusions. One was that following a for-
mal methodology. provided that it is not
"labor intensive." can produce a 10- to
15-percent improvement in a software devel-
opment program compared to not following
a formal methodology or following an ad hoe
approach (Reference 1). Although adding
and subtracting new techniques in the form
of life-cycle changes can fine-tune the meth-
odology. it does not produce substantial
overall improvements to the program. To
achieve substantial changes requires a
major overhaul of the formal methodology
itself or the insertion of new technology.

The SEL approach to methodology and
technology changes is different from the rei .
atively simple experimentation performed
for lifecycle changes. Rather than perform-
ing a single experiment. evaluating the re-
sults. and deciding to implement a new
technique across the entire program. the
SEL knew that introducing an entire
methodology or technology would require a
more cautious approach because of risks as-
sociated with the immaturity of the method-
ology or technology and the mensive
retraining of staff rquired. The SEL ap-
proach is to experiment with the new meth-
odology or technology via a pilot project or

projects. evaluate the memcs collected, hy-
pothesize about the potential benefits, and
then repeat the experiment several times to
confirm or deny initial hypotheses and to a-
tablish trends.

In 1984, tbe SEL began evaluating a method-
ology b a d on thc Ada language and
object-oriented design. This was a radical
change from the topdown suuctured desigri
techniques and the FO- mindset
then in place in the flight dynamics environ-
ment. To evaluate the new methodology, the
SEL began an experiment in which the same
flight dynamics simulator was built in two
parallel development efforts: one in
FORTRAN and the &er in Ada Known as
the GRODY crpcrimenf its results havc
been documented in anumber of papers and
reports in the SEL series (Reference 6).
Since this first study. five mom sirnulaton
have bcen built in Ada, and a separate study
was performed to transport one of the sir~u-
lators from a VAX environment to an IBM
mainbmc environment (Reference 7).
Although the trends on these Ada projects
are still being analyzed, a significant in-
crease in reuse, with substantial develop
ment cost saving, seems to be the greatest
benefit.

Another methodology change with which
the SEL has begun to experiment recently is
the cleanrwm devebpment methodology
(Reference 8). This methodology rdies on
human dixipline and peer miew tech-
niques to eliminate errors early in the life
cycle. It isolates the designers and coders
from the testers and prohibits the coders
from C Y Q ~ compiling their programs.
Although the SEL had done some early
evaluatiom of this methodology (the wde-
reading ttcfinique h d y &d was
adopted from the cleanroom metfiodology).
it did not begin a deanroom pilot projec:
until 1988. The ACME project ~ e d the
ckinrwm approach to develop one of the
subsystems for an attitude ground support

system (AGSS). Initial ACME daia showed
an improvement in cnor rates (Reference 9).
Currently, two other projects are using the
cleanroom methodology to confirm and a-
pand upon the initial trends observed on
ACME. One effort is trying to reproduce
the trends on another project of ACME'S
scale (appmximateiy M KSLOC in size), and
the other is to sale up and use the
methodology on an entire AGSS (more than
1M KSLOC in sizt) to see if similar trends
appear.

By participating in SEL methodology
change experiments, CSC has learned other
lessons:

We have been able to mini-
the risks of insening new technology into the
flight dynamics environment by measuring
and evaluating impacts in a controlled fash-
ion allowing educated decisions to be made
Sased on quantitative costheneiit tradeoffs.

In the case of Ada, we have been
able to take advantage of the lessons learned
on the pilot projects by communicating
them to other organizations within our com-
pany through various technology exchange
f o m .

Supporting the Organization

The third catepry of activities in the SEL
process improvement program is aimed at
supporting the needs of the development or-
ganization rather than making controlled
changes to the process or environment. This
involves the concepts of effectively capturing
and packaging aperience.

Early in its history. the SEL defined and
documented the methodology being used to
develop flight dynamics projects. It pub-
lished a saia of documents that established
standards and guidelines for both devd-
open and managers in such areas as design
impkmcntation and testing techniques;
lifecycle reviews and documentation:

planning. monitori~g. and controlling
projects: cost estimation; and product assur-
ance (References 10-15). ncse documents
helped capture experience in the flight dy-
namics environment and wen instrumental
in quickly training new sta& As technology
changed and the SELh domain grew, it be-
came evident that these dacurnents had to
w o k as well. Thus, the SELis currently up-
dating this series with the dual objectives of
(1) augmenting the methodology to broaden
its scope and include new technology and
(2) generalizing it where possible to provide
greater flexibility for making future changes.

In a related activity, the SEL developed
process models for the environment. A
process model defines the expected behavior
of a particular measure, such as staff re-
sources expended. over the life cycle of a
project. Process models capture the experi-
ence learned on past projects and package it
in a form that can be used on current
projects. .Models give greater visibility into
managing development projects. They allow
managers to make at-completion predic-
tions of sucbmeasures as resource udiza-
tion. error rates, and project schedules.
They can also be used to determine when a
project is deviating from the typical behav-
ior of past pmjcrts and help to determine
the causes of such deviations.

The SEL developed a tool that its managers
use to take advantage of the SEL process
models. This tool. the Sofrware Manage-
Eent Environment (SME) (Reference 16).
allows managers to use process models that
arc based on a pool of projects similar to the
ones they are currently managing. It helps
them analyze progress on their projects, pre-
dict cutcomes. and plan alternatives. all with
thc advantage of using the experience base
built up by the SEX, in the flight dynamics
environment

The SEL process improvement program has
also helped recognize and respond to the

changing needs of the sta££ members in the
environment Over the U years since the
SEL started the primary background of the
deve!open in the environment has shifted
from mathematics and physics to computer
science. In response to this. the SEL initi-
ated a training program to give new devel-
open a basic foundation in flight dynamics
applications and quickly faatiliarip them
with the SEL methodology.

By participating in SEL activities io support
the organization, CSC has learned even
more:

a We need to have a documented
methodology used cmsistently across the
environment. Drawing on the SEKs apcr i -
ence in documenting the methodology used
in the flight dynamics environment and on
our own. more ge.7eral corporate methodol-
ogy, we have documented a system dcvelop-
mznt methodology for use across the entire
SEAS contract (Reference 5) , and we have
supplemented this methodology with a set of
standards and procedures (Reference 17) to
help staff members apply it.

a We know that quantitative man-
agement works. Measuring process and
product allows us to develop quantitative
models that enable projects to be better
planned. more accurately estimated. and
more effectively controlled. We can also
detest deviations from our plans more
easily, and hence we can correct problems
earlier. Recognizing the importance of
quantitative managemenf we have pack-
aged our experiences in this area in a data
collection. analysis. and reporting handbook
to be used by our managers on the SEAS
contract (Reference 18).

a We need to train our organization
in the methodology and in process improve-
ment concepts. We have developed a re-
quired training program (Reference 19) for
all engineers. developers. testers. integra-
tors, and managen to ensure consistent

understanding and a~plication of the SEAS
System Development Methodology and of Tab'g

quantitative management techniques across
the entire contract

We can write better proposals
when estimates are backed up with solid
data. From a business point of view, being
able to point to a quantitative experience
base lends mdibility to proposals and
brings in more work

ASSESSMENT OF PROGRESS

We have seen some mechanics of the SEL
process improvement program, some spe-
cific examples of the types of activities in
which the SEL engages. and how CSC has
benefited from participating in these activi-
ties. Using the SELLS own data. we now
address the question "Are we any better?"
by examining some growth reliability, and
productivity trends over the past 15 years.

30 I I

Characmfistks

Cant~ol

S o w n

Torquan

Onboard
comprtar

falametry typos

Oat8 rat-

A-J~~V

Three areas measure changes in the nature
of flight dynamics systems: complexity. gen-
eral requirements, and system size. CSC
performed a study it, 1988 to m i n e trends
in these areas. as well as in software reuse
(Reference 20). Ar that time. it was generally
felt that systems were becoming more
complex primarily as a reflection of the in-
creased complexity of the spacecraft they
were developed to support. Xble 2 adapted
from the study. shows a comparison oitypi-
cal spacecraft configurations in the
mid-1970s with those of the late 1980s. This
table shows that the required attitude accu-
racy is 50 times greater than it was, data
rates are over 14 times faster. and then are
3 times as many telemetry data types and
10 times as many sensors. In the above-
mentioned study, these and other character-
istics were combined into a synthetic
measure of spacenaft complexity. A plot
showing the overall trend in this complexity
measure (Figure 1) shows that it has more
than doubled over the past I5 years.

The same study also derived a measure of
functional specification complexiq to
reflect the growth in general requirunents.
This measure also more than doubled over
the past U years. yet requirements growth
was not directly proportional to spacecraft
complexity. For example, going h m a
spacecraft with one sensor to a spaacraft
with five sensors means that software must
be developed to process data fnw all five
sensors. Beyond that. however, it may also
mean an additional requirement to create a

Mid-1970s

-%in
stabiliud

1

1

A*
impla control

5

2 2 ktJ,

1 dogma

Late 1980s

3-m'r
s ih l izd

8to 11

2t03

Dw.
uranonws

1210 15

32 W s

0.02 d.gree

utility that determines the best time to use
one sensor instead of another or to create a
program that predicts periods when the
motor that runs one sensor might interfere
with the operation of another sensor. In
addition, requirements have been added to
build programs that perform such functions
as predicting Earth occultation of a given set
of stars, predicting Moon interference with
sensor operation or predicting antenna con-
tact times. Thus, both increased spacecraft
complexity and general requirements
growth can be seen as separate drivers in the
growth of system size.

In terms of system size, Figure 2 shows that
total number of delivered tines of code
(including blank lines and comments) has
not quite tripled. At the same time. deveiop-
ment error rates have been reduced by
65 percent (Figure 3). Figwe 4 shows the
trend in the cost per developed tine of code.
It has remained relatively constanf although
the narrowing of the maximum and mini-
mum range line indicates that it is becorn-
ing more predictable.

Looking at all of these trends together now
helps us answer our original question.
Although a rigorous study of the relation-
ship between spacecraft complexity, re-
quirements growth. and system size has not
been performed. one could expect that a
doubling in both complexity and general re-
quirements might result in a quadrupling of
systansizc. Since system size did not quite
triple, we conclude that developers are now
packaging more functionality per line of
code than they were 15 years ago. Thus, the
SEL process improvement program has
e n a M u s to build systems that provide
more functionality per line of codc with sig-
nificantly fewer enon per Line of codc at a
Iowa cost per line of codc than systems of
15 years ago. It is clearly possible to
imprwc prdmivity and lower enor rates
a t tbe same time.

ngure 2 meria tn Growth ot mgtrt
Dynamics AppPcatlw

Figure 3. Rends in Development
Error Rates

im im l o rn isrz rsu ism r w r ioa,

Figure 4. Rends h Software Cost

In addition process models derived from
SEL-coUectcd data have helped us predict
error rates and systan costs more accJ-
m l y . Thus. the answer to the quaticn -Arc
we any betla?" has to be an unquaiified
"Yes."

We would like to thank Michele Bissonette
for her help in preparing this paper.

REFERENCES

1. NASAIGSFC Software Enginaring
Laboratory. SU-81-104, 77w Sofi-
ware Engineering Loborotory. D. Card,
E McGarry, et al.. February 1982

2 --, SEL-81-101. Eval&n of an Inde-
pendent Venficarion and V a l U n
(IVdiV) Methodoiogy for Right Dy-
namicr. G. Page. E McGarry, and
D. Card, June 1985

3. -, SEL-8540l.A Cornpariron ofSofi-
ware Vcrfication Techniques, D. Card.
R. Selby, et al.. April 1985

4. NASAIGSFC, Request for Proposal
(RFP) 5-743001184, Systems, Engi-
neering, and Analysis Support
(SEAS). September 1986

5. Computer Sciences Corporation,
SEAS Sysrem Development Mclhodol-
ogy (SSDM), July 1989

6. Software Engineering Laboratory,
SEL-90-004. Gamma Ray Observatory
Dynamics Simulator in Ada (GRODY)
Eqeriment S w n m] , T McDermott
et al.. September 1990

7. -, SEL-90.003, A Study of the Porta-
bildy of an Ada System in the Software
Engineering Loborotory (SEL). L Jun
ct al.. June 1990

8. IBM Federal Systems Division,
CIcannwm Sofhme Develapmnt
M&. M. Dyer. October 1982

9. Software Engineering Laboratory,
SEL-90.00L ntc Cleanrrwm Case
Study in the Sofiware Engineuing Lob-

omtory: Projca Dcsaiprion and Eorfy
An&&. S. Green et d.. March 1990

-, SEL-81-205. Recommenduf Ap-
p d to SO* Dcvdopmcnr,

McGarry, G. Page. et al.. April 1983

-, SU-83-01. An Approocfi to Soji-
ware Cost Esrimorion. E McGany.
G. Pagc. et al, February 1984

-, SEL-84-101. Mmger's Hmrdbook
for Sofiare Development. L Landis.
F. McGany, et al, November 1990

-, SEL-85-005, Software V i n
and T i n g . D. Card. C. Antle. and
E. Edwards. December 1985

--, SU-86-001. Programmer's Hand-
book for Flight Dynamics Sojhre
Development. R Wood and
E. Edwards. March 1986

-. SEL-87301, Product Assurance
Polic:es and Procedures for Eight
Dynamics Software Development.
S. Perry et al, March 1987

--. SU-89-003. Sohare Mamgemnt
Envimnment (SME) Concepts and
Archuecture. W. Decker and J. Valett.
August 1989

Computer Sciences Corporation.
SEAS System Development ,Herhod-
ology (SSDM) Standards and Proce-
dures, June 1990

-. SGiS Software ,Ueasurement Sys-
tem (SSMS) Handbook. to be pub-
lished in early 1991

-, Caralog of SEAS Training Courscs.
September 1990

-, CSGTM-891603 L A Study on Size
and Rewe Trends in Am'tude Ground
Support S y s r m (AGSSs) Devdaped
for the Right Dynamics Division
(FDD) (1976-1988). D. Boland et aL.
February 1989

VlEWGRAPH MATERIALS

FOR THE

G. PAGE PRESENTATION

Impact of a
Process Improvement Program in a
Production Software Environment:

Are we any better?

Jerry Page
November 28,1990

9 8 C = d
S
ti

ppp Co~llpl~tcl* Scicrlccs Colyol.adolr
Systenl Scicr~ces Division

I;:
ppp Cor~rputer S~.lcr~ccu Corporudo~r
bdb System Sciences Division

Software Engineering Laboratory
Environment

- 0 0
* X k
G 5
S
U ppp Co~nputer Sciences Corporation

'Ldb Sys~elll Sriellres Division

w

Characteristic Current State

Organization Staff Level > 250

Computlng Environment

Languages

Application

Average Svstem Size

Average Project Duration

Average Staff Level

Staff Background

C

HSD 8063 (IBM 3083),
VAX 8820, VAX-11 //P,O

FORTRAN, Ada

Attitude, orbit, mission analysis

180 KSLOC

2 Years

15 to 20

Computer Science, Mathematics,
and Physical Sciences

What Is a
Process Improvement Program?

A conscious, continuous effort to build higher quality
systems by

Understanding the environment

Measuring and evaluating the results from planned
changes

Capturing and packaging experience to optimize
the process and to anticipate uncontrollables

' ppp Computer Sciences Corporation
bdb Syste~n Sciellces Divisiotl

Life Cycle Process Changes

Perform experimental studies on production projects

Vary one element of process and measure impacts on process and product

Fine tune process to take advantage of benefits

1 Testing Studies I Observations and Actions I
Code Reading, Code reading most effective technique
Functional and Add ?o process
Structural Testing

lnde endent P Verif cation and
Validation

Small effects for relative1 large cost h IV&V inappropriate for S L projects

C:
p Corapulcr Scicr~ccs Corporation
b Systeln Scicllces IXvision

Technology/Methodology Changes

Test new technology in production environment with pilot project

Measure impacts on project profiles and products produced

Package lessons learned, adjust training, and repeat for effect

t; d
4
L:

ppp Conrputer Sciences Corporatiorr
d b Systet~l Scicnccs Division

r

Technology

Ada

Cleanroom

Observations and Actions

Very promising trends on software rause
Conduct further and more detailed studies

Initially, error levels uery low
Scale up experiment and verify findings

L

Orqanizational % . Changes

Look for devlatlons from process models

Determine impacts

Strengthen definitions of overall approach

I&
Camputcr Scicriccs Coq~orntion
Systenl Sciences Division

Change

Staff Turnover or
Staff Growth

Staff
Background

-

Domain Growth

i

Action Taken

. Created and augmented standards and guidelines
Developed Software Management Environment (SME)

Established required training program for developers

Develope Software Development Environment (SDE) and mana%ers

Augmented methodology to broaden scope
Generalized methodology to make it more flexible

System Complexity*

Control: Spln Sleblllzed
Sensors: 1

- Torquers: 1
OBC: Analog

Slmple Control
Telemetry: 5

- Data Rates: 2.2 kbls
Accuracy: i Degree

Late 1980's

Control: SAXIS Stablllzed
Sensors: 8 to 11

Telemetry: 12 to 15
Data Rates: 32 kbls

Accuracy: 0.02 Degree

I I I I I I I

o n 0

Complexity has more than doubled.
!! 8 9
s 5 '0. Boland, A Stud on Slze and Reuse Trends In Attitude Ground Su port Systems (AGSs) Developed lor the
s Flight Dynamics d lvlslon (FDD) (197&1988), CSCKM-8916031, CSC, f ebruary 1989
E

Computer Sciences Corporation e lwa) -n rrc bd System Sciences Division

System Size

System size has more than doubled.
Conrputer Sciences CorporaCion
System Sciences Division

Development Error Rates

Error rates have been reduced by 65 percent.
Error models are fairly weN established.

- .

9
U ppr Computer Scierlccs Corporatior1

bdb System Sciences Division

Cost of Code

Cost per LOC remained relatively constant.
Predictability is impro ving.

4 -

t: ppp Computer Sciences Corporation

'Cab Sysrtttlr S(.icllccs 1)ivisioll

Code Reuse in Systems

Sometimes interesting things in a picture are lost
because of shallow depth of field.

li: prr Computer Sciences Corporation
bdb Systcnl Sc.iences Division

Code Reuse in Ada Simulators

However, searching with a reduced field of view
can pay off.

Con~p~l lcr Scicl~ccs Corporulloar CSC Sys~enlS , cict~~ccs Division

What CSC Has Learned

Quantitative management works

Peer review works

You can lower error rates

You can raise productivity

You can write more credible proposals
when you can back them up with data

4
C:

Computer Sciences Corporation

What Has CSC Done to
Capitalize on its Learning?

Developed a System Development Methodology based on its
experience

Packaged its experience with quantitative mana ement in a
manager's Data Collection, Analysis, and Report 9 ng Handbook

Developed a set of standards and guidelines to complement
its methodology

Developed required training programs for engineers, developers,
testers, integrators, and managers to maximize the benefits of its
methodology

Established measurement-based Engineering Process Groups to
identify im rovement areas, recommend changes, and evaluate the

v n ?
% 8s impact of t R ose changes
r +
S
C:

ppp Co~irlxiicr Scicaccs Corporalion
bdb Systr~~l Sciences Division

Presentation Contributors

Gerry Heller
Tim McDermott
Sharon Waligora

- n o
4 X a

4
4
G

ppp Computer Sciences Corporalion
'Cdb System Sciences Division

1 1 -12
TOWARDS UNDERSTANDING SOFTWARE -

15 YEARS IN THE SEL 1 f .
1 5 :

Frank McGarxy
Rose Pajerski

GODDARD SPACE FLIGHT CENTER

ABSTRACT

For 25 years, the Software Enginering Laboratory (SEL) at NWGoddard
Space Flight Center(GSFC) has been wrying out studies and experiments for
the purpose of understanding, assessing. and improving software, and soft-
ware processes within a production software environment. The SEL com-
prises three major organizations:

NASA/GEFC Flight Dynamics Division

University of Maryland Computer Science Depaiient

Computer Sciences Corporation Flight Dynamics Technology
Group

These organizations have jointly carried out several hundred software studies,
producing hundreds of reports, papers. and documents mference 11-aIl
describing some aspect of the software engineering technology that has undcr-
gone analysis in the Flight Dynamics environment. TI-.= studies range from
small antrolled experiments (such as analyzing the effectiveness of code read-
ingversus functional testing) to large, multiple-project studies (such as assess-
ing the impacts of Ada on a production environment). This paper will
summarize the key finding that the sponsoring organization (NASA) feeb
have laid the foundation for ongoing and future software development and re-
search activities.

I, BACKGROUND

In 1976, NASAIGSFC initiated an effort to a n y out experiments within the Flight
Dynamics area to attempt to measure the relative merits of the numerous software
technologies that were both available and claimed to be significant 'irnprcvements'
over currently used practices. Although significant advances were being made in de-
veloping new technologies, such as structured development practices. automated
tools. quality assurance approaches, and management tools there was very Limited
empirical evidence o r guidance pertaining to applying these promising, yet immature
methods. Primarily to address this situation, the Software Engineering Laboratory
(SEL) was formed.

The SEL was formed as a partnership between NASA, the University of Maqiand, and
Computer Sciences Corporation. This working relationship has been maintained
continually since 1976 with relatively little change to the overall goals of the organiza-
tion during its entire history. In general, the goals have matured: they have not been
changed. The goals can be itemized as follows:

1. Understand-Improve the insight that exists in characterizing the software
process and its products in a production environment.

2. Assess-Measure the impact that available techniques have on the sofrware
process. Determine which techniques are appropriate for the environment
and can improve the software,

3. Infuse- After identifying process improvements. package the technology in
a form to be applied and useful to the production organization.

The approach taken to attain these three generalized goals has been to appty poten-
tially beneficial techniques to the development of production software and to measure
the process and product in reasonable detail to assess quantifiably the applied technol-
ogy. Measures of concern. such as cost. reliability, andlor maintainability, are defined
as the organization determines the major near- and long-term objectives for its soft-
ware dcvelopment process improvement program. Once those objectives are deter-
mined. the SEL staff designs the experiment. that is. defines the rarticular data to be
captured and the questions that must be addressed in each experimental project.

All of theexperiments conducted by the SEL have occurred-within the p r o d d o n e n -
vironment of the Flight Dynamics software development facility at NASNGSFC.
This software can be characterized as scientific, nonembedded. relatively complex
software. Projects are typically developed in FORTRAN. although about 25 percent
of the projects utilize another language such as Ada, C. or PASCAL The duration of
each effort normally runs from 2 to 3-112 years. with an average staff size of approxi-
mately 15 software developers. The average size of one of these projects runsapproxi-
mately 175,000 source lines of code (coucting commentary), with about 25 percent
reused from previous development efforts. Since this environment is relativetyconsis-
tent. it is conducive to the experimentation process. In the SEL. there exists a homoge-
neous class of software, a stable development environment. and a very controlled.
consistent management and development process.

The following three major functional organizations support the expenmentarion and
study within the SEL environment:

1. Software developers, who are responsibie for producing the flight dynamics
application software.

2. Software engineering analysts, who are the researchers responsible for car-
rying out the experimentation process and producing study results

3. Data base support staff, who are responsible for collecting, checking and
archiving all of the data =d information collected from the development
efforts.

Since its inception in 1976, the SEL has carried out studies and everimerits involving
nearly 100 flight dynamics projects. Detailed data have been collected and studied.
and numerous reports and journal papers have been produced. From all of this analy-
sis and from all of these studies. seven key points have been ideccified that reflect in-
sight gained by the SEL and which are the guiding principles for future development
and research within this organization. These seven key points, described under
EXPERIENCES below, address nearly every aspect of the activities within the SEL
experimentation process and should provide some guidance to other organizations in-
volved with software development and/or s o m e engineering research.

11. EXPERIENCES

hid I: M e m m e n t is an Essential Element of SopWare R u e s Improvement

It is imperative that software measurement be an integral component of any software
process assessment or process improvement program. Although this point may seem
obvious to most, there is evidence that occasionally organizations may initiate 'proc-
ess improvement' efforts without fully developing considerations and plans for apply-
ing measuremelit. In addition to providing sone mechanism for determining the
baseline characteristics of the software process before any change is adopted, the
measurement aspect is necessary to gauge the impact of any change to :he software
process. Not only does an organization need to understand if and by how much soft-
ware 'quality' is improving through enhanced software processes. but even the more
elementary assessment as to whether there is any consistency within an organization's
process (is it measurable) as well as 'is change observable?' are points addressed only
through measurement.

The SEL has focused on software measurement as a tool to aid in determining the
effect that changes to the sofhvare process may have on attributes of concern (cost.
quaIity, reliability, ...). In addition to this, it has become evident that both the meas-
urement process as well as the measurements themselves are exrremely valuable soft-
ware management tools. The Flight Dynamics environment has adopted the SEL
measurement process as an integral component of the development standards and
applies key measures in planning and tncking the progress of projects. There are
eight key measures that the Eight Dynamics software organization has adopted as
essential management aids [Reference 21.

One additional point that has become apparent for the SELafter 15 years of sofnvare
measurement is that the adoption of an effective measurement program is not cost
prohibitive. In fact. the measurement collection process can be wentially a zero cost
impact to the development project-provided that a well thought-out set of measures
is adopted rather ihan an ill-conceived large number of measures. The most

significant cost attributable to a measurement program is that of processing and e5x-
tively analyzing/utilizing the information-and this mast be done. it should be ob-
vious that the mere process of colleaing measures will be of absolutely no value (even
negative value) unless the information is analyzed and frtored back into the s&we
process itself. Although the cost impact to the development projects themselm can
be near &percent overhead, the cost of processing and a n w n g information as part
of an effective process improvement program will add 10 percent to 15 percent of the
development cost.

hint 2: Many D i v e d Exist to a S c c c ~ Pmarr Impmvcmcnt Progrmn

Most software organizations have either attempted or at least seriously considered
adopting a software measurement program. Unfortumtely. there are too few exam-
ples of projects or companies in general that have sustainedan effective measurement
program. Many reasons exist to explain why such a critical element of software end-
neering consistently fails, and the SEL has experienced most of the significant impedi-
ments and pit-falls that can discourage the use of measurement p r o p m s Tkree of
the most significant diversions that the SEL hasexperienced and which seem to 1;!2pe
numerous other software organizations include the following:

1. Excessive planninglqlanning-If someone is serious about starting a
measurement prcgram. it is more important to get starred with a very small effort as
opposed to developing the full set of measures, tools. analysis approaches. etc. The
key is to start small and grow with experience-but at least start.

2. Over-Dependence on Statistical Analysis-Although the use of analysis
tools is certainly required in applying measurement to the software process there are
occasions when the analysts attempt to uncover more i:~formation from available data
(measures) than is reasonable. Intuition is an excellr:-r starting point for the analysis
process. and it is certainly enhanced or challenged by : : :&ti@ information: but there
is danger in assuming that the mathematical interprerarion of some quite inewct fig-
ures can lead to a more accurate conclusion than the figures dictate. Too often. the
common sense of experienced software developers and rranagers is ignored in favor of
statistics produced with possibly flawed. misinterpreted or missing data.

3. Looking Underthe Lamp-Post-As in the caseof the person who has lost a
coin in the dark pan of a street but chooses to sear& for it benmth tke lighted
lamp-post because it is easier to see. software engineen -onalIy address those
software topics that are easiest to study as opposed to those that are the real problerm
for software development/management. There has been significant effort put inro
studying. rebuilding, and modifying such tools as code analyzers. auditors. conveners
graphical design aids, etc., when there is doubt as to tht real driving need for s u u
small modifications to very old and well-understood technology. Excessive studies
continue to be conducted on antiquated complexity memcs and on 15-year-old
cost-modeling techniques, when there are extremely difficult areas to be addressed.

such as design measures, software specification tools and analyzers. and integrated
environments.

?bht 3: Roplc Are the Most I m p o m R r s o u r c r l T c c ~

In reviewing the results of the numerous studies and experiments that the SEL hascon-
duaed over the past 15 years, it is apparent that the most effective technologig that
result in the most significant benefit, are those that leverage the skills of the software
developers themselves. Numerous studies outside of the SEL environment have
shown that the productivity of individuals can easily vary by as much as a faaor of 10
to 1. In addition to this fact, SELstudies hzve indicated that those methods and tools
that emphasize human discipline are far more effective than those that merely attempt
to take work away from the developers.

Such software techniques as code reading, inspections, walk-&roughs, and all aspects
of 'Cleanroom' are examples that have been shown to be extremely effective [Refer-
ence 31. All of these are directed toward maximizing the potential of individuals as
opposed to removing the individual from the process.

hint 4: EnPironmcntal Chanmkrirtks Should Didate Selected Software Engineer-
ing Echniqws

Experiences in the SEL have verified the expectation that standards, methods, and. in
general, all software engineering approaches must be tailored to specific environ-
ments. Although the point seems to be obvious, we as practitioners and software engi-
neers often attempt to apply a new technique or method expecting certain
improvements without first analyzing whether the vethodology is-addressing the
needs of the environment. For example, if a development organization historically
produces highly reliable, well-tested software, then there is probably little benefit to
be derived from modifyrng the testing approach by applying an automated test genera-
tor.

Additionally. it must be understood that all software environments evolve with time
and undergo some level of change. Because of this. the overall process must be ccntin-
ually observed to identify changing and evolving practices in order to respond with the
most appropriate modifications to methods, tools. etc.

hin! 5: Auhmanbn i s an Imhument of Arrcess Improvement, Not a Replacement
for Process Undem&mding

As was mentioned previously, the foundation of the process improvement paradigm is
that of understanding the software process and associated products- which may then
lead to assessment and to process improvement. Automated tools may provide some
help in understanding this process, but too often we expen the automation process to
resolve problems that we don't clearly understand in a manual sense. If a software
developer or manager cannot clearly represent and grasp some process manually. b e
application of a software tool will only make the process less understood and more ill

defined. This overreliance on automation is occasionally exemplified by organhtiom
that move too swiftly in the adoption of CASE (or related technology) before the ova-
all development characteristics are analyzed and the need for automated tools is iden-
tified. Another example can be seen in the attempts of managers to use code
analyzers, auditors, and automated complexity analyters to gain insight into 'complex-
ity' without being able to discern this trait in any of the products or processes

AIthough it is unwise to try to automate immature pr-s or to apply tools wberem
tool is needed. there are excellent examples of tools and overall automation that re-
flect significant advances in applying this technology to recently maturing disciplines
Such an example is the recent development of the 'Software Management Enviroa-
ment (SME)' [Reference 41 which is used by the FIight Dynamics Division at N A W
GSFC to automate the use and interpretation of historical software data, mod&
measures, and intuition toward the management of active software projects,

Aid 6: H e m o j t k Environment Will Stmngly Infrurncc the Soplwn h a s

It seems rather obvious to say that a development environment hasits owncharacterir-
tics of process and process improvement and that the heritage of this environment win
certainly influence the development of project after project, but the level to which cbe
past performance of a software organization dominates even the us- of significantly
different technology is quite surprising. It is the most prevalent influence that the SEL
has seen in its environment where evolving, new technology is continually applied to
observe impacts to the software process, and major changes to methodology are con-
tinually made.

For example. the technology impact from the introduction of Ada into the SEL emi-
ronment has been under study since 1985 when the first Ada system was developed
One of the early expectations was that there would be a significant change to the effort
distribution over the implementation (design, code, test) period for these Ada system
in comparison with previous F O W systems. To date. :his has not been observd
in the SEL-effort distributions based on these activities have remainedessentia@
the same and continue to reflect past SELexperience. Since changes to an established
development process occur slowly, the changes themselves tend to evolve over time as
more experience is gained with the new technology. As expected, the use of various
Ada constructs (generics, packages, typing, tasking) in the more recent Ada projects ii
considerably different than in earlier systems.

hint 7: SopWare Can & Measurably lmpmvcd Thrwgh Appropriate Use cfAvd-
able Trchndogics

Possibly the most important point evinced as a result of the 15 years of study within the
SEL is that software (both the process and products) can be quantifiabfy improved
through the selected application of methods, tools, and models that exist today. It tns
often been argued that since 'the human being' is the dominant factor in any sofnvare
project, the modification or application of any approach to the development process

cannot be observed nor can it have any significant impaa on improving measures of
importance.

Exprience has verified the fact that researchers often attempt to apply and measure.
to extremeiy detailed levels techniques that may not be 'measurable'; however. it has
also shown that overall trends are definitely measurable when the measurememproc-
ess becomes an integral part of the applied methodology. & was described
previously, because a specific software technology may not be applicable to ad envi-
ronments, each environment must clearly define its goals strengths and weaknesses
before it attempts to observe positive impacts from some modified approach

There are specific methodologies that the SEL has applied and measured over a long
period of time and that have been verified as having positive impaa on the cos, reli-
ability, and overall quality of sofovare within the Flight Dynamics environment Such
techniques include 'Reading' (as applied to design, code, and test), Ada, objea-
oriented development, design criteria (e.g.. strength), measurement, and many others.
There are software practices that will significant!^ and measurably improve the soft-
ware within any specific environment.

For 15 years. NASA has been funding these efforts to carry out experiments and stud-
ies within the SEL. There has been significant cost and general overhead to this effort.
and a logical question that is asked is'Has it all been worth it?' The answer is a re-
sounding YES. Not only has the expenditure of resources been a wise investment for
the Flight Dynamics area within NASA, but members of the SELstrongly.beliexthat
such efforts should be commonplace throughout the Agency as well as throughoat the
software community. The benefits far outweigh the cost.

Since the SEL's ineption in 1976, NASA has spent approximately $14 million dollars
in the three major support areas required by this type of study environment: research
(such as defining studies and analyzing results), technology transfer (such as prodncing
standards and policies), and data processing (such as collecting forms md maintaining
data bases). Additionally, approximately 50 staff-years of NASA personnel effon has
been expended on the SEL During this same time period. the Flight Dynamics area
has spent approximately $130 million on building operational software, all of which
has been part of the study process to some degree.

During the past 15 years, the SEL has certainly had significant impact on the software
being developed in the local environment, and there is strong reason to believe that
many of the results and studies of the SEL have had favorable impaa on a domain
broader than just the NASA Flight Dynamics area Ewmplesof the changes that have
been observed include the following:

1. The 'manageability' of s o h e has improved dramatically. In the late
1970s and early 1980s. this environment experienced wide variation from project to

project in productivity, reliability, and quality. Today, however, the SEL has excellent
models of the process; has well-defined methods; and is able to predia, control, and
manage the cost and quality of the software being produced.

2. The cost per line of new code has decreased somewhat (about 10 percent),
and at fim giance this may imply that the SEL has failed at improving productivity.
Although the SEL finds that the cost to produce a new source statement is nearly as
high as it was 14 years ago, there is appreciable improvement in the functionality of the
software, as well as tremendous increases in the complexity of the problems being
addressed Also, there has been an appreciable increase in the reuse of software
(code, design, methods, test data, etc.), which has driven the overall cost of the equiva-
lent functionality down significantly. When we merely measure the cost to produce
one new source statement, the improvement is small: but when wc measure overall
cost and productivity, the improvement is significant.

3. Reliability of the software has improved by 35 percent. & measured by the
number of errors per thousand lines of code (E/KSLOC), the Flight Dynamics soft-
ware has improved from an average of 8.4 EKSLOC in the early 1980s to approxi-
mately 5.3 E/KSLOC todhy. These figures cover the software phases up through and
including acceptance testing (beginning of operations). Although the operational and
maintenance data are not nearly so extensive as the development data, the small
amount of data available indicates significant improvement in that area as well.

4. Other measures include the effort put forth in rework (changing, fixing, etc.)
and in overail software reuse. These measures also indicate a significant improvement
to the software within this one environment.

In addition to the common measures of software (cost, reliability, etc.), there are many
other major benefits derived from such a 'measurement' program as that in the SEI-
Not only has our understanding of software significantly improved within the research
community, but this understanding is apparent throughout the entire development
community within this Flight Dynamics environment. Not only have the researchers
benefited, but it is obvious that the developers and managers who have been exposed
to this effort are much better prepared to plan, control, assure, and, in general.
develop much higher quality systems. One view of this entire program is that it is a
major 'training' exercise within a large production environment, and the 800 to
1000 developers and managers who have participated in development efforts studied
by the SEL are much better trained and effective software engineers.

REFERENCES

1. Software Engineering Laboratory, SEL-82-906. Annotated Bibliography of &$-
W(UC Engineering Luboratory Literantre, I? Grove.; and J. Wet t , November 1990

2. Software Engineering Laboratory, SEL-84-101. Manager's Handbook for Sofi-
wan DeveZopment (Revision I) , L Landis, E McGarry, S. Wigora, et al..
November 1990

3. Software Engineering Laborary, SEL-90-00'2, The Clemvoom Case Sardy in [he
Sofhure Engineering Luboratory: Project Description and Earj, Analysis.
S. Green et al., March 1990

4. Software Engineering Laboratory, SEL-89-003, SoFk,are Management Emiron-
ment (SME) Concep6 and Architecture, W. Decker and J. W e t & August 1989

VIEWGRAPH MATERIALS

FOR THE

E MCGARRY PRESENTATION

TOWARDS UNDERSTANDING
SOFTWARE

15 YEARS
in the

Software Engineering Laboratory (SEL)

Frank McGarry
Rose Pajerski

% and SEL Staff
ZQ!/ 3 n

SEL ENVIRONMENT
DEVELOPERS SNV ANALYSTS

DEVELOP FLIGHT DYNAMICS S/W)
D,,,p,E,

(STUDY PROCESS)
MEASURES

STAFF 150-250 (RE) FOREACH STAFF 5-10 RESEARCHERS
PROJECT

TYPICAL PROJECT - 150-200 KSLOC FUNCTION SET GOALSIQUESTIONSI
SIZE METRICS

- DESIGN STUDIES1
ACTIVE PROJECTS - 6-10 EXPERIMENTS

(AT ANY GIVEN TIME) ANALYSISIRESEARCH
REFINE SNV PROCESS

PROJECT STAFF - 15-25 PEOPLE
SlZE - PRODUCE REPORTS1

FINDINGS

DATA BASE SUPPORT (MAINTAINIQA SEL DATA)

1976-1990 - 75 PROJECTS

STAFF 2-5 (FTE)
1

I
SELDATABASE

FUNCTION PROCESS FORMSIDATA
QA I FORMS UBRARY
RECORDlARCHlVE DATA
MAINTAIN SEL DATA BASE I
OPERATE SEL LIBRARY REPORTS LIBRARY

I
1976-1990

fY
- OVER 150,000 'FORMS'

A

DR/ELOPME~ TO
PROCESS

1976-1990 - 250 REPORTSIDOCUMENTS

MEASUREMENT IS AN ESSENTIAL ELEMENT
OF SMI PROCESS IMPROVEMENT

*

a MEASURES DEFINE PROCESS/PRODUCT BASELINE AND GAUGE CHANGE
- ONLY MEANS OF PROVIDING UNDERSTANDING
- WITHOUT MEASUREMENT CANNOT DETERMINE CHANGEIIMPROVEMENT

MEASURES - SIGNIFICANT ASSET TO SIW MANAGEMENTIDEVELOPMENT

- VITAL FOR PLANNINGIESTIMATING
- PROVIDES INSIGHT TO HEALTH OF PROJECTS

MEASUREMENT IS - NOT COST PROHIBITIVE
- EXISTS SMALLICRITICAL SET OF MEASURES
- CRITICAL SET LESS THAN 2% IMPACT TO PROJECT
- BENEFITS FAR OUTWEIGH THE OVERHEAD

MEASURES - GAUGING CHANGE AND IMPROVEMENT IN THE SEL

-
-
-
-

- (15 PROJECT BASELINE) -
-

FORTRAN
(8 PROJECTS)

ADA
(5 PROJECTS)

PERCENTAGE OF PROJECT SCHEDULE COMPLETED

OBSERVING IMPACTS OF PROCESS DETERMINE IMPROVEMENT

a MEASUREMENT AS A MANAGEMENT AID

TRACKING "COBE" RELIABILITY

CODE/TEST SYSTEM TEST ACCEPTANCE TEST OPERATIONS

MEASURING ERROR RAl'ES CAN PROVIDE EARLY
INDICATION OF S O m A R E QUALITY

PEOPLE ARE MOST IMPORTANT
RESOURCElTECHNOLOGY

0
TEST TECHNIQUES EXPERIMENT DESCRIPTION

a 3 APPROACHES STUDIED
- CODE READING
- FUNCTIONAL TESTING
- STRUCTURAL TESTING

% OF FAULTS DETECTED

32 PEOPLE PARTICIPATED
(GSFC, UM, CSC)
3 UNIT-SIZED (100 SLOC)
PROGRAMS SEEDED WITH ERRORS

NUMBER OF FAULTS DETECTED
PER HOUR OF EFFORT

CODE FUNCTIONAL STRUCTUHAL
RiMIlNG TESTING TESTING

CODE FUNCTIONAL STRUCTURAL
FWIDING TESTING TESTING

EFFECTIVE TECI4NOLOGY SHOULD FOCUS ON
"PERSONNEL" POTENTIAL

4 -..-

MANY DIVERSIONS EXIST TO A SUCCESSFUL
PROCESS IMPROVEMENT PROGRAM

(DIVERSIONS THE SEL HAS BEEN THROUGH)

EXCESSIVE PLANNINGIREPLANNING

- JUST DO ITISTART SMALL
- LEARN WITH EXPERIENCE
- RELY ON LOCAL STANDARDS (E.G., TERMINOLOGY)

a OVER DEPENDENCE ON STATISTICAL ANALYSIS

- INTUITION IS A VERY USEFUL STARTING POINT
- MAKE USE OF SUBJECTIVE DATA

LOOKING UNDER THE LAMP POST

- CODE ANALYZERSICONVERTERS
- COMPLEXITY METRICS
- DESIGN GRAPHIC AIDS

ENVIRONMENTAL CHARACTERISTICS SHOULD DICTATE
SELECTED SOFTWARE ENGINEERING TECHNIQUES

a SPECIFIC MEASURESITECHNIQUES MAY NOT APPLY
TO ALL "DOMAINS"

a AS ENVIRONMENT EVOLVES, METHODOLOGIES
SHOULD FOLLOW (AND LEAD)

a TAILOR STANDARDSIPOLICIES

SPECIFIC MEASURES MAY NOT
APPLY TO ALL "DOMAINS"

SOFIWARE MEASURES IN THE SEL
.0600 O.mo rn

15 45 75 105 135 165 195
McCABE COMPLEXITY

HALSTEAD LENGTH
McCABE COMPLEXITY
HECUTABLE LINES

Ll _ r _ . u l
lW m 500 700 900 1100 1300

UNES OF CODE
CORRELATIONS

TOTAL EXECUTABLE McCABE
LINES

HALSTEAD - LINES CO: -. ?,! -.. F-XTP/ - LENGTH
0.85 0.91 6.2 1 1.00
0.81 0.87 1.00
0.84 1.00

TOTAL LINES 1 .OO

SAMPLE OF 688 MODULES

CHARACTERISTICS OF EFFECTIVE POLICIES

@
STANI3ARnSIPf3I If2lF.C hAl IST RE- --. .. .--, . W L W W W L U IllVV I UL.

1. WRllTEN MAY BE COMBINED (GENERIC AND TAILORED)
CAREFULLY "PRESENTEDn

2. UNDERSTOOD Q NOT TO INCLUDE EXCESSIVELY ALIEN
TECHNOLOGY
TRAINING OFTEN REQUIRED

3. "LEGACY-BASED" DERIVED FROM NEEDILEGACY
CONTINUALLY EVOLVING
ALL ELEMENTS ARE "DEFENDABLE"

4. ENFORCED SUPPORTED BY MANAGEMENT
LIMITED "DETAIL"

5. MEASURABLE OBSERVABLE (CAN TELL IF IT'S
BEING FOLLOWED)
REQUIRES SELF-EVALUATION

AUTOMATION IS AN INSTRUMENT OF PROCESS IMPROVEMENT
(NOT A REPLACEMENT FOR PROCESS UNDERSTANDING)

TOOLS CAN PROVIDE SIGNIFICANT BENEFIT TO
WELL-DEFINED EXPERIENCE BASE (E.G., SME IN THE SEL)

"IMMATURE" PROCESSES ARE NOT AUTOMATABLE
(IF YOU CAN'T DO IT MANUALLY - DON'T TRY TO AUTOMATE IT)
(E.G., OVER RELIANCE ON CASEIANALYZERSIAUDITORSI
MEASUREMENT TOOLS)

EFFECTIVE TOOLS MUST ADDRESS DEFINED PROCESS NEED
(MATCH SOLUTION TO PROBLEM)
(E.G., OVERUSE OF CODE TRANSLATORICODE ANALYZERS/
TEST GENERATORS, ...)

 AUTOMATING A WELL-UNDERSTOOD "EXPERIENCE BASE" IN THE SEL w--- - -

(SOFMIARE MANAGEMENT ENVIRONMENT (SME))

EXPERIENCE BASE AUTOMATED TOOL MANAGEMENT AID
(SME) / 1. COMPAREIEXPLAIN

1. DATA \ SOFIWAFIE /
MANAGEMENT
ENVIRONMENT

2. PROCESS MODELS

i';
3. KNOWLEDGE

$2: - LESSONS LEARNED
- INTUITION

s e a
4 8 5 8 n J

2. PREDICT

3. ASSESS

HERITAGE OF ENVIRONMENT WILL STRONGLY
INFLUENCE PROCESS

FORTRAN Ada
BY UFE CYCLE PHASE

(DATE DEPENDENT)

BY ACTIVITY
(NOT DATE DEPENDENT)

PkloR DATES CHANGED (CDR, ...) BUT EFFORT DISTRIBUTION STILL QUITE SIMILAR 1
A ~ U U . O ~ U 'BASED ON 6 Ada AND 8 FORTRAN PROJECTS OF SIMILAR TYPE IN THE SEL

SIGNIFICANT PROCESS CHANGE REQUIRES
SIGNIFICANT EFFORTITIME

USE OF Ada FEATURES CHANGES APPRECIABLY WITH EXPERIENCE
NOT A U FEATURES APPROPRIATE FOR APPLICATION

SOFTWARE CAN BE MEASURABLY IMPROVED THROUGH
APPROPRIATE USE OF AVAILABLE TECHNOLOGIES

0
EXAMPLES IN ONE ENVIRONMENT (SEL)

TECHNOLOGY DEMONSTRATED IMPACT

- "READING"

- DESIGN CRITERIA
(STRENGTH)

- Ada
- OOD

- CLEAN ROOM

- MANAGEMENT1
MEASUREMENT

[if #,

A408 020

REPEATEDLY SHOWN TO IMPROVE SORWARE
RELIABILITY (NO ADDITIONAL COST)

DEMONSTRATED TO PRODUCE MORE ERROR
FREE SOFTWARE

SIGNIFICANT COST BENEFIT THROUGH REUSE
REUSE

SIGNIFICANI' IMPROVEMENT IN RELIABILITY
AND PRODUCTIVITY (ALSO RESC'JRCE
CONSUMPTION DOWN)

MAJOR IMPROVEMENT IN PLANNING, ADJUSTING
AND CONTROL
- COST ESTIMATION
- SCHEDULE ESTIMATION

ASSESSING "STRENGTH" AND "SIZE" AS A
STANDARD FOR DESIGN

EXPERIMENT:

450 FORTRAN MODULES (ACROSS 4 SYSTEMS - OVER 20 DEVELOPERS)

DETAILED COST AND ERROR DATA ON ALL MODULES
DETERMINE RELATIONSHIPS: "STRENGTH" TO RELIABILITY AND
"SIZE" TO RELIABILITY

RESULTS:

FAULT RATE FOR CLASSES OF MODULE STRENGTH

UV I W - -
18% dU70

EDIUM
28%

HlGH
35% 44%

HIGH STRENGTH MEDIUM STRENGTH LOW STRENGTH

DESlGN MEASURES SUMMARY

GOOD PROGRAMMERS TEND TO WRITE
HIGH-STRENGTH MODULES

GOOD PROGRnFilMERS SHOW NO PREFERENCE
FOR ANY SPE: :.: MODULE SlZE

OVERALL, HIGH-STRENGTH MODULES HAVE
A LOWER FAULT RATE AND COST LESS
THAN LOW-STRENGTH MODULES

OVERALL, LARGE MODULES COST LESS (PER
is, EXECUTABLE STATEMENT) THAN SMALL MODULES

$2;
t+

FAULT RATE IS NOT DIRECTLY RELATED TO MODULE SlZE
2 2.;

Ada (AND OOD)* IMPACTS ON "COST"
FROM SEL EXPERIENCES 7

5 PROJECTS USlNQ FORTRAN
TOTAL REUSE 100

0 VERBATIM REUSE
Ill

80
V) a 60-
oe

-

43%
34%

COST PER LINE OF CODE 22%
29%

20

2

8 l5
OROOY OOESlM OOADA UARSTELS EWEDSIM
(86187) (87188) (W W) (M W) (88190)

3 lo
5 PROJECTS USING ADA AND OOD

100
a 5 $i

W
80

0 U)

FORTRAN Ada Ada Ada @ 60
(5 PROJECTS) (85186) (87188) (89190).

2 40
(*PARTIALLY BASED ON ESTIMATES)

20

0
OROOY O M S l M OOAM lJN3STUS EUvECEU EUVETELS
tearer) (ertse) tssrso) (ssreo) (ssloo) t u r n)

1. DEVELOPMENT COST PER STATEMENT HAS BEEN NO 'CHEAPER' FOR ADA
2. REUSE POTENTIAL OF Ada IS SlGNlilCANT

' A l l W P PROJEOTB APPLIFB 000 IkCtINIOUkB

HAS THE EFFORT BEEN WORTH IT?
(1975 - 1990)

SEL EXPENDITURES (1990 DOLLARS)

- RESEARCH SUPPORT (UNIVERSIN) $2.5M
(EXPERIMENTATION, ANALYSIS, RESEARCH, REPORTS, ...)

- RESEARCH AND TECH TRANSFER (CSC)
(ANALYSIS, RESEARCH, REPORTS, OVERHEAD TO
DEVELOPMENT PROJECTS)

- DATA PROCESSING AND GENERAL SUPPORT (CSC AND OTHERS) $6.OM
(PROCESSIQA DATA, SEL DATA BASE, REPORTS, ...)

PRODUCTION SOFTWARE (FLIGHT DYNAMICS) DEVELOPED $130M

HAS THE EFFORT BEEN WORTH IT?
(1975 - 1990)

IMPACT OF SEL RESEARCH*
1976 - 1980 1986 - 1990
-

MANAGEABILITY COMPLETE DEPENDENCE PROCESS-MODELED
ON PERSONNEL CAPABILITY AND EFFECTIVE
WIDE VARIANCE IN SOfTWARE MORE
COSTIQUALITY PREDICTABLE, CONSISTENT
NO GUIDANCE FOR RATIONALE FOR METHODS
SELECTING METHODS USED EXISTS

COST PER LINE % 24 SLOCIDAY
OF CODE

RELIABILITY 8.4 EIKSLOC
(UNIT TEST THRU
ACCEPTANCE)

24 SLOCIDAY

5.3 ElKSLOC

CODE REUSE 15-25% 25-35%
3%" 515k REWORK 35-40% OF TOTAL EFFORT 20-30%
ias H fi

*FROBLEM COMPLEXITY AND SUPPORT ENVIRONMENT HAVE ALSO CHANGED SIGNIFICANTLY

HAS THE EFFORT BEEN WORTH IT?

FINAL OBSERVATIONS

"OUR" UNDERSTANDING OF SOFTWARE HAS IMPROVED
SIGNIFICANTLY (WE DO SOFTWARE BETTER)

CONTRIBUTIONS TO SOFTWARE RESEARCH AND DEVELOPMENT
(MEASUREMENT, MANAGEMENT, EXFERIENCE BASE, ...)

PROFESSIONAL DEVELOPMENT OF DEVELOPERS, MANAGERS,
RESEARCi i R S

"NEW" AWARENESS BY MANAGERS, DEVELOPERS
ii;; (S O W A R E CAN BE ENGINEERED)

. , , I - EXPERIMENTATION I OOD (1 ONGOING EXPERIMENT - 2 PLANNED)

1 I

' 1 7
,- ' k I

I

I

I

' , ' , I

1 I

\ ' ' !.
0 I

I

ONGOINGIFUTURE ACTIVITIES FOR THE SEL
I

CURRENTINEAR FUTURE STUDIES

CLEAN ROOM (3 ACTIVE PROJECTS)

, Ada (3 PROJECTS)

' ,
I '
i . ' I

I
1, I

1

11,
1 4 1 'l,, j\ - REFINEMENT

.
,; . t : \ ' : DOMAIN ANALYSIS FOR
' ' i ' "EXPERIENCE BASEn

1

I' ",

$ I - RELEVANCE TO OTHER
' j . 1 ' . "ENVIRONMENTSn

GENERAL

CONTINUE EVALUATION OF
"PROCESS IMPROVEMENT"

CASE (1 ACTIVE PROJECT)

REUSE (USING EXISTING SEL PROJECTS)

MAINTENANCE (3 PROJECTS FOR ANALYSIS)
t

I I
I; (

-
OF "EXPERIENCE BASE"

I I

EXPANSION OF LIFE
1 1 ' ' ,
a 1 CYCLE ANALYZED

I
I $ - MAINTENANCE
(I I ,' 1%; - SPECSIREQUIREMENTS

I - EXPANDED MEASUREMENT

I I ' / - G/Q/M

TESTING STRATEGIES (EXISTING SEL PROJECTS)

MEASUREMENT (CHARACTERIZING DESIGNS)

I '
I \

STUDIES IN THE SEL
1976 - 1990 PACKAGING

V) 1976 - 1980 1980 - 1986 1986 - 1990
b DEFINE PROCESS INITIAL 'RELATIONSHIPS' PROCESS IMPROVEMENT ENVIRONMENT ' b CALIBRATE 'PROCESS ENVIRONMENT" EXPERIMENTS FULL TECHNOLOGY ASSESSMENT 5 DEFINE MEASURESIMEASUREMENT REFINE MEASURESIMEASVREMENT FULL USE OF MEASUREMENT

ASSESSING

EVOLVING TO AN EFFECTIVE
"PROCESS IMPROVEMENT" ENVIRONMENT

a

TRAINII\IG PROGRAM
a SME

'MANAGER'S HANDBOOK" - - - - - - -

UNDERSTAND'NG

b

CLEAN ROOM
EVALUATE ADA

ASSESS STRENGTH AS DESIGN CRITERIA
COMPARE TEST TECHNIQUES (FUNCTION,, READING, STRUCTURAL) - - - - - - - - - - - -

3
t

a RELATIONSHIP BETWEEN DEVELOPMENT MEASURES
ERRORICHANGE CHARACTERISTICS

RESOURCE AND EFFORT PROFILES
APPROACH TO DATA COLLECTION

SESSION 2- PROCESS IMPROVEMENT

R. E. Nance, VPI

M. 6. Arend, McDonnell Douglas

R. Lydon, Raytheon

A Framework for Assessing the Adequacy and Effectiveness of

Software Development Methodologies*

James D. Arthur and Richard E. Nance
f ?

1 ' 0 I
Virginia Tech d ' : "

Index Terms: Software Development Methodologies, Procedural Evaluation, Evaluating Method-

ologies, Software Engineering Objectives, Software Engineering Principles, Induced

Attributes, Indicators.

1. Introduction

Over the past two decades the software development process has changed dramatically. Early

software development practices were guided by "seat-of-the-pants" programming styles. Recog-

nizing maintenance difficulties associated with such styles, the software development cornmunit?

began to investigate and identify software engineering principles that could significantly enhance

the maintainability and quality of a resulting product. Consequently, development techriques that

exploited software engivering principles like abstraction [LISB75], information hiding [Pr\RD72]

and stepwise refinement [WIRN71] were formulated and integrated into many software development

processes.

The subsequent demand for increasingly complex software systems. however, mandated the

coordinated use of complementary principles, guided by an encompassing software development

philosophy that recognized project level goals and objectives, i.e. a methodological approach to

software development. Today, a myriad of tools, techniques, and development methodologies scl-

dress the challenging task of producing high quality software. For example. SCR [HENKiY] alitl
-. - -. . -

* Work supported by the U.S. Navy through the Systems Research Center under Basic Ordering

DARTS [GOMH84] are development methodologies that emphasize specific software engineering

goals (reducing software development costs and facilitating the design of real-time systems, respec-

tively). SREM [ALFM85] and SADT [ROSD77] are methodology based envimnmcnk Both focus

on particular phases of the software life cyde and are supported by unified sets of complementary

tools.

The steady proliferation of design methodologies, however, has nct been without a price. In

particular, users find increasing difficulty in choosing an appropriate methodolopjcal appi .~a& and

recognizing reasonable expectations of a design or development methodology. Addressing this

concern, the research described in this paper outlines a well-defined procedure for

evaluating the adequacy of a software development methodology relative to project goals.

and

assessing the effectiveness of a methodology relative to the quality of the product produced.

The evaluation procedure is based on a substantiated set of linkages among accepted software

engineering objectives, principles, and attributes. These linkages reflect an assessment perspective

structured by the needs, process, and product sequence for system development. and enable a

comparative scale for determining the adequacy and effectiveness of the supporting development

methodology. The identification of code and documentation properties and the definition of metrics

for these properties enables an accumulative determination of software engineering attributes.

principles and objectives.

To provide a uniform basis for discussion, Section 2 outlines the role of a methodolog in

the software development process. Section 3 discusses the relationship of software engineering

objectives, principles and attributes to the software development effort. Section 3 identifies the

commonly accepted objectives, principles and attributes, defines the relationships among tieni.

and then discusses how one evaluates a methodology based on the those relationships. Finally.

Section 5 describes an application of the assessment procedure to two Savy software development

methodologies.

2. W h a t C o n s t i t u t e a Methodology

Fundamental t o the research presented in this paper is a common understanding of what

constitutes a "methoddogyn. Simply stated, a methodology is a collection of complementary

methods, and a set of rules for applying them (FREP771. More specifically, a methodology

(1) organizes and structures the tasks comprising the effort to achieve a global objective,

establishing the relationships among tasks,

(2) defines methods for accomplishing individual tasks (within the framework of the global

objective), and

(3) prescribes an order in which certain classes of decisions are made. and ways of making

those decisions that lead to the overall desired objective.

In general, software development methodologies should be guided by accepted software engineerins

prinaples that, when applied to the defined process, achieve a desired goal. Based on this coninloll

understanding of what constitutes a methodology, the follo~.ving sections present a procedural

approach to evaluating the adequacy and eflectiveness of software development methodologies.

3. T h e Ro le of Objectives, Principles, a n d At t r ibu tes i n Sof tware Development

The development of large, complex software systems is considered a project activity, i~ivolvi~lg

several analysts and programmers and at least one manager. What then is the role of a methodology

in this setting and how does it relate to objectives, principles and attributes? Figure 1 assists ill

providing an answer to this question.

In general terms, an objective is 'something aimed at or striven for." More specific to the

software development context, an objective pertains to a project desirable - a characteristic tllat

can be definitively judged only a t the complc . .~~, of the project.

3

DOCUMP.CTATlON (+) PROGRAMS

RchcdConplrriy
Wdl-Dbmsd ~ L O C S

~rrabili~y ATlRIBUTES
Visibility d Bebtrmr
h l y Bm-

Figure 1

Illustration of the Relationships Among Objectives, Principles, Attributes

in the Software Development Process

A software engineering principle describes an aspect of how the process of software development

should be done. The process of software development, if it is to achieve the stipulated objectives,

must be governed by these 'rules of right conduct."

Attributes are the intangible characteristics of the product: the software produced by project

personnel following the principles set forth by the methodology. Unlike objectives, which pertain

only to the total project activity, attributes may be observed in one unit of the product and

absent in another. The daim of presence or absence of an attribute is based on the recognition of

properties, which contribute evidence supporting the claim. Properties are observable. and can be

subjective as well as objective in nature.

Influenced by Fritz Bauer's original definition of software engineering [BAUF72] and reflecting

the above description cf software engineering objectives, principles and attributes, the rationale for

the evaluation procedure described in this paper is founded on the philosophical argument that:

T h e mison d'etrr of any software development methodology is the achievement of one
or more objec!ivu through a proiress governed by defined principles. In turn. adherence
to a process governed by those principles should result in a product (programs and
documentation) that possesses attributes considered desirable and beneficial.

This philosophy, exemplified by Figure 1, is tempered by practical concerns:

(1) While a set of software engineering objectives can be identified, this set might not be

complete, and additions or modification should be permitted.

(2) Objectives can be given different emphasis within a methodology or in applications of a

methodology.

(3) Attributes of a large software product might be evident in one component yet missing in

another.

4. A F r a m e w o r k f ~ r Evaluat ing Sof tware a e v e l o p m e n t Methodologies

A broad review of software engineering literature (BERG81, CHMLSO, GAFJ78, JXChIi5.

PARD79, PA-9D72, SCOL78, WARJIB] leads to the identification of seven objectives com~nonly

recognized in the numerous methodologies:

(1) Maintainability - the ease with which corrections can be made to respond to recogr.ized

inadequacies.

(2) Correctness - strict adherence to specified requirements,

(3) Reusability - the use of developed software in other applications,

(4) Testability - the ability to evaluate conformance with requirements,

(5) Reliability - the error-free performance of software over time.

(6) Portability - the ease in transferring software from one host system to another. and

(7) AdaptabiLity - the ease with which software can accommodate to change.

The authors note that these definitions, as well as others presented in this section, are abridged:

they are primarily intended to reflect a working understanding based on general literature usage.

Achievement of these objectives comes through the application of principles supported (en-

couraged, enforced) by a methoddogy. The principles enumerated bdow are extracted from the

references cited above (and others) as mandatory in the creative process producing high qualie

programs and documentation.

(1) Abstraction - defining each program segment at a given level of refinement.

(a) Hierarchical Decomposition - components defined in a t o p d w n manner.

(b) Functional Decomposition - components partitioned along functional boundaries.

(2) Information Hiding - insulating the internal details of component behavior.

(3) Stepwise Refinement - utilizing a convergent design.

(4) Structured Programming - using a restricted set of control constructs.

(5) Concurrent Documentation - management of supporting documents (system specifia-

tions, user manual, etc.) throughout the life cycle.

(6) Life Cycle Verification - verification of requirements throughout the design. developmenr.

and maintenance phases of the Life cycle.

Employment of well-recognized principles should result in software products possessing z-

tributes considered to be desirable and beneficial. A short definition of each attribute is givm

below.

(1) Cohesion - the binding of statements within a software component.

6

(2) Coupling - the interdependence among software components.

(3) Complexity - an abstract measure of work assodated with a software component relative

to human understanding and/or machine execution.

(4) Well-defined Interfaces - the definitional darity and completeness of a shared boundary

between a pair of components (hardware or software).

(5) Readability - the difficulty in understanding a software component (related to complexity).

(6) Ease of Change - the ease with which software accommodates enhancements or extensions.

(7) Traceability - the ease in retracing the complete history of a software component from its

current status to its design inception.

(8) Visibility of. Behavior - the provision of a review process for enor checking.

(9) Early Error Detection - indication of faults in requirements specification and design prior

to implementation.

The software development process, illustrated in Figure 1, depicts a natuml relationship that

links objectives to prindples and principles to attributes. T h a t is. one achieves the objectives of

a software development methodology by applying fundamental principles which. in turn, induce

particular code and documentation attributes. From a more detailed perspective. Figure 2 defines

the specific set oflinkages relating objectives to principles and principles to attributes. -4s described

below, these linkages provide a framework for assessing both the adequacy of a methodology =
well as its effectiveness.

4.1 Assessing t h e Adequacy of a Methodology

The enunciation of objectives should be the first step in the definition of asoftware development

methodology. Closely following is the statement of prindples that, employed properly, lead to the

attainment of those objectives. In tur-. the application of those principles within a j t r u c t u ~ d

software development process will yield a product that exhibits desirable attributes. The important

Early Error Detection

Visibility of Behavior

Well-Defined Inurfacc

Figure 2

Linkages Among t h e Objectives, Principles and Attributes

correspondence between the objectives and principles and between the principles and attributes is

shown i n Fjgnre 2; a literature confirmation of these relationships is discussed in [.-\RTJSi].

The adequacy of asoftware development methodology can be defined as its ability to achieve tlic!

software engineerkg objectives corresponding to those dictated by system needs and cequiremel~ts.

Intnitiveiy, the adequacy of a methodology is assessed through a top-down evaluation sc11e111e

starting with an examination of stated methoddogical objectives relative to system needs and

requirements. This step is then followed by a comparison of stated methodological principles

and attributes with those deemed most appropriate. An examination of linkages defined by the

e d n a t i o n procedure reveals the 'most appropriate" set. Relative trl the framework depicted by

F i v e 1 and the sets of linkages defined in Figure 2, an application of the evaluation procedr~re to

the assessmezlt of methodological adeqwcy is outlined below.

Objectives cf the Methodology: The identification of objectives and the relationships tying objec-

tives to needs and requirements is usually accomplished by reading the descriptions of a software

development methodology. Evaluation a t this level is quite subjective; however, the absence of a

dear statement of objectives for a methodology should trigger an alarm: Is the 'methodology"

only a tool or an incomplete set of tools without coherent structure? A methodology should not

be faulted, however, for emphasizing certain objectives at the expense of others; such prioritization

can be highly dependent on the application domain.

Principles Defining the Process: Based on the objectives emphasized by the methodology and the

predefined set of linkages among objectives and principles, the next step in assessing the adequacy

of a methodology is an investigation of the software development process. That is, gven a stated set

of methodological objectives, one asks: Are the principles supported by the methoddogy consistent

with those deemed necessary (through linkage examination) to achieve the stated set of objecti*;es?

The presence of principles without corresponding objective(s) or vice versa should evoke concerns.

.iUthough this level of evaluation is inherently subjective, some analytical qualit:/ is introduced

through the established objective/principle correspondence.

Attributes of the Product: The third step in the assessment process, formulating the set of erpected

product attributes, is based on the fact that principles govern the process by which a software

product i s produced. That is, a given set of principles should induce a consequent set of product

attributes. Obviously, the expected set of product attributes should correspond to those desired by

the software engineer, and to some extent, be implied or stated in the description cif the software

development methodology. More objectivity is introduced a t this level because, although intangible.

evidence of the attributes should be discernible in the product.

4.2 Assessing the Effectiveness of a Methodology

While a top-down evaluation process reveals deficiencies of a software developne~it metliod-

ology, the effectiveness of a methodology is assessed through a bottom-up evaluation process. .is

the term implies, the effectiveness of a methodology is defined as the degree to which a method-

ology produces a desired result. In particular, the etfrctiveness of a methodology is reflected by

a product's conformance to the software development process deined by that methodology. We

note, however, that elements independent of the methodology can influence i ts effectiveness, e.g.

an inadequate understanding and/or use of the methodology.

The E&tence of Product Attributes: Assessing methodological effectiveness starts with an exwni-

nation of the software product (code and documentation) for the presence or absence of attributes.

Because attributes are intangible, subjective qualities, the current evaluation is based oa defined

prc~er t ies tha t provide evidence as to the presence or absence of attributes. More specifically.

the computation of metric values reflect the extent to which particular properties are observed.

In turn, this information is used to synthesize the extant set of product attributes. Clearly, the

set of attributes determined from a product evaluation should agree with those induced hy tt.e

corresponding development methodology. Set mismatch can imply an inappropriate software de-

velopment methodology, an inadequate understanding of the methodology. or perhaps, the failure

of users to adhere to the prinaples advocated by the methodology.

Implied PTinriples and Objectives: Knowing which attributes are present in the product. and

the extent to which they are assessed present, provides a basis for implying the use of software

engineering principles in the software development process. The rationale for such a statement is

based on the observation that a principle-to-attribute Linkage conversely indicates an attribute-to-

principle relationship. Implying principle usage must be tempered, however, because of the many-

t e o n e relationships evistinq between attributes and principles. Similarly. using the established

Linkages among objectives and principles, one can speculatr on the achievement of stated software

engineering objectives.

In summary, the three levels of examination defined by top-down evaluation process establishes

a procedure for determining how well a methodology can support perceived needs, requirements.

and the software development process. Conversely, the bottom-up evduation process reveals how

R Yance
VPI
Page 10 olM

Figure 3

Lllustration of the Evaluation Process

well the methodology is applied in the software deueloprr.ent process through the nse oC ~~uaniitolice

measures to support an objective, qt~alitative assessment.

4.3. An Illustration of the Evaluation Process

To illustrate how the eva1ua:ion scheme can be applied. we r&er the reader t o F i g r e 3 whiie

considering the single objective of maintainnbility. Formally, maintainability can be deiined as :he

ease with which maintenance can be performed to a functional unit in accordance with prescribed

requirements. Accepting maintainability as an objective mandates the indusioa of iix prindpes

(hierarchical decomposition, functional decomposition, information hiding, s tqwise refinemat,

structured programming and concurrent documentation) contributing to the realization of tbat

objective. T h a t is, if a methodology emphsizes maintainability as an objective, then it should

also stress the use of the six principles :hat are related to maintainability.

Expanding on one of those prinaples, information hiding, we note the five attributes (reduced

coupling, enhanced cohesion, well-defined interfaces, ease of change, and low complexity) that

should be evident in software developed using a process governed by the principle of information

hiding. This set of expected attributes is then compared to the desired set for correspondence.

Ln general, a methodology should emphasize the same set of software engineering objectives

derived from project level requirements. The methodology should correspondingly stress the set of

principles linked to those objectives. Additionally, the expected set of product attributes (defined

by the linkages among prinaples and attributes) should agree with the set deemed most desirable

by the project manager. If the above conditions are met. then the candidate methodology is

assumed to be adequate relative to project level, software engineering objectives.

On assessing the effectiveness of an methodology, let us first observe the relationship between a

particular attribute and specific p r o d ~ c t characteristics. Reierring again to Fiqurr? 3. and ~ ~ a r r o w i i ~ q

our attention to one of the attributes, well-defined interfaces, we identify one set of characteristics

related to the well-defined interfaces attribute. These characteristics form the set of ob.sert.nblr

properties which contribute to the claim that a piece of software exhibits a well-defined interface.

Although the properties shown are only a subset of those previously identified [.ARTJSG]. they

represent k t h confirming and contrasting elements. For example, the use of global variables has a

negative impact on well-defined interfaces. The use of structured data in parameter calls. however.

has a positive impact.

Hence, t o determine the effectiveness of a methodology one assesses the extent to which product

attributes are present (or absent), and then propagate the results o i that assessment through the

sets of linkages defined by the evaluation procedure. As discussed by Kearney [K E x J ~ ~] , however.

that assessment process must be predicated on validated metrics.

5. Appl ica t ion o f t h e Evaluat ion P r o c e d u r e

Based on the defined set of linkages among objectives, principles, and attributes, the opera-

tional specification of the evaluation procedure is guided by two fundamental axioms:

(1) the methodology description and project requirements provide standards, conventions,

and guidelines that describe hour to produce a product, and

(2) the project documentation, code, and code documentation reflect how well the develop-

ment process prescribed by the methodology is followed.

As described below, an application of the evaluation procedure, guided by the above two

&oms, illustrates the utility and intrinsic prower of the evaluation procedure in assessing the

adequacy and effectiveness of a methodology. Provided in this illustration is a characterization

of the components used. in the evaluation process, an individual assessment of two methodolog

descriptions, an analysis of associated products, and a summary of the results. The authors

note that a substantial part of the characterization and assessment process is embodied in the

operational aspects of applying the evaluation procedure. Length restrictions, however, prevent

their discussion. For information on the operational aspects the authors refer the interested reader

to [ARTJ86, ARTJ87j.

5.1 Data Sources

A joint investigation of two comparable Navy software development methodologies and respec-

tive products is detailed in [NANRSJ]. The investigation effort utilizes:

a Four software development m e t h o d o l o ~ documents for

(1) identifying the pronounced software engineering objectives. principles. and attributej.

and

VPI
Page 13of46

(2) assessing the adequacy of each methodology through the objective/prinaple/attribate

linkages defined by the evaluation procedure, and

Eight software system documents and 118 routines, comprising 5300 source lines of code,

for

(1) determining the evident set of product attributes, and

(2) via the attribute/principle/objective linkages, empirically assessing the principles and

objectives emphasized during product development.

The following section provides a summary of the results and illustrates the utility anc 2rsatiiity

of the procedural approach t o evaluating software development methodologies. For simplicity. we

refer to the software systems as system A and system B (and methoddogy A. methodology B,

respectively).

5.2 Analyzing t h e Xiethodological Description and Associated P r o d u c t

The initial step in the evaluation process is to perform a 'top-down" analysis of rnethodolo!gies

A and B, t o reveal the set of claimed software engineering objectives. principles, arid attributes.

Because both methodologies have experienced evolutionary development. a clear statement of tieir

respective methodologicai objectives is lacking. Nonetheless, as detailed in Figure 4, the docu-

mentation for methodology -4 does appear to stress the objectives of rrliability and correctness

supported by the principles of structured progmmming, hiemrchical decomposition, a d functiciml

decomposition Following the objective/principle relationships defined by the evaluation pnce-

dure. for each objective stressed in methodology A only three of the necessary six principles are

emphasized. The implication is, that unless the principles of Life-cycle i-erification. information

hiding and stepwise refinement are implicitly assumed and utilized, correctness and reliability. are

compromised.

Figure 4

Pronounced Objectives. Principles, and Xttributes

Using metric values and properties, a corresponding "bottom-upn e~amination of product x

provides some interesting results. The Kiviat graph displayed in Figure j a illustrates the extent to

which each attribute is nssessed as present in the product. (Attribute ratings are restricted to ~ Z I

arbitrarily chosen 1-10 scale.) Note that (reduced) complexity attains the highest rating - 8.0 out od

10.0, closely followed by readability (7.4) and cohesion (6.8). Based on the three principles stressed

in methodolog A, the evaluation procedure predicts that (reduced) complexity, readability. and

cohesion should, in fact, be among the product attributes.

Ln concert with the stated objectives and principles for methodology A, f igure 5b reveals that

structured programming (7.7) is the prominent pnnaple used in developing system A. fdlowed

by stepwise refinement (6.i), hierarchical decomposition (6.41, and functional decomposition (6.4).

Figure 5c depicts the results of emphasizing these principles in terms of methodology objectives. In

Visibility Complexity
of Bchrvior

Interface

Ease of Readability
-Be

Hiemchid
Dccompositim

Flmct id
Decomposition

Hid@

Progmmhg R e f i e n t

Mainlainability

Figure 5

Detected Presence of Objectives, Principles, and Attri hutes

particular, reliability is rated as the major software development objective (6.7). .ilthough correct-

ness is also stressed by methodology A, ascertaining correctness necessitates life-cycle verification.

This prindple is neither emphasized by methodology A, nor evident in the software product. .Is

illustrated by Figures Sa, 5b and 5c, other objectives and principles are given some emphasis during

the software development process for system A. It is the authors' opinions. however. that because

they are not explicitly stressed in methodology A, the assodated product suffers.

For methodology B, the objectives enundated in the documentation are maintai~nabilif y, udapl-

ability, and reliability. Structured prcgmmming and concumnt documentation are the e m p k i z e d

principles. Like methodology A, however, a complete set of supporting principles are not -tared.

Hiemrchicnl decomposition, junctional decomposition, and to some extent injonnaiion hiding are

implicitly assumed as underlying principles of methodology B. According to the linkages among

objectives and principles, dl of the above principles (both stated and assumed) are required to

achieve the objectives expliatly stated in methodology B.

Subsequent analysis of product B and a "bottom-upn propagation of the results through the

Linkages defined by the evaluation procedure reveals structured programming as the most prominent

principle (8.3), closely followed by concurrent documentation (7.0). hforeover, the evaluation also

indicates that the impliatly assumed principles of methodology B are utilized - stepuise refinement.

hierarchical decomposition, functional decomposition, and information hiding rate 6.9, 6.7.6.7, and

6.3, respectively. Finally, the results imply that during the development of product B the objectives

of maintainability, adaptability, and reliability are most emphasized. The above assessments are

illustrated in Figures 5 4 5b, and 5 ~ .

To summarize, the evaluation procedure reveals that both methodologies lack a d e a r statement

of goals and objectives, as well as sufficient principles for achieving the ohjectives that are em-

phtsized. hioreover. glaring deficieacies are apparent in both software development methodologies.

Tha t is, both fail to actively support the principle of information hiding and also have difficulties

in incorporating the desirable attributes of traceabili ty and well-defined interfaces in respective

system products. In general, the evaluation procedure does accurately assesses the software engi-

neering cbjectives, principles, and attributes espoused by methodologies X and B. Of particular

significance, however, is that the objectives and principles determined to be 'emphasized" during

the product development process, yet not stated in the methodology documentation. are precisely

those that are implicitly assumed important by the software engineers developing products .I and

B. A more detailed account of the evaluation can be found in [NXNR85].

0. Conclusion

T d . techniques, environments, and methodologies dominate the software engineriny: lit-

erature, but relatively little research in the evaluation of nethodologies is evident. T 5 s work

reports an initial attempt t o develop a procedural approaLh io evaluating software development

methodologies. Prominent in this approach are:

(1) an explication of role of a methodology in the software development process,

(2) the development of a procedure based on linkages among objectives. principles, and

attributes, and

(3) t,he establishment of a basis for reduction of the subjective nature of the evaluation through

the introduction of properties.

.in application of the evaluation procedure to two Navy methodologies has provided consistent

results tha t demonstrate the utility and versatility of the evaluation procedure (NANRSS]. Current

research efforts focus on the continued refinement of the evaluation procedure through

(a) the the identification and integration of product quality indicators reflective of attribute

presence, and'

(b) the ccllidation of metrics supporting the measure of those indicators.

The consequent refinement of the evaluation procedure offers promise of a flexible approach that

admits t o change as the field of knowledge matures. In conclusion, the procedural approach

presented in this paper represents a promising path toward the end goal of objectively evaluating

softvare engineering methoddogies.

R ?ism
VPI
Page 18 d46

References

[ALFMS] ALford, M., "SREM at the age of Eight; The Distributed Computing Design System."
'* IEEE Computer, V d . 18, No. 1, April 1985, pp. 36-54.

(ARTJ861 Arthur, J.D., Nance, R E . and Henry, S.M., "A Procedural -1pproach to Evaluating Soft-
ware Development Methodologies: The Foundation," Technial Report T R - S 2 4 , Virginia
Tech, 1986.

[ARTJ87! Arthur, J.D. and Nance, R.E., "Developing an Automated Procedure for E~aluating
Sof txae Development Methoddogies and Assodated Products.' Techn id Report SRC-87-
007, Systems Research Center, Virginia Tech, 1987.

[BAUF72] Bauer, F.L. "Software Engineering," Information Pmcesing 71, North Holland Pub-
lishing Company, 1972.

(BERG811 Bergiand, G.D. "A Guided Tour of Program Design Me&odologid Computer, v01.
14, Xo. 10, October 1981, pp. 13-36.

[CHMLSO] Chmura, L.J., Norcio, A.f., and Wianski, T.J., 'Evduatiag Software Design Processes
by Analyzing Change Data Over Time." IEEE Tmns~ctions on Softway Engineennc. Val.
16, No. 7, July 1990, pp. 729-740.

[FREP77] Freeman, P., "The Nature of Design," -4 Tutorial on Sof twm Design Techniques. Second
edition, IEEE Computer Society Press, 1977, pp. 29-36.

[GAFJal] Gdeney, J. E., "Metrics in Software Quality Assurance,' Proceedings of the .Yational
AC,U Conference, November 1981. pp. 126-130.

[GOMHM]Gonaa, H. "A Software Design Method for Real-Time S!-stems," Communications of
the ACM, Vol. 27, No. 9, September 1984, pp. 938-9-19.

[HENK78] Heninger, K. L., J. W. Kallander, J. E. Shore, and D. L. Parnas. %oftware Require-
ments for the A-7E Aircraft," NRL Memorandum Report 3876. Yaval Research Labocztory,
Washington, D. C., November, 1978.

[JACM75] Jackson, M., Principles of Program Design, London: Academic Press. 1975.

[KEAJ86! Kearney,J., el. al., 'Software Complexity Measurement.' Commnnimtiom of fhe
A.C..U., Vo1.29, No. 11, November 1986, pp. 1044-1050. Yonterey, CX, March 19.37.
pp. 238-252.

R S-
VPI

19dY

[LISB75] Liskov, B., Zlles, S., 5pecification Techniques For Data Abstraction," IEEE Tmnsm-
tiom on Software Enginechg , Vol. SE-I, NO. 1, March 1975, pp. 7-19.

[N A N W] Nance, RE., Arthur, J.D. and Dandekar, A.V. "Evaluation of Software Development
Methoddogies," X Final Report of the Immediate Software Development Project, The De-
partment of Computer Saences, Virginia Tech, December 1985. .

[PAR!376] Parnas, D., "On the Design and Development of Program Families," IEEE Tmnsactiorrci
on Software Engineering, V d . SE-2, NO. 1, March 1976, pp. 1-9.

(PARD721 Parnas, D.. "On the Criteria to be Used in Decomposing Systems into Modules.'
Communimtions of the A m , Vol. 15, NO. 5, May 1972, pp. 330-336.

[ROSD77] Ross, D., "Structured Analysis: A Language for Communicating Ideas," IEEE Tmm-
actions on Software Enginem'ng, Vol. SE-3, No. 1, January, 1977, pp. 16-34.

[SCOL78] Scott, L., '.h Engineering Methodology for Presenting Software Functional .-\rchitec-
ture," Proceedings ofthe Third Internotiona! Conference on Software Engineeriny , YY, 1973.
pp.222-229.

[WARJ76] Warnier, J. Logical Cmlruc t ion of Pmgmms, 3rd edition, trans. B. Flanagan, YY: Van
Nostrand Reinhold, 1976.

[WIRN71] W ~ r t h , Y., *Program Development by Stepwise Refinement," Communications of the
ACM, Vol. 14, No.4, Xpril, 1971, pp. 221-227.

R Y a u
VPI
RgeBdU

VIEWGRAPH MATERIALS

FOR THE

R. NANCE PRESENTATION

A FRAMEWORK FQR ASSESSING THE
ADEQUACY AND EFFECTIVENESS OF

SOFTWARE DEVELOPMENT METHODOLOGIES

A Presentation to the
Fifteenth Annual Software Engineering Workshop

Richurd E. Nance
James D. Arthur

Systems Research Center
and

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

28 November 1990

PRECEDING PAGE BLANK NOT FILMED

THE ORIGIN

Immediate Software Development Issues
for

Embedded Systems Applications
in Surface Combatants

(25 March - 15 September 1985)

Issue: Multiple Software Development Methodologies

(a) Review two software development "methodologies" (A and B)

(b) Compare and evaluate A and B

(c) Assess the costs and benefits of:

Continuing witn multiple sofnvare development
methodologizs

Using only one software development methodology

Transitioning to an alternate s o f ~ a r e development
me thodology

OUTLINE

Evaluation Approach

- Objectives, Principles, Attributes Framework

Development of an Evaluation Procedure

- Software Engineering and Software Development
- A Structured Evaluation Procedure
- Data Sources

Application of the Evaluation Procedure

- Summary of Sample Data
- Illustration of Procedure Application

Summary of Results

Future Work

EVALUATION APPROACH

1. Develop an Evaluation Procedure

- What is a methodology?

- How can they be compared?

2. Apply the Evaluation Procedure

- In consonance with our Navy sponsor, and with

- Contributions from software development sites
and oversight agencies.

ON METHODOLOGES

I What is a methodology?

j A methodology is a collection of complementary methods,
and a set of rules for a.pplying them. More specifically, a

i ' methodology
i

(1) organizes and structures tasks comprising the effort to
achieve a global objective, establishing the
relationships among tasks,

(2) defmes methods for accomplishing individual tasks
(within the context of the global objective), and

(3) prescribes an order in which certain classes of
decisions are made, and ways of making those
decisions that lead to the desired objective.

RATIONALE FOR
THE EVALUATION PROCEDURE

A set of obiectives can be identified that include those

postulated by any software engineering methodology. A

methodology defines those principles that characterize a

proper and appropriate development process. Adherence to a

process governed by these principles should result in a

product (programs and documentation) that possesses

attributes considered desirable and beneficial.

Philosophy tempered by practical concerns:

(1) Sets of objectives, principles, attributes areopen.

(2) Prioritization of objectives recognized.

(3) Components of large software system vary - attribute
sampiing.

(4) Flexible application of evaluation procedure -
consonant with project objectives.

FRAMEWORK FOR SOFTWARE DEVELOPMENT

OB JECTNES

Maintainability
Correctness
Reusability
Testability
Reliability
Portability
Adaptability

E!Imaus
Hierarchical Decomposition
Functional Decomposition
Information Hiding
S tepwise Refinement
Structured Programing
Life-Cycle Verification
Concurrent Documentation

I

lllnaam
Reduced Coupling
Enhanced Cohesion
Reduced Complexity
Well-Defmed Interfaces
Readability
Ease of Change
Traceability
Visibility of Behavior
Early Emr Detection

PROCESS

11 PRODUCT

DOCUMENTAnON (+) PROGRAMS

Properties

A r n u T E S

R Y a m
VPl
page n ol M

PROCEDURE DEVELOPMENT

1. Identlfy Objectives

- What qualities are desirable?

2. Define Principles

- How are desirable qualities obtained?

3. Link Principles to Objectives

- Which principles contribute to each objective?

4. Defme Resulting Attributes

- Use of a principle induces what desirable attributes?

5. Defme Properties Associated with Attributes

- What properties give evidence of attribute presence or
absence?

- How to measure properties?

PRIMARY SOFTWARE ENGINEERING
OB.TECTM3S

-# -
(1) Adaptability - the ease with which software can

I accommodate to changing requirements

! (2) Correctness - strict adherence to specifications

I
(3) Maintainability - the ease with which corrections

can be made to respond to recognized
inadequacies

I

(4) Portability - the ease in transferring software to
another host environment

! I (5) Reliability - the error-free behavior of software over
time

* -

(6) Reusability - the use of developed software in other
. . applications

.*
4 a
1 - (7) Testability - the ability to evaluate conformance
. - with specifications

PRIMARY SOFTWARE ENGINEERING
PRINCTPLES

(1) Abstraction - defming each program segment at a
given level of refmement

(a) Hierarchical Decomposition - components
defmed in a top-down manner

@) Functional Decomposition - components
partitioned along functional boundaries

(2) Concurrent Documentation - management of
supporting documents (system specifications, user
manuals, etc) throughout the life cycle

(3) Information Hiding - insulating the internal details
of component behavior

(4) Life Cycle Verification - verification of
requirements throughout the design, development,
and maintenance phases of the life cycle

(5) Stepwise Refinement - utilizing convergent design

(6) Structured Programming - .:sing a restricted set of
program control constructs

OBJECTIVES I PRINCIPLES LINKAGES

Adaptability

Correctness

Maintainability

Portability

Reliability

Reusability

Testability

Concurrent Documentation

Functional Decomposition

Hierarchical Decomposition

Information Hiding

Life Cycle Verification

S tepwise Refinement

Structured Programming

PRIMARY SOITWARE ENGINEERING
ATTRIBUTES

(1) Cohesion - The binding of statements within a
software component

(2) Complexity - an abstract measure of work
associated with a software component

(3) Coupling - the interdependence among software
components

(4) Early Error Detection - indication of faults in
requirements, specification and design prior to
implementation

(5) Ease of Change - software that accommodates
enhancements or extensions

(6) Readability - the difficulty in ~nderstanding a
software component

(7) Traceability - the ease in retracing the complete
history of a software component from its current
status to its design

(8) Visibility of Behavior - the provision of a review
process for error checking

(9) Well-Defined Interfaces - the definitional clarity - -

and completeness of a shared boundary between
software and/or hardware (software/software,
softw arehardware)

PRINCIPLES / ATTRIBUTES LINKAGES

Documentation

Early Enor Detection

Information Hiding

Well-Defined Interfaces

ILLUSTRATION OF THE EVALUATION PROCEDURE

/ Use of Global 1
Variables

Excessive #
of Parameters

Use of Data

SETS OF DEFINED LINKAGES

R S a m
VPl
PalcUd46

THE OPA FRAMEWORK FOR EVALUATION:
SUMMARY

Fundmental to the evaluation procedure are several sets of
linkages:

Linkages Defined Substantiated

Objectives / Principles (33). (33)
Principles / Attributes (24) (24)
Attributes / Properties (125) (1 14)

66 Automatable

Assessing the adequacy of a methodology is achieved through a
" top-down" evaluatior? process.

Assessing the effectiveness of a methodology is achieved through
a "bottom-up" evaluation process.

R S a m
VPI
Page 3 6 4 3 6

APPLICATION OF THE PROCEDURE:
SUMMARY OF SAMPLE DATA

Documents Primary)

A: The Combat System Developmext Plan

The Computer Programming Manual

The Program Development Manual

Six. Numbered Documents (PDS, IDS)

Functional Description Document

Two Numbered Documents (PDS, IDS)

Source Code:

A: Routines = 17

SysProcs = 2

Routines = 99

SLOCS = 1170

SLOCS = 1370

SLOCS = 5729

DATA SOURCES AND IMPLICATIONS

Methodology
Description Standards Objectives

Conventions + do it Principles
Project Guidelines

Requirements

Project
Documentation

PPS
IDS + How well {Principles +
PDS is it done Attributes

Code and Programs
Code Documentation

AN ACCUMULATION OF EVIDENCE

"Demonstrating that software possesses a desired attribute
(or does not) is not a proof exercise; rather, it resembles
an exercise in civil litigation in that evidence is gathered
to support both contentions (the presence or absence) and

weighed on the scales of comparative judgement."

Offsettin

Measurement Scale

ELEMENTS, METRICS AND PROPERTIES

Relationship

Elements

Subjective d -
Code Example

Documentation

Cil)
ii of Distinct
Parameterless

Calls

Example

Awareness
of V&V

-

(Y2)
of Distinct

Calls
-

ASSESSING "METHODOLOGICAL" EFFECTIVENESS
(ATTRIBUTES)

Coupling

Cohesion

Complexity

Well-Defmed Interfaces

Readability

Ease of Change

Visibility of Behavior

Early Error Detection

Traceability

B 0th have difficulty with Traceability and Well-Defied
Interfaces

R N u t
VP!

41 d 4 6

Coupling

Ease of Readability
Change

KMAT GRAPH FOR mm Methodology A - - - - -
Mc~lrodology B - - - - - - - - -

Hierarchical
Decomposition

Concumnt

, - '/
' I I

Information
Lifccyclc Hiding

Verification

Maintainability

KIVIAT GRAPII FOR O D J E m Methodology A - - - -
Methodology D - - - - - - -

RESULTS OF PROCEDURE APPLICATION

Assessing "Methodological" Adeauacv

A: Stresses Objectives of Reliability and Correctness
Emphasizes Principle of Structured Programming

Methodology A was (and is) an "evolving
me thodology "

Stresses Objectives of Mainrainability,
Adaptability, Reliability, and Correcmess

Emphasizes Principles of Modular Decomposition,
Structured Programing and Concurrent
Documentation

At the Objectives level, both "methodologies" support stated
project objectives.

At the Principles level, both "methodologies" lack the
enunciation of proper Principle usage.

No reference to desired Attributes is found

FUTURE RESEARCH

Applying the Evaluation Procedure to
Sofbvare Quality Assurance

Predicting and/or assessing software quality necessitates a

Systematic approach to
Ass~ssing product (or process) conforma~ce with
Acceptance criteria (standards and guidelines)

The Evaluation Procedure

Currentiy supports a well-defmed, svstematic
approach for evaluating software products, and

Provides a rigorous framework for

- Relating acceptance criteria based on attributes
to software engineering principles and
objectives, and

- Defining acceDtance levels based on measures
reflecting the achievement of objectives,
adherence to principles and realization of
attributes.

A Method for Tailoring the Information Content of a :. -. . /4 2
Software Process Model

Dr. Sharon Perkins
Univenity of Houston. Clear Lake - -

Marl< B. Arend Y

839 Walbrook Dr.

This paper will define che I n r n e w r k of a genenl method for selecting a neceuuy and sufficient suber of a gtnenl
;ohac life cycle's information producu. to suppart MW software de=bpmcnr projects. Procedures for chancter-
iring problem domains in genenl and M- to a u ibred set of life cycle procarcl and producu will be given. An
overview of tha method b shown using tha following s u p :

1. During h pmbiern concept defiition phue. perform standardized interviews ond dialop between devcl-
oper and w r . and b e m e n devcbper and customer.

2. Generate a qvality nerds pro/ilr of the software KO be developed. based on information gathered in step 1.

3. T r w u h e r h . quulity nrr&pro/ilr into a profile of quality criuria char must be met by the software LO utufy
the quality needs.

4. Mop the q d y criteria m a set of accepted processes and products for achieving each critenon.

j. Select thr informaion products whch muh o r support the accepted processes and product of step 4.

6. Select thr dsian merhodology which produces the information pmducu selecud in sup 5.

This paper \nLI address everyscep. but will not attempt to genente a full-up melhodology. A few of the more popular
process models and des~gn rnethodologlcs known today wil be e.unmed for lhelr informatlcn content.

TERMINOLOGY NOTES

The u r n 'software process model' and 'life cycle' wil l be used incedngeabty. The term 'user' wrll alway, mean
" c w m e r and user".

The complete set of infomution produce defied for common software process models and dtveloprnent method-
ologies is often rw hrge fbr ceruin development efforu. In many cases. a subxr of informuon producu and the
activiacs that produce them w d l suffice to a d m ~ n u u r the developmeru of a software product. The act of selecting
appropriate informadon productr and acuviues to support the development effort is called 'tallonng" the life cyc!r
o r development rnerhodology. This tailoring pmcesS is currently a n ad hoc method performed by managen and
devebpen. in eady mcccings with the customer and w r . as they begin u, define some son of Software .Marwgernent
o r Devcbpmcnt Plan. This paper explores a more formalized u lbnng method to wrct In the definluon of such
phns. It is hoped chat such a formalization wll both s p e d the process and help ensure the selecuon of a necessary
and sufficient subset ot information producu (and by impliuuon. the acuulrrc~ whuh produce them^.

She cornernone of rhis ulloring m c h d uscs Softwarn Quality Azsunxe (SQA) rtchnques. Tradiuomllv. SQA
h a d a l t with the detection and prevention of defecuve software. New &as in the Tiid of SQA are concentraung on

kginning the h a i o n much ur i i e r in thc life cycle. as early as p m b k m c o n c c ~ and inrual requiremenu definltlon
It is taped r h c SQA pmc~ples 4 assist LClc w r and developer cn creaung complete. consuxent and tesubIr
r e q u i r t ~ T @ asshunce offen grudelines up fmnt when we're scnmbling to put some sens~ble words on p p e r

-\

C-lngnt 1990. Uy(18. &.n0. P-.UO.I tO COOV I* WM1.d
w o w e d tnat au co0.8 r 8 mc ma- or ar t reurea for ?act

ot Howtm. Qu Lab. 1990. cormurcUl MYIU9..
\I. .\rend
\IcDonncll Da.gl;ls
Paw 1 d 3 1

,4 Method for Tailoring t h lnfonnathn Content of a Softwan Pmcass Model

I believe h a t two q u o w (51, (211 can Urmnte the idea of "engineering in" quality to a software product.

USING SQA TECHNIQUES TO SPECIFY QUALITY

T& i, a common SQA term. Quality Factors are characteristics which a software product exhibiu that reflect the
degree of acceptability of the product to the user. Since we're moving SQA up front. we'll restate thh: Quality
Factors are characteristics which the user requires the software to exhibit in order to reflect the best possible degree
of acceptability.

Table 1 shows a list of Quality Factors which has been coming into genenl use for some time (211. It was finr
proposed at the Rome Air Development Center (RADC) in 1977. 1 show a slightly expanded list. as it has evolved
somewhat since then [S] .

There a n more detailed meaninp of the quality factors which guide the user & developer in determining how
imponant each factor is [or their application.

Not every project requires all quality factors, which h good. becaw s o ~ e quality factors are at conflicting purpose.
Shown below is a list of factors whose c~ancteristics cause conflicts of definition.

I

Efficiency vs. Integrity-verhead required to control access negates efficiency.
Efficiency vs. U s a b i l i t y 4 v e r h e a d required rn ease opratioru negates efficiency.
Efficiency vs. Maintainability--Optimized code negates maintairability. Modularization. instrumentat~on

and well commented high-level code increases overhead.

Effici=i::y vs. T e s t a b i l i t y 4 p t i m i r e d code negates testability.
Efficier.:y vs. Portability----Optimized code is depender.~ on host processor s e ~ c e s .

Efficiency vs. F l e x i b i l i t y 4 v e r h e a d required to supper! flexibility negates efficiency.

Efficiency vs. Reusability----Overhead required to suppon reusabiljry negates efficiency.
Efficiency vs Intcroperabilicy4verhead required to suppon interoperability negates efficiency.

Integrity vs. Flexibility Flexib~lity requires genenl ana flexibk dam structures. increasing data
security problems.

Integrity vs. R e u s a b i l i t y d n e n l i t y required by reusable software introduces protection problems.
Integrity vs. Interoplnbility--Coupled systems allow more avenues of access.

Reusability w. R e l i a b i l i t y 4 n e n l i t y required by reuwbk software increases difficulty of providing
error tolerance (anomaly mmgemeru) and accuracy.

The conflicts shown do not mean that the two facton are irr sLrict mutual excbion - extra effort m y be expended
to address the difficulties of specifying factors in conflict. Note that effuicncy tends to conflict with many orher
facton. This is due to the tradeoff with the additional overhead required to satisfy other quality factors that does not
necessarily apply u: ._L algorithm's basic hmction. Efficiency issues may a h be resolved by judicious hardware

.U Arcnd

.UcDonndl D o u w
Page 2 of31

A Method for Tailorfng the lnfonnatlon Content of a Softwan P m s s Model

C o r r e c t n e u ~ o n f o m n c e of software design and implementawn to stated require-
ments.

Efficiency Economy of resources needed to provide the required funcr!onality.
Expandability Ease of maintaining the software to meet new funcuonai o r p e r f o m n c e

requirements.

Flexibility Ease of maintaining the software to work in environments other than
originally required.

Integrity Security against unauthorized access to proqrams and data.

Interoperability Ease of coupling the software with software in other sp:ems or applica-
tions.

Maintainability Ease of finding and fixing errors.

Manageability Ease of adntnisuating development. maintenance and operauon of the
software.

Portability Ease of maintaining the software - 1 execute on a processor or operating

system other than char onginally zequired.

Usability Ease of learning & using the software. and of preparing input & Interpret-
ing output.

Reliability The rate of failures in the software chat render I[unusable.

Reusability Suitability of software modules for use in other applicat~ons.

Safety Protection tgainst loss of life or liability o r damage to p ropnv .

S u n i v a b i l i t y ~ o n ~ n u i t y of reliable execution in the presence of a system fallure.

Verifiability (testability)-Ease of tenfication of funct~or!ality agalnst rzqulrernents.

L 1
Table 1 - Quality Factors

selection. Note that there is a k z a reverse-~.rauix of quality factors (not shown) that tend to suppon one another.
such as tesrzblty ;nd rnaintainabdity -- s i d r eels of criteria suppon both factors.

So you get the idea of definlng quality needs for s ~ e c i f i c ~pplicauons. As his process of definlcon continues. a
profik begins to emerge that describes the proposed software in terms of weighted quality facton.

I introduce this t e r n to describe the prioritired. weighted list of quahry factors that the w r & developer deflne for
their software developrneni effon. The Quality Profile is a 'signature' or "fingerprint' of .I project's qual~ty needs.
Humphrey [l o] offen a common-sense e ~ m p l e of what klnds of !acton are important for different appl~cat~ozs.
based upon the " p W r y concern' of the applicauon.

. .
m rrar~tv Fnrtnrr

a. Effect on human lives Reliability. Correctness. Tesubllity

b. Long life Cycle Mainrainab~lity. Flexlbdity. Ponab~lity

c. Real time application Efficiency. Reliability. Correctness

d. In-house tool Efficiency. Reliability. C o r r e c ~
r. Classified Infonnauon Inugrity

f. Communicating systems Inuropenbrlity

The High Prionty Quality Factors shown for each type o f application k;:n to define ihat ap?licauon's quality prof:k.
The profile of an applicauon of type 'a' is given by high degrees of reliability. c o n e c m e s and r e s u k i ~ , . z-5 lover

Arend 1990a

A Method tbr tai;o- the Informtbn Content of a Softw8m m w Moue1

degrees of the r e m a i m factors. In pnctice, rn define a mom prrciJa wale of degrees and m a w r u . r a :hc
to each factor. Tha resuiunt set of w l i t y factor weighu defines the quality profile for rhc p r o m soft~.::e-

Another example. more generic, is given by Deuuch (51 to suggest an initial prioritization of QuaIiw Factor: sr
'soitware category".

H-~rr . .

Critical Safety. Survivability. Correctness. Maintai.~bility, Efficiency

S u ~ P o n ,Mainfainability, Verifibitity. Inttrsperobility. Pomb~lity. UsabLLity. Comctness

110 Correctness. Intemperability. Maintainability
Data Inuroperability. Pombility. Reusability
Compuratiohal Correcmeu. maintainability
Environment Mainrainability, Verifiability, Comctness. Interoperability. Ponahlirg. ReusabtI-

ity. Efficiency. Integrity

MMI Ictcgrity. Usability
Docurnenfation Comctness. Maintainability
Design Expandability. Flexibility. Interoperability, Maintainability. Portabiliry, Rcusabtk

ity. Verifiability

These two examples offer soning pointr for the development of a Quality hfik . Many applicamm will exhibrp
multiple concerra o r cover sevcralcategories. It is the job of the user ck developer to define the Qualip Peofile for t b
specific application.

Deutsch [S] suggests a metric for ranking or weighting quality factors.

E Excellent Exce~tionaI techniques
G Good Better t ! n average techniques

A Average Normal corporate practices
N1 Not an Issue No special techn~ques

He then extends the meuic into the realm of cost and schedule prediction. wing Jensen and COCO.MO model
relative cost and relative schedule analysis factors. Cost and schedule predicrion will not be punued M e r here-

Latter day SQA is also developing standardized means by which the user and developer discuss and come
agreement of these facton for each applcawn. These means often take the fonn of questionruircs rhu pror:. :.:c
w r to evaluate all needs for quality.

This is a common SQA term. Quality Criteria are detailed subcharacteristics which the software exhabim that reflec
the degree to which the Quality Facton are present. In other -words. the planned presence of hqh-kvel qualirc
factors implies the presence of a derailed set of quality criteria.

The Quality Factors are wr-oriented; they are designed to map easily to a w r ' s needs for the propxed software-
The Quality Criteria a n more sobrr-oriented: they are designed to map easily to chancterirocs - h t may bc
emluaud by direct tesrjng of the software. Tha relatiomhip between quality hcton and quality c r i a e a analogous
to that between the two common s u g u of requiremenu definition. The a d g y does not apply u, W amount 36
effort needed to go from the early p b to the later - Quality Facton m a y k translated immcdiate?y to Q u a h
Criteria. Tabk 2 shorn a list of Quality Criteria (51. [21].

There is a direct translation from each Qulity Factor to a subset of Quality Criteria which suppon chc factor. Tbc
sets of criteria that suppon different f a a n -zy be disjoint or may intersect. Some criteria exhibit conflkts sunilar to

M. A d
Somdl Douglas
~ l y r

A Mathod for Ta l lo r i~ ttm Infonnatlon Contrnf of a Sortwan Pnxau Model

Accuruy Achievement of required precision in calculations and outputs

Anomdy Mgmt Behavlor for recovery from failures

Augmentability Maintenance effort required to e-nd upan functions and data

Autonomy Degree of decoupling fmm execution environment

Common J i t y Use of sandards to match "look and feel" of similar applicatioru

Communiutiveneu-Appropriateness of inputs and ourputs
Completencls Degree to which all software is necessary and sufficient

Concisencu Amount of code w d to implement algorithm

Coruiskncy Use of standards to achieve uniformity within software

Dlstributivity Physical (device) separation of function and data (addresses backup)

Document Quality Access to complete. understandable information

Communiution Efficiency-Usage of communication resources
Processing Efficiency-Usage of processing resources
Storago EftIciency Usage of storage res9'urces

Functional Scope Range of applicability of software product's functions

Generality Range of applicability of software's internal units
Independence Degree of decoupling from support environment

InstrumentPtion Amount of code devoted to wage measurement or error identification

Modularity-ohesion & Coupling of software's modules (design & code)
Operability Ease of operating the software
Safety Mmagement-Degree to which the design addresses hazard avoidance
Self-Dexriptiveneu-Undemtdndability of design & code
Slmplldty Degree to which algorithm map to the problem bay solve

support Functionality that addresses the administmion of maintenance

Sp tam ~ccaulbllity----ContmIled- access to functions-data and. intuuctions
System Compatibility-Use of standards to match interfaces with hardware k cornrnunica;iorrs

Traceability Ease of finding links between requirements, design and code

Training Provisions to help usen learn the operation of the software

Virtuality Separation of logical implementation from phpical component
Visibility ------Objectivity of evidence of correct functioning - ease of test verification

Table 2 - Quality Criteria

those examined for quality factors. Table 3 show a uansktion between Quality F a c a n and Quality Cntcna L ~ J I

shorn how the criteria support and influence the facton. either positively or negatively. The tradiuonal direct~on 01
translation is from criteria to factor - the SQA or test team measures the criteria from the soltunre. and rewns on
what quality f a a n rhe software thus exhibits. Our method will begin with the user definition of quality factors. and
develop a set of criteria h t the software must meet in order to satirfy our quality needs.

Thb tabk is merged from two different authorse approach to the factorlcriteria map [S]. [Zl]. Their penpecuvcs
overlap to a high degree. but each one shown a few more. different criteria than the other. I haw included them all
here in order to urork with the mwt complete universe of factors and criteria possible. Detailed examination of the
authors* text r e d that whik some facton and criteria sound very similar. they actually d o describe different
characteristics of the softwan.

A Method for Tailoring the Infomation cantent of a Software Procsss Model

Table 3 - Quality Facton <=> Quality Criteria ,Map

Symbois are used in the c e k of tbC matrix in Table 3 to indicate the influence a cntcrion has on vanour factom.
Another viewpoint is LIUK they indicate which criteria are necessary to suppon each factor. A plus under a fac:or
means chat the software should be required KO exhibit the con:sponding cnterion, but is subject to tradedif b a ~ d
on any conflicrs that arise. A doubk plus means that the criterion is more imponant and leu subjec: to uade-off. A
negative under a factor means that it would be W-ISC not to requlre the software to exhibuthe corresponding c3tcr:on.
but is subject to uade-off based on the influence of other factors. A double negative means that extra effon must be
expended to require tht software KO exhibit the correspond~ng criterion.

\I. Arcnd
\IcDonnd Douebs
Pap+ 6 cr(?l

A Method for Tallodng the Informatlon Content 01 a Sohwan Process Model

m e usignment of pluses and minuses i s~a subjective p m W , but the concept hu been refiied o n r time by vanaa
authors [S] , [81, l101, 1211.

SOFTWARE PROCESS MODELS

"The software process is the technical and management framework established for applying tools. methods azd
people to the softwarc task" [l G j .

T h e n a n a handful of well-defined "process models" or "life-cycles" in the industry today. They each descrltx 3

set of activities and products designed to suppon the successful creation of a software product. The most wdelv
model is called the Waterfall model. Other models are coming into use that attempt to address Ihe shoncom~ngs of
the Waterfall. but they tend to generate very similar information products. Appndix D offers a brief desccpt lon~f
other common process modek.

The Waterfall model is characterized by a linear set of activities and products such that each acunty w s the o u p t
of previous activities as its input. Here we list general names of the primary technical products of a waterfail mocel.

)

Concept Definition Feasibility Study, Concept document

User Req. Defiition-Level-A Requirements Document. Software Sfamagement Plan. Synrm Inrerfxe
Control Document (ICD)

System Req. Definition-Level-8 Requiremenu Doc?unent. Subsystem lCDs

System Design System Design Document. System T e n Plan

Implementation Software. Test Case Document

Testing Test Repon

Maintenance Upgraded Software. Maintenance Report

Note chat the waterfall model itself does ns t really define dera1I.s of the rnformacon products t h t are to be pr06~:td.
.Most usen of the waterfall model recommend a larger set of documentauon; t h e recommendauons are usmlly hid
out in a documcntation standard.

SOFTWARE DOCUh.1ENTATION STANDARDS

A Documentation Standard defines all information products that may be generated to suppon devebpmenr of rye
software product. Usually, a documentation standard is packaged with a life-cyck standard. Two common standaxis
are:

SMAP Information System Life Cycle & Documenrauon Standarh [IS]
DOD-STD-2167A (61

For this study, wc wi l l use the document set defined by NASA's Information System Life Cycle Documentaucn
Standard -- Appendix A s h o w the complete list. Our rallonng method will address which of the= products i re

most imponant for a given set of quality factors.

.LWALYSIS & DESIGN METHODOLOGIES

Within the framework of the softwarc process model. some m e h d must be w d to defiie the content of each
product. Formalized met5odologies address the complex definition of the requirements and design poducrs of :%e
softwan process. There are many different methodologies to choose from for use within any software proctss. T:e
information content of the requirements document. then, may vary according the techtuque used u, produce it.

For example. one may choose ro specify system requirements using:

Arend 1990s W. A 4 -
M c M l Douglas
Page 7 d 3 1

A ~ e t h o d for Talkrlng the lnformathn Cantent of a Softwan Pmru Model

1. a simpb turnvl noutioa developed in a n ad hoe mnner, or from leuom learned during p r o m .
b. a funcrional decomposidon hierarchy of diagrams. capturing the requirements in p n x u x s and dam fba.
c. an informadon model. apaainO the q u i r e m e n u in objects. relations and behavior d lgnms.
d. a vieupoinukehrvior d e L capcuring requirements in data/acuor? m a p and sute diagram.
e. a hybrid of the above techniques. or other techniques.

Appendix C givu a brief eve* of some of the more popular methodologies in w today. and lisu ail the spccxfic
producu they offer. Our tailoring metbod may e~=nraally be used to select a meaningfd s u k t of these pmducu; the
current vtnion of rhc paper wrIl not explore chis.

TAILORING INF'ORMATION PRODUCTS
The hierarchy of SMAP-rtcormnended infonxution producu for the software development effort is shown in

Figure 1.

Software Process Model

Concept Phase Requirtmenrr Phpre Design Phase Implementation Phase bcher
-Activities -Activities -Activities -Activities Phases
-rnfo-&n P-ucn -Inforuntion P roduc~

Mamp?mcnt p&n DeHbpmcnt plan
Acquisition p h n Maintenance manual

Architectural spec Unit test document
SE&O phn
Requirements spec

onfig Mgmt plan
User's guide
Acceptance test doc

Concept spec 7 Dixrepancy repons
t u s m n c c specs Eng. change proposah
Lessons learned doc
Assaance repom
-Phase m i t i o n re- It is the content of these documenu chat is addressed by the mrious
view repom software development methodologies. The tailoring method will a h

address recommendations for the contents of these documents.

Figure 1 - SMAP Information Product Overview

Each Information Pm::.~ct shown will be analyzed to determine which quality criteria it best supporn. The same
analysis wdl k applied w the infomution producu generated by mriot- cievelopment methodologies. At this pomt.
9n will be rtady ui mmlare a set of 15 w r defined Quality Facton in:.; a recommended set of i r ~ 2 m r i o n prod-
ucts.

Tailoring win proceed on three h i s :
1. A subset of the document llninrse will be selected for the ~ p c i f i i quality profile. Example: recommend

producing a Software Rtq-=menu Spec. among other documenu.
2. For each selected infomumn product a subset of it's maximum table of contenu wiU k x l e m d . Exarnpk:

recommend d e f w a Dam D e f i n section in the Software Requirements Spec. among other Kcno-.
3. For each recommendation fmm the u b k of contenu. a set of suggestions will be given to characterire tk*

naam of the information b t should appear therein. Eximple: nuke the fobwin(recommen&tions for
the contcnu of the Data D e f i n section: minimize the nwnkr of different data repr#entauons. miru-
mire number of dam comnioru . w dynamic memory aUwtion. pack aU data item. ex.

The w r l d e v c l o p r then examine rbc liro of recommendatians. and decide whether they make sense in the contexr
of the p m j m There may still be some manual tailoring to do. but the bulk of the job will have been performed by
thn method.

A ~ e t h o d for Tailoring the Infonnatlon Cornom of Sohvem PIOCISS ~od.1

FTJTURE WORK

m e length of thjs study was not great enough to develop the full tnrulation from WI i ty Criteria to Information
products. As a surfing point rha requirements volume conteno in Appendix B have k e n mapped u, quality cricc-
ria. h a s that need ~ r k a n :

1. Develop tha complete uansktion betwen Qulity Criteria and aIl information products listed in the ~ppem-
dices. This wi l l include not only the sekction of specific products. but recornmcndatioru for the chancter ad
h t product's content.

2. Extend the tailoring method to include the tailoring of Management and Auunnce activity products. as wedl
as techniul development products.

3. Define a wighting scheme for ranking Quality Facton that i consistent with Software Process Model and
Design Methodology charrcteriniu.

4. Analyze the kt of infomation pmducu generated by the outstanding proccu models in w today, and
annotate wirh descriptions of the information content of each product. These descriptions should k c o n
patible with the wighting scheme de f i ed in area 3.

Appendix A
LIFE CYCLE PHASES & INFORMATION PRODUCTS:

NASA's SO- ACOUISITION STANDARD
This appendix ko the life cycle phases and information products for NASA's SoIMre Acquisition Life Cycle 8s

def i ed by the agency's Software Mamgement and Assurance Program (SMAP). This set of documentation umU
serve u the universe from which a taibred set will be extracted.

The SMAP plan for volume roll-cut describes a mechanism which allorw the managerldeveloper to create 1nforr-a-
tion products as sections of one volume. or as separate individual volumes. or as a combination. depending upon t z e

required complexity and management of the particular information product. The tailoring m e w will select a subsex
of these information products by recommending the "complexity" of each information product. It is recognized t b

t hen arc considerations for uibring other thanthe quality profile, especially as apply to the Managemenr Plan
Initial tailoring gudelines will focus on the Product Specification. then the A s s u m e Specifuation.

Cvcle PhaJes
Cmcept D e f i o n Phase (CD)
Requirements Definition Phase (Req): User requiremeno. System Zequiremenu
Design Phase: Software Architectural Design (SAD). Software Detailed Design (SDD)
Implementation Phase .(Impl)
Integration and T e n Phzse: Integration & Unit Test (IQT). Acceptance Test (AT)

Maintenance. or Sustaining Engineering & Operations (SE&O)

A Method lor Tatlorlnq th. lnforrnatlon Content of a Sonwan Pmess ~ o d e l

CD Rra 0
CD +
CD Rea SAD

Rca

Rca SAD

Rca SAD

Plan ~ c a I &T & \

SAD cno
SAD

SF.CO

I&T 4T CF.tC)

cnI7 <F,tC)

S F k O

l&T AT FF.ZIO

P h n r r

CD AT CF.CO

Rca SAD SDD b l I&T AT

SAD I&T

P p

187 AT
Rca SAD w n I ~ O I IBT AT

SF.CO

<F . tO

AT

I&T AT SF.t.0

.\I. Arcnd

.\lcDonndl Douglas
w

1 % ~ I O o C f l m

d

A Method for TaUoriw the I n f o m f k n Contant of a S o t b a n Mod./

Appendix B
INFORMATION CONTENT of the NASA-SMAP STAY-
DAaD SXIYABPRODUCT SPEC-

This appendix lists tbs full able of contents for SMAP'S Software Product Specifiiation (SMAP-DID-WOO-SW).
This document package conuirn a Sofnnre Concept Document. a Software Requiremenu Spec. a Software &hi-
tecnvll Design Spec. a Softwars Detailed Design Spec. 1 delivery Venion Description. a User's M a n d and a
Maintenure Manual. (from [IS]). The c o m n o haw k e n extended to include a more complete list of in fa rmmn
items that may be wful (from [lj) . The ex-fended items are italicized.

An initial pass at mapping documenr ~ c t i o m to quality criteria hu been performed for the Requiremenu Vdume -
the m p uses abbrevi;rriorn shorn ia the key bebw. and should be read 'backwards" for each criterion. In ahcr
words. the map is to be used by selecting those document sections that show a reference to each criteriw that is
specified by the quality profila.

Ac: A ~ ~ u n c y DQ: Document Quality SI: Safety Managcmcnt
AM: Anomaly M p t EC: Coaununication Effxiency Sd: Self-dacriptiwm
Ag: A~~pnentnbility EP: Processiw Effwiency Sm: Simplicity
At: Au~~noury ES: Stomga Effriency Sp: Support

Cm: C o m m c ~ ~ t k y FS: Functional Scope SA: System Accessibdiq
Cc: Commrmiutinnrr Gn: Generality SC: System Compatibility
Cp: Complwntv ip: independence Tc: Tncubility
Cn: Corviscnev Is: Irrstrumenution TI: Tnining
Cs: Coruisocncy hid: Modukrily Vc V i i l i t y
Ds: Dirrrikrdvity Op: Opfabihty Vs: Viiibdicy .

Key: Quality Critcria Abbreviations

The introduction and Rekted Oocumcnution sections are recommended in their entirety for e u r y software d-1-
opment effort. Contrnt of the mhrmtl fobwing will be addressed by the uibring method-(At present. m l y t h ~

Requircmcnm V o l w b a d d d) .

Introduaion
Identifiution of V o h m
Scope of Volum
Rvposc and O b j e c t i ~ s of Volume
Volume S u t w and Sctwduh
Volume Organization and RoU-Out

Related Documantatioa
Parem Documents

Concept Volume
D e f i i n of Sof tnre

Rnpose and Sfops
Golb and O b j c d v a
Dacripion
Policies
Anficipafed Uses of System
Optional ConJiCvrationr

User Definition

A Mathod for Talkring ttm lnfonnatbn Content d r Softwrn Pnxmu Model

Overview of the User Organization
Logical organht ion
Physical organization
Temporal organization

reponin8 cycles
scheduled events

I n f o m i o n /low organization
Capabilities and Charactaristics
Sample Operational Scemrios
Anticipated Operational Stratedy

System ownership
System administration

operational control
modi/ication policy
change suppon

User administratton
depart me rus
skill k v t k

Funding s t rzz 3
Currently Used Procedures

Requirements Volume
Requirements Approach and Tradeoffs DQ. TC

Design Standards to be used Cm. CS. Md. SC
World Model (Information model) type A Ag. Cc. Md. Sd. Vr

Entity-Relation summoy (Data Requirements)
Entities: description. attributes, c k s size
Attributes: description, values, defmks. constrairus.

c l a s size. retentionlarchive requirements
Relationships: description, size. components. constraints
IndividrroLr (instantiationr of entities)

World Model (Information model) type B , Ag. Cc. Md. Sd. Vr
Objects: description, allowed operations, c l a r r s i u
Allowed Operationc constructors, interrogators.

iterators. etc.
Messages: sent, received

Exrcrnal Interface Requinmenn CC. EC. SC
Operational Resources & Resource Limitations EC. EP. ES. Vr
Requirements Sptcinution

Process and Data Requiremenu
Function Input d a u & Source Ac, Ag, AM. Cc. Cm. Gn. SC. Sd. Tc. Lvs
Function T r a k c t i o n s and Algorithms Ac. Ag, AM. Cp. Cs. EP. FS. Gn. .Md
Funcrion Outpu d a u & Destination Ac. Ag. AM, Cc. Cm. Gn. SC. Sd. Tc. Vs
Function Triggering mechanisms & conditions- AM. Cm. EP
Function Termination mechanisms & conditions-AM. Cm. EP
Function Expected demand EP
Dam D e f i n Ac. Ag. At
D a u Relationships Ac. Ag. At
Dam Protection requiremenu-p
Dam Validity check requinmcnu Ac. AM. Gn. Ip. Op. S A
D a u Parameterization requiremenu Ac. Ag. Gn. Sd. Vr
D a u Format o r Imple~enta t ion Resvictions Ac. Ag. At

System Behavior Requiremrnts
Phases & Modes Ac. .Q, AM. Sf
System Actions Ag. AM. Cm. Sf

A Method for 18brlrrg the ln fomtbn Content of a Soltwrn PfUCoss Model

Performrnca and Quality Enghoring Requirements
?2muy & Siziq requirenmno EC. EP. ES
Seqwncixq & event timing requirements EC. EP
Thmughput & capacity requirements EC. EP
Ermr Detection, Isolation. Recovery requiremenu-Ac. AM. Cs. Is. Sf
Quality Enghering requiremeno ALL

Quality factors required
Safety Requirements AM, Sf, SA
Security and Privacy Requirements

Access requirements
to functions Cm. Sf. SA
to data Cm. Sf, SA
to code Sf. SA

h g a l requirements Sf
Audit requirements Vs
Other policy-ked requirements

Impbmrnudon Comtninu Ag, Ds. Ip
Sitn Adaptadon Ag, A t Gn
Design Gorb Cn. Ci. Gn. Sm
Human Factors Requirements

User type definition
kvel of computer sophisrication-p, Cc
technical competence required-p. Cc

Physical corutraints
response tinu Cm. Op
special physical limitationslrrquirrments___Cm. Op

On-linr help requirements 0 P
Robustness requirements AM. Gn. Sf, SA
Failure message & diagnostic requirements AM. Cm. CC. Gn. Is. Op
InputlOutput convenience requirements-rn. Cc. Is. Op

defaults
formats

Traceability tn Parent's Design Tc* Sm
Partitioning for Phased Delivery DQ. Tc, Vs

Daign Volume
Archiucarr;rl Design

Design Approach and Trrdeoffs
Arehiccctural Design Description
External Inurface Design
Requirement, Allourion and Traceability
Pardtionin(for I k r e ~ ~ l Deviclopment

Deailed Design
Deuikd Dasi~n Approach and Tndeoffs
Detai&d Design Desd@on
External Inurfacr Depiltd Dtlifn
C d h g a d Impirmrnawn No-
Firmware Support Manual

Version Description Volume
Product w n
Inentory and Product

Maceriab Released
Product Content

Change SPM
Innrued chinga

A Method for Ta i lom rho I d o m t i a n C~nt@nt d r Softwan Plrxrst M e 1

Waivcn
Possible Roblernt and Known Errors

User Documentation Volume
User's Guide

Overview of F'urpx and Function
InstalLtion and Inirialiution
Startup and Termination
Functions and their Openmn
Error and Warning M-gtl
Recovery Steps

User's Training Materials

Maintenance Manual Volume
Implementation Dealb
Modification Aids
Code Adaptation
Srandardr

Abbreviations and Acronyr,t

N o w

Appendices

Appendix C
DESIGN METHODOLOGIES and their ISFORM----

TION PRODUCTS

7hs appendix lists information products generated by the more popdar analysis & design nzrh~dolog~es of the day
(compiled from (31, (91). These p d u c u make up a podonof the contcnrs of tht Software Product Spec as listed In
Appendix A and Appendix 8. It is hoped to e m n d the adoring method to recowend an a~propriaw set ~f desieg
methodology infomtion products based c n the quality profile.

This is the traditional data flow diagmm methodology that has b a n in use Pace the euiy seventies. It's m m
producrs are a hierarchical set of dam flow diagram. process sptdicationr md a data Cicdonary. State transl-
tion diagrams may a h be crd when deemed 1.. r Zessary by the analyst.

This met!odology is similar u, SD. but includes the analysis and design of c m l now bcrnen processes. S w u
uansition diagram. decision tables and process acumuon tables are w d mth more regular~ty.

The objects defined in Booch's OOD haw associated attributes and allowed operations. i hey use the c o n c e p
of visibility. clau and inherbnu. and they comrnuniau with each other via message p i n g . One of Booch's
goals in designing rhis mcthodobgy was u, be compatibk with the Ada Ian- and the objects map r c U to Ada
COrnVUCtS.

The objecu defined in this OOD have auociated atmbutes only. They are trd to one a t h e r not message
pusmg. but by defined rektiomhips. This h an attemp to model rbc real world more closely. and appiks well m
~ r , - = a l c i m appticawns.

>I. Arcad
.\lcDanad1 Douglas
PIG 14 d 3 1

A Math& br TaUorlng the Infamthn Content of 8 Softwarn Ptucess M o d . /

Thb uniqm approach was an early contender on the requirements modeling scene. and b s:iJJ p ing strong. .&
industry has dewbped the t e r n . we discover that JSD is a natural hybnd of Object Oriented and Functiorui
Decomposition methodobgles. JSD has i a own set of information produ~u which do noc march 10096 any or ~ h c
rnditional products in the map below. but I show what traditional prod- are most like h produced by JSD.
rather than specifying and defining new product categories.

This methodology is an Ada-based version of DARTS; it builds upon rhe SCR module suucnving cri teh. Lhe
Booch object mucmiq criteria. and the DARTS task suucnuing critsfia to genenu maintainable and reusable
softwan componena. It offers considention of the concurrent nature of rul-rime systems. The analysis and
design dkpamr use the 'Booch-gram' A& mution.

This real-dme oriented methodology concentrates on the modules that will make up the software product. an
information-hiding hierarchy into which they fall. and the interfaces which they use among themlvcs. Without
aying, it is almost object oriented. The methodology offers strong support for software rew. -
This methodology is based on SCR. Its primary areas of focus a n the inclusion of rapid prototyping technlqucs
and the production of reasable software.

JSD
SD Ruad m a

OaD
OOD

OOD

Appendix D
OTHER SOFTWARE PROCESS MODELS

A sampling of Softwan Process Models other tbn the Waterfall Model are briefly described hem. Recall that rheu
arsiattd information producrs are wry similar to those dexnbed in Appndk A.

A Mothod for TalMng tha lnfomthn Cantont of r S o h r n m u Modrl

SlPtral
A management oriented model. Activiriu and products are almost identical to those of rhc wrterfall model. but are
intenpcned with regular prototyping and risk anrlyses efforts to guda the process.

This prototyping model coven the requirements definition phases of the wttrfall or other s imbr model. It n gener-
ally recommended for never-before-ammpted Solutions. or when the user & developer deem areas of the problem
concept to be technologically difficult.

A panial implementation of the system is constru~tad from informal requirements. usually of poorly underszood
areas. Usen exercise of the prototype to better undermnd and define requirements. The prototype must then &
discarded, and system design is &gun from the rrquiremenu.

It is impottanr to avoid temptations to keep and build upon the pmlotypa. b e c a w the vty nature of rapid prorotyp
ing c a w s generation of code that is inefficient, w f e . unreliable. unnuintairublc, etc. If. during devtbpment ot
the prototype. algorithm or designs are discovered that am panicukrly efficient. safe. ;eluble. minuinable. etc.
bey should be documented for consideration during the 'real" design.

This prolotyping model is also recommended for ochnologically difficult problem. but coven a larger area ot the
life cycle. It is hoped that the ewlutiornry prototyping effons will help guide and speed the requirements definiuon.
system design and implementawn phases.

A p n i a l implcmenucon of the system b coruaucttd from partially known. well &fined requirements. usually of
well understood areas. Usen exercise the prototype to better undenund and define remaining requirements. The
prototype f o m a set of baseline software which will be built upon to complete the deliverable versions. At this point.
the model may transition to the ~ k ~ a t l v e Enhancement model.

Development of an evolutionary prototype kgi.~ with wtll deflncd requirements. It takes longer than rapid
prototyping. b e c a w good software engineering practices must k w d to develop code that will eventually be pan of
t h e working pro&wt

This modcl is recomr;;nded for applications that have a basic. well understood core set of functions. The model IS
chancterued by many rekues of new versions which add new functionality. Many market-pneuation schema wlll
use thh model to get a produt into the marketplace and generating revtnue. to pay for kter enhancemenu. A nlher
complete set of requiremenu is lrnownup front, and the releases of new functions a n planned in advance: of ccune.
the model is adaptable to new requirements and relies on user feedback to improve the product.

This model may be used to cover the duign ponion of the waterfall or other similar model. It's design paradigm
relies mostly on rhs incorporation of previously proven desigru and code into new sohunre products.

This is a n a d w e d model that usually requires strict formulation of ~guirrmcna using a regular grammar spccifiia-
tion language. 'Thi, model offen the direct (and hopefully, au tomt j~) tnnsfomvtion of requirements andor high
level duign into code. either algoridunhUy or a knawkdge bued rule set It is hoped to eliminate the mddle
pomru of the documenfation set centering around rhe derailed design.

CASE took currently exis r,%t support this model to some degree. Typically. they wrill p=r.srate Ada package specs
and the interface ponions af package bodies from stnuarrc cham.

A Method for Talkr1w ttm !nformstbn Confmc of r Softwarm PIIxwtt Model

REFERENCES

[I] Abbot, R.. An Integrated Approach to Software Developmrru, John Wiley & Som. NY 1986.

[2] Basili. V.; Rombach. H.. 'Taibring the Sohvmre Process Project Goals and Environments", 9rh Interna-
rional Conference on Sofrware Engineering, IEEE Computer Society. Washington. DC 1987.

[3] Pavis. A.. "A Comparison of Technrquu for the Specification of External System Behavior". Comrnunica-
tionr of the ACM, 31.9 (September 1988).

(41 Davis. A.; Benoff. E.; Comer. E.. 'A Stntegy for Comparing Alternative Software Development Life Cycle
Models' IEEE Transactions on Software Engineering, 14.10 (October 1988).

[S] Deur.sch. M.: Wi, R.. Softwore Quality Engineering: A Total Technical and M o ~ g e m e n r Approach. Pren-
tic-HaU. Englewood Cliffs. NJ 1988.

(61 DOD-SID-2167A. Mil i tary Standard: Defense System Sojlware Development. Department of Defense.
Washington. DC. 1988.

(71 FOX, G.. 'Performance E n w r i n g as a P a n of rhc h ~ b p n u n t Life Cych for Large-Scale Software S!F-
terns' 1 l t k International Confertnce on Software Engineering, IEEE Computer Society, Washington.
DC 1989.

[8] Gilb. T.. Sofrware Metrics. Wmthrop Publishers. Cambridge. 1977.

[9] Goma;. H.; Kirby, J.; W e b . D.. 'Comparison of S o f t ~ r e Development MerhodologiesW,Presenration at
Software Productivity Consonium Methodology Workshop, March 1989.

[l o] Humphrey. W.. r b 'wg ing the Software Process. Addison-Wesley. Reading. MA 1989.

(111 Humphrey, W.. "Software Process .Modeling: Principles of Entity Process Modeb" 9th Inrernational C~n f , r -
ence on Software Engineering, IEEE Computer Society. Washington. DC 1987.

[12) IEEE. Software Engineering Standordr. IEEE Computer Society. Washington. DC 1987.

[13] Jackson. M.. System Developmnr. Prentice-Hall. Englewood Cliffs, NJ 1983.

[14] Kmner. H.; Porn, Y.. 'A SofrPnre Process Management Approach to Quality and Pmducuvity". Lockheed
Sofnvare Technology Center. 1989.

[1 S] NASA. Software Management and Arsurance Program (SMAP) In/ormrubn System Lib Cyck and Documtn-
tarion StMdordt Reltasr 4.3, NASA Office of Safety. Reliability, .Maintainability and Quality &sup
ance. 1989.

[16] Poore. J.. 'Derivation of L-1 Softwrre Quality Metric3 (Sohware Quality Circles)" Sofiware Pracrlcr and
Experience. It. 1 1 (Noumber 1988).

[17] ?rtsrmrn. R.. Making So/rwote Engineering Happen: A Guidefor Imtiruring the Technolo6)1. Prenrtce-Hall.
Englearood Cliffs. NJ 1988.

[181 P ~ t ~ d r n n . R.. Software Enginrering: A Practitioner's Approach. McGnw-HiU. .W 1982.

[19] Rown. R, 'Software Project Management Under incompktc and Ambiguous Spcdicatiom' IEEE Transac-
tions on Engineering Managemrru. 37.1 (Febnrary 1990).

[ZO] Tully. C.. Proceedings, 4th Intenuuional Software Process Workshop. AC.U Press. W 1989.

[21] Vincent. J.; Waters. A.: Sinckir. J.. Software Qu&y Assurance. V o k m 1: Practice and Implementarron.
Prendce-Ha& Engleurwd Cliffs. NJ 1988.

VIEWGRAPH MATERIALS

FOR THE

M. AREND PRESENTATION

A Method for Tailoring

Information Content

Software Process Model

Mark Arend (McDonnell Douglas)

David Howes (NASA JSC)
and

Dr. Sharon Perkins (University of Houston, Clear Lake)

15th Annual Software Engineering Workshop
Goddard Space Flight Center, Greenbelt, MD

1 n-
h r ' w

1 1
v

1
S

a
A Melhod tor Tailoring tho lnformalio sr!lent ot a Software Process Model

SOFTWARE PROCESS MODEL (or LIFE CYCLE)

Y "The technical and management framework established for ap-
plying tools, methods and people to the software task."

Y Applies to the entire development cycle of the software, from
concept to maintenance.

SOFTWARE METHODOLOGY

Y Definition of a means for capturing requirements and design.

Y Applies to one or more portions of the development cycle, usu-
ally requirements analysis, specification or design.

TAILORING
v Selecting a subset of a Process Model or a Methodology for prac-

J E S tical application.
b

4, "' SOFTWARE QUALITY

"1 v The degree to which software matches customer/user needs.

0 S I . C S o l ~ w r ~ a i i ~ ~ y l n u u ~ l ~ ~ y W o ~ h i l l t ~ l ~
November 28. 1990

A Method /or tall or in^ the lniormation Content oi a Sotfware Process Model

+ MANY SOFIWARE PROCESS MODELS AND SOFTWARE
METHODOLOGIES RECOMMEND TAILORING.

+ TAILORING IS IJSUALLY GUIDED BY PERSONAL EXPE-
RIENCE, ABILHY, AND TRADITION.

+ WE WILL DESCRIBE A METHOD FOR TAILORING.

ALL INFORMATION PRODUCTS OF
CUSTOMER1 A SOFTWARE PROCESS MODEL
USER NEEDS 9

TAILORING TAILORING
METHOD RECOMMENDATIONS

{SS

q i 9

' ? n
(SUBSET OF INFORMATION PRODUCTS]

E

(ISI*C SUI~W~I I~ k ~ ~ ~ r ~ e e r ~ r r y Wurk~ l ru~~
November 28. 1990

- 2 - Mark ArerlJ

-- 4
, i . - ' ? . w ?

I
4 -v

A Melhod for Tailoring the In/ormati. >ontent of a Software Process Model Y .
4

CHARACTERIZING CUSTOMEIWSER NEEDS

9 WE WILL USE CONCEPTS FROM SOFTWARE QUALITY
ASSURANCE (SQA) TO EXPLORE CUSTOMER NEEDS;
v What constitutes appropriate fitness for use of this software?
v M a t attributes must this software exhibit to be considered of

high quality?
r Remember, software quality is more than "goodness", it is a

measure of how well the software matches the needs of the cus-
tomer and user.

+ SQA SHOWS HOW TO OBJECTIFY A QUALITY RATING
OF SOFTWARE, BY EVALUATING w.
v Capture Quality Factors through CustomerNser interviews.

+ SQA SHOWS HOW TO TRANSLATE QUALITY FACTORS

3%$
TO w m , WHICH ARE MORE DIRECTLY RE-

Z i 3 LATED TO SOFTWARE TESTABILITY.

;i = P Derive Quality Criteria from Quality Factors
E v Derive tlevelopment techniques to enforce Quality Criteria

htark Arcnd

r

A Method lor Tailoring the lnlormation Content of a Software Process Model

THE METHOD'S STEPS

1. PERFORM STANDARD INTERVIEWS AND DIALOGS BE-
TWEEN DEVELOPER AND CUSTOMERIUSER.

2. GENERATE A PROFILE OF QUALITY FACTORS OF THE
SOFTWARE TO BE DEVELOPED.

3. TRANSLATE THIS QUALITY-NEEDS PROFILE INTO A
SET OF QUALITY CRITERIA THAT MUST BE MET BY
THE SOFTWARh.

4. MAP THE CRITERIA TO A SET OF REQUIREMENT AND
DEVELOPMENT TECHNIQUES.

I 5. SELECT AND TAILOR THE INFORMATION PRODUCTS
WHICH MATCH OR SUPPORT THOSE TECHNIQUES.

~ f i S
6 . SELECT AND TAILOR DESIGN METHODOLOGY(S) TO

'B PRODUCE THESE INFORMATION PRODUCTS.

1
Fill out
USER

QUESIlONNAIHES

A Method lor Tailoring the Inlormation Content of a Software Process Model

THE METHOD'S STEPS

2
Build

QUALITY
PROFILE
(Factors)

3 , 4 5 6
Define Tailor Select

QUALITY CRITERIA and INFORMATION DESIGN
SUPPOItTING PR0DUCl-S MIXHODOLOGY

Correctness
Efficiency

Expandabilily
Flexibility

Integrity h
Usability

Reliabilily
Reusabiliiy

Safely
Survivability
Verifiability L

TECHNIQUES

___IC

Translation

TABLE OF
CONTENTS

-
-
TABLE OF
CONTENTS

-
-

d
Selection and Selec~ion
Tailoring

. 7. ..-.a . .. # .. C--. C-. .-
@ 9 0 , I

A Mofhod /or Tailoring fhe lnlormaflon Content of a Soffware Prwoss Model

Step 1

PERFORM STANDARD INTERVIEWSAND DMOGS BETWEEN D M L -
OPER AND CUSTOMEWUSER

+ QUESTIONNAIRES DESIGNED TO PROBE THE USER'S
NEEDS FOR QUALITY.

IMPORTANT TO DEFINE BOUNDARY OF SPECIFICA-
TION, TO PREVENT OVER- OR UNDER-SPECIFICATION
OF QUALITY NEEDS.

DEVELOPER WRITES QUESTIONNAIRES, USING A
GREAT DEAL OF BOILERPLATE PAID HELPS CUS-
TOMEFUUSER THROUGH THE PROCESS.

+ EXAMPLE QUESTIONS
S $

Y How many users will want to use the system simultaneously?
9

" ? a
r What level of user training is acceptable?

C v Will other computer systems rely on this one?

A Method for Tailoring the Infor(ndtion Content of a Software Process Model

Step 2

GENERATE A PROFILE OF QUALITY FACTORS OF THE SOFIWARE TO
BE DEVELOPED

QUANTIFY RESPONSES TO USER QUESTIONNAIRES.

THE TAILORING METHOD DEFINES A TRANSFORMA-
TION B E W E E N POSSIBLE RESPONSES AND QUALITY
FACTORS.

THE TRANSFORMATION WILL APPLY WEIGHTED VAL-
UES TO EACH RESPONSE, BASED UPON THE EFFECT
THE ISSUE PROBED BY THE QUESTION HAS UPON ITS
RELATED FACTOR(S). (Most questions will deal with decisions
that influence several factors to varying degrees, even positively for
some and at the same time negatively for others).

$'" + SINCE SOME FACTORS CONFLICT WITH OTHERS, A SEC-

: f a OND USER INTERVIEW MAY BE NECESSARY TO AM-

'B PLIFY RELATIVE IMPORTANCE. Factor conflict may assist
t risk identification and management.

UhI:C t iu l rw~~u L I I ~ I \ ~ ~ I I I I ~ \VurLhl\up - 7 ..
N u v c ~ ~ \ b c ~ 28, I Y V O

h l ~ r k Arcnd

L1

A Method for Tailoring the Information Content of a Software Process Model

Step 3

TRANSLATE THE QUALITY-NEEDS PROFILE INTOA SET OF QUALITY
CRlTERlA T M T MUST BE MET BY THE SOFIWARE

PRE-DEFINED GUIDELINES MAP FACTORS TO CRITE-
RIA.

THIS TRANSLATION BRINGS US CLOSER TO WHAT
QUALITY MEANS IN TERMS OF A SOFTWARE PROD-
UCT, RATHER THAN IN TERMS OF THE USER.

SOME CRITERIA ALSO CONFLICT WITH ONE AN-
OTHER. THIS TRANSLATION WILL ASSIGN RELATIVE
WEIGHTS TO THE CRITERIA TO HELP REDUCE CON-
FLICTS.

sr i : REMEMBER, CONFLICTS ARE NOT IMPOSSIBILITIES,
0 >

:ti THEY MERELY IDENTIFY AREAS REQUIRING EXTRA

'1 EFFORT AND EXCEPTIONAL TECHNIQUES - RISK MAN-
B AGEMENT.

i'

k e \ k 1
4 " \ . 4

. , * , I . " ' 7 . , . - .- - . --.--I. --1 . r . -

I

r4
A Method for Tailoring the Informalion Content of a Software Process Model

Step 4

UAP THE CRlTERIA TO A SET OF REQUIREMENT AND DEVELOP-
MENT TECHNIQUES

TECHNIQUES OF DEVELOPMENT AND MANAGEMENT
MAY BE USED TO ENSURE TI-IE PRESENCE OF VARIOUS
QUALITY CRITERIA.

TYPES OF TECHNIQUES

v Product Recommendation
v Method Recommendation
v Standards Recommendation
v General Guidelines

EXAMPLES
v Produce a traceability matrix to ensure Comple~eness.
v Use prototyping to ensure Usability. I"

q s v Adhere to interface standards to ensure Commonali~.
4 K

2~ u.
r Separate critical & non-critical functions to ensure Safety Man-

E agement.

GSFC Sol~warr: Enginrer~ng Workshop
November 28, 1990

h

A Method for Teiloring the Information Content of a Software Process Model

Step 5

SELECTAND TAILOR THE INFORMATION PRODUCTS WHICH hATCH
OR SUPPORT THE.TECHN1QUES

INFORMATION PRODUCTS ACT AS SPECIFIC GOALS
WHICH FORCE US TO RECOGNIZE, FORMALIZE AND
ADHERE TO TECHNIQUES TO SPECIFY, DESIGN AND
IMPLEMENT SOFIWARE OF APPROPRIATE QUALITY.

+ INFORMATION PRODUCT'S DOCUMENT REQUIRE-
MENTS AND DESIGNS, PROVIDING FOR CONTINUITY
OF DEVELOPMENT AND MAINTENANCE.

+ WE WISH TO SELECT THE APPROPRIATE SUBSET OF
ALL POSSIBLE INFORMATION PRODUCTS.

Jgg. + THE TAILORING METHOD WILL DESCRIBE A UNI-
t i p 2
%, 3

VERSE OF INFORMATION PRODUCTS, AND WILL OF-

7 FER A DIRECT TRANSLATION FROM QUALITY CRITE-
RIA TO RECOMMENDED SUBSET OF THAT UNIVERSE.

L *
4

I . , . I . .,. . . m. , * - , .

A Metl~od lor Tailoring Ute Inlormation Cor~lenl oi a Software Process Model

Step 6

SELECT AND TNLOR THE DESIGN METHODOLOGY W I C H PRO-
DUCES THESE INFORMATION PRODUCTS

+ MANY METHC)DOLOGIES ARE AVAILABLE FOR SOFT-
WARE REQUIREMENTS SPECIFICATION, SOFTWARE
DESIGN AND IMPLEMENTATION.

+ THE TAILORING METHOD WILL DESCRIBE A ZJNI-
VERSE OF METHODOLOGIES, AND WILL CATEGORIZE
THEM BY THE INFORMATION PRODUCTS THEY PRO-
DUCE.

+ THE MATCHUP BETWEEN INFORMATION PRODUCTS
PRODUCED BY A METHODOLOGY AND THOSE RECOM-
MENDED TO ACHIEVE THE QUALITY PROFILE FACILI-

s r g
9 6%

TATES THE SELECTION OF AN APPROPRIATE METH-
E l l ODOLOGY.
'I a

C1

hlarh Arrnd

. -. . - ---..
r-. . .

A Method for Tailoring the Information Content of a Software Process Model

CURRENT STATUS AND FUTURE WORK

THIS PHASE OF TI-IE RESEARCH EFFORT DEALT WITH
DISCOVERY OF CONCEPTS AND ASSEMBLY OF DATA.

+ AItEAS ALREADY DBVELO13ED TO SOME EXTENT
Y Translation from Quality Profile to Quality Criteria
r List of Techniques sorted by Quality Criteria
Y Universe of Information Products (enhanced NASA SMAP

standard)
r Universe of Methodologies

+ AREAS FOR DEVELOPMENT
v User Questionnaire boilerplates
v Response weighting scheme
r Transformation of weighted responses to Quality Profile

- - -T--. .-.- , - -,.- * - .I..,. .*.-.,. I, ,. - . . I . 1-- " .";. , ??.[, .-, - 7 ,-,I-,*." .. , -. ..'- -. ? .. - - . -
@F * '

b.
4- v
/ 4 &

L
I

r47
M I 4 t

1
A Method tor Tailoring the Inlor, :on Contenr of a Software Process Model

David B. Howes
(Munager for Engineering 1Rb1, under Informution Systenls Directorate, Service Management Division)
Code PS2
Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, TX 77058
(713) 483-8381

Mark Arend
839 Walbrook Drive
Houston, TX 77062
(713) 480-7332

Dr. Sharon Perkins
Assistant Professor of Computer Science and Information Systems
University of Houston, Clear Lake
2700 Bay Area Boulevard
Houston, TX 77058-1098
(713) 488-7170

GSFC Sof~wi~rc Engnecring Worksl~op
Nuvo~~rbor 28, 1990

I - - . /

N 9 2 - % ! & W
S O R W A R E T E C H N O L O Q V ~ :

A SrUDY OF SUCC€SS FACTORS J3-

Submitted to:
lha fWemh Annul Softwn Engimdng Workbhop

November 2829,1990
NASAIGoddard Space Rfght Center

Greenbit UD
- .,.'

I -
by

, - - r - 7 -

Tew&sbury, MA 01 876

hknaging software development in large organizations has become increasingly d i m
due to m y increasing technical complexity, stricter government standards. a
shortage of experienced software engineers, ctmpetitiva pressure for improved
productivity and quality, the need to codevelop hardware and software together. and he
rapid changes in both hardware and software technology.

The 'software factorym approach to software development minimizes risks Mile
maximizing productivity and quality through standadiitation, automation, and trairing
However, in practice, this approach is relatively inflexible when adopting new software
technologies How can a large multi-project software engineering organization incr-
the likelihood of successful aoftwam technology Lwertkn (Sn), espeddly in a
standardized engineering environment?

HISTOGRAM of SOFIWARE TECHNOCOGY INSERTION CASES
8 I N-49 Rated Cases I 1

Failure 4 b Success

In an attempt to amelale various success factors with levels of success. 59 cases of hew
software technology insertion' in thirteen m m t projects at a hrge U.S. Defanse
electronics corrtractor were identified and accordrig to several criteria The
rebtive success or failure of 49 of these cases (see Rgra, 1) was determired by

having key prom personnd (Lsad Engineer, Dept M m , and tooi wppodem) rate 6
aspa% (added together for total rating) of the software technology inserbIon resuits.
Maximum succsss was scored as +12, and maximum failure as -12 on the rabing scale.
The histogram in Figure 1 illustrates the distribution of scores from the 49 tated cases.

There were 21 dfferent riw softwars technologlea studied, most of them new tc&
or methods, induding (in ap9roimate lifecyde order):

The use of 000-STD-2167 or 2167A
Stnrchrred analysis CASE tools
Raptd-Prototyping in requirements or design
In-House requirements tracegbility tool
In-ttouse program design language (POL) took
Reusable Software in design or coding
The use of A&@ as an implementation language
The use of M68Cn0 assembly language
Microprocessor 2avelopment Stations (MDS) for integration testing
InHouse configuration management (CM), source code control tool
Worlcstation-based engineering doarmentailon took
The use of -ens as primary development platforms

Though meaningful statistical canelations were not possible due to the limited sample
size, ratings were compiled and empirically compared with several technology mars
measured for eaeh STl case, induding:

Technology Type (CompetencsEn hanang or -Destroying)
Support Type (In-House or External)
Mahrrity of the Technology (Young, Mature, and Old)
Prryect Size (SLOC)
Rior GgmtWons (for success or failure)
Reasons (for using the new software technology)
M o d s (af inserting the new software technology)
Perceived Time Savings
Perceived Labor Savings
Perceived Computer Cost Savings
Perceived Quality Improvement
Met ExpecWons? (for success or failure)

A doser look at the Top Ekven' cases of successful STI (ratings 2 +7), and the
'Bottom Sevwr' cases of unsuccessful Sll (ratings 5 -7) shows that

1. Perceived Ttms Savings and perceived Lrrbor Savings are the most of successful or unsuccessful Sll.

2 Though users often complain about incmsd computer aHs,
s r v l n g m n p u m a m t i s n a t o f ~

. .
becauseit

is not usually a goal or a motivator for the use of new tecl'imlogy.

3. P e f w i v e d W H y l m p r o v e n w n r t i s a ~ o f ~
success, but a q b m of Si'l failulB.

4. Ewminsuccessfu lSTIcases ,users 'R lar~abaut
what a mu technology cadcannot do are

In addirtion to the success ratings owsit0 structursd lntewbws were used 20 profile
each new technology, and coils! other q u a l ' i information that was wed to danfy
and complete the data

Tushman[l] desaibes new as: (1) competamalwrdrrg -
inmentally different. ku'ldhg on e A n g know-how, and subsbitubing for older
tednologies without rarrdering their skills obsolete, or (2) compasrrcadesboylng -
fundmentally different. requiring new sldlls, abilities, and kndedge for use. The main
types of -are: (1) IM-, where the supporters work in the same
ofganization as the users, or (2) Outdde, Mere the supporters work in a different
organization than the users.

A sample of the dstritndion of suecessfuf ST1 cases w6f these two combined fadors
(technology type and strpport type) is show in FQam 2:

of New 1- A c r w TwgDimensians

IN-HOUSE OUTSIDE
Support Support

Competence
EN.IANc1w

Competence
DEsmoYlNG

#Total= 16
#Rated= 13
Tot Rating- 47.0
Median- +5.0
Ave Rating- @

BEST

#Total= 9
#Rated= 8
Tot Rating- 11.5

~ -

#Total= 11
#Rated- 8
Tot Rating= -2.0

Poor

#Total= 23
#Rated= 20
Tot Rating= 14.5

, E?~izf@
Marginal

RATING SCALE: +12 = Maximum Success, -12 = Maximum Failure

The new softwan, tedmdogies that had ttre m a t wcmmfd Sll experience (hugh
across a very limited set of cases) are summarked below:

&sasBsAve-
1 +9.5 In-House Automated Build Tool
2 +7.5 Mlaoprocessor Dwdopment Statlm for I-Um
6 +4.8 In-House Software Problem Reporting Tool
3 +3.3 In-House Configm&n Management (CM) Tod
7 +21 In-House Rogram Oesign Language Tool

The nw,n software t&nologies that had the lerrt ~ u c a d u l Sfl experience are:

S a S B s A v e -
1 -11 0 In-House Automated Code Doarmentation Tod
2 -8.8 Workstation-based Engineering Doarmentation Tod
4 -4.8 Workstation-based CASE Tool for Req'ts and Design

Among the overdl andusions from the study are:

1. Saving schedule dme and hbor caMs are necessary and sufficient
conditions for successful STI

2 lmprovlng quallty is a necessary, but not *dent condition for
successful Software Technobgy Insertion (STI)

3. Succsss with new software technology insertion (STI) is much greater for
c o ~ ~ ~ c i n g than for competence-destroying Eechndogies

4. Successwith Sll is somewhat greater for lrrhousa supported
technologies than for outside supported technologies

5. Success *with ST is greater for mature technologies than for either young
or old technologies (mature is >1 year after release, <5 yea's after release)

6. Success with Sll is greater when userst expedations about 'new
technology' are controlled to avoid emcting too much - exceeding wrs'
expectafions is not necessary for ruccessful Sll, but llqt meeting
expections (i.e., disappointing them) is a sufficient condition for failure

7. Success with Sfl can be inaeased when there is synergy between
multiple new tectmlogies, such as Ada and workstations

These and other results and condusions, dong with some recommmdations fa large
software development organaations, will be covered at the workshog.

13 Software Projects

21 New Software Technologies
(most of them new tools. methods, languages)

A - The use of Ada@ as an implementation language
6 - InHouse automated krild twl(s)
C - ln-tiouse automated code documenCation tool
D - In-House program design language (PDL) tools
E - ln-tiouse metrics tools for automatic data collection
G - IMouse standard test reporting tool based on RDBMS
I - Worlc;tationbased engineering documentation tool
J - The use of M68020 assembJy language
K - Miioprocessor Development Stations (MDS) for integration testing
L - ln-tiouse project scheduling and reporting tool
M - ln-tiouse configuralion management (CM), source code control tool
N - ln-tiouse VarNnix documentation package using troff
P - ln-tiouse Software Roblem Reporting Tool based on RDBMS
R - Rapid-Prototyping in requirements or design
S - stmtwed analysis graphical CASE tool
T - Structured analysis graphical CASE tool
U - Reusable Software in design or coding
W - The use of workstations as primary development platforms
X - WorWon-based engirmring documentation tool
Y - InSlouse requirements traceability tool
Z - The use of DoD-STD-2167 or 21 67A

Projectfrechnology Matrix

New Technology ID
A B C D E G I J K L M N P R S T U W X Y Z

1

2
3
4
5

!50SnCzts~x Rated 0 Not Rated

Measuring Perceived STl Success
For each STI Case, 6 Questions were asked of:

(1) Lead Engineer (ProjecWatn'x)
(2) Dept Manager (FunctionaVMatrix)

Total Ratlng for each Sll Case is sum (example =+I)
i.e., maximum = +12, minimum = -1 2

For Each S77 Csss: Agm.,..Disagm
+2 +I 0 -1 -2

(Note: Questions not weighted)

1. I would use the new methodltool again
2 The new m&od/tool saved schedule tlme
3. The new methodAwl saved labor cost
4. The new m&od/twl saved computer cost
5. The new methodltool improved quallty
6. The new methodltool met my e ~ o n s

R t y d m
R a y c b m
Page 6 dfl

----- J
J

----- 4
J

----- J
J

[I] Tushman, M., and Anderson, P.. 'Technological Discontinuities and
Organirational Envir.onments', Administrabive Science Quarterly, Sept 1986.

[21 Scacchi, W., and Babcod<, J., 'Unders!anQng Software Technobgy Transfef.
MCC Technical Report STP-30487, October 1987.

AckrowledgefmMs

To the Raytheon Company, for helping to sponsor this mxk at M.I.T. during 19841 990.

To Dr. Ralph Katz, for his technical (and nontechnical) advice on this thesis work

To the M.I.T. Management of Technology Pmgram, in which the work was performed.

VlEWGRAPH MATERIALS

FOR THE

R. LYDON PRESENTATION

UNCLASSIFIED
Mleslle Systems Dlvlslon Raytheon

The flttwnth Annud Somare Englneerlng Workshop
NASAlGoddard Space Flight Center, Greenbelt, MD

November 28-29,1990

Software Technology Insertion:
A Study of Success Factors

Tom Lydon
Raytheon MSD, Mailstop T3ML19

50 Apple Hlll Dfive, Tewksbury, MA 01876

UNCLASSIFIED
Missile Systems Division

Software Technology Insertion: Success Factors
Rayt heon

Software Laboratow Nov 28,1990

Software Technology Insertion (STI)

Software Technology Insertion "New" Software Technology
+ Opportunity to Insert

"New" Software Technology Tool or Method that is unfamiliar
to the majority of a Project Team,
usually replacing a more familiar one

Opportunity to Insert A software develo ment activity on
a new (most likely P or ongoing (less
likely) software project

... -.--.. - . , , , . . .-- ,. ; -.. -....,,, I.. ,;.: , ., I.- .
\ , .- . , , 1. ii . -,+..,. .-..- . - ...-.-.. , - . .- 8 , .q

.(. .--. . --. - . , -- - - , - -. .L.. .---- -.. . o. 9 *-, " ..- , .. - .
, "" ! . ' . '

UNCLASSIFIED
Mlsslle Systems Dlvlslon

Software Technology Insertion: Success Factors
Raytheon

Software Laboratow Nov 28,1990

Successful ST1

Perceived ST1 Success User's sense of Labor Cost Savings +
User's sense of Computer Cost Savings +
User's sense of Elapsed Tlme Savings +
User's sense of Quality Improvement

Real ST1 Success Measured Labor Cost Savings +
Measured Computer Cost Savings +
Measured Elapsed Time Savings +
Measured Quality Improvement

UNCLASSIFIED
Missile Systems Divlsion

Software Technology Insertion: Success Factors
Raytheon

Software Laboratow Nov 28,1990

ST1 "Cases" Overview

ST1 Case A single incident of ST1
on a single project, usually
within a single development phase

59 ST1 Cases Identified Across 13 different projects;
from 1 to 7 ST1 Cases per project

49 ST1 Cases Rated for Some of the 59 identified cases
Perceived Success were not able to be rated

13 Different SW Projects Some ongoing, some just completed;
using Ada, C, Fortran, Assembl ;
ranglng in size from 2900 to 49 8 00 SLOC

21 Different SW Technologies Most new tools, methods, langua es (e.g.,
CASE, 21 67A. Ada, ~a~id-~roto,%euse, ...)

UNCLASSIFIED
Mlsslle Systems Dlvlslon Rayt heon

Software Technology Insertion: Success Factors

&#ware Laboratow Nov 2tf& .* :

13 Software Projects

, ,
UNCLASSIFIED ,
Missile Systems Division

I Software Technology Insertion: Success Factors
Rayt heon

, \ '
.i.

I Software Laboratory Nov 28,1990

21 New Sofitware Technolo ies a (most of them new tools, met ods, languages)
A - The use of Ada@ as an implementation language
B - In-House automated bulld tool(s)
C - In-House automated code documentation tool
D - In-House program deslgn language (PDL) tools
E - In-House metrics tools for automatic data collection
Q - In-House standard test reporting tool based on RDBMS
I - Workstation-based englneerfng documentation tool
J - The use of M68020 assembly language
K - Microprocessor Development Stations (MDS) for integration testing
L - In-House project scheduling and reporting tool
M - In-House conflguratlon management (CM), source code control tool
N - In-House Vax/Unix documentation padcage using troff
P - In-House Software Problem Reporting Tool based on RDBMS
R - Rapid-Prototyping in requirements or design
S - Structured analysis graphical CASE tool
T - Structured analysis graphical CASE tool
U - Reusable Software in design or coding
W - The use of workstatlone as primary development platforms
X - Woikstation-based engineering documentation tool
V - In-House requirements traceability tool
Z - The use of DoD-STD-2167 or 21 67A

UNCLASSIFIED
Missile Systems Division Raytheon

Software Technology Insertion: Success Factors

1
I +

I 1 1 Software Laboratorv Nov 28.1990

, ' I

ProjecVTechnology Matrix

New Technology ID
A B C D E G I J K L M N P R S T U W X Y Z

SO sn caw: @ Rated 0 Not Rated

UNCLASSIFIED
M ~ S S ~ I ~ Systems Division Raytheon

Software Technology Insertion: Success Factors

Software Laboratow Nov 28,1990

Other Measured Factors

Technology Qpe (Competence-Enhandng or -Destroying)
Support Qpe (In-House or External)
Maturlty of the Technology (Young, Mature, and Old)
Pro)ect Slze (SLOC)
Prlor Expectatlohs (for success or failure)
Reasons (for ST1 choice)
Methods (of ST1 insertion)
Perception of TIT Savings
Perception of Lavr Savings
Perception of Computer Cost Savings
Perception of Quallty Improvement
Result vs. Prlor Expectations (for success or failure)

UNCLASSIFIEO
Mlasile Systems Division

Software Technology Insertion: Success Factors
Raytheon

Software Laboratory Nov 2 8 . 1 9 a

Measui ing Perceived ST1 Success

For each ST1 Case, 6 Questions were asked of:
(1) Lead Engineer (ProjecVMatrix)
(2) Dept Manager (FunctionaVMatrix)

Total Rating for each ST1 Case is sum (example =+I)
i.e., maximum = +12, minimum = -1 2

b

For Each ST/ Cam:
Statemer\t (Agree or Disaareo?)
1. I would use the new methodRool again
2. The new methodnool saved schedule Urn8
3. The new methodhool saved labor cost
4. The new methodnool saved computer cost
5. The new method4001 Improved quality
6. The new methodnool met my expectailons

(Note: Questions not weighted)

Agree Dlsagree
+2 +1 0 -1 -2

- A,---
2L--

dm--- 4
4 ,,

-
A -

UNCLASSIFIED
Missile Systems Division

Software Technology Insertion: Success Factors
Raytheon

Software Laboratow Nov 28,1990

Histogram Of Software Technology lnsertlon Cases

I N-49 Rated Cases I I

Failure + t Success

I UNCL.ASSIFIED
Missile Systems Division

Software Technology Insertion: Success Factors Raytheon

-re Lsboratorv Nov 28,1900

8
8

6 W n mesons for " s m * ' :
'Synergy' within a project (4)
Critical need for a capability (3)

4
'Synergym between two techr,alogles (2)
Mature and powerful tool (1)

2
May or may not "Save Computer Costsn (+0.2)

"Met Ewpectetlonsn (+0.5) not as critical as:
'Save Tlme" (+1.8)

0 "Save Labor (+I .7)
'Improve QualW (+1.61

UNCLASSIFIED
Missile Systems Division Rayt heon

Software Technology Insertion: Success Factors

Software Laboratory Nov 28,1990

"Bottom Seven" i I
4 t I (Rating 5 -7) -I--- I I ,---.

-1 2 -6 0 +6 41 2

Failure -r-------------)L SUCCBSS

Maln reasons for "tellure":
Immature technology (3)
Interface problems (3)
Technology not "needed" by LE (2)
Wrong technical solution (1)

May or may not "Improve Quallty" (-0.4)

"Save Computer Costs" (-1 -1) not as crttical as:
'Save Time' (-1.8)
"Savo Labof (-1.9)
'Met Expectallons" (-1.9)

UNCLASSIFIED
Missile Systems Division

Software Technology Insertion: Success Factors
Raytheon

Software Laboratow Nov 28,1990

Competence-Enhancing vs Competence-Destroying

Competence-Enhancing technology - major improvement in pricelperformance
that builds on existing know-how; a substitute for older technology, but does
not render old skills obsolete; increase efficiency.

Competence-Destroying technology - new way of making a given product;
requires new skills, abrlities, and knowledge for use; ma combine previously dY discrete steps into continuous flow, or be a completely ifferent process

Maturity of a New Software Technology

Young technology - Released < 1 year, or prior to 2nd major release (V l .x)

Mature technology - Released > 1 year, and after 2nd major release (V2.x+)

8':: Old technology - Released > 5 years, or after end of formal support
iii

UNCLASSlFiED
Missile Systems Division Raytheon

Software Technology Insertion: Success Factors

Software Laboratow Nov 28,1990

Ratings of New Technology Types Across Two Factors

IN-HOUSE Support OUTSIDE Support

I BEST 1 OK I

'OrnptenU

('lncremental")

Tot Rating= 47.0
Median. +5.00
Mean Rating. +3.6

cO"PtenU

Dyrz$!f"

RATING SCALE: +1 2 Maximum Success, -12 - Maximum Failure

Poor

Tot Rating= 1 1.5

#Total= 11
#Rated= 8
Tot Rating= -2.0
Median- + I .Sa
Mean Rallng- -0.2

Marginal

Mean = +2.8

Mean = +2.1 Mean = 4 . 9

#Total= 23
#Rated= 20
Tot Rating= 14.5

Mean = +0.4

LJNCLASSIFIED
Missile Systems Division

Software Technology Insertion: Success Factors
Raythetn

Software Laboratow Nov 28,1990

Summary of Results

(Focus on success factors rather than successful technologies)
(Focus on perceived rather than real ST1 success)

Saving schedule time and labor costs drive successful ST1 (obvious?)

Improving quality is necessary, but not sufficient for successful ST1

Exceedin users' expectations not necessary for successful STI, but
not meet 9 ng expectations is sufficient for failure (i.e., must control)

Much greater success for com etence-enhancing C: vs competence-destroying tec nologies

Greater success for mature vs young or old technologies

up :3c Somewhat greater success for in-house vs outside supported
4 "P s"

UNCLASSIFIED
Missile Systems Division

Software Technology Insertion: Success Factors
Rayt heon

Software Laboratory Nov 28.1990

. ...
Next Step:

Linking Perceived Success with Real Success
via Software Metrics Collection

Corporate-wide effort to implernet r i automatic collection of software
metrics as a by-product of develop!r;ent - MSD is Lead Division

10 current software metrics defined (similar to Mitre Metrics)

Based mainly on DoD-STD-2167A

AutoCollection in development for both prolect-specific and
process-level (across multiple projects) software metrics

UNCLASSIFIED
Missile Systams Division

Software Technology Insertion: Success Factors Raytheon

Software Laboratorv Nov 28.1990

Overview of Raytheon MSD's Software Metrics Collection

Project 0

SESSION 3- MEASUREMENT

W. E. Royce, TRW

R. E. Loesh, NASNJPL

W. W. Agrestl, MITRE

P r a g m a t i c Qual i ty Metria / 1 Y -

For Evolu t ionary Software Deve lopment Modeis 0 ? / - - -J

walk Royce
TIiW Space and Defenx Sector

W o n d o Beach California

Due to the large nrrmba of product, project and people parsmekn which i m p u t l u g e custom
software devdopm~nt efforts, meuurement of m f t ~ product quality h a complex u n d e d n g . Fu-
thumore, the absolute p e n p c d v e tmm which q u d i v u m r u d (c d o m a satiskction) h intangible.
While we probably can't s q what the absolute qurlit'J of 4 softrut p d n d u, we csn determine the
&ti= quality, the adequuy ofthis quality with r a p c t to pragnmtic coniduations, and identify good
and bad t m d a daring development. While no two mftrarr en*- rin eru agmx on ra optimum
definition of s o h u e qudi-, t h q rill agne that the moat important purpcetire of m f t r u e quality h
its ease of ehmge. We all this flexibility, adaptability or some o t h a n g u e turn, b a t the critical
d u r ~ ~ ~ t & t i c oCsof t~ . r r k th.t i t ia rofi The e r d u the product is to modify, the cuier i t h to achieve
m y other w f t r u c quality purp+ctive.
Thh p a p a presents o b j u t i m q u d i w rnetria derived kom comisknt %de penpec t i ra of rewort

which. "hen in concut with an cvclationar). development a p p d . can provide wfd iruight
to produce better quality per anit cort/schedule or to &ere adequate q d : ~ more efficiently. The
d u l n m of t h a e metria u e d o r t e d by applying than to a luse , ted -odd, Ada project (CCPDS-R).
Thae m c u n r a can be ~ t o m r t c d , consistent, m d a~ to nae Alcng with subjective interpretation

to account for the lif-e context, objective insight into product qudi ty can be uhieved eariy where
eomction or improvement a n be instigated more effidently.

Indez Temu- Evolutionmy Development, Software Quality Metria, Ada, Maintainability, Proctn
Improvement.

BACKGROUND

There have been many attempts to define me- of softrare qudity in the past 20 yeam. For many
muom, none of t h a e h u a u g h t on M accepted practice in the software industry. 12) dixoacs many of
the problems and tradeoffi k a t e d r i t h defining and mearuxing mftrarc qunlity. One of the recurring
t h e m a in thia work was the need for subjectivity and q u u i v e human raouca in both the collection
and interprrf.tion of qedi ty metriu. hrthermore, the concept of a i d n o l o g y independent set of

- rnetria, d t h o q h m a c k n o r l d g d d&, w u not w d osdcrstood. [a] prorida UI e x d e n t discussion
of the n e d for objective, m a u a b l e s o f t r u t qudity m e t n a which rtm& technology independent. (91
defina a cornpicto company m & a program with a c t d data t h t prorida some d u a b l e experience
and laso- leuned. [lo] d a a i b a the m a t current motintion for measuxhg software quality, p rocm
improvement.

After t k y a m ofsuccsrfnl softrrue devdopment on the Command Center Procasing m d Display
System - R e p k e n t (CCPDSR) project using modern Ada aofhrarr en+raing techniqaa ([12], [13]
a d [15]), TRW h u dtrived m b e t of software q u J t y metr ia which ue mear-ble, objective. and
useful in providing a buis for improring dowmtrtun quality of products .nd procma. One of the
problems with typical g o m a i t contracted m e m r like CCPDS-R h that most arc one of a kind
projects. This chuactrrirtic prorida added comp!cxity to m e u r u c l ~ e n t since the experience may be on1 y
put id I~ . usdd b e t m n diBcrcnt project domains. Tke met r ia praenkd hrreio h v e been fotmdated
to be u wfd u +Me rh& remaining rdatirely domain independent m that comparisony between
di.&ent projats ue @He. Thh h not u simple u i t MU^& .nd the l i h t u r c on soft- q u d t y
m r i r i a rriotorca t b erpmiencc. Aftu mm). it^^, the dJ. presented hmin has demonstrated
objective and d l u b l e insight in its application to CCPDS-R snd i t providm a credible buia from which
beiter metr ia can be daivea.

W. Royce
TRW
R l c l d M

Software Quality Metrics Objectives. Software qua/ity metrics should be simple, easy to I_e, and
hard to misuse. They should be ueftfl to project management, stimulate continuous improvement of P
our development proa_, and low cost to _ter consistently at.ross d_erunt projects. _

Usefnlne_sL Conventional testing techniques ezist for assesaing the fanction,d_y, _ and
perivrm_nce of z software product, however, there are no accepted methods for asse_ng its _€:dbility
(modzlarilV, c_eabilitv, or mainbsinabilily). While there are many other perspectives of quality (e.g.,
portability, inte_perahility, e'.€.), out experience in _gecuting an evolutionary development p_ has

demot_trated tk-t its tCe._b;l;ty up_ts age the moat important. The es_e_ the product ;_ to modify, the
e.a._er it is to sr.b.ieve an), othe= software quality penpective except perhaps performance. The tradeoff .
between flexibility and perfogmaac_ is hlgldy dependent on the application domain as well as manyother
architectu.ra/issues and for the purpose_ of th_ discussion we will assume that performance is zchieved
throagh proper hardware selection and that the project is prioritized "software tint'. A project which
is pt]oritized more tomuds performance (i.e., 1750A flight program), may not interpret these metrics in
the same fashion u a project prioritised towards continuous ILfecyele modification (i.e., ground bused C3
System). This paper will attempt to provide u._oful, objective definitions for modularity, chang_b;];ty __

I " _ d maintainability. The intent of this metrics program is to provide a me_an_m for quantifTiag both
: end-product quality u well u in-pro_ development trends toward achieving tha_ quality.
•. Development Ls.n_a_e. Ads has proven to support increased quality and the evolutionm7 proce_

model in lazge _ct'twue development e_'orts. Furthermore, Ada appea_ to be the language of r.hoicefor
the majority of current and future large government projects. While this paper assumes tha_ Ad,, is

. the language for design and implementation of software development projects which use thee s_ftws.re
quality metrics, it should he straightforward to adapt this approach to other langm_es through a suitable

.: redefudtion of &Source Line o[Code (SLOC).

Development Approach. An evolutionary development approach u prescribed in the Adz Procc=s
Model [12] is necessary to rn=_;te the use£uine_s of these metrics acro_ s broader range o£ the life
cycle. The metrie_ are derived from controlled €o_.rstion baselines. Therefore, an approach with early
incremental baseline_ will see an increase_ benefit. As a prerequisite to unde_tand_ S the derivation
of the software qu,d;ty metrics, the following section provide= an overview of the Ada Pro<,--- Model
employed on CCPDS-R.

Acla PROCESS MODEL

An Evolutionary Pr_:e_ Model is fun_.amenta/to this approach for Software Qua/ity _eat.
Without tangible intermediate produe;s, _:" mtre quality assessment would be ineffective and inaccurate.
Conventiona! e.z'perlenee hus repeatedly seen ._rojects sequence thzough higldy successful prellmir.a_ emd
critics/cleeign phases (as perceived by conventions/Design Review assessment o£ design qua/ity) only to
have the true quality problem_ _face in the integ_aLioa sad te=t pha._cs with Httle or no time for proper
r_olution. An Evolutionary _-_"-_-s Mode.[provides a systematic approach for achieving endy insight
into product quafity and a u_ ::= lifecyele measure for its usae_,ment. It also avoids the inevitable

- degradations in quafity due to :_te breakage and rapid rices which are shoehorned into the product
without adequate suftwa_ _aginecr;- S.

TRW'_ Ads Proce_ Model is, in Kmplest terms, a uniform appl;cation of incrementa/Ada product
evolution coupled with a demonstration-ba_ed approach to design review tot continuous and in_ghtful
thread te_tin_ and z_k management. The technique_ employed within this proce_ ate derived from the

, philosophy of the Spiral Model [7] with emphasis on za evolutionary de:ri_n approach. The use of Ada
us the Life eyele Lsa_s_-e for deaign evolution provides the vehicle for uai[orm_ty _ad provide= • bszis
for eous;qtent _oftwaze ptvsre_ and quality metric.

TKW's Ads procr._ Model reco_p_izes that all large, complex softws_'e _y_ms will _uffer from design
breakage due to early unknowns. It strive_ to accelerate the resolution of unknowns and c_orr_ction o/"

- i derig= flaws in a systematic Mhion which permits prioritised management of r;qks. T/re dormma_ mech-
• _n_m far achie_n 9 t!_ go_/iz a d_€iv/ined _pFroach to i_ deve/oFn_nL The key _tn_gie=

;" inherent ia thi_ approach ate direvtly aimed •t :he three main contributon to _0ftware _oaomy of1:
!i scale:, minimis_g the overhead and inaccuz_y ofinterp_nal communicatioua, dim -sting rework, and
t_ eoa_--rging req_ents stahifity as quickly as po_ble in the fik_'Tcle. These objectives ate sc_eved

by:

2 w. Ro?€¢
TRW

Pa_ 2_r3o _ ,_

.....

_ -7_ --

1. requiring continuou u d e u l y convergence of individual solutions in a homwneoru liL cycle
I.nguagc (Ada).

2. eliminating ambiguities and unknowns in the problem 'statement m d t h e evdving solution
mpidly u practical through prioritized development of tangible inaement. of capability.

Although many o t the & a p l i n a md teehniqua praented he& a n be applied to non-A& projects,
the erprruiveneu of Ada u a design and implementation language and support for p u t i d i m w e n -
trtion (a h t r u t i o n) provide strong platform for u u t i n g a d r m a p p m d .

Many of the Ada Proceu Model strategia (summarired in Figure I) have been rttanpted, in prt, on
other mttware development eftow, however, there ate fundmental .ldiffermca in t& approach c o m p d
to con-:entiond soilware development model.

P r o c m Model Stratern Conventional Counterpar&
Uniform Ada Lifecycle Representation PDL/HOL
Incremental Development = Monolithic Derdopment
Daign Integration -- Integration and T a t
Demonstration Baaed Daign Review Docmentation Baaed h i p Review
T o t d Qudity Management -.. Quality by hpec l ion

Figure 1: New Tcchniqua vs. Conventional Techniqua

Uniform Ada Lifccyde Rcpraentatign. The p r i m q innovation in the Ada Pnmu Modd h the
use of a n n d e lanauaae for the entire software lifecyde. induding, to some d e s r r . the requirements - -
phase. All o? the remaining techniqua rely on the ability to equate duign with-code so t h r t the only
variable during deveIopment L the level of abstraction. This provides two asenc id benefits:

1. The obilily Lo quantify uniir of soflwarr (duign/deve&prnent/k~t) work in one dimensiow S m e
Lines of Code (SLOC). While it b certainly true that SLOC is not a perfect &solute mcrmre of
s o f t m e , with corui~tent counting rnia, it hm proven to be the b a r normdisr i mevure u d do-
provide an objective, consistent bmL for aueuing relative trends kcrou the pmject Life q d e .

2. A f o r d ~ y n f u z and 1 e ~ a I d i C ~ for lifecycle rcpresentuiion wi fh automated ocrpScatkn b y ua Ada
compiler. Ada compilation d o u not provide complete verification of a cornpcent. It d m go a
long way, however, in verifying configuration consistency, m d ensuring a s d d , u n d g u c u s
rcpraentation.

Incremental Development. Although risk management through incrrmental devdopment is rmpha-
sixed aa a key s tnteny of the Ada Proceu Model, it w u (or d w a p should ham been) a key part oCmost --
conventional models. Without a uniform lifecycle language 8 a s vehicle for incrementd d a i g n / c a k / t a t .
convtntiond implementations of incremental development were difficult to manrge. This maaqement
is simplified by the i n t e p t e d techniques of the Ada Proceu Modd.

Da iqn Integration. In this discrusion, we w i l l take a simple minded view of ' d a i ~ ' aa the 3tztctural
implementation or partitioning of softwue components (in terms of function m d perlormanr) and
definition of their interfaca. At the hiqhat level of deign r e could be talking a b u t conrational
requiremerrb definition, a t the lowest level, we are talking about conventional detailed daign t nd coding.
Implementation h then the development of t h a e componcntr to meet their in- while p r i d i n g
the n e c w r functional performance. Rcgardksa of kvel, Ihc = t i d y being p t r f o d u A& coding.
Top l e e 1 d a i g n meam coding the top level components (Ada main p r o g r m , m k cxccut iva global
t y p a , global objects, toplevel lib- units , etc.). Lower lerd da ign me- coding the 10- level
program unit specifications and bodies.

The postponement of dl coding until after CDR in conventiond software doeiopment approach-
also postponed the primary indicator of daign qurlity: in teg~d~i l i ty of the inkrfrcer The Ada ?roc-
Model r e q u k a the early development of a Softwue l i t t h i t e c t w S k d e b n (SAS) = a *chide hr early

i n k d i c e definition. The SAS asentially c o r t a p o n b to coding the top l e d components and their
intedkca, compiling them, a d proriding uiequate drivm/stubr ao that t h q an be executed. Thh
a r l y d e v e l o p ~ t forcer e u l y b a d n i n g of the soamre inter i .ca to b a t effect smooth oolut ioc,
euly e r a l u d o n of design quality and a ro idana of downstram b-e. In this proccu, we have
mrde i n t w t i o n a design u t iv i ty -her than a *& utir i ty . TO a luge dcgrre, the Ada kngaa8e
Ibxa integration throu* ita lib- rula and coPdltmcy of compiled cornponcntr. I t rLo mpporu
the concept of separating strocturd ddinition (rpcdflutionr) tmm runtime function (bodin). The
.id= Procm M o d d c q u d s tftir wnccpt further by requiring s t r m t t d d a i g n (SAS) prior b runtime
function (erccnhble t M) . Dunonrtntionr provide a fordng function for b r o d a runtime i-tion
to augment the compile time i n t e p t i o n enforced by the Ada lmgrugr.

D e m o ~ t i o n Basal Daign Review. Many conventional pmjecta b d t demorutrations or bench-
m a t h of r t rnddone daign i n n a (cg., wr rptarx inkrkce, uikicd dgodthms, etc.) to support
daign feasibility. H o r r r a . the d e i g n b a d h e ru rcprocnttd on paper (PDL. simulatioru, flowcharts,
mgmphs). T h e repruentationr rere w e , embignous and not amenable to contiguratiom control.
The degree of Erccdom in the design repruentrtioar made it r c q difficult to uncover d a i p Ram of
m h c e , +ally for c o m p l a Jfttcmr with conclvrmt proctuing. Given the typical d* m i e w
attitude that A design is k o c e n t until p r o m gniltf, i t waa q u i k e u y to rsKlt that the d a i p w u
adequate. 'This war p r i m d y due b the l u k of a tangible da ign reprucnktion from which true d a i g n
I a n w e n mambigaomiy obvious. Under the Ada Pmcttr Modd, d a i g n review dcmonstratioo provide
=me proof ofinnocena and uc Lr morc efficient a t identifiing and resolving duign flaws. The subject
of the design rrview is not o d y a briefing which d a c r i b a the design in h u m undentandakle terms,
but also a demonstraiion ?f important aaptcts of the da ign baacline which v e d y daign q u a l i ~ (or Id
of quality).

Total Quality Management (TQM). In the Ada Procaa Modei there ue two key dnntagu for
q p l y i n g TQM. The fint is the common Ada format thmughout the lifccyde which permits co&tent
s o m e met r ia -0s the software devdopment work force. Although t h a e m a r i a don't ail perkin
to quality (many p& to p m g a s) , they do pcxmit a d o r m communications vehicle for &ing
the da i red qorlity in an &dent mannu. Secondly, the danonstrrtioru w e b provide a common gou
for the software developm. Thh "inttgrated product" is a reflection of the compIete d a i g n a t various
p h u a in :he life c r d e for which a l l penon=el ha= omenhip. Rather than indiridudly evaluating
cornponenu which are owned by individuals, the dernonstrstions provide a mechanism for renewing the
team's product. This t eam o r n a h i p of the dcmoastrstions is an important motivation for instilling a
TCM at t i tndc

SOPTWAES QUALITY METmCS APPROACH

In asence, the approacfi r e are taking is s b h r to that of [8] who propora to rneruure soft- qud-
itr through the a b ~ c n a of rpaalagc While hh definitions ue pnzpoxiy v q u e (to remain ttchmlogy and
project independent), o m uc quite erpliat. The k q to this met r ia approuh is s h i h to urarentiond
cost a t imr t ion techniqua such u COCOMO [3] when qnmt i f i rb i ty and co&kncy of application
u e important. Note &st software cost a t imrt ion hss subjectire inputs and objective outputs. Our
approwh dl define objective inputs which may require subjective interpretation for project context.

Our primary metric for software quality dl be rework rn m-red by changed SLOC in configured
b d n a . This metric w i l l Iko need to be adjnstcd for project context to accommodate the product
c h u a c t e r i c s , the lit: cyde p k , etc. The drue quality a s a s m e n t derived from this objective
collection of m o r k m e t d a dl require subjective andy& in w m e c u a . The subjectivity hem is in
the fact that rr an t m to a s a s quality during derdopment (tkh rcqrrira srrbjective andpis) ruing
the same m e t d a n d to roar qnality following development (objective andpis) . For aynp-ie , the
volnme of rework following product delivery is aa objective memure of quality, or lack of q d t y . The
.mount of rework foUawiag the fint codg=ation m e dtuing derdopment h a subjective meuate.
Zero rewoek might be interpreted as a perfect buciine (u d k d y) , an inadequate t a t propam, or an
unambitiom fint build. T h e following paragraphs define some of the foundations in this a p e :

Soft- Quality Ddinition. Soflwarc qualify u & dew of c a p i i u n a d LAc cwbrnsr crpcc-
hti4n.s of fundson, pcrjormonce, wrt and rchcdrlc. This is m incredibly d S c n l t concepr to make

w. Bqcr
TRW
plocId#

objective. The o d y mechmism available for d&g 'customer expectations" uc S o h - Require-
ments Specifications for functionand p u f o u n m a , and M q p m d expenditure plan which q a a n t i i a
colt and schedule go& (bkcally, thia c o m p o n b to the mcontract"). T h a e two mechmlnu are m-
di t iondy the lowzst quality productr produced b r a project rince they are required to be agreed upon
with numerom a n k n o m tar too early in the l i fcqdc The erolutionuy pmctw modei and soft-
quality metr ia should provide better insight into the d e g m ofcompliance with c u t o r n u cxpectatiom
in the above four penpectiva.

Software Change Order (SCO). A Soft- Change Ordu constituta direction to p d 6 t h
chanpng a conAgrtrd software component. Thu change may be needed to 1) rework a component
with bad quality (a fix), or 2) rework a component to uh ie te better qua lit^ (an enhmcmrent) or
3) accommodate a customer directed change in rquircmcnts. The difference between the hn t -0

t y p a of rework k inherent in the n e c u d ~ for the change. If the change h mquirrd for compliance
with product s p d c a t i o n s , then the w o r k is type 1. If the change is desired for cost-effectivenm,
increased tatability, i n c r e d runbility, or other d a e n c y reuons (uruming the undanged wmponcnt
k compliant), then the rework is type 2. In both ma, the rework should raul t in i n c d a d
product quality (rcquiremcn~ compliance per dollar), however, type 1 dso indicata inadequate quaiity
in a c a n t bueiine. In pwt ice , diffacntiating between type 1 and type 2 may be quite subjective.
As discussed later, most of the metr ia axe keru i t i t e to the categorixation, but if the differrntiatior is
tonrltently applied, it ua provide u e f d insight. Conventiondly, SCOs were cdled Sonrare Problan
Reports (SPEL). To amid confusion ("problun' hu negative connotation, and not all chmga u e
necmrrily problems), we have changed the terminolow. The software quality metriu coUection aaa
andysh dl use type 1 and type 2 SCOs in M appropriate nmnner. Type 3 SCOs need to be w p a r a d
since they do not reflect any change in quality, they do however, redefine the customer upectaticns.
Furthermorn, Type 3 SCOs typicdly reflect a chaage which k of more globd.impact thereby q u i d n g
~ o u lev& of saft1.atc and s ~ t e m engineering u well u high level rearasion testing. T h e typa of
SCOs rill not be u c d in these metria due to this wide range of variability. Rather, the dats derived
from type 1 and t m e 2 SCOs should provide a solid b& for atimating maintainability aad the eifort
requited for type 3 SCOs.

-source ~ i d a of Code (SLOC). There h u dwap been a contmveny u to whether SLOC provida
a ~ 3 o d metric for measnrinn software volume (DeMarco c d L t h h banq). 1111 identifia 3one of :he -. . .
preeautiom necasary when *lealing with SLOC. Upon reading open literature which & c u a project
prodnctivitia (SLOC/MM), it h eaay to see that them h little, if my, comparability between pmj-
within the same company no leu projects fmm diifaent compania. [4) identifia the p m and c o n of
variou mesrum and coma to the conclusion that there k nothing better. Everyone .grm howera,
that whatever one u s a , it mmt be defined objectively and consistently to be of d u e for comparison.
How we define the absolute unit ofSLOC L not u important u defining it c o h t e n t l y acrou dl p r o j e
and dl arc= o f a specific project. Therefore, the prcferrtd way to define a SLOC h !he following:

The namber of SLOC for a giren set of A& program units u defined aa the output of a
SLOC Coanting Tool.

Enforang this definition is simple to achieve by providing a portable tool. By accepting ceruin ncn-
contmvenid and simple standards for program unit headen and program layout the tool can provide
more valuable ou tpub than simply SLOC countr (rg., static hierarchia, and complexity rutinq).

Ada/COCOMO (51, [B] defina SLOC for Ada pmgrarru m: Within an Ada specification put, each
carxiage return counts u one SLOC. Spedtications shdl be coded with the following standards (n r ionde
u provided in i h l i c s) :

1. ench parameter of a subprogram deduat ion be listed on a separate line (The dcrlqn of a mbpro-
grum interface u done in one place and generally the effort wrociated with the interface &a~gn u
dependent on Lhc n u d e r of pamaneten.)

2. for ctutom enumeration t y p a (e-g., system state, socket nama, etc.) and record typa e r r h
enumeration or field should be listed on a xparaie Line. (Cwbm types d y invalse cuttam

&sign and engineering, hence an incrroJ.4 a& of SLOC.)

3. for predefined enumeration types (e.&, keyboe_ keys, compass directions), enumerations should
be fhted on u few lin_ u possible without loss of readability. (Thee /dadj of type: ge,ter_

t

4. Inltia/hation of composite objects (e.g., _:ords or arm)s) should be l_ted with one component
per line. (Frt.q_rdly, e_h of _heJe _,:ignn_nta vep_aent_ 4 ¢_z_om jt_rn_nL, an o_rs cla_e
iJ t_allv _ed for the non-eu_tom aJaignmensa.)

Within Ad- bodies each seml-colon counts u one SLOC. Gene._ic instantiations count one llne for each

i generic parameter (spe: or body), m
The de£mition above treats deelara_ive (spec_cation) design much more sensitively than it does _'

I ,_ecutable (body) desi6n. It _ does not recognise the de_.larative part of a body u the same hnportaace

as • specLqcaLion part. Although these ud other debates can surface with r_pect to _he "optimum"
de£nition of a SLOC, the optimum absolute detinitioa is fat le_s import_t th_ a €onsistent re/,_e

[definition.
Quafity Control Boa_. The QCB constitutes the governing body responsible for authodsin_ ¢_huges

[to a configured baseline product (€onventionaJly known u s €onfl_Lration control boa_ . CCB). Thi_

I body is composed, at a reinsure, of the development manager, enstomer _-pre_entative, ev.h product
mane_er, syste.m_ e.q'ecfivene_ t_pr_entative and the test wAns4_.r. The QCB decides on all proposed

changes to €onfigur_ products and approves sdl SCOs. The QCB is responsible for co[lecti=g the
_. Software Quality metric, objective-I F and subjectively anaIy_ing trends, aad proposing changes to the
_' deveiopment proton, tools, products or personnel to improve future qua_ty.

Configured Base_ne. A configured baseline constitutes a set of products which are subje_ted to• change control through a Quality Control Board (QCB). Configured baseline_ u_uaUy represent interme_
dinte products which have completed design, development, and informal te_t and finul products which

i ; have completed formal test.

f
L. METRIC3 D ER.I"VAT_OIV

_ The remainder of this paper pt'ovides substantial detail in the definition and description of the
nec_sa.rT statimtic_ to be collected, the me_ric_ derived _om the_e ststi_ti_ and th_ _ntetpret,_tion.
This section provid.-, t simple overview of how the_e mctric_ were derived, the nec_-..=ity of some o£
the collected stati_tic_ and their rai._ond'etre. The following derivation_ are not aa obvions top down

i pro_ion, rather, they error, numerous unniys_, intuitionre.tired _rom qub_ta_ti_ trial a_ld dead e_d

and heur_i_n.

The [andament.al hypothe_ w_ that their was si_at in£orma_ion content in the chazact_
| of rework being performed over the project l_'ey_e. The obv_o_ mw ststL_ti_ to collect include
i number and type of soflwa_ e.han_s, SLOC damned, and SLOC Kxed. The problem was to find
i the right filtering te_Jxniques for the mw rework statisties w_'-'chidentify useful trends and to uncover
- objective meusu_es which quantify product attributes both duri.ug development and u an end-product.
': Our original intent was to pro_de a quantification of the product's modularity, _han_._bifity, and

! maintainability. The tint two are i_tultively _imple to define ns a function of rework, the third i_ more

subtle:

Modularity (Q,,,_): The average e._tent of breakage. This identifies the need to quantify e_ient of
, breakage (we wi_ nse volume of SLOC damaged) and number of instance_ of rework (Number o_

SCOs). In effect we are defining modularity u a me_ure of breakage loonier•ion.

l' Change•blUfF (Q¢): The average complexity of breaka_. Thiz identifie_ the need to quantify €om-p/e._i_g of breve (we will use effort required to r_olve) and number of in_tanc_ of rework

(Number of SCOs).
Malxtt=;--billt T (Q_): Theorotica_ly the maints_abil[ty of a product i_ t_ted to the productivity

with which the maintenance team can operate. Productivities/_owever, ate so difficult to compare

between pro_eets that wu intuitively uasstizfying. If we ratio the productivity
this de_aitioa

of rework to t_:e productivity of development, we e_d up with a value which i_ independent of

[i "6 W.Royce

productiritj but yet a rrflection of the complcritj to change a product in relation to the compl&ty
to devdop it. T& nonnalisa out the project pmductirity M e r c n c u and prorida a rdr l i rdy
comparable metric. Maintainabilit). then, r i l l be defined aa the ratio of rework productivity and
devdopment productivity. Intuitively, thu d u e identiilea a product which c m be cbrnged three
t i m a u efficiently (Qn = 33) u it war developed u b r i n g a better (lower) maintainrbilit~ than
a product that can be c h g e d twice M efliciently (Qu = .5) u it wu developed, independent of
the absolute maintenance productivity d r e d . The s t a t t t i a =ceded to compute t h c v d n a are
the total development dtott, total SLOC, total rerork dart and total reworked SLOC.

While the d u a above pmvide d d end-product objective mearata , thdr intermediak v d u a u s
function of time would ako provide insigkt during the development procar into the u p e c t a l end-product
d u a . Furthennore, once we h a w gained some experience with maintenuce of early increments, this
experience should be rueful for predicting the rework inhutn t in remaining increments.

The above brief derivation in starting to push the limits ofolu fint g o d (simpliatj) and the following
scctiou, on the surface, will appear to be somewhai complex. A few remath about thh m ii~ order.
First, them wi l l dway be a tradeoff between s h p l i c i t j and real insight. Surface insight b usnaUy
attained very imply, detailed insight rtquira added knowledge and compluitj. We have &men a set
of metr ia which range from simple to moderakly complex to covu the multiple penpectiva needed by
project manqement to enmrc u c n r a c ~ . It t not necuauy to d u l with t h a metriu m a complete set.
Subxta, or different sets arc aLo useful. Secondly, most of the a n d p i s , mathunatiu and d s ~ ~ collation
inherent in t h a e metr iu should be automated so that mmagen need only interpret the raults and
andentand their basis.

The above d u n were determined through extensive analpis, t r i d and enor, and. intuition. There
are cer-y 0th- metr iu derivable from rework s h t k t i a which would dao provide rueful inaight. The
following sections provide more detailed dacriptiom and notatiom for the collected s h t k t i o (Tabk 1).
in-pro- ind icabn (Table 2), and end-product quality metr ia (Table 3). Bypotheticai erpectuioru
arc provided in Figure 2 for the in-progrm indicators and coUected statistics.

Collected Statistiu

Table 1 identifia the necnsary s ta rk t io which mrut be col!ccted over :he lifccycie to impiemefit our
proposed metrio.

T o t a l Source Lines The SLOCT metric t racL the at imated total rise of the product a n d u d c r d o p
ment. This d u e may change significantly over the life-of the development sr early requirements
unknorru are raolved and u design mlut iou mature. Thia total should also indrrde m e d
s o f t m e which b part of the delivered product and subject to contractor maintenmce.

Configrved SLOC This metric simply t r s c k the transition of software components Lorn a mataring
da ign state into a controlled codiguxation. For any *en project, thia metric wi l l provide indght
into p m g a a and stibiiity of the daign/developmcnt team. (121 dixuaaa some of the t tadzofi rod
risk management philosophy inherent in la*g out an incrementd build approach. For projects
with rewed software, there will be an early contribution to SLOCc and thus 'immediate progrr?sn
and quality metriu sr defined below.

Erron Red e r m n (type 1 SCOs) constitute an important metric from whichmany of the foilowing sre
derived. The expectation b that the highat incidence of uncovering enon happens immediately
d k r the turnover and d u r u u a with time (i.e., the software matures).

Improvements The other stimulru for changing a h e l i n e , i m p r o n m e n ~ (type 2 SCOs), arc a h key
to the assessment of quaiit). and p r o m to& produang quality. The expectation for improve-
mcntr is a p p r o h a t d y invcndy proportional to m o m , in that u the error rate s t a m off high and
damp oat, the improvements start oft l o r (the fotru L on e n o n) and increase. ThL phenomenon
b buically derived fiom the assumption that fixed team b working the Tat/Maintcaance pro-
gram and:

-

Table 1: Collected Raw Data D&tioru

Ejfortn-... + Effortr--. = Condtant

The actual differentiation between Type 1 and Type 2 L somewhat rubj&vr The m e t e d-
herein are not p u t i c d a d y sensitive to either type since they d y on the nun of the i m p c b fmm
both t y p a . H m o c r , thc difference between Type 1 d u n y and T,rp 2 dun- umy p m d e
rurfrrl insight u demoash ted on CCPDS-R

Open Rework Thwceticdly, dl m o c k corraponQ to a n i n w e in quality. Either the ,-ewori k
n m a a q to m o v e an instance of 'badw quality (SCOI), or to enhucr a ccrnponat for !ife
q d e coat etfcctireoas (SC02). The d y n a n i a of the w o r k coupled r i t h the projecz schcdnie
c o a t a t mtu t be e r r laakd to proride an scctuate rrreument of qodi ty trends. A c t r i r amocnt
of rework u a necessity in a large ~ ~ r a r r engineering &or+ In k t , a d y rework u consid&
a e n of healthy pro- in the erointionaq procas mod& Continuos w o r k . h e rework, or
rcm rework due to the m&tence of a configured b d n e u e g m d y u d i c a b a d IICgatile
quality. Intapretation of t h h metric requira project contat . In g m d howerp, Ctc m o r i
mast rdtimatdy go to zero a t product deliver)= In order to p r i d e a co+rltat and a u u m d e
cdIection procus. rework L defined u the n h of SLOC u(imo(cd ta c h g e dec to an S O .
% a h l a t e .ccamcy ufthe a t i m a b L generdy Pnimpottrnt and &ce open r t rotk A t&
with an a t A e and dord rework (see below) b tracked x p u a t c i y with utruL, t h e &a
coatinually corrrct t h e d r a and remain conshtcnt.

8 W - R w u ,

TRW
b a d 3 0

. -

hsight

Tocrl Effort

D u n o a s ~ l e P r o w

Tat Eirectircnas
Tat Progrm

Rdi.bility

Value Enginering
Dai - P r o g u

F d i ty
Scha ide Xi&

Maur i ty
Changeability

Daisp Qudity
MaintainabZty

I

Sta t i s t i c

Totd Sotme Lina

C a d f i g a d S m L i n a

Emn

Improtcmentr

Open Rework

C i e d Rework

Total Rawork

D d i n i t i o n

SLOCr = Total Product SLOC

SLOCc = Standdone T a t e d SLOC

SCO: = No. of Open Type 1 SCOa
SCOf = No. of Qd Type 1 SCOJ
SCOI = No. of Type 1 SCOs

SCO; = No. of Open Type 2 SCOs
SCO; = No. of C l o d Type 2 SCOs
SCOl = No. of Type 2 SCOS

B1 = Dunaged SLOC Due t o SCO;
Ba =Damqed SLOC Doe t o S C G

F1 =SLOC Repaired after SCOI
Fa =SLOC Repaired &ex SCO:

RI = I'I + BBI
Ra = Fy + BY

Closed R e w o r k Whererr the b r u h g c metr ia at imated the dunage done, the rep& met r iu shodd
identxr the actual damage which w u fixed. Upon rcsoiution, the c o m p a n d i n g b r d a g c at imate
should be updated to reflect the actual required repsit that remaina in the bascline. T h e u t u a l
SLOC F e d rill dearly never be absolutely accurate. It rill, howem, be d a t i v d y m t e
for assessing trends inherent in t h a e metria. Since fLcd can take on x v e d diffaenc meaning
depending on what is added, deleted and changed, 6 consistent x t of guideiina u n e w .
Changed SLOC wil l increme RL without 6 change to SLOCc. Added code k - e u e R1 m d
SLOCc, dthongh not n e c d y in the aame proportion. Cdeted code (not t y p i d y a problem)
with no corresponding addition codd d u e both RI md SLOCc. A conventiond difference
tool with an appropriate preprocasor which converta prnperly formatted source tila into a fonnat
which contains no comment3 and 1 SLOC per compared record would be the b a t method for
computing changed SLOC. A simpler method (and the one uxd h m) would be to simply at imatc
the magnitude of the k e d SLOC. G i m the volnme of changa and the need for only roughly
accurate data for identifying trends, the accoracy of the raw data u relatively unimportant.

In-Progress Ind ica tors

Table 2 defina the in-progras indicaton and Figure 2 identifia relative expectations. It is difficult to
define the absolute expectatiom for the in -progas metr ia without comparable data from a t h a projects.
Relative u p e c t a t i o u are dacribed in the following parsgraph¶.

Table 2: In Pro- Indicator Definitions

,

Rework R a t i o The sum of the currently broken product (BI + B l) and the dready repaired brestage
(F1 + F2) correspon& to the mas, of t5e current product b d n e which hsr needed rework (Rt +
R l) . T h e rework ratio (RR) identifia the c u m n t ratio of SLOCc which is expectsd to undergo
:ework prior to maturity into an end product. The expectation for RR shown in Figure 2 k to
i n c r e ~ e to a stable n l u e with minor discontinnitia following the initial delivery of rach build.

Rework Backlog The cnrrent backlog of rework is defined sr the percentage of the c u m n t SLOCc
which is currently in need of repair. In general, one would expect that the rework backlog shoald
h e to some level and remain stable through the t a t program until it drops off b z c m . Luge
changa from nonth to month should dearly be investigated.

Ind ica tor

Rework Ratio

Rework Backlog

Rework Stability

Rework Stabiiity The difference between t o t d -crock and d d rework p m e d a insight into the
tren& of resolving issua. The important w of this metric u to ensure that the b-e rare u
not outrunning the r c ~ l u t i o n rate. Figare 2 identifies an idealized a e where the raolution rare
d o a not diverge (except for short periods of time) Gom the br-e rate. Note also that the
breaiug+ rate somewhat t ~ ~ h the SLOCc delivery rrtc. A diverging d u e of SS would indiate
instability of rework act int ia . A stable d u e of SS would indicate systematic and s tnigf i t forrud
resolution activitia.

Definition

R R =

B 48 BB =

SS = (21 + R,) - (Fl + Fz)

Ins igh t

Futare Rework

Open Rework

Rework Trends

Figure 2: In-Progreu Indicators Example E x p e h t i o m

E n d - P r o d u c t Qurlity Metrics

The end-prodoa m e t r i a d e d insight into the maintainability of the software producb with rapect
to type 1 and type 2 SCOs. Type 3 SCOs are explicitly not included since they redefine the inherent
target qodiv of & -em m d tend b rcqaire more gl0b.i @em and softwure engineering a well =
some =jar r e r a S c r t i o n of sptrm level requirements. Since t h a e t y p a of changa ace d c d r with in
e x t d y diverse ram by different c a t o m e n and p r o j e b , they would tend to cloud the meanings and
cornpaability o i rlc d r k H o r e r u , the met r ia data below should be very helpful in determining and
p1aani.q t h e expeed effort lor implementing type 3 SCOs.

Rewort Propordons The Bg d u e identifia the percentage of effort spent in rework cornpued to
tkc total e h . In mence. i t probably proi ida the b a t indicator of productivity. T h e actiii-
"A included in the d o r t s should only indude the technical qt l i rements , mftwate engineering,
&gn, dercbpment, aad functional t a t . Higher 1-d system engineering, mansgemcnt, confiqu-
d o n contzi, r a i f i a t ion t a t k g and higher level system t a t i n q d ~ o d d be excluded since thae

Table 3: End-Product Quality Metriu Definitioru

Metric

Rework Proportionr

Modularity

Changability

Mrintsin&iy

ac t i r i t i a tend t o be more a function of the company, customer or project attributes independmt d
quality. The g o d here L to normalize the widely varying bureaucratic activitia out of the m e i r i u
R, p t o r i d a a d u e for comparing m t h similar projecb, future increments, or future p r o j a a =
well u other in p r o m m d y a a . Bmically. i t defina the proportiou of the product which had to
be reworked in ib Iifccyde. Note that the actual d u e could be greater than 100% .

M o d u l a r i t y Thb d a e identifia the average SLOC broken per SCO which reflects the inherent aSilip
of the integrated product to Iocalire the impact of change. To the marimurn extent posaiblc. ?CEs
should emure tha t SCOs are written for single aocrce changes.

Definition

RE = Elfrr.ao, +nl fa t .ooL
Ef f f f * r . r d

Rs=e%?= 5 0 r.w

Q ~ J = 3 & k

Qc = E l l r t s o o , SCOS+SCO, + E f l - c ~ e o ~

Q M =

Changeabi l i ty Thh d u e provida some insight into the tax with which the products can be changed-
While a low n u m b a of changa L generally s good indicator of a qndity process, the rnaqnicudc
of effort per change is sometima even more important.

Inrigfit

Productivi ty
Rework

Project Efiuency

Rework Localization

=k of Modification

Change Productivity

Maintainabi l i ty This Taae identifia the relative cost of maintaining the product with rapec t to i t s
development cost. For example, if Rg = Rs, one codd condude that the c a t of modification is
equivalent to the cost of development from scratch (not highly maintainable). A rdue of QM mu&
Im than 1 would tend to indicate a very maintainable product, a t l e ~ t with rapec t to developmenr
cost. Since we wotlld iqtuitivlcly expect maintenance cosb of a product to be proportional XI iu
derelopmmt cost, t k b ratio prorida a fair normalization for comparison between different projects-
Since the numerator of is in terms of ezort and its denominator is in t e r m of SLOC, it L a
ratio of productinties (i.c., effort per SLOC). Some simple mathematical rearrangement will show
that QM h quivdens to:

Expectations It L diffimit to define the expectatiom for the end-product metr iu without companble
d a b from other prcjats. Now that we hare solid d a t r for CCPDS-R, we can form expechrions
for future increments of CCPDS-R ar weil aa other projects.

The above dacriptioru identify idealized trends for t h a e metriu. Undoubtedly, real project sit-
uatiom rill not be ideal. Their differenca tiom ideal, however, are important for mansgement and
customer to comprehend. Furthermore, the application of t h a e metr iu on project increments a well
u the project u a whole, & o d d be d d .

W. Royce
IR \v
p+ 11 of30

A P P L I C A T I O N aESULTS

F i p 3, Figure 4 m d Table 4 provide the u t u d d a b to d a k for the C C P D S R project. The Commmd
Center Proctuing and Display System Rcplacunent (CCPDSR) project d proride display kriormatioa
ascd during emergency cunfercnca by the Nationd C o n m u d Authoritia; Chahman, Joint Chieh of
ShA; Commander in Chief North American A e m p u e Command; Commandu in Chief United Stater
S p u e Command; Commanda in C h i d Strategic Ak Commmd; rod o t h u n a d u capable C o r n m u d a y
in C h i d It is the &e wuning dement of the new Integrated T u t i d Wuning/AttrcL Assarmcnt
System developed by North American Aerospace Defuue Commmd/Air F o r u Space Command.

The C C P D S R project is being procured by Air Force Sys tem Command H c a d q u a r m Electronic
Sys tem Division (ESD) a t Hameom AFB and ru awarded to TRW Defense S y s t e m Cmup in June
1987. TRW rill build three rnbqstuxu. The k t , identified as the Common Subsystem. :J 30 months
into development. The Common S u b s t e m consists of 350,000 aonrce ha of Ad. with development
schedule of 38 month. It dl be a highly rdable, rul-time dktlibtttcd system with a sophisticated
User Interface and stringent performance requirements implemenkd entirely in A d a CCPDS-R Ada
rish were o r i g i d l y a very serious concern. At the time of contract definition, Ada h a t and target
environment, d o n g with Ada trained penonnel a d a b i l i t . ~ were qua t ionrb lc

The da ta provided in t h b paper was collected by manually a n d ~ k g 1500+ CCPDS-2 SCOs main-
hind o h e and in h d copy notebooh. Most of the data d&ed in the preriom section was available
in the SCOs. Each problem dacription and raolution rar evaluated t o determine whether the SCO
was type 1 or type 2 and whether the SCO ra.s relevant Lo the operationd pmduct (out of the 1500
SCOs, 910 were relevaat, the rcrnahder were SCOs for initid tarnoren, support tooh, t-t soltwace or
commerdd software). Furttermorc, each SCO opened c o n h i n d w a t i m a k of the dart to fix and
each dosed SCO prorided the actud (technical) effort required for the fix. The statistic 7hich was not
present, u d o r t ~ ~ n a t e l y , w a the actual breakage aucument in SLOC. For each relevant SCO, the SLOC
breakage a t i m a t e wm b u e d on experience with the ti& the detailed dacription of the rw!ution. the
honn of and- and the h o r n rqnired for implementing the Ik While not perfectly m r a t e in all
casa, t h a e a t i m a t a arc a t least cocuhtent d a t i v e to erch o t h u and ginn the large -pie space.
rda t i rdy accurate for the intended we. Again, it is not that impotturt to be abolutely m t when the
n e t r i a and t r e 2 8 are derived t o m a large s a ~ p l e and o d y useful to a t most 1 or 2 digits of accuracy.

CCPDS-R C o m m o ~ Subsystem Anrlyru

The following patagrap& discus the quality metr ia results for the CCPDS-R common subsystem
cu a whole with condnsioru drawn where applicable. Figure 3 provida CCPDS-R sctrrds wittr the
incremcntd b d d sequence (SLOCc) orerlayed for cornpubon.

Configured SLOC. The CCPDS-R installments of SLOCc deliyered smd ini t id builds (AO/Al
and A2) with the highat risk components. The middle build (Al), while lerr risky, war bulky and a
subatantid portion of the build was produced by (somewhat immat.ue) automated tooh. Zleverthelas,
i t mu .mtalld in two increments (A31 and A32).

SCOs. e rpu ted , the SCO rate is proportiond to the SLOCc rate. The actuds also suggest
that the state of the fint two builds was higher qualit: a t dclivrr]. t h r a the third build. T h e feeling
of the derdopment managers on the project concurs with t b h assessment but d s o added tha t it a=
during the A3-A4 timeframe when s a h t a n t i d requiremenb rolatiiit7 ~ccnr rcd in the user interface and
external interface definitions. The number of open SCOs has remained fairly constant with r a p u t to
the n m b e r generated and hence indicative that the rework L being resolved in a timely fuhion.

Bework Raolution, The to:d rework (Rl i R2) h u also 8x0- a t a r a k proportiond to SLOCc
gmwth bat its rate of growth is decreasing. Now that the software is dl configured and tutnoven are
complete, breakage shodd start damping out rapidly. The m l v c d =work (F, + Fz) t d e d the total
rework d o 4 y d t h littie. if any dimgence. The last t h r e months indicate thar the rate of resolution u
ex&g the rate of bredage. Thb should indicate to the man.grment kua that no seriou problems
are lurking in the future.

Rework Ratio. The rework rate has grown from the ini t id b d i i h to a n appuently a b l e r d u e or
.IS. T b would imply that the initid build war more mature ni deiiwry than the xcand and third
b d b . Wit5 o n r 98% oCthe :oRaue in SLC,Tc, this d u e s h o d c be expected to be faidy stable and a

12 W. Royce

TILW
Pqc 12 d 3 0

n .t 7.W
swo

T o t d SCOs
600 Open SCOs 0

. .
300

S o f t - ~ - o v e ~ ~ A I I ti ASS d A 4 d A. d

KSLOC -
Tot4 Rework

50 -
40 -
30 -
20 -
10 - Qoxd Rework

.25
Rework Ratio

.2
RR

.15

.1

.05

Figure 3: CCPDS-R Collected Stat is t ia

good predictor of future mock . The amcunt of rework backlog in proportion to SLOCc has remained
fairly constant m d impt ia that the divergence of breakage rate and raolution rate should correct i t s d
shortly. T h e ritoation here b that substantial increments u e being added to SLOCc and a n i n c r e w
in breakage vs raolution h apcc ted h c e the dcrelopment team L likely focusing on installing bsxl ine
components rather than k i n g components.

SCO Effort Distributiom. Figare 4 identitia the.&rribution of SCOs by the effort required for
raolrrtion. Thia graphic dm sugguta that the sofirare u generally emy to modify. A deeper analysu
of t5c d a t a shorn tha t the zuajoritp of complex SCOs occamd in the more complex early builds.

W. Royrt
TR W
Page 13 or 30

M d d u i t y . Thh d u e ehrt.ctaira the d e n t of dun y expected for the average SCO. A d o e
of 53 SLOC imp60 thrt the a m SCO only dected the equivalent of one program unit. S i c e most
of the trivial e r m n get aught in standalone tat and drmoastration u t i r i t i a , this d u e i n d i d a the
araagc impact fbt the noa-trivial axon which creep into a contgnration bwline. Tkia d o e rogsat r

Figure 4: SCO Effort Ditribution

Rework Proportions. RE (Tabk 4) d d n a the pernnt of the development &orb deroted to m o r k
Since we only tracked the t&al d o r t in d * g and implementing d u t i o m . r e have compared
it to the soft- development dart devobxd Co the -e, nun&, the m&menb, d-, derrio&ar
and t a t cftort. In both w we diminate the cost of muugcmurt, kcility, lecrrtdd, configtxsti~.
mmycment, quality rcmrma, m d o t h a l e d of ef i r t adminiatmtive u t i r i t i a . Note that r e have
included the xrftwue rqoirrmcntr andpis d o r t riolcc, in our evolutiony approach, there is only a
subtle difference beireen reqrrirrmenta and dsign. R, dd ina the percentye of source cede which h n
undergone rework. CCPDSR is currently projecting a rework ratio of 14% .

T& 1: End-Product Quality Metria Definitiom

CCPDS-R Vdue

6.Vo

13.5%

53

15.7

.49

Metric

Rework Proportiom

Modularity

Chrngability

M.int.inabilit~

Dadidtion

R~ = B ? f - ' ~ c o , + ~ l J - * s c o ,
E l l r * r . w

Rs =

R
9-d = sco;::;o,

QC = S f J e t s e e , + E l f w c s e o L
S C O ~ + S C O I

Qx = 2

that tha sonrue design u ftarible but with w hrir for compriron, thir b p u d r +cctuc &
d d i t i o d metric which muld ba rudd in . .raiag modulrdty m d d ba the namber d Na d d
per c h u t e , Thir m u l d provide insight into the Id* of as d u the crtat. This w a r k ~
waa not a d a b l e in the CCPDSR historial dah, bat i t u bdng d e c t r d in h t m d a t a

Chan&ili ty. The amage effort per SCO pmrida a mechrnLcm ior corn& the canpkzitia of
chmgc. h a project amrage, 16 hoan mggaia that h g e u hi.& simple. Whar dmqp t dm*
a projec t ia likely to increme the u n o ~ t of c b n g ~ t h u a b ~ increubg the inhereat e.

Rework Improvement. F i i 5 identifia hor thc ~ h g d d i t y (Qc) o m the pro*
schedule to data. While conrcnt iod experience n thd e h * ~ @ mon expasire with time, CCPDS-
R demonntrata that the colt p a c h m e i m p m u with time. ThL ia c o d s b ~ t 6 t h the gods of
evolutionq development a p p d (12) .nd the pm* of a pod l a d uehitaturc (131 =here r;be
early investment in the foundation componentr and high rirL componeatr psya o f in the d d e r of
the life cycle with incrcued ease of chmge. The trmd of this me& rod indicate that the CCPDS-R

design hu auccded in proriding w inkg.bIe cumponcnt set with e&titc contml of
H d the trend of thia metric s h o d p w t h in &kt p a SCO withoat -on, maayczllcutmar be
concerned &at the daign qnaiity and dornrtrrrm rirL in rameking an inauabgIy bud to ch-
product. Note that Qc metric. do not include the coat of do ra t - r r - r r r i f idon of higka 1 4
requirements since the bruad -02 of these rctiritia r o d d a m p t the intcat ofthe metric Qc b~
b u n purposely defined to reflect t&e technical of change, not the cost of d c a t i o n in a 1-
context or the m a n v e n t zkk. For example, a l.teehaa6 of minos complexity c o d radt in r g e
t a t by inspection or a compiek r e v d u t i o n of numuour &6xrn.na t h r a d r Thh m g e of &t
rar ia with the context of the change, the c=iomc1/wntrutor puand. and a variety d o k h
which ue not rdectire of the arc of change. The t cchn id cort of e* h not closed out Lo-,
until thL r e d c a t i o n h complete sine i t may 4 1 in reconsideration

r 1

Figure 5: Remrk Impmrmrcnt: Ch.ryabiIity Emlution

Maintainability. The ratio of RE to Rs chuutaixa the cost of rcmrtiry CCPDSR c o a p o n e
compared to developing them fmm ratkh. This d u e dong with the cbage h&c exp&cui d u h g
the last p h w of the life q d e could be wd to predict the m d e n w e produbirity apedcd &am
the cuncnt dwelopment prodnctirity being erpericnd The 04 change tdk during d d o p m e ~ t
shodd not be oxd to predict operational m.inknana ha it h ortdy b i d by immrtruc pr-
changes. The FQT phase change t d c (U d y a Iowa d u e th ra the a m p k t e development GI-e
td i ic) , is a mom sccurak m m A d u e of -49 Liln a good ehkdiiitJ m t h g , ht further
project data wodd permit a bet* bash for -cnt.

T h u d u e t e q h some u*lt.ts in ita q Vmt, lhh mrinteLIllce p d u t i r i l y ra d e r k d
from small d e maintenance a d o r n (fira md enhmcunmb) u opposcd to t t g e d e m p g t s d n
where s ~ k m engineering and bruad d a i g n may be necessitated. Secondly, the data b derirrd tram
the d w d o p w n t lifecycle, therefore, it rhodd be t n r k d rr more of .a u p p a b a n d in pi*g t he
upect.tions during the muntenmce phue of a product whe. the arirtcnct of Mutt s h o d be bus
than that experienced during development. The pmonnd pedorntiq the mrintenance h o r n La-,
were knowledgeable derdopcn which may b i u the mJntrinrbiIity cumpared b the w t i x o t obe
maintmmr: t a m . The massgc h w , h that thh d.14 like m y productivity d.4 must be 4
a r c f d y by people cogn iwt with its da in t ion to ensure propa

Functional CSCX And+. A complete l o r u - l e d dy&m puformed to a a d p the
contributioxu to the d u a in T d l e 4 by the indindoll CSCL. While the eduat ioo of t h h lower k d
data rill not be d k ~ d hem in detail, they did unco*er some i n t w t i n g phenomena which h.=
been incorporated into the plum of f u t ~ ruba).ttcmr. Thus wen significant difKemmcu in the -ous
CSCf l r r d d u a which provided insight into r u i o a lc* of qudity and the need for pe r tubdo- to
future pluu. The Qw d e d ' k o m .12 to .8S umm 6 CSCk, For example. AaLitcly low I.laa rere
o h & for dgoathm (.12) and d t p h (27) r o f t ~ ~ t t where we of c h u w a c l a t daign goal.
Higher d u a rut o b c d for the utmd communicationr - A m (31) aad ~ p k m sctrica r o f t ~ u e
(.as) where ch- in M external rnammp w t for aample, codd m o l t in b d e r vatan imp.ctr The
m g e of d u a clearly identifla the rrhiiPe difference in risk urociated with changing r u i o a upccta
of the design. The abrolute risk u r o d a k d with thae ir difftcdt to untr without further data
fiom other dm;trr projects-

Global Summw. In genurl, the CCPDS-R p r o m app- to be converging t o r u b a rw
high qurlity product with high probability. Thia merit ir implied Lorn the visible rt.bilit7 im the
qualib metria. The b c t that t h a e metria ue stable generally implia that the remaining darts u e
ptedictsblo J f the p d c t i o a a do not extrapolate to better than r e q u i d p e r f o m c e , u t ion cu be
taken. The key to optimising the d u e of the# metria u to .chierr s t ab ib t ion u eu ly u panible
so thst if predicted pafonnuxe d o a not mrkh erpeet.tioor, mrrlylemcnt caa instigate impmrrment
actiow M u r l y in the life q d e u pordble. Some chuuter i r t ia of CCPDSR which u e impor tu t to
keep in mind when intupreting the &om metria indude:

1. Maay ch.nw incurred by the project were d y type 3 (true qo i rcmenb chmge). H o r m r ,
ince most of t h e were d it ru &u to incorporate them rather than p through the formal
ECP proen. In retrospect, the mm of d thae little c h m g u w u quite substantid.

2. These m e t a a ut derired from the development p h m , c o m p ~ n with other project's mr in tc
-a phue metria is midd ing . The metria a d a b l e in the Anri 3 month prior to ddimr).
(u opposed to the H q d e a t t w praenkd hue) howeta, rhodd be 6ixly comparable.

Operational Concept. The concept of opczstions for the wftwue qudib metria progrun u to
provide insight for the purpcsa of rnmaging product derdopment mth mipimum interference kr the
derdopment kun. Thb riU be uwmplhhed by inkgrating the tknducL for metria collection into
the bob and QCE proccdnru. The raponsibiitia of this initiative uc d o u t e d u follows:

Soff r rua Developers: Follow the core Ada Daign/Dedopmeat S t a d d

Softwua Dsrelopment M m l g u r : Follow the oolutionuy procm model, adhere to cote softwaxe
quality metria poliq, coordinate with project syrtcnu effectirenm any project unique potiaa,
interpret +ems dectireneu SQM and& and be ucoontrble for k u a and raolutiom.

Corporate Sptcrm EReetimws: Define the SQM policy/toot/procednm, eninate project im-
plementatiom, improe the polida/tool/procdura and ensure consistent ange u r o n different
projects. This is the same fonction p r o p 4 by [8] as the standuda p u p .

Project S o f t w u e E n + d g : P l o w d m the SQM policy/tool/procedura into a project im-
pIcmenbtion, implaxent project QCB, SQM collection, SQM .nrly&, SQM rcpo~tiag, e d u a k
project implementations, and propose candidate improrunenb to the policia/tools/pmccdura.
Note that we u e puttlag this function in the hm& of howledgable project pcnonnd (as o p
p o d to conrention.1 independent QA penonnd) since the admiahraton of t h e metria &odd
be motintcd for eAectire cuc through omenhip in both the pro- and the products.

We would fomcc SQM metria reporting on a monthly or quarterly bash depending on project phase,
size, risk, etc. Furthennore, the entire SQM initiative rhodd be re la t idy d&c during its i n i r n q
aa ral project appliations determine what is most useful m d feedback is incorporated.

W. R q a
TRW
Page I L o (5 0

By itse& CCPDS-R is perhap bad example lor testing thne metria. k general, tk p r v j ~ ~ t hr
pafonned u planned m d hrr r high prokbility of delivering a qurlity pmduct. It maid k u d d
t~ urmine r Im m c d d project to illustrate the tendenaa which e v q poject manager h d d k
looking for ma indicator, of trouble ahead.

h t h e r m o c q .one of thbc metriu by themselra, pmrider enough data to make an . s a u r c n t d a
project's q d t y . They must be d a i rr a group in conj~nction with o t k r conrcntiaad w o n
to urire a t m m e urarment. They .ko do not r e p m t tha only set of uehl m a r i a p d k
fmm the cdlcckd statistic OE SCOs and rework. There u+ mmy other -p to h n e this &ta 4
praeat it for t r d analysis. With further automation, t h a e other r i e n wodd be &pk to pmdrrt,

Although not M y implemented on a large project to date, subets of the metria p r a n k 4 h e
have pmven uscfal in the long tam planning and devdopment p t o c ~ ~ impravement om C B D S - X
TRW h c m t l y in the procm of expanding thae concepts into a uniform practice vnnr ib A&
&rut d e r d o ~ t pmjecb supported by automated took With the b r a d uccptana of Ada d
crotutionary derdopment techniqua, thh approach h u the potentid of providing r PniZonn t a d d q n c

fix quality metria collcctioq rcportbg m d histor).. Thh data is p u u n o m t to the impkmcntdor d
r coadrtent TQM a p p d to softwue development for enhaaced witlue product qud ty and maec
&dent SO* production. The following u t i r i t i a still necd to be p e r f o r d to provide a a m p h e
initiative:

1. Enhance tht standud SCO form with definitions, s h n d u d s and p d u a lor u-.

2. Develop a pwtabic SLOC Counting Tool (the cturent CCPDS-R Metrio Tool would M y tfb
6 t h minor modificrtiosr).

3. I d e ~ l w Adart.ndudr (which wotrld k mandatory rcmo all Ada projects) n- to -trt
&tent &r ia collection ruou projects and within projects. T h b primuily invd- a&&
for program loi t kadm md progrun layout which ue not controvcrsi.l

4. Develop an SCO data base management system with supporting tooh for automated ccllecticn.
u d y m and reporting in the formats defined above and otha , u yet undiuovcrrd, d u l 6 n r r n w .

5. Define QCB proced9ra, guidelina for metria mrl* m d und idak rrportin6 fo-b.

6. I#oq?orate t!ih inihth into cotponte policy.

kr a condluia, we should evaluate the approach praented herein with 0.1 original +:
1. Simplicie- The no& of statktiu to be maintained in M SCO da tabw to kplezmat thir

approuh is 5 (type, &ate of damage in houn and SLOC, actual h a n and a c d SEOC t.
raolre) a l q with the o t h a required puameten of .n SCO. Farthmwre, m a r i a for SLOCc
d SWCr need to k ucnmtely mrintained. if automated in .n ouIimc DBMS, tke ~4%
d r i u could be oompted m d plotted from ruiolu p m p u t i v a (e . ~ by build, by -1) in
a straightEarud amamcr. Depending on the extent of disapline d r u d y inheltnt h a mjcci's
CCB .ad dodopmcnt metria, the above effort could be r i e d u r e v simple (as i. the case a
CCPDSR) to complex (undisciplined, management by conjecture projects).

2 Eue of U l c The metria described herein were auy to we by CCPDS-R projat paod
a d mrorgep Cam;l;rr with the project context. Ftuthumorc, they proride aa objecdre hdr h
diiosrLg arzcnt trends m d future p luu with outside aathoritia and m t o a ~ ~ ~ . M o s t t d

are obrioru tad d y explained. Some tren& require f u t h a analysis to lndcrttrnd the rrrdcltj.-
iy subtletier EnQpmduct metria pmride simple to undmtuxd indicators of diffarnt d l -
qu l i ty q u s t a for the pup- of comparison and future plmning u d u -a t of ;rots
improvement

3. Probability of Miruaa Thae am enough purp+ctira that provide w m a r h t redundrat rim
so that &rut &odd be minimired. Wtthout further experience, horn=, it b not dat that
cortnctor a d crutomu d 4-p interpret them correctly. Although c u r e iderprrC.riom
c d d neva be guuuiteed, it would be benefiad to obkin more expcxicnte to d u a t e rie
mhinterprctrLion t most Udy.

BIOGRAPHY

Wdkar Royce G crurrntll the Principal kmtigator for .n Independent Raeuch rrrd Dedopment
Project k t e d at expanding distributed Ada uchitecture teehnologia proven on CCPDSR He rr-
c a d his BA in PhJria at the Uninnity of California, Bukdey in 1977, MS in Computer Infonudon
and Control Engincuing at the Universi~ of bfichigu~ in 1978, and h u 3 further y t u r of pos t -g .duk
study in Computer Sdence a t UCLA. Mr. Royce h u been a t TRW for 12 yew, dedicating the l u t
rir yeua to u i ~ + Ada technologies in both t a d and practice. He served u the Software Chid
Engin- rapoaaible for the roftwan process, the foun&tion Ada componentr .nC the aoftwam uchi-
tetnrz on the CCPDSR Project from 1987-1990. horn 19841987, he ru the Principd In ra t ig to r
of SEDD'r Adr hppliabiiity for C' System Independent Racuch and Development Project. This
IR1 D project d t d in the foundatioar for Ada COCOMO, the Ada Procm Modd and the Netrork
Architecture S e m a s Software, kchnologia which arned TBW'r Chrirmut'a A d for Innovstior a d

. ha= dnce been truuitioned kom rrxuch into practice on d projects.

REFERENCES

[I] Andra, D. B., Toftwuc Project Mmqemcnt Effective Pmcaa Metria: The CCPDS
R Erpaiencew APCEA MiCiLarp/CotrcmmmL Comprtinq Conference Pmcdkgs , Wuhington D.C.
January IOQO.

[2] Boehm, B. W., J. R Brown, H. Kupu, M. Lipow, G. MuLeod, and M. 3. Marit, ' C h u r k r -
iatia oi Software Qurlit~;' TRW Scrics of Sofi~wrr Technology, Vdume I, TRW and North Hdknd
Pnbhkn8, 1978.

(31 Boehm, B. W., Softmarc Engineering Econamiu, Prentice Hall, 1983.
(4) Boehm, B. W., 'Improving Sofirrare Pmductirity*, Compder, September 1987.
[S] Boehm, B. W., Royce, W. E., "TRW IOC Ada COCOMO: Definition and Refinements", Ptocctd-

ings of the 4th COCOMO U s m C m p , Pittsburgh, No*cmbu 1988.
(61 h h m , B. W., Royce, W. E., *COCOMO Ada et I t Modele de Developpement Ada", Ccnd

L* December 1989, pp. 36-53.
(71 Boehm, B. W., T h e S p i d Model of Software Dedopment and Enhmcement', P m x d q a Of

The Intrrndiaal Workshop On The Sofiwam Procur And Softwam Enmronmcnts, Coto de C u a , C&
M d 1985.

(81 DeMazco, T., Codtolling Software Pmjccts, Yourden Prclr, 1982.
[9] G d y , E B., rad Cud, D. L., Soflurare Met-: E~Lablirhing a C 4 m p ~ y Wide P-

Prenticc Ed, 1986.
[lo] H u r n p ~ , W., Managing the Softwure Process, SEI Seria in Software Engineering, Addisom

Wdq, 1989.
[I l l l o n a , C., Prqgrrrmming Productiwitp: Issues for UIC Eighficr, IEEE Computer Society P=

1981.
[12] Royce, W. E., IIRW'a Ada P m c m Modd For Incrementd Development of Large S o l l r u r

System#, P m x d k g a of ihe 12th Ink- Confemue on Sofima Engine+, Nice, Frmcq
Much 26-30 1990.

(131 Royce, W. E., mRchbIe, Rewble Ada Coziponenb For Constructing Luge, Distributed Multi-
Task Network Netmrk ArchiWtue S e m c a (NAS)", TRI-A& Proceedings, Pittsburgh, October 1989-

[I41 Shooman, M. L., Softworr Engi&, McGmw Hill, 1983.
[IS] Springma, M. C., lncrrmenkl Softwue T a t Methodolon For A Major Government Ad.

P r o w ', TRI-A& Pmceedinqs, Pittsburgh, October 1989.
[Id] Springmu, M. C., .Derdoping Maintabable k Reliable A& Softrue, A Large Milihxy 4 p G

cation's Expaienun, Ado Emmpe P m c d k g a , Dublin, kdrad, June 1990.

VlEWGRAPH MATERIALS

FOR THE

W. ROYCE PRESENTATION

Pragmatic Quality Metrics

For Evolutionary Software Development Models

W. E. Royce

November 1990

TRW Large Software Project Issues

Primary Contributors To Software Diseconomy of Scale (Boehm):

Rework

Interpersonal Commurlications

Requirements Volatility

Ada COCOMO (Boehm/Royce) Speculates That Economy of Scale Is Possible

Use an Evolutionary Development Approach

Use Ada as a Lifecycle Language

Optimize Rework

a Minimize Ineffective Rework

- Do Hard Parts First

- Compartmentalized Breakage

Maximize Rework Efficiency

- Fix it Early

- Design for Change

Minimize Interpersonal Cornmnnications

a Small Expert Design Team

il?F TRW

I

Layered Architecture

L

Evolutionary Development Objectives

Self Documenting Lifecycle Language (Ada)

Optimize Requirements Volatility -

a! td
Stablize Necessary Primitives Early

S
'b

0 Change Req~iirament~s As Prodllct Matures

Design jot* Change
2

Most Important Software Quality is that it is -1
Modularity:

- Breakage Extent When Changed

a Changeability:

- Complexity of Effort to Analyze/Implement Change

Maintainability:

- Productivity of Change

iii?b3' TRW

Assumptions:

Evolutionary Process Model

a Consistent SLOC Counting

Configuration Control Board For Change Assessment

SQM Focus

Quality: Degree of compliance with customer expectations of function, performance,
coat and schedule

Quality Metrics Derived from Measurement of Rework

a Type 1 Rework: Fix Bad Quality Instance

a Type 2 Rework: Improve Quality

a Type 3 Rework: Requirements Change

All Rework Corresponds to Quality Increase

Quality Metrics Approach

a Collect Statistics on Rework over Project Lifecycle

a Quantify Meaningful Metrics

a Plot Processed Statistics Over Time

- Quality Progress Trends

rg?;

r

TRW SQM Definition

Evolutionary Approach Permits' Tangible Insight into End-product

iii?Z' TRW

SDR SSR PDR CDR FCAIPCA \;7

Traditional Y-7 T-7 T-7 T-7 .
SDR SSR PDR CDR FCAIPCA

CCPDS-R _4 'i7 I

CCPDS-R CDR STATUS

Software Design
Code development
Software Integration
Formal Test
Performance Assessment

Traditional Approach CCPDS-R Approach
Complete Complete
310% 94%

Negligible
0%

Modeling 80% of Operational
S/W Demonstrated

) v G p r o a c h Enables Early Softwine Quality ~ssesrment(

- Configured SLOC -
900 - -

Total SCOs -
Open SCOs 0 600 .- -

- 1;
300 - -

- - 20
I

I I

Software ~ u r n o v e r p AO/Al A2 A31 A31 A 4 A 6

--

?-' . , ' I ,.-., . - . . a . . . I . . . > .
I

CCPDS-R Experience r~i?k%'

Total Rework

d .T-- CCPD S-R Experience

-
-
-
-
-
-
-
-
- Closed Rework
-

I I I

r#?;'

iii??'! TRW CCPDS-R SCO Experience

Metric I Definition I CCPDS-R Value

Rework: RE =% of Effort

~I?Z
-

TRW CCPDS-R Quality Metrics Actuals

Modularity

Rework Proportions

Qmqd =Average Breakage per Change

Rework: Rs =% of Product

SLOC
53 m

Changeability Qc =Average Effort per Change

Maintainability Qv =Normalized Rework Productivity
L I& i_-lY---. -I."- L i b - --- --- ----

..- ,* .,, % . A 4 m 7;. ---. - -
. . .

C

* -- lc4
..... ._ ._ -. _ _ - - _ . -.-..- ,* r- C

. . . -; .--..)...-

_ . _ - _ __----- --
I

T XtW CCPDS-R Changeability Evolution i#?kF
- -.. -. - .- .-A----

Important Needs For Successful Use:

Consistency of Application

Automated Tools

a Management And Practitioner Acceptance

Zi?;; TRW

Advantages:

Quantitative Data For Decision Making

Quantitative Data For Subjective Requirements Compliance

- Maintainability, Modularity, Adaptability, etc.

Historical Data for Better Future Planning

Conclusions

Disadvantages:

No Existing Multi-project Historical Database

- Only CCPDS-R Data Exists Now

r No Existing Project Independent Toolsuite

I ~ u a l i t ~ Metrics Can -. Be Used nffectivelyJ

JPL's Real-Time Weather Ptoceuror Project (RWP)

Metricis and Observations at System Completion

Build 3

by Robart E. Loesh (RWP Project Office)
Robert A. Conaver (F2WP Project Manager)
Shan Halhotra (System Analysis Section)

1' < 4;

Jet Propulsion Laboratory / A 57"
4800 Oak Grave Drive - -

Pasadena, California 91109 1

This work was performed by the Jet
Propulsion Iaboratory, California Institute
of Technology, for the FM- thraagh---
agreement vith NASA,,d(NAS 7-918) .

\ / *"
This presentation is an update'kaae %<ember 1988 GSPC

First Ada Symposium prssentation which provided preliminary data
reflecting the RWP Project at the Build-3 Preliminary Design
Review. This presentation is based upon the completion of the
RWP ~uild-3 development and the associated Metrics Report draft.
The RWP Build-3 Metrics Report will be completed in March 1991
and will be submitted for public release which may take 3-5
months. Because this presentation is based on the draft Metrics
Report, prior to complete validation of all the data,-minor
corrections may result after the Final Metrics Report is
completed.

The development of the RWP System is sponsored by the
Federal Aviation Administration (FAA). The RWP is one of several
weather information programs the FAA has identified in the FAA's
National Airspace System (NAS) Plan, which describes all programs
planned for modernizing and improving air traffic control and
airway facilities services by the year 2000.

An integral part of the overall upgraded NAS, the objective
of the RWP is to improve the quality of weather information and
the timeliness of its dissemination to system users. To
accomplish this, an RWP will be installed in each of the Center
Weather Service Units (CWSUs), located in 21 of the 23 Air Route
Traffic Control Centers (ARTCCs). The RWP System is a Prototype
System. It is planned that the software will be GFE and that
production hardware will be acquired via industry competitive
procurement.

The ARTCC is a facility established to provide air traffic
control service to aircraft operating on Instrument Plight Rules
(IFR) flight plans within controlled airspace, principally during
the en route phase of'flight. Beginning in 1993, and continuing

to 1998, the ARTCCs will be reconfigured to include both en mutei
and approach control functions. The reconfigured facilities will
be called Area Control Facilities (ACFs).

RWP will process up to 27 Next Generation Radar (NEXRAD)
weather data simultaneously in real-time and create mosaic
displays. The processed NEXRAD data is disseminated directly to
meteorologists and FAA aircraft controllers. This information is
updated every three to fivo minutes.

The RWP project was started in November of 1987 which
resulted from the descoping of the Central Weather Processor
Project (CWP). At the time of the descoping the CWP was in
detailed design and p l a ~ e d for the "Cn programming language
development environment. RWP is following DOD-STD-2167A and the
software will be coded in the DOD standard ADA programming
language. RWP is composed of 3 incremental development builds
(Build-1, Build-2 and Build-3). Build-3 contains all of the
capabilities specified in the RWP System specification. There
was one Preliminary Design Review (PDR) for the entire systea and
an individual Critical Design Review (CDR) for each Build. The
Coding and Unit Testing (CUT) was completed in February 1990.
System Testing was compieted in June 1990. FAA Prototype (F M
Users) Test & Evaluation (PTLE) was completed in July 1990.
Following PTLE several changes were made to improve the Man-
Machine Interface and System Reliability. This was followed by
the FAA Formal System Acceptance Test (PSAT) completed in October
1990. Final as-built documentation and the FSAT Test Report are
scheduled for mid January 1991.

The system is composed of one CSCI developed by JPL that has
704 Computer Software Units (CSUs) and is composed of 97,687 Ada
Statements, number of semicolon " t n delimiters, (or 213,961
Source Li~?es of Code ((SLOC)) , carriage return delimiters less
comments and blanks, but including specifications and data, type,
declarations). In addition it has 4,330 of *Cm SLOC.

In addition to the software developed by 3PL there are two
areas where Commercial-Off-The-Shelf (COTS) software is used: - Communications Protocols - Man-Machine Interface (DECWindows and DECs Forms

Management System)
Following are some of the metrics and observations.

peauirements Uetrics and Observationg
The RWP System Specification contains a total of 223

requirenents within 70 pages of the document. On the average
there are about 3 requirenents per page. This does not include
the specification of the external RWP System-to-System
interfaces. These are contained in a series of Interface Control
Documents (ICDs). The System Specification was approved May
1988. Any System Specification questions, clarifications, or
additions were reviewed and negotiated by the RWP System Design
Teat (SDT) which was composed of key technical lead staff fron
each area (Project Office, System Engineering, Software
Development, Hardware Development, Test and Operations, Prwhct
Assurance and Configuration Management). Results of these

meetings were processed using Project Configuration Managemnt
procedures and documented in the SI)T minutes as "Open I~suts.~
During the development 222 Open Issues were discussed by the SDT
and approximately 402 were external system interface issues
relating to ICDs. The 222 Open Issues resulted in 52 Engineering
Change Requests (E m) and 34 Request for Deviation/~aivers,
(m s) to the System Specification. RDWs were used as the
interim method for correcting wording in the RWP System
Specification.

Approximately 2/3 of the Open Issues were generated by the
Test and operation Organization (TOO) resulting primarily from
the preparation of the System Integration and Test Descriptions
and Procedures. The other 1/3 were generated by the Softvare
Development Organization (SDO).

The 52 ECRs and 34 RDWs caused a significant rework inpact
late in the development life cycle.

The conclusion we have drawn is that if the System
Integration Test Descriptions and Procedures had been prepared
earlier in the life cycle, most of the Open Issues would have
been initiated and resolved before much of the development was
completed or even started and the amount of rework would have
been minimized (significantly less).
SPPR Hetrics and ~bservati~na

1,266 Software Problem Failure Reports (SPF'Rs) were
generated which were based upon requirements (Priority 1,2,3);
see DOD-STD-2167A error classification.

SPFRs reflect all errors reported during sof Ware (CSCI) cr
system related requirements testing. The only exception is that
any errors found during Coding and Unit Testing and CSC
Integration Testing still outstanding at the start of CSCI
Requirements Testing were turned into SPFRs at that time,

Most notable is the small number of SPFRs (18%) that existed
at the start of CSCI Requirements Testing and the large % (40%)
of SPFRs found during System Integration and Testing (SIT).
Because of schedule pressures the CSCI Requirements Testing (9%
of errors) was deleted for the third incremental Build. This
explains the small number of errors found (92) during CSCI
Requirements Testing and likely contributed to the large rider
found during system level testing (SIT, FSAT-1, FSAT-3 = 51%).

While there are no specific comparisons or conclusions we
are prepared to make on the SPFR code growth. It may serve as zn
important point of reference to note the code growth per S m for
embedded systems where the memory utilization and margin is
critical. Our experience over six interim error correction
Builds is that we had approximately 8.4 Ada statements of
increase for each SPFR corrected. This does not provide any
detail of number of Specific amounts of code deleted, char.ged and
added: only the net result.

During SIT there were 5 errors reported per 1000 Ada
statements. A more useful number is the error density per smc
which allows for comparison to numerous density reports on
previous other developments. It is typical in this phase to see

error density rates in the 3 to 10 errors per thousand rang* with
the median falling around 5-6 errors per thousand. Comparing the

+*
RWP project error densities with other Fortran, "CN type
developments it is our observation that there were fewer
(approximately 502) errors during the RWP, SIT that some previous
projects. Some of this probably is due to the use of Ada.
However, other factors also contributed scch as quality ot staff, v

low attrition of staff, etc. t

Based upon the number of work years of effort for CSCI
Requirements Testing versus the number of work years for SIT, SIT
was 51% more productive in error generation. This is probably
exaggerated somewhat due to the deletion of the Build-3 CSCI
Requirements Testing.

The metrics of the number of work days to fix an SPPX is
between 1.9 and 2.3 work days. The average is 2.: work days per
SPFR correction, This includes any design, coding, unit testing,
CSU and cSC integration and delivery of the code to the Project
software Library.

The 2 of SPF'Rs fixed that were incorrect or created other
problems attributable to the fixed code was 32 or less. This
allowed us to use the 4-6 week period prior to release of Builds
for various system level tests (SIT, FSAT, PTLE) to continue to
be used SPFR correction rather verification of the SPFRs fixed,
With 2-3 months centers for Build deliveries and version updates,
it provided us with 1/3 more time to fix SPPRs and a higher
overall SPFR correction productivity rate given a fixed period,
Ada ~ortabilitv Wetrics and Observations

Ada portability was established as a Project high priority
design goal. The object was to minimize the various code
constructs that may need to changed using the same programming
language and softvare design but different hardware. The
following specific design decisions were made to meet the
portability goal: - Ada Programming Language & Standard - Ada Tasking to minimize Oper~cing System function

uniqueness - DEC Windows (X-windows subset) to minimize the Man-
Machine Interface rework - Object Oriented Design Methodology to localize external
interface dependencies and rework - Other Engineering Principlas and Standards to minimize
rework

A tool was developed and used by -he Product Assurance staff
to analyze the code to identify each non-portable construct and
provide summary statistics. Because of the still less than
stable industry standards on X-windows the tool produced the
portability results both with DECWindows portable and non-
portable.

Portability can be measured any number of ways.
One of the most useful is to measure the number of specific code
constructs that run a risk of needing to be modified for 1

execution on a different computer than that used for the RWP a

system (i.e., DEC). This measure could then be compared t o the
number of code cons t ruc ts e x i s t i n g i n the developed RWP so f tva re .
The t o o l does provide the number of non-portable cons t ruc ts (i.e.
1 2 , 2 6 7) . However there is no measurement of the number of t o t a l
code c o n s t r u c t s i n the RWP developed code. There is a count of
the number of Ada Statements (i.e- 97,687). There may be 1 o r
more c o n s t r u c t s per Ada s ta tement but it is still a use fu l number
t o quan t i fy t h e r a t i o o r metric of % portable. I f w e d iv ide the
t o t a l Ada s ta tements i n t o t h e non-portable cons t ruc ts w e g e t the
answer approx. 12.52. Therefore, on a cons t ruc t bas i s , t h e RWP
system is a t l e a s t 87.51 por tab le . This does no t include any
changes needed t o accommodate word s i z e o r reformat t ing t o
accommodate s to rage devices t h a t a r e unique. I t should be
cautioned t h a t us ing t h e d i f f i c u l t y c l a s s i f i c a t i o n t o compute
work hours t o po r t the system should no t be done. Since many of
t h e po r t i ng changes f o r one type of cons t ruc t is mechanically
repea tab le and represen ts a s i n g l e ins tance, worst case , the
es t imat ion of por t ing e f f o r t needs t o consider r epea t ab i l i t y . In
addi t ion , n o t a l l of t h e cons t ruc t s i d e n t i f i e d a s a po r t i ng r i sk
may need t o be ported.

However, t h e metrics and a n a l y s i s should set an industry
re fe rence p o i n t f o r specifying design requirements f o r
p o r t a b i l i t y .

VlEWGRAPH MATERIALS

FOR THE

R. LOESH PRESENTAnON

RWP METRICS AND OBSERVATIONS
AT SYSTEM COMPLETION

(BUI LD-3)

3
E) m

P
5
x

a ROBERT E, LOESH (RUP)
-i
-n

E
ROBERT A. CONOVER (RWP)

s SHAM MALHOTRA (SYSlmEMS ANALYSIS SECTION)

NOVEMBER 28, 1990
HEL- I

JPL RWP METRICS AND OBSERVATIONS
-

l.(?.;t,,) .
o DATA I S PRELIMINARY *...

o WINOR CORRECTIONS MAY RESULT AFTER VALIDATION PROCESS

o HETRICS REPORT TO BE COMPLETE I N MARCH 1991
- WILL START PROCEDURE FOR PUBLIC RELEASE OF HETRICS REPORT
- RELEASE HAY TAKE 3 .- 5 MONTHS

RWP METRICS AND OBSERVATIONS
JPL

AGENDA

o WHAT I S THE RWP SYSTEM?

o REQUIREMENTS ISSUES

o TESTING EFFECTIVENESS

o ERROR DENSITY AND DISCOVERY RATE

o ADA ERROR CORRECTION RATES

o PORTABILITY ISSUES

2 .

RWP METRICS AND OBSERVATIONS [a
,,

JPL Y .. I...--..- .
\.l.?J,\ .*

WHAT I S THE RWP SYSTEM? 't: V ./,

o SPONSOR: FEDERAL AVIATION ADMINISTRATION (FAA)

o PROTOTYPE DEVELOPMENT; EVENTUALLY PART OF NATIONAL AIRSPACE SYSTEM
UPGRADE

o RWP WILL PROCESS WEATHER DATA I N REAL-TIME BY CREATING A WOSAIC DISPLAY
0 6 UP TO 27 RADARS SIHULTANEOUSLY. THE DATA WHICH I S DISSEMINATED
DIRECTLY TO THE FAA AIRCRAFT CONTROLLERS AND METEOROLOGISTS I S UPDATED
EVERY THREE TO FIVE MINUTES

I

I o PROJECT HILESTONES:
I

I - PROJECT START - NOVEMBER 1987
- CODING COHPLETE - FEBRUARY 1990
- SYSTEM TESTING COMPLETE -. JUNE 1990 - FAA OPERATIONAL TEST AND EVALUATION - JULY 1990
- FAA FORMAL SYSTEM, ACCEPTANCE TEST - OCTOBER 1990

o 1 RWP SYSTEM AT 21 OF 23 AREA CONTROL FACILITIES; 7 EXTERNAL INTERFACES

RWP METRICS AND OBSERVATIONS
JPL

WHAT IS THE RWP SYSTEM? (CONT'D)
o S/W INTENSIVE; H/W OFF-THE-SHELF

- 1 COMPUTER S/W CONFIGURATION ITEM

DEVELOPED BY JPL: 97 ,687 (ADA STATEHENTS)
2 1 3 , 9 6 1 (CARRIAGE RETURHS (CWENTS

AND BLANKS))
4 , 3 3 0 (C SLOC)

COHHERCIAL OFF-THE-SHELF: 280 ,238 (C SLOC)

-- COMMUNICATIONS PROTOCOLS
-- DEC-WINDOWS
-- DEC FORMS MANAGEMENT SYSTEH

I Z P

Z$i - * - ADA, DOD-STD-2167, REVISION A: TAILORED
G

RWP METRICS AND OBSERVATIONS
..I, .d, I

WHAT IS THE RWP SYSTEM? (CONT'D) k.5

- DISFR1:IWUTEW H/W ARCHITECTURE

10 HICHO VAX IXS. 3 MICRO VAX 3600S, 1 MICRO VAX 3200

VMELES AND VAX/VMS OPEMTIMG SYSTEMS, DECNET, IS0 PROTOCOLS

- THE RUB SYSTEMS ARE SCHEDULED TO BE INSTALLED IN THE FA4 CONTROL
CEHTERS BY 1994 BY A FAA SYSTEM CONTRACTOR WHO I S SCHEDULED FOR
SELECTIOH I 'M 1992. JPL IS PLANNING TO PROVIDE TECHNICAL SUPPORT TO
THE FAA THROUGH 1994 FOR THE INSTALLATION OF THE FIRST THREE OF
23 SITES.

JPL
RWP METRICS AND OBSERVATIONS

REQUIREMENTS ISSUES
o SYSTEM SPECIFICATION (WRITTEN BY JPL AND FAA)

- 205 FUNCTION AND PERFORMANCE REQUIREMENTS
- + 18 PERFORHANCE (COUNTED AS 1) -

I 223
I

l

o SYSTEM SPECIFICATION FUNCTIONAL AND PERFORMANCE REQUIREMENTS PAGES = 70
I '
i APPROXIMATELY 0.3 PAGES/REQUIREMENT

o PROJECT SYSTEH DESIGN TEAM (SDT) ADDRESSED REQUIREMENTS ISSUES AT WEEKLY

I
HEETINGS

'*. 1
0 ISSUE RESOLUTIONS WERE DOCUMENTED I N DESIGN TEAM MINUTES AND PROCESSED

t V I A CONFIGURATION WANAGEMENT:
\
i - ENGINEERING CHANGE REQUESTS (ECRS) TO SRS, ICDS AND SYSTEW/SEGMENT

DESIGN DOCUMENT

- REQUEST FOR DEVIATION/WAIVER (RDW) TO SYSTEM SPECIFICATION I

RWP METRICS AND OBSERVATIONS
\ JlPL $\ a, ,

REQUIREMENTS ISSUES (CONT ' D) Y?)

o 222 OPEN ISSUES DISCUSSED AT DESIGN TEAH

- APPROXIHATELY 408 WERE INTERFACE (ICD) ISSUES

o RESOLUTION RESULTED IN :

- 52 ECRS TO ICDS, SRS AND SSDD

- 34 RDWS TO SYSTEM SPECIFICATION

o APPROXIMATELY TWO-THIRDS OF OPEN ISSUES CAHE FROM S I T STAFF DOING STT
b

'\ DESCRIPTIOMS AND PROCEDURES (SITD/P)
1

'1 1

\
o HOST ECRs AND ROWS RESULTED I N SOFTWARE, DOCUMENT AND TEST PROCEDURE AND

t DATA REWORK

JPL
RWP METRICS AND OBSERVATIONS

SPFR COUNT

o TOTAL APPROXIMATELY 2,100 SPFRs TO DATE
1.452 RWP C S C I RELATED
1.266 PRIORITY 1 - 3

I 1

I
I PHASE SPFR COUNT PERCENT

I I SYSTEM INTEGRATION TESTING 508 405 I
I I
I CSCI REQUIREMENTS TESTING 117 9% I
I I
I CSC' INTEGRATION TESTING 231 18% I

I I CODE AND UNIT 6 0% I
I I
1 FSAT-1 98 8k I
I I
I FSAT-2 35 3% I I

Z Z P I
1 BUILD

ti " OTHER
1

RWP METRICS AND OBSERVATIONS

RWP SPFR DISTRIBUTION w9++'

RWP METRICS AND OBSERVATIONS
JPL

RWP SPFR DISTRIBUTION (BY PHASE)

CSC OD I

I csc eo I I

cur oul lo I I
CUI BUILD 2

I CUI BUILD 3

I

FSAI - I F S A l - 2 0

J - - - L -

25

--

1900

J A S O N D J F N A ~ I J J A S O N O -- - J F ~ I A ~ ‘ I J J A S O N U J F M
1'111') l'b90 I9'J I

i

RWP METRICS AND OBSERVATIONS .-A .; . -..---. .-
SPFR DENSITY

\lr!J,\
k...;

BUILD CARRIAGE SEMI- A ROM PREVIOUS BUIU) & F R Y PREVIOUS UILD SPFRS
RETURNS COLONS L A R R I A a RETURNS) SEMI-COLONS B F I X E D

~

TOTAL 6 BUILDS (3.9 - 3.14)

SEMI-COLONS PER SPFR 8.4
CARRIAGE RETURNS PER SPFR 36.6

RWP METRICS AND OBSERVATIONS

ERROR DENSITY AND DISCOVERY RATES
\!I .JI

K .

o CSCI REQUIREMENTS TESTING
- STOPPED FOR BUILD-3: SCHEDULE AND RETURN ON INVESTHENT
- MOVED TO SDO FOR BUILD-4

PRODUCTIVITY: LESS OVERHEAD TO ERROR PROCESSING
EMPHASIZE REQUIREMENTS RESPONSIBILITY OF SDO STAFF

o SYSTEM INTEGRATION AND TESTING (SIT)
- NINE MONTHS TEST EXECUTION PERIOD - RESET AFTER THREE MONTHS TO ACCOMMODATE LATE SOFTWARE DELIVERY
- 40% OF ERRORS Fi)UND DURING S I T

RWP METRICS AND OBSERVATIONS dim
< 'V

JPL \ . - . --.-- 9

ERROR DENSITY AND DISCOVERY RATES (CONT'D)
y).."

o FORMAL ACCEPTANCE SYSTEM (FSAT)
- FAA TEST WITNESS
- 11% OF SPFRS FOUND DURING FSAT
- TWO FSATS

FSAT-1: APPROXIHATELY THREE WEEKS: 98 SPFRs (8% SPFRs)
FSAT-2: APPROXIMATELY ONE WEEK: 35 SPFRs (3% SPFRs)

o 95+S SYSTEH FUNCTION AND PERFORMANCE REQUIREMENTS FULLY VALIDATED

o S I T METRICS AND OBSERVATIONS
- APPROXIMATELY 5 ERRORS PER 1000 ADA STATEMENTS
- APPROXIMATELY 2.3 ERRORS PER 1000 CARRIAGE RETURNS

APPROXIMATELY 1/2 LESS THAN TYPICAL FORTRAN

RWP METRICS AND OBSERVATIONS
e: JPL . -,--.--- , .

\.

ERROR DENSITY AND DISCOVERY RATES (CONT'D)
q n,\ \.; '

o S I T VERSUS CSCI REQUIREMENT TESTI[NG (NOTE-1)
- CSCI REQUIREMENTS TESTING APPROXIMATELY 1 9 . 5 ERRORS/TEST WORK YEAR
- SYSTEH INTEGRATION AND TESTING APPROXIMATELY 29.5 ERRORS/TEST WORK

YEAR

S I T APPROXIMATELY 51% MORE PRODUCTIVE THAN CSCI
REQUIREMENTS TESTING

w: SYSTEM 1 C S C I

NUMBER OF SPFRs

RWP METRICS AND OBSERVATIONS

ADA ERROR CORRECTION RATES
WORK DAYS
PER/SPFR

1.9 - 8 BUILDS OVER 6 MONTHS

2.3 - EXPERIENCED RWP/ADA STAFF

2.3

1 . 9

1 6 . 9 = 2.1 AVERAGE WORK DAYS/SPFR CORRECTION

'rP

0 TYPICAL UORK DAYS PER SPFR APPROXIMATELY 1.9 TO 2.3
P $
t i '

RWP METRICS AND OBSERVATIONS .-

JPL
.:,; Rardp . .. -.-..-.

ADA ERROR CORRECTION RATES (CONT '01
'-:.I f.3, \
.\

o 96+% OF CORRECTIONS WERE VALID:

- . WE WERE ABLE TO MAKE ONE ADDITIONAL BUILD PRIOR TO FSATs TO

INCREASE RELIABILITY

RWP METRICS AND OBSERVATIONS
'.I# MI:

ADA PORTABILITY METRICS AND OBSERVATIOHS xt& *

o PROJECT ESTABLISHED PORTABILITY AS DESIGN OBJECTIVE EARLY

o PERFORMED AHALYSIS USIHC THREE TOOLS AND LIHITED HUHAN ANALYSIS

- ADA CNPILER

- JPL DEVELOPED TOOL:

* SEE PAPER BY BORIS SHENKER AND HERNAN GUARDA

AN AUTOHATED TOOL FOR P O R T A U I L I T f AWALYSPS OF ADA CODE OF THE

REAL-TIME WEATHER PROCESSOR PROJECT

PRESENTED AT MINNOWBROOK WORKSHOP, JULY 1990

- ADA-MAT: FOR VALIDATION

o P O R T A B I L I T Y HAS THREE LEVELS OF RISK:

l2i - LOW f ie
$3 - MEDIUM

- HIGH

6
0 - 2 WORK HOURS

2 - 8 WORK HOURS

OVER 8 WORK HOURS

RWP METRICS AND OBSERVATIONS
JPL/a. 'W I:!J,! ,, a'

ADA PORTABILITY METRICS* \,.

TOTAL UNITS

PORTABLE UNITS

NOH-PORTABLE UNITS

UNITS WITH HIGH RISK CONSTRUCTS

UNITS ONLY WITH LObJ RISK CONSTRUCTS

TOTAL ADA STATEMENTS (;

TOTAL NON-PORTABLE CONSTRUCTS:

- HARDWARE

- OPERATING SYSTEM*'

- ADA COHPILER 5,220 42%

- COMMERCIAL OFF-THE-SHELF (COTS) 3,565 293

DOES NOT INCLUDE DATA ISSUES (L. 0 . WORD SIZE, STORAGE ISSUES)

*
DOES NOT INCLUDE PARAMETER SETTINGS

RWP METRICS AND OBSERVATIONS
JPL

ADA PORTABILITY METRICS
S PORTABLE

TOTAL NOH-PORTABLE CONSTRUCTS 11,444
- HARDWARE 1,192

- OPERATING SYSTEM*' 2,290

.I ADA COMPILER 5,220

- COTS 2,742

BUILDING A SOFTWARE Q U m PREDICIION MODEL,

W. W. Agresti, W. M. Evanco, M. C. Smith
4 - t,. ' / . I :

f r f ' D The h m Corporation l j \ J ;

Abstract

Early experiences building a software quality prediction model are
discussed. The overall research objective is to establish a capability to project
a sohware system's quality from an analysis of its design, The tdmica l
approach is to build multivariate models far estimating reliability and
maintainability. Data fnm twentyone Ada subsystems have been analyzed
thus far to test hypotheses about various design structures leading to failure-
prone or unmaintainable systems Current design variables highlight the
interconnectivity and visibility cf compilation units. Other model variables
provide for the effects of reusability and software changes. Reported results
are preliminary because dditional project data is being obtained and new
hypotheses dre being developed and tested Current multivariate regression
models are encouraging, explaining 60-80% of the variation in error density
of the subsystems.

Introduction

A typical shortooming of large-scale software development is the
uncertainty concerning the consequences of design decisions until much Iater
in the development process. Greater capability is needed during the design
activity to assess the design itself for indications that, when implemented, the
resulting system will have particular quality characteristics. This paper
discusses the early experiences in a research project to evaluate the quality of
Ada designs.

The research objec!ive is to test the hypothesis that Ada software
quality factors can be predicted d e g deign ThepFtuucal approach is build

[I , . , (:.\.!<: . 8:
v ,..- - This research was sp011sored by The h R E ~orporadon under the Mission

Oriented tnves tiga tion and Experhen ta tion (MOIE) program - Authors' Address: The h4lTRE Corporatiat, 7525 Colshire Drive, Mdnan,
Virginia 22102

Proceedings of the Weenth Annual Software Engineering Workshop,
National Aeronautics and Space Administration, Goddard Space n'rght Center,

Greenbelt, Maryland, November 1990

multivariate models to estimate reliability and maintainability using
characteristics of the design. The orientation to Ada is due to its prevalence
in rnission-critical systems under development and its ability to serve as a
notation for software design. This role for Ada as a design language has been
recognized as American National Standards Institute (ANSI)/Institute of
Electrical and Electronics Engineers (IEEE) Standard 990-1987.

Previous research has established relationships between design or code
characteristics and quality factors [I, 21. A recent system-lwel dgign
measure, incorporating both control flow and data flow in FORTRAN
systems, shows a strong correlation with reliability (31. The Constructive
QUAlity Model (COQUAMO! is being developed to estimate software quality,
basing its estimate on the observed quality of previous projects [4!.

Qualitv Estimation Models

Building the estimation models depends on having access to three
classes of project data.

- Design, expressed in Ada, from which design characteristics can be
extracted

- Environmental factors that influence the quality of the software but
cannot be deduced from the design artifact itself - for example, level of reuse
or volatility of changes to the software

- Data characterizing what resulted when the design was implemented,
tested, and fielded - for example, reported errors and effort to maintain the
software

The basic form of the estimation models is shown in Figure 3.
Independent, explanatory variables in the models represent architectural
design characteristics. Additional explanatory variables account for the effects
of the organization and its development process. By the error term in the
model, we will learn if we have been successful in explaining the variation in
quality factors by using design characteristics and environmental factors.

Ada Design - Representation

One of the first issues we faced was developing an effective
representation from which we could extract design characteristics. Our
interest was in the static architecture of units in subsystems, not in the
arrangement of statements within a unit. We viewed the subsystem as being
composed of design units and relations as illustrated in Figure 4- Our analysis
of Ada identified several candidates to serve as design units in our structure:
program units, compilation units, and library units. All three units have
participated in our model building, but compilation units have been
particularly useful as a structural unit because they also serve as the unit of
observation for reporting errors and changes.

Our Ada analysis identified fifteen kinds of Ada compilation units
generic package speafication, generic padrage body, and so on as shown in
Figure 5. The compilation units are further divided into library units and
secondary units (see Figure 5) and serve as the design unit nodes in the
graphical Ada design structures in Figure 4. The nodes are related to aw
another by the design relations of context ooupling, sp&cation/body,
parent/subunit, and generic template/i.nstantiation. These &sign units and
design relations comprise our representation of static Ada architecture T5is
Ada design representation is discussed further in [S].

Software Proiect Data

Project data used in the analysis is summarized in Figure 6. The
twenty-one subsystems included 2,143 compilation units. Dedarations are
listed in Figure 6 because they play a key role in the hypotheses we are
examining. One of our underlying themes is that a developer does not
declare objects, types, subprograms, etc unless they are needed. Thus, the
number and distribution of these declaraticns is of interest to us in
characterizing designs.

Our models attempt to explain variation in quality, and Figure 6 sbows
our project data exhibits significant variation. The data was obtained from
the National Aeronautics Space Administration NASA)/Goddard Space
Flight Center (GSFC) Software Engineering Laboratory (SEL). Reliability is
measured as error density and varies in the range 1.4 - 17.0 erron per
thousand source lines of code for the twezty-onesubsystems. MaintainaEIity
varied aaoss the subsystems as 26 - 89% error cow-tions requiring less th
or equal to one hour to complete.

Hwotheses About Desim - StruW~tre

We are pursuing simple hypotheses about design decision making, &e
resulting design artifact, and the influenoes of design on reliability and
maintainability . Figure 7 o u t h an example of a general hypothesis tha
excessive context coupling contributes to errors. The rationale is that greakr
arc density in the directed graph in Figure 7 increases the likelihood of
introducing an error, because a greater number of relationships must be
understood.

Figure 8 expands on library unit B of Figure 7. We have found that a
liirary unit aggregation - a library unit and its declarative scope - to be a
effective unit of granularity for our analysis of Ada designs. Figure 8 shows a
second level of design decision mairing that occurs inside a library unit
aggregation. We are interested in whether the designer has macie any effcrt
to manage the visibility of the 103 declarations that have been imported inao

unit B. By having 100 of the declarations brought in (via a "with" clause) to
the specification, they are visible throughout the other units in the library
unit aggregation, cascading through the structure. We don't know which of
these declarations are used by each unit, but we want to reaord their visibility
to the other units in the library unit aggregation. The measure of cascaded
imports in Figure 8 takes visibility into account 100 of the imports are visible
to five units (=> 500 cascaded imports) and three of the imports are visible to
two units (=> 6 cascaded imports), for a total of 506 cascaded imports

. .
urunarv Results of Staa-

. .

Figure 9 summarizes the variables that have been introduced into our
models thus far. Context couphg and visibility follow the example in Figure
8, while import origin records the fraction of declarations imported from
within the subsystem. Two environmental factors have been analpxi to
date: volatility captures the relative number of changes that have been made
in the subsystem, and custom code is the percentage of new and extensively
modified code used in the subsystem. Custom code is essentially the opposite
of reuse.

The preliminary model explaining variation in total error density
(Rgure 10) includes the explanatory variables of context coupling, visibility,
and volatility. In this model and other similar regression analyses we have
conducted, the coeffiaents have the expected signs: error densities inaease as
coatext coupling, visibility, and volatility increase.

Because of our interest in architectural design decisions, we conducted
additional regression analyses which concentrated on errors occurring during
system and acceptance testing. Our rationale was that, by eliminating errors
reported during unit testing (and, therefore, more likely to be errors in
implementing a single unit), we were reflecting more strongly the
architectural (inter-unit) relationships. Figure 11 summarizes a model to
estimate errors reported during system and acceptance testing. Again, context
coupling and visibility are included as explanatory variables. Now, however,
custom code is a significant factor in exphhing the variation in error density-
The explanatory power (as indicated by the coefficient of determination) is
stranger for the model in Figure 11.

Summary

Early results in building estimation models for reliabsity and
maintainability are encouraging. We have developed representations for the
static structure of Ada systems using compilation units and library unit
aggregations, allowing us to test hypotheses about the effects of different
structures on reliability and maintainability . C o n k t coupling measures
cansistently figure strongly in the multivariate regression analyses we have

conducted. Visibility and import origin measures provide further
refinement. The models show strong effects of volatility and custom code on
reliability .

We stress the preliminary nature of the quantitative resub, based as
they are on twenty-one Ada subsystems. We look forward to coatirming to
explore hypotheses with additional data, leading to the development of mom
robust models that can be subpded to validation

We acknowledge the cooperation of Mr. Frank McC;any and Mr. Jar
Valett of the NASA/GSFC SEL in allowing us to use SEL data for this
research.

References

1. T. J. McCabe and C. W. Butler, "Design Complexity hhsurement and
Testing," Communications of the ACM, December 1989, pp. 1415-1425.

2 S. M. Henry and C A Selig, "Predicting S o d o d e Complexity at the
Design Stage," IEEE Software, March 1990, pp. 36-44.

3. D. N. Card and W. W. Agresti, "Measuring Software Design Complexity,"
Journal of Systems and Software, March 1988, pp. 185197.

4. B. Kitchenham, "Measuring SoftwareQuality," Roedings of the-Fi
Annual Software Quality Workshop, Rochester, New York, 1989.

5. W. W. Agresti, W. M Evanco, and M. C. Smith, "An Approach to Software
Quality Prediction from Ada Designs," Fnxeedings of the Second Annual
Software Quality Workshop, Rochester, New York, 1990.

Early Experiences
Building a Software

Quality Prediction Model

Research Project Overview

a Objecitve:

- 7- hypomds that M a aaRwan qusllty tacton can be
predicted durlng deJgn

TecbnicalAp9loach:
- 8ulld fn~lU~arb!8 models to atbnate rdWllW and

maintslna#ilty
- ~ ~ e r t r t l c s o f t h r ~ d . l f g n a p l u n d ~ n ~ ~ n

-!Ww

Basic Form of the Estimation Models

R m .f,Wl ,DC2,-,EF, ,qsuIl l . f , - I + ?

W n O m M l l t y ~ t ~ ~ ~ , W ~ , - ~ ~ ~ ~ ~ - I b ~ ~ b ~ ~ - I + @ ~

wtmm -
DC, : d o s 4 w - m
EF, :envtrwnwnOltrdot-

a , 9 4
:moddpamwms

: e m w m (moxWndvrtltkrr)

Representing Ada Design Structure

ADA DESIGN

DESKiN
UNITS

'QIIBCIIDYCII

"Parts" in Ada Static Structure

15 Compilatton UniS in Ada
8s Ubrary Unib (L) or Secondary Units (S)

Profile of Current Project Data

a Twenty-one subsystemt from NASAIGSFC SEL.
- Interactive, ground support sMwam lor flight dynamics and

t e l e m e v Y w n g Wkabm
- 183 K IWrrcomment, rorrbtsnk #urcr Un8S Of Abs (KSLOC)

- 601 UbraryUlIftS

Exploring Simple Hypotheses
About Design Structure

Inside a Library Unit Aggregation to Show
Imported and Exported Declarations

Model Variables

~ssfgr! Chsraztdatks:

- con',^ rap!lr.g: # lmpofts l d q w t a
- v r ~ ~ b i ~ ~ t y : ~ ~) m p o r t s ~ r ~ m p o r t s

- Impon Qrlsln: ~ l r n r r n d ~ / # ~

a EnvlronmantalF&ctais:

- vom1iny: #&~'~guI#f lbnyunlm

- CLutmCode: % new and extmslvoty modllkd axjo

Preliminary Model-for Reliability:
Total Errors (entot)

Dependent varlabb: TOTERRSL = efrtoll KSLOC

In (TOTERRSL) = .65 + 27 In (XI) + .0!5 In [X2j + 27 h (X3)

(.=I- (-11) (.I 6) (-1

XI P context COUpllng

x P = VISI~ I IR~ R'=.R

X 3 = volatlllty

' S t m n d u d d r v l . t b n d t h . p u M w t w ~

MITE

Preliminary Model for Reliability:
Svstem and Acceotance Testina Erron (errsa)

XI = context coupling

X 2 = vlslblltty

x 3 = customcode

SmnQrd drvlatkm d the prnrntw m . t l r m t ,

Current Research Activity

Contlnue to develop process mod& and rbout dedgn
decblorrmaklng and dedgn ttnrchrms - and their rebtlonshlp to
reltablllty and malntalnablllty

8 Explore classikatlon trees and other alternathre analytlclrl methods

"CaB for Ada Project Data" - to test hypotheses a d dlbrate
mrrlthrarlate models

VIF4VGRAPH MATERIALS

FOR THE

W. AGRESTI PRESENTATION

Early Experiences
Building a Software

Quality Prediction Model

W. W. Agresti, W. M. Evanco, M. C. Smith
MITRE Washington Software Engineering Center

28 November 1990

MITRE

Research Project Overview

Objective:
- Test the hypothesis that Ada software quality factors can be

predicted during design

Technical Approach:

- Build multivariate models to estimate reliability and
maintainability

- Use characteristics of the software design captured in Ada design
language

MITRE

Basic Form of the Estimation Models

Reliability = f (DC , DC , ... , EF ,EF ,...la , a ,...) + e
1 1 2 1 2 1 2 1

Maintainability = f (DC , DC , ... , EF ,EF ,...I b , b ,...) + e
2 1 2 1 2 1 2 2

where -
DC

I
EF

i

: design characteristic variable
: environmental factor variable

a, ' 9 : model parameters

e
I

: error term (unexplained variation)

1 Figure 3 1

Representing Ada Design Structure

ADA DESIGN

DESIGN
UNITS

"PARTS" BIN "CONNECTIONS" BIN

DESIGN
RELATIONS

"Parts" in Ada Static Structure

15 Compilation Units in Ada
as Library units (L) or Secondary Units (S)

Specification Body Subunit Instantiation

MITRE

I

Generic
Package

Package

Generic
Subprogram

Subprogram

Task

L S S L

L S S N/A

L S S L

L L/S S NIA

N/A N/A S N/ A

A

Profile of Current Project Data

Twenty-one subsystems from NASAIGSFC SEL:
- Interactive, ground support software for flight dynamics and

telemetry processing applications

- 183 K non-comment, non-blank source lines of Ada (KSLOC)

- 601 Library Units

- 2,143 Compilation Units

- 29,849 Declarations

Variation in dependent variables:

: ie - Reliability range: 1.4 - 17.0 errorslKSLOC

a - Maintainability range: 26 - 89 % "easy" fixes (requiring 5 I hour)

Exploring Simple Hypotheses -
About Design Structure

1 Example of a general hypothesis: Excessive context coupling
contributes to complexity which, in turn, contributes to errors

Example of context coupling to access the resources of library units:

Notation:

MITRE

Library unit

A imports
20 declarations Example:
from B

with B;
package A is

B exports
20 declarations end A;
to A

Inside a Library Unit Aggregation to Show
lm~orted and Exported Declarations

A Library Unit Aggregation

!I{ 8
* number of declarations

I3

MITRE

Statlc Measures:

imports = 103
exports = 20
cascaded imports = 506

Model Variables

Design Characteristics:

- Context Coupling: # imports I # exports

- Visibility: # cascaded imports I # imports

- Import Origin: # internal imports I # imports

Environmental Factors:

- Volatility: # changes I # library units
- Custom Code: % new and extensively modified code

Preliminary Model for Reliability:
Total Errors (errtot)

0 Dependent variable: TOTERRSL = errtot I KSLOC

In (TOTERRSL) = .65 + 2 7 In (X) + -05 In (X) + -27 In (X)
1 2 3

(.36)* (.11) 6) (=OW

X =: context coupling
1

X P = visibility

X , = volatility

ti * Standard deviation of the parameter estimate

2
adjusted R = .72

MITRE

Preliminary Model for Reliability:
System and Acceptance Testing Errors (errsa)

Dependent variable: SYACERRSL = errse I KSLOC

In (SYACERRSL) = .77 + . I9 In (X) + .07 In (X) + -97 In (X)
I 2 3

X = context coupling
1

X S = visibility

X , = custom code

ti * Standard deviation of the parameter estimate

2
adjusted R = -78

, 4 Ic- e

Current Research Activity

" , ;'
I. ,', !., . .

I I '
, ,

,$, I,\ , Continue to dewelop process models and hypotheses about design
. i. I . . I t

. . 1, :: decision-making and design structures -- and their relationships to
: I

a . I . :;
l : \ reliability and maintainability

' , < ' \

I . . (

I *I I i,,
' \.

Explore classification trees and other alternative analytical methods
. *

: ; \
: 8

I ("Call for Ada Project Dataw -- to test hypotheses and calibrate
1 : multivariate models

MITRE

Bias and Design in Software Specifications'
,. , -

Pablo A. ~ t r a u b t , ; C _ - *

Computer Science Department {

Marvin V. Zelkowitz
111 . .
i .

Computer Science Department and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

December 19, 1990

Abstract

Implementation bias in a speciiication is an arbitraq constraint in the so-
lution space. While bias is a recogrjzed problem, i t has not been studied in iu
own right. This has resulted in two effects: Either (1) specifications are biased.
or (2) they are incamplete, for fear of bias. In k t , what has been called 'bias"
in the literature is s o ~ ~ ~ e t i m e s the desirable record of deign constraints and
design tlecisions.

This paper presents a model of bias in software specifications. Biasis defined
in terms of the specification process and a classification of the attribntez of the
software product. Our definition of bias provides insight into both the origin
and the consequences of bias: it also shows that bias is relative and essentially
unavoidable. Finally we describe current work on definiq a measure of bias.
formalizing our model, and relating 3ias to software defecs.

Keywords. Implementation bias. software design, softuare defects. require
ments, formal specifications.

1 Introduction

Most informal software specifications a e ambiguous, imprecise, unclear, incompietc, %,

etc. Moreover, this is usually not evident by looking a t a puticular specif icat ia

'This research is supported in part by NASA Goddard Space Fligk Center, gxani -VSC-5;i3.
'Additional support from ODEPLAN Cliile and the Catholic Univa i ty of Chik.

P. -
Udr. d-
Page l dU

The need to produce better specifications has prompted research in several fea-
tures of specifications. Guttag and Horning (21 define suficient-completeness and
consistency of an algebraic specification in terms of existence and uniqueness of au-
ioms in the specification- Jones (31 defines bias for model-based specifications as
the property of nonuniqoeness of representation within the model. Yue [a] gives a
definition for completeness of a specification, in tams of the satisfaction of a set of
explicitly stated goals. He also defises pertinence, a property related to bias. Nicholl
[5] defines the concept of mchabil i fy for model-based specifications as the ability to
reach every consistent state by some sequence of operations, and plans to study other
features of specifications, including bias.

This current research work grew out of studies within the Software Engineering
Laboratory (SEL) of NASA Goddard Space Flight Center, which has been monitoring
the development of ground support software for unmanned spacecraft since 1976.
Our goal is to improve the quality of software sp&ifications within the SEL. On
the realization that existing specification languages were inappropriate for use by
programmers at NASA, we deveioped the executable s p d c a t i o n language PUC
(pronounced POOK), d w e d to be used with Ada in this environment 17).

The executability of specification languages like PUC had the disadvantage that
much detail had to be induded in specifications, limiting the creativity of the imple-
mentor and ruling out some possibly good designs. Hence, instead of looking at !he
language problem, now m e are looking at this problem itself, the so-called 'implemen-
tation bias' in specifications. The area of bias in specifications is largely unexplored
but is important. In fact. the probiem of bias is mentioned in several works, including
both description and critiques of specification methods.

1.1 Definitions
Some related concepts are defined.

Attribute An attribute of a product is a required or desired feature of the product,
its environment, or its development process.

CVe use 'attribute' instead of the more customary 'requirement', because the
latter is associated with mandatory features that are described in the initial
phases of deveiopnrent.

Specification A spaif;cntion of a product is a description of a set of i ts attributes.

Under this definition, both the nquinments document and the preliminary de-
sign document of the waterfall model are specifications.

Solution set The solution set of a problem is the set of all products that solve the
problem, regardless of the spec3ca:i~n.

1.2 The Problem of Bias

.An ideal specification is genqal and precise enough so that a software system satisfies
the specification if and only if it solves the problem at hand. This view is too opti-
mistic, because there can be many solutions to the real world problem that do not
even involve software. In practice, we only need that software systems satisfying the
specification be solutions, and that no substantial class of solutions does not satisfy
the specification.

A specification is biased if it arbitrarily. favors some implementations over others.
Biased specifications can overly constrain the solution set, precluding some valid
implementations as solutions t c the problem at hand. Hence, the amount of bias is a
common yardstick to judge software specification methods: those that are considered
biased are usually rejected.

One of the main problems of not having a good definition of bias is that i t is
sometimes confused with intended constraints in the solution set. For example, a
designer may want to favor some realizations over others for compliance with some
programming techniques that are customary at that site. In fact, we argue that
much of what has been called bias is simply a manifestation of design decisions, that
purposely constrain the solution set. Of course, we also have many specifications that
are indeed biased.

2 A Model of Bias

We present a framework to discuss bias, based on a classification of the attributes of
the product being specified and the process of creation of attributes.

We classify the attributes of a product with respect to their inclusion in the specifi-
cation. The main criteria we consider are explicitness and origin.

2.1.1 Explicitness

An attribute is -licit if it is present in the specification; otherwise, it is noneqlicit.
Nonexplicit attributes are further classified in four classes.

Implici t attributes are those that are understood to be part of every product in the
application domain, and so they are unstated.

Impl ied attributes are logical consequences of other attributes.

Absent attributes are requirements unintentionally omitted in the specification.
These are not part of every product in the application domain.

P. %
Udr. d X u y h d
-3dU

Ficti t ious attributes [4] are not attributes at all, but assumptions made by the
reader of the specification: the reader believes that they are either implicit,
implied or absent attributes.

2.1.2 Origin

An explicit attribute is new with respect to a certain specification stage if it is first
made explicit at that stage; otherwise, the attribute is inherited from previous stages.

In an ideal setting all attributes new in a specification stage are the consequence
of design decisions taken at that stage. However, nonexplicit attributes ir the previ-
ous specification usually induce the specifier of the current stage to introduce extra
attributes. Besides, some attributes may be imposed by the limitations of the spedfi-
cation method and language used. This motivates the following classification of new
attributes with respect to their origin.

Designed attributes are the consequence of design decisions taken a t the current
specification stage. They are purposely set to guide the implementation process
and constrain the solution set.

Expl ica tory attributes are created by making explicit attributes that are implicit
in, implied by, or absent from previous stages.

Imposed attributes are those imposed by the limitations of the specification method
and language used.

For example, a method may accept only *completen specifications (a defined
by the language), which leads to introduce attributes to satisfy the rules of the
language.

E x t r a n e o u s attributes are created by making explicit fictitious attributes.

For exam?le, a fictitious attribute seen by the designer in a requirements doc-
ument may introduce explicit constraints in the design document.

2.2 The Nature of Bias
The process of refining successive specifications makes explicit attributes that -re
previously implicit, implied, or absent. This process also makes explicit design de-
cisions taken at the current stage. Unfortunately, it also makes explicit fictitious
attributes (i.e., creates extraneous attributes1) and creates imposed attributes (Fig-
ure 1). This leads to the definition of bias in terms of the origin of the attributes
described in a specification.

'Extraneous attributes lead to errors and constrainb in the mlution &; here we an studying
only the constraints.

Figure 1: Classification of attributes. Fictitious attributes are shown with segmented
line, because they are not real attributes but misconceptions. Dotted lines show the origin
of new explicatory and extraneous attributes.

Definition. .A specification containing extraneous or imposed attributes is biased.

This definition provides insight into the problem of bias, including both its origins
and consequences. The-origin of bias is either wrongful interpretation of nonesplicit
attributes or the limitations imposed by the specification method. The consequences
are that the set of possible solutions can be overly constrained or that the solution
adopted can be suboptimal. That is, a biased specification will lead the design towards
particular implementations that are not necessarily the best possible.

Bias content in a specification cannot be measured directly, because bias is defined
in terms of the origin of attributes which is usually uncertain. Furthermore, bias is
relative to the application domain and the software engineering environment, because
the domain and environment define what is implicit.

The relative nature of bias is an essential characteristic. It stems from the existence
of nonexplicit attributes and the inherent uncertainty with respect to those attributes.
As long as there are canexplicit attributes, there will be doubt about these attributes
and hence possibility of bias. Furthermore, making explicit all implicit attributes of
a certain domain and environment still leaves two sources of bias: restrictions on the
method and languages, and zbsent attributes.

P. sb.clb
Udr. d M u y h d
P a g e S d 2 4

2.3 Example
Assume an environment in which all programs are written in a particular program-
ming language. In this environment the presence of idioms of this lmguage ill a
specification is not necessarily bias, unless another implementation language is intro-
duced to the environment.

This is what happened at the SEL where software specifications for satellite dy-
namic sim~llators were 'heavily biased toward FOEYTRAN. In fact the high level

IS was not design for the simulators is actually in the specifications documeiltn (11. Th'
a problem--on the contrary, it facilitated both development and reuse of specification
and c o d e u n t i l the first development in Ada: the specifications had to be rewritten
first.

Given our definition of bias these FORTRAN-oriented specifications were not nec-
essarily biased; they contained many designed attributes. Before Ada was introduced,
the use of FOEYTRAN was implicit. After that, the language used had to be decided:
assuming a FORTRAN implementation was a fictitious attribute.

3 Current Research

We are improving the model presented in this paper in several aspects.

Formalization One weakness of our model as presented here is that we do not
formalize the concept of 'attribute'. Moreover. we define 'specification' as a se: of
attributes, disregarding dependencies among attributes. At least two kinds of de-
pendencies are relevant: attributes defined in terms of other attributes, and origin
relationships among attribctes.

To address this problem, we have develped a formalism to write specifications that
is flexible and extensible enough to include information about the specification itself
(e.g., origin information). Within the system, called Extensible Description Formal-
ism (EDF), attributes are defined as mappings from objects to values; objects are
represented by extensible polymorphic records whose fields are the attribute names.
EDF can Idpresent both functional dependencies of attributes and also attributes
defined as aggregations of several attributes. Origin information is stored by repre-
senting all attribute vaIues as objects that have an origin attribute and a content
attribute.

We developed a prototype of EDF and used it in the context of ciassification of
reusable software components. We are currently developing a complete version based
on a formal specification of the language [6].

Measuring Bias In this work we have not provided a characterization of biased
specifications. Because of the relative nature of bias we cannot develop a precise

metric of bias, but we can define approximate metrics, based on origin information
explicitly recorded in a specification.

.An important feature of EDF is that it is possible to compare two specifications
defining some distance from one specification to another. There is a predefined com-
parator function to estimate the adaptation effort in the context of reuse of software
components, and it is possible to define other comparator functions.

We can measure bias comparing the distance between two succesive specification
stages. If we use the predefined comparator function we get a gross upper bound on
bias (as i f all attributes new to the secdnd stage were bias). On the other hand, by
defining a comparator function that uses origin information, we expect to provide a
reasonable estimate of bias introduced in the second stage.

Bias Propagation Our model does not explain how bias propagates, because we
have defined bias in terms of new attributes. Strictly speaking, within our model no
inherited attribute is bias. Since we want to measure bias content in a specification,
we have to consider those attributes whose origin include extraneous or imposed
attributes. For example, if a design decision is taken consistently with some inherited
attribute that was extraneous when created, then this decision has some form of bias
too.

Bias and Software Defects Our model describes the origin for software attributes,
and defines bias as the e::istenc:: of some attributes with 'iilezitirnate' origin. The
reader can realize that these illegitimate origins are also the cause of software defects.

Software defects are classified in three groups: errors are conceptual rnisunder-
standings, fauIls are ccncrete (explicit) manifestations of errors in documents, and
failures are manifestations of faults during execution.

There is an intimate relashionship between errors and fictitious attributes. and
betweer. sritware faults and bias. In a sense, bias is like a very minor fau!t that
instead c,i leading to failures, leads to inefficiencies. The consequence of this is that
methcds to avoid bias (e.g., making explicit implicit requirements) will also avoid
software defects.

4 Conclusion
Even though bias is widely recognized as an undesirable property of specifications, it
has not been adequately studied. This has cauzed confusion with the related concepts
of design constraint and design decision, so that the presence of designed attributes
in specifications has been considered undesirable. This is in contrast with the use
of specifications in other engineering disciplines, where a specification may include
many designed attributes (e.g., materials, manufacturing methods).

In this paper we presented a model to describe the nature of bias and distinguish
bias from designed attributes and other attributes in a specification. This m ~ d e l is
based on a classification of all the attributes described in a specification and also
tliose that are not described (i.e., nonexplicitj; it explains the nature of bias, but
since i t uses nonexplicit attributes it does not lead to any definite method to detect
bias. However, the model does explain both the relative and unavoidable nature of
bias. Moreover, because the model explains the origin of bias, it provides insight into
bias avoidance.

Our goal is to improve the quality of the specifications by removing bias and
including all relevant implementation-oriented information. To achieve this goal we
need to tell bias from designed attributes. This requires information on the origin of
the attributes, which is usually unknown. Hence. we have developed a formalism in
which origin information can be recorded, as a ,;tneralization of the common prac-
tice of tracing design documents and actual cote back to the original statement of
requirements.

Acknowledgements
Thanks to Sergio Ckdenas-Garcia and Eduardo Ostertag for their helpful cornmenu.
The Extensible Description Formalism (EDF) was defined jointly with Eduardo Os-
tertag, who is also the implementer.

References

[I] Carolyn E. Brophy, W.W. Agresti, and Victor R Basili. Lessons learned in use of
.Ada-oriented design methods. In Proceedings of the Joint Ada Conference, Mar&
1987.

[2] John V. Guttag and James J. Horning. The algebraic specification of abstract
data types. Acta Infonnatica, 10:27-52, 1975.

[3] Cliff B. Jones. Systematic program development. In N. Guehani and AD. JfcGet-
trick, editors, Sojtwan Specification Techniques. Addison Wesley, Reading, Mas-
sachusetts, 1986.

[4] Edward V. Krick. An Introduction to Engineering and Engineering D e s i p John
Wiley and Sons, New York, N.Y., second edition, 1969.

[5] Robin A. Nicholl. Unreachable states in object-oriented specifications. IEEE
Transacfions on Software Engineering, 16(4):472-477, April 1990.

[> !.
1. i

,.
f
I
.r

'I- - t T
5

*

1

(61 Pablo A. Strauh and Eduardo J. Ostertag. Semantics of the Extensible Description
Formalism. Technical Report CS-TR-2561, UMIACS-TR-90- 137, University of
Maryland, Department of Computer Science, November 1990.

[7] Pablo A. Straub and Marvin V. Zelkowitz. PUC: A functional specification lan-
guage for Ada. In X International Conjerence of the Chilean Computer Science
Society, pages 111-122, Santiago, Chile, July 1990.

[a] Kaizhi Yue. What does it mean to say a specification is complete? In Fourth
IntJl Workshop on Software Specification and Design, pages 42-49, Los Alamitos.
California, 1987. CS Prcss.

VIEWGRAPH MATERIALS

FOR THE

R STRAUB PFlESENTATlON

Bias and Design
in Software Specifications

Pablo A. Straub Marvin V. Zelkowltz
f. i- Computer Science Department
f . -
k I Institute for Advanced Computer Studies
i- i
i

University of Maryland a t College Park

Contents

e Introduction

Classification of requirements

The nature of bias

Conclusions

Introduction
Importance o f specifications

Life-cycle models consist of refinement o f

succesive specification stages.

Specification: description o f a set o f
requirements.

'Requirement' is used in al l stages, not just

the first.

Staged specifications imply

errors in previous stages are castly

product quality depends on specification

We need high quality specifications.

Introduction
We want specifications that are.. .

abstract

complete

consistent

correct

reusable

3 traceable

8 concise

executable

feasible

forn~al

modifiable

e realizable

structured

verifiable

our focus

Introduction

Solutions vs. specified products

U = product universe
A = acceptable products (solutions)

S = specified products
S - A = specified unacceptable products
A - S = solutions not specified

Ideally: S = A

Needed: S - A = 8
Desired: A - S is small

P. Stnub
Unlv. r(W u f l ' d
Page 13dU

Introduction
The what and how dilemma

Typical rule t o avoid overspecification

Specify what the system should do,

not how t o do it.

But what's arrd how's depend on viewpoint.

What: something already fixed

How: an option

How's become what's.

Confusion creates underspecification.

Classification o f requirements
Explicitness

Requirements of a product are classified as

Explicit: written in the specification

Inherited: comes from previous stages

New: created a t this stage

Nonexplicit: not written

Fictitious: not a requirement, but a
misconception

Implicit: belocgs t o all products

Implied: consequence of other
requirements

a Absent: unintentionally omitted

Classification of requirements
Explicitness

P. Sad
Udr. d M u) . l d
-16dU

Classification of requirements
Origin o f new requirements

New requirements are classified as

Designed: restriction on purpose

Imposed: restriction o f method or
language

Extraneous: makes explicit a fictitious
requirement

Explicatory: makes explicit a-nonexplicit
requirement

Classification of requirements
Creation of new requirements

I Requirements 1

. I

Bias

P. -
Cdr. d Y a.jrad
* I S d L (

-
The nature of bias

Definition

Definition

A specification containing extraneous
or imposed requirements is biased.

Origin of bias

wrongful interpretation of nonexplicit
requirements

limitation imposed by method or language

Consequences of bias

solutions not specified

adoption of a nonoptimal solution

The nature of bias

Essential limitations

Bias is not an absolute property.

Bias depends on origin.

Bias depends on application domain and
environm.ent, because o f different implicit
requirements.

Bias cannot be completely eliminated.

The nature o f bias
Example (a t NASAIGSFC)

Before introduction of Ada, FORTRAN was
implicit.

Specifications had many FORTRAN-orientea
requirements.

During first Ada project, the specifications
had t o be rewritten.

After introducing Ada, assuming FORTRAN

was a fictitious requirement.

Conclusions
Other Considerations

Formal definition of 'requirement'.

Method t o find bias.

Formalism t o write specifications with
attrib'utes (e.g. , origin o f requirements).

P. !%m&
Unh. d M q b d
Page22d34

- -

Conclusions
Contributions

A theory o f bias

classification o f requirements

origin o f requirements

precise definition o f bias

bias is inherent t o specifications

The Extensible Description Formalism (EDF)

a language to

describe requirements and their attributes

compare specifications

measure bias

Bias in relationship with software defects:

errors tt fictit ious requirements

faults ++ bias

Conclusions
Next Steps

Try these ideas measuring bias in a specific
project.

Extend this theory t o explain creation o f

software defects.

SESSION 4- REUSE

R A. Straub, University of Maryland

R. W. Kestet, CSC

D. J. Reifer, RCI

SEL ADA REUSE ANALYSIS AND REPRESENTATIONS

Rush Kester

Computer Sciences Corporation
J

Greenlkc II
10110 Aerospaa Road r,

INTRODUCTION
The Software Engineering Laboratory (SEL) is an organization sponsored by rhe
National Aeronautics and Space Adminisuation/Goddard Space Flight Center
(NASAIGSFC). It was created in 1977 to investigate the effectiveness of software en-
gineering technologies applied to the development of applications software. The SEL
has three primary organizational members: NASAIGSFC, Systems Developmnr
Branch; Universit); of Maryland, Computer Science Department; and Computer
Sciences Corporation, Flight Dynamics Technology Group.

Applications developed in the SEL environment are used primarily to determine and
predict the orbit and orientation of earth orbiting satellites. There are many similari-
ties among systems developed for different satellites, and those similarities creare a
climate in which software reuse enhances efficiency and cost effectiveness in the devel-
opment process. Consequently, reuse has always been an important SEL prioriry.
Over the last several years, with the introduction of Ada and objea-oriented design
(OOD) techniques, the SEL has been able to achieve a significant increase in ri;e
amount of s o b a r e reuse. Figure 1 represents-graphically the increase in software
reuse on recent Ada projects as compared with reuse on FOIiTRAN projects in a simi-
lar time period (Reference 1).

Incorporated into all SELdevelopment is the Process Improvement Paradigm (Refer-
ence 2). which includes the following four steps:

1. Understand and characterize h3e current en~ronment.

2. Try a candidate improvement.

3. Measure any change and provide feedback on experiences

4. Adopt candidate improvements with favorable results: reject those with un-
favorable results.

This Ada reuse study has as a primary objective the first process improvement srep.

R W
CSC
P p r l d l)

Figure 1. Reuse of Simulator Components

This paper describes the analysis performed and some preliminary findings of a study
of software reuse on Ada projects at the SEL

It describes the representations used to make reuse patterns and trends apparent. The
paper focuses on those aspects of the analysis that are applicable to other environ-
ments and demonstrates graphically some of the specific patterns of reuse studied by
the SEL

THE STUDY

The study examined software components (i.e., source code files) of three general
types: those that were developed on an earlier project within the SEL environment
those that were acquired from an externai source, such as a public domain repository
or commercial vendor; and those that were adapted from a similar component on the
same project. The reuse information in the SEL data base (Reference 3). combined
with the source code filesand design documentsfor each executable program. enabled
the study team to trace the evolution of software components over a 5-year period that
included several generations of similar app!ications.

PLS part of the S E b standard data collection process (Reference 4). the projects
involved in the study had recorded each component of the programs comprising each
system. Each component was classified according to the percentages of new and
reused code it contained.

For those components considered reused, the parent projea (or library) was identified
and recorded.

Reuse Defined by SEL Study

This SEL Ada study focuses on the reuse of source code files obtained from existing
projects or libraries. Although projects in the SELapply other forms of reuse. such as
specification or design products, those other forms were not the subject of this study.

During development, project developers classified (Reference 4) the origin of each
component m r d i n g to the amount of new versus reused code it contained. The high-
est degree of reuse was for components that were reused verbatim (i.e., unchanged).
The next d e p e was for components that were slightly modified (25 percent o r less of
their source d c changed). Finally, thc lowest degree was for components that were
extensively modified (more than 25 percent changed).

The following types of components were excluded from the definition of reuse for this
study:

All components developed from scratch. induding any cuch component that
may have contained fragments of code from one or more source files or de-
sign concepts borrowed from eldsting components.

Common components developed for a given project, whether used un-
changed multiple times in a given executable program or in multiple pro-
grams within the project.

Ada Projects Studied

The study induded nine Adaprojects. Three projects are dynamics simulators that
model the spacecraft's orbit and attitude to evaluate attitude control algorithms.
Three projeas are telemetcy simulators used to generate test data for attitude deter-
mination software. One project is an embedded orbit determination system. Another
projea studied developed or collected components for a reuse library. Finally, one
project developed a tool for assembling systems from reusable components. Figure 2
shows a timeline of the nine Ada projects studied.

Representations of Reuse

To identify patterns of reuse over time or within the s o h e ' s architecture, the SEL
study created a series of graphical, texnral, and combination graphicalltextual repre-
sentations of component origination and reuse information.

Rwc Across Projects Ovu Time

One group of four reports graphically represents software reuse by multiple projets
over time: PROJECT REUSE !SUMMARY, PROJECZ REUSE NETWORK,
REUSE FROM LINEAGE, and REUSE BY LINEAGE

The PROJECT REUSE !jUMMARY report shows at the project level. the number of
components reused from each project or libraxy. The report is wnsauaed as a matrix

Figure 2. Ada Projects in the FligM-Dynamics Division

with projects producing reusable components along the horizontai axis and projecs
consuming reusable components along the vertical axis. Each cell gives the number ci
components obtained from a produang projea and reused by a consuming projer
Two versions of this report could be produced: a detailed report (not shown). whicj
gives subtotals for each of the three degrees of reuse defined for the study, and a r o d
reuse report (shown in Table 1). which gives only the total for all three degrees d
reuse.

The PROJECT REUSE NETWORK report (Figure 3) illusnates reuse as a dire&
graph. The nodes in the graph represent each projen..while the fill pattern i n d i a m
the type of application. The thickness of each arrow indicates the rough order of mag
nitude for the number of components reused. md the direction of the arrow indicarn
the producing and consuming projear In t h ~ s report, an increase was evident in tk
amount of reuse for successive generations of both telcmeay simulator and dynamk -

simulator applications

A REUSE FROM LINEAGE repon focuscs rn the origin of each reused mrnponm
For each instance of a component's use, the projea name. the subsystem name. rte

RXesE
CSC

Table 1. Number of Retlsed Components by Project

component name, and degree of change required are given. The lineage history of
each component is shown by indentation, with each level of indentation hdicating a
prior reuse generation. The following example shows the lineage of the project
EUVEDSIM, subsystem SHEM's component EARTH-KLMOSPHERE.

EUVEDSIM SHEM EARTH-ATMOSPHERE Reused (Unchanged) from

GOADA SHEM EARTH-ATMOSPHERE Reused (Exrcnsively modified) h m

GRODY TM ATMOSB New

Note that the names of the original component, m O S B , and subsystem, TN. of
GRODY =re changed by GO=

AKEUSE BY LINEAGE report was used to show the project(s) that have reused each
component For each instance of a component's use, the project name, the subsystem
name, the component name, and degree of change are 'given. The family tree of each
component is shown by indentation, with each level of indentation indicating a subse-
quent generation of reuse. Using this report and focusing on the degree of change

Figure 3. Project Level Reuse Network

quired, tbc s d y staff noticed two common patterns. The first pacten a sample of
vhich follo;as, is for amponens that implement a general solution.

,component-name (NEW) Reused by
... (UNCHANGED)
... (UNCHANGED)
... (UNCHANGED)

'The second panern, shown in the following example, was wen in components hat
have incorrpletdy or incorrectly implemented a general solution.

,component-me (NEW) R e w d by
(,MODIFIED)

RKdu
CSC
P a g e L d Y) - -

* I

1

Another component attribute that can be determined by using the REUSE BY
LINEAGE report is the component's domain of reuse. Assuming, as is the case in this
study, that the researcher knows the application type (or domain) of each project, the
domain of reuse can be derived by examining the type of projects reusing a given corn-
ponent.

Both the REUSE FROM LINEAGE and the REUSE BY W A G E repom a n also
be usefui for configuration management purposes, by identifying the projects rsing a
given component If one of the projects suggests an enhancement or correction, the
other reusing projects could also be notified.

Reuse W1thi.u a Project's Architexturr

In addition to examining reuse over time, this study also examined reuse within each
project's architecture. To illustrate the findings on a system-wide scale, component
reuse was superimposed on graphicaUtextual representations of each system's static
structure, its calling hierarchy, and its compilation order. Architectural representa-
tions were derived from the source code and/or design documents

Each representation of a project's architecture requires between 3 and 10 pages of
graphical/textuaI hard copy, which made it difficult to observe the overall reuse pat-
terns To overcome this difficulty, the degree of change was color-coded on all repre-
sentations of reuse within a project's architecture. These representations could h e n
be posted on a wall and the color-coded reuse patterns observed from a distance.

Reuse on a Project's Static Structure

Components were organized according to the Ada package to which they kIong.
These packageswere further organized according to the logical subsystems delked by
the original developers The degree of component reuse was then overlaid on the sub-
system and the resulting representation analyzed for patterns. The following is a sam-
ple from the REUSE ON STP;ilC STRUCTURE report for the GOADA project.
This sample shows the degree of reuse in one package, EPHEM-FILE - MAVAGER.
which is part of the SHEM subsystem.

s Name ComwnentTvne O ~ R ~ U ~ C

k h g e Spec
Fadrage Body
Roctdure Body
Function Body
Function Body
Funaion Body
Function Body
Proctducc Body
Funaion Body
Function Body

Unchqcd
un-ed
Unchaqed
New
Unchanged
Unchanged
un-
Un-
Uncfianqed
Unchanged

Examination of this representation confirmed our intuition that in most clscs the
granularity of reuse was library units (such as packages or standalone procedures or

functions). The granularity of reuse for telemetry simulators changed i-amatically to
the entire system architecture in the EUVETELS projecf in which structure and al-
most all components from the UARSTELS project were reused unchanged.

The study examined the hypothesis that a component's interface (i.e., its Ada specifica-
tion) is reusable with fewer changes than its implementation (i.e., its body). In general.
the hypothesis was confirmed by the preceding representation. The notable exception
was the second generation of dynamics simulators (i.c, the GOADAproject), in which
previously large packages were divided into smaller packages Ln that case, new pack-
age specifications were created for unchanged or slightIy modified package bodies.

Another hypothesis e d n e d was that for some groups of components (i.e.. a package
or a subsystem), there are some parts that must be consistently tailored to each use.
Although parts of some packages or subsystems were modified in each successive gen-
eration, it was not possible to distinguish mission-tailored pans from those modi6ed
for other reasons.

Another hypothesis e d n e d was that some parts of an application's architecture lend
themselves to reuse more than do others. The study confirmed the hypothesis by re-
vealing that the highest concentration of consistentiy reused components &as among
those implementing basic data structures and mathematical functions or operating on
standardized data files

Reuse on Project's Call ' h e

The static analysis of subprogram calls in each comporient, starting with the main sub-
program, is used to create a call tree. The call tree is represented textually as an
indented outline, in which each level of indentation denotesa level of nested calls. The
order of subprograms in the 0 1 1 tree reflects the order in which each subprogram call
appears in the text and, for sequential code, reflects rhe execution order of the calls.
The call analysis demonstrates whether reuse occurs predominantly at the branch or
leaf-node level of the call tree.

Reuse on Project's Compilation Order

To study reuse on compilation order, the study group generated a textual representa-
tion combined with co!or-coded graphical elements Each project's library units were
ordered in a roughly bottom-up fashion according to Ada W l l H dependency (i.e.. the
units with fewer WITH dependencies were listed 5rs.t). Component reuse was hen
overlaid on the library units. Examination of this representation revealed that the
ability in Ada to separate specification from implementation was effective in isolating
higher level reused components from extensive changes in lower level components.
Also evident using this representation was the ability to reuse Ada generics without
change, even in cases :;.here their functionality induded endnIy new capabilities im-
plemented by gener.: subprogram parameters. A sample from a REUSE ON
PROJECT'S COMFL-;IION ORDER repon is shown in Figure 4.

(Spec - OLDUC Body - OLDUC Subuain W U C - 8)
(Sw - 0muC)
(Spec - OLDUC)
(Spec - OUUC)
(Spec - NEW)
(Spsc - OLDUC Body - OIDUC)
(Spec - o=uC)
(Spec - OLDUC bdy - SWOD. Subunib =OD - 2. OLDUC - 4)
(Spec - SLMOD. b f y - SWOD. Sutnmib -OD - 2)
(Spec - OLDUC, Body - OIDUC Subunib SIUOD - 1)
(SF - SU1OD)
(SF - 0muC)
(Body - OLDUC)

Figure 4. Reuse on Compilation Order

CONCLUSIONS
Overall, the study revealed that the pattern of reuse has evolved from initial reuse of
utility components into reuse of generalized application architectures. Utility compo-
nents were both domain-independent utilities, such as queues and stacks. and
domain-specific utilities, such as those that implement spacecraft orbit and attitude
mathematical functions and physics or astronomical models. The level of reuse was
sigdicantly increased with the development of a generalized telemetry simulator
architecture.

The use ofAda generics significantly increased the level of verbatim reuse, which is
due to the ability, using Ada generics, to parameterize the aspeas of design that are
cofigurable during reuse. A key factor in implementing generalized architectures
was the ability to use generic subprogram parameters to tailor parts of the algorithm
embedded within the architecture.

The use of object-oriented design (in which objects mode! real-wgrld entities) signifi-
cantiy improved the modularity for reuse. Encapsulating into packages the data and
operations associatedwith common real-world entities creates natural building blocks
for reuse.

REFERENCES
1. Qftware Engineering Laboratory, SEL-89-007. "Experiences in the SEL-

AppIying Software Measurement," Proceedings of the Forneenth A n d Sofi-
w r e Engineering Wonk~fiop, F. E. McGarry (GSFC), S. R. Waligora (CSC), and
?: I? McDermott (CSC), November 1989

2. Software Engineering Laboratory. SEL-89-007, "The Experience Factory:
Packaging Sofcware Experience," Proceedings of the Fourteenth AnnualSofmare
Engineering Workhop. V. R. Basili (University of Maryland), November 1989

3. Software Engineering Laboratory, SEL-89-101. "Sof~warc Engineering Labora-
tory (SEL) D a h e Organhion and User's Guide (Revision I) . M . So.
G. Heller. S. Steinberg, K. Pumphrey, and D. Speigel, February 1980

4. Software Engineering Laboratory, SEL-87-008, Dota Cofledon P r o c h - for
the Rehosted SEL Daubare, G. Heller, October 1987 I

VlEWGRAPH MATERIALS

FOR THE

R. KESTER PRESENTATION

Ada Reuse Analysis and
Representation at the

Software Engineering Laboratory
(SEL)

Rush Kester
Rhea White
Robert Kazden

Agenda

I Background
Representations of reuse

H Preliminary observations

Computer gclcr~ccs Corporallor)
ystem Scicnces Division

5 Ada source code obtained from existing projects
or libraries

B Each source file (a.k.a. component) classified
according to percent of lines reused without
change

H Definition does not include other forms of reuse

Definition of Reuse

Computer Sciences Corporation
System Sciences Division e ~ s l q l z)

With high-level reuse, delivered systems can be

W Delivered sooner and at lower cost

Incrementally improved
I More reliable

Potential Benefits of Reuse

Computer Sciencm Corporation C5C System Sciences Division 6151q12)

- -
? L

Develop similar systems for different satellites
E Knowledge carried between missions

Reuse an important part of culture
Economic benefits directly related to amount of
code reused without change
Introduction of Ada and OOD significantly
increased reuse of code

Flight Dynamics Environment

Computer Sciences Corporation
bdL system sciences Division elslqrz)

Reuse of Simulator Components

5 Projects Using FORTRAN 5 Projects Using Ada and OOD

TOTAL REUSE

0 RRCUI UNCHANOLD

Computer Scienccr Corporation CSC Syatcm Scicncca Diviaion

Steps in Process Improvement

1. Understand and characterize current
environment

2. Try candidate improvement
3. Measure change - feedback experience
4. Adopt candidates with favorable results;

Reject candidates with unfavorable results

Computer Sclcncer Cnrporrtlan CsC Syatcel Sclc~lccs Dlvlalan

Goals of Current Phase of Study

Understand and characterize reuse
- Determine patterns and trends of reuse
- Determine characteristics distinguishing

reused from nohreused components
ldentify candidates for reuse library
Identify domain of component's reusability within
the environment
Address some CM issues related to reuse

Computcr Scicncm Cotporntion CSC system ~ciences ~iv is ion 81e1qta)

- .-

Questions Addressed by Study

Does separation of interface specification and
implementation affect degree of change required?
Do Ada generlcs improve the level of reuse
without change?
Does the extent of intercomponent dependencies
affect reuse?
What is the granulqrity of reuse?
Where in software architecture does reuse occur?

H Do patterns of component evolution suggest
guidelines for more effectlve reuse?

Computer Scicnccr Corporation CSC ~ysrnnl ~ciencer ~livirion a151~ (t2)

-

Ada Projects in the Flight Dynamics Division

E U V m l . 8 Y ULOC

croiwr p KSmC

ins I/M 1/87 IIM 118~ 1190 1101

Computer Sciencca Corporation CSC system sciences ~ivirion elslqlz)

d

,

Size of Study
- 9 Ada projects, over 5 years
- Over 1900 reused components

Input Used
- SEL Component Origination Forms
- Source code files
- Representations of software design

Data Used

C pp Computer Sciences Corporation
d System Sciences Division

1. Multi-Project Reuse Summary
2. Project Level Reuse Network
3. Component Lineage Reports

4. Reuse on Software Static Structure
-5. Reuse on Software Call Tree
6. Reuse on ~ d a Compilation Order

Representations of Reuse

Computer Sciences Corporation CSC ~yateln ~ c i e t ~ e s s ~ivialun etsrqtz)

1. Multi-Project Reuse Summary Report

Total Total

Producer Projects ... Reusable Components

Consumer
Projects

Total
Reused

E Represented as a matrix or spreadsheet
1 Identifies producer and consumer projects

ldentifies number of components reused
I ldentifies degree of change required

I I

Computer Sciencea Corporation CSC ~yrtem ~cienccr 13ivisian 6151(3(12)

- - -

2. Project Level Reuse Network

Computer Sciences Corporation CSC Syste~a Scicnccr 1)ivlrion

3. Component Lineage Reports

Represents reuse over time
- From origiqating project forward
- From reusing project back to origin

ldentifies parent - child relationship
ldentifies components:

- Implementing general solution
- Gene[alized incorrectly or incompletely
- Domain of applicability

Useful for CM purposes

Computer Sciences Corporation CSC Synen, Sciences 1)iviriun

Represents reuse at project level

Reflects developer's logical view
1 Makes visible:

- Granularity of reuse
- Project dependent parts

4. Reuse on Software Static Structure

ppp Computer Yclcnca Corporallon
bdb System Sciences Division 8t6lql2)

Represents reuse at project level
Reflects actual calling hierarchy

W Makes visible:
- Level of functionality reused
- Location of reuse within architecture

?

5. Reuse on Software Call Tree

Compr~ttr Sciences Corporation CSC System Sciences Division srsrqrz)

D

R Represents reuse at project level
4 Reflects coupling between "Library Units"
III Makes visible:

- Scope of change required toreuse
- Location of reuse within architecture

6. Reuse on Ada Compilation Order

Computer Scienctr Corporation CSC System Sciences Division rtslqc?)

PR" 1 S

Reuse Patterns and Trends Observed

-

Initially application independent components
reused, now majority reflect organization's
problem domain
Ada generics significantly increased the level of
verbatim reuse
OOD (where objects model real world entities)
significantly improved modularity

ppp Computer Sciences Corporation
bdb Systc111 !kicnces Division

616lql2)

- - - - - - -

Work Remaining

Computer Bclonctr Corpontlon CSC Syatcm Scirnro Division 8161q11)

*

Develop guidance for improving verbatim reuse
Investigate rationale behind characteristics that
distinguish reusable components
Confirm hypot hesls -- Achieved highly reusable
solution for Telemetry Simulator applications

~ 9 2 - 1 - g /
REUSE HETRICS AND MEASUREMENT - A FRAMEWORK *A p ---/ ,-

1 - *
Donald J. Reifer, President \ -
Reifer Consultants, Inc.

Torrance, CA 90505

AbstraSf;: This presentation will describe the lessons learned and experience
gleaned by those firms which have started to implement the reuse lletrics and
measurement framework prepared by the Joint Integrated Avionics Uorking Group
(JIAUG) for use in control1 ing the development of c o m n avionics and softuare
for it; affiliated aircraft programs (e.g., the Air Force's Advanced Tactical
Fighter (ATF), the Amy's LH helicopter and the Navy's A-12 fighter). The
framework was developed to permit the JIAUG and Service System Program Offices
(SWs) to measure the long-term cost/benefits resulting from the creation and
use of Reusable Software Objects (RSOs). The framework also monitors the
efficiency and effectiveness of the JIAUG's Software Reuse Library (SRL).

The presentation wi 11 begin by defining the metrics and measurement framewrk
which was established to allow the following six determinations and findings
to be made relative to software reuse:

1. Impact of RSO creation on software cost and productivity.

2. Impact of RSO reuse on software cost and productivity.

3 . Impact of RSO mining on software cost and productivity.

4. Minimum standards of quality for RSOs as they enter the SRL.

5 . Efficiency and effectiveness of SRL usage.

6. Long-term cost/benefits of SRL usage.

The presentation will discuss how the following seven criteria were used to
guide the establishment of the proposed reuse framework:

1. Camoatiblq - The framework should be compatible with the softnre
processes used by JIAWG contractors to develop avionics softuare
products in Ada under 000-STD-2167A.

2. Ease of Data Collectiorl - The data needed to quantify the metric
should be easy to collect and normalize.

3. Ease of Understanding - The metrics employed should be easy to
understand, analyze and interpret.

4. Minimum Cost - The measurement costs (i .e., data collecticn,
analysis and reporting) should be kept to a minima.

5. Nonobtrusive - Collection of metrics data must not aeversely
impact the processes or products being measured.

6. Obiectiva - It should be difficult to bias or distort the value of
the metric.

7. Predictive - The metric should facilitate generation of accurate
estimates of software cost, productivity and qua1 i ty.

R H e r
RCI
PgldV

Next, o b j e c t recapture and creation metrics wlll be explained along with t h e d r
normal lzed use tn effort, productivt t y and qua1 ity determination. A single
and multiple reuse instance version of the popular C O C M cost model will be
presented which enrploys these metrics and the laeasurement scheme proposed by
the Software Productivity Consortium (SPC) to predict the software effort a d
duration under various reuse assuaqtions. Investigations in using this -1
to predict actuals taken from the RCI database of over one thousand cocapleted
projects will be discussed along w l th statistical findings.

User experience with this ~petrics and measurement framework as part of the A i r
Force's Reusable Ada Avionics Software Package (RAASP) and Avionfcs Fault-
Tolerant Software/Ada Technology Insertion Program (AFTS/ATIP) projects will
be discussed naxt. The lessons learned with these metrics by these projects
will be s r i z e d . These two projects are conducting controlled experiments
t o capture pleasuremnt data that provides insight i r r3 those factors w h i c h
{.pact software cost, qua1 l ty, productivity and system rlrformance. The P M P
effort i s focusing on determining the relative fmp;ct of object-arientzd
aethods, reuse paradigms and SRL operrtional pol icies software produtiv I 3,
cost and quality. AFTS/ATIP i s assessing the fqac t of a large number af
process and product factors on overall cost and system perfomance.

The presentation will conclude with a s m a r y of key points. Racorrmendatiams
wlll be presented t o help those embarking on a reuse program to iqmve the i r
measurement and prediction capabilities.

VlEWGRAPH MATERIALS

FOR THE

D. REFER PRESENTATION

REUSE METRES AND MEASUREMENT -
A FRAMEWORK

28 November 1990

Prepared For:

NASAlGoddard Fifteenth Annual
Software Engineering Workshop

25550 Ilawflwrne UouLvard. Sulle 112, 'torramo, Calilornia 90505/Phono: (213) 373-8720/ Fax: (213) 3 7 5 . ~ 4 5

Page 1
PURPOSE

RCI-TN-470

Describe the reuse metrics and measurement framework
created by JIAWG to make the following determinations:

Impact of RSO acquisition on software cost and
productivity
Impact of RSO reuse on software cost and
prcductivity
Minimum standards of quality for RSOs entering the
Software Reuse Library (SRL)
Efficiency and effectiveness of SRL usage

. Long-term costlbendfits of SRL usage

Discuss implementation of the framework on the OSS and
RAASP projects

.
1 - life cycle products developed

to be reused (designs, algorithms, code, testsltost cases, etc.)
>

Page 2
PRODUCTIVITY IMPROVEMENT STRATEGIES

RCI-TN-470

* Productivity must be measured from a quality viewpoint

Improve
staff

effectiveness

Reuse
objects

Consortiurns

Increase
innovations

BARRIERS TO REUSE

Lack of incentives

Few standards

Limited tool support

Chanipion needed

Multiple quality levels

NIH bias

Needed infrastructure changes

Few quantitative metrics

-: RCI Reuse Survey. 8/89

Page 4
METRICS SELECTION CRITERIA

RCI-TN-470

Compatibie with DOD processes

Ease of data collection

Ease of understanding

Minimum measurement cost

Objective and unbiased

Predictive of the future

Unobtrusive as possible

REUSE METRICS
Page 5

OBJECT ACQUISITION RATIO

n

OAR = C (wi) (ai/Ai)
i= 1

where: ai = no. of RSOs acquired
per collection

Ai F no. of objects in that
collection

n = no. of collections

Wi = weighting factor for
each collection

n
and Wi = 1; ailAi 2 0

i=l
I I

A l mJ*WI copyrlp)l by ACI. Nol lo k t~whmd *Ilhd prbr mlbn cmW.

I OBJECT REUSE RATIO I

ORR = C (wi) (rilRi)

i=l '

where: 1 = no. of reused objects
I in a collection

Ri = no. of objects in that
coliection

n = no. of collections

Wi = weighting factor for 1
each collection

n
(and C W i = 1 ; r j j R i 2 O

Page 6
REUSE MECHANIZATION

RCI-TN-470

where: a,, = newly created objects

a~~ = purchased objects
a,, = recovered objects

ORR, = (0.2) rllR1 + (0.3) r$R2 + (0.2) r3/R3 + (0.3) r4/R4

.

Collection -

Requirements
Design
Source code
Testsftest cases

where: r,/R, = reuse ratio for a collection

Wi

0.20
0.30
0.20
0.30

A l mrlmlak tqtmd by RGI. M lobe ~ q r o d u r ~ d willrolil ~ i o r w~ilerl conser~l;

Page 7
METRICS USAGE

RCI-TN-470

REUSE VERSION COCOMO (SINGLE INSTANCE)

where: c = adjustment factor for domain
b18 = RSO cost factor (0.10 < b18 < 0.36)
big = RSO benefits factor (0.20 < blg < 0.60)

OARx = expanded form of OAR
ORR, = effective form of ORR
Effort, - cost in staff-months with reuse
Effort = cost in staff-months (COCOMO)

OARx = (0.2)(aln + (0.5) al,)/A1 + (0.3)(a2, + (0.2) app +
(0.4) aZr)/A2 + (0.2)(a3n + (0.2) a3p + (0.5) a3r)/A3 +
(0.3)(a4n + (0.3) + (0.6) a4r)/A4

Page 8
FACTOR RATINGS

RCI-TN-470

Reuse
cost
Factor
(b ~ 8)

A l nukrlrl, & by RCI. Nd lo be rrproduad wlthwl prbr mlhn comrJ.

Reuse
Benefits

i!!' Factor - - 8 S .. (b ~ 9)
Y

LOW

0.10

Limited
reuse

packaging

NOMINAL

0.17

Design and
code RSO

reuse
packaging

LOW

0.20

Planned
reuse

EXTRA HIGH

0.36

Extensive
reuse

packaging
(synthesis)

HIGH

0.26

Full RSO
reuse

packaging

VERY HIGH

0.48

Institutionalized
reuse

(within and
across jobs)

VERY HIGH

0.3 1

Domain
specific RSO

reuse
packaging

NOMIWAL

0.25

Systematic
reuse

EXTRA HIGH

0.60

Optimized
reuse

(domain
specific)

HIGH

0.34

Managed
reuse

Page 9
METRICS USAGE

RC I-TN-470

where: B = relative cost to reuse RSO
R = proportion of reused software
E = cost to develop RSO
N = number of reuses

REUSE; COCOMO MODEL (MULTIPLE INSTANCES)
&

where: c = calibration coefficient
m = number of reuses (m > 1)

b18 = cost factor (0.10 < b18 < 0.36)
b19 = benefit factor (0.20 < big < 0.60)

OAR, - Object ~cquisition Ratio (average)
ORR, - Object Reuse Ratio (average)

AN rmkrirb RCI. Nd lobs reprodud w k h a l prior whon

THE OSS EXAMPLE
Page 10 RCI-TN.470

// NUMBER OF REI

All mrluc~alr c o p ~ ~ l by RCI. Nd lo k rqroduod wi tha l ptb mfiltn comml.

LEGEND
R = 0.1 0% - E = 1.25
R = 0.2 -1- B = 0.10
R = 0.4 -0-
R = 0.6 -* -

&

Paae 11
QUALITY METRES

RCI-TN-470

.
I soft-indep = no-sys-dep-mod + no-irnpl-clepgragrnas 1

Correctness) Clarity

Efficiency

Maintainability

Portability

Testability

Usability

) Coupling Strength

) Independence ,

) Modularity

) Self-descriptiveness

) Simplicity

Page 12
LIBRARY EFFICIENCY

RCI-TN-470

Efficiency

Effectiveness

- Average service time

System response time

System throughput

Resource utilization

Workload characteristics

1
cumulative number cumulative number cumulative number

of tlmes SRL browsed of times RSO retrieved of times SRL searched

LIBRARY EFFECTIVENESS
Page 13 RCI-TN-470

Efflclency

Effectiveness

- Active usage rate

Change rate

Error rate

Library growth rate

Reuse rate

Search success rate -

I

Number of Average frequency Number of Average frequency
userslrnonth of service usage repeat usages of RSO retrievals

LONG-TERM COSTIBENEFITS
Page 14 RCI-TN-470

NET PRESENT WORTH

T

NPW = c (l/(l+i)t)

L

ON-RECURRING COSTS

Acquisition $
Adaptation
Documentation
Infrastructure
Training

COSTS $

CURRING COSTS

Admlnlstratlon $
Maintenance
Operations

COSTS $

A l IWWI R61, Nel le k re@rW wlhM plec mllenmsefl:

S
Cost avoidance $
Added capability
Reduced cost
of quality

Cost savings
BENEFITS $

s
Better customer
satisfaction $

Fitness for use
BENEFITS $

Page 15
RAASP ADAPTATION

RCI-TN-470

HYPERTEXT LIBRARY EFFICIENCY
AND EFFECTIVENESS

i

No. of objects In library
No. of links traversedlhit
No. of items browsedhit Prof&
Amount of time for a hit
No. of log in's per user By object
Amount of timetuser session By service
No. of objects withdrawntuser session System-wide
No. librarian actionslobject
No. of objects submi\ted/month
No. of objects withdrawn/mon th

No. of SPRslobjecVmonth
No. of SCRs/object/month

Page 16
SUMMARY AND CONCLUSIONS

RCI-TN-470

We've described the JlAWG software reuse metrics and
measurement framework

We've described the pilot implementation of the framework
on OSS and RAASP

We've discussed our multiple instance reuse version of the
COCOMO model

Needed to explore the economics of reuse

We've just touched the surface of the issues involved

Your thoughts, feedback and help are solicited especially i f
you have "hard" data to share

A l mWdt wWI ty RGI. M lo b r ~ i o h d wiM prhn mrhn cawll.

SESSION 5- PROCESS ASSESSMENT

K. Y. R o ~ e , IBM

A. L. Goel, Syracuse University

J. C. Kelly, NASAIJPL

Cost and Quality Planning for Large NASA Pmgrarns

Kyk Y. Rone

FEDERAL SECTOR DIVISION
3MO BAY AREA BOULEVARD

HOUSTON. TEXAS 77058 - 1 j99

--

Cost and Quality Planning for Large NASA Programs

The Software Con and Qllllity E r . ~ t u i n g mc*hodolow developed ova the last two d e d c s IB>l
Federal %or Division (FSD) in Houston is d to p h the SASA Space Station D.u M--1

System (DMS). An ongoing project to ap twe thirr methodology, which b built on a foundation $ 7
experiences and "lasons l e d . " har resulted in the de\dopmcnt of a PC-based tool IIXU &gates coo
and quality fortasting m ~ o l o e j u and data in a consistent manner. This tool, kfware Cost and
Quality En-dnccring Starta Set (SCQESS), is bdng employed to assist in the DXIS costing e. A: -h
same * h e , DMS planning wrv# as a forcing function pnlvidcs a phtform for the continrring, i t u a t k
development. calibration. and vdidausn and &cation of SCQESS. The ria17 that forms :he cost a d
quality engineering database b derived from mom !ban 17 years of dtrdoprnent of SASA Space Shut&
software, ranging from low criticality, low complexity nrpPon tooh to highly complex and !ighly c r i M
onboard soft\wt.

Softwan con and q d t y cnghetting h the s y ~ m r i c approach to the estimation. en^. rrd
control of s o h cosu and quality on a project. This discipline provides the vital Gak ktwrcn tk
concepts of economic analysis and the methodology of ~ ~ f t w a r ~ engbming. The tasks i n v o l ~ d in soft\\-an
cost and quality w e e r i n g are complex, and individuals A h thc knowledge and skill requimi art scarce.
The accuracy and consistency of the d t s arc o h quenionable. There is a dcfnitr need for tooh to
enable analysis by managen and plannm who arr: not e-s and to improw thc results.

There arc many instances in planning soitwarc devclopmenr activities when a quick and easy to use cost md
quality estimating tool wouid be of value. ?hex indude m w m t consulting, proposal - ~ n t i o n . and
d y i i of e=isting programs for problem corrmion or. asnuana. There is little time to kam a m m p k
tool or to dig^ inuoduaor). w infomation. SCQESS no sc!-up. has a xlmabk dcmonmuioa.
direct access to the tool functions. and contains exunpla of \arid appkaiom.

SCQESS resides on a tool sharing disk which is available to all company rites. The user has the option of
viewing a demonstration progam to iUustnte the cost and q d t y a that ion process. SCZESS includes a
Lotus-based con and quality estimation spmdshm- The s-ca irrrludcs con and qrnlity m&
which arc based on histarid data and various criticality lev&. U different m& are rrqrtirtd. the cxhizq
mode!$ can be easily m o d W An example lot^ rprra&ta illunnta a completed &tion lhir
sprudsheet can k modified or a blank file is supplied if the work is ntircly new. The tool can handk
estimates invol\ing many langagcs including Ada and can also be used for estimating r e d elements

Once the 5asic cost and quality estimates arr cornpkitd. the uur executes a RayIdgh Cunr p r o m :o
phase the estimates o v a t iw . A Raylagh c u m is a plot of a m a k m a i d function wtrirfi dcscrik life
cycle phenomena A Raylei* c u m indicates whetha the slope of the stafEng c m e is too nccp or \\-6etha
the m r density of the projat is too grea! at & poinu in the pnxtn

The cost and quality can then bc quickly modified to daermine \;uiana of rrmtu band on
changes in assumptions. The con and quality estirmm support the s~cngth of the plan beiq -ncocraroh
The mirnates can k used to a d > - = risk and mitigation p h . E . w ~ of actual project cost and q d k y
reports arc available to the us. These exunples include a project invol\ing .a& rrux a d commncirl
elmenu; a project involving uanslation of code from ma~hiae ~ h h m r c to another: and a tnnMion
oriented commerd system. The s p r r a b h e ~ and the Raslcigh cun'cf arc included in the rrpon.

IB M
6 1 1 at~d QUJlii\' PIYmins for h e T:G ~ t , 2 da

- + 1 Software Life Cycle Costing and Quaiity Estimation Methodology

Pan e-ce in managing large sof!\vare projects sum as Sw Shutlle O n b a d Softwazc ~ R u r u ; l r o CIS
acnvatr cost and quality estimates based on reliable historical data arc essential to soft~arc plrminq. FSD
Houston has collu=td extensive data from SASA and other softwax dcvelopnnnt pmj- over Ihe ta 1:
y m . This data kiudcs source lines of code, productivity, error rues, compurm usage, ac. f a morr Ih.E
250 projects. Hiaoricll data supporn initial estimation of project size and ePimuion of -ffm from thm
sire. The standard Rayltigh curve model converts estimated kbor to a schedule and s&g p f i - tk
elemmu of a cost plae It dso projects e m r utimucj m a the schedule to ptruc a qrnlity p&n.

The widely used Rayla& curve models the typical build-up of sta and aron during the rrqukmtnn
design phases, the peak for implcmcntation, and the tail-off during rhe testing phau. The mEq x k d u k
for an ideal projcu approximato a Raylcigh curve. During s u t i n h g en-g. a &um Id d
critical dcih is required for effective maintcamcc. This steady-state d i g lexd forms the suppn k It
includes critical shlls for requirements, design, implementation, testing, and management. n , e suppacz lin
i s a function of system size and productivity as well as unique ski I l rtq-u g& to tk -ahazz

i being maintained.

The areas klow th+ support Line and above the m a i n t a m e tail of t h Raylei& c w e is r d a b i c fa rn
i
I develop-cnt work Sustaining engineering o p c n t i o d i n m t a h correqmnds to a R a > w
! Each suskling cngin&g effon can be modeled as h e sum of a sequence of such tun-zs Tk siziq &

scheduling of new M o p r n e n t activities d ~ o ~ l d be pbnntd 10 pro\$& a stable ICITI of &on S c t h n =
. .

i maintenance which handles D i p a n c y Reports can conhue at a bwa suppon l a d .

Hiitorid project data supports softtvare k. labor. and quality estimation The Luaus-bmd
Method function distributes the effort and mon over o w t i o n a t elmenu. The Raylei* Cum
generates a sta!Tiig and c m r discovery profile over time. Special models a n avaiiable rn other paclrxgcs :2

adjust estimates involving expert systems, reusable soitwarc. ruonfiprstion, qrulity ' ~ c h g x.d
maintenance.

Planning the Space Station DMS Utilizing SCQESS

SCQESS has bctn used to assist in the costing of the Space Station Data h lmqanent S y m (D U) . z
complex software q - f i ~ n invohing a distributed envimnmenc with multiple h g m ~ md sppliclriona Tfr
Db1S for Spz.x S d o n is also affected by the rcquircmcnts for l o q lifetime, pcrm~lent c~pcram~. rtmar
integmion. and phased technology insertion of produ&\ity tooh. applications expat sy=lrmr erc. X a j a
cost and quality driven include the large s ize and diversity of the software, complexity, dt\do-t ~~JPU.Z
environment. off-thc-&elf and reusable software. and aitiwlity, which h m one d u k to a n a & t
hn exvnpk of thc typc of mults - at the end of t h intermcdiatt ncp of ckdopmenr con and qx&
estimation - obtained with SCQESS for the DhlS plandurg is included in the pmcnut ion

.- The s o f t w a cost and quality engineering methodoIogy employai a~ IBSt FSD Horntor. has tea c q x k
L
i and in-led into a prototype tool. SCQESS. This PC-baud to01 int- cost and qu&y p-

methodolog and data -
v * 1 SCQBS has been employed to assist in the cost and q d t ~ p k m i q of t k Spaa Station D>1S (Ds - hlula~rmrnt System). It is providing a standardized approach for Ibe D>IS pLnnins \ v i - i d ~ inx7:;res pl-&

indiridwis. I t hy rrude thc proass morc cficient and has allowed a coruinent approach u, T..

C o s t and QU3Ety Phnning for b e XG.4 sRar
DM
Page3d3

automation and a p t u d methodolog, has established h e foundation and m#hmism enabling tbs
continuing calibration and improvement in uxuny and cornistcncy for S p a a Station D>1S

C a t Js Quality PLnnins for Large St\S:\
ex
-4dU

VIEWGRAPH MATERIALS

FOR THE

K. RONE PRESENTATION

Cost and Quality Planning for Large NASA Programs

Kyle Y. Rone

FEDERAL SECTOR DIVISION
3700 BAY AREA 80ULEVARD

HOUSTON, TEXAS 77058 - 1199

Keys to Customer Satisfaction

Compliant Product

Within Budget

On Time

Appropriate Quality Level

Concurrently

Consistently

Approach

I I I I I I I I I I I I
1 l n i t i a t i o n 1) Measurement 1) Model ing I l P r e d i c t i o n 1 I Control 1-1 Improvement (
I I I I I I I 1-1 I I I
I I I I I I I I I I I I

I I I I I 1 I I I
Keys Heasurtmrnt)-1 Hodellng 1 - I ~ r e d i c t l o n (-1 Control 1- l lmprovcrcnt~

I I I I I 1 - I I I I I -----.------------------
) Process Slzc * Process Process Control C c c . ~ ~ f y

Product 1 I n t e r i m Process Hode 1 s Ts l lo r lng Po ln t r Process
Product Prof lc lency Hodtfy I Procedure Ordering

1 Order Autorat lon
(*Tailoring
I Hechanlsm

Cost

I
Schedule I

I
I
I
i
I

Q u a l i t y I

Funct t on Factor Cal l b r a t e Cost Hodl f y
D r l ven Hodels To Frocess Hanagcwnt Cost
Cost % Mode\s Functton Hodels
Schedule Phaslng Orlven
Orlven
Cost
Complexity
C r l t l c a l t t y

Process Schedule Phased Schedule Hodl fy
Elapsed Rules Of Cost and Hanagmcnt Schedule
Time Thumb Errors Rules o f
Process Thuob
Order

Inspection L l f e Cal l b r a t e Qual l t y Hodl fy
Errors Cycle To Process Managnent Qual l t y
Process Errors Funct l on Hode l r
Errors % Hodels Orlven

a Product a Phaslng Coat Driven
Errors
l o t a l
Errors

MODEL RECONCILIATION

0 ALT (EARLY MODEL)
- PROJECTED = 10429 MM

- DEVELOPMBNT PART OF ALT = 9403 MM ACTUALS

- ERROR I S 1026 MM OR 11% H I G H

o STS-1 (MIDDLE MODEL)
- PROJECTED = 8905 MM

- DEVELOPMENT PART OF STS-1 - 9521 MM ACTUALS

- ERROR I S 616 MM OR 6% LOW

0 STS-2 THRU STS-5 (MIDDLE MODEL) - PROJECTED = 5864 MM

- DEVELOPMENT PART OF STS-2 THRU STS-5 = 5994 MM ACTUALS

- ERROR I S 1 3 0 MM OR 29 LOW

o TOTAL
- TOTAL PROJECTED = 10429 + 8905 + 5864 - 25198 MM

- TOTAL ACTUALS = 9403 + 9521 + 5994 = 24918 MM

- ERROR I S 280 MM OR 1% H I G H

o LI'PflaI 'i'lIl\U 0FU-9 (MIDDLB MOUUt)
- TOTAl, STS-1 TllRU STS-5 PROJECTED - 8905 + 5864 = 14769 HM

- 1 1 IOlAL 1 1 ACTUAL8 a 9 5 2 1 + 5 9 9 4 1 5 5 1 5 MM

- E#Hd#i$ 7 4 6 M M 0 # 9 b

MODEL RECONCILIATION

SDL
- (900 ,0001230) 1 .4 = 5478 MM

- SDL ACTUALS = 5730 MM

- ERROR IS 252 MM OR 4% LOW

SPF
- ((2 5 0 , 0 0 0 1 2 3 0) + / 315 ,000 /250) + (3 8 5 , 0 0 0 1 4 7 5)) 1 .4 = 4 4 2 1 MM

- SPF ACTUALS = 4033

- ERROR IS 388 MU OR 10% H I G H

TOTAL
- TOTAL PROJECTED = 5478 + 4421 = 9899 MM

- TOTAL ACTUALS = 5730 + 4033 = 9763 MM

- ERROR IS 136 MM OR 1% H I G H

0 (1'8
nEO(JIntNO fCT-1 PLT-2
S O U ~ C E FIK TOTAL U.SLOC~ JM T OTAL AK-SLOCS- 31
on WAIWEI~ 1OtAL ERRORS - 0 8 4 TOtAL tRAORS - 6 0

LRRORSIK~SLOC - 8

204-

FLTP iR18l A A
rnn F L ~

F LT 4 A A A
10 rrrn rrr

ERROR DISCOVERY PROFILE FOR PROJECT

SOFTWaRE
DEVELOPMENT ACTIVITY

ERRORS PFS: KSLOC
USER PROVIDED PROGEAR EST,

HIGH LEVEL DESIGN INSFECTION

LOW LEVEL DESIGN INSPECTION

CODE INSPECTION

UNIT TEST

INTEGRATION TEST

SYSTEM TEST

LATENT ERROR

THE PATTERN PROJECTED 1s PATTERN NUHBER: 14
THE ESTIMATED TOTAL LIFETIME ERROR CONTENT IS: 18.29

PRESS:ENTER FOR nENU SCREEN :PrtSc & Shift TO PRINT SCREEN: Y TO GRWH DST;

PROJECTION CO#PARI SON

STEm A m
TOTALRELEASE

- TOTAL INSERTED ERROR RATE 1 8 , 3 13.3
- PRODUCT ERROR RATE 6 l 8 0

HOST

- TOTAL INSERfED ERROR RATF. 13,O
- PRODUCT ERROR RATE 8 4

- TOTAL INSERTED ERROR RATE 3s8 1
- PRODUCT ERROR RATE 1 8 1

TOTAL RELEASE

PROJEmON CaMPARISON
(INCLUDING PROCESS DATA)

- TOTAL IHSERTED ERROR RATE
- PRODUCT ERROR RATE

HOST

- TOTAL INSERTED ERROR RATE
- PRODUCT ERROR RATE

- TOTAL INSERTED ERROR RATE
- PRODUCT ERROR RATE

Intelligent 1 I H O ~ 1.
Workstarion ' ' Based I'
(Iws) Functions I I Functions , .

. . - J . L - ,,,, --. . -

K m e
IBW
%150(24

Softwars Ufe Cyde Qu8Uty

I 1 lmeitigont i i Hosl 1
I Worksration I I b e d ;
I (IWS) Funaim I I h M s ,
L --------A L ---- 2

I

<-I CRITICALITY

DEV. = ((SLOCIPROD) 1.8) 2.5 23 ERRORSIKSLOC EARLY
- - 6.7 ERRORSIKSLOC PROCESS

.1 ERRORSIKSLOC PRODUCT

21 ERRORSIKSLOC EAR1.Y - - DEV. = (SLOCIPROD) 1.4 8 ERRORSIKSLOC PROCESS -

-

1 EARORIKSLOC PRODUCT

1 a 3 4

PRODUCTERRORRATE

REQUIREMENTS

SORWARE COSTING MnHODOLOGY
INPUTS

____--__-__d__------w--------w--

Release
Language

fLINCTION4L SIZE CfASSIRC4TION I L-IIICIIIICI~I--------LIII---LI-I- ,,ow*

CALCU lATl ON S

OUTPUT

MODEL i

PROCESS I

f
EST1 MATES

fuNCl7OrJ DEVELOPMENT EFFORT E S T 07HEU TOT&

WETYOW(urn
TRAISWRT urn
SESflrm Urn
PREMnAT 1 W LAEJE
rnICATIOI urns

CASE
RJE
Dim ACCESS

mum m.
m1eAnon m.

S U R I I L A Y C H A R T
#Y COTS

AREA (SLOCI N . n C I REL. CILIT. - -
MIS 39600
09 7600 4900
ADAm 41500
SIW SERVICES 93100
Ms SISrm rwcrrsmn 20700
MTL S m & mIEYAL 26000 SO000
USE 223500
USE W)ITIm 111000 170000
aM 4ZOOO

--
TOTALS: moo0 2b0900

SORWARE QUALIW FORECASTING
INPUTS REQUIREMENTS r------------------------------- 7

FUNCTIOML SIZE CMSSIRCA~~ON j
L,,--,,---------------.-----.---

OUTPUT
r

ESTIMATES
ERRORS

RlNCT7ON --- EARLY PROCESS PRODUCT TOTAL

PROJECT
PROF. -
6D
a
Ell

WPRENT
PROF. -
AV
AV
AV

-

lETWRK UIEPS
TRAlSPDRT LAIBLS
Sm101 URES
PRDMlArrm Urn
APPLIcATrn UIm

CPSE
RJE.
01m #leEff

m K m.
:m1cAIII SBtV.

0s

AREA
PROJECT
PROF. -

rmPllM
PROF. -

S U H I I A R Y C H A R T
EM COTS PROJECT mi

AREA I S U l (noel EL. CQIT. PROF. PROF. ----- -
m 39bQO
0s 1600 lOQOO
AIA RTE 41500
S T M M m SERVICES 93100
D119 m mrmswwr 20700
DATA S T O R M L RETRIEYAL 26000 50006
USE 223500
USE CDIITIIA#D 114000 17OOOO
OllA 42000

--
TOTALS: 63000 260900

Effect Of Formal Specifications
On Program Complexity And Reliability:

An Experimental Study *

Amrit L. Goelt
Department of Electrical and Computer Engineering

Syracuse University
Spacuse, NY 13244

(3 15) 443-4350
goelQsuvm.acs.syr.edu

Swarupa N. Sahoor
School of Computer and Information Science

October 16, 1990

Abstract

In this paper we p-t the r d b of an crperimatal study da-
t a k a ti asscu the improvement in program quality by uaing fonnd cpec-
ificationa. Specifications in the ooktion mrr derdopcd for a simple
but &tic wti-missile system. llae spedficltiona w a e then usai to
develop 2 versions in C by 2 p r o p u m a . h t h a set of 3 venioa in
Ada were independently developed from ; P t o d spaificltioas in English-
A compuison of the reliab'ity and complexity of the r d t i n g propans
suggests the advautaga of e g fed spdiat i~m in terrru of nnmba
of errors detected and fault avoid-

'- - the amme of thu ptoject n a provided via US Aaay -atmu no- DAXF
--il- rPd NASA-Crr~tnol NAGl-80B. / -

tPmf-, ECE d CIS - - . . . - . .
~~&Antt.o(. CIS

EXTENDED ABSTRACT

Specification languaga are widely accepted as a stepping stone for daign
and development of a complexsoftware system [I, 2,3,4,5]. The advantages of a
specification lauguage are often not immediately dear in tenns of program qual-
ity and reliability. Pnving an executable program correct for complex systems
is computationidly an intractable task [6]. Also "an etfective ksting strakgy
which is reliable for all programs cannot be -.onstructed" [7]. In such a setting,
formal specification languages coupled with structured design methodologies [8J
provide t streamlined appro& for software design and development.

In this experimental investigation, we study the effect of the specification
language Z (111 on program reliability and complexity. For our experiment we
hose the NASA Launch Interceptor Problcm(LIP) since it has been used ex-
kmively for several other studies in software reliability and fault tolerance. It
is a simple but realistic representation of an anti-missile system. Tne original
specifications were taken from Knight and L e v a n [12]. The LIP is a constrant
satisfaction problem, a solution to which is a decision procedure which takes a
set of input points and launch characteristics to evaluate a set of initial launch
conditions, called the preliminary unlocking matrix The procedure then e d -
uates a logical combination(the combination is decided by an input matrix) of
the initial conditions called the final unlocking vector the components of which
collectively decide if the launch signal should be true or otherwise.

The q e r i m e n t consisted of usual phases of software design and develop
ment with minor differen-. In the specification phase a set of specifica:~ons of
the requirements w a develope! in the Z notation acd was validated by other
specifiers. Several versions were developed blrgd-pp informal and formal requirc-
ments spedficaLions separately, by independent groups of programmers. For
testing, a hybrid approach [13] was developed based on functional and struc-
tu rd information about the LIP. For generating st casa, the hypothetical
launch conditions were divided into 7 relatively independent groups. The truth
vduea of one of the groups was fixed a priori, ard'an input data set was con-
structed to satisfy the ?refixed truth value, of t;..s group and the truth vdncr
of the rest wP- wmpukd against the icput set. Such manually designed test
e a ~ s were usd to kst each program. Ai: -r debugging, when the computations
of launch conditions for all the versions match, the cydomatic complexity me*
sure [9] is applid to r3mpute internal conplucity of each individual module.

Also computed are the external complexity due to the intetconneetions betweui
various modules based on "idonnotion flow" concepts [lo], and fintally the tota
system complexity as a weighted sum of internal and external complexities.

The versions based on informal requirements are found to be aftlicted with
usual problems c a d by the inherent ambiguities in the informal requirements.
However, a significant reduction was ob=rved in the number of erron detected
in the testing pbase in case of the venions based on forma reqainmenb. Fur-
ther, complexity meMuru strongly suggest that versions b a d on formal spec-
ifications are :.I complex and more reliable than thca b w d 03 informal rc-
quirements. The study also suggests that the formal specifications developed
through several succcuive stages of oper~tions refinement lend thunrelva to an
automatic modular program development(spuia1 case of a divide and conqua
technique) in an optimal way, and thus reduce the error-proneness of the p m
gram and make it more reliable.

Summary of Experimental Results

L Productivity:

Table 1 - specificatio:, development time

Version number (Totd Specification Development Time(bours)
Spec I I 47

Table 2 - pmgnam deuelopment time

IL Rel iabi l i ty (in t e r m of number of errors deieded)

Table 3 - Number of e n v r s detected during development

Verjion oumber I 'Total Program Development Time(houxs)
Cver I
Cver I1

Adaver I
Adaver I1
Adaver 111

18
38
76
73
89

Version number
Cver I
Cver 11

Adaver I
Adaver I1
Adaver I11

Total Number of E m n
3
8
8
7
4

Table 4 - Number of errors detected during testing
- -

References

Version number
Cver I
Cver I1

Adaver I
Adaver I1
Adaver I11

[l] D. L. Parnas, The Use of Precise Specification in the Development of Sofl-
ware, Proceedings of IFIP Congress 77, Toronto, 1977.

Total Number of Errors
0
7
13
11
8

(21 I. IIayes, editor. Specification Case Studies. PrcnticclIall Intcrnational,
London, 1987.

[3] C. Morgaz, B. Sufrin, Specification of the Uniz Filing System, IEEE Trans.
Software Eng., March 1984.

(41 D. Bjorncr, C. B. Jones. Formal Specification and Software Development.
Prentice-Ball International, London, 1982.

[5] C. B. Jones, 3ysten:atic Soflwan Development using VDhf, Prentice-IIall
International, 1986.

[6] D . L. Parnae, LVherr cnn ,CoJliunre be '7hi.~lt11or.llr!j 9, COM PASS-86 Confer-
ence, Wani~i~~yton, 0. C., Jl~ly II)H(I .

[7] W. E. flowden, Reliability of the Path Analysis Testing Slntegy, IEEE
Trans. Software Eng., Sep 1976.

[8] E. Yourdon, L. L. Constantine, Strucfured Design. Prentice-IIall Inc., 1979.

i9] T. J. McCabe, A Complerity Memure, IEEE Trans. Software Eng., Sep
1981.

1101 K. S. Lew, T. S. Dillon, K. E. Forward, Soflware Complerity and its Impact
on Sofiware Reliability, IEEE Trans. on Software Eng., Nov 1988.

[ll] J. M. Spivy, The Z Notation: A Reference Manual, Prentice Hall Interna-
tional, 1989.

[12] J. Knight, N. Leveson, An Erperimental Evaluation Of The Assumpiion
Of Independence In Multi-version Pmgmmming, IEEE Trans. on Software
Eng., Jan 1986.

[13] A. L. Goel, An Erperimental Investigation Into Software Reliability,
RADGTR-88-213,'Oct 1988.

VIEWGRAPH MATERIALS

FOR THE

A. GOEL PRESENTATION

EFFECT OF FORMAL SPECIFICATIONS ON PROGRAM
COMPLEXITY AND RELIABILITY: AN

EXPERIMENTAL STUDY

Amrit L. Gael1
S warupa N. sahoo2

Syracuse University
Syracuse, NY 13244

Presented at the Fifteenth. Annual Software Engineering
Workshop (SEL) held at NASAIG SFC, Greenbelt, MD,
November 28-29,1990.

Professor, Electrical and Computer Engineering and School
of Computer and Information Sdence, (315) 4434350,
goel@suvm.aasy r.edu.
Research Assistant

OUTLINE

Objectives of Study

Experimental Appraoch

Results of Experiment

Comparison with Versions from Informal Specifications

Fault Aviodance by Using Z

Concluding Remarks

A O l
Sy- Cnlv. b . -
M b d 2 a

1 .

OUTLINE

Objectives of Study

Experimental Appraoch

- LIP Problem - 2-Specifications
- Experiment Description

Results of Experiment

- Development Effort
- Size and Complexity Metrics
- Errors During Development
- Errors During "Operational Testing"

Comparison with Versiotis from I n f o r d SpetSications

Fault Avidance by Using Z

Conciuding Remarks

OBJECTIVES OF STUDY

Investigate the effect of using formal specifications on

- productivity
- reliability
- complexity

Compare results with versions developed from i n f o r d
specif~cations

I
I

Curren t
Experiment

i

EXPERIMENTAL APPROACH

Informal Specs -
Random T e s t

T e s t i n g

T e s t Cases

Comparison of
Results

A Gal
s m Cnh.
b 9 d 3

EXPERIMENTAL APPRAOCH

Used NASA - Launch Interceptor Problem (LIP)

Developed 2-specifications from English specifmtions of
LIP (Two independent Z specifications)

Used 2-specs to develop 3 indipendent versions in C

Each version tested for a set of 54 test cases from a previous
experiment involving LIP

Each-version executed for one million random test cases to-
simulate operational testing

LIP

Simple, but realistic anti-missile system.

Studied elsewhere* in connection with fault-tolerant and
FortradAda comparison software research

Program reads inputs which represent radar reflestions,
checks whether some prespecified conditions are met and
determines if the reflections come from an object that is a
threat and if yes, signals a launch decision

* Knight and Leveson, IEEETSE, January 1986.
God, etd, COMPSAC 87 and RADC-TR-88-213.

Global
values:

PARS.

G lo bol
volues :

EXAMPLE

Launch Intercepter Conditions

LIC 1: There exists at least one set cf two consecutive data
points that are a distance greater than LENGTH 1
apart

LIC 11: There exists at least one set of three data points
separated by exactly E and F consecutive
intervening points, respectively, that are the wcrertices
of a triangle with area greater than AREA1

2-SPECIFICATION LANGUAGE

Well known specification language developed by
Programming Research Gmup at Oxford University

Has been applied to develop specifications for several
software systems but we are not aware of experimental
results comparing it with informal approaches

2-specifications were helpful in several aspects.

Some Examples:

SOME COMMENTS ON Z FOR LIP

In resolving certain ambiguous issues

- whether two identical (x, y) pairs can belong to a sequence
of input data points

In expressing invztiant properties

- the LCM matrix is symmetric, can be easily expressed
mathematically

In exploiting the repetitiveness of certain launch conditions
which was helpfui in functional groupings for design and
testing.

- a closer look at LIC 1,s and 13 indicates that they are
reiated. We exploit the similarity by defining a
"prototype" schema, and then uskg it to define each of
these separately

Informal Specificat ion

LIC 1: There exists a t least one set of two consecutive
data points that are a distance greater than LENGTH1 apart.
(LENGTH1 20)

Formal Specification

- L I C ~ (N U M P O ~ N T S , L S I V G T H ~]
P O I N T S : seq R x R

where edist@, q) computes the distance between points p
- and q.

Expressing Requirements in the Z
Notation

Example:LIC?

.Informal Specification

5IC 7: There asists at least one set of N-PTS consecutik~
data points such that at least one of the points lies a dir
tance greater than DIST fiom the line joining the first and
last of these points. I£ the first and last points of these N-PTS
points are identical, then the calculated distance to compare
with DIST will be the distance from the coincident point to all
other points of the NPTS coasecutive points. (DIST 20)

Formal Specification

LIC7[NUMPOINTS, iVpTS, DIST)
POINTS : seq R x R
m u , crnv' : JV -4 tS
m u ' = m u @
(7 w (1 5 #{ (POINTS($ POINTS(j))p i , j : ~. .NUA~POIIYTSO
j = i + N _ F T S - l ~ 3 k : i + l . . j - l e
(~ t m p (P O I N T S (i) , POINTS(j))
A(edist(POINTS(:), POINTS(k)) > DIST))
v (y p t -mp(POINTS(i) , POI,VTS(j))
h(pdist(POINTS(i) , POINTS(j) , POINTS(k)) > D I S T)))
ADIST 2 0))

where edistb, qi computes the distance between points p
and q , pdist@, q, r) computes the perpendicular distance &om
point r to the line through p and q and p t m p (p , q) returns a
boolean value true if p and q are identical, and othexwise false

Expressing Requirements in the Z
Notation(c0ntd.)

Note that the line must be well defined, i.e, at least the points
on the line must not be identical. Obviously this is a partial
function.

RESULTS OF EXPERlMENT

SOME PROGRAM METRICS

* See Lew et a l , TSE, November 1988.

Ada Code From
Inf o m a l Specs

D E F

691 624 851 1 --

programmer

source Lines

Comment Lines

System complexity*

C-Code From
Z-specs

A n c

373 407 669

8 2 8 0 59

56 53 8 1

59 126 251

334 309 297

L

r System S has a modules, each with complexity Mi

System complexity = dZMi

Mi depends on

- Internal complexity - External complexity (measures module interrelationships)

Internal complexity

- M a e ' s cyclornatic number

External complexity

- Amount of interadion with the environment - Depends on the infomatioa content of input and oatput
parameters

Lew et a& E E ' I S E , November 1988, p p 1645-1655.

PROGRAM DEVELOPMENT EFFORT (hours)

* B used specs. developed by A

Learning 2: A - 20 h a
C - 21 krs.

Total

4 5

3 8

5 1

versions

A

B

D ~ v ~ ~ O P
Design Coding Testing 2-specs

6 6 6 2 7

10 10 8 10

8 6 4 C 33

Nlr'MBER OF ERRORS*

'Does not include compilation errors

A

Progranmer

A

B

C

Function
Testing
(54 TC)

0

7

0

Development and
Unit Testing

3

1

3

"Operationaln
Testing

(1 million TC)

0

0

0

Total

3

8

3

COMPARISON OF DATA FROM C AND ADA VERSIONS

We compared the effort and error data from a previous
experiment that used Fortran and Ada languages.

We do not think that our results are biased because
language dependent aspects are not under study here. Also,
the programmers in these studies were reasonably proficient
in the respective languages so that the choice of the language
should not affect o w results

. However, to enhance o w concfusions, we plan to develop C
versions from informal specifications

COMPARISON OF EXPERIMENTAL RESULTS: EFFORT A - . I ERRORS

DCUT - Development and 'Ji?it Testing

FT - Functio.1 Testing

Informal

D E F

76 7 3 8 9

5 4 4

8 7 4

13 11 8

Programmer

Effort

D &UT

Errors FT

Total

Z

A B C

4 5 32 51

3 1 3

0 7 0

3 8 3

FAULT AVOIDANCE BY USING Z

. We believe that certain types of faults can be avoided by
wing formal specifications

. Following are two explicit examples of faults avoided by
using :'or LIP*

- Cduclation of angle between x and 2x rather than betwen
0 and x

- Calculation of distance from point to line when points are
collinear and first point not between other two

" See Brilliant et al, TSE, February 1990, page 242.

FAULT-AVOIDANCE - EXAMPLE LIC 7

Consider 3 collinear points (A, B, C) as shown

Need to compute distance from B to line AC (LIC 7)

computation* from informal specs can lead to

Dist(A, C, B) = min (&st(A, B), dist(B,C))

. However, formal specifications always compute zero, the correct
result

* See Brilliant et al, TSE, February 1990, p. 242.

Use of Z specifications was clearly helpful in reducing errors
(and hence increasing reliability)

Based on a few metrics, it is also evident that the complexity
of code developed from Z was also lower

Total ef'fort involved, including learning Z and development
of Formal specifications, was comparable to the effort
involved in developing versions from informal specifications

Yet -

This experiment does not provide conclusive evidence about
the superiority of formal specification over informal ones

Further investigation necessary to explore the feasibility and
usefulness of Z for large problems

Reusability of such formal specifications also needs to be
investigated

' I .

, - I '- ~2
AN ANALYSIS OF DEFECT DENSITIES FOUND

DURING SOPTWARE INSPECTIONS

. . .I
J o h n c . m * - * a ; ! I ' . . I

Je t Propulsion Laboratory -.A !J ,'

1-
California Institute of Technology
Pasadena. California 9 1 101. USA

Joseph S. SherK, PhJ). e., <. { . / 3 /
California State University. Fullerton

Fullerton. California 92634. USA
C L ' - '

Jonathan Hops
Jet Propulsion Laboratory i , ';.?

Calgornia Institute of Technology - A'

.Pasadena. CA 9 1 109. USA

Software inspection is a technical evaluation process for finding and

removing defects in requirements. design. code and tests. Software
irispections have been used by a wide variety of organizations for
improving software quality and productivity since their original
introduction at IBM. The Jet Propulsion Laboratory (JPL). California
institute of Technology, tailored Fagan's original process of software
inspections to conform to JPL software development environment in

1987. However. the fundamental rules of the Fagan inspection
process were adhered-to.

Detailed data was collected du?ng the first three years of experience
at JPL on 203 inspections. Statistics are discussed for thfs set of
inspections. Included. on a per inspectton basis, are averages of; staff
tlme expended, pages covered. major defects found. minor defects

found and hpectlon team sizc. The inspection team size art& from
three to eight participants with the JPL Product Assurance
Organization providing most of the moderators.

Analysis, of variance (alpha = 0.05) showed a significantly higher
density of defects during requirements inspections. It was also
observed, that the defect densities found decreased exponentidly as
the m r k products approached the coding phase.

Increasing the pace of the inspection meetlng decreased the density
of defects found. This relationship was obstrnd to hold for both
major and minor defect densities. although it was more pronounced
for minor defects.

This paper provides guidelines for conducting successful software
inspections based upon three years of JPL ~xperienct. Readers
interested in the practical and research fmpifcatfons of software
inspections should flnd this p a p helpful.

INTRODUCTION

This paper describes an analysis of factors influencing the defect
density of products undergoing software inspections. Software
intensive projects at the Jet Propulsion Laboratory (JPL) require a
high level of quality. JPL. a part of the California Institute of
Technology. is funded by NASA to conduct its unmatined
interplanetary space program. Software inspections were introduced
at JPL In 1987 to imp- so- q d t y by d e t ~ ~ t i n g m r s as early
in the dewlopmental Uceycle as possible.

Software Inspections are detailed technical r d e w s performed on
intermediate enginetring products. They arc carried out by a small
group of peers from organizations having a vested interest in the wort
product. The basic process is highly structural and consists of six
consecutive steps: planning, overview, preparation, lnspcction

meeting, rework and follow-up. The inspection process is controlled
and monitored through rneMcs and checklists. One of the best
fundamental descriptions of this process is Fagan's original article
[Fagan. 19761.

JPL tailored Fagan's original process to improve the quality of the
following technical products of a s o h a r e intensive system: Software
Requirements. Architectural Design, Detail Design. S o u m Code. Test
Plans. and Test Procedures. For each of these types of products a
checklist was tailored for JPL's application domain. standards and
software development environment. Supplemental tailoring included
the addition of a "third hour" step to Fagan's proeess. The "third hour"
step was flrst discussed by Gflb [Gflb, 19871. JPL's "third hour" step
includes time for team members to discuss problem solutions and
clear-up open issues raised in the inspection meeting. Other tailoring
included substantial use of Software Product Assurance personnel as
inspection moderators. a JPL speclfic training program, and new data
collection forms.

The analysis of defect densities from inspections was performed for
the purpose of 1) ensurlng thzt the conditions of a quality inspection
are being met by JPL inspections. 2) verltjmg previous research
findings on inspections and 3) understanding the factors which
inauence inspection results. It was expected that the results would
agree with previous findings on inspections. but due to slight
variations in the variables collected. some differences werc observed.

Data was collected on 203 inspections performed on five software
intensive projects at JPL. Practically all inspection team members
werc trained in a m e and a half day course on formal inspections
[Kelly. 19871. Software Product Assurance supplied 70% of the
moderators. The inspections took place between February 1987 and
April 1990. Although the projects used Ada, C and Slmula, only 16%

were performed on code. Table 1 shows the types of inspections
performed in thls study and the sample size for each type.

The data included in this study was recorded on the "Formal
Inspection Detailed Report" and "Inspection Summary Report" forms
[Appendix 1 and 21. Each InspecUon produced a complete set of
forms indicated in the process diagram [Flgure 11. This informatron
was placed into a database and monitored. Occasionally. the chief
moderator would contact the inspection moderator when reports
were abnormal. This was done to provide feedback for inspectlons
which were experiencing difflculUes. Eleven inspection reports were
rejected for anafysls in this sample for the reason that they wzlated
some of the fundamental rules of inspections as shown in [Appendix

- .
31.

Checklists were used to 1) help inspection team members focus on
what to look for in a technical work product, and 2) provide categories
for classifying defects. A generic checklist was provided in the
training materials for each type of Inspection: R1. 10. 11. 12. rrl and
m. Rojects may use the generic checklist or tallor this llst to match
their own environment and development standards. However. we
encouraged projects to maintain the 15 main categories for types of
defects shown in the "Formal Inspection Detailed Report". [Appendix
11.

The metrlcs used to monitor and analyze inspections can be classified
into three prime areas: staff time, types of defecrs and workproduct
characteristics. The staff time expended was recorded by total hours
durfng each stage of the LnspecUon process. Part way through our
study we began collecting staff time by the role played in the
inspection meeting (author. moderator. or inspector). The
organizational areas. represented by these participants. were also
recorded.

Each defect was classiatd by sz'derity, checklist category. and "type".
Tbc severity of defect was classifled either major. minor, or trlvfai.

n M a l defects in grammar and spelling were noted and corrected. but
not included in this data analysis nor on the "Formal Inspection
Detafted Report" [Appendix 11.

The "type" of defect (mission. wrong, or extra) was recorded on the
forms, but not in the database. This information is not as
institutionally critical. however. the authors And it to be a useful gulde
during the m r k stage of the process.

The workproduct characteristics included size [by pages of lines of
code). phase and type of product (requfrements, test plan. etc.). and
project Since inspections were usually introduced relatively early in
the developmental Mecycle. when most products were technical
documents, the preferred size reporting metric was in w. A
typical page of JPL documentation is single spaced. 38 lines per page
in 10 point font size. A page containing a diagram was counted equal
to a page of test. The authors felt that number of pages was a more
accurate measure of material undergoing inspection than "estimated
lines of code" for technical documents, since projects did not have a
history of a detailed accounting of the second metrics during the early
lifecycle phases. Due to most of the data being reported in w.
different relationships are found than in previous studies. it should be
noted that "pages" is more of a oriented statistic than it is a
woduct oriented measure. One of the key metrlcs that was used in

this analysis i s "density of defects per pagen. This metrlc was used to
compare inspections of Uerent types and their related factors.

Results showed a higher density of defects in earlier lifecycle products
than in later ones. An analysis of variance was performed on data
collected from the different types of inspections in the sample (Rl.
10. 11, 12. ITl. and lT2). Figure 2 shows the average number of
defects found per page for each of the inspection types. The analysis
of variance test s h d that at Alpha = 0.05. the defect density at the
software requirements inspection (R1) is signincan@ htgher than that

of source code inspectlon (12). and also the defect density at test plan
inspection (nl) is significantly higher than that at test procedures
and function inspection (Tn). It was also observed that the defect
densities found during inspections decreased exponentially as the
development work products approach the coding phase [Figure 3).

The staff hours needed to & defects wcre not found to be significantly
different across the different phases of the lffecycle [Figure 41. It
should be noted that the defects found and fixed during these
inspections originated during the lifecycle phase in which they were
detected. Latent defects which were found in high level documents
during inspections were recorded as "open issues" and submitted to
the change control board. Since the researchers dld not know the
timely outcome from the control board, these potentla1 defects are not
tracked in this study. However. the average cost to fbc defects during
the inspection process (close to their origin) was 0.5 hours. which is
considerably less than the range of 5 to 17 hours to fIx defects duxing
formal testing reported by a recent JPL project.

Prevfously. inspection defect counts were found to decrease as the
amount of code to be inspected increased_[Buck. 19811. Figure 5
shows this trend to be sure for the total sample of inspections in this
study with respect to defect density per page.

The average inspecUon team composition and size for this sample are
shown in Figure 6 by type of inspection. For development inspection
types (Rl , 10, 11. and 12) the trend is for larger teams for
requirements and high level documents while smaller teams are
needed for code. The inspection program at JPL tried to insure that
teams were comprised of members from organlzattons having a vested
interest in the work product. The rationale for this was to keep
insptctlons fiom being.biased toward an organization's internal view of
the product.

Ffgure 7 shows the distribution of defects percentage by defect types
and defect categories.

CONCLUSIONS

Experience has shown that formal inspection of software is a potent
defect detection method: and thus. it enhances overall software quality
by reducing rework during testing, as well as maintenance darts.

The following items highlight the. results of JPL experience with
formal inspecttons.

1. A variety of different kinds of defects are found through
inspections with Clartty. Logic, Completeness. Consistency,
and Functionality being the most prevalent.

2. Increasing the number of pages to be inspected at a single
inspection decreases the number of defects found.

3. Significantly more defects are found per page a t the earlier
phases of the software lifecycle. The highest defect density
was observed durfng Requirements inspections.

4. The cost in staff hours to flnd and fix defects was consistently
low across all types of inspections. On average it took 1.1

hours to find a defect and 0.5 hours to fix and check it (major
and minor defects combined).

5. W g e r team sizes (6 to 9) for higher level inspections (R1
and 10) are justified by data which showed an increased
defect finding capability.

JPL has adopted formal tnspections for many of its software intensive
projects. The results are very encouragfng and show very significant
improvements in software quality.

[I) Buck. F. 0.. "Indications of Quality Inspectionsw. IBM Technfcai
Report. TR 2 1-802. September 1981.

(21 Fagan, M. E.. Pesign and Code Inspections to Reduce Errors in
Program Development". IBM Syst. J. wi 15. No. 3. pp 182-211.
1976.

131 Gllb. T., Principles of Soflmare Engineering Management.
Addison Wesley, Reading. Mk 1987.

[4] Kelly. J. C.. "Formal Inspections For Software Development'.
Software Product Assurance Section. JPL, California Institute d
Technology. Pasadena. CA. 1987.

Table 1 : Types of inspections included in this analysis

Inspection Inspection
Abrevlation TYP

Sample
Size

R1 Software Requirements Inspection 23

10 Architectural Design Inspection 15

I I Detailed Design Inspection 92

12 Source Code Inspection 34

IT1 Test Plan Inspection 16

IT2 Test Procedures & Functions Inspection 23

Total: 203

Figure 1 : Overview of the Software Inspection Process

L

raLoww mAJitw0 OHlWYW lNsP€CTKH(

THRO H O M = aw-l

Figure 2: Defect Density Versus Inspection Types

R1' 10 I1 12'
Development Inspection Types

IT1 ' IT2*
Test lnspectlon Types

At the alphas 0.05 level of significance AN0 VA F test showed 8 significant
diHerence between the defect densities of R1 and 12, and between IT1 and 1T2.

Figure 3. A developed predictive model for defect
density as a function of inspection type

f
Model: y = 3.19e -0.61 X

where X= 1, 2,3, or 4
.......-..""." -.

Development Inspection Type

Figure 4: Staff hours per defect.

Developmsi-! t Inspection Types Test Inspection Types

Resource hours lor lindiw include all l i n ~ expended during Planning, Overview, Preparation. and Meeting phases. Resource hours
lor lixhg lnckrdo all lime expended durirtg Rework, Third Hour, and Folbw-up phases. Delecls include a l major and minor deleds.

Figure 5. Inspection page rate ver;.sus average defects
found per page

"EE 8 9
k'

Number of pages per inspection

Note: lnspection "meetings" are limited to 2 hours and moderators are
recomrnendod to llmlt mhterial covered to 40 pages or less.

1 4

Figure 6: Team Composition and Size by Inspection Type

? + Development Inspect ion Types

IT1 IT2

Test Inspectlon Types

_I

System Eng

a SIWEnpr

Tea Eng

fl Product Aawrancr

Total
-

\

\, Figure 7: Distribution of defects by classification

GllW!mh n= 203 inspections

Clarlty
C o r n c ~ L o g l c
Compktano88
Conrlrtoncy
Functlonallty
Compllmca
MJntmnco
Lovd o! D.tall
Tmcomblllty
FWhblUty
Pod ormnco
0th.P

0% 5Or6 10% 15% 20% 2S0k 30% 35%
Defect Percentage

"Other" includes those classlficationa wlth fewer than 20 total defects.

JPL
DETAILED INSPECTION REPORT

Subsyslcrn Moderator

Unit Type ol Inspection
PLEASE nETUnN COMPLETED FOnX TO L KELLY ATUS 12St13

O~ZII lssuo Slalus
Category Open Issue O~sctlpllon

A p p e n d i x 1: Formal I n s p e c t ion D c t a i l e d Rcport

(JPL INSPEC~ON SUMMARY REPORT ID#

I - Inspection h i n g Dur
Subyswm Fdbw Up Comparbn Dun

~yp~thrprc~on:O~o ORI 0 1 9 011 0 1 2 On1 O m Omw
hg.docr w: FLSI UMWJ R.inspdon b r i n g P h p r n u ,, h b n g cw HOW @.XI

81rr 01 WaLprobcl Dklrlbuun : MW % W h d % WuMd -% Ddrtod .-%

Told Tlmm expondad In Penon Houn (X.X)

I Dlfects lound: Major Minor Defects reworked: Major Minor

hsaar

Open Items (number): urrd Own -
Comments: -

(;hock All Atrandlng hrputlon Yeulng:
OPfoirclEnOinwinO 0
0 SyIams EllghwhJ t] R&a W w r

Tad '

I Dillribulion: Discrepancy Reportsfchange Request(s)lWaiven:

A

Thitd-thu

I Moderator

Inspectors

F d a U p

A p ~ e n d i x 2: Inspection Summary Report

Ouwui.* Urn* P e Revoh

Appendix 3
The 10 basic Rules of insr>ections:

1. lnspections are carried out at a number of
points inside designated phases of the
software lifecycle. lnspections are not
substitutes for major milestone reviews

2. lnspections are carried out by peers
representing the areas of the life cycle affected
by the material being inspected (usually limited
to 6 or less people). Everyone participating
should have a vested interest in the work
product.

3. Management is not present during inspections.
lnspections are not to be used as a tool to
evaluate workers.

4. lnspections are led by a trained moderator.

5. Trained inspectors are assigned specific roles.

Appendix 3
The 10 basic Rules of lnspections:

(Continued)

6. Inspections are carried out in a prescribed
series of steps (as shown in figure 1).

7. Inspection meetings are limited to two hours.

8. Checklists of questions are used to define the
task and to stimulate defect finding.

9. Material is covered during the Inspection
meeting within an optimal page rate range
which has been found to give maximum error
finding ability.

10. Statistics on the number of defects, the types
of defects and the time expended by engineers
on the inspections are kept.

VIEWGRAPH MATERIALS

FOR THE

J. KELLY PRESENTATlON

An Analysis of Defect Densities
Found During Software Inspections

Fifteenth Annual Software Engineering Workshop
November 28-29,1990

Goddard Space Flight Center,
Greenbelt, Maryland

John C. Kelly, Ph.D.
&

Joseph Sherif, Ph.D.

Section 522
Software Product Assurance

Jet Propulsion Laboratory
Pasadena, California

'1

\ JPL
What are Software Inspections?

oftware ln@ections are:

Detailed Technical Reviews

Performed on intermediate engineering products

A highly structured and well defined process

Carried out by a small group of peers from organizations having a
vested interest in iijct work product

Controlled and monitored through metrics and checklist

JWJS 02 I

1 1 m

Types of Software Inspections Included in this Analysis

SAMPLE SIZE

R1 Software Requirements Inspection 23

a 10 Architectural Design Inspection 15

I1 Detailed Design Inspection 92

12 Source Code Inspection 34

TT1 Test.Plan Inspection 16

IT2 Test Procedures & Functions Inspection 23

TOTAL 203

JPC
JPL Tailoring

of Existing Inspection .Techniques

Participants and Team Composition

Third Hour

Training

a Support Documentation

JPL
Software lnspection Data Summary1

Ouldrllmr: Nonr
(JPL AddJllo~) I

r \

Averages per Inspection

Participants: , 5.2
Major Defects: 4.2
Minor ~efects:' 13.0
Pages Covered: 35.4
Total Staff Time: 27.7 Hrs

\ J

m u

C

1: All tlmes a n averages from a sample of 203 JPL Inrpectlons.
2: Guldellner were mt In 2/88 bamd on outrlde organlratlons' experience and a team of flve

Inrpocton.
3: A m.lrr I8 an error that would m u m the ry8tam to tall durlnp operatlonr, or prevent the rystem

from fulfllllng r ntqulrement. m a r e all other defects whlch are non-trlvlal. In
grammar and rpelllng were noted and corrected, but not Included In thlr data enalyrlr.

?unwm
I) d w

0vmVISW w C C T K)) (rnEPARATKm RTWO(#

B 1 3 t h

d NI hrpoctlonr)

I 1 I I 1 2%- I OulbMnr:
2 6 7.6 Hrr I Ma

A

mIW HOUR

Tlme r 1.0 Hra
(Imludd h 2@% of
aU Inrprctlona)

A v w ~ g e 8 1.0 tin Avrnga 8 a2 H n A v r n g r m 7.7 H n Avrrrgr 4.4 H n
(lnclud.dIn 11%

A v r n g r 8 9.3 H n

JPL
Distribution of Defects By Classif ieation

n= 203 inspections

Ciarlty

CorrectnesslLoglc

Completeness

Consistency

Functlonallty

Compliance

Maintenance

Level of Detail

Traceability

Rellabillty

Performance

Other'

0% 5% 10% 15% 20°h 25% 30°r6 35%

'Other includes those classifications with fewer than 20 total defects.

lnspection Page Rate vs. Defect Density

0

Defects o

Found 3-00

. Major LI

Pages per Inspection

Note: Inspection "meetings' are limited to 2 hours and moderators
aro recommended to limit material covered to 40 pages or less.

JPL
Defect Density vs. lnspection Type

Development lnspectlon Types

IT1 ' rr2'

Test Inspection Types

At the alpha=0.05 level of significance ANOVA F test showed a significant
difference between the defect densities of R1 and 12, and between K1 and IT?.

l2i
is-

~redictive Model for Defect Density vs.
Inspection Type

wlrere x= 7,2,3, or 4
for R:, 10,11, or I2 respecflvely

Development Inspection Types

JPC
Resource Hours per Defect

- w - TOTAL
--FIND

Development Inspection Types Test lnspection Types

In contrast, recent JPL projects reported spending an average of 5 to 17
staff hours to fjl(each defect during the m.

Rawurn hour6 & Md& hdude all Ume expended &rlng Pleming, Ovenriew, Preparalbn, and M d n ~ phasm. Remum h m kr
h ~ h c * l d . a I U m o l p W & ~ A . * o l k , ~ d H a u r , . i d ~ ~ l ~ v - u ~ ~ ~ . D I I a ~ w a l ~ n d - d * c (. .

JWJS 10
11mao

JPC Team Composition and Size by
lnspection Type

R1 10 I1 12

Development Inspection Types

I ~ ~ r l e r n Eng

HS/W ~ n ~ t

@Teat Eng

IProduct Awrance

BTolal

IT1 IT2

Test Inspection Types

JPL

Average I .oo
 umber o,eo

of Defects
Found 0.60
Per
Page 0.40

Team Size vs. Defect Density

Inspection Team Size

Note: I1 inspecdons are the most frequent for team sizes 3,4,5, & 6
R1 Inspections are the most frequent for team slzes 7 a 8

Code Inspections vs. Code Audits

Avg. Number of Defects
Found per Page

hdalor Minor Sample Size

Code Inspections 1 0.022 I 0.2% I " I

Nola: 1. The work produd hfslory b r cock lrupedlon #ample wa8: 41% new, 65% reused, and 4% modifbd.
The work produd Nsmy lor cock wrdllr rrample was: 100% new.

2. For rN typer of hy#abnr cgrbined the avsrrw number d ddecle kund per page w u nudr hher
lhan what was bund In axlo @pedbns (refsr lo dide 8 8). The weraw averages were;
Major 0.1 19 and Mhor - 0.377, lor a s a w 8hr at 203 hqmlbns.

Code Audits O.ip07
b

0.1 11 1s

JPC CONCLUSIONS
A variety of different kinds of defects are found through
inspections with Clarity, Logic, Completeness, Consistency, and
Functionality being the most prevalent.

Increasing the number of pages to be inspected at a single
inspection decreases the number of defects found.

Significantly more defects were found per page at the earlier
phases of the softwi~re lifecycle. The highest defect density was
observed during Requirements inspections.

0 The cost in staff hours to find and fix defects was consistently
low across all types of inspections. On average it took 1 .I hours
to find a-defect and 0.5 hours to fix and check it (major & minor
defects combined).

0 Larger team sizes (6 to 8 engineers) for higher level
inspections (R1 & 10) are justified by data which showed an
increased defect finding capability.

38;
E 5 - 0 Code Inspections were superior in finding defects over Code
'kt Audits (single reviewer) by a factor of 3.

JWJS 14
1 1 m

VIEWGRAPHS FOR PANEL 1

VIEWGRAPH MATERIALS

FOR

MICHAEL DASKALANTONAKIS,
Motorola

-- - -

:\1OTOROLA, INC. - FIRST M A L C O L M BALORI(;E NATIONAL QUALITY AWARD

EXPERIENCES IN ESTABLISHING AND
MAINTAINING AN EFFECTIVE

MEASUREMENT
PROGRAM

Michael K. Daskalantonakis

Software Research and Development
Motorola, Inc.

November 29, 1990

n D " ' ' - SRD MOTOROLA, INC.
M&roh
- 1 d 6

f

THE SOFTWARE METRICS PROGRAM IN .
-

MOTOROLA
- \

- Corporate-wide sctivities since 1988 (parts of the com-

pany have started earlier than that)

- Emphasis on building an organizational infrastruc-
ture:

. Metrics Working Group (MWG)

Metiics Users Group (MUG)

. Metrics champions within Corporate R&D and

wirhin business units (metrics entities)

. Two-day training workshop on software metrics

process improvement

- A set of software metrics has been detlned and it is re-

quired by the Quality Policy for Software Development

- Additional metrics are used by projects as necessary

I - The goal is not measurement. The goal is improve-
ment through measurement, analysis, and feedback

.
SRD >lOTOROLA, ISC. .u ~.r~llltoarlrk

MOTOROLA, INC. - FIRST MALCOLM BALDRI(;E NATIONAL QUALSTY AWARD

OBSTACLES WE HAD TO OVERCOME

- Setting up a "system" to capture the data; initial lack of

tools that automate metrics; some projects wanted to
L

use metrics, but did not have the tools

- Gettingpeop1etotrackthedata:fearthatotherproj-
ects do not report the data consistently

- Middle-level management resistance in implementing

the metrics; fear of overhead and extra cost; percep-
tion that the data may be used against them

- Required a cultural change in the software community:

it met resistance. although Motorola has alieady im-

plemented measurement systems in other areas. and

change is part of the everyday business

SRD %IOTOROLA, INC. ~~r lu~nrout i
ydord.

- 3 d 6

MOTOROLA, INC. - FIR- MALCOLIW BALDRIfiE NATIONAL QUALITY AW'.-\RU

COST OF THE METRICS PRCGRAM

- * - Cost is involved in terms of establishing the program,
as well as in terms of operational costs

- The MWG meets twice a quarter (about 8 people pres-

en t)

- The MUG meets quarterly (about 15 people present)

- Tool deveiopment cost

- Example in a Division: 3 person-years per year for ap-

proximately 350 software engineers (less than 1% of
resources)

- Example in a Division: 0.75 person years per year for ap-

proximately 70 software engineers (about 1% of re-
sources)

- Post-release metric costs have been insignificant
compared to benefits; in-process metrics are very use-

ful, but they have been more costly and need to be auto-

mated

- In general, the overall cost is acceptable and justified
- - - - - -

C

S R D >lOTOROLA, INC. .sf. -
MarorQ
- 4 d 6

,, . ..

MOTOROLA. INC. - FIRST Mt\LCOL,LI RALDRI(;E .Yt\TIOK.AL QUALITY ,\WARD

BENEFITS SO FAR

- People started thinking about software process and

quality; the data has helped understand several prob-

lems and show how bad these problems were

- Metrics helped establish baselines, and forus on ac-

tions with quantitative results; there are cases of sig-

nificant quality and productivity improvements (exam-

ple flithin a Division: 50X quality improvement in the

last 3.5 years)

- Presenting the metrics charts did not improve the

quality by itself; it is the quality initiatives :aken as a

result of looking at the charts that made the differ-

ence

- Many indirect benefits (e.g.. helped improve shipilc-

ceptance criteria, helped improve schedule estimation

accuracy, etc.)

SRD .MOTOROLA, INC. xIcDat.bhulub
.uatd.
R L r J d b

;MOTOROLA, INC. - FIRST b1ALCOL.M BALDRI(;E NATIONt\L QUALITY .4'A1AHI)

LONG RANGE BENEFITS EXPECTED

- Software groups learn from mistakes of previous proj-

ects and take action to avoid them

- Significant improvement in customer satisfaction due

to improved qua1 i ty

- Significant cost reduction due to improved quality (re-

duced cost of rework; resources are freed up to work on

new software development)

- Productivity improvement is expected to reduce cycle

time, allowing the products to reach the market at the

right time

- Remember: metrics can only show problems and give

ideas as to what can be done; it is the actions taken that

bring the benefits

. -
SRD MOTOROLA, INC. DrluLacmr~k

VIEWGRAPH MATERIALS

FOR

BOB GRAD%
Hewlm-Packard

Experiences in Establishing
and Maintaining

an Effective Measurement Program
What does our measurement program look like?

What obstacles did we have to overcome?

What are the costs of such a program?

What are the benefits so far?

What long-range benefits are expected?

--

3anta Clara Systems Division
wha10-11126190

HP's STANDARD SET OF METRICS

Consists of Code Volume, Effort, and
Defect Definitions:

NonComment Source Statement (NCSS) - non-comment
physical lines of code including compiler directives,
data declarations, print statements and executable
code. Each include file counted only once. IPp581

Engineering Month hEA4) - sum of calendar payroll months,
attributed to each project engineer, including testing,
adjusted to exclude extended vacations and leaves;
excludes irilia project managers spend on
management taqks. Lpp541

Defect - any deviation from the specification and any
$ B E
: E l errors in the specification. [Pp-561 -

CSG QUALITYITXS @ 1400 t i e w ~ e ~ t - ~ a c k a r d CO. Fa HEWLETT
I)I I MI I I l~l l l~lO PACKARD

--- -- --

Postrelease Discovered Defect Density

Group A *
Group B

+
<'I2 Months

X
Average Control - ---I

tvlol~ll~ v l Ptoducl's One-.Year Evalualiorl
_ _ _ _ _ _ - _ - - - - - ---

iOf I wall I) I ~ I ~ V I ~ I ~ ~ ~ ~ ~ ~ I ~ ~ I ~ ~ TI!I:II I I I~I~ I \ ~ ~ I 41t1 IYJU II~WIOII-pachard CO.
HEWLETT

enxddsl-~l112610O
PACKARD

Open serious & Critical KPR's
10X Goal Actual

- -- --
Software Development Technology Lab

@1990 Ildwlrll-Pachud Co.
HEWLETT

ronxscsl-111?6/Y0 PACKARD

What Obstacles Did We Have to Overcome?
Perceptions of metrics.

Selling.
- Top management
- Project managers
- Engineers

Too-rapid change.

- Leap before you look
- More is better
-- Desperation for a breakthrough

Organizational changes.

- -- --. - -- - - ___l...._- _. _ _ _ _ _ . L . _ ~ I _ _--_.A- -1-

S d ~ l l a C l a d S y s l t j ~ ~ \ s UIVISIUI\ @ 1490 tlew~e~l-pachard Co. HEWLETT
whall-11126190 PACKARD

What Did We Do Right?

Council.

Started small.

Created an environment for reinforcing success.

- top management training
- Software Engineering Productivity Conferences
- productivity managers

Metrics class.

Good tool support.

- - . - ,. ----
Santa Clara Systeins O~v~sion @ 1990 ~e~tet t -packard CO. HEWLETT
what?-11126190 PACKARD

Hierarchy of M e t r i c ~ Acceptance and Practice

/' Data collection \
I / automated; analysis \

k i t h expert system support \
/---

-..-

/ Experiments validating best \ /
/l-- practices with data - \

Common terminology; data comparisons
_ _ _ _ _ _ ----.-

:I/'
Project trend data available

-. -- --.- -

/' Acceptance of measurement
_____ C________ _ . _ _ _ -- - - -- - - -.---- ______- - - - ' ! Santa ~ ~ a r n ~ y s t c . 1 1 ~ I.)IVI:.IOI~ (5) I ~ I ~ H 1 I I ~ W I ~ I ~ o d ~ k d ~ d CO.

\
HEWLETT
PACKARO

_ _ _ _ _ _ _ C _ _ _

Top Eight Causes of Defects for One Division

Specificat ions1 Design Code Environmental
Support Requirements

Standards 6.7%

Error

Logic

C hlc

Data Def / . / % I

I 9.7%

face 9

-

, _ _ _ C _ C _ _ C - - - ._-_. ---

Software Develop~nonl Tw:tv~olog~ I - a t ~ @ ~IJ~JU ~ t e r v l u l l . . P ~ ~ h ~ l J CO. HEWLETT
PACKARD

ERROR HANDl-ING DEFECTS
(Results of New Standards)

I Manufacturing Prot i~ lc t~v~ ly Div~slon
efrhalhl-8111190

@ lYx) I l~wlsl t -Pi tcha~ J Co. HEWLETT
PACKARD

- - -- -

SPECTRUM TECHNICAL PROGRAM
Post-release Incom~ng SRs by Customers

NOT CERTIFIED1 WORST CERT CERTIF!ED
DID NOT MEET
CERTIFICATION

PRODUCT PRODUCTS

3 months moving average

MON 1'1-1s
CSGIDLDI1.MOISof t ware Methods Lab 0 19'30 t i o ~ ~ e t t - ~ a c k a r d Co. HEWLETT
sepcgp?~-O6/1C)/OR PACKARD

VlEWGRAPH MATERIALS

FOR

RAY WOLVERTON,
Hughes Aircraft Company

v
I] : 1 :

EXPERIENCES IN ESTABLISHING AND
MAINTAI~ING AN EFFECTIVE

MEASUREMENT PROGRAM

Based on Managing Programming
Measurement, IIT Programmlng, Advanced Technology Center

from 1981 to 1986 at Stratford, Connecticut

Ray Wolv~rton
Hughes Aircraft Co.

Los Angeles
(213) 414-5515

A Praoantation to tha 16th Annual Sottwara Engineering SEL Workshop,
NASAJGoddard

November 28-20,1000

Programming Measurement

Programming Measurement Strategy
Develop yearly baselines for progress comparison

Develop project performance reporting system for
management

Develop forecasting and diagnostic measurement procedures
for use by project personnel

Establish and enhance integrated measurement system
through yearly growth in the type and accuracy of
measurements reported

CONTEXT AND CIRCUMSTANCES

a Took three years to collgct data and 8how trends - 20 companies - 106 projects - 7.2 million developed statements
- 12.4 mlllion delivered statsrnents
-- 3,073 personyears

Productivity, calculated as developed statementnlpersonyear,
measures the efficiency of developing new and modlfled code

0 Project prndpctivity is averaged by application type and year completed

8 Telecommunlcatlon projects represent 45% of the projects and 71% of
ths effort in our last baseline

a Quallty trends, quality improvements, and quallty-productlvlty relation-
ship was examlned Dndopth

Programming Measurement Objectives
a Develop project performance measures relating to economic

productivity, costs and profits
e Reduce programming production costs thru increased

efficiency
Provide an early warning of project productivity, quality,
schedule or cost difficulties

a lmorove the development and defense of competitive bids . .

Track programming productivity and quality trends
Compare ITT to industry performance
Measure the effectiveness of alternative programming
met hods/tools
Understand the effect of management decisions on the
programming pr,cess
Track the progress of programming projects

a Analyze the impact and effectiveness of tools, methodology
and technology
Improve the allocation of resources

Measurement Programs
Baselines

@ Performance factors
Leading indicafot s
Resource estimating
Quality profile
Programmer manager development
Programmer competency and task analysis
Product cost system
Programming cost estimating

Programming Productivity, Quality
and Cost
Major Factors

Modern programming practices
Programming personnel
Organizational structure

a Tools available
Restarts and direction changes

a Attrition
Number of locations

a Project complexity
Computer availability

0 Project objectives & requirements
Physical environment

Initial plans, schedules & cost estimates

PROGRAMMING MEASUREMENT TEAM

Bert Albert
Bill Curtis
Sue Hoben
Yuan hlu
Hank Malec
John Vosburgh
Ray Wolverton

Tom Jopling
Bruce Roberts
Lynn Truss
Barbara Conway

Data Coordinator
Human Factors
MIS Specialist
Statlstlcal Modellng
Quality Issues
Statistical Analysis
Managamant

FOCUS Programmer
Yale Grad Studant
Yale Grad Student
Graphics

Overall Approach to the Study of Productivity
Performance Factors

MEASUREMENT
QUESTIONNAIRE

BASIC DATA P~OGRAMMING
A. GENERAL ENVIRONMENT PHODUCTIVITY PRODUCT

G. DEFECTS VARIABLES
FACTORS CATEGORIES

H. RESOUHCES
I. COSTS

J. COMMENTS
ENVIRONMENTAL DATA

B. SUPPORT
C. REOUIREMENTS
0 . PRACTICES
E. PERSONNEL
F. PRODUCTS

SINGLE-ORDER REGRESSION
CORRELATIONS , . .
MEANS. OTHER . . , , r r x ; ~ ~ A T I O N
DESCRIPTIVE
STATISTICS

6 PLOTS

Plotting of Personyears versus Developed Statements

range
* '
4 * p H
0 * / ,

100..
U)
CT *

/' .
* */ ** * Z

0 0 * * 0
V) /' ** .

* I / 0 : Y

0 **" * 0'
10.. r e n r * 0. 4 * 9 *,/ 0* / * :

/ 0
/

4' a * * *../**
* * f 4 e

* p0
//

(AII projects in Buseline Data Bass are represented)

1 . - , 0
0

1000 10000 100000 1000000 10000000

/ * . / *
/

/
4' a * * * e m / * *

* * f 4 e
*

0
p0

(AII projects in Buseline Data Bass are represented)
/

DEVELOPED STATEMENTS

Measurement Strategy
Responsibilities

Programming Unit -
methodology

responsibility

Pnalyzes Data

r ~ s s i s t I I
I unit I setting I goal setting _j -I----------

Improvement I tracking

I Enhanced I

and tools PEZJ

Strongly Correlated Groups of Productivity
Factors

LARGERTAHGET-C~MPUTER LARGER DEVELOPMENT-COMPUTER
LESS TIMING-CONSTRAINT LOWER APPLICATION-COMPLEXITY
LESS MEMORY-UTILIZATION NO CONCURRENT-HARDWARE -

HIGHER CLIENT-PAHTIPATION

LOWER STAFFING-LEVEL - 7 l) I HIGHER MPP-USAGE I

I REQUIREMENT-SPECIFICATION by ITT
LESS REQUIREMENTS-REWRITE
HlGIiER PERSONNEL EXPERIENCE I

I HIGHER PRODUCTIVITY

Breakdown in the Variation of Productivity
of Non-MIS Programming Projects in ITT

Controllable factor: Uncontrollable factors:
Development-Computer
(cross development only)

Controllable factors:
Client-Experience
Client-Participation.

Controllable factors:
MPP-Usage
Staffing-Level
Personnel-Experience

Controllable factors:
Requirements-Specification
Requirements-Rewrite
Concurrent-Hardware

Other Variables:
lncorroct date
Newness of application or design
Documantrtion roqulrornenta
Factors unique to programming environment

13 Productivity factors explain 34 of Other unidentified variables
variation in productivity

When comblnod wlth developed
statements, these 13 roductlvily factors
explain 80 perwnt o the variabon in
effort

P

Pronramminn Measurement

Quality & Cost Ship

State-of-the-art

Caler~dar time

I I
Calendar time

$
unit
cost * .L

100 to 1000X 35X 1X 2 X 5 X

TESTING
DEFECTS

PER
1000

DEVELOPED
STATEMENTS

Relationst~ip Between Productivity and Quality

I OUTLIERS

PRODUCTIVITY

Scatterplot of Cost Per Statement Against Productivity

DOLLARS
PER

STATEMENT

T - TELECOMMUNlCATlONS
E - ENGINEERING &DEFENSE
M - MIS
S - SUPPORT

PRODUCTIVITY

* 7 MIS projects with productivity above 6000 statements per personyear
are out of range.

Relationship Between Dollars Per Statement
and Productivity for Various Levels of
Burdened Personyears

PRODUCTIVITY

Distribution of Productivity with Resproct to
Staffing-Level

STAFFING-LEVEL

Programming Mearuremant

Programming Measurements
10 Leading Indicators

Code production Schedule index
a Defect removat Problem index
a Test achievement e Development hours index

• Defect rates Development cost index
a Test effectiveness index Work performed index

CODE PROOUCT101(V tRSUI DATL - IHDICATm I 1 RW D A I t l OL/tb/bl

COWANY: SEL PltOJtcT: 1240

S STL?i.S:HC L I T I K L M 1
C C W L E T I H C HAT (KLOC I

JANUARY - JUNE THE LAG TIRE IS
1982 BUILDING. THE

HODULE MANAGER
SHOULD TAKE
ACT ION,

1

I
. S . S . S

OCTOBER
I

150 . a . a . l i . a
I . I C
I 8 . 8

:: ii
JAN 62)UR 42 t U V 8 t Jol 82 at? 8t l&V 88 JAM 85 IlM a3

LAG TIPE IS
DOUBLE THE 20
WEEKS I N THE
PLAN, TAKE
ACTION NOW

NOVEHBER - GOOD WORK.
FEBRUARY 1983 ACT ION TAKEN

HAS GOOD RESULT
STAY ON TOP OF
THE SITUATION.

Programming Measurement -

Programming Productivity Target

0- e
OBJECTIVE 0'

0)
OoO

t
P

0 ,-' @@@

,' &@#
l@*

STATE OF 3 I IE ART
2,000 8

STATEMENTS I
4

PER 8
PERSON -YEAR 4

I I I

'80 '82 '04 '86

YEAR

Programming Quality Target

SOURCE
STATEMENTS

' OBJECTIVE I - 'I\,

I ART \ '.

YEAR

Programming Measurement

Unit Reaction to Program Introduction
"Need It"
"Want It"

BUT

"In The Middle of Project"
"No Resources"

"Takes Time to Collect Data"

Unit Reaction to Initial Testing & Installation

"Can't Get All The Data"
"Can't Show Data - No Actions in Place"

"Data Not Accurate"
"Internal Use Only"

VIEWGRAPH MATERIALS

FOR

MITSURU OHBA,
IBMlJapan

Experiences in implementing an Effective Measurement
Program

November 29, 1990

Mits Ohba

IBM Japan

1. Introduction

Japanese believe:

"What other persons do are right things to do."

In this context, "other persons" could be:

Other organizations in a division

Gther divisions in a company

Other companies in the industry

Other industries in Japan

2 What do Japanese measurement programs look like?

The most common and basic measures are:

Size: KLOC
non-comrnentary source lines of code including reused source
code

Productivity: LOC per Programmer Month
indirect activities (e.g., tool development) not included

Quality: Errors per KLOC
errors reported during the development phases and 12 month
after release

Tho~g h there are differences in details, the measures are
conceptually same as those in US.

3. What obstacles did Japanese have to overcome?

We had to agree upon what should be measured:

what kind of data should be collected?

how should data be analyzed?

how should results be fed back?

The answers are different -> no standard measures exist.

4. Who defines a measurement system for an organization?

There are two cases:

Central software technology support group
e.g., NEC, Toshiba, Mitsubishi, N l l

!
i

Quality assurance or equivalent organizations
I

i e.g., Fujitsu, Hitachi, Oki, IBM Japan

1 Based on:

. . De facto standard measures (e.g., KLOC)

i

Working papers by various committ~es (e.g.. JSA)

5. What is the cost of such programs?

Needs a centralized organization which is responsible for:

defining measures and evaluation systems

defining data to be collected

defining "simple" methods for analyzing data

developing tools for collecting and analyzing data

maintaining the database

providing education

It is expensive.

6. What are the benefits so far?

"Takes at least three years to see the changes."

Management by quantitative objectives
by setting objectives and reviewing achievements
(e.g., software reliability growth estimation)

Standard and consistent control of software p r e s s
by defining the upper and the lower control limits
(e.g., quality probe by Hitachi)

Incremental and continuous process improvement
by setting an annual goal for an organization
(e.g., "Ayumi (growth)" program by Fujitsu)

As a result, the defect rate has gone down from 5 ErrorsKLOC fo
0.1 Errors/KLOC during the last ten years.

MOLL.
5- 7

7. What long range benefits are expected?

"Optimization" of software process:

Design the best procass for a project
based on past experiences

Monitor and manage the process properly
based on data analysis

Reconfigure the process dynamically if needed
based on data analysis results and experiences

This is the ideal "Software Factor)/' and what engineers in other
Japanese industries have done last 25 years.

VIEWGRAPHS FOR PANEL 2

FOR

LARRY DRUFFEL,
SEI

-
Carnegie Mellon University
Software Englneerlng Institute

15th Annual
Software
Engineering
Workshop
November 29,1990

Software Engineering Institute

!Ei t
Carnegie Mellon University
Pittsburgh, PA 1521 3

I Sponsored by the U.S. Department of Defense

Carnegle MUon Unhrersity
Sattwere Englneerlng lnstltute

Ada acceptance - military, industry, education

Acceptance of software engineering in education

Standards for integration of CASE tools

Code reuse - again

- -
Carnegie Mellon University - -CL Software Engineering Institute

Achievements

Ada standardization and evolution of supporting
technology

Focus on process supported by measurement and
education

Emergence of software engineering in education

Realization of importance of software architecture

Emergence of software engineering environments
INr
& -'?
L Object-oriented design notions

--
Cunoglo Mollon Unlvorshy
Software Engineering Institute

Next Five Years

Software architecture

Maturation of object-oriented design

Data collection - consistent measures

VlEWGRAPH MATERIALS

FOR

MANNY LEHMAN,
Imperlal College

SOFI'WARE ENGINEERING IN THE 1980's
Most Significant Achievements i Greatest Disappointments

(Pdnel)

15TH ANNUAL SOFTWARE ENGMERING WORKSHOP
GORDARD SPACE CEYTER

28 - t9 November 1990

MMrrhman
Department Of Computing

Imperial College Of Science Technology & Medicine
a

Lehman Software Technology Associatts Ltd
London SW7 2BZ

i O Wnun Soft- Tedunk~ Asvnra U . Nov. a. 1990

MOST SIGNIFICANT ACHIEVEMENT

CASE

GREATEST DISAPPOINTMENT

CASE

Y - 1 MOST SIGNIkTCANT ACHIEVEMENTS

. -
1 NOTE THAT TERM IS MOST SIGNIFICANT NOT GREATEST

6
-

INCREASING APPRECIATION OF THE INTRJNSICALLY
. . EVOLUTIONARY NATURE OF SOFTWAKE

INCREASING RECOGNITION OF THE SIGNIFICANCE &
I ROLE IN S0FI'WA.E DEVELOPMENT & EVOLUTION

OF THE PROCESS & OF PROCESS MODELS

MUST EVENTUALLY LEAD TO WlDER APPRECIATION
, & i ACCEPTANCE OF THE IMPORTANCE 9 F DISCIPLISE,
METHOD, FORMALITY & MECHANISAYON LN THAT
PROCESS AND TO THEIR GENERAL APPLICATION

THE DEVE140PMENT OF SIGNIFICANT CASE TOOLS
& OF THE CONCEPT OF INTEGRATED SUPPORT
ENVIRONMENTS

THE NEEil FOR CASE DEVELOPMENT IS A LOGICAL CONSEQUENCE
OF THE FIRST LISTED ADVPLNCES BUT, IN PRACTICE, HAS PRIMARILY
ARISEN LNDEPENDENXY FROM THE SEARCH FOR PRODUCTIVITY

< GRO'ATH IN SOFIWARE DEVELOPMEKT

GREATEST DISAPPOWTMENT

THE FAILURE, BY & LARGE, OF CASE TO DELIVER
EVIDENT PRODUCTiVITl GROWTH

THE LACK OF LARGE SCALE PENETRATION OF
CASE WIDELY OR DEEPLY INTO INDUSTRIAL &
COMMERCIAL SOFI'lVARE DEVELOPMENT

THE VERY SLOW DEVELOPMENT OF SATISFACTORY,
COMPREHENSIVE, TRANSFERABLE & USABLE
S WPORT ENVIRONldENTS

FAILURE TO ACHIEVE WIDE INDUSTRY APPRECIATION
OF THE TRUE MEANING OF SOFTWARE ENGINEERING
& THE ROLE OF SOFTWARE E N G N E R S

i SOFTWARE ENGINEERING - SOFTWARE ENGINEER

PROCESS ENGINEERING - PROCESS ENGINEER
CONTRASTS WITH

PROGRAMMING AS PRODUCT ENGINEERING

i I SOFTWARE ENGINEERS~ FOCUS -PROCESSES BY
WHICH SYSTEMS ARE DEVELOPED, PRODUCTS
CREATED & MAINTAINED SATISFACTORY

!
PRIMARY CONCERN: DESIGN, CONTROL, SUPPORT
OF DEVELOPMENT & EVOLUTION PROCESS

- PROCESS lTSELF
- METHODS
- TOOLS

SELECT, DEVELOP, REDUCE TOPRACTICE
- METHODS & TECHNIQUES
- PRACTICES & PROCEDURES
- DIRECTTOOLS

! - GENERAL SUPPORT

INTEGRATE & INSTALL METHODS, TOOLS & IPSEs
TO PROVIDE SUPPORT & ZNFORMATZON RETENTION
OVER ORGANISATION, APPLICATION, PROJECT

INVOLVEMENT WITH SPECIF'IC SYSTEM
- PROJECT & PROCESS DESIGN - PLANNING

I
I

- DEVELOPMENT OF PROJECT-
SPECrFIC * METHODS

. .
I = TOOLS

- MANAGEMENT SUPPORT

cc - PROCESSES MANAGEMEYT
i*

THE ROLE OF CASE

- SUCH OVERALL ATTRIBUTES C N O T BE ACHIEVED
BY CLASSICAL PROCESS

OR BY UNCO-ORDINATED INTRODUCTION OF
INDIVIDUAL METHODS OR TOOLS

* DEMANDS C O - O R D I N A T E D , PRQCESS WIDE,
INTRODUCTION OF - SYSTEMATIC & DISCIPLINED METHODS,

- CASE TOOLS FOR THEIR SUPPORT
- AN INFORMATION PRESERVING

REPOSITORY,
- ACTIVE PROCESS GUIDANCE

?RL;\v/lARY GOAL OF CASE CAYNOT BE DdfiVlEDP*4TE
PRODUCTIVITY GROWTH, COST REDUCTION, OR

VISIBLE IMPROVEMENTS IN PRODUCT QUALITY

IMPROVED COST-EFFECTIVENESS ULTIMATE BENEFIT

VISIBILITY DEPENDS ON MEETING f%LL ABOVE
REQUIREMENTS OVER PERIOD OF TIME

LVTRODUCTION OF CASE MUST SEEK TO YIELD TOTAL
PROCESS THAT AS FAR AS POSSIBLE, ACHIEVES &
MAINTAINS, USER SATISFACTION WITH PRODUCT

THIS, N TUlCY, WILL EVENTUALLY PRODUCE
PRODUCTIVITY INCREASE & REVENUE GROWTH

L h n n n S u l ~ w u e Tc- M u n Lui . Nov. 28.1990

SOME OBSTACLES - TO RAPID PENETRATION OF CASE TECHNOLWY

LONG LEAD TIME TO VISIBLE BENEFIT
INDIVIDUAL & COLLECTIVE LEARNING & TRAINING
AND CHANGE OF ATTITUDES, HABITS & PRACTICES

s WRITE OFF OF CURRENT PRODUCER INVESTMENT
cg TOOLS, PROCEDURES, EXPERIENCE

1 ACHIEVING SIGNIFICANT BENEFIT DEPENDS ON COHERENT
COVERAGE OF MAJOR PORTION OF DEVELOPMENT PROCESS

BENEFITS OF CASE BECOME SIGNIFICANT ONLY TOWARDS SYSTEM
COMPLETION OR AFTER EXTENSIVE USAGE EXPERIENCE

MAJOR lNWSTMENT BY SOFTWARE PRODUCERS
9 CAPITAL - eg.TOOLS

3 MANPOWER - cg. DEVELOPMENT &TRAINING

e DISRUPTION IN PRODUCTION
RETURN DELAYED TILL USERS PERCEIVE FISCAL BENEFIT

a IMPONDERABLES IN COSTJBENEFIT ANALYSIS
PRODUCERS

HIDDEN BENEFITS
eg CONSERVATION OF SKILLED MANPOWER - ANTIREGRESSIVE BENEFTI'S
cg POTENTIAL REDUCTION IN EMERGENCY RESPONSE TO USER PROBLEMS

MARKETING VALUE OF PRODUCT QUALITY IMPROVEMENT
eg SIMPLER TO LEARN, MORE RESPONSIVE MAINTENANCE

USERS
- IMPROVED QUALITY

eg SIMPLER TO LEARN, INSTAL. MAINTAN, ADAPT

- ANTIREGRESSWE BENEFITS
cg REDUCIION IN USER DOWN TIME & LOSSES

- HIDDEPI BENEFITS
eg FA- RESPONSE TO CHANGE AND EVOLUTION REQUESrS

INSUFFICIENT EXPERIENCE, DATA OR THEORY FOR
CONVINCING DETERMINATION OF BENEFIT

3 L h m S~llurc Tahrwbw haaiam Lrd . No*. 2S. 1990 .u Lab- '--
h e 7 d 7

VlEWGRAPH MATERIALS

FOR

HARLAN MIUS,
SET

Software Engineering
Achievements and Disappointments

of the Past Decade

15th Annual Software Engineering Workshop
November 28-29,1990

NASNGoddard

Harlan D. Mills
Software ~n$ineer in~ Technology, Inc.

verb Beach, Florida

Significant Achievements Past Decade

Spiral Model of Software Development
in Place of Waterfall Model

Significant Developments of Metrics
for Software Technical Management

Establishment of National Resource in
Software Engineering Institute

Cleanroom Engineering of Software
under Statistical Quality Control

-
60fIwhre Engineering Technology, Inc.

Greatest Disappointments Past Decade

Use of Software Engineering as a Buzzword,
not as a Real Engineering Discipline

Continued, Widespread, but Unnecessary

Poor Quality, Unreliable Software

Low Productivity Software Development

Missed Schedule Software Deliveries

@ Software Engineering Technology, Inc.

Cleanroom Engineering of Software
under Statistical Quality Control

Statistical Usage Specifications as well as
Function and Performance Specifications

Software Development in a Pipeline of
Increments with Separate Certification

Scaled Up Informal Verification of Software
to Mdet Specifications

Producing Software without Private Debugging
before Public Certification Testing

u

-@ Software Englneerlng Technology, Inc.

Significant Achievements Next Decade

Formalization of Spiral Models of Software
Development for Procurement/Managemen t

Continued Developments of Metrics
for Software Technical Management

Continuation of National Resource in
Software Engineering Institute

Expanded Cleanroom Engineering of Software
under Statistical Quality Control

ae: " f
il a

@ Software Engineering Technology, ino

VIEWGRAPH MATERIALS

FOR

VIC BASIL!,
University of Maryland

Sof tware Engineer ing in t h e 1980's:
The most Sign i f icant ~ c h i e v e m e n t s and Greatest D isappo in tments

What have been the most significant achievements for software engineering

in the past 10 years?

What have been the greatest disappointments for software engineering in the

past 10 years?

What is the objective or subjective criteria supporting your assessments?

What software engineering advances wil l make the most significant

contribution in the next f ive years?

Significant Achievements

Maturing:

Recognition of importance of Process, Formal Methods

Recognition of need for Multiple Life Cycle Models, Methods, etc.

Technologies:

Measurement

Use of Data Abstractions and Object Oriented methods

Use of Ada

Greatest Disappointments
..

That the maturing has taken so long

That some people are still looking for magic

The lack of wide spread use of measurement, and formal methods

The lack of effective automated support for software development

The lack of advance in testing practices

Future Achievements
~ ~ d ~ ~ ~ ~ ~ ~ ~ ~ _ _ ~ _ ~ ~ _ ~

Next 5 years:

Focus on Engineering

Wider spread use of process improvement through riiL .~.;urement

Reuse of Packaged Experience

Next 10 years:
Real automated support

Maturing of personnel with consistent background

APPENDIX A-ATTENDEES

FIFTEENTH AHNUAL SOFTWARE ENGINEERING WORKSHOP ATTEND=

Acton, Dorothy IBH
Ad-, Neil........................Bendix Field Engineering Corp.
Addelston, Zonathan D..Planning Research Corp. Agretsti, B l l l W............... Mitre Corp. Alban, Davxd Computer Sciences Corp.
Alexander, Linda C.................CECOK Center for Softvare Engineering
Allison, Don R.....................TRW
m a n n , Paul E.....................George Mason University Anderson, Frances...... Stanford Teleconmunications, Inc. Angier, Bruce....... Institute for Defense Analyses
Arend, Mark........................McDonnell Douglas
Arnoff, Barbara..... Social Sacurity X-inistration
Arnold, Jo Lynn.. IRS
Arthur, James D....................Virginia Tech University
Astill, Pat........................Centel Federal Services
Auernheimer . Brent.California State University
Ayers, Everett.....................Arinc Research Corp.

Bail*, Sidney Computer Zechnology Associates, Inc.
Basxll, Vic University of Maryland
Beach, Jiln.........................IBM
Beard, Robert M... Computer Sciences Corp.
Beck. Hank.........................Jet Propulsion Lab Benjamin, chuck..... SAIC
Bennett, Keith H.. University of Durham, UX
Eerrey, Li~da. IBM
Besvick, Charlie A..Jet Propulsion Lab
Biddle, John M.....................Martin Marietta
Biow, Christopher. Defense Communications Agency Bisignani, Margaret Xitre Corp.
Bissonette, nichele Computer Sciences Corp.
Blagnon, Lowell E..................Naval Center for Cost Analysis Blake-Hedges, Wayne OAO
Blonchek, Robert M........... Booz, Allen 61 Hamilton, Inc.
Blum, Bruce I......................Applied Physics Lab
Bobtien, Gale......................Grumman
Boehn, Barry W...... DARPA/ISTO
Boger, Jacqueline. Computer Sciences Corp.
Bond, Roy DoD
Bongianino, Jeffrey R..............General Dynamics
Booth. Eric Computer Sciences Corp.
Bourne, William......... American Systems Corp.
Boven, Gregory M...................Computer Sciences Corp.
Boven, John B...... Hughes Aircraft Co.
Boven, Robert G....................Social Security Administration
Boverman, Rebecca E..... Pragma Systems Corp.
Boyce, Glenn W.....................Grumman
Boyce, Mary-Ann Dimensions International
Bozenski, Richard..................DoD
Bozoki, George J...................Lockheed
Bradshaw, Havard...................Nav Corn Tel Corn
Brechbiel, Fred Softech, Inc.
Bredeson, lfbl.....................Space Telescope Science Institate Bredeson, Richard W...... Omitron, Inc.

FIFTEENTH M'NUAL SOFTWARE ENGINEERING UORKSHOP ATTENEES
(Continued) ..

Briand, Lionel University of Maryland Brims, A. R........... SRC
Bristow, John......................NASA/GSPC
Brophy, Carolyn Naval Research Lab
Brown, Gerald R....................U .S. Army CECQBf
B r m , Jam- W.....................Jat Propulsion Lab
Bruno, Kristin J...................Jat Propulsion Lab
Bunch, Aleda... Social Security Administration
Bush, Marilyn Jet Propulsion Lab
Button, Janlca.....................DoD
BUYS, RU th......................... Mitre Corp.

.......... Cake, Spencer C......... HQ USAF/SQ[S
Caldiera, ~ianluigi University of Maryland
Caplan, Lavrenco C.................Hughe8 Aircraft Co.
Carra, Debbie Corputer SC~OIIC~S Corp.
Carter, Bradlay D. Xissis8ippi State University
Cary, John.........................George Washington University
Casucci, Dan.......................IRS
Cernosek, Gary J...................McDOnnell Douglas
Chen, Andrev J.....................
chmura, Louis J....................Naval Research Lab
m u , Richard.......................F~rd Aerospace Co.
church, Vic........................Co uter Sciences Corp.
Cichowicz, Diana L.................Soc-a1 Security Administration
Clark, James 0 Naval Surface Weapons Center
Coates, Ann........ Social Security Administration
Colberg, Jahn......................Gmoral FiCS Conover, Robert A..................Jat Propu sion Lab
Cook, John F.......................NASA/GSFC
Cooke, Vic.........................Laral Aerosys
Copps, Stephen L...................Intermetrics, Inc.
Cordrey, Glen......................Loral Aerosys
Cover, Donna....................... Computer Sclences Carp.
Creecy, Rodney. Hughes Aircraft Co. Crehan, Dennis............. Ford Aerospace Co. Cresvell, Doug.. DoD
Cuesta, Ernesto....................Corputer Sciences Corp.

DmE1ia, Barbara....................IRS
Dahmn, Steve. Vigyan Research, Inc.
Danay, William E...................NASA/GSFC
Daskalantonakis, Michael K.........Motorola, Inc.
Denaio, Louis......................NASA/GSFC Decker, William.. Computer Sciences Carp. Diaz-Herrera, Jorge L........ George HaSon University
Dikel, David.......................Focu9d M a Research
Dirks, John. Conputer S~iences corp.
Diskin, David......................Contel Technology Center
Do, lfichael T... Computer Sciences Corp.
Dortanzo, Don......................Fairchild Space Co.
Dortanzo, ncgan. Loral Aerosys
Dowen, Andrrv......................Jet Propulsion Lab

FIfiEENTH ANNUAL SOFTWARE ENGRJEERING W3RXSHOP ATPENDEES
(Continu&) _______________-__- -___-____-

4

Druffel, Larry...................-.SoftW~o Enginemring Institute
DuVall, Lorraine...................Duvall Computer Technologies, ~nc.
Dulaney, Gilbe lt...................S~~ial Security Adminifintion
Duncan, Scott P....................BgLLCORE
Qunyan, I m r y Corn putmr Sciences Corp.

.. Duniho, MickeyDoD
Duttine, Valerie : N A S A / G S F C
Dyer, Michael . I B n

Earl, Michael..........
Easterling, Sue........
Ebersbergor, Marc......
Edlund, Sheryl J.......
Edwards, John..........
El-Sahragty, Ahmed.....
Ellis,.Walter..........
Elwadhl, Manisha.......
Emery, Richard D.......
Emig, Pamela W.........
Engelmeyer, William J..
Esker, Linda...........

............ Intemrtrics, Inc. - . ~ ~

............I=
Social Security Administration USAfSSOCW
IIT Research Institute

............Corn putar Technology Associates,

............I=-

............C omputer sciences Gorp- , .Vitro Corp.
,............Logicon, Inc.
,............Cm puter Sciences Corp.
, C a puter Sciences Corp,

/ . Ferg, StephenSt8 p h ~ f e w Associates
I Fessler, Jim-I Aerosys ! Fink, Mary Louise A.. EPA

Forsythe, RonNASA/Wallops Flight Facility
Fosaaen, Ardy th....................Im

i Fox, RaymondDoD
I Franklin, Carla B..................Wkheed

Franklin, Jude E...................Planninq Research Corp.
Franks, Kelly--ANASA /GSPC

I Frawley, JoannaSOBAR, Inc.
Fridge, ErnieNASA /JSC
Friend, Greqg-.Com puter Sciences Corp.
Frizzell, JimRockwell International . . Futcher, Joseph M.Naval Surface Weapons Center

Gaither, Melissa-
Gallagher, BarbaraD
Galloway, Dense1-dix Field Engineering Corp
Garcia, Enrique A..................Jet Propulsion Lab
Geil, EstherWestin qhouse
Gilliland, Denise E................StMford Telecommunicatians,
Girard, PatIBU
Glass, Robert L....................Cooputing Trends
Godfrey, SallyNASA /GSFC
Goel, Amrit L......................Syracuse University
Goldberg, Nancy . C o . P u t e r Sciences Corp-
Golden, John R.....................Ransselaer Learning Systexs,
Goldsmith, tarry...................Bureau of Labor Statistics
Goldstein, Steven.In Research Institute
Gordon, Hayden H...Cap uter Sciences Corp.
Gordon, Judith J...................-gma Systems Corp.

L

FI fiEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATPWDEES
(Cont inuad) ..

' a ,-
Gordon, Marc D..Fairchild Space Co.
Graddy, John.......................DoD Grady, Robert.. Hewlatt Packard
Graham, Marcellus..................NASA/HSFC
Grant, Ralph New Tachnology, Inc.
Grasso, Ba r r y . Fotd Aeroapaca Co.
Graves, Russell J..................DoD
Green, Daniel R....................GSA/FOAC Green, David.. Computer Sciences Corp.
Green, Scott. NASA/GSFC
Gregory, John G....................Westinghouse
Crier, Jackie......................Calsa, Inc.
Grondalski, Jean...................Computer Sciences Corp. Gross, Stephen Naval Center Zor Cost Analysis
Groveman, Brian S..................Computer Sciences Corp.
Groves, Paula......................Computer Sciences corp.
Groves, Robert T...................NASA/CSPC
Guillebeau, Michael................TRW
Guzek, Joseph Hughes Aircraft Co.
Gwynn, Thomas R....................Com~uter Sciences carp.

Haas, Michael......................NaVal Sea Systems Command
Hall, Jr., John....................General Dynamics Halterman, Karen. NASA/GSFC
Hamilton, John R...................EM
Hamstreet, Roger A.................USAP
Handley, Thomas H..................Jet Propulsion Lab Hankins, Dick................ General Dynamics Harrison, Carolyn Fairchild Space Co. Hashmi, Awais....... Digital Systems
Hawkins, George.. FBI Heasty , Richard. ,. ... -. .-.. -Uter Sciences Corp.
Heffernan, Henry G.................EDP News Services
Heller, Gerry...................... Computer Sciences Corp.
Hendrick, Robert B... Computer Sciences Corp.
Herman, Lorrie fairchi-L chi-L fair fairchi-2 Space Co. Herrin, Ben ~ynamic:: -7o:earch Ccrp. Heusinger,.Hugo MBB UUr2:n Hill, Carroll R............. IRS
Holland, Denny.. I I T Rcz : :rch Institute Holmes, Barbara............ CRnI
Holt, Nancy Social Security Administration ... Hon, Samuel E,.................. BELLCORE
Hood, Thomas L. STX Corp.
Hormby, Tom W... Johns Hopkins University Hosler, George OAO
Houston, Frank... FDA
Hryn, Ed...........................OAO Hunter, Paul................. NASA
Hurt. Tom..........................Grumman

Jay, Elizabeth.... NASA/GSFC Jeane, Shirley Jet Propulsion Iab

FIFEZENTH ANNUAL SOfiwARE RIGINELRING W O W H O P A-DEES
(Continued)

Joletic. Jim . N W / G S F C
Jmkim-mafa, Jovitam
Jwsting. DavidB.ndix Field Engineering corp.
Jordano. Tony J....................Im

m a t z k e , Owen C..................NSA/GSFC
w l i n . Jay"oj& pngineerinq. Inc.
Keil-Slawik, Reinhard.............."iva"it of Maryland

Kelly* Kim R.......................IBI(
1 Kelly. J o M C................Jet PlOpU ~ i 0 n Lab

Xap. R a t h v M....................NSA/HQ
KUYL&Y~ ~1iza.ber-h ~...............Ros*lall Intarnational
Kater, m s h computer Sciences COW.
ale. ThomaD.pt. of the Army
Iri., ~0b.a. ~......................Computmr Sciences Corp.
Khinau, Pamela S.................DoD
Kishan, Su shma.....................S"ford Telecounicationr. Inc
i s t e David x...................Computer Sciences corp.
 leis. Karen . C o m p (i t e r Sciences Corp
Koemer. KathyComputer Sciences Corp.
Koropka, Joseph J..................COmpUteT Sciences CO-.
Kouchakdjian, Ara..................Softwan Engineering Technology
minsky. NealCome uter Scrences c o w

~ i c k Nat~onal Institute of Standards
Kulik, Constanca E.................Mitre Cow.
Kurihara, Tom . D e p C . of Transporation

L,andis. LindaComputer Sciences Cow.
Largent. Jim . U m l Aeros 1 s
Larman, Brian,...........Jet Propuls on Lab
laVallee. DavidFord Aerospace Co.
Lawrence-Pfleager. Shari...........C~ntel Technology Center
byne. Pva.........................NWA/HQ
L-an. nanny W....................Imprial College
+vitt. David S....................Computer Sciences Cow.
h n * Chi Y.........................Jet Propulsion Lab Richard. Gruntman
%EXtE'John w.. .Social security Aainistration
I.iu, Jean C........................COnpUter Sciences Corp.
Liu, Xuen-san......................Computer Sciences Corp.
mesh. Bob E.......................Jet Propulsion Lab
Lohfeld, Robe =..OAO
mtt. Chris x......................University of Maryland
m e y r Carla . D O D
Lunak. RayComputer Sciences corp.
Lydon. Tommyaeon
Lynch. Craig . " A I S S C
Lvons, peterHughes Air~raft Co. -a -

Mddock. Karen R...................Tech"olm Planning, Ins.
Hahal, Becky A.....................Xitre Corp.
Uaher. Stephen.....................NSA/GSPC
tfalthouss, Nancy....-..............Logicon, Inc.

FIM'EENTH W A L SOFTWARE ENGINEERING WORKSHOP ATPENDEES
(Cant inued) - -~-- - - - - - - - - - - - . - - - - - - . . - - - . - - - - - - - - - - - - --

.................... Ma ono, Johan. Computer Sciencas Corp. Ma%aro, Patricia M.. .Coopers L lybrand . Marshall, Dale.....................DoD Mathiasen, Candy Uniays Matusow, David. NASA/CSFC Maury, Jesse.... NASA/CSPC Mazzola, Ray Loral Aerosys
nccabe, Richard S..................Softvat. Productivity Consortium Mccauley, Robert Martin Marietta
Ucconnell, Dave....................HcDonndll Douglas McDennott, ~im.. C~mputar Sciences Corp.
Ucmnald, Beth..................... Do0
McGarry, Prank.....................NASA/GSPC
Uccarry, Petar.....................Ganeral Electric
McCovan, Clement...................Contel Tachnology Center
McGraw, Diane......................DoD
McHanry, Ronald C..................Stanford Telecormnunications, Inc. Mclaughlin, Byron IBn
Mehlar, Steve......................XIT Research fnstituta Meick, Douglas. Library of Congress
Mendelsohn, Chad...................NASA/GSPC Merifield, James........... Advanced Technology, Inc.
Merry, Paul...... Harris Corp.
nickel, Susan......................Cenaral Electric Miller, Andy bra1 Aarosys
Miller, Wn........................OAO Millar, John.. Col~puter Sciences Corp.
Mills, Harlan......................Sofware -Engineering Technology
Hingee, Lynn U.....................Lackheed
Minnin er, John R..................DoD
Mitshe?l, Michael S..Computer Sciences corp .
Mohrman, Carl C....................mrtin Marietta
Moleski, Laura.........-
Montgomery, Helen Intermetrics, Inc.
Moore, Cal.........................Laral Aerosys
Moore, Paula.......................Loral Aerosys
Morusiewicz, Linda !¶...............Computer Scrences corp. Murray, William M...... General Dynamics Myers, Philip I. Computer Sciences Carp.

............... Nakagiri, Hovard T.. Hughas Aircraft Co.
Naleszkiewicz, John....... Technology Planning, Inc.
Nanca, Richard E...................Virghia Tech University
Narrov, Bernie Bendix Field Engineering Corp. Nq, Susan. Spar Aerospace Lmtd. Nolan, Sandra K..... Lackheed
Norcio, Tony F.....................University of Haryland Nutting, Bruce Vnisys

OIHaill, Lavrence A................AT&T Computer Systems
Odt, Thomas A..- Uter Sciences Corp.
Ohba, ni tsuru...................... ~ o k y o ~esearch Laboratory
Ohlmacher, Jane....................Socxal Security Administration

PIETEENTH ANNUAL SOFTWARE ENCINXERINC WORKSHOP ATIWDEES
(Continued)

oivo, narkleu.. Universit of Maryland
0s- . t¶oh.ud.Jet Propuxsion LID

Packett, Lisa......................CaMua Wlreau Pa a, Gerald. Corputu Sciences Corp.
Payerski, Rose.NASA/CSIC
Panzer, David......................Stanford Ttrleco~unicatioas, Inc.
Pappas, Eugene Stanford Telecormunications, Inc,
Park, Robert Corputer Sciences Corp.
Paules, David R....................
Pavnica, Paul......................Consus Bureau
Pearson, Boyd NASA/CSPC
Pecore, Joseph N...................Vitro Corp.
Perez, Prank Unisya
Perkins, Dorothy NASA/CSPC
Pettanka, Prank J..................Naval Surface Weapons Center
Pettijohn, Margot IRS
Petty, Judy Cowutar Sciences Corp.
Pincosy, John P....................Dat.a Systems Analysis, Inc.
Plett, Hichael E...................Computar Sciences Corp.
Polly, nike........................Raytheon
Potter, Marshall R.................Dapt. of the N a y
Preston, David................-....The Catholic University of aerica
Prince, Andy... Planning Research Corp.
Proctor, Martina.DoD
Provenza, Clint.. aooz, Allen h Hamilton, Inc.
Pumphrep, Karen Computer Sciences Corp.
Quann, Eileen S....................Fastrak Training, Inc.

........................ Rahmani, D.. .Computer Sciences Corp.
Randolph, J. C.....................Martin Harietta Randolph, Lynvwd P. .NASA/HQ
Raney, Dale L. Eagle Systems Inc.
Reed, Teresa S.....................Mitre Corp.
Reid, Diane........................Gmmman
Reifer, Don J......................Reifer Consultants, Inc.
Repsher, Marie.....................IRS
Reynolds, Clarence M...............Mitre Corp.
Riflcin, Stan.......................Master Systems Inc.
Riggs, Bruce.......................IRS
Rinearson, Linda...................GTE
Roberts, Becky L...................Oracle Complex Systems Corp.
Roberts, Charles R.................TRW
Robillard, Pierre N................Unhrsity of Montreal
Roe, Bob L.........................Boeing Aerospace Co.
Rohr, John A-......................Jet Propulsion Lab
Rombach, Dieter ??..................University of Maryland
Rone, Kyle Y.......................IBU
Roselius, Tom......................IRS
Roy, Dan ~................-........Softva~c Engineering Institute
Roy, Robert C......................General Electric
Royce, Walkar......................TW

FIFTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES
(Cont inaed) ..

Rwnernan, Howard...................DoD
Ryan, Bob..........................IBM

................ Sahoo, Swab-upa N... Syracuse University Samadani, Hamid... m a 1 Aarosys
Sandford, James W..................IBM
Santiago, Richard..................Jet Propulsion Lab
Sava, Honica.......................Ford Aaroapace Co.
Savolaine, Catherine G.............AT&T Ball Lab
sears, Ba IBX Canada Ltd. Seaver, Dav d P. Project Engineering, Inc.
Se al, Jeffrey K.... NASA/GSFC
Se?dewitz, Ed. NASA/GS FC
Severino, Tony E...................Ceneral Electric/RCA
Shammas, Barbara...................=
Sheckler, John D...................Bandix Field Engineerinq Corp.
Shekarchi, John....................Stanford Telecommunications, Inc.
Shell, Allyn H.....................Information Dynamics, Inc.
Shirah, Greg NASA/GSFC
Shoan, Wendy..... NASA/GSFC
Siebenthall, B N c a A...............FM
Siegel, Xarla......................nitre Corp.
Silberberg, David..................DaD
Singer, Carl A.....................BELtCORE
Singhal, Sushma............. Stanford Telecommunications, Inc. Smith, Brian Lor21 Aerasys
Smith, Carl......................-.Naval Surface Weapons Center Smith, Cassandra H..... nitre Corp.
Smith, Donald. NASA/GSFC
Smith, Elizabeth ;.................Computer Sciences Corp.
So, Haria..........................Computer Sciences Corp.
Solomon, Carl STSystems Corp.
Spanno, Joe........................NASA/GSFC
Spence, Bailey Computer Sciences Corp.
Spencer, Hike.... Naval Sc-race Weapons Center
Spiegel, Doug NASA/GSr:
Spiegel, Jim.......................Loral Acrssys
Sporn, Patricia A. NASAIHQ
Squire, Jon S......................Westin9house
Squires, Burton E..................Hnemonic Systems Inc.
Stackhouse, Will JPL/U.S. Air Force
Stampfl, Sue.........8002, Allen 6 Hamilton, Inc.
Stark, Michael.....................NASA/GSFC
Steirhacher, Jody NASA/JPL
Steube, Jerry.. .. -,.TeChllolaqy Planning, Xnc.
Stewart, Debra.......... Computer Sclences Corp.
Strano, Caroline FAA
Straub, Pablo University.of Maryland
Sun, Pamela........................~T&T -11 Lab
Swain, Barbara University of Maryland
Szot, Stephen J....................Software Productivity Consortium
Szulewski, Paul....................c. S. Draper Labs, Inc.

FIfiEEBTH AN'NUAL SOFTWARE ENGINEERING WORKSHOP ATTMDEES
(Continued) ---___----------_--

Tai, K. C... National Science Foundation Tasaki , K e i j i. NASA/GSFC
Tavassoli , Naz C y u t e r Sciencas COT. Taylor, Robert E.. S o c ~ a l Secur i ty Administration T e r r y , Bradlee. .Tarry Consultants Terry, Georqane O M Thackrey, Kant Planning Analysis Corp.
Thomas, Donna......................Computer Sciences Corp.
Thomas, William. ni t re Corp.
Thumpson, Charles N................FM Technical Center Thornton, Thomas.. NASA/JPL Tominovich, G a r y In tenna t r i cs , Inc.
Tran, Lan T........................Jet Propulsion Lab

.................... U l a f y , Bradford Univemity of Maryland Ulrich, Carol Hughes Ai rc ra f t Co.

............... Vale t t , Jon......... NASA/GSFC
Vale t t , Susan......................NASA/GSFC Van Meter, David Logicon, Inc. Vaughan, Joe.. Soc ia l Secur i ty Administrat ion
Verbeck, Joan......................NASA/HQ Vladavsky , Luba Legicon, I n c .
ooig t , DavidB endix F ie ld Engineering Corp. 'Juolo, Bob. NASAIJPL

................. Wade, David H..... C q u t c r Sciences Corp.
Waligora, Sharon H.................CmUtet Sciences Corp. Walker, Carolyn V.. IB?f Walker, Ron......... IBn Wallace, Dolores.. National I n s t i t u t e of Standards C Tech. Wartik, Steven... Softwara Product ivi ty Consortium Weidow, David NASA/GSFC Weisman, David Unisys Weiss, Dave...... Software Product ivi ty Consortium Ueldon, Karen X.. .General E l e c t r i c Weszka . Joan. L E U - Wheeler, J. L. Computer Sciences Corp. whitesell. Steven A.. Computer Sciences Corp.
Wilbert , k a r l K....................NAsA/HQ Williams, Roger Sof tuare Product ivi ty Consortium Williamson, P h i l l i p Boeing Computer Support Services Co. Wilson, -a FBI
Wilson, William H..................Infor~~tion Dynamics, Inc.
Witzgall , W. K.....................The Arinc Companies
Uolfe, Dan......................... Hughes Airc ra f t Co.
Wolverton, Xay.....................Huqhes Aircraft Co. Wood, Dick...... Computer Sciences Corp. Wood, James H.. .Si- Corporate Research

................. Yaramanoglu, n e l i h Logicon, Inc. Y e e , Mary....... Ui+ra C o r p .
Youman, Charlas....................Cey Enterprises

FIFTEENTH ANNUAL SOETWARE ENGINEERING WORKSHOP ATTENDEES
(Continued) ---

4

Young, Andy Bendix Field Engineering Corp.

Zavaqe, Je Computer Sciences Corp.
~ a v a l e r , U.S. Air Force
Zalkovitz, Marv. University o f Maryland
Zhou, Xiaodong University o f Maryland
Zimet, Beth........................ Computer Sciences Corp.
Zoch, David. b r a 1 Aerosys
Zygielbaum, - . J e t Propulsion Lab

APPENDIX B -SEL BIBLIOGRPHY

STANDARD BIBLIOGRAPHY OF SEL LITERATUXE

The technical papers, memorandums, and documents listed in this bibliography ar t
organized into two groups. The first group is composed of documents issued by the
Software Engineering Laborat~ry (SEL) during its research and development activi-
ties The second group include materials that were published elsewhere but pertain
to SEL activities

SEL-ORIGINATED DOCUMENTS

SEL76-001, Rueedhgs From the First Summer So- Engineering Workshop,
August 1976

SEL-77-002. Proceedings From the Second Summer Software Engineering Workshop.
September 1977

SEL77-004. A Demonstrution of AXES for NAVPAK. M. Hamilton and
S. Zeldin. September 1977

SEL-77-005, GSFC NAPTAK Design Specifications Languages Study, I! A Scheffer
and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer S o f w r e Engineering Workrhop.
September 1978

SEL-78-006, GSFC Softwmz Engineering Research Requirements Analysis Shidy.
P. A, Scheffer and C. E. Velez, November 1978

SEL-78-007. Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp.
December 1978

SEL-78-302. FQRTRAN Static Source Code Analper Progmm (SAP) User's Guide
(Revision 3). W. J. Decker and W. A Thylor. July 1986

SEL-79-002, The Sojhwe Engineering Laboratory.. Relationship Equations.
K. Freburger and V. R. Basili. May 1979

SEL79-003. Common Sofiware Module Repository (CSMR) Sptem Descn@ion and
User's Guide, C. E. Goorevich, A L GZC:~, and S. R. Waligora. August 1979

SEL79-004. Evaluation of the Caine. Fdr, and Gotdan Program Den'gn Lcurguagc
(PEL) in the Goddrvd Spacc Night Center (GSFC) Gxie 584) Sojbam E g n E m h n -
mcnr. C. E. Goorevich. A L Green. and W. J. Decker. September 1979

SEL-79-005. Proceedings From the Fob Summer So- Engineering Workshop.
Novem'kr 1979

SEL80402, Mufti-L.md Erpmion L h i g Langurqpc-Requkmuu LNcl (MEDL.-R)
System Evaluation, W. J. Decker and C. E. Gooren'ch, May 1980

SEL80-003, M u f ~ i o n ModufarSpcrc@ G m r m d S u p p o r t ~ S ~ m (MNSI
GSSS) Statesf-the-h Computer SystcmlCanporibilify Study, TWelden,
M . McCleIlan, axid E! Liebe* May 1980

SEL-80-005, A Study of the Musa ReIirrbiiYty Modd, A M. Milla, November 1980

SEL80-006, P r o c e ~ From the FiM Annual S0jlw.m Enginemkg Hbrkrhap,
November 1980

SEL8M)07, An Appmisal of Sclccted CartlResounx Estimcmcn M& f i r Sofinwe
Syswnr, J. F. Cook and E E. McGany, December 1980

SEL-80-008, Tutorial on Mod& and Mcaics for So- Maqementand Enginee*,
V. R. Basili, 1980

SEL81-008, a t and Rcliizbiliry Esthzhbn hi& (UREM) User's Guicdr.
J . E Cook and E. Edwards, February 1981

SEL81-009, S o @ u ~ Engine* Lzbomtory Ptogmmnra Wbntkncfr Ptrasc I
E v a l h n , W. J. Decker and E E. M&arry, March 1981

SEL-8 1-01- 1, Evaluating S o w e Developrn~onr by Analysis of Change 3ata.
D. M. Weiss, November 1981

SEL81-012, The Rayleigia C m as a Model for wor t Disoibraion Ova the Lifcof
Medium Scale So@vm Systems. G. 0. Picasso. December 1981

SEL-81-013, ProceeaYqp Fmm the Siah Annual SofPNarc Erginccrhg Ubrhhop,
December 1981

SEL81-014, Automated Colfeaion of Sojharc m e e r i q Lkta in Phc Sofhm
Engineering Labomtory (SEL). A L Green. W. J . Decker. and E E McGarry,
September 1981

SEL-81-101, Gccide to Dora Cdlection. V E. Chmch, D. N. Card, E E McGarry,
et al., August 1982

SEL81-104, The Software Engineering Lubomtiny, D. N. Card, E E McGarry,
G. Page. et al.. Februaxy 1982

SEL81-107. S o j h m Engineering Oobomrory (SEL) ConTpurdicun of Toots,
W. I . Decker, W. A Bylor, and E. J. Smith, February 1982

SEL-81-110, Evaluation of an I-nt VZ?@Tcdbn and MihMbn (n/diPJ
MehnMogy for i;:. .':t Qynamia. G. Pagt, E E. McGarry, and D. N. Card. June 1985

SEL81-205, Rewmrmndcd Appnmch to Sojhum Development, E E. McGany.
G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Ewluation of Management Measum of S o j h r e Development, G. Page.
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SELU2-004. Co!!ected S o w n Engineering hpers: Vdwne I, July 1982

SEL82-007, Proceedings From the Seventh Annual So* Engineering Workshop,
December 1982

SEL82-008, Evaluating S o + Development by Amdjwis of Changes: The Data Fmm
h e Sojhwe En&eerirrg Labomtory, V R. Basili and D. M. Weiss, December 1982

SEL82-102. F O R T W Static Sotucc Code A e e r Progmm (SAP) System
Descn'ption (Revision I), W. A. mylor and M! J. Decker, April 1985

SEL82-105, Glossary of Sojhre Engineering Labomtory Em, T A. Babe
E E. McGarry, and M. G. Rohleder, October 1983

SEL82-906, Annotated Bibliography of Softwvve Engineering Loboratory Literarun.
I? Groves and J. Wen, November 1990

SEL83-001. An Appmch to Sofbwre Cost Estimation, E E. McGany, G. Page.
D. N. Card, et al., February 1984

SEL-83-002, Meeruns and Merrics for Sofiware Development, D. N. Card.
E E. McGarry, G. Page, et al., March 1984

SEG83-003, CoUected Sojbwre Engineering Papers: II , November 1983

SEL83-006, Monitoring S o f m Development Through Dyrzzmic Variables.
C. W. Doerflinger, Now!mber 1983

SEL83-007, Proceedings Fmm the Eighth Ann& Softwan Engineering Workrhop,
November 1983

SEL~~-106, Monitoring S o w Development Through Llynamic Variables
(Revision 1). C. W. Doerflinger, November 1989

SEG84-101, Manager's Hmrdbook for Software Development, M w n I, L Landis,
E McGarry, S Waligora. et al., November 1990

SEGS4-003, Inv~t i@n of Specification Masum for the Sojhre Engineering
Labomtory (SEL), W. W. Agresti, V. E. Church, and F. E. McGarry, December 1984

SEL86004, Rvtxedirrgr From h e Ninth Annual S o b Engineenkg Worhhop,
November 1984

SEGS5-001, A Compkon of Sofinwe Ycnfication Zchniquu, D. N. Card,
R W. Selby, Jr., E E. McGarry* et al., April 1985

SEt85-002, Ada Tmining Evaluation and Recommurdariont From the Gamma Ruy
Obs-q Ada Lkvelopmenf Team, R Murphy and M. Stark+ October 1985

SELs5-093, Collected Sojbum Engineering Popcm: % l ~ # III, Novltmber 1985

~ L s 5 - 0 0 4 , Evaluations of S o j h m TechnoIogics: T-, CtE4NROOM. and
M c h , R W. Selby, Jr., May 1985

SEL85-005, S o j h a ~ ~ f i n w o n and Tesfing, D. N. Card, C. Antle. and E. Edwards,
Deamber 1985

SEL85-006, Proceedirrgs from the Enth Annual So- E-aing M o p ,
December 1985

SEL-SG-001, Progmmmer's H&rc.;c for Flight Dynamics S o w DevJopment,
R Wood and E. Edwards, March i.j.86

SEL86-002, General Objcct-Oriented Sofhclmc DevJopmenS, E Seidearftz and
M. Stark. August 1986

SEL-86-003, Right Dynamics System Software Developmu2t Environment Tdd,
J. h e l l and P. Myers, July 1986

SEC86-004. Collected Sojhvare Engineering Papers: W l m e IV, November 1986

SEL-86-005, M a u n h g Software Design, D. N. Card, Oaober 1986

SEL-86-006, proceeding^ Fiom the Eleventh Annual So- ERgjlLcaing Utakhop,
December 1986

SEL87-001. Product A s s m c e Policies and Procedures for Flight Dynamics Sofa,are
Devdopmcnt. S. Perry et aL March 1987

SEL87-002.A& Style Guide (version 1.1). E. Seidewitz t t al., May 1987

SEL-87-03, Guidelines for Applying the Composite JPLcificarion Model (CSM),
W. W. Agresfi, June 1987

SEG87-004. Assessing the Ado Design Rocm and Its Implicutiortt: A CcrPc W y ,
S Godfry, C Brophy, et A, July 1987

-87-008. Dora CdlectioP, P r o c e ~ for the Rehosted SEL DatofKzse, G- Heller,
October 1987

SEL87-009, Cdlrded Sojimm Engineering +: Wun~ V, S. Dchng, Nwem ber
1987

FE87-010, PrCKeeakgs h m the T d f h Annual Sofwrc E m & w w o p ,
December 1987

SEL-88-001, System Testing of a Production A& Project= The GRODY Study, J . Seigle.
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Sofirclvue Engineering Popen: Vdume M, November 1988

SEL-88-003, Evolutior! of A& Technology in the Flight Dynamics Area: Daign Phase
Analysis, K. Quimby and L Esker, December 1988

SEL88-004, Proceedings of the Thirteenth Annual S o j h r e Engineering Hbrkrhop.
November 1988

SEL88-005, Proceedings of the First NASA A& User's Symposium, December 1988

SEL89-002, Implementation of a Production A& Projec!. The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL89-003, Sofhwe Management Environment (SME) Concepts and Atchitecture.
W. Decker and J. Valett, August 1989

SEL89-004. Evolution of A& Technology in the Flight Dynamicr Area
IrnplemenrationlTesting Phase Anatysis, K, Quimby, L Esker. L Smith. M. Stark, and
F. McGarry, November 1989

SEL-89-W5. Less0.w Learned in the Transition to A& Fmm FORTRAN at NASAI
Godhrd, C. Brophy. November 1989

SEL89-006. Collected S o j h r e Engineering Azpen: V h e MI, November 1989

SEL-89-007, Proceedings of the Fourteenth Annuai So fhre Engineering Workshop.
November 1989

SEL-89-008. Proceedings of the Second NASA A& Users' Symposium, November 1989

SEt89- 101, Software Engineering Laboratory (SEL) Database Organization mtd User's
Guide (Revision I) , M. So, G. Heller, S. Steinberg. K. Pumphrey, and D. Spiegel..
February 1990

SEL-90-001. Database Access Manager for the So,- Engineering Loboratory
(DAMSEL) User's Guide, M. Buhler and K. Pumphrey. March 1990

SEL-90-002, The Cleantoam Case Study in the Sofnwn Engineering Loboratory
Plojea Description and Earfy Analysis, S. Green et al., March 1990

SEL90-003, A Study of the Portability of an A& System in the Software Engineering
Lobomtory (SEL), L 0. Jun and S. R. Valett, June 1990

SEL90-004, Gamma Roy Obse~afory Dynamics Simulator in A& (GRODV
Experiment Summary, T. McDerrnott and M. Stark, September 1990

SEL90-005, Collected S o w e Engineering Papcts: VVdwnc MII, November 1990

SEL90-006, Proceedings of the fifieenth Annual So* Engineering M k b p ,
November 1990

SEL-91-001, S o j h r e Engineering Laboratory (SEL) ReIasionsAips, MModcls, and
Managemmt Rules, W. J . Decker, R. Hendrict and J. Wett, February 1991

SELRELATED LITERATURE

'Agresti, W. W, V E. Church, D. N. Card, and I! t Lc, "Designing With Ada for
Satellite Simulation: A Case Study," h c e e ~ of the Fmt In temhnal Symposium
on A& fot the NASA Space Station, June 1986

2Agresti, W. W, E E. McGar~y, D. N. Card, et al., "h!.~:suring Software Techaology,"
Progmm Tmnrformation and Programming Ec?'ron.~::nrr. New Y o k Spr iwr -
Verlag, 1984

'Bailey, J. W., and V R. Basili, "A Meta-Model for Software Development Resoorce
Expenditures," Proceedings of the A@ Intemmbnal Confmnce on Sofiwre Zkgkcr-
in.. New York: IEEE Com~uter Society Press 1981

'Basili, V R., "Models and Metrics for Software Management and Engineering,"
ASME Adwnces in Computer Technology, January 1980, vol. 1

Basili. V. R.. Tutorial on Models and Metics for Software Management and Engineering.
New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

'Basili, V R., "Quantitative Evaluation of Software Methodology," Proceeding afthe
fint h - h c i f i c Computer Conference. September 1985

%asili, V. R., Maintenance = Reuse-Oriented S o w r e Development, University of
Maryland. Technical Report TR-2244, May 1989

%asili, V R., Software Develcpmenr: A h d g m for the Funue, University of
Maryland. Technical Repon TR-2263, June 1989

8~ailey. J. W., and V R. Basili, "Software Reclamation: Improving Post-Development
Reusability," Roceedings of the Eighth Annual Naxional Confennce on A& T e c h n o b ,
March 1990

8~asil i , V R., "Viewing Maintenance of Reuse-Oriented Software Developmea~"
IEEE Sofhwre, January 1990

'Fasili, V. R., and J. Beane. "Can the Parr Curve Help With Manpower Dism%umn
and Resource Estimation Problems?," J o u d o f S ' m m r d S o ~ , Ftbruary 1981.
~ 1 . 2 , no. 1

'Basili, V R, and K. Freburger, "Programming Measurement and Estimation in the
Software Engineering Laboratory," Journal of S ' and 5cbwm, February 1981,
m1.2, no. 1

3Basili, V R, and N. M. Panlilio-Yap, "Finding Relatiomhips Between Effort and
Other Variables in the SEL" Proceedings of the Inlematiod Compcrer S o f m m ond
ApplicPrioiu Conference, October 1985

'Basili, V R, and D. PatnaiLA Stzdy on F d t Prediction and ReIiddity Arr-in
the SEL Envirvnmen!, University of Maxyiand, %chnical Report TR-1699, August
1986

%asili, V R, and B. T Perricone, "Software Errors and Complexity An Empirical
Investigation," Commwticufiorrs of the ACM, January 1984, voi. 27, no. 1

'Basili, V R., and T Phillips, "Evaluating and Comparing Software Metrics in the Soft-
ware Engineering Laboratory," R o c e ~ of the ACM SIGMETRICS Symparicrml
Hbtkrhop: Quality Meaics, March 1981

.Basili, V R., and J. Ramsey, Structwal Ca,emge of Functionai Testing, University of
Maryland, Technical Report TR-1442, September 1984

3Basili, V. R., and C. L Rarnsey, "ARROWSMITH-P- A Prototype Sysem hr
Software Engineering Management," Proceedings of the IEEEIMITPE Expen Systans
in G o v c ~ S y m p i m , October 1985

Basili, V R, and R. Reiter, "Evaluating Automatable Measures for Software Develcp
rnent," Proceedings of the Worhhop on Quantitative Soji'ware Modek for Reliabiiiry,
C o m p l ~ f y , m d Cost. New York: IEEE Computer Society Press, 1979

5Basili, V, and H. D. Rombach, %loring the S o h e Process to Projea Goals a d
Environments," Proceedings -of-the - 9th Intcmationaf Conference on Sogiwarr Ergi-
neering* March 1987

SBasili, V., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envirar-
men&" Procw&gs of the Join! A& Confmce, March 1987

SBasili, V, and H. D. Rombach, "T A M E: Integrating Measurement Into Software
Environments," University of Maryland, Technical Report TR-1764. June 1987

6 ~ l i , V. R., and H. D. Rombach, 'The TAME Project Towards Improvement-
Oriented Software Environments," IEEE Tmnsacrions on Sofhwn Engr-ng. June .
1988

'~asili, V. R, and H. D. Rombach, Tmatdr A Compre.herivc Fmm& for Reuse: A
Reuse-Enabling Sofiwan Evolurion Environment, University of Maryland. Technical
Report TR-2158, Decet~ber 1988

8~asili, V R., and H. D. Rombach, T-dr A Compnhensivc licunmd for R~UIZ
M&-Based Rarre ChmactWhUbn Scfiunw, University of Maryiand Technid
Report TR-2446, Apr i l 1990

2Basili, V. R., R. W. Selby, Jr., and T. Phillips "Metric Analysis and Data Validation
Across FOIiTRAN Projects" IEEE Trmtsactions on Sofnwn Engineering, November
1983

3~asili , V R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-
teristic Software Metric Set" P I O C e ~ of the Eighth Inzemahnal Conference on
Sojhwc Engineering. New York: IEEE Computer Sodety Press, 1985

Basili. V. R., and R. W. Selby, Jr., Comparing the Efle~~vencss of Softwm Taring
Stmtegirt, University of Maryland, Technical Report TR-1501, May 1985

3~asili , V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection
and Analysis Methodology," Proceedings of the NATO Advmced Study Institute,
August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software
Engineering," IEEE Tmacrions on &)hare Engineering, July 1986

S~asili , V, and R. Selby, Jr., "Comparing the Effectiveness of Software Testing
Strategies," IEEE Transactions on Sojhvae Engineering, December 1987

2~asi1i, V R., and D. M. W e k A Methodology for Collecting Velid Sofnuare Engineering
Data, University of Maryland, Technical Report TR-1235, December 1982

3~asili , V R., and D. M. Weiss. "A Methodology for Collecting Valid Software Engi-
neering Data," iEEE Transactions on Sofhvare Engineering, November 1984

'Basili, V R., and M. V Zelkowitz, "The Software Engineering Laboratory
Objectives," Proceedings of the Fifteenth Annual Conference on Computer Penonnel
Research, August 1977

Basili, V R., and M. V Zelkowitz, "Designing a Software Measurement Expeximent."
Proceedings of the S o j h r e Life Cycle Management Worhhop, September 1977

'Basili. V R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-
tory," Proceedings of the Second Sofbve Life Cycle Management Wokhop, A . u g u ~
1978

'Basili, V R., and M. V. Zelkowitz, 'Measuring Software Development Charaaeris-
tics in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V Zelkowitz, "Analyzing Medium-Scale Software Development."
Rocecakp of the Third I-nal Confe~nce on S o m e Engineering. New York:
IEEE Computer Society Press, 1978

S~rophy, C., W. Agresti, and V. Bas* "Lessons Learned in Use of Ada-Oriented
Design Methods," Proceedings of the k7ht A& Confemnce, March 1987

6~rophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the
::-plementation Phase of a Large Ada Projec!," R x e e a h g of the Warhingion Ada
; -.inical Confemce, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program S k "
Computer Sciences Corporation, lkchnicai Memorandum, June 1982

-d, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-
tion," Computer Sdenas Corporation, lkchnical Memorandum. November 1982

3Card, D. N., "A Software Technology Evaluation Rogram," An- do XYnl
Congmso Naciod de Informdca, October 1985

D., and W. Agresti, "Resolving the Software Science Anomaly," The Joumaf of
Systems and So-, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design Complexity," The l o u d
of Systems and Sojham, June 1988

Card, D. N., V. E. Church, W. W. Agresti, and Q. L Jordan, "A Software Engineering
View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences
Corporation, Tkchnical Memorandum, February 1984

4Card, D. N., V E. Church. and W. W. Agresti, "An Empirical Study of Software
Design Practices" IEEE Tmnractionr on Sofiware Engrngrnecring. February 1986

Card, D. N.. Q. L Jordan, and V E. Church. "Characteristics of FOKIIWN
Modules," Computer Sciences Corporation. Technical Memorandum, June 1984

S~ard. D., F. McGarry, and G. Page, "Evaluating Software Engineering T&olo-
gieq" IEEE T-tions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and F. E. McGarry, "Criteria for Software Modularization."
Proceedings of the Eighth International Conference on Sofncate Engineering. New York
IEEE Computer Society Press, 1985

'Chen. E., and M. V Zelkowitz, "Use of Cluster AnalysisTo Evaluate Software En*
neering Methodologies," Proceedings of the Fifth Intemahnal Confmnce on S o ~ I ~ a r e
Engineering. New York: IEEE Computer Society Press. 1981

4Church, V E., D. N. Card W. W. Agresti, and Q. L Jordan. "An Approach f a
Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C. W, and V R Basili, "Monitoring Software Development Through
Dynamic Variables," Proceuiings of the Seventh I n t e m a h d Comprtcr S o j h m and
Applications Confmnce. New York: IEEE Computer Society Press, 1983

5Doubleday, D., ASAP An Ada Sratic Source Cod2 Anoiyur Progmm, University of
Maryland Rchnical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrqs S., and C. Brophy, "Experiences in the Implementation of a Large Ada
Project," Pmceeahgs of the 1988 Wrnhiqton Auk Sympariwn. June 1988

Hamilton. M., and S. Zeldin, A Dcmonmotion ofAXES for NAYPAK, Higher Order
Software, Inc, TR-9, September 1977 (also designated SEL77-005)

Jeffery, D. R., and V. Basili, characfuizing Rcrazuu Dafa.- A M o d for e c a l
Association of So- Dala, University of MaryIand Rcfrnical Repon TR-1848, May
1987

6~effery, D. R, and V. R. Basili, "%dating the TAME Resource Data Model."
Pmeediltgr of the T d lntemanbnol CoIrfmcc on S o j h n Engineering, April 1988

S ~ a r k , L. and H. D. Rombach, A Mcta Informotion Bcrre for S o f h m Engincenhg.
University of Maryland, Xchical Report TR-1765. July 1987

6 ~ a r k , L, and H. D. Rornbach. 'Ge-iarating Customiotd Software Engineering Infor-
mation Bases From Software Process and Product Spedficati-%---," Proceldings of &e
22nd Annual Hawaii Inundonal Confcrcm on System Scier J::, Januaxy 1989

S~cGarryl E, and W. Agresd, %easuring Ada for Software Development in the Soft-
ware Engineering Laboratory (SEL)," h e d i n g s of die 2lstAnnual H w ' i Intmta-
tionai Corrfmnce on System Scknccs, January 1988

7~cGany, E. I.. Esker, and K. Quimby, 'Evolution of Ada Technology in a Produc-
tion Software Environment," P r O C e e ~ of the SLrtft WaJtiwn Ada S p M m
(WADAS). June 1989

3~cGany , F. E., J. Valett, and D. Hall, 'Measuring the Impaa of Computer Resource
Quality on the Software Development Process and Product," Proceedings of the
Hawuiian Intemonal Confmce on S ' e m Sciences. J a n w 1985

National Aeronautics and Space Admini~~rion (NASA). NASA Software Research
Technology Workshop (Proceedings), March lid0

%ge, G., Fi E. McGaq, and D. N. Car& *A Practical Experience With Independent
Veri ficatioa and Widation," Procet'ding of the EigM Inrrmoabnal Cornpuler Soft-
ware and Applications Conference. November 1984

s~amsey, C., and V R BasiliJn Evaluaiion of ETpat S ' e m for Softwure Engheenhg
Munagemcnt, University of Maryland, Technical Report TR-1708, September 1986

3Ramseyl J, and V R Basili, 'Analyzing the Test Process Using Snuctural Coverage."
Rtxedhgs of the Eij#Uh Intemafbnal Gmfe~cnce on Sofinm Engkcring. New York:
IEEE Computer Society Press, 1985

S~omba&. H. D., 'A ConuolIed Experiment on tbe Impaa of Software Structure on
Maintainability," IEEE T&bnur&om on So- Eqgheering* March 1987

8Rombach. H. D.. 'Design Measurement: Some Lessons Learned," IEEE so^. I,

March 1990

6~ombach, H. D., and V. R. Basili, "Quantitative Assessment of Main-: AU
Industrial Case Study," Procccdi~&t From the Confmnce on S o h .%hmuurcr,
September 1987

6Rombach, H. D., and L Mark, "Software Process and Rdua Specifications
for Generating Customized SE Information Bases," P r o c e ~ of the ZZnd ANusrrl
Hm+uii IntcmahortPI Conference on System Sciences, January 1989

7Romba&, H. D., and B. T Ulery, Establishing a Mwwcment Based MW-
Impmmeni Progmm. LCSSON Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

*Seidewitz E., "General Object-Oriented Software Development: Background and
Experience," Proceedings of the 21st Hawaii Intenudonal Conference on System
Sciences, January 1988

6Seidewia E., "General Object-Oriented Sofnvare Development with Ada: A Li6e
Cycle Approach," PrcK.eedings of the CASE T e c h r w l ~ Confemcc, April 1988

6Seidewitz E., "Object-Oriented Programming in Smalltalk and Ada," Procecdingr
of the 1987 Confemnce on Object-Oriented Programming Systems, Langurrgcr. and
Applications, October 1987

4~eidewitz'E., and M. Stark, Towards a General Object-Oriented Software Develop-
ment Methodology," Procezdings of the first Inlemafionaf Symposium on Ada for the
NASA Space Station, June 1986

8Stark, M., "On Designing Parametrized Systems Using A&." hcecdingr of the
h e n t h Wcrshingion A& Sjmpsiwn, June 1990

7~tark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuscw
h c u f i n g s of TRI-A& 1989, October 1989

Stark, M., and E. Seidewitz Towards a General Object-Oriented Ada Lifecyde," Pro-
ceuiings of the binf A& Cbnfemnce, March 1987-

8~traub, I? A, and M. Zelkowitz, "PUC: A Functional Specification Language fur
a" P r o c e e ~ of the Tenth Infernational Conference of rhe Chilean Compura
Skience Soiety, July 1990

7~unafllka, T., and V R. Basili, IntegmtingAu~matedtinsSuppori for a Softnun? ,Wanage-
inat C)rle I . the TAME S'm, Univenity of Maryland, Technical Repon TR-2289.
July 1989

Timer, C., and G. Caron, A C o m ~ o n of RADCand NASAISEL Softwm Develop-
mcnt Data, Dtrfa and Anafysis Cenfer for Soffwm. Special Publication, May 1981

Wner , C., G. Caron, and G. Brement, NASAISEL Dota C O ~ W I L . Dma a d
Adysk Center for Sojhmm, Special Publication, April 1981

SWett. J., and F. McGarry, "A Summary of Software Measurement Experiences in the
Sofhuare Engineering Laboratory," Proceedings of h e 21st .ln.rual Hawaii Intema-
tionul Confemncc on System Sciences, January 1988

3Weiss D. M., and V R. Basili, "Evaluating Software Development by Analysis of
Changes: Some Data From the S o w e Engineering Laboratory," IEEE T m a c -
tions on Sofwwe Engineering, February 1985

SWu, L, V. Basili, and K. Reed, "A Stmcture Coverage Tool for Ada Software
Systems," Prrxecdings of the Joint A& Confennce, March 1987

lZelkowitz, M. V , "Resource Estimation for Medium Scale Software Projects,"
Proceedings of the TwIjih &nfemncc on the Interface of S ~ t i c s and Computer
Science. New Y a k IEEE Computer Society Prrss, 1979

*Zeikowitz, M. "Data Collection and Evaluation for Experimental Computer
Science Research," Empirical Fowrdorions for Comp~er and Information Science
(Proceedings), November 1982

%lkowitz, M. V , "The Effectiveness of Software Prototyping: A Case Study,"
Procetdings of the 26th Annual Technical Sympvsium of the Wahingion, D. C., Chapter
of the ACM, June 1987

6 ~ l k o w i u . M. V., "Resource Utilization During Sofhvare Development," J o W of
Systems and Sojiware, 1988

8Zelkowitz, M. "Evolution Towards Specifications Environment: JZxperience With
Syntax Editors," Infomtarion and and* TechnorogVtApriLIW.

Zelkowitz, M. V, and V R. Basili, "Operational Aspects of a Software Measurement
Facility." Proceedings of the Software Life Cyde Management Workshop, September
1977

NOTES:

'This article also appears in SEL-82-004, Colleaed Software Engineering Papers:
Vdwne I , J U ! ~ 1982.

%s article also appears in SEL-83-003, Collected Sojhwe Engineering Fapek:
V i e II. November 1983.

4This artide also appears in SEL-85-03. Colleacd S o f h r e Engineering Papem
Vdwne III, November 1985.

4This articfe a h appears in SEL-86-004, Colledcd %@are Engineering Popem
Vdume IV, November 1986.

SThis article also appears in SEL-87-09, Colledzd Software Engineering Papers:
Vdumc V. November 1987.

%%is article also appears in SEL-88-002, Collected Software Engineering Papers:
Volwne M, November 1988.

'l'his article also appears in SEL-89-006, Colleded Software Engineering Papers:
Volwne MI, November 1989.

8This article also appears in SEL-90-005, Colleacd Software Engineering Papers..
Volume MII, November 1990.

BI- 13

Centimeter

Inches

HRNUFRCTURED TO nIIH STRNORROS

BY RPPLIED IHFIGE, INC.

