Gerard H. Heller

- —

/-

7
P4
”, T
e

N92-194223“

IMPACT OF A PROCESS IMPROVEMENT PROGRAM IN A
PRODUCTION SOFTWARE ENVIRONMENT:
ARE WE ANY BETTER?

[z

Gerald T. Page

COMPUTER SCIENCES CORPORATION
GreenTec II
10110 Aerospace Road
Lanham-Seabrook, MD 20706
(301) 794-4460

ABSTRACT

For the past 15 years, Computer Sciences Corporation (CSC) has participated
in a process improvement program as a member of the Software Engineering
Laboratory (SEL), which is sponsored by the National Aeronautics and Space
Administration (NASA)/Goddard Space Flight Center (GSFC). This paper
analyzes the benefits CSC has derived from invoivement in this program. In
the environment studied, it shows that improvements were indeed achieved, as
evidenced by a decrease in error rates and costs over a period in which both the
size and the complexity of the developed systems increased substantially. The
paper also discusses the principles and mechanics of the process improvement
program, the lessons CSC has lezrned, and how CSC has capitalized on these

lessons.

INTRODUCTION

Computer Sciences Ccrporation (CSC) had
some compelling motivations to join with
the National Aeronautics and Space Admin-
istration (NASA)/Goddard Space Flight
Center (GSFC) and the University of Mary-
land 15 years ago to form the Software Engi-
neering Laboratory (SEL). In the context of
1976 and our partnership with GSFC, we
wanted to study our overall flight dynamics

6209-3A

software development process closely
enough to be able to refine and improve it.
Even then, we knew we had to be able to ac-
curately describe and measure that process
before real improvements could be made.
Slowly and steadily, we embarked on a con-
scious process improvement program that
would help us produce the larger and more
complex flight dynamics ground systems re-
quired to support the more sophisticated
spacecraft being built.

5poe
u~§§

We wanted to build these complex systems
with more reliability and greater economy.
Our personnel were already committed tc
building quality systems; what we needed
now was to build quality systems more pro~
ductively. We also needed to expand the
skills of our current personnel and to attract
and retain new personnel who would eajoy
the twin challenges of doing flight dynamics
worl. and simultaneously trying to improve
the methods used to do that work.

As competition to provide flight dynamics
services incrsased both here and abroad,
CSC became more ambitious in efforts to
improve its processes and products and
more committed to allocating the resources
needed to make these improvements. We
wanted to validate our belief that higher
quality at lower costs was itot a contradic-
tion. We wanted to show that, in fact, those
traits go hand in hand and that high-quality
software really does cost less.

Sound business practices showed a need to
move forward, not only to improve on our
current work but to seek new opportunities
as weil. One way to enter these new butiness
areas was to objectively demonstrate
superior products and performance in our
work with GSFC. Another way was (0 pur-
sue and achieve formal recognition by other
members of our industry. Our motivations
for the SEL partnership were clear and
compelling. From our participation in the
SEL, we expected to capture specific gains,
to learn some vital lessons, and to demon-
strate, over time, that we were truly “getting
better” at doing flight dynamics work.

Have we achieved these goals after 15 years
of participation in the SEL? The rest of this
paper answers this question. It describes
the principles and mechanics of the SEL
process improvement program, including
examples of the program in action: examines
what we have learned from our role in the

6269-3A

program and how we have capitalized on
that learning and analyzes trends over the
past 15 years to determine quantitatively
whether or not we have met our objectives.

SEL BACKGROUND

The SEL

The SEL (Reference 1) is a research project
sponsored by NASA/GSFC and supported
by the Computer Science Department at the
University of Maryland and by CSC. The
SELs mission is to understand and improve
the overall software development process.
To do this, the SEL conducts experiments
with production software projects, measures
the effect of the techniques applied. and
then adopts the most beneficial methodolc-
gies for future projects.

The SEL Environment

The production software environment stud-
ied by the SEL is .n environment of similar
flight dynamics applications developed by
GSFC for such spacecraft problems as atti-
tude and orbit determination and control.
mission planning, and maneuver control.
These applications are largely scientific and
mathematical, with moderate reliability re-
quirements and severe development time
constraints imposed by a fixed spacecraft
launch date. Table 1summarizes the current
characteristics of this environment.

The SEL Process Improvement
Program

The SEL process improvermnent program is a
conscious. continuous effort to build higher
quality systems at lower costs by under-
standing the environment, measuring and
evaluating the results of planned process
changes, and capturing and packaging expe-
niznce to optimize the process and to antici-
pate uncontrollable changes.

. Heller
. Page
25

2(.'10

"~

.~

o

Table 1. Characteristics of the

Development Envircnment
Studlied by the SEL
¥
Characteristics Current State
Organization size >250 pecple
Computing environment | HOS 8063 (IBM 3083)
VAX 8820, 11/780
Languages FORTRAN, Ada
Applications Primarly attitude; some
orbit and mission
analysis
Average system size 180 KSLOC
Average project duraticn | 2 years
Average staff lavel 15 to 20 people
Staif background Computer Science,
Mathematics, Physics

For a process improvement program (0
succeed, it must

e Be a conscious effort. Improve-
ments will not happen by themselves:
resources must be allocated to make them

happen.

® Be a continuous effort. Even very
mature processes need to be refined in the
face of changing environments and ad-
vances in technology.

e Bebuilt on a solid understanding of
the environment. This includes characteriz-
ing the products produced and processes
used.

e Achieve understanding by measure-
ment and evaluation. The parameters of the
environment must be quantified to evaluate
the effectiveness of changes made (o it.

e Feed back lessons [zarned. The re-
sults of measurement and evaluation must
be fed back into the process to optimize it.

® Package lessons learmed. Experi-
ences must be packaged so that managers
can apply them to their day-to-day chal-
lenges and can anticipate changes outside of
their control, thus preserving corporate
legacy when experienced peopie leave.

EVOLVING TO AN
OPTIMIZING ENVIRONMENT

Given the principles of the SEL process im-
provement program, we can now look at that
program in action over the SEIs first
15 years. For convenience, SEL activides
are grouped into three brcad classes:
evaluating changes to lifecycle processes,
evaluating changes to technology and meth-
odology, and providing support tc the devel-
opment organization.

Changing Life-Cycle Processes

A first goal of the SEL was to establish a
measurement program to capture and quan-
tify the characteristics of the environment,
including all its processes and products.
The SEL spent much of the first 3 years sim-
ply learning how to collect. analyze, and in-
terpret data. This carly anaiysis showed that
testing was one of the weakest activities in
the flight dynamics development process,
and it set the stage for several early expen-
ments in changing a life-cycle process.

The goal in changing a life-cycle process is to
identify a particular life-cycle phase or activ-
ity as a candidate for improvemenrt, vary just
that one element of the process. and then
measure the impact on the process and
product. If the analysis shows that the
change favorably affects quality and/or pro-
ductivity, it is incorporated into the process.
In essence, this type of change can be viewed
as “fine-tuning™ an existing process.

it

re

In 1981, in a step to understand the weak-
nesses perceived in testing, the SEL eval-
uated theimpact of independent verification
and validation (IV&V) in the flight
dynamics environment (Reference 2). It
applied IV&V techniques on four flight dy-
namics projects, defined metrics for analyz-
ing the change, and compared these metrics
with those of earlier projects that did not use
IV&V. The results showed littls or no signif-
icant improvement in quality and reliability
and, at the same time, reflected a substantial
increase in development cost. The study
concluded that IV&V was not cost effective
for use in the SEL flight dynamics envirou-
ment.

In 1984, continuing its quest to improve test-
ing, the SEL compared three different soft-
ware verification techniques (Reference 3).
It trained a group of professional program-
mers in structural testing, functional testing,
and the peer review technique of code read-
ing, and then gave them programs that had
been seeded with errors on which to apply
these techniques. After the experimenters
calculated such metrics as the number of er-
rors found and the average effort expended
to find each error, they concluded that code
reading was the most cost-cffective tech-
nique for uncovering errors in software
units. As a result, code reading was incorpo-
ratc as a formal activity into the flight dy-
nanlics software development process.

By participating in these life-cycle process
change experiments, CSC has learned
several lessons:

o Toeffectively evaluate and imple-
ment life-cycle changes, resources must be
allocated; that is, an independent organiza-
tion like the SEL must be designated, to
focus on measuring and evaluating impacts.
The job is too big for managers to do in their
“spare time.” We have carried this lesson
beyond the SEL environment by establish-
ing software engineering process groups to

perform this type of analysis across the
entire Systems, Engineering, and Analysis
Support (SEAS) contract (Reference 4) cur-
rently being performed for GSFC.

e Peer review techniques are a
cost-effective method for isolating errors
early in the development life cycle. We have
made such techniques a fundamental part of
our SEAS System Development Method-
ology (Reference 5).

Changing Technology/Methodology

After about the first 5 years of studying the
flight dynamics environment and its devel-
opment process and experimenting with
lifecycle process changes, the SEL looked
back on its experiences and drew some basic
conclusions. One was that following a for-
mal methodology, provided that it is not
“labor intensive,” can produce a 10- to
15-percent improvement in a software devel-
opment program compared to not following
a formal methodology or following an ad hoc
approach (Reference 1). Although adding
and subtracting new techniques in the form
of life-cycle changes can fine-tune the meth-
odology, it does not produce substantial
overall improvements to the program. To
achieve substantial changes requires a
major overhaul of the formal methodology
itself or the insertion of new technology.

The SEL approach to methodology and
technology changes is different from the rei-
atively simple experimentation performed
for life-cycle changes. Rather than perform-
ing a single experiment, evaluating the re-
sults, and deciding to implement a new
technique across the entire program. the
SEL knew that introducing an entire
methodology or technology would require a
more cautious approach because of risks as-
sociated with the immaturity of the method-
ology or technology and the extensive
retraining of staff required. The SEL ap-
proach is to experiment with the new meth-
odology or technology via a pilot project or

projects, evaluate the metrics collected, hy-
pothesize about the potential benefits, and
then repeat the experiment several times to
confirm or deny initial hypotheses and to es-
tablish trends.

In 1984, the SEL began evaluating a method-
ology based on the Ada language and
object-oriented design. This was a radical
change from the top-down structured design’
techniques and the FORTRAN mindset
then in place in the flight dynamics environ-
ment. To evaluate the new methodology, the
SEL began an experiment in which the same
flight dynamics simulator was built in two
parallel development efforts: one in
FORTRAN and the other in Ada. Knownas
the GRODY experiment, its results have
been documented ina number of papers and
reports in the SEL series (Reference 6).
Since this first study, five more simulators
have been built in Ada, and a separate study
was performed to transport one of the simu-
lators from a VAX environment to an [BM
mainframe environment (Reference 7).
Although the trends on these Ada projects
are still being analyzed, a significant in-
crease in reuse, with substantial develop-
ment cost savings, seems to be the greatest
benefit.

Another methodology change with which
the SEL has begun to experiment recently is
the cleanroom development methodology
(Reference 8). This methodology relies on
human discipline and peer review tech-
niques to eliminate errors early in the life
cycle. It isolates the designers and coders
from the testers and prohibits the coders
from even compiling their programs.
Although the SEL had done some early
evaluations of this methodology (the code-
reading technique already discussed was
adopted from the cleanroom methodology),
it did not begin a cleanroom pilot project
until 1988. The ACME project used the
cleanroom approach to develop one of the
subsystems for an attitude ground support

system (AGSS). Initial ACME daia showed
animprovementin error rates (Reference 9).
Currently, two other projects are using the
cleanroom methodology to confirm and ex-
pand upon the initial trends observed on
ACME. One effort is trying to reproduce
the trends on another project of ACME's
scale (approximately 30 KSLOC insize), and
the other is trying to scale up and use the
methodology on an entire AGSS (more than
150 KSLOC in size) to see if similar trends

appear.

By participating in SEL methodology
change experiments, CSC has leamned other
lessons:

e We have been able to minimize
the risks of inserting new technology into the
flight dynamics environment by measuring
and evaluating impacts in a controlled fash-
ion, allowing educated decisions to be made
based on quantitative cost/benefit tradeofTs.

. In the case of Ada, we have been
able to take advantage of the lessons learned
on the pilot projects by communicating
them to other organizations within our com-
pany through various technology exchange
forums.

Supporting the Organization

The third category of activities in the SEL
process improvement program is aimed at
supporting the needs of the development or-
ganization rather than making controlled
changes to the process or environment. This
involves the concepts of effectively capturing

and packaging experience.

Early in its history, the SEL defined and
documented the methodology being used to
develop flight dynamics projects. It pub-
lished a series of documents that established
standards and guidelines for both devei-
opers and managers in such areas as design,
implementation. and testing techniques:
lifecycle reviews and documentation:

op

Heller
Page

25

28

Lo

-~y

planning, monitoring, and controlling
projects; cost estimation; and product assur-
ance (References 10-15). These documents
helped capture experience in the flight dy-
namics environment and were instrumental
in quickly training new staff. As technology
changed and the SEL's domain grew, it be-
came evident that these documents had to
evolve as well. Thus, the SEL is currentty up-
dating this series with the dual objectives of
(1) augmenting the methodology to broaden
its scope and include new technology and
(2) generalizing it where possible to provide
greater flexibility for making future changes.

In a related activity, the SEL developed
process models for the environment. A
process model defines the expected behavior
of a particular measure, such as staff re-
sources expended, aver the life cycle of a
project. Process models capture the experi-
ence learned on past projects and package it
in a form that can be used on current
projects. Models give greater visibility into
managing development projects. They allow
managers to make at-completion predic-
tions of such measures as resource utiliza-
tion, error rates, and project schedules.
They can also be used ta determine when a
project is deviating from the typical behav-
ior of past projects and help to determine
the causes of such deviations.

The SEL developed a tool that its managers
use to take advantage of the SEL process
models. This tool, the Software Manage-
ment Environment (SME) (Reference 16),
allows managers to use process models that
are based on a pool of projects similar to the
ones they are currently managing. It helps
them analyze progress on their projects, pre-
dict cutcomes, and plan alternatives, all with
the advantage of using the experience base
built up by the SEL in the flight dynamics
environment.

The SEL process improvement program has
also helped recognize and respond to the

6260-3A

changing needs of the staff members in the
environment. Over the 15 years since the
SEL started, the primary background of the
developers in the environment has shifted
from mathematics and physics to computer
science. In response to this, the SEL initi-
ated a training program to give new devel-
opers a basic foundation in flight dynamics
applications and quickly familiarize them
with the SEL methodology.

By participating in SEL activities io support
the organization, CSC has learned even
more:

e We need to have a documented
methodology used consistently across the
environment. Drawing on the SELs experi-
ence in documenting the methodology used
in the flight dynamics environment and on
our own, more geaeral corporate methodol-
ogy, we have documented a system develop-
ment methodology for use across the entire
SEAS contract (Reference 5), and we have
supplemented this methodology with a set of
standards and procedures (Reference 17) to
help staff members apply it.

e We know that quantitative man-
agement works. Measuring process and
product allows us to develop quantitative
models that enable projects to be better
planned, more accurately estimated, and
more effectively controlled. We can also
detect deviations from our plans more
easily, and hence we can correct problems
earlier. Recognizing the importance of
quantitative management, we have pack-
aged our experiences in this area in a data
collection, analysis, and reporting handbook
to be used by our managers on the SEAS
contract (Reference 18).

e Weneedtotrain our organization
in the methodology and in process improve-
ment concepts. We have developed a re-
quired training program (Reference 19) for
all engineers, developers, testers, integra-
tors, and managers to ensure consistent

%

R~

understanding and application of the SEAS
System Development Methodology and of
quantitative management techniques across
the entire contract.

e We can write better proposals
when estimates are backed up with solid
data. From a business point of view, being
able to point to a quantitative experience
base lends credibility to proposals and
brings in more work.

ASSESSMENT OF PROGRESS

We have seen some mechanics of the SEL
process improvement program, some spe-
cific examples of the types of activities in
which the SEL engages, and how CSC has
benefited from participating in these activi-
ties. Using the SELs own data, we now
address the question “Are we any better?”
by examining some growth, reliability, and
productivity trends over the past 15 years.

Three areas measure changes in the nature
of flight dynamics systems: complexity, gen-
eral requirements, and system size. CSC
performed a study it 1988 to examine trends
in these areas, as well as in software reuse
(Reference 20). Atthat time, it was generally
felt that systems were becoming more
complex, primarily as a reflection of the in-
creased complexity of the spacecraft they
were developed to support. Table 2, adapted
from the study, shows a comparison of typi-
cal spacecraft configurations in the
mid-1970s with those of the late 1980s. This
table shows that the required attitude accu-
racy is 50 times greater than it was, data
rates are over 14 times faster, and there are
3 times as many telemetry data types and
10 times as many sensors. In the above-
mentioned study, these and other character-
istics were combined into a synthetic
measure of spacecraft complexity. A plot
showing the overall trend in this complexity
measure (Figure 1) shows that it has more
than doubled over the past 15 years.

Table 2, Comparison of Spacecraft

Characteristics
Characteristics | Mid-1970s Late 1980s
Caontrot Spin 3-axas
stabilized stablized
Sensors 1 8w 11
Torquers 1 2103
Onboard Analog, Digital,
computar simple control | aumnomous
Telemetry types | S 1210 1S
Data rates 22 kb/s 2 ktv's
Accuracy 1 degree 0.02 degree
10
23
£ /
X 18
E /
8§ 1v—
L}
o 1 L 1 PR y L

1976 1973 1980 1982 1984 1988 1988 1990

Figure 1. Trends in Spacecraft
Complexity

The same study also derived a measure of
functional specification complexity to
reflect the growth in general requirements.
This measure also more than doubled over
the past 15 years, yet requirements growth
was not directly proportional to spacecraft
complexity. For example, going from a
spacecraft with one sensor to a spacecraft
with five sensors means that software must
be developed to process data from all five
sensors. Beyond that, however, it may also
mean an additional requirement to create 2

g.Hdkr
&CT
Tofl25

utility that determines the best time to use
one sensor instead of another or to create a
program that predicts periods when the
motor that runs one sensor might interfere
with the operation of another sensor. In
addition, requirements have been added to
build programs that perform such functions
as predicting Earth occultation of a given set
of stars, predicting Moon interference with
sensor operation, or predicting antenna con-
tact times. Thus, both increased spacecraft
complexity and general requirements
growth can be seen as separate drivers in the
growth of system size.

In terms of system size, Figure 2 shows that
total number of delivered lines of code
(including blank lines and comments) has
not quite tripled. At the same time, deveiop-
ment error rates have been reduced by
65 percent (Figure 3). Figure 4 shows the
trend in the cost per developed line of code.
1t has remained relatively constant, although
the narrowing of the maximum and mini-
mum range lines indicates that it is becom-
ing more predictable.

Looking at all of these trends together now
helps us answer our original question.
Although a rigorous study of the relation-
ship between spacecraft complexity, re-
quirements growth, and system size has not
been performed, one could expect that a
doubling in both complexity and general re-
quirements might result in a quadrupling of
system size. Since system size did not quite
triple, we conclude that developers are now
packaging more functionality per line of
code than they were 15 years ago. Thus, the
SEL process improvement program has
enabled us to build systems that provide
more functionality per line of code, with sig-
nificantly fewer errors per line of code, at 2
lower cost per line of code than systems of
15 years ago. It is clearly possible to
improve productivity and lower error rates
at the same time.

3;2 e
53100 //y
e E—

S

0
1978 1978 1980 13R2 1884 198¢ 1288 1990

Figure 2. Trends in Slze Growth of Flight

Dynamics Applications
s N
3 10—
Ts 9 >,
£% /=X .
§e 7 \\
;é s o~
‘g ‘ L X1 2 L 'l\

1978 1973 1580 1982 1984 1988 1988 19%

Figure 3. Trends in Development

Efror Rates
0.5

L 3 Mamiowam

3 os —

(5]
.S 04
& g Average
«5 03 —a
59
2 § 02 —

% 01 e

-

1978 1978 1980 1582 1984 1388 1988 1990

Figure 4. Trends in Software Cost

In addition, process models derived from
SEL-collected data have helped us predict
error rates and system costs more accu-
rately. Thus, the answer to the questicn "Are
we any better?” has to be an unqualified
“Yes.”

i

o

ACKNOWLEDGMENT

We would like to thank Michele Bissonette
for her help in preparing this paper.

REFERENCES

NASA/GSFC Software Engineering
Laboratory, SEL-81-104, The Soft-
ware Engineering Laboratory, D. Card,
F. McGarry, et al., February 1982

—, SEL-81-101, Evaluation of an Inde-
pendent Verification and Validation
(IV&YV) Methodology for Flight Dy-
namics, G. Page, F McGary, and
D. Card, June 1985

—, SEL-85-001, 4 Comparison of Soft-
ware Verification Techniques, D. Card,
R. Selby, et al., April 1985

NASA/GSFC, Request for Proposal
(RFP) 5-74300/184, Systems, Engi-
neering, and Analysis Support
(SEAS), September 1986

Computer Sciences Corporation,
SEAS System Development Methodol-
ogy (SSDM), July 1989

Software Engineering Laboratory,
SEL-90-004, Gamma Ray Observatory
Dynamics Simulator in Ada (GRODY)
Experiment Summary, T. McDermott
et al., September 1990

—, SEL-90-003, A Study of the Porta-
bidity of an Ada Systern in the Software
Engineering Laboratory (SEL), L. Jun
et al,, June 1990

IBM Federal Systems Division,
Cleanroom Software Development
Method, M. Dyer, October 1982

Software Engineering Laboratory,
SEL-90-002, The Cleanroom Case
Study in the Sofiware Engineering Lab-

10.

11

14.

15.

16.

17.

18.

19.

oratory: Project Description and Early
Analysis, S. Green et al., March 1990

—, SEL-81-205, Recommended Ap-
proach (o Software Development,
F. McGarry, G. Page, et al., April 1983

—, SEL-83-001, An Approach to Soft-
ware Cost Estimation, F, McGarry,
G. Page, et al,, February 1984

—, SEL-84-101, Manager's Handbook
for Software Development, L Landis,
F. McGarry, ¢t al., November 1990

—, SEL-85-005, Software Vertfication
and Testing, D. Card, C. Antle, and
E. Edwards, December 1985

—, SEL-86-001, Programmer’s Hand-
book for Flight Dynamics Software
Development, R. Wood and
E. Edwards, March 1986

—. SEL-87<001, Product Assurance
Policies and Procedures for Flight
Dynamics Software Development,
S. Perry et al,, March 1987

—, SEL-89-003, Sofrware Management
Environment (SME) Concepts and
Architecture, W. Decker and J. Valett,
August 1989

Computer Sciences Corporation,
SEAS System Development Method-
ology (SSDM) Standards and Proce-
dures, June 1990

—. SEAS Software Measurement Sys-
tem (SSMS) Handbook, to be pub-
lished in early 1991

—, Catalog of SEAS Training Courses,
September 1990

—, CSC/TM-89/6031. A Study on Size
and Reuse Trends in Attitude Ground
Support Systems (AGSSs) Developed
for the Flight Dynamics Division
(FDD) (1976-1988), D. Boiand et al.,
February 1989

S

o..—:

,l“’

VIEWGRAPH MATERIALS
FOR THE
G. PAGE PRESENTATION

15

Frep 1)

Impact of a
Process Improvement Program in a
Production Software Environment:
Are we any better?

Jerry Page
November 28, 1990

S~ Computer Sclences Corporaton
Wl Sysiem Scnences DIVISI()I)

T4

STIO 113y
50
g

NASA
Goddard Space
Flight Center

Computer
Sciences
Corporation

University
of
Maryland

Computer Sciences Corporation
System Sciences Division

81300(8)-8

ad

28D
a¥eg-n

s o Z1 3%y

Software Engineering Laboratory
Environment

Characteristic

Current State

Organization Staff Level

> 250

Computing Environment

HSD 8063 (IBM 3083),
VAX 8820, VAX-11/78C

Languages FORTRAN, Ada

Application Attitude, orbit, mission analysis
Average Svstem Size 180 KSLOC

Average Project Duration 2 Years

Average Staff Level 15t0 20

Staff Background

Computer Sclerice. Mathematics,
and Physical Sciences

Computer Sciences Corporation

~e~
SWa¥% System Sciences Division

8138G(8)-1

sTIog1 3%y

aed -y

What Is a
Process Improvement Program?

A conscious, continuous effort to build higher quality
systems by

« Understanding the environment

« Measuring and evaluating the results from planned
changes

« Capturing and packaging experience to optimize
the process and to anticipate uncontrollables

;mpmgm Computer Sciences Corporation 8138G(8)-2

QP& System Sciences Division

{] o

STIOp) 32y

25D
kg -

M

Ul

Life Cycle Process Changes

- Perform experimental studies on preduction projects
- Vary one element of process and measure impacts on process and product

- Fine tune process to take advantage of benefits

Testing Studies Observations and Actions

- Code reading most effective technique

Code Reading,
- Add to process

Functional and
Structural Testing

Independent
Verification and
Validation

- Small effects for relatlveIEy large cost
« IV&YV inappropriate for SEL projects

& Computer Scicnces Corporation 6130G(0) 9

S System Sciences Division

L

Technology/Methodology Changes

- Test new technology in production environment with pilot project

- Measure Impacts on project profiles and products produced

- Package lessons learned, adjust training, and repeat for effect

Technology Observations and Actions

Ada - Very promising trends on software reuse
« Conduct further and more detailed studies

Cleanroom | - Initially, error levels very low
- Scale up experiment and verify findings

250
ey n

sTI gl adey

Computer Sciences Corporation 6138G(8)-10
System Sciences Division

M
L)
M

!

(L

X

I LIE 7
osD
aded 'n

Organizational Changes

- Look for deviations from process models

+ Determine impacts

- Strengthen definitions of overall approach

Change Action Taken
Staff Turnover or | « Created and augmented standards and guidelines
Staff Growth « Developed Software Management Environment (SME)
Staff - Established required training program for developers
Background and managers

- Developed Software Development Environment (SDE)

Domain Growth - Augmented methodology to broaden scope
- Generalized methodology to make it more flexible

crc Computer Sciences Corporation
o)

System Sciences Division

81384(8)- 11

System Complexity*

30 Mid 1970's
Control: Spin Stabllized
Sensors: 1
25 || Torquers: 1
OBC: Analog
Simple Control
Telemetry: &
£ 20 | pata Rates: 2.2 kbis
P Accuracy: 1 Degree
Q Late 1980°s
= 1
Q. Control: 3-Axis Stabilized
E Sensors: 8to 11
Torquers: 2to 3
Q 1 OBC: Digital
0 Autonomous Control

Telemetry: 12to 15
Data Rates: 32 kb/s
Accuracy: 0.02 Degree

\ | 1 L I | |
76 1978 1980 1982 1984 1986 1988 1990

Complexity has more than doubled.

c 01 O O

{e)

1

20OQ

x b

S 82’ ‘D. Boland, A Stu%y on Size and Reusa Trends in Attitude Ground Support Systems (AGSSs) Developed for the

2 Flight Dynamics Divislon (FDD) (1976-1988), CSC/T M-89/6031, CSC, February 1989

7
~r Computer Sciences Corporation 8138G(8)8
e System Sciences Division

i
Bt

Delivered Lines of Code

250

200

150

N

0 1 | [l | I
1976 1978 1980 1982 1984 1986 1988 1990

System size has more than doubled.

Computer Sciences Corporation e138G(8)-12

System Sciences Division

[4 XK L F]
alBed o

Development Error Rates

Errors Per KLOC
(Developed)

4 | | | | - |
1976 1978 1980 1982 1984 1986 1988 1990

Error rates have been reduced by 65 percent.
Error models are fairly well established.

&~~~ Computer Sciences Corporation 81386(2)-13
e System Sciences Division

Hours Per
Developed Line

© e o090 90
- N W S5 01 O

0.0 l 1 - l | i
1976 1978 1980 1982 1984 1986 1988 1990

Cost per LOC remained relatively constant.
Predictability is improving.

Computer Sciences Corporation 6138G(8)- 14
System Sciences Division

STp 1T a¥%ey

w4

JSD

3y n

Percentage of Reuse

~ee
.

100
90
80
70
60
50
40
30
20

10
0

1976

Code Reuse in Systems

0

| -

-]
[
4 2 =

[

LI

1
i

]

Et]DED [P O

— -

T s Eg‘cr#

(]

LT , .

11 1

1978 1980 1982 1984 1986

1988

1990

Sometimes interesting things in a picture are lost

because of shaliow depth of field.

Computer Sciences Corporation
System Sciences Division

6138G(8)-17

\1

Code Reuse in Ada Simulators

100

90 ‘F
3 5
@ 80
@ 70— /
- /
‘s 60 - 7
© 50 — Vi
S 40 . —
c [O | 53 cj/iﬂ
o 30] I — 2
S ol - /o
o ol g = e —

0 | %L—l#bl I I I’"!nf

|
1976 1978 1980 1982 1984 1986 1988 1990

However, searching with a reduced field of view
can pay off.

crc Computer Sciences Corporation €1300(8)-16
System Sciences Division

$T IO (T a%ey

)

aed o

~e~
Cnd

What CSC Has Learned

- Quantitative management works
 Peer review works

- You can lower error rates

 You can raise productivity

« You can write more credible proposals
when you can back them up with data

Computer Sciences Corporation
System Sciences Division

01300(0)4

What Has CSC Done to
Capitalize on Its Learning?

 Developed a System Development Methodology based on its
experience

- Packaged its experience with quantitative management in a
manager's Data Collection, Analysis, and Reporting Handbook

 Developed a set of standards and guidelines to complement
its methodology

» Developed required training programs for engineers, developers,
testers, integrators, and managers to maximize the benefits of its

methodology

- Established measurement-based Engineering Process Groups to
identify imgrovement areas, recommend changes, and evaluate the
impact of those changes

ST X0 ¥ 3%y
IS0
aded o

™ Computer Sciences Corporation

e
Swad& System Sciences Division

6136G(8)-5

St 57Ny

nQ
8%
4

Presentation Contributors

Gerry Heller
Tim McDermott
Sharon Waligora

=g=g= Computer Sciences Corporation
Swa¥% System Sciences Division

6130G(8)-18

