
1 1 -12
TOWARDS UNDERSTANDING SOFTWARE -

15 YEARS IN THE SEL 1 f .
1 5 :

Frank McGarxy
Rose Pajerski

GODDARD SPACE FLIGHT CENTER

ABSTRACT

For 25 years, the Software Enginering Laboratory (SEL) at NWGoddard
Space Flight Center(GSFC) has been wrying out studies and experiments for
the purpose of understanding, assessing. and improving software, and soft-
ware processes within a production software environment. The SEL com-
prises three major organizations:

NASA/GEFC Flight Dynamics Division

University of Maryland Computer Science Depaiient

Computer Sciences Corporation Flight Dynamics Technology
Group

These organizations have jointly carried out several hundred software studies.
producing hundreds of reports, papers. and documents mference 11-aIl
describing some aspect of the software engineering technology that has undcr-
gone analysis in the Flight Dynamics environment. TI-.= studies range from
small antrolled experiments (such as analyzing the effectiveness of code read-
ingversus functional testing) to large, multiple-project studies (such as assess-
ing the impacts of Ada on a production environment). This paper will
summarize the key finding that the sponsoring organization (NASA) feeb
have laid the foundation for ongoing and future software development and re-
search activities.

I, BACKGROUND

In 1976, NASAIGSFC initiated an effort to carxy out experiments within the Flight
Dynamics area to attempt to measure the relative merits of the numerous software
technologies that were both available and claimed to be significant 'irnprcvements'
over currently used practices. Although significant advances were being made in de-
veloping new technologies, such as structured development practices. automated
tools. quality assurance approaches, and management tools there was very Limited
empirical evidence o r guidance pertaining to applying these promising, yet immature
methods. Primarily to address this situation, the Software Engineering Laboratory
(SEL) was formed.

The SEL was formed as a partnership between NASA, the University of Maqiand, and
Computer Sciences Corporation. This working relationship has been maintained
continually since 1976 with relatively little change to the overall goals of the organiza-
tion during its entire history. In general, the goals have matured: they have not been
changed. The goals can be itemized as follows:

1. Understand-Improve the insight that exists in characterizing the software
process and its products in a production environment.

2. Assess-Measure the impact that available techniques have on the sofrware
process. Determine which techniques are appropriate for the environment
and can improve the software,

3. Infuse- After identifying process improvements. package the technology in
a form to be applied and useful to the production organization.

The approach taken to attain these three generalized goals has been to appty poten-
tially beneficial techniques to the development of production software and to measure
the process and product in reasonable detail to assess quantifiably the applied technol-
ogy. Measures of concern. such as cost. reliability, andlor maintainability, are defined
as the organization determines the major near- and long-term objectives for its soft-
ware dcvelopment process improvement program. Once those objectives are deter-
mined. the SEL staff designs the experiment. that is. defines the rarticular data to be
captured and the questions that must be addressed in each experimental project.

All of theexperiments conducted by the SEL have occurred-within the p r o d d o n e n -
vironment of the Flight Dynamics software development facility at NASNGSFC.
This software can be characterized as scientific, nonembedded. relatively complex
software. Projects are typically developed in FORTRAN. although about 25 percent
of the projects utilize another language such as Ada, C. or PASCAL The duration of
each effort normally runs from 2 to 3-112 years. with an average staff size of approxi-
mately 15 software developers. The average size of one of these projects runsapproxi-
mately 175,000 source lines of code (coucting commentary), with about 25 percent
reused from previous development efforts. Since this environment is relativetyconsis-
tent. it is conducive to the experimentation process. In the SEL. there exists a homoge-
neous class of software, a stable development environment. and a very controlled.
consistent management and development process.

The following three major functional organizations support the expenmentarion and
study within the SEL environment:

1. Software developers, who are responsibie for producing the flight dynamics
application software.

2. Software engineering analysts, who are the researchers responsible for car-
rying out the experimentation process and producing study results

3. Data base support staff, who are responsible for collecting, checking and
archiving all of the data =d information collected from the development
efforts.

Since its inception in 1976, the SEL has carried out studies and everimerits involving
nearly 100 flight dynamics projects. Detailed data have been collected and studied.
and numerous reports and journal papers have been produced. From all of this analy-
sis and from all of these studies. seven key points have been ideccified that reflect in-
sight gained by the SEL and which are the guiding principles for future development
and research within this organization. These seven key points, described under
EXPERIENCES below, address nearly every aspect of the activities within the SEL
experimentation process and should provide some guidance to other organizations in-
volved with software development and/or s o m e engineering research.

11. EXPERIENCES

hid I: M e m m e n t is an Essential Element of SopWare R u e s Improvement

It is imperative that software measurement be an integral component of any software
process assessment or process improvement program. Although this point may seem
obvious to most, there is evidence that occasionally organizations may initiate 'proc-
ess improvement' efforts without fully developing considerations and plans for apply-
ing measuremelit. In addition to providing sone mechanism for determining the
baseline characteristics of the software process before any change is adopted, the
measurement aspect is necessary to gauge the impact of any change to :he software
process. Not only does an organization need to understand if and by how much soft-
ware 'quality' is improving through enhanced software processes. but even the more
elementary assessment as to whether there is any consistency within an organization's
process (is it measurable) as well as 'is change observable?' are points addressed only
through measurement.

The SEL has focused on software measurement as a tool to aid in determining the
effect that changes to the sofhvare process may have on attributes of concern (cost.
quaIity, reliability, ...). In addition to this, it has become evident that both the meas-
urement process as well as the measurements themselves are exrremely valuable soft-
ware management tools. The Flight Dynamics environment has adopted the SEL
measurement process as an integral component of the development standards and
applies key measures in planning and tncking the progress of projects. There are
eight key measures that the Eight Dynamics software organization has adopted as
essential management aids [Reference 21.

One additional point that has become apparent for the SELafter 15 years of sofnvare
measurement is that the adoption of an effective measurement program is not cost
prohibitive. In fact. the measurement collection process can be wentially a zero cost
impact to the development project-provided that a well thought-out set of measures
is adopted rather ihan an ill-conceived large number of measures. The most

significant cost attributable to a measurement program is that of processing and e5x-
tively analyzing/utilizing the information-and this mast be done. it should be ob-
vious that the mere process of colleaing measures will be of absolutely no value (even
negative value) unless the information is analyzed and frtored back into the s&we
process itself. Although the cost impact to the development projects themselm can
be near &percent overhead, the cost of processing and a n w n g information as part
of an effective process improvement program will add 10 percent to 15 percent of the
development cost.

hint 2: Many D i v e d Exist to a S c c c ~ Pmarr Impmvcmcnt Progrmn

Most software organizations have either attempted or at least seriously considered
adopting a software measurement program. Unfortumtely. there are too few exam-
ples of projects or companies in general that have sustainedan effective measurement
program. Many reasons exist to explain why such a critical element of software end-
neering consistently fails, and the SEL has experienced most of the significant impedi-
ments and pit-falls that can discourage the use of measurement p r o p m s Tkree of
the most significant diversions that the SEL hasexperienced and which seem to 1;!2pe
numerous other software organizations include the following:

1. Excessive planninglqlanning-If someone is serious about starting a
measurement prcgram. it is more important to get starred with a very small effort as
opposed to developing the full set of measures, tools. analysis approaches. etc. The
key is to start small and grow with experience-but at least start.

2. Over-Dependence on Statistical Analysis-Although the use of analysis
tools is certainly required in applying measurement to the software process there are
occasions when the analysts attempt to uncover more i:~formation from available data
(measures) than is reasonable. Intuition is an excellr:-r starting point for the analysis
process. and it is certainly enhanced or challenged by : : :&ti@ information: but there
is danger in assuming that the mathematical interprerarion of some quite inewct fig-
ures can lead to a more accurate conclusion than the figures dictate. Too often. the
common sense of experienced software developers and rranagers is ignored in favor of
statistics produced with possibly flawed. misinterpreted or missing data.

3. Looking Underthe Lamp-Post-As in the caseof the person who has lost a
coin in the dark pan of a street but chooses to sear& for it benmth tke lighted
lamp-post because it is easier to see. software engineen -onalIy address those
software topics that are easiest to study as opposed to those that are the real problerm
for software development/management. There has been significant effort put inro
studying. rebuilding, and modifying such tools as code analyzers. auditors. conveners
graphical design aids, etc., when there is doubt as to tht real driving need for s u u
small modifications to very old and well-understood technology. Excessive studies
continue to be conducted on antiquated complexity memcs and on 15-year-old
cost-modeling techniques, when there are extremely difficult areas to be addressed.

such as design measures, software specification tools and analyzers. and integrated
environments.

?bht 3: Roplc Are the Most I m p o m R r s o u r c r l T c c ~

In reviewing the results of the numerous studies and experiments that the SEL hascon-
duaed over the past 15 years, it is apparent that the most effective technologig that
result in the most significant benefit, are those that leverage the skills of the software
developers themselves. Numerous studies outside of the SEL environment have
shown that the productivity of individuals can easily vary by as much as a faaor of 10
to 1. In addition to this fact, SELstudies hzve indicated that those methods and tools
that emphasize human discipline are far more effective than those that merely attempt
to take work away from the developers.

Such software techniques as code reading, inspections, walk-&roughs, and all aspects
of 'Cleanroom' are examples that have been shown to be extremely effective [Refer-
ence 31. All of these are directed toward maximizing the potential of individuals as
opposed to removing the individual from the process.

hint 4: EnPironmcntal Chanmkrirtks Should Didate Selected Software Engineer-
ing Echniqws

Experiences in the SEL have verified the expectation that standards, methods, and. in
general, all software engineering approaches must be tailored to specific environ-
ments. Although the point seems to be obvious, we as practitioners and software engi-
neers often attempt to apply a new technique or method expecting certain
improvements without first analyzing whether the vethodology is-addressing the
needs of the environment. For example, if a development organization historically
produces highly reliable, well-tested software, then there is probably little benefit to
be derived from modifyrng the testing approach by applying an automated test genera-
tor.

Additionally. it must be understood that all software environments evolve with time
and undergo some level of change. Because of this. the overall process must be ccntin-
ually observed to identify changing and evolving practices in order to respond with the
most appropriate modifications to methods, tools. etc.

hin! 5: Auhmanbn i s an Imhument of Arrcess Improvement, Not a Replacement
for Process Undem&mding

As was mentioned previously, the foundation of the process improvement paradigm is
that of understanding the software process and associated products- which may then
lead to assessment and to process improvement. Automated tools may provide some
help in understanding this process, but too often we expen the automation process to
resolve problems that we don't clearly understand in a manual sense. If a software
developer or manager cannot clearly represent and grasp some process manually. b e
application of a software tool will only make the process less understood and more ill

defined. This overreliance on automation is occasionally exemplified by organhtiom
that move too swiftly in the adoption of CASE (or related technology) before the ova-
all development characteristics are analyzed and the need for automated tools is iden-
tified. Another example can be seen in the attempts of managers to use code
analyzers, auditors, and automated complexity analyters to gain insight into 'complex-
ity' without being able to discern this trait in any of the products or processes

AIthough it is unwise to try to automate immature pr-s or to apply tools wberem
tool is needed. there are excellent examples of tools and overall automation that re-
flect significant advances in applying this technology to recently maturing disciplines
Such an example is the recent development of the 'Software Management Enviroa-
ment (SME)' [Reference 41 which is used by the FIight Dynamics Division at N A W
GSFC to automate the use and interpretation of historical software data, mod&
measures, and intuition toward the management of active software projects,

Aid 6: H e m o j t k Environment Will Stmngly Infrurncc the Soplwn h a s

It seems rather obvious to say that a development environment hasits owncharacterir-
tics of process and process improvement and that the heritage of this environment win
certainly influence the development of project after project, but the level to which cbe
past performance of a software organization dominates even the us- of significantly
different technology is quite surprising. It is the most prevalent influence that the SEL
has seen in its environment where evolving, new technology is continually applied to
observe impacts to the software process, and major changes to methodology are con-
tinually made.

For example. the technology impact from the introduction of Ada into the SEL emi-
ronment has been under study since 1985 when the first Ada system was developed
One of the early expectations was that there would be a significant change to the effort
distribution over the implementation (design, code, test) period for these Ada system
in comparison with previous F O W systems. To date. :his has not been observd
in the SEL-effort distributions based on these activities have remainedessentia@
the same and continue to reflect past SELexperience. Since changes to an established
development process occur slowly, the changes themselves tend to evolve over time as
more experience is gained with the new technology. As expected, the use of various
Ada constructs (generics, packages, typing, tasking) in the more recent Ada projects ii
considerably different than in earlier systems.

hint 7: SopWare Can & Measurably lmpmvcd Thrwgh Appropriate Use cfAvd-
able Trchndogics

Possibly the most important point evinced as a result of the 15 years of study within the
SEL is that software (both the process and products) can be quantifiabfy improved
through the selected application of methods, tools, and models that exist today. It tns
often been argued that since 'the human being' is the dominant factor in any sofnvare
project, the modification or application of any approach to the development process

cannot be observed nor can it have any significant impaa on improving measures of
importance.

Exprience has verified the fact that researchers often attempt to apply and measure.
to extremeiy detailed levels techniques that may not be 'measurable'; however. it has
also shown that overall trends are definitely measurable when the measurememproc-
ess becomes an integral part of the applied methodology. & was described
previously, because a specific software technology may not be applicable to ad envi-
ronments, each environment must clearly define its goals strengths and weaknesses
before it attempts to observe positive impacts from some modified approach

There are specific methodologies that the SEL has applied and measured over a long
period of time and that have been verified as having positive impaa on the cos, reli-
ability, and overall quality of sofovare within the Flight Dynamics environment Such
techniques include 'Reading' (as applied to design, code, and test), Ada, objea-
oriented development, design criteria (e.g.. strength), measurement, and many others.
There are software practices that will significant!^ and measurably improve the soft-
ware within any specific environment.

For 15 years. NASA has been funding these efforts to carry out experiments and stud-
ies within the SEL. There has been significant cost and general overhead to this effort.
and a logical question that is asked is'Has it all been worth it?' The answer is a re-
sounding YES. Not only has the expenditure of resources been a wise investment for
the Flight Dynamics area within NASA, but members of the SELstrongly.beliexthat
such efforts should be commonplace throughout the Agency as well as throughoat the
software community. The benefits far outweigh the cost.

Since the SEL's ineption in 1976, NASA has spent approximately $14 million dollars
in the three major support areas required by this type of study environment: research
(such as defining studies and analyzing results), technology transfer (such as prodncing
standards and policies), and data processing (such as collecting forms md maintaining
data bases). Additionally, approximately 50 staff-years of NASA personnel effon has
been expended on the SEL During this same time period. the Flight Dynamics area
has spent approximately $130 million on building operational software, all of which
has been part of the study process to some degree.

During the past 15 years, the SEL has certainly had significant impact on the software
being developed in the local environment, and there is strong reason to believe that
many of the results and studies of the SEL have had favorable impaa on a domain
broader than just the NASA Flight Dynamics area Ewmplesof the changes that have
been observed include the following:

1. The 'manageability' of s o h e has improved dramatically. In the late
1970s and early 1980s. this environment experienced wide variation from project to

project in productivity, reliability, and quality. Today, however, the SEL has excellent
models of the process; has well-defined methods; and is able to predia, control, and
manage the cost and quality of the software being produced.

2. The cost per line of new code has decreased somewhat (about 10 percent),
and at fim giance this may imply that the SEL has failed at improving productivity.
Although the SEL finds that the cost to produce a new source statement is nearly as
high as it was 14 years ago, there is appreciable improvement in the functionality of the
software, as well as tremendous increases in the complexity of the problems being
addressed Also, there has been an appreciable increase in the reuse of software
(code, design, methods, test data, etc.), which has driven the overall cost of the equiva-
lent functionality down significantly. When we merely measure the cost to produce
one new source statement, the improvement is small: but when wc measure overall
cost and productivity, the improvement is significant.

3. Reliability of the software has improved by 35 percent. & measured by the
number of errors per thousand lines of code (E/KSLOC), the Flight Dynamics soft-
ware has improved from an average of 8.4 EKSLOC in the early 1980s to approxi-
mately 5.3 E/KSLOC todhy. These figures cover the software phases up through and
including acceptance testing (beginning of operations). Although the operational and
maintenance data are not nearly so extensive as the development data, the small
amount of data available indicates significant improvement in that area as well.

4. Other measures include the effort put forth in rework (changing, fixing, etc.)
and in overail software reuse. These measures also indicate a significant improvement
to the software within this one environment.

In addition to the common measures of software (cost, reliability, etc.), there are many
other major benefits derived from such a 'measurement' program as that in the SEI-
Not only has our understanding of software significantly improved within the research
community, but this understanding is apparent throughout the entire development
community within this Flight Dynamics environment. Not only have the researchers
benefited, but it is obvious that the developers and managers who have been exposed
to this effort are much better prepared to plan, control, assure, and, in general.
develop much higher quality systems. One view of this entire program is that it is a
major 'training' exercise within a large production environment, and the 800 to
1000 developers and managers who have participated in development efforts studied
by the SEL are much better trained and effective software engineers.

REFERENCES

1. Software Engineering Laboratory, SEL-82-906. Annotated Bibliography of &$-
W(UC Engineering Luboratory Literantre, I? Grove.; and J. Wet t , November 1990

2. Software Engineering Laboratory, SEL-84-101. Manager's Handbook for Sofi-
wan DeveZopment (Revision I) , L Landis, E McGarry, S. Wigora, et al..
November 1990

3. Software Engineering Laborary, SEL-90-OM, The Clemvoom Case Sardy in [he
Sofhure Engineering Luboratory: Project Description and Earj, Analysis.
S. Green et al., March 1990

4. Software Engineering Laboratory, SEL-89-003, SoFk,are Management Emiron-
ment (SME) Concep6 and Architecture, W. Decker and J. W e t & August 1989

VIEWGRAPH MATERIALS

FOR THE

E MCGARRY PRESENTATION

TOWARDS UNDERSTANDING
SOFTWARE

15 YEARS
in the

Software Engineering Laboratory (SEL)

Frank McGarry
Rose Pajerski

% and SEL Staff
ZQ!/ 3 n

SEL ENVIRONMENT
DEVELOPERS SNV ANALYSTS

DEVELOP FLIGHT DYNAMICS S/W)
D,,,p,E,

(STUDY PROCESS)
MEASURES

STAFF 150-250 (RE) FOREACH STAFF 5-10 RESEARCHERS
PROJECT

TYPICAL PROJECT - 150-200 KSLOC FUNCTION SET GOALSIQUESTIONSI
SIZE METRICS

- DESIGN STUDIES1
ACTIVE PROJECTS - 6-10 EXPERIMENTS

(AT ANY GIVEN TIME) ANALYSISIRESEARCH
REFINE SNV PROCESS

PROJECT STAFF - 15-25 PEOPLE
SlZE - PRODUCE REPORTS1

FINDINGS

DATA BASE SUPPORT (MAINTAINIQA SEL DATA)

1976-1990 - 75 PROJECTS

STAFF 2-5 (FTE)
1

I
SELDATABASE

FUNCTION PROCESS FORMSIDATA
QA I FORMS UBRARY
RECORDlARCHlVE DATA
MAINTAIN SEL DATA BASE I
OPERATE SEL LIBRARY REPORTS LIBRARY

I
1976-1990

fY
- OVER 150,000 'FORMS'

A

DR/ELOPME~ TO
PROCESS

1976-1990 - 250 REPORTSIDOCUMENTS

MEASUREMENT IS AN ESSENTIAL ELEMENT
OF SMI PROCESS IMPROVEMENT

*

a MEASURES DEFINE PROCESS/PRODUCT BASELINE AND GAUGE CHANGE
- ONLY MEANS OF PROVIDING UNDERSTANDING
- WITHOUT MEASUREMENT CANNOT DETERMINE CHANGEIIMPROVEMENT

MEASURES - SIGNIFICANT ASSET TO SIW MANAGEMENTIDEVELOPMENT

- VITAL FOR PLANNINGIESTIMATING
- PROVIDES INSIGHT TO HEALTH OF PROJECTS

MEASUREMENT IS - NOT COST PROHIBITIVE
- EXISTS SMALLICRITICAL SET OF MEASURES
- CRITICAL SET LESS THAN 2% IMPACT TO PROJECT
- BENEFITS FAR OUTWEIGH THE OVERHEAD

MEASURES - GAUGING CHANGE AND IMPROVEMENT IN THE SEL

-
-
-
-

- (15 PROJECT BASELINE) -
-

FORTRAN
(8 PROJECTS)

ADA
(5 PROJECTS)

PERCENTAGE OF PROJECT SCHEDULE COMPLETED

OBSERVING IMPACTS OF PROCESS DETERMINE IMPROVEMENT

a MEASUREMENT AS A MANAGEMENT AID

TRACKING "COBE" RELIABILITY

CODE/TEST SYSTEM TEST ACCEPTANCE TEST OPERATIONS

MEASURING ERROR RAl'ES CAN PROVIDE EARLY
INDICATION OF S O m A R E QUALITY

PEOPLE ARE MOST IMPORTANT
RESOURCElTECHNOLOGY

0
TEST TECHNIQUES EXPERIMENT DESCRIPTION

a 3 APPROACHES STUDIED
- CODE READING
- FUNCTIONAL TESTING
- STRUCTURAL TESTING

% OF FAULTS DETECTED

32 PEOPLE PARTICIPATED
(GSFC, UM, CSC)
3 UNIT-SIZED (100 SLOC)
PROGRAMS SEEDED WITH ERRORS

NUMBER OF FAULTS DETECTED
PER HOUR OF EFFORT

CODE FUNCTIONAL STRUCTUHAL
RiMIlNG TESTING TESTING

CODE FUNCTIONAL STRUCTURAL
FWIDING TESTING TESTING

EFFECTIVE TECI4NOLOGY SHOULD FOCUS ON
"PERSONNEL" POTENTIAL

4 -..-

MANY DIVERSIONS EXIST TO A SUCCESSFUL
PROCESS IMPROVEMENT PROGRAM

(DIVERSIONS THE SEL HAS BEEN THROUGH)

EXCESSIVE PLANNINGIREPLANNING

- JUST DO ITISTART SMALL
- LEARN WITH EXPERIENCE
- RELY ON LOCAL STANDARDS (E.G., TERMINOLOGY)

a OVER DEPENDENCE ON STATISTICAL ANALYSIS

- INTUITION IS A VERY USEFUL STARTING POINT
- MAKE USE OF SUBJECTIVE DATA

LOOKING UNDER THE LAMP POST

- CODE ANALYZERSICONVERTERS
- COMPLEXITY METRICS
- DESIGN GRAPHIC AIDS

ENVIRONMENTAL CHARACTERISTICS SHOULD DICTATE
SELECTED SOFTWARE ENGINEERING TECHNIQUES

a SPECIFIC MEASURESITECHNIQUES MAY NOT APPLY
TO ALL "DOMAINS"

a AS ENVIRONMENT EVOLVES, METHODOLOGIES
SHOULD FOLLOW (AND LEAD)

a TAILOR STANDARDSIPOLICIES

SPECIFIC MEASURES MAY NOT
APPLY TO ALL "DOMAINS"

SOFIWARE MEASURES IN THE SEL
.0600 O.mo rn

15 45 75 105 135 165 195
McCABE COMPLEXITY

HALSTEAD LENGTH
McCABE COMPLEXITY
HECUTABLE LINES

Ll _ r _ . u l
lW m 500 700 900 1100 1300

UNES OF CODE
CORRELATIONS

TOTAL EXECUTABLE McCABE
LINES

HALSTEAD - LINES CO: -. ?,! -.. F-XTP/ - LENGTH
0.85 0.91 6.2 1 1.00
0.81 0.87 1.00
0.84 1.00

TOTAL LINES 1 .OO

SAMPLE OF 688 MODULES

CHARACTERISTICS OF EFFECTIVE POLICIES

@
STANI3ARnSIPf3I If2lF.C hAl IST RE- --. .. .--, . W L W W W L U IllVV I UL.

1. WRllTEN MAY BE COMBINED (GENERIC AND TAILORED)
CAREFULLY "PRESENTEDn

2. UNDERSTOOD Q NOT TO INCLUDE EXCESSIVELY ALIEN
TECHNOLOGY
TRAINING OFTEN REQUIRED

3. "LEGACY-BASED" DERIVED FROM NEEDILEGACY
CONTINUALLY EVOLVING
ALL ELEMENTS ARE "DEFENDABLE"

4. ENFORCED SUPPORTED BY MANAGEMENT
LIMITED "DETAIL"

5. MEASURABLE OBSERVABLE (CAN TELL IF IT'S
BEING FOLLOWED)
REQUIRES SELF-EVALUATION

AUTOMATION IS AN INSTRUMENT OF PROCESS IMPROVEMENT
(NOT A REPLACEMENT FOR PROCESS UNDERSTANDING)

TOOLS CAN PROVIDE SIGNIFICANT BENEFIT TO
WELL-DEFINED EXPERIENCE BASE (E.G., SME IN THE SEL)

"IMMATURE" PROCESSES ARE NOT AUTOMATABLE
(IF YOU CAN'T DO IT MANUALLY - DON'T TRY TO AUTOMATE IT)
(E.G., OVER RELIANCE ON CASEIANALYZERSIAUDITORSI
MEASUREMENT TOOLS)

EFFECTIVE TOOLS MUST ADDRESS DEFINED PROCESS NEED
(MATCH SOLUTION TO PROBLEM)
(E.G., OVERUSE OF CODE TRANSLATORICODE ANALYZERS/
TEST GENERATORS, ...)

 AUTOMATING A WELL-UNDERSTOOD "EXPERIENCE BASE" IN THE SEL w--- - -

(SOFMIARE MANAGEMENT ENVIRONMENT (SME))

EXPERIENCE BASE AUTOMATED TOOL MANAGEMENT AID
(SME) / 1. COMPAREIEXPLAIN

1. DATA \ SOFIWAFIE /
MANAGEMENT
ENVIRONMENT

2. PROCESS MODELS

i';
3. KNOWLEDGE

$2: - LESSONS LEARNED
- INTUITION

s e a
4 8 5 8 n J

2. PREDICT

3. ASSESS

HERITAGE OF ENVIRONMENT WILL STRONGLY
INFLUENCE PROCESS

FORTRAN Ada
BY UFE CYCLE PHASE

(DATE DEPENDENT)

BY ACTIVITY
(NOT DATE DEPENDENT)

PkloR DATES CHANGED (CDR, ...) BUT EFFORT DISTRIBUTION STILL QUITE SIMILAR 1
A ~ U U . O ~ U 'BASED ON 6 Ada AND 8 FORTRAN PROJECTS OF SIMILAR TYPE IN THE SEL

SIGNIFICANTPROCESSCHANGEREQUIRES
SIGNIFICANTEFFORT/TIME

@
USE OF Ada FEATURES

GENERICS STRONG TYPE
40 _ 5

_2 _ ,
10 .OI '

0 0 t,,
85/86 87188 88189 85186 87188 88189

PACKAGES TASKING
1.2 8

8

,o- _0.8- _4

- n_ o.:,-I_ o_-0.0 85/86 87/88 88189 0 lsl Ada 2nd Ada 3rd Ada

_ 85186 87188 88189

I • USE OF Ada FEATURESCHANGES APPRECIABLYwrrH EXPERIENCE I• NOT ALLFEATURESAPPROPRIATEFOR APPLICATION
A498.ot_

I

SOFTWARE CAN BE MEASURABLY IMPROVED THROUGH
APPROPRIATE USE OF AVAILABLE TECHNOLOGIES

0
EXAMPLES IN ONE ENVIRONMENT (SEL)

TECHNOLOGY DEMONSTRATED IMPACT

- "READING"

- DESIGN CRITERIA
(STRENGTH)

- Ada
- OOD

- CLEAN ROOM

- MANAGEMENT1
MEASUREMENT

[if #,

A408 020

REPEATEDLY SHOWN TO IMPROVE SORWARE
RELIABILITY (NO ADDITIONAL COST)

DEMONSTRATED TO PRODUCE MORE ERROR
FREE SOFTWARE

SIGNIFICANT COST BENEFIT THROUGH REUSE
REUSE

SIGNIFICANI' IMPROVEMENT IN RELIABILITY
AND PRODUCTIVITY (ALSO RESC'JRCE
CONSUMPTION DOWN)

MAJOR IMPROVEMENT IN PLANNING, ADJUSTING
AND CONTROL
- COST ESTIMATION
- SCHEDULE ESTIMATION

ASSESSING "STRENGTH" AND "SIZE" AS A
STANDARD FOR DESIGN

EXPERIMENT:

450 FORTRAN MODULES (ACROSS 4 SYSTEMS - OVER 20 DEVELOPERS)

DETAILED COST AND ERROR DATA ON ALL MODULES
DETERMINE RELATIONSHIPS: "STRENGTH" TO RELIABILITY AND
"SIZE" TO RELIABILITY

RESULTS:

FAULT RATE FOR CLASSES OF MODULE STRENGTH

UV I W - -
18% dU70

EDIUM
28%

HlGH
35% 44%

HIGH STRENGTH MEDIUM STRENGTH LOW STRENGTH

DESlGN MEASURES SUMMARY

GOOD PROGRAMMERS TEND TO WRITE
HIGH-STRENGTH MODULES

GOOD PROGRnFilMERS SHOW NO PREFERENCE
FOR ANY SPE: :.: MODULE SlZE

OVERALL, HIGH-STRENGTH MODULES HAVE
A LOWER FAULT RATE AND COST LESS
THAN LOW-STRENGTH MODULES

OVERALL, LARGE MODULES COST LESS (PER
is, EXECUTABLE STATEMENT) THAN SMALL MODULES

$2;
t+

FAULT RATE IS NOT DIRECTLY RELATED TO MODULE SlZE
2 2.;

Ada (AND OOD)* IMPACTS ON "COST"
FROM SEL EXPERIENCES 7

5 PROJECTS USlNQ FORTRAN
TOTAL REUSE 100

0 VERBATIM REUSE
Ill

80
V) a 60-
oe

-

43%
34%

COST PER LINE OF CODE 22%
29%

20

2

8 l5
OROOY OOESlM OOADA UARSTELS EWEDSIM
(86187) (87188) (W W) (M W) (88190)

3 lo
5 PROJECTS USING ADA AND OOD

100
a 5 $i

W
80

0 U)

FORTRAN Ada Ada Ada @ 60
(5 PROJECTS) (85186) (87188) (89190).

2 40
(*PARTIALLY BASED ON ESTIMATES)

20

0
OROOY O M S l M OOAM lJN3STUS EUvECEU EUVETELS
tearer) (ertse) tssrso) w o o) (ssloo) tssloo)

1. DEVELOPMENT COST PER STATEMENT HAS BEEN NO 'CHEAPER' FOR ADA
2. REUSE POTENTIAL OF Ada IS SlGNlilCANT

' A l l W P PROJEOTB APPLIFB 000 IkCtINIOUkB

HAS THE EFFORT BEEN WORTH IT?
(1975 - 1990)

SEL EXPENDITURES (1990 DOLLARS)

- RESEARCH SUPPORT (UNIVERSIN) $2.5M
(EXPERIMENTATION, ANALYSIS, RESEARCH, REPORTS, ...)

- RESEARCH AND TECH TRANSFER (CSC)
(ANALYSIS, RESEARCH, REPORTS, OVERHEAD TO
DEVELOPMENT PROJECTS)

- DATA PROCESSING AND GENERAL SUPPORT (CSC AND OTHERS) $6.OM
(PROCESSIQA DATA, SEL DATA BASE, REPORTS, ...)

PRODUCTION SOFTWARE (FLIGHT DYNAMICS) DEVELOPED $130M

HAS THE EFFORT BEEN WORTH IT?
(1975 - 1990)

IMPACT OF SEL RESEARCH*
1976 - 1980 1986 - 1990
-

MANAGEABILITY COMPLETE DEPENDENCE PROCESS-MODELED
ON PERSONNEL CAPABILITY AND EFFECTIVE
WIDE VARIANCE IN SOfTWARE MORE
COSTIQUALITY PREDICTABLE, CONSISTENT
NO GUIDANCE FOR RATIONALE FOR METHODS
SELECTING METHODS USED EXISTS

COST PER LINE % 24 SLOCIDAY
OF CODE

RELIABILITY 8.4 EIKSLOC
(UNIT TEST THRU
ACCEPTANCE)

24 SLOCIDAY

5.3 ElKSLOC

CODE REUSE 15-25% 25-35%
3%" 515k REWORK 35-40% OF TOTAL EFFORT 20-30%
ias H fi

*FROBLEM COMPLEXITY AND SUPPORT ENVIRONMENT HAVE ALSO CHANGED SIGNIFICANTLY

HAS THE EFFORT BEEN WORTH IT?

FINAL OBSERVATIONS

"OUR" UNDERSTANDING OF SOFTWARE HAS IMPROVED
SIGNIFICANTLY (WE DO SOFTWARE BETTER)

CONTRIBUTIONS TO SOFTWARE RESEARCH AND DEVELOPMENT
(MEASUREMENT, MANAGEMENT, EXFERIENCE BASE, ...)

PROFESSIONAL DEVELOPMENT OF DEVELOPERS, MANAGERS,
RESEARCi i R S

"NEW" AWARENESS BY MANAGERS, DEVELOPERS
ii;; (S O W A R E CAN BE ENGINEERED)

. , , I - EXPERIMENTATION I OOD (1 ONGOING EXPERIMENT - 2 PLANNED)

1 I

' 1 7
,- ' k I

I

I

I

' , ' , I

1 I

\ ' ' !.
0 I

I

ONGOINGIFUTURE ACTIVITIES FOR THE SEL
I

CURRENTINEAR FUTURE STUDIES

CLEAN ROOM (3 ACTIVE PROJECTS)

, Ada (3 PROJECTS)

' ,
I '
i . ' I

I
1, I

1

11,
1 4 1 'l,, j\ - REFINEMENT

.
,; . t : \ ' : DOMAIN ANALYSIS FOR
' ' i ' "EXPERIENCE BASEn

1

I' ",

$ I - RELEVANCE TO OTHER
' j . 1 ' . "ENVIRONMENTSn

GENERAL

CONTINUE EVALUATION OF
"PROCESS IMPROVEMENT"

CASE (1 ACTIVE PROJECT)

REUSE (USING EXISTING SEL PROJECTS)

MAINTENANCE (3 PROJECTS FOR ANALYSIS)
t

I I
I; (

-
OF "EXPERIENCE BASE"

I I

EXPANSION OF LIFE
1 1 ' ' ,
a 1 CYCLE ANALYZED

I
I $ - MAINTENANCE
(I I ,' 1%; - SPECSIREQUIREMENTS

I - EXPANDED MEASUREMENT

I I ' / - G/Q/M

TESTING STRATEGIES (EXISTING SEL PROJECTS)

MEASUREMENT (CHARACTERIZING DESIGNS)

I '
I \

STUDIES IN THE SEL
1976 - 1990 PACKAGING

V) 1976 - 1980 1980 - 1986 1986 - 1990
b DEFINE PROCESS INITIAL 'RELATIONSHIPS' PROCESS IMPROVEMENT ENVIRONMENT ' b CALIBRATE 'PROCESS ENVIRONMENT" EXPERIMENTS FULL TECHNOLOGY ASSESSMENT 5 DEFINE MEASURESIMEASUREMENT REFINE MEASURESIMEASVREMENT FULL USE OF MEASUREMENT

ASSESSING

EVOLVING TO AN EFFECTIVE
"PROCESS IMPROVEMENT" ENVIRONMENT

a

TRAINII\IG PROGRAM
a SME

'MANAGER'S HANDBOOK" - - - - - - -

UNDERSTAND'NG

b

CLEAN ROOM
EVALUATE ADA

ASSESS STRENGTH AS DESIGN CRITERIA
COMPARE TEST TECHNIQUES (FUNCTION,, READING, STRUCTURAL) - - - - - - - - - - - -

3
t

a RELATIONSHIP BETWEEN DEVELOPMENT MEASURES
ERRORICHANGE CHARACTERISTICS

RESOURCE AND EFFORT PROFILES
APPROACH TO DATA COLLECTION

