“e;

s D B Bl

-

Y e ——

N92-1?f4%§

TOWARDS UNDERSTANDING SOFTWARE —
15 YEARS IN THE SEL

Frank McGarry N r ﬂ /{

Rose Pajerski v
GODDARD SPACE FLIGHT CENTER

ABSTRACT

For 15 years, the Software Engineering Laboratory (SEL) at NASA/Goddard
Space Flight Center (GSFC) has been carrying out studies and experiments for
the purpose of understanding, assessing, and improving software, and soft-
ware processes within a production software environment. The SEL com-
prises three major organizations:

e NASA/GSFC Flight Dynamics Division
& University of Maryland Computer Science Department

e Computer Sciences Corporation Flight Dynamics Technology
Group

These organizations have jointly carried out several hundred software studies,
producing hundreds of reports, papers, and documents {Reference 1]—all
describing some aspect of the software engineering technology that has under-
gone analysis in the Flight Dynamics environment. The studies range from
small controlled experiments (such as analyzing the effectiveness of code read-
ing versus functional testing) to large, multiple-project studies (such as assess-
ing the impacts of Ada on a production environment). This paper will
summarize the key findings that the sponsoring organization (NASA) feels
have laid the foundation for ongoing and future software development and re-
search activities.

1. BACKGROUND

In 1976, NASA/GSFC initiated an effort to carry out experiments within the Flight
Dynamics area to attempt to measure the relative merits of the numerous software
technologies that were both available and claimed to be significant ‘imprcvements’
over currently used practices. Although significant advances were being made in de-
veloping new technologies, such as structured development practices, automated
tools. quality assurance approaches, and management tools. there was very limited
empirical evidence or guidance pertaining to applying these promising, yet immature
methods. Primarily to address this situation, the Software Engineering Laboratory
(SEL) was formed.

i

0
-

C

...
8
-
~

!
dd

The SEL was formed as a partnership between NASA, the University of Maryland, and
Computer Sciences Corporation. This working relationship has been maintained
continually since 1976 with relatively little change to the overall goals of the organiza-
tion during its entire history. In general, the goals have matured; they have not been
changed. The goals can be itemized as follows:

1. Understand—Improve the insight that exists in characterizing the software
process and its products in a production environment,

2. Assess—Measure the impact that available techniques have on the software
process. Determine which techniques are appropriate for the environment
and can improve the software,

3. Infuse— After identifying process improvements, package the technology in
a form to be applied and useful to the production organization.

The approach taken to attain these three generalized goals has been to apply poten-
tially beneficial techniques to the development of production software and to measure
the process and product in reasonable detail to assess quantifiably the appliedtechnol-
ogy. Measures of concern, such as cost, reliability, and/or maintainability, are defined
as the organization determines the major near- and long-term objectives for its soft-
ware development process improvement program. Once those objectives are deter-
mined, the SEL staff designs the experiment, that is, defines the rarticular data to be
captured and the questions that must be addressed in each experimental project.

All of the experiments conducted by the SEL have occurred within the production en-
vironment of the Flight Dynamics software development facility at NASA/GSFC.
This software can be characterized as scientific, nonembedded, relatively complex
software. Projects are typically developed in FORTRAN, although about 25 percent
of the projects utilize another language such as Ada, C, or PASCAL. The duration of
each effort normally runs from 2 to 3-1/2 years. with an average staff size of approxi-
mately 15 software developers. The average size of one of these projects runsapproxi-
mately 175,000 source lines of code (counting commentary), with about 25 percent
reused from previous development efforts. Since this environment is relatively consis-
tent, it is conducive to the experimentation process. In the SEL, there exists a homoge-
neous class of software, a stable development environment, and a very controlled,
consistent management and development process.

The following three major functional organizations support the experimentation and
study within the SEL environment:

1. Software developers, who are responsibie for producing the flight dynamics
application software.

2. Software engineering analysts, who are the researchers responsible for car-
rying out the experimentation process and producing study results

F. McGa

R Paj nrery

h /GSFC

20f32
8200-2

IS 1 Id

——

Bt e ¢
.

-

Py may wEy oEpy el GV B awy Sy

3. Data base support staff, who are responsible for collecting, checking and
archiving all of the data and information coilected from the development
efforts.

Since its inception in 1976, the SEL has carried out studies and experiments involving
nearly 100 flight dynamics projects. Detailed data have been collected and studied,
and numerous reports and journal papers have been produced. From all of this analy-
sis and from all of these studies, seven key points have been idezified that reflect in-
sight gained by the SEL and which are the guiding principles for future development
and research within this organization. These seven key points, described under
EXPERIENCES below, address nearly every aspect of the activities within the SEL
experimentation process and should provide some guidance to other organizations in-
volved with software development and/or software engineering research.

II. EXPERIENCES
Point 1: Measurement is an Essential Element of Software Process Improvement

It is imperative that software measurement be an integral component of any software
process assessment or process improvement program. Although this point may seem
obvious to most, there is evidence that occasionally organizations may initiate ‘proc-
ess improvement’ efforts without fully developing considerations and plans for apply-
ing measurement. In addition to providing some mechanism for determining the
baseline characteristics of the software process before any change is adopted, the
measurement aspect is necessary to gauge the impact of any change to the software
process. Not only does an organization need to understand if and by how much soft-
ware ‘quality’ is improving through enhanced software processes, but even the more
elementary assessment as to whether there is any consistency within an organization's
process (is it measurable) as well as ‘is change observable?’ are points addressed only
through measurement.

The SEL has focused on software measurement as a tool to aid in determining the
effect that changes to the software process may have on attributes of concern (cost.
quality, reliability, ...). In addition to this, it has become evident that both the meas-
urement process as well as the measurements themselves are extremely valuable soft-
ware management tools. The Flight Dynamics environment has adopted the SEL
measurement process as an integral component of the development standards and
applies key measures in planning and tracking the progress of projects. There are
eight key measures that the Flight Dynamics software organization has adopted as
essential management aids [Reference 2].

One additional point that has become apparent for the SEL after 15 years of software
measurement is that the adoption of an effective measurement program is not cost
prohibitive. In fact, the measurement collection process can be essentially a zero cost
impact to the development project—provided that a well thought-out set of measures
is adopted rather than an ill-conceived large number of measures. The most

F. McGarry
e
N FC
3ol 32
6265-2

significant cost attributable to a measurement program is that of processing and effec-
tively analyzing/utilizing the information—and this must be done. It should be ob-
vious that the mere process of collecting measures will be of absolutely no value (even
negative value) unless the information is analyzed and factored back into the software
process itself. Although the cost impact to the development projects themselves can
be near 0-percent overhead, the cost of processing and analyzing information as part
of an effective process improvement program will add 10 percent to 15 percent of the
development cost.

Point 2: Many Diversions Exist to a Successful Process Improvement Program

Most software organizations have either attempted or at least seriously considered
adopting a software measurement program. Unfortunately, there are too few exam-
ples of projects or companies in general that have sustained an effective measurement
program. Many reasons exist to explain why such a cnitical element of software engi-
neering consistently fails, and the SEL has experienced most of the significant impedi-
ments and pit-falls that can discourage tae use of measurement programs. Three of
the most significant diversions that the SEL has experienced and which seem to lacue
numerous other software organizations include the following:

1. Excessive planning/replanning—If someone is serious about starting a
measurement prcgram, it is more important to get started with a very small effort as
opposed to developing the full set of measures, tools, analysis approaches, etc. The
key is to start small and grow with experience—but at least start.

2. Over-Dependence on Statistical Analysis— Although the use of anmalysis
tools is certainly required in applying measurement to the software process, there are
occasions when the analysts attempt to uncover more information from available dama
(measures) than is reasonable. Intuition is an excelle:: starting point for the analysis
process, and it is certainly enhanced or challenged by : : astical information: but there
is danger in assuming that the mathematical interpret::on of some quite inexact fig-
ures can lead to a more accurate conclusion than the figures dictate. Too often, the
common sense of experienced software developers and managersisignoredin favor of
statistics produced with possibly flawed, misinterpreted. or missing data.

3. Looking Under the Lamp-Post— As in the case of the person who has losta
coin in the dark part of a street, but chooses to search for it beneath the lighted
lamp-post because it is easier to see., software engineers occasionally address those
software topics that are easiest to study as opposed to those that are the real problems
for software development/management. There has been significant effort put into
studying, rebuilding, and modifying such tools as code amalyzers, auditors, converters,
graphical design aids, etc., when there is doubt as to the real driving need for such
small modifications to very old and well-understood technology. Excessive studies
continue to be conducted on antiquated complexity metrics and on 15-year-old
cost-modeling techniques, when there are extremely difficult areas to be addressed.

F McGa
R.Pu':rstk!ny

6269-2

such as design measures, software specification tools and analyzers, and integrated
environments.

Point 3: People Are the Most Important Resourcei/Technology

In reviewing the results of the rumerous studies and experiments that the SEL hascon-
ducted over the past 15 years, it is apparent that the most effective technologies, that
result in the most significant benefit, are those that leverage the skills of the software
developers themselves. Numerous studies outside of the SEL environment have
shown that the productivity of individuals can easily vary by as much as a factor of 10
to 1. In addition to this fact, SEL studies have indicated that those methods and tools
that emphasize human discipline are far more effective than those that merely attempt
to take work away from the developers.

Such software techniques as code reading, inspections, walk-throughs, and all aspects
of ‘Cleanroom’ are examples that have been shown to be extremely effective [Refer-
ence 3]. All of these are directed toward maximizing the potential of individuals as
opposed to removing the individual from the process.

Point 4: Environmental Characteristics Should Dictute Selected Software Engineer-
ing Techniques

Experiences in the SEL have verified the expectation that standards, methods, and, in
general, all software engineering approaches must be tailored to specific environ-
ments. Although the point seems to be obvious, we as practitioners and software engi-
neers often attempt to apply a new technique or method expecting cermin
improvements without first analyzing whether the methodology is addressing the
needs of the environment. For example, if a development organization historically
produces highly reliable, well-tested software, then there is probably little benefit to
be derived from modifying the testing approach by applying an automated test genera-
tor.

Additionally, it must be understood that ail software environments evolve with time
and undergo some level of change. Because of this, the overall process must be ccnrin-
ually observed to identify changing and evolving practices in order to respond with the
most appropriate modifications to methods, tools, etc.

Point 5: Automation is an Instrument of Process Improvement, Not a Replacement
Jor Process Understanding

As was mentioned previously, the foundation of the process improvement paradigm s
that of understanding the software process and associated products— which may then
lead to assessment and to process improvement. Autorsated tools may provide some
help in understanding this process, but t00 often we expect the automation process to
resolve problems that we don’t clearly understand in a manual sense. If a software
developer or manager cannot clearly represent and grasp some process manually, the
application of a software tool will only make the process less understood and more ill

F
£ ey

N
Sof 32
6269-2

defined. This overreliance on automation is occasionally exemplified by organizations
that move too swiftly in the adoption of CASE (or related technology) before the over-
all development characteristics are analyzed and the need for automated tools is iden-
tified. Another example can be seen in the attempts of managers to use code
analyzers, auditors, and automated complexity analyzers to gain insight into ‘complex-
ity’ without being able to discern this trait in any of the products or processes.

Although it is unwise to try to automate immature processes or to apply tools where no
tool is needed, there are excellent examples of tools and overall automation that re-
flect significant advances in applying this technology to recently maturing disciplines.
Such an example is the recent development of the ‘Software Management Environ-
ment (SME)’ [Reference 4] which is used by the Flight Dynamics Division at NASA/
GSFC to automate the use and interpretation of historical software data, models.
measures, and intuition toward the management of active software projects.

Point 6: Heritage of the Environment Will Strongly Influence the Software Process

It seems rather obvious to say that a development environment has its own characterss-
tics of process and process improvement and that the heritage of this environment will
certainly influence the development of project after project, but the level to which the
past performance of a software organization dominates even the use of significandy
different technology is quite surprising. Itis the most prevalent influence that the SEL
has seen in its environment where evolving, new technology is continually applied t0
observe impacts to the software process, and major changes to methodology are coa-
tinually made.

For example, the technology impact from the introduction of Ada into the SEL envi-
ronment has been under study since 1985 when the first Ada system was developed.
One of the early expectations was that there would be asignificant change to the effort
distribution over the implementation (design, code, test) period for these Ada systems
in comparison with previous FORTRAN systems. To date, this has not been observed
in the SEL—effort distributions based on these activities have remained essentially
the same and continue to reflect past SEL experience. Since changes to anestablished
development process occur slowly, the changes themselves tend to evolve over time as
more experience is gained with the new technology. As expected, the use of various
Ada constructs (generics, packages, typing, tasking) in the more recent Ada projectsis
considerably different than in earlier systems.

Point 7: Software Can Be Measurably Improved Through Appropriate Use of Avai-
able Technologies

Possibly the most important point evinced as a result of the 15 years of study within the
SEL is that software (both the process and products) can be quantifiably improved
through the selected application of methods, tools, and models that exist today. It has
often been argued that since ‘the human being’ is the dominant factor in any software
project, the modification or application of any approach to the development process

F. McGarry
R. Paj
NASATGSFC
6of 32
6200-2

a3

’-‘—-‘ l-—¢-‘ ey

L]

cannot be observed nor can it have any significant impact on improving measures of
importance.

Experience has verified the fact that researchers often attempt to apply and measure,
to extremeiy detailed levels, techniques that may not be ‘measurable’; however, it has
also shown that overall trends are definitely measurable when the measurement proc-
ess becomes an integral part of the applied methodology. As was described
previously, because a specific software technology may not be applicable to all envi-
ronments, each environment must clearly define its goals, strengths, and weaknesses
before it attempts to observe positive impacts from some modified approach.

There are specific methodologies that the SEL has applied and measured overa long
period of time and that have been verified as having positive impact on the cost, reli-
ability, and overall quality of software within the Flight Dynamics environment. Such
techniques include 'Reading’ (as applied to design, code, and test), Ada, object-
oriented development, design criteria (e.g., strength), measurement, and many others.
There are software practices that will significantly and measurably improve the soft-
ware within any specific environment.

MI. OVERALL COST/IMPACT OF THE MEASUREMENT EFFORTS IN THE SEL

For 15 years, NASA has been funding these efforts to carry out experiments and stud-
ies within the SEL. There has been significant cost and general overhead to this effort,
and a logical question that is asked is *Has it all been worth it?* The answer is a re-
sounding YES. Not only has the expenditure of resources been a wise investment for
the Flight Dynamics area within NASA, but members of the SEL strongly believe that
such efforts should be commonplace throughout the Agency as well as throughout the
software community. The benefits far outweigh the cost.

Since the SELs inception in 1976, NASA has spent approximately $14 million dollars
in the three major support areas required by this type of study environment: research
(such as defining studies and analyzing results), technology transfer (such as producing
standards and policies), and data processing (such as collecting forms and maintaining
data bases). Additionally, approximately 50 staff-years of NASA personnel effort has
been expended on the SEL. During this same time period, the Flight Dynamicsarea
has spent approximately $130 million on building operational software, all of which
has been part of the study process to some degree.

During the past 15 years, the SEL has certainly had significant impact on the software
being developed in the local environment, and there is strong reason to believe that
many of the results and studies of the SEL have had favorable impact on a domain
broader than just the NASA Flight Dynamics area. Examples of the changes thathave
been observed include the following:

1. The ‘manageability’ of software has improved dramatically. In the late
1970s and early 1980s, this environment experienced wide variation from project to

F. McGarry

et

N. GSFC

Tof 32
6200-2

project in productivity, reliability, and quality. Today, however, the SEL has excellent
models of the process; has well-defined methods; and is able to predict, control, and
manage the cost and quality of the software being produced.

2. The cost per line of new code has decreased somewhat (about 10 percent),
and at first glance this may imply that the SEL has failed at improving productivity.
Although the SEL finds that the cost to produce a new source statement is nearly as
high as it was 14 years ago, there is appreciable improvementin the functionality of the
software, as well as tremendous increases in the complexity of the problems being
addressed. Also, there has been an appreciable increase in the reuse of software
(code, design, methods, test data, etc.), which has driven the overall cost of the equiva-
lent functionality down significantly. When we merely measure the cost to produce
one new source statement, the improvement is small; but when we measure overall
cost and productivity, the improvement is significant.

3. Reliability of the software has improved by 35 percent. As measured by the
number of errors per thousand lines of code (E/KSLOC), the Flight Dynamics soft-
ware has improved from an average of 8.4 E/KSLOC in the early 1980s to approxi-
mately 5.3 E/KSLOC today. These figures cover the software phases up through and
including acceptance testing (beginning of operations). Although the operational and
maintenance data are not nearly so extensive as the development data, the small
amount of data available indicates significant improvement in that area as well.

4, Other measures inciude the effort put forth in rework (changing, fixing, etc.)
and in overall software reuse. These measures also indicate a significant improvement
to the software within this one environment.

In addition to the common measures of software (cost, reliability, etc.), there are many
other major benefits derived from such a ‘measurement’ program as that in the SEL.
Not only has our understanding of software significantly improved within the research
community, but this understanding is apparent throughout the entire development
community within this Flight Dynamics environment. Not only have the researchers
benefited, but it is obvious that the developers and managers who have been exposed
to this effort are much better prepared to plan, control, assure, and, in general,
develop much higher quality systems. One view of this entire program is that it is a
major ‘training’ exercise within a large production environment, and the 800 to
1000 developers and managers who have participated in development efforts studied
by the SEL are much better trained and effective software engineers.

REFERENCES

1. Software Engineering Laboratory, SEL-82-906. Annotated Bibliography of Soft-
ware Engineering Laboratory Literature, P. Groves and J. Valett, Novemnber 1990

2. Software Engineering Laboratory, SEL-84-101, Manager’s Handbook for Soft-
ware Development (Revision 1), L. Landis, F. McGarry, S. Waligora, et al.,
November 1990

F. McGarry
;-?A‘E‘A‘,’E"s'

of 32

6200-2

Software Engineering Laborary, SEL-90-002, The Cleanroom Case Study in the
Software Engineering Laboratory: Project Description and Early Analysis,
S. Green et al., March 1990

Software Engineering Laboratory, SEL-89-003, Software Management Eaviron-
ment (SME) Concepts and Architecture, W. Decker and J. Valett, August 1989

Eg?ﬂ

o
]
&

VIEWGRAPH MATERIALS
FOR THE
F. MCGARRY PRESENTATION

TOWARDS UNDERSTANDING
SOFTWARE

15 YEARS
in the
Software Engineering Laboratory (SEL)

Frank McGarry
y Rose Pajerski
{ §§ and SEL Staff

AduL.008

DASHNVSYN
Larenop g

P11y

SEL ENVIRONMENT

2B -

DEVELOPERS S/W ANALYSTS
(DEVELOP FLIGHT DYNAMICS S/W) DEJ&?S&"&'" (STUDY PROCESS)

STAFF 150-250 (FTE) ﬁgﬂofé\gy STAFF 5-10 RESEARCHERS

. FUNCTION e SET GOALS/QUESTIONS/
leZPEICAL PROJECT - 150-200 KSLOC * METRIGS

- DESIGN STUDIES/
ACTIVE PROJECTS - 6-10 EXPERIMENTS
(AT ANY GIVEN TIME) e ANALYSIS/RESEARCH
e REFINE S/W PROCESS
g:aZ%JECT STAFF - 15-25 PEOPLE - PRODUCE REPORTS/
REFINEMENTS FINDINGS
1976-1990 - 75 PROJECTS DEVELODMENT | 19761980 - 250 REPORTS/DOCUMENTS
PROCESS
DATA BASE SUPPORT (MAINTAIN/QA SEL DATA)
| |
STAFF 2-5 (FTE) | SEL DATA BASE 8
FUNCTION e PROCESS FORMS/DATA

e QA | Forms uBRARY G

e RECORD/ARCHIVE DATA

e MAINTAIN SEL DATA BASE

e OPERATE SEL LIBRARY | REPORTS LIBRARY [ﬁl

1976-1990 - OVER 150,000 “FORMS"

A498.009

MEASUREMENT IS AN ESSENTIAL ELEMENT
OF S/W PROCESS IMPROVEMENT

®

e MEASURES DEFINE PROCESS/PRODUCT BASELINE AND GAUGE CHANGE
- ONLY MEANS OF PROVIDING UNDERSTANDING
- WITHOUT MEASUREMENT CANNOT DETERMINE CHANGE/IMPROVEMENT

o MEASURES - SIGNIFICANT ASSET TO S/W MANAGEMENT/DEVELOPMENT

- VITAL FOR PLANNING/ESTIMATING
- PROVIDES INSIGHT TO HEALTH OF PROJECTS

o MEASUREMENT IS NOT COST PROHIBITIVE

- EXISTS SMALL/CRITICAL SET OF MEASURES
- CRITICAL SET LESS THAN 2% IMPACT TO PROJECT
- BENEFITS FAR OUTWEIGH THE OVERHEAD

(i 4K Fi
J4ASH/YSYN
Lareoop -4

A408.011

P iy

Larenops -4

MEASURES - GAUGING CHANGE AND IMPROVEMENT IN THE SEL

é 100 5
8o | 4 -
@ - 3.3
(@]
g 60 |- 904) 3 |-
o TYPICAL 2.1
1 - SEL PROJECT = &
o 40 I (15 PROJECT BASELINE) 52T
g 20 | .~ 1
£ - CLEANROOM
& o~] 0 FORTRAN AD
A
0 20 40 60 80 100 (8 PROJECTS) (5§ PROJECTS)
PERCENTAGE OF PROJECT SCHEDULE COMPLETED
OBSERVING IMPACTS OF PROCESS DETERMINE IMPROVEMENT
CHANGE DUE TO PROCESS CHANGE

A496.0:2

1d

byl
=
:

£ pi kg
J4SO/vSvyN

A498.021

ERRORS/KSLOC

e MEASUREMENT AS A MANAGEMENT AID

c)

TRACKING “COBE" RELIABILITY

CODE/TEST SYSTEM TEST ACCEPTANCE TEST OPERATIONS

MEASURING ERROR RATES CAN PROVIDE EARLY
INDICATION OF SOFTWARE QUALITY

P sIaky
24SDIVYSYN
Loy -4

A400.022

PEOPLE ARE MOST IMPORTANT |
RESOURCE/TECHNOLOGY

e 3 APPROACHES STUDIED
- CODE READING

®

TEST TECHNIQUES EXPERIMENT DESCRIPTION

e 32 PEOPLE PARTICIPATED
(GSFC, UM, CSC)

- FUNCTIONAL TESTING e 3 UNIT-SIZED (100 SLOC)
- STRUCTURAL TESTING PROGRAMS SEEDED WITH ERRORS

% OF FAULTS DETECTED NUMEER 355@ %LFT %&%ﬁ? TED
61 3.3

51
38
1.8 1.8
CODE FUNCTIONAL STRUCTURAL CODE FUNCTIONAL STRUCTURAL
READING TESTING TESTING READING TESTING TESTING

EFFECTIVE TECHNOLOGY SHOULD FOCUS ON
“PERSONNEL" POTENTIAL

AL

MANY DIVERSIONS EXIST TO A SUCCESSFUL
PROCESS IMPROVEMENT PROGRAM

®

(DIVERSIONS THE SEL HAS BEEN THROUGH)

e EXCESSIVE PLANNING/REPLANNING

- JUST DO IT/START SMALL
- LEARN WITH EXPERIENCE

- RELY ON LOCAL STANDARDS (E.G., TERMINOLOGY)
e OVER DEPENDENCE ON STATISTICAL ANALYSIS

- INTUITION IS A VERY USEFUL STARTING POINT
- MAKE USE OF SUBJECTIVE DATA

e L OOKING UNDER THE LAMP POST

- CODE ANALYZERS/CONVERTERS
- COMPLEXITY METRICS
- DESIGN GRAPHIC AIDS

£ 9] 3y
DIASO/VSYN
Karenop -4

A498.013

TroLyadey
24SD/VSYN
ARDON 4

ENVIRONMENTAL CHARACTERISTICS SHOULD DICTATE
SELECTED SOFTWARE ENGINEERING TECHNIQUES

@

e SPECIFIC MEASURES/TECHNIQUES MAY NOT APPLY
TO ALL “DOMAINS”

¢ AS ENVIRONMENT EVOLVES, METHODOLOGIES
SHOULD FOLLOW (AND LEAD)

e TAILOR STANDARDS/POLICIES

A498.014

wwglIaky
J3SO/VSYN
Lurenop g

A498.023

7/

REUABILITY
(ERRORS PER LINE OF CODE)

SPECIFIC MEASURES MAY NOT
APPLY TO ALL “DOMAINS”

SOFTWARE MEASURES IN THE SEL

.mw o.m
0525 — @ 0525 [—
0450 |— , 8 0450 |-

n 1 lCL) 1" 1
0375 = 112 ni1 E‘“ 0375 f—112 11y

112 1ty 1y 112 muit
o300 |2z 23 o0 iV,

1336342 1111 9] 1338342 1111 1
0225 | 532534313 1111 1 1 Wa o205 |—saessanin g 1

454763353 1213 1 1 1 s 763353 1213 1 1 13
0_015 = .5‘5‘&‘“ “llllﬂ‘& :2‘ ‘l 11 6 -w15 4“5 83111183 3212 1+ 1
0075 Ml:‘l 122 11 2 E

[2ssecesoes2es4242 1 11 1 11 1y 4 = 0075 I icacacnasoesazaz 11 11 11 3
L0 N VR N O R N PO TR IS N R I N N |
15 45 75 105 135 165 195 100 300 500 700 900 1100 1300
McCABE COMPLEXITY LINES OF CODE '
CORRELATIONS
TOTAL EXECUTABLE McCABE HALSTEAD
LINES LINES CO!Ni'EXITY LENGTH

HALSTEAD LENGTH 0.85 0.91 U.ul 1.00
McCABE COMPLEXITY 0.81 0.87 1.00
EXECUTABLE LINES 0.84 1.00
TOTAL LINES 1.00

SAMPLE OF 688 MODULES

Emel 3y

DED/YSYN

Luwnyops g

CHARACTERISTICS OF EFFECTIVE POLICIES

STANDARDS/POLICIES MUST BE:

A408.018

1. WRITTEN ®

2. UNDERSTOOD

°
3. “LEGACY-BASED” e
)
L
4. ENFORCED ®
°
5. MEASURABLE °

MAY BE COMBINED (GENERIC AND TAILORED)
CAREFULLY “PRESENTED”

NOT TO INCLUDE EXCESSIVELY ALIEN
TECHNOLOGY
TRAINING OFTEN REQUIRED

DERIVED FROM NEED/LEGACY

CONTINUALLY EVOLVING
ALL ELEMENTS ARE “DEFENDABLE"

SUPPORTED BY MANAGEMENT
LIMITED “DETAIL"

OBSERVABLE (CAN TELL IF IT'S
BEING FOLLOWED)
REQUIRES SELF-EVALUATION

pr——

AUTOMATION IS AN INSTRUMENT OF PROCESS IMPROVEMENT
(NOT A REPLACEMENT FOR PROCESS UNDERSTANDING)

®

e TOOLS CAN PROVIDE SIGNIFICANT BENEFIT TO
WELL-DEFINED EXPERIENCE BASE (E.G., SME IN THE SEL)

¢ “IMMATURE"” PROCESSES ARE NOT AUTOMATABLE
(IF YOU CAN'T DO IT MANUALLY - DON'T TRY TO AUTOMATE IT)
(E.G., OVER RELIANCE ON CASE/ANALYZERS/AUDITORS/

MEASUREMENT TOOLS)

e EFFECTIVE TOOLS MUST ADDRESS DEFINED PROCESS NEED

(MATCH SOLUTION TO PROBLEM)
(E.G., OVERUSE OF CODE TRANSLATOR/CODE ANALYZERS/

TEST GENERATORS, ...)

(9 X & 1%
DISDVSYN
Limopp -3

A408.017

Lo 17 382y
DISOIVYSYN
Lrenop -4

(1) AUTOMATING A WELL-UNDERSTOOD “EXPERIENCE BASE” IN THE SEL
(SOFTWARE MANAGEMENT ENVIRONMENT (SME))

EXPERIENCE BASE AUTOMATED TOOL MANAGEMENT AID
(SME) 1. COMPARE/EXPLAIN

1. DATA

E: CURMENT PROXCT

SOFTWARE
MANAGEMENT]
ENVIRONMENT VA
2. PROCESS MODELS)
SME '
...I.l.l. :i';
a'-!m ~
=
3. ASSESS
3. KNOWLEDGE
- LESSONS LEARNED Ao w
- INTUITION S F—— %
ALLASLITY MANIABANLITY DUAR™

A498.025

R &

HERITAGE OF ENVIRONMENT WILL STRONGLY
INFLUENCE PROCESS

®

BY LIFE CYCLE PHASE
(DATE DEPENDENT)

FORTRAN

BY ACTIVITY
(NOT DATE DEPENDENT)

I3
j

L0 77 g

I2SOVSYN

MAJOR DATES CHANGED (CDR, ...) BUT EFFORT DISTRIBUTION STILL QUITE SIMILAR

Adus0is *BASED ON 6 Ada AND 8 FORTRAN PROJECTS OF SIMILAR TYPE IN THE SEL

e e—

TE)0 €T 3By
DASOIVSYN
Larerpy g

A498.019

SIGNIFICANT PROCESS CHANGE REQUIRES

SIGNIFICANT EFFORT/TIME

40

30

20

10

GENERIC PACK
TOTAL PACK

PACKAGES
KSL
O O =t -
o ® o o

© O
U

o
(<]

USE OF Ada FEATURES
GENERICS . STRONG TYPE
| E .
3 —
o)
— 24 Jl@ 2 - 2.65
- [157 E[* 158
= N
85/86 B7/88 88/89 0 —g5/e6 87/88 86/69
PACKAGES 6 TASKING
- 8
- g0l
— 1.2 4 -
1.05 4
[g L
- Q 2+ ”
0.35 o -
85/86 87/88 86/60 istAda _ 2nd Ada 3id Ada
85/86 87/88 88/89

o USE OF Ada FEATURES CHANGES APPRECIABLY WITH EXPERIENCE
e NOT ALL FEATURES APPROPRIATE FOR APPLICATION

SOFTWARE CAN BE MEASURABLY IMPROVED THROUGH
APPROPRIATE USE OF AVAILABLE TECHNOLOGIES

®

EXAMPLES IN ONE ENVIRONMENT (SEL)

:5;‘

e 097 332y
JASOVSYN

A498 020

TECHNOLOGY DEMONSTRATED IMPACT
- “READING” REPEATEDLY SHOWN TO IMPROVE SOFTWARE
RELIABILITY (NO ADDITIONAL COST)
- DESIGN CRITERIA DEMONSTRATED TO PRODUCE MORE ERROR
(STRENGTH) FREE SOFTWARE
- Ada SIGNIFICANT COST BENEFIT THROUGH REUSE
- 00D REUSE
- CLEAN ROOM SIGNIFICANT IMPROVEMENT IN RELIABILITY
AND PRODUCTIVITY (ALSO RESC'JRCE
CONSUMPTION DOWN)
: - MANAGEMENT/ MAJOR IMPROVEMENT IN PLANNING, ADJUSTING
MEASUREMENT AND CONTROL

- COST ESTIMATION
- SCHEDULE ESTIMATION

ASSESSING “STRENGTH” AND “SIZE” AS A
STANDARD FOR DESIGN

EXPERIMENT:
e 450 FORTRAN MODULES (ACROSS 4 SYSTEMS - OVER 20 DEVELOPERS)

e DETAILED COST AND ERROR DATA ON ALL MODULES
e DETERMINE RELATIONSHIPS: “STRENGTH” TO RELIABILITY AND

“SIZE" TO RELIABILITY
RESULTS:

FAULT RATE FOR CLASSES OF MODULE STRENGTH

MEDIUM
ZERO \ "38%

HIGH

ZERO
50%

LOW STRENGTH

-
x
&
3

7600 §7 3%y
24SD/YSYN

MEDIUM STRENGTH

HIGH STRENGTH

A498.024

DESIGN MEASURES SUMMARY

e GOOD PROGRAMMERS TEND TO WRITE
HIGH-STRENGTH MODULES

e GOOD PROGRAMMERS SHOW NO PREFERENCE
FOR ANY SPE: .5 MODULE SIZE

e OVERALL, HIGH-STRENGTH MODULES HAVE
A LOWER FAULT RATE AND COST LESS
THAN LOW-STRENGTH MODULES

e OVERALL, LARGE MODULES COST LESS (PER
EXECUTABLE STATEMENT) THAN SMALL MODULES

e FAULT RATE IS NOT DIRECTLY RELATED TO MODULE SIZE

w97 33y
J4SD/VYSYN
{endpg g

LYIHINT)

,\

Ada (AND OOD)* IMPACTS ON “COST”
FROM SEL EXPERIENCES

5 PROJECTS USING FORTRAN

B TOTAL REUSE 100
VERBATIM REUSE
D w 80~
a
m 6o 43%
COST PER LINE OF CODE g 40
20 o
20—
% 14.8 15
8 15 |- 0
7] 10.8 GRODY GOESIM GOADA UARSTELS EUVEDSIM
!2 8.8 (86/87) (87/88) (88/89) (88/89) (88/60)
S 10 (= 100 5 PROJECTS USING ADA AND OOD
< 5 |-
b=
n 80
0 60
FORTRAN Ada Ada Ada
(6 PROJECTS) (85/86) (87/88) (89/90)*

TOTAL REUSE
S
o

(*PARTIALLY BASED ON ESTIMATES)

n
o

GRODY GOESIM GOADA UARSTELS EUVEDSM EUVETELS
(66/87) (87/88) (88/29) (68/89) (88/90) (88/90)

2600 £7 33y
J4SOrvSYN

1. DEVELOPMENT COST PER STATEMENT HAS BEEN NO “CHEAPER" FOR ADA
2. REUSE POTENTIAL OF Ada IS SIGNIFICANT

A400.030 *ALL Ada PROJEGTS APPLIED OOD TECHNIQUES

IO ST ey
Kasenyoyy”

J4ASD/VSYN

HAS THE EFFORT BEEN WORTH IT?
(1975 - 1990)

e SEL EXPENDITURES (1990 DOLLARS)

- RESEARCH SUPPORT (UNIVERSITY) $2.5M
(EXPERIMENTATION, ANALYSIS, RESEARCH, REPORTS, ...)

- RESEARCH AND TECH TRANSFER (CSC) $5.5M
(ANALYSIS, RESEARCH, REPORTS, OVERHEAD TO
DEVELOPMENT PROJECTS)

- DATA PROCESSING AND GENERAL SUPPORT (CSC AND OTHERS) $6.0M
(PROCESS/QA DATA, SEL DATA BASE, REPORTS, ...)

e PRODUCTION SOFTWARE (FLIGHT DYNAMICS) DEVELOPED $130M
(CSC AND NASA)

A400.020

HAS THE EFFORT BEEN WORTH IT?
(1975 - 1990)
IMPACT OF SEL RESEARCH?*

1976 - 1980 1986 - 1990
MANAGEABILITY e COMPLETE DEPENDENCE e PROCESS-MODELED
ON PERSONNEL CAPABILITY AND EFFECTIVE
e WIDE VARIANCE IN e SOFTWARE MORE
COST/QUALITY PREDICTABLE, CONSISTENT
e NO GUIDANCE FOR e RATIONALE FOR METHODS
SELECTING METHODS USED EXISTS
COST PER LINE ~ 24 SLOC/DAY ~ 24 SLOC/DAY
OF CODE
RELIABILITY 8.4 E/KSLOC 5.3 E/KSLOC
(UNIT TEST THRU
ACCEPTANCE)
CODE REUSE 15-25% 25-35%
REWORK 35-40% OF TOTAL EFFORT 20-30%

7)o 67 Y
Karenyoy 4

DASO/VSYN

*PROBLEM COMPLEXITY AND SUPPORT ENVIRONMENT HAVE ALSO CHANGED SIGNIFICANTLY
A498.027

VB -

HAS THE EFFORT BEEN WORTH IT?

FINAL OBSERVATIONS

e “OUR” UNDERSTANDING OF SOFTWARE HAS IMPROVED
SIGNIFICANTLY (WE DO SOFTWARE BETTER)

e CONTRIBUTIONS TO SOFTWARE RESEARCH AND DEVELOPMENT
(MEASUREMENT, MANAGEMENT, EXFERIENCE BASE, ...)

e PROFESSIONAL DEVELOPMENT OF DEVELOPERS, MANAGERS,
RESEARCI iz:RS

e “NEW” AWARENESS BY MANAGERS, DEVELOPERS
(SOFTWARE CAN BE ENGINEERED)

I Jo 0f 3dey
J4SD/VSYN
Karenop -y

A498.026

Lo 1€ ey
J4SO/VSYN
Loy g

ONGOING/FUTURE ACTIVITIES FOR THE SEL

GENERAL CURRENT/NEAR FUTURE STUDIES

e CONTINUE EVALUATION OF | & CLEAN ROOM (3 ACTIVE PROJECTS)
PROCESS IMPROVEMENT o Ada (3 PROJECTS)

- G/Q/M
- EXPERIMENTATION e OOD (1 ONGOING EXPERIMENT - 2 PLANNED)
- REFINEMENT CASE (1 ACTIVE PROJECT
e DOMAIN ANALYSIS FOR * ()
“EXPERIENCE BASE” e REUSE (USING EXISTING SEL PROJECTS)
- RELEYANCE TOGTHER e MAINTENANCE (3 PROJECTS FOR ANALYSIS)
- CHARACTERIZING DOMAIN :
CHARACTERIZING DOMAIN | ¢ TESTING STRATEGIES (EXISTING SEL PROJECTS)
o EXPANSION OF LIFE o MEASUREMENT (CHARACTERIZING DESIGNS)
CYCLE ANALYZED
- MAINTENANCE
- SPECS/REQUIREMENTS

- EXPANDED MEASUREMENT

A498.020

-

EXAMPLES

UNDERSTANDING e COMPARE TEST TECHNIQUES (FUNCTIONAL, READING, STRUCTURAL)

STUDIES IN THE SEL
1976 - 1990 PACKAGING

®
e TRAINING PROGRAM
e SME
ASSESSING ¢ “MANAGER'S HANDBOOK™

[J
e CLEAN ROOM
e EVALUATE ADA
e ASSESS STRENGTH AS DESIGN CRITERIA

e APPROACH TO DATA COLLECTION

e RELATIONSHIP BETWEEN DEVELOPMENT MEASURES
¢ ERROR/CHANGE CHARACTERISTICS
s RESOURCE AND EFFORT PROFILES

| 7 1976 - 1980 1980 - 1986 1986 - 1990
E o DEFINE PROCESS o INITIAL “RELATIONSHIPS® o PROCESS IMPROVEMENT ENVIRONMENT
. Z o CALIBRATE "PROCESS ENVIRONMENT* o EXPERIMENTS o FULL TECHNOLOGY ASSESSMENT
:l i a: § o DEFINE MEASURES/MEASUREMENT o REFINE MEASURES/MEASUREMENT e FULL USE OF MEASUREMENT
v TR
s 2? EVOLVING TO AN EFFECTIVE
; & “PROCESS IMPROVEMENT" ENVIRONMENT

A498.031

