
IMPA(3T OF A PROCESS IMPROVEMENT PROGRAM IN A
PRODUrnON S O r n A R E ENVIRONMENT:

ARE WE ANY BE'ITER?
. /

Gerard H. Heller
Gerald T. Page

COMPU'IER SCIENCES CORPOFWIION
GreenTec II

10110 Aerospace Road
Lanham-Seabrook, MD 20706

(301) 794-4460

ABSTRACT

For the past U years, Computer Sciences Corporation (CSC) has participated
in a process improvement program as a member of the Software Engineering
Laboratory (EL.), which is sponsored by the National Aeronautics and Space
Administration (NASAYGoddard Space Flight Center (GSFC). This paper
analyzes the benefits CSC has derived from involvement in this program In
the environment studied it shows that improvements were indeed achieved. as
evidenced by a decrease in error rates and costs over a period in which both the
size and the complexity of the developed systems increased substantially. The
paper also discusses the principles and mechanics of the process improvement
program. the lessons CSC has 1e:med. and how CSC has capitalized on these
lessons.

Computer Sciences Cs,-r;oration (CSC) had
some compelling motivations to join with
the National Aeronautics and Space Adrnin-
ismtion (NASAYGoddard Space Flight
Center (GSFC) and the University of Mary-
land 15 years ago to form the Software Engi-
neen'ng Laboratory (SEL). In the contexc of
1976 and our partnership with GSFC. we
wanted to study our overall flight dynamics

software development process closely
enough to be able to refine and improve it.
Even then. we knew we had to be able to ac-
curately describe and measure that process
before real improvements could be made.
Slowly and steadily. we embarked on a con-
scious process improvement program that
would help us produce the larger and more
complex flight dynamics ground systems rc-
quired to suppon the more sophisticated
spacecraft being built

We wanted to build these complex systems
with more reliability and greater economy.
Our personnel were already committed tc
building quality systems; what we needed
now was to build quality systems more pro-
ductively. We also needed to expand the
skills of our current personnel and to attract
and retain new personnel who would ezjoy
the twin challenges of doing flight dynamics
worl. and simultaneousty uying to improve
the methack used to do that work

ki competition to provide flight dynamics
services incr-sed both here and abroad.
CSC became more ambitious in efforts to
improve its processes and products and
more committed to allocating :he resources
neded to make these improvements. We
wanted to validate our belief that higher
quality at lower casts was ilot a contradic-
tion. We wanted to show that. in fact. those
traits go hand in hand and that high-quality
soinvare redly does cost less.

Sound business practices showed a need to
move forward not only w improve on our
current work but to seek new opportunities
as weil. One way to enter these new bciness
areas was to objectively demonstrate
superior products and performance in our
work with GSFC. Another way was to pur-
sue and achieve formal recognition by other
members of our industry. Our motivations
for the SEL partnership were clear and
compelling. From our participation in the
SEL we expected to capture specific gains,
to learn some vital lessons. and to demon-
strate, over time. that we were truly "getting
better" at doing flight dynamics work

Have we achieved these goals after I5 years
of participation in the SEL? The rest of this
paper answers this question. It describes
the principles and mechanics of the SEL
process impmvement program. including
examples of the program in action: examines
what we have learned from our role in the

program and how we have capitalized on
that learning; arad analyzes trends over the
past 15 yean to determine quantitatively
whether or not we have met our objectives.

SEL BACKGROUND

The SEL

The SEL (Reference 1) is a research project
sponsored by NASAJGSFC and supported
by the Computer Science Department at the
University of Maryland and by CSC. The
S E f i mission is to understand and improve
the overall software development process.
To do this. the SEL conducts experiments
with production software projects. measures
the effect of the techniques applied. and
then adopts the most beneficial methodolo-
gies for future projects.

The SEL Environment

The production software environment stud-
ied by the SEL is .A environment of similar
flight dynamics applications developed by
GSFC for such spacecraft problems as atti-
tude and orbit determination and control.
mission planning. and maneuver control.
These applications are largely scientific and
mathematical. with moderate reliability re-
quirements and severe development time
constraints imposed by a fixed spacecraft
launch date. Table 1 summarizes the current
characteristics of this environment.

The SEL Process Improvement
program

The SEL prccess improvement program is a
conscious. continuous effort to build higher
quality systems at lower costs by under-
standing the environmenf measuring and
evaluating the results of planned proces:
changes. and capturing and packaging expe-
zcnce to optimize the process and to antici-
pate uncontrollable changes.

G. H e k
G. P a g
CSC
20f 25

m l e 1. Churcterlrtlca of the
Devaloprnent Envlrcnrnent
Studled by the SEL

For a process improvement program to
succeed. it must

Characreristics

Orglniution d m

Qmputlng mwimnment

-%I@¶

A p p i i i r n

Average system size

Average pro* duation

Averagr staff level

Staff backgmnd

Bc a COILKWU~ effort. Improve-
ments will not happen by themselves:
resources must be allocated to make them
happen.

Current State

>250 p.oplr

HOS 8063 (I8M 3083)
VAX 8820.1 lI780

FORTRAN, Ada

Primuily rtlitudr; some
orbit and mission
analysis

180 KSLOC

2 yean

15 to 20 pecple

Computer S d e m .
Mathematia. PhysKJ

Bc a contiruwcrr eflorr. Even very
mature processes need to be refined in the
face of changing environments and ad-
vances in technology.

Be built on a sdid &fading of
the m*inuynml This includes characteriz-
ing the products produced and processes
w d .

Aci r i rwun, iCntandingI rJ ,~~-
mcnt and d& The parameten of the
environmect must be quantified to evaluate
the effectiveness of changes made to it.

M b a c k C c s s o n s L T h e r e -
sults of measurement and evaluatioo must
be fed back into the p r o w to optimize it. . ~ l a r o n r l e o r a e d . Experi-
en- must be packaged so that managn
can appiy them to their day-to-day chal-
lenges and can antidpate changss outside of
their control thus p r m ' n g corporate
legacy when experienced peopk lea=

EVOLVING TO m
OPTIMIZMG ENVIRONMENT

Given the principles of the SEL pro- im-
provement program. we can now lookat that
program in action over the SEI5 first
15 years. For convenience. SEL activities
are grouped into three b r a d classes:
evaluating changes to life-cyde processs,
evaluating changes to technology and meth-
odology, and providing support tc the devel-
opment organization.

Changing Life-Cycle Processes

A first goal of the SEL was to establish a
measurement program to capture and quan-
tify the characteristics of the enviroament
including all its processes and products.
The SELspent much of the first 5 years sim-
ply laming how to collect an-. and in-
terpret data. This early anaiysis showed that
testing was one of the w&t activities in
the tlight dynamics development process.
and it set the stage for sevtral early q e r i -
ments in changing a l i f e q ~ l e process.

The goal in changing a life-qde procas is to
identify a particular l i feqdc phase or activ-
ity as acandidate for imprmmec: vary just
that one element of the process. and then
measure the impact on tbe p r o a s and
product. If tk analysis shows that the
change favorably affects quality andlor pro-
ductivity, it is incorporated into the process.
In essence. this type of change can be viewed
as 'fine-tuning" an existing process.

In 1981, in a step to understand the weak-
nesses perceived in testing, the SEL eval-
uated the impact of independent verification
and validation (IV&V) in the flight
dynamics environment (Reference 2). It
applied IV&V techniques on four flight dy-
namics projects, defined metrics for a n a l p
ing the changc and compared these metrics
with those of earlier projects that did not use
N&V. The results showed little or no signif-
icant improvement in quality and reliability
and, at the same time, reflected a substantial
increase in development cost The study
concluded that IV&V was nc?t cost effective
for use in the SEL flight dynamics envirou-
ment

In 1984, continuing its quest to improve test-
ing. the SEL compared three different soft-
ware verification techniques (Reference 3).
It trained a p u p of professionai program-
mers in structural testing, functional testing,
and the peer review technique of code read-
ing, and then gave them programs that had
been seeded with errors on which to apply
these techniques. After the experimenters
calculated such meuics as the number of er-
rors found and the average effort expended
to find each error. they concluded that code
reading was the most cost-effective tech-
nique for uncovering errors in software
units. 4s a result. code reading was incorpo-
rat(as a formal activity into the flight dy-
nau 'cs software development process.

By participating in these life-cycle process
change experiments, CSC has learned
several lessons:

a To effectively evaluate and imple-
ment life-cycle changes, resources must be
allocated; that is. an independent organiza-
tion like the SEL must be designated to
focus on measuring and evaluating impacts.
The job is too big for managen to do in their
"spare time." We have carried this lesson
beyond the SEL environment by establish-
ing software engineering p roms groups to

perform this type of analysis across the
entire Systems, Engineering, and Analysis
Support (SEAS) contract (Reference 4) cur-
rently being performed for GSFC.

a Peer review techniquts are a
costcffcctive method for isolating errors
early in the development life cycle. We have
made such techniques a fundamental part of
our SEAS System Development Method-
ology (Reference 5).

Changing Technology/Methodology

After about the first 5 years of studying the
flight dynamics environment and its devel-
opment process and experimenting with
life-cycle process changes, the SEL looked
back on its experiences and drew some basic
conclusions. One was that following a for-
mal methodology. provided that it is not
"labor intensive." can produce a 10- to
15-percent improvement in a software devel-
opment program compared to not following
a formal methodology or following an ad hoe
approach (Reference 1). Although adding
and subtracting new techniques in the form
of life-cycle changes can fine-tune the meth-
odology. it does not produce substantial
overall improvements to the program. To
achieve substantial changes requires a
major overhaul of the formal methodology
itself or the insertion of new technology.

The SEL approach to methodology and
technology changes is different from the rei .
atively simple experimentation performed
for lifecycle changes. Rather than perform-
ing a single experiment. evaluating the re-
sults. and deciding to implement a new
technique across the entire program. the
SEL knew that introducing an entire
methodology or technology would require a
more cautious approach because of risks as-
sociated with the immaturity of the method-
ology or technology and the mensive
retraining of staff rquired. The SEL ap-
proach is to experiment with the new meth-
odology or technology via a pilot project or

projects. evaluate the memcs collected, hy-
pothesize about the potential benefits, and
then repeat the experiment several times to
confirm or deny initial hypotheses and to a-
tablish trends.

In 1984, tbe SEL began evaluating a method-
ology b a d on thc Ada language and
object-oriented design. This was a radical
change from the topdown suuctured desigri
techniques and the FO- mindset
then in place in the flight dynamics environ-
ment. To evaluate the new methodology, the
SEL began an experiment in which the same
flight dynamics simulator was built in two
parallel development efforts: one in
FORTRAN and the &er in Ada Known as
the GRODY crpcrimenf its results havc
been documented in anumber of papers and
reports in the SEL series (Reference 6).
Since this first study. five mom sirnulaton
have bcen built in Ada, and a separate study
was performed to transport one of the sir~u-
lators from a VAX environment to an IBM
mainbmc environment (Reference 7).
Although the trends on these Ada projects
are still being analyzed, a significant in-
crease in reuse, with substantial develop
ment cost saving, seems to be the greatest
benefit.

Another methodology change with which
the SEL has begun to experiment recently is
the cleanrwm devebpment methodology
(Reference 8). This methodology rdies on
human dixipline and peer miew tech-
niques to eliminate errors early in the life
cycle. It isolates the designers and coders
from the testers and prohibits the coders
from C Y Q ~ compiling their programs.
Although the SEL had done some early
evaluatiom of this methodology (the wde-
reading ttcfinique h d y &d was
adopted from the cleanroom metfiodology).
it did not begin a deanroom pilot projec:
until 1988. The ACME project ~ e d the
ckinrwm approach to develop one of the
subsystems for an attitude ground support

system (AGSS). Initial ACME daia showed
an improvement in cnor rates (Reference 9).
Currently, two other projects are using the
cleanroom methodology to confirm and a-
pand upon the initial trends observed on
ACME. One effort is trying to reproduce
the trends on another project of ACME'S
scale (appmximateiy M KSLOC in size), and
the other is to sale up and use the
methodology on an entire AGSS (more than
1M KSLOC in sizt) to see if similar trends
appear.

By participating in SEL methodology
change experiments, CSC has learned other
lessons:

We have been able to mini-
the risks of insening new technology into the
flight dynamics environment by measuring
and evaluating impacts in a controlled fash-
ion allowing educated decisions to be made
Sased on quantitative costheneiit tradeoffs.

In the case of Ada, we have been
able to take advantage of the lessons learned
on the pilot projects by communicating
them to other organizations within our com-
pany through various technology exchange
f o m .

Supporting the Organization

The third catepry of activities in the SEL
process improvement program is aimed at
supporting the needs of the development or-
ganization rather than making controlled
changes to the process or environment. This
involves the concepts of effectively capturing
and packaging aperience.

Early in its history. the SEL defined and
documented the methodology being used to
develop flight dynamics projects. It pub-
lished a saia of documents that established
standards and guidelines for both devd-
open and managers in such areas as design
impkmcntation and testing techniques;
lifecycle reviews and documentation:

planning. monitori~g. and controlling
projects: cost estimation; and product assur-
ance (References 10-15). ncse documents
helped capture experience in the flight dy-
namics environment and wen instrumental
in quickly training new sta& As technology
changed and the SELh domain grew, it be-
came evident that these dacurnents had to
w o k as well. Thus, the SELis currently up-
dating this series with the dual objectives of
(1) augmenting the methodology to broaden
its scope and include new technology and
(2) generalizing it where possible to provide
greater flexibility for making future changes.

In a related activity, the SEL developed
process models for the environment. A
process model defines the expected behavior
of a particular measure, such as staff re-
sources expended. over the life cycle of a
project. Process models capture the experi-
ence learned on past projects and package it
in a form that can be used on current
projects. .Models give greater visibility into
managing development projects. They allow
managers to make at-completion predic-
tions of sucbmeasures as resource udiza-
tion. error rates, and project schedules.
They can also be used to determine when a
project is deviating from the typical behav-
ior of past pmjcrts and help to determine
the causes of such deviations.

The SEL developed a tool that its managers
use to take advantage of the SEL process
models. This tool. the Sofrware Manage-
Eent Environment (SME) (Reference 16).
allows managers to use process models that
arc based on a pool of projects similar to the
ones they are currently managing. It helps
them analyze progress on their projects, pre-
dict cutcomes. and plan alternatives. all with
thc advantage of using the experience base
built up by the SEX, in the flight dynamics
environment

The SEL process improvement program has
also helped recognize and respond to the

changing needs of the sta££ members in the
environment Over the U years since the
SEL started the primary background of the
deve!open in the environment has shifted
from mathematics and physics to computer
science. In response to this. the SEL initi-
ated a training program to give new devel-
open a basic foundation in flight dynamics
applications and quickly faatiliarip them
with the SEL methodology.

By participating in SEL activities io support
the organization, CSC has learned even
more:

a We need to have a documented
methodology used cmsistently across the
environment. Drawing on the SELs apcr i -
ence in documenting the methodology used
in the flight dynamics environment and on
our own. more ge.7eral corporate methodol-
ogy, we have documented a system dcvelop-
mznt methodology for use across the entire
SEAS contract (Reference 5) , and we have
supplemented this methodology with a set of
standards and procedures (Reference 17) to
help staff members apply it.

a We know that quantitative man-
agement works. Measuring process and
product allows us to develop quantitative
models that enable projects to be better
planned. more accurately estimated. and
more effectively controlled. We can also
detest deviations from our plans more
easily, and hence we can correct problems
earlier. Recognizing the importance of
quantitative managemenf we have pack-
aged our experiences in this area in a data
collection. analysis. and reporting handbook
to be used by our managers on the SEAS
contract (Reference 18).

a We need to train our organization
in the methodology and in process improve-
ment concepts. We have developed a re-
quired training program (Reference 19) for
all engineers. developers. testers. integra-
tors, and managen to ensure consistent

understanding and a~plication of the SEAS
System Development Methodology and of Tab'g

quantitative management techniques across
cllmalrtlc¶

the entire contract

We can write better proposals
when estimates are backed up with solid
data. From a business point of view, being
able to point to a quantitative experience
base lends mdibility to proposals and
brings in more work

ASSESSMENT OF PROGRESS

We have seen some mechanics of the SEL
process improvement program, some spe-
cific examples of the types of activities in
which the SEL engages. and how CSC has
benefited from participating in these activi-
ties. Using the SELLS own data. we now
address the question "Are we any better?"
by examining some growth reliability, and
productivity trends over the past 15 years.

30 I I

Characmfistks

Cant~ol

S o w n

Torquan

Onboard
comprtar

falametry typos

Oat8 rat-

A-J~~V

Three areas measure changes in the nature
of flight dynamics systems: complexity. gen-
eral requirements, and system size. CSC
performed a study it, 1988 to m i n e trends
in these areas. as well as in software reuse
(Reference 20). Ar that time. it was generally
felt that systems were becoming more
complex primarily as a reflection of the in-
creased complexity of the spacecraft they
were developed to support. Xble 2 adapted
from the study. shows a comparison oitypi-
cal spacecraft configurations in the
mid-1970s with those of the late 1980s. This
table shows that the required attitude accu-
racy is 50 times greater than it was, data
rates are over 14 times faster. and then are
3 times as many telemetry data types and
10 times as many sensors. In the above-
mentioned study, these and other character-
istics were combined into a synthetic
measure of spacenaft complexity. A plot
showing the overall trend in this complexity
measure (Figure 1) shows that it has more
than doubled over the past I5 years.

The same study also derived a measure of
functional specification complexiq to
reflect the growth in general requirunents.
This measure also more than doubled over
the past U years. yet requirements growth
was not directly proportional to spacecraft
complexity. For example, going h m a
spacecraft with one sensor to a spaacraft
with five sensors means that software must
be developed to process data fnw all five
sensors. Beyond that. however, it may also
mean an additional requirement to create a

Mid-1970s

-%in
stabiliud

1

1

A*
impla control

5

2 2 ktJ,

1 dogma

Late 1980s

3-m'r
s ih l izd

8to 11

2t03

Dw.
uranonws

1210 15

32 W s

0.02 d.gree

utility that determines the best time to use
one sensor instead of another or to create a
program that predicts periods when the
motor that runs one sensor might interfere
with the operation of another sensor. In
addition, requirements have been added to
build programs that perform such functions
as predicting Earth occultation of a given set
of stars, predicting Moon interference with
sensor operation or predicting antenna con-
tact times. Thus, both increased spacecraft
complexity and general requirements
growth can be seen as separate drivers in the
growth of system size.

In terms of system size, Figure 2 shows that
total number of delivered tines of code
(including blank lines and comments) has
not quite tripled. At the same time. deveiop-
ment error rates have been reduced by
65 percent (Figure 3). Figwe 4 shows the
trend in the cost per developed tine of code.
It has remained relatively constanf although
the narrowing of the maximum and mini-
mum range line indicates that it is becorn-
ing more predictable.

Looking at all of these trends together now
helps us answer our original question.
Although a rigorous study of the relation-
ship between spacecraft complexity, re-
quirements growth. and system size has not
been performed. one could expect that a
doubling in both complexity and general re-
quirements might result in a quadrupling of
systansizc. Since system size did not quite
triple, we conclude that developers are now
packaging more functionality per line of
code than they were 15 years ago. Thus, the
SEL process improvement program has
e n a M u s to build systems that provide
more functionality per line of codc with sig-
nificantly fewer enon per Line of codc at a
Iowa cost per line of codc than systems of
15 years ago. It is clearly possible to
imprwc prdmivity and lower enor rates
a t tbe same time.

ngure 2 meria tn Growth ot mgtrt
Dynamics AppPcatlw

Figure 3. Rends in Development
Error Rates

im im l o rn isrz rsu ism r w r ioa,

Figure 4. Rends h Software Cost

In addition process models derived from
SEL-coUectcd data have helped us predict
error rates and systan costs more accJ-
m l y . Thus. the answer to the quaticn -Arc
we any betla?" has to be an unquaiified
"Yes."

We would like to thank Michele Bissonette
for her help in preparing this paper.

REFERENCES

1. NASAIGSFC Software Enginaring
Laboratory. SU-81-104, 77w Sofi-
ware Engineering Loborotory. D. Card,
E McGarry, et al.. February 1982

2 --, SEL-81-101. Eval&n of an Inde-
pendent Venficarion and V a l U n
(IVdiV) Methodoiogy for Right Dy-
namicr. G. Page. E McGarry, and
D. Card, June 1985

3. -, SEL-8540l.A Cornpariron ofSofi-
ware Vcrfication Techniques, D. Card.
R. Selby, et al.. April 1985

4. NASAIGSFC, Request for Proposal
(RFP) 5-743001184, Systems, Engi-
neering, and Analysis Support
(SEAS). September 1986

5. Computer Sciences Corporation,
SEAS Sysrem Development Mclhodol-
ogy (SSDM), July 1989

6. Software Engineering Laboratory,
SEL-90-004. Gamma Ray Observatory
Dynamics Simulator in Ada (GRODY)
Eqeriment S w n m] , T McDermott
et al.. September 1990

7. -, SEL-90.003, A Study of the Porta-
bildy of an Ada System in the Software
Engineering Loborotory (SEL). L Jun
ct al.. June 1990

8. IBM Federal Systems Division,
CIcannwm Sofhme Develapmnt
M&. M. Dyer. October 1982

9. Software Engineering Laboratory,
SEL-90.00L ntc Cleanrrwm Case
Study in the Sofiware Engineuing Lob-

omtory: Projca Dcsaiprion and Eorfy
An&&. S. Green et d.. March 1990

-, SEL-81-205. Recommenduf Ap-
p d to SO* Dcvdopmcnr,

McGarry, G. Page. et al.. April 1983

-, SU-83-01. An Approocfi to Soji-
ware Cost Esrimorion. E McGany.
G. Pagc. et al, February 1984

-, SEL-84-101. Mmger's Hmrdbook
for Sofiare Development. L Landis.
F. McGany, et al, November 1990

-, SEL-85-005, Software V i n
and T i n g . D. Card. C. Antle. and
E. Edwards. December 1985

--, SU-86-001. Programmer's Hand-
book for Flight Dynamics Sojhre
Development. R Wood and
E. Edwards. March 1986

-. SEL-87301, Product Assurance
Polic:es and Procedures for Eight
Dynamics Software Development.
S. Perry et al, March 1987

--. SU-89-003. Sohare Mamgemnt
Envimnment (SME) Concepts and
Archuecture. W. Decker and J. Valett.
August 1989

Computer Sciences Corporation.
SEAS System Development ,Herhod-
ology (SSDM) Standards and Proce-
dures, June 1990

-. SGiS Software ,Ueasurement Sys-
tem (SSMS) Handbook. to be pub-
lished in early 1991

-, Caralog of SEAS Training Courscs.
September 1990

-, CSGTM-891603 L A Study on Size
and Rewe Trends in Am'tude Ground
Support S y s r m (AGSSs) Devdaped
for the Right Dynamics Division
(FDD) (1976-1988). D. Boland et aL.
February 1989

VlEWGRAPH MATERIALS

FOR THE

G. PAGE PRESENTATION

Impact of a
Process Improvement Program in a
Production Software Environment:

Are we any better?

Jerry Page
November 28,1990

9 8 C = d
S
ti

ppp Co~llpl~tcl* Scicrlccs Colyol.adolr
Systenl Scicr~ces Division

I;:
ppp Cor~rputer S~.lcr~ccu Corporudo~r
bdb System Sciences Division

Software Engineering Laboratory
Environment

- 0 0
* X k
G 5
S
U ppp Co~nputer Sciences Corporation

'Ldb Sys~elll Sriellres Division

w

Characteristic Current State

Organization Staff Level > 250

Computlng Environment

Languages

Application

Average Svstem Size

Average Project Duration

Average Staff Level

Staff Background

C

HSD 8063 (IBM 3083),
VAX 8820, VAX-11 //P,O

FORTRAN, Ada

Attitude, orbit, mission analysis

180 KSLOC

2 Years

15 to 20

Computer Science, Mathematics,
and Physical Sciences

What Is a
Process Improvement Program?

A conscious, continuous effort to build higher quality
systems by

Understanding the environment

Measuring and evaluating the results from planned
changes

Capturing and packaging experience to optimize
the process and to anticipate uncontrollables

' ppp Computer Sciences Corporation
bdb Syste~n Sciellces Divisiotl

Life Cycle Process Changes

Perform experimental studies on production projects

Vary one element of process and measure impacts on process and product

Fine tune process to take advantage of benefits

1 Testing Studies I Observations and Actions I
Code Reading, Code reading most effective technique
Functional and Add ?o process
Structural Testing

lnde endent P Verif cation and
Validation

Small effects for relative1 large cost h IV&V inappropriate for S L projects

C:
p Corapulcr Scicr~ccs Corporation
b Systeln Scicllces IXvision

Technology/Methodology Changes

Test new technology in production environment with pilot project

Measure impacts on project profiles and products produced

Package lessons learned, adjust training, and repeat for effect

t; d
4
L:

ppp Conrputer Sciences Corporatiorr
d b Systet~l Scicnccs Division

r

Technology

Ada

Cleanroom

Observations and Actions

Very promising trends on software rause
Conduct further and more detailed studies

Initially, error levels uery low
Scale up experiment and verify findings

L

Orqanizational % . Changes

Look for devlatlons from process models

Determine impacts

Strengthen definitions of overall approach

I&
Camputcr Scicriccs Coq~orntion
Systenl Sciences Division

Change

Staff Turnover or
Staff Growth

Staff
Background

-

Domain Growth

i

Action Taken

. Created and augmented standards and guidelines
Developed Software Management Environment (SME)

Established required training program for developers

Develope Software Development Environment (SDE) and mana%ers

Augmented methodology to broaden scope
Generalized methodology to make it more flexible

System Complexity*

Control: Spln Sleblllzed
Sensors: 1

- Torquers: 1
OBC: Analog

Slmple Control
Telemetry: 5

- Data Rates: 2.2 kbls
Accuracy: i Degree

Late 1980's

Control: SAXIS Stablllzed
Sensors: 8 to 11

Telemetry: 12 to 15
Data Rates: 32 kbls

Accuracy: 0.02 Degree

I I I I I I I

o n 0

Complexity has more than doubled.
!! 8 9
s 5 '0. Boland, A Stud on Slze and Reuse Trends In Attitude Ground Su port Systems (AGSs) Developed lor the
s Flight Dynamics d lvlslon (FDD) (197&1988), CSCKM-8916031, CSC, f ebruary 1989
E

Computer Sciences Corporation e lwa) -n rrc bd System Sciences Division

System Size

System size has more than doubled.
Conrputer Sciences CorporaCion
System Sciences Division

Development Error Rates

Error rates have been reduced by 65 percent.
Error models are fairly weN established.

- .

9
U ppr Computer Scierlccs Corporatior1

bdb System Sciences Division

Cost of Code

Cost per LOC remained relatively constant.
Predictability is impro ving.

4 -

t: ppp Computer Sciences Corporation

'Cab Sysrtttlr S(.icllccs 1)ivisioll

Code Reuse in Systems

Sometimes interesting things in a picture are lost
because of shallow depth of field.

li: prr Computer Sciences Corporation
bdb Systcnl Sc.iences Division

Code Reuse in Ada Simulators

However, searching with a reduced field of view
can pay off.

Con~p~l lcr Scicl~ccs Corporulloar CSC Sys~enlS , cict~~ccs Division

What CSC Has Learned

Quantitative management works

Peer review works

You can lower error rates

You can raise productivity

You can write more credible proposals
when you can back them up with data

4
C:

Computer Sciences Corporation

What Has CSC Done to
Capitalize on its Learning?

Developed a System Development Methodology based on its
experience

Packaged its experience with quantitative mana ement in a
manager's Data Collection, Analysis, and Report 9 ng Handbook

Developed a set of standards and guidelines to complement
its methodology

Developed required training programs for engineers, developers,
testers, integrators, and managers to maximize the benefits of its
methodology

Established measurement-based Engineering Process Groups to
identify im rovement areas, recommend changes, and evaluate the

v n ?
% 8s impact of t R ose changes
r +
S
C:

ppp Co~irlxiicr Scicaccs Corporalion
bdb Systr~~l Sciences Division

Presentation Contributors

Gerry Heller
Tim McDermott
Sharon Waligora

- n o
4 X a

4
4
G

ppp Computer Sciences Corporalion
'Cdb System Sciences Division

