NO2-19424 -

A Framework for Assessing the Adequacy and Effectiveness of) L_,/ [
s

Software Development Methodologies*
4
James D. Arthur and Richard E. Nance) C) \ L)
Virginia Tech y o

-7

Index Terms: Software Development Methodologies, Procedural Evaluation, Evaluating Method-
ologies, Software Engineering Objectives, Software Engineering Principles, Induced

Attributes, Indicators.

1. Introduction

Over the past two decades the software development process has changed dramatically. Early
software development practices were guided by “seat-of-the-pants” programming styles. Recog-
nizing maintenance difficulties associated with such styles, the software development community
began to investigate and identify software engineering principles that could significantly enhance
the maintainability and quality of a resulting product. Consequently, development techriques that
exploited software engiveering principles like abstraction {LISB75], information hiding [PARD72]
and stepwise refinement [WIRN71)] were formulated and integrated into many software development

processes.

The subsequent demand for increasingly complex software systems, however, mandated the
coordinated use of complementary principles, guided by an encompassing software development
philosophy that recognized project level goals and objectives, i.e. a methodological approach to
software development. Today, a myriad of tools, techniques, and development methodologies ad-

dress the challenging task of producing high quality software. For example, SCR (HENK78] and

* Work supported by the U.S. Navy _tl;rough the Systems Research Center under Basic Ordering
Agreement N60921-83-G-A165 B003-4.

AN

R. Nance

Page 1 of 45

— dE

DARTS [GOMHS4] are development methodalogies that emphasize specific software engineering
goals (reducing software development costs and facilitating the design of real-time systems, respec-
tively). SREM [ALFM85] and SADT [ROSD77] are methodology based environments. Both focus
on particular phases of the software life cycle and are supported by unified sets of complementary

tools.

The steady proliferation of design methodologies, however, has nct been without a price. In
particular, users find increasing difficulty in choosing an appropriate methodological appioach and
recognizing reasonable expectations of a design or development methodology. Addressing this

concern, the research described in this paper outlines a well-defined procedure for

¢ evaluating the adequacy of a software development methodology relative to project goals,

and

e assessing the effectiveness of a methodology relative to the quality of the product produced.

The evaluation procedure is based on a substantiated set of linkages among accepted software
engineering objectives, principles, and attributes. These linkages reflect an assessment perspective
structured by the needs, process, and product sequence for system development, and enable a
comparative scale for determining the adequacy and effectiveness of the supporting development
methodology. The identification of code and documentation properties and the definition of metrics
for these properties enables an accumulative determination of software engineering attributes,

principles and objectives.

To provide a uniform basis for discussion, Section 2 outlines the role of a methodology in
the soitware development process. Section 3 discusses the relationship of software engineering
objectives, prindples and attributes to the software development effort. Section 4 identifies the
commonly accepted objectives, principles and attributes, defines the relationships among tiem.
and then discusses how one evaluates a methodology based on the those relationships. Finally.
Section 5 describes an application of the assessment procedure to two Navy software development

methodologies.

R. Nance

Page 2 of 46

in

2. What Constitutes a Methodology

Fundamental to the research presented in this paper is a common understanding of what
constitutes a “methodology”. Simply stated, a methodology is a collection of complementary

methods, and a set of rules for applying them [FREP77]. More specifically, a methodology

(1) organizes and structures the tasks comprising the effort to achieve a global objective,

establishing the relationships among tasks,

(2) defines methods for accomplishing individual tasks (within the framework of the global

objective), and

(3) prescribes an order in which certain classes of decisions are made. and ways of making

those decisions that lead to the overall desired objective.

In general, software development methodologies should be guided by accepted software engineering
principles that, when applied to the defined process, achieve a desired goal. Based on this common
understanding of what constitutes a methodology, the following sections present a procedural

approach to evaluating the adequacy and effectiveness of software development methodologies.

3. The Role of Objectives, Principles, and Attributes in Software Development

The development of large, complex software systems is considered a project activity. involving
several analysts and programmers and at least one manager. What then is the role of a methodology
in this setting and how does it relate to objectives, principles and attributes? Figure 1 assists in

providing an answer to this question.

In general terms, an objective is “something aimed at or striven for.” More specific to the
software development context, an objective pertains to a project desirable - a characteristic that

can be definitively judged only at the comple..o". of the project.

3
R. Naoce

PageJof 46

B!

Maintainabiliry OBJECTIVES) =} PROJECT

Correctness

Tesability
Relisbility

PRODUCT

ATTRBUTES 4
i DOCUMENTATION (+) PROGRAMS
Reduced Coupling
Enhanced Cohesion

Redneg:r Complexity [] f
Well-Defined Interfaces Properties ;

S | —
Traceability ATTRIBUTES
Visibility of Behavior
Early Error Detection

Figure 1
Dlustration of the Relationships Among Objectives, Principles, Attritutes

in the Software Development Process

A software engineering principle describes an aspect of how the process of software development
should be done. The process of software development, if it is to achieve the stipulated objectives,

must be governed by these “rules of right conduct.”

Attributes are the intangible characteristics of the product: the software produced by project
personnel following the principles set forth by the methodology. Unlike objectives, which pertain
only to the total project activity, attributes may be observed in one unit of the product and
absent in another. The claim of presence or absence of an attribute is based on the recognition of
properties, which contribute evidence supporting the claim. Properties are observable. and can be

subjective as well as objective in nature.

R. Nance

Page 4 of 46

=

- Influenced by Fritz Bauer’s original definition of software engineering [BAUF72] and reflecting

the above description of software engineering objectives, principles and attributes, the rationale for

the evaluation procedure described in this paper is founded on the philosophical argument that:
The raison d’etre of any software development methodology is the achievement of one
or more objectives through a process governed by defined principles. In turn, adherence

to a process governed by those principles should result in a product (programs and
documentation) that possesses attributes considered desirable and beneficial. h

This philosophy, exemplified by Figure 1, is tempered by practical concerns:

(1) While a set of software engineering objectives can be identified, this set might not be

complete, and additions or modification should be permitted.

(2) Objectives can be given different emphasis within a methodology or in applications of a
methodology.

(3) Attributes of a large software product might be evident in one component yet missing in

another.

4. A Framework for Evaluating Software Development Methodologies

A broad review of software engineering literature [BERG81, CHML90, GAFJ78, JACMTS.
PARDT9, PARD72, SCOL78, WARJ76] leads to the identification of seven objectives commonly

recognized in the numerous methodologies:

(1) Maintainability - the ease with which corrections can be made to respond to recogrized

inadequacies.
(2) Correctness - strict adherence to specified requirements,
(3) Reusability - the use of developed software in other applications,
(4) Testability - the ability to evaluate conformance with requirements,
(5) Reliability — the error-free performance of software over time,

» (6) Portability - the ease in transferring software from one host system to another. and

S
R. Naace

. Page Sof 46

o/

(7) Adaptability - the ease with which software can accommodate to change.

The authors note that these definitions, as well as others presented in this section, are abridged:

they are primarily intended to reflect a working understanding based on general literature usage.

Achievement of these objectives comes through the application of principles supported (en- ‘
couraged, enforced) by a methodology. The principles enumerated below are extracted from the
references cited above (and others) as mandatory in the creative process producing high quality

programs and documentation.

(1) Abstraction - defining each program segment at a given level of refinement.

(a) Hierarchical Decomposition - components defined in a top-down manner.

(b) Functional Decomposition - components partitioned along functional boundaries.

(2) Information Hiding - insulating the internal details of component behavior. r
(3) Stepwise Refinement - utilizing a convergent design.

(4) Structured Programming ~ using a restricted set of control constructs.

(5) Concurrent Documentation — management of supporting documents (system specificz-

tions, user manual, etc.) throughout the life cycle.

(6) Life Cycle Verification ~ verification of requirements throughout the design, development.

and maintenance phases of the life cycle.

Employment of well-recognized principles should result in software products possessing a:-
tributes considered to be desirable and beneficial. A short definition of each attribute is givea

below.

(1) Cohesion - the binding of statements within a software componeat.

6
R. Naace

Vet
Page 6 of 46

(2) Coupling - the interdependence among software components.

(3) Complexity - an abstract measure of work assocdated with a software component relative

to human understanding and/or machine execution.

(4) Well-defined Interfaces - the definitional darity and completeness of a shared boundary

between a pair of components (hardware or software).
(5) Readability - the difficulty in understanding a software component (related to complexity).
(6) Ease of Change - the ease with which software accommodates enhancements or extensions.

(7) Traceability - the ease in retracing the complete history of a software component from its

current status to its design inception.
(8) Visibility of Behavior - the provision of a review process for error checking.

(9) Early Error Detection - indication of faults in requirements specification and design prior

to implementation.

The software development process, illustrated in Figure 1, depicts a natural relationship that
links objectives to principles and principles to attributes. That is, one achieves the objectives of
a software development methodology by applying fundamental principles which, in turn, induce
particular code and documentation attributes. From a more detailed perspective, Figure 2 defines
the specific set of linkages relating objectives to principles and principles to attributes. As described
below, these linkages provide a framework for assessing both the adequacy of a methodology as

well as its effectiveness.

4.1 Assessing the Adequacy of a Methodology

The enunciation of objectives should be the first step in the definition of a software developmeant
methodology. Closely following is the statement of principles that, empioyed properly, lead to the
attainment of those objectives. In tur~, the application of those principles within a structuied

software development process will yield a product that exhibits desirable attributes. The important
T

R. Nance

Page Tl 46

Concurrent Cohesion
Documentation
Complexity
Functional
Decomposition
>y Coupling
Hierarchical
Decomposition
Early Error Detection
Information
Hiding Ease of Change
Life Cycle Readability
Verification :
" Traceability
Stepwise
Refinement
Visibility of Behavior
Structura;
Programrung Well-Defined Interface
Figure 2

Linkages Among the Objectives, Principles and Attributes

correspondence between the objectives and principles and between the principles and attributes is

shown in Figure 2; a literature confirmation of these relationships is discussed in [ARTJ87].

The adequacy of a software development methodology can be defined asits ability to achieve the
software engineering objectives corresponding to those dictated by system needs and iequirements.
Intuitively, the adequacy of a methodology is assessed through a top-down evaluation scheme
starting with an examination of stated methodological objectives relative to system needs and
requirements. This step is then followed by a comparison of stated methodological principles
and attributes with those deemed most appropriate. An examination of linkages defined by the
evaluation procedure reveals the “most appropriate” set. Relative to the framework depicted by
Figure 1 and the sets of linkages defined in Figure 2, an application of the evaluation procedure to

the assessment of methodological adequacy is outlined below.

8
R. Nance

Page 8 of 46

Objectives cf the Methodology: The identification of objectives and the relationships tying objec-
tives to needs and requirements is usually accomplished by reading the descriptions of a software
development methodology. Evaluation at this level is quite subjective; however, the absence of a
clear statement of objectives for a methodology should trigger an alarm: Is the “methodology”
only a tool or an incomplete set of tools without coherent structure? A methodology should not
be faulted, however, for emphasizing certain objectives at the expense of others; such prioritization

can be highly dependent on the application domain.

Principles Defining the Process: Based on the objectives emphasized by the methodology and the
predefined set of linkages among objectives and principles, the next step in assessing the adequacy
of a methodology is an investigation of the software development process. That is, given a stated set
of methodologjcal objectives, one asks: Are the principles supported by the methodology consistent
with those deemed necessary (through linkage examination) to achieve the stated set of objectives?
The presence of principles without corresponding objective(s) or vice versa should evoke concerns.
Although this level of evaluation is inherently subjective, some analytical quality is introduced

through the established objective/principle correspondence.

Attributes of the Product: The third step in the assessment process, formulating the set of erpected
product attributes, is based on the fact that principles govern the process by which a software
product is produced. That is, a given set of principles should induce a consequent set of product
attributes. Obviously, the expected set of product attributes should correspond to those desired by
the software engineer, and to some extent, be implied or stated in the description of the software
development methodology. More objectivity isintroduced at this level because, although intangible.

evidence of the attributes should be discernible in the product.

4.2 Assessing the Effectiveness of a Methodology

While a top-down evaluation process reveals deficiencies of a software development method-

ology, the effectiveness of a methodology is assessed through a bottom-up evaluation process. As

9

R Nance

Page 9 of 46

bt |

the term implies, the effectiveness of a methodology is defined as the degree to which a method-
ology produces a desired result. In particular, the etfectiveness of a methodology is reflected by
a product’s conformance to the software development process denined by that methodology. We
note, however, that elements independent of the methodology can influence its effectiveness, e.g.

an inadequate understanding and/or use of the methodology.

The Exzistence of Product Attributes: Assessing methodological effectiveness starts with an exarmi-
nation of the software product (code and documentation) for the presence or absence of attributes.
Because attributes are intangible, subjective qualities, the current evaluation is based o:u defined
prcperties that provide evidence as to the presence or absence of attributes. More specifically,
the computation of metric values reflect the extent to which particular properties are observed.
In turn, this information is used to synthesize the extant set of product attributes. Clearly, the
set of attributes determined from a product evaluation should agree with those induced by the
corresponding development methodology. Set mismatch can imply an inappropriate software de-
velopment methodology, an inadequate understanding of the methodology, or perhaps, the failure

of users to adhere to the prindples advocated by the methodology.

Implied Principles and Objectives: Knowing which attributes are present in the product. and
the extent to which they are assessed present, provides a basis for implying the use of software
engineering principles in the software development process. The rationale for such a statement is
based on the observation that a principle-to-attribute linkage conversely indicates an attribute-to-
principle relationship. Implying principle usage must be tempered, however, because of the many-
to-one relationships existing between attributes and principles. Similarly, using the established
linkages among objectives and principles, one can speculatc on the achievement of stated software

engineering objectives.

In summary, the three levels of examination defined by top-down evaluation process establishes
a procedure for determining how well a methodology can support perceived needs, requirements.
and the software development process. Conversely, the bottom-up evaluation process reveals how

10 R. Nance

VPl
Page 1000 46

) Well- ‘
Coupling Cohesion w QE'::: Complexxty H

Use of Global 1 -

Variables .-
Use of

Parameters

Parameteriess
Calls

Excestive #
of Parameters

Use of Dara
Structures

Figure 3

Olustration of the Evaluation Process

well the methodology is applied in the software development process through the mse of quantitative

measures to support an objective, qualitative assessment.

4.3. An Ilustration of the Evaluation Process

To illustrate how the evaluation scheme can be applied, we refer the reader to Figure 3 while

considering the single objective of maintainability. Formally, maintainability can be defined as :he

ease with which maintenance can be performed to a functional unit in accordance with prescribed
requirements. Accepting maintainability as an objective mandates the inclusion of six principies
(hierarchical decomposition, functional decomposition, information hiding, stepwise refinemeat.

structured programming and concurrent documentation) contributing to the realization of that -

11 i
R. Nance
vP1
Page 11 of 46

objective. That is, if a methodology emphasizes maintainability as an objective, then it should

also stress the use of the six principles that are related to maintainability.

Expanding on one of those prindples, information hiding, we note the five attributes (reduced
coupling, enhanced cohesion, well-defined interfaces, ease of change, and low complexity) that
should be evident in software developed using a process governed by the principle of information

hiding. This set of expected attributes is then compared to the desired set for correspondence.

In general, a methodology should emphasize the same set of software engineering objectives
derived from project level requirements. The methodology should correspondingly stress the set of
principles linked to those objectives. Additionally, the expected set of product attributes (defined
by the linkages among principles and attributes) should agree with the set deemed most desirable
by the project manager. If the above conditions are met, then the candidate methodology is

assumed to be adequate relative to project level, software engineering objectives.

On assessing the effectiveness of an methodology, let us first observe the relationship between a
particular attribute and specific product characteristics. Referring again to Figure 3. and narrowing
our attention to one of the attributes, well-defined interfaces, we identify one set of characteristics
related to the well-defined interfaces attribute. These characteristics form the set of observable
properties which contribute to the claim that a piece of software exhibits a well-defined interface.
Although the properties shown are only a subset of those previously identified [ARTI86]. they
represent bcth confirming and contrasting elements. For example, the use of global variables has a
negative impact on well-defined interfaces. The use of structured data in parameter calls. however.

has a positive impact.

Hence, to determine the effectiveness of a methodology one assesses the extent to which product
attributes are present (or absent), and then propagate the results of that assessment through the
sets of linkages defined by the evaluation procedure. As discussed by Kearney [KEAJ86], however.

that assessment process must be predicated on validated metrics.

12
R Nance
YPt
Page 1200 36

5. Application of the Evaluation Procedure

Based on the defined set of linkages among objectives, principles, and attributes, the opera-

tional specification of the evaluation procedure is guided by two fundamental axioms:

(1) the methodology description and project requirements provide standards, conventioas,

and guidelines that describe how to produce a product, and

{(2) the project documentation, code, and code documentation reflect how well the develop-

ment process prescribed by the methodology is followed.

As described below, an application of the evaluation procedure, guided by the above two
axioms, illustrates the utility and intrinsic prower of the evaluation procedure in assessing the
adequacy and effectiveness of a methodology. Provided in this illustration is a characterization
of the components used in the evaluation process, an individual assessment of two methodology
descriptions, an analysis of associated products, and a summary of the results. The authors
note that a substantial part of the characterization and assessment process is embodied in the
operational aspects of applying the evaluation procedure. Length restrictions, however, prevent
their discussion. For information on the operational aspects the authors refer the interested reader

to [ARTJ86, ARTJ87].

5.1 Data Sources

A joint investigation of two comparable Navy software development methodologies and respec-

tive products is detailed in [NANRS85]. The investigation effort utilizes:

o Four software developmen’ methodology documents for

(1) identifying the pronounced software engineering objectives, principles, and attributes.

and

13
R. Nance
VPl
Page 13 of 36

(2) assessing the adequacy of each methodology through the objective/principle/attribute

linkages defined by the evaluation procedure, and

o Eight software system documents and 118 routines, comprising 8300 source lines of code,

for

(1) determining the evident set of product attributes, and

(2) via the attribute/principle/objective linkages, empirically assessing the principles and

objectives emphasized during product development.

The following section provides a summary of the resuits and illustrates the utility anc :rsatiiity
of the procedural approach to evaluating software development methodologies. For smplicity. we
refer to the software systems as system A and system B (and methodology A. methodology B,

respectively).

5.2 Analyzing the Methodological Description and Associated Product

The initial step in the evaluation process is to perform a “top-down” analysis of methodologies
A and B, to reveal the set of claimed software engineering objectives. principles, ard attributes.
Because both methodologies have experienced evolutionary development, a clear statement of their
respective methodological objectives is lacking. Nonetheless, as detailed in Figure 4, the docu-
mentation for methodology A does appear to stress the objectives of religbility and correctness
supported by the principles of structured programming, hierarchical decomposition, aad functional
decomposition. Following the objective/principle relationships defined by the evaluation prcce-
dure. for each objective stressed in methodology A only three of the necessary six principles are
emphasized. The implication is, that unless the principles of life-cycle verification. information
hiding and stepwise refinement are implicitly assumed and utilized, correctness and reliability. are

compromised.

14
R. Nance
724!
Page 14 o 46

Methodology Methodology
A B

Objectives

Maintainability Yes

Correctness Yes

Reusability

Testability

Reliability Yes Yes

Portability

Adaptability Yes
Principles

Hierarchical Decomposition Yes

Functional Decomposition Yes

Information Hiding

Stepwise Refinement

Structured Programming Yes Yes

Concurrent Documentation Yes

Life Cycdle Verification
Attributes None None

Figure 4

Pronounced Objectives, Principles, and Attributes

Using metric values and properties, a corresponding “bottom-up” examination of product A
provides some interesting results. The Kiviat graph displayed in Figure 3a illustrates the extent to
which each attribute is assessed as present in the product. (Attribute ratings are restricted to an
arbitrarily chosen 1-10 scale.) Note that (reduced) complexity attains the highest rating - 8.0 out of
10.0, closely followed by readability (7.4) and cohesion (6.8). Based on the three principles stresseé
in methodology A, the evaluation procedure predicts that (reduced) complexity, readability. and

cohesion should, in fact, be among the product attributes.

In concert with the stated objectives and principles for methodology A, Figure 5b reveals that
structured programming (7.7) is the prominent principle used in developing system A. followed
by stepwise refinement (6.7), hierarchical decomposition (6.4), and functional decomposition (6.4).
Figure 5c depicts the results of emphasizing these principles in terms of methodology objectives. In

15
R. Nance
VPl
Page 1S of 4§

Hierarchical
Decomposition

ace

Methodology B

Figure §

Detected Presence of Objectives, Principles, and Attributes

particular, reliability is rated as the major software development objective (6.7). Although correct-
ness is also stressed by methodology A, ascertaining correctness necessitates life-cycle verification.
This principle is neither emphasized by methodology A. nor evident in the software product. As
illustrated by Figures 5a, 5b and 5c, other objectives and principles are given some emphasis during
the software development process for system A. It is the authors’ opinions. however, that because

they are not explicitly stressed in methodology A, the associated product suffers.

For methodology B, the objectives enunciated in the documentation are maintainability, adap!-
ability, and reliability. Structured programming and concurrent documentation are the empaasized

prindples. Like methodology A, however, a complete set of supporting principles are not :tated.

16

R. Nance

Page 16 of 46

Hierarchical decomposition, functional decomposition, and to some extent information hiding are
implicitly assumed as underlying principles of methodology B. According to the linkages among
objectives and principles, all of the above principles (both stated and assumed) are required to

achieve the objectives explicitly stated in methodology B.

Subsequent analysis of product B and a “bottom-up” propagation of the results through the
linkages defined by the evaluation procedure reveals structured programming as the most prominent
principle (8.3), closely followed by concurrent documentation (7.0). Moreover, the evaluation also
indicates that the implicitly assumed principles of methodology B are utilized - stepwise refinement.
hierarchical decomposition, functional decomposition, and information hiding rate 6.9, 6.7, 6.7, and
6.3, respectively. Finally, the results imply that during the development of product B the objectives
of maintainability, adaptability, and reliability are most emphasized. The above assessments are

illustrated in Figures 5a, 5b, and 5c.

To summarize, the evaluation procedure reveals that both methodologies lack a clear statement
of goals and objectives, as well as sufficient principles for achieving the objectives that are em-
phasized. horeover. glaring deficiencies are apparent in both software development methodologies.
That is, both fail to actively support the principle of information hiding and also have difficulties
in incorporating the desirable attributes of traceability and well-defined interfaces in respective
system products. In general, the evaluation procedure does accurately assesses the software engj-
neering cbjectives, principles, and attributes espoused by methodologies A and B. Of particular
significance, however, is that the objectives and principles determined to be “emphasized” during
the product development process, yet not stated in the methodology documentation. are precisely
those that are implicitly assumed important by the software engineers developing products A and

B. A more detailed account of the evaluation can be found in [NANRS5].

8. Conclusion

Tools. techniques, environments, and methodologies dominate the software eagineering lit-

erature, but relatively little research in the evaluation of methodologies is evident. This work

17
R. Nance

Page 170 46

reports an initial attempt to develop a procedural approach io evaluating software development

methodologies. Prominent in this approach are:

(1) an explication of role of a methodology in the software development process,

(2) the development of a procedure based on linkages among objectives, principles, and

attributes, and

(3) the establishment of a basis for reduction of the subjective nature of the evaluation through

the introduction of properties.

An application of the evaluation procedure to two Navy methodologies has provided consistent
resuits that demonstrate the utility and versatility of the evaluation procedure (NANR85]. Current

research efforts focus on the continued refinement of the evaluation procedure through

(a) the the identification and integration of product quality indicators reflective of attribute

presence, and

(b) the validation of metrics supporting the measure of those indicators.

The consequent refinement of the evaluation procedure offers promise of a flexible approach that
admits to change as the field of knowledge matures. In conclusion, the procedural approach
presented in this paper represents a promising path toward the end goal of objectively evaluating

software engineering methodologies.

18
R. Nance
VPl
Page 18 of 46

References

[ALFMS85] Alford, M., “SREM at the age of Eight; The Distributed Computing Design System,”
IEEE Computer, Vol. 18, No. 4, April 1985, pp. 36-34.

(ARTJ86] Arthur, J.D., Nance, R.E. and Henry, S.M., “A Procedural Approach to Evaluating Soft-
ware Development Methodologies: The Foundation,” Technical Report TR-86-24, Virginia
Tech, 1986.

[ARTI87] Arthur, J.D. and Nance, R.E., “Developing an Automated Procedure for Evaluating
Software Development Methodologies and Associated Products.” Technical Report SRC-87-
007, Systems Research Center, Virginia Tech, 1987.

[BAUFT72] Bauer, F.L. “Software Engineering,” Information Processing 71, North Holland Pub-
lishing Company, 1972.

[BERGS1] Bergland, G.D. “A Guided Tour of Program Design Methodologies.” Computer, Vol.
14, No. 10, October 1981, pp. 13-36.

(CHML90] Chmura, L.J., Norcio, A.f., and Widnski, T.J., “Evaluatiag Software Design Processes
by Analyzing Change Data Over Time,” [EEE Transactions on Software Engineerinc. Vol.
16, No. 7, July 1990, pp. 729-740.

[FREP77] Freeman, P., “The Nature of Design,” 4 Tutorial on Software Design Techniques. Second
edition, IEEE Computer Society Press, 1977, pp. 29-36.

[GAFJ81] Gaffeney, J. E., “Metrics in Software Quality Assurance,” Proceedings of the National
ACM Conference, November 1981, pp. 126-130.

(GOMHB84]Gomaa, H. “A Software Design Method for Real-Time Systems,” Communications of
the ACM, Vol. 27, No. 9, September 1984, pp. 938-949.

[HENKT78] Heninger, K. L., J. W. Kallander, J. E. Shore, and D. L. Parnas, ~Software Require-
ments for the A-7E Aircraft,” NRL Memorandum Report 3876. Naval Research Laboratory,
Washington, D. C., November, 1978.

{JACMTS5] Jackson, M., Principles of Program Design, London: Academic Press. 1975.

[KEAJ86] Kearney,J., et. al, “Software Complexity Measurement.” Communications of the
A.CM., Vol.29, No. 11, November 1986, pp. 1044-1050. Monterey, CA, March 1987,
pp. 238-252.

19
R. Nance
vPI
Page 19 ol 46

[LISB75] Liskov, B., Zilles, S., “Spedification Tecaniques For Data Abstraction,” IEEE Transac-
tions on Software Engineering , Vol. SE-1, No. 1, March 1975, pp. 7-19.

[NANRSS] Nance, R.E., Arthur, J.D. and Dandekar, A.V. “Evaluation of Software Development 4
Methodologies,” A Final Report of the Immediate Software Development Project, The De-
partment of Computer Sciences, Virginia Tech, December 1985. .

[PARD76] Parnas, D., “On the Design and Development of Program Families,” JEEE Transactions
on Software Engineering, Val. SE-2, No. 1, March 1976, pp. 1-9.

(PARD72] Parnas, D., “On the Criteria to be Used in Decomposing Systems into Modules,”
Communications of the ACM , Vol. 15, No. 5, May 1972, pp. 330-336.

[ROSD77] Ross, D., “Structured Analysis: A Language for Commanicating Ideas,” [EEE Trans-
actions on Software Engineering, Vol. SE-3, No. 1, January, 1977, pp. 16-34.

(SCOL78| Scott, L., “An Engineering Methodology for Presenting Software Functional Architec-
ture,” Proceedings of the Third Internationa! Conference on Software Engineering, NY, 1978,
pp-222-229.

(WARJ76] Warnier, J. Logical Construction of Programs, 3rd edition, trans. B. Flanagan, NY: Van
Nostrand Reinhold, 1976.

(WIRNT71] Wirth, N., “Program Development by Stepwise Refinement,” Communications of the
ACM, Vol. 14, No.4, April, 1971, pp. 221-227.

v

20
R. Nance
VPI
Page 2000 46 s

¥ s 4

VIEWGRAPH MATERIALS
FOR THE

R. NANCE PRESENTATION

A FRAMEWORK FOR ASSESSING THE
ADEQUACY AND EFFECTIVENESS OF
SOFTWARE DEVELOPMENT METHODOLOGIES

A Presentation to the
Fifteenth Annual Software Engineering Workshop

Richard E. Nance
James D. Arthur

Systems Research Center
and
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia

28 November 1990

R. Nance
VP!
Page 21 of 46
PRECEDING PAGE BLANK NOT FILMED)

THE ORIGIN

Immediate Software Development Issues
for
Embedded Systems Applications
in Surface Combatants
(25 March - 15 September 1985)

Issue: Multiple Software Development Methodologies
(a) Review two software development “methodologies” (A and B)
(b) Compare and evaluate A and B
(c) Assess the costs and benefits of:

+ Continuing witn multiple software development
methodologies

» Using only one software development methodology

+ Transitioning to an alternate sofiware development

methodology
A ==>
B => A
A/B => 777

k¢

X
OUTLINE !

Evaluation Approach

- Objectives, Principles, Attributes Framework

Development of an Evaluation Procedure
- Software Engineering and Software Development

- A Structured Evaluation Procedure
- Data Sources

Application of the Evaluation Procedure

- Summary of Sample Data
- Tlustration of Procedure Application

Summary of Results

Future Work

R. Nance
vPl
Page 23 of 46

EVALUATION APPROACH

1. Develop an Evaluation Procedure
- What is a methodology?

- How can they be compared?

2. Apply the Evaluation Procedure
- In consonance with our Navy sponsor, and with

- Contributions from software development sites
and oversight agencies.

R. Nance

Page 24 of 46

ta- W

o=y

9.“__‘-

[

ON METHODOLOGIES

What is a methodology?

A methodology is a collection of complementary methods,
and a set of rules for applying them. More specifically, a
methodology

(1) organizes and structures tasks comprising the effort to
achieve a global objective, establishing the
relationships among tasks,

(2) defines methods for accomplishing individual tasks
(within the context of the global objective), and

(3) prescribes an order in which certain classes of
decisions are made, and ways of making those
decisions that lead to the desired objective.

R. Nance
VP1
Page 2S of 46

RATIONALE FOR
THE EVALUATION PROCEDURE

A set of objectives can be identified that include those
postulated by any software engineering methodology. A
methodology defines those principles that characterize a
proper and appropriate development process. Adherence to a
process governed by these principles should result in a
product (programs and documentation) that possesses
attributes considered desirable and beneficial.

Philosophy tempered by practical concerns:
(1) Sets of objectives, principles, attributes are-open.
(2) Prioritization of objectives recognized.

(3) Components of large software system vary — attribute
sampiing.

(4) Flexible application of evaluation procedure ~
consonant with project objectives.

VP1
Page 26 o€ 46

. FRAMEWORK FOR SOFTWARE DEVELOPMENT

, - | OBIECTIVES

i Maintainability
Correctness

} Reusability

' Testability

, Reliability

! Portability
Adaptability

PRINCIPLES

Hierarchical Decomposition
Functional Decomposition
Information Hiding
Stepwise Refinement
Structured Programming
Life-Cycle Verification
Concurrent Documentation

ATTRIBUTES

. Reduced Coupling
i Enhanced Cohesion

PR Reduced Complexity

Well-Defined Interfaces
; Readability

y Ease of Change

.- Traceability

! Visibility of Behavior

Early Error Detection

OBIJECTIVES) ¢=p PROJECT

[

PRODUCT

[t

Properties

Py

DOCUMENTATION (+) PROGRAMS

A

ATTRIBUTES

A

A

Properties

R Nance
VPl
Page 27 o€ 36

e

PROCEDURE DEVELOPMENT

1. Identify Objectives

- What qualities are desirable?

2. Define Principles

- How are desirable qualities obtained?

3. Link Principles to Objectives

- Which principles contribute to each objective?

4. Define Resulting Attributes

- Use of a principle induces what desirable attributes?

5. Define Properties Associated with Attributes

- absence?

How to measure properties?

What properties give evidence of attribute presence or

R. Nance
VPI
Page 28 of 46

(D

)

3)

4)

S

(6)

Q)

PRIMARY SOFTWARE ENGINEERING
OBJECTIVES

Adaptability - the ease with which software can
accommodate to changing requirements

Correctness - strict adherence to specifications

Maintainability - the ease with which corrections
can be made to respond to recognized
inadequacies

Portability - the ease in transferring software to
another host environment

Reliability - the error-free behavior of software over
time

Reusability - the use of developed software in other

applications

Testability - the ability to evaluate conformance
with specifications

R. Nance

Page 29 of 46

-0

¢

)

3)

Q)

®)

(6)

PRIMARY SOFTWARE ENGINEERING
PRINCIPLE

Abstraction - defining each program segment at a
given level of refinement

(a) Hierarchical Decomposition - components
defined in a top-down manner

(b) Functional Decompasition - components
partitioned along functional boundaries

Concurrent Documentation - management of
supporting documenis (system specifications, user
manuals, etc) throughout the life cycle

Information Hiding - insulating the internal details
of component behavior

Life Cycle Verification - verification of
requirements throughout the design, development,
and maintenance phases of the life cycle

Stepwise Refinement - utilizing convergent design

Structured Programming - ':sing a restricted set of
program control constructs

R. Nance

Page 30 of 16

e

OBJECTIVES / PRINCIPLES LINKAGES

Adaptability Concurrent Documentation

Correctness _ \ I"

Functional Decomposition

", {]
A Hierarchical Decomposition

. . g A\ A
Maintainability SVUNVTAY,

W

Information Hiding

Reliability 4 \) Life Cycle Verification

Stepwise Refinement

Structured Programming

VP!
Page 31 of 34

14

(1)

)

3)

(4)

o)

(6)

)

)

)

PRIMARY SOFTWARE ENGINEERING

ATTRIB

Cohesion - The binding of statements within a

software component

Complexity - an abstract measure of work
associated with a software component

Coupling - the interdependence among software

components

Early Error Detection - indication of faults in
requirements, specification and design prior to

implementation

Ease of Change - software that accommodates

enhancements or extensions

Readability - the difficulty in understanding a

software component

Traceability - the ease in retracing the complete
history of a software component from its current

status to its design

Visibility of Behavior - the provision of a review

process for error checking

Well-Defined Interfaces - the definitional clarity
and completeness of a shared boundary between
software and/or hardware (software/software,

software/hardware)

R. Nance
vPI
Page 32 of 46

L L.

.,_.“

" —— “——y -

. i
1

PRINCIPLES / ATTRIBUTES LINKAGES

Concurrent Cohesion

Documentation

Complexity

Hierarchical
Decomposition

Information Hiding

Ease of Change

Life Cycle Readability
Verification
Traceability
Stepwise
Refinement
Visibility of Behavior
Structurg:d
Programming Well-Defined Interfaces
R. Nance
VP1
Page 33 of 36

ILLUSTRATION OF THE EVALUATION PROCEDURE

Maintainability

Hierarchical
Decomposition|

Functional
Decomposition

Information || Stepwise

Hiding Refinement

Structured | Concurrent
Programmmgl Documentation

| S¢ < A

Ease of Complexity

Coupling

Cohesion

Well-Defined
Interfaces

Change

Use of Global
Variables

Use of
Parameters

Parameterless
Calls

Excessive #
of Parameters

Use of Data
Structures

R Nance

Page 34 of 46

[, ‘

e ne L

SETS OF DEFINED LINKAGES

Hierarchical Functional Information| Stepwise Structured i Concurrent
Decomposition Decomposition Hidin Refinemend (Programming| [Verification] | Docpmentatio

. . Well-Defined - Ease of - Visibility of | | Early Emror
Coupling | | Cohesion | | Complexity Interfaces Readability Change Traceability Detection
Control
Structures)
GOTO's)
Special Code
) Characters Indentation | 9
Symbolic # Block
@ Consams | Commenss | &
Documentation{ Meaningful
@\ Readability | Names | &
Completion & | # Single Line
() | Accuracyof | Commenis | (.)
Documentation{ ’InLine’
Embedded Carect
() | Alemae | Gmmmar& | (+)
Language | Spelling
Short Consisient -
O 1 Modues | Commenss | &

R. Nance
vet
Page 35 of 46

THE OPA FRAMEWORK FOR EVALUATION:
SUMMARY

Fundzmental to the evaluation procedure are several sets of
linkages:

Linkages Defined Substantiated
» Objectives / Principles (33) (33)
» Principles / Attributes (24) (24)
« Attributes / Properties (125) (114)

66 Automatable

Assessing the adequacy of a methodology is achieved through a
"top-down" evaluation process.

Assessing the effectiveness of a methodology is achieved through
a "bottom-up" evaluation process.

R. Nance
vPI1
Page 36 of 16

r——*-—-—m::;;z;;mw Ll TR e LT T e T L e g,

APPLICATION OF THE PROCEDURE:
s s SUMMARY OF SAMPLE DATA

Documents (Primary)

A: The Combat System Development Plan
The Computer Programming Manual
The Program Development Manual
Six Numbered Documents (PDS, IDS)

B: Functional Description Document

Two Numbered Documents (PDS, IDS)

Source Code:
A: Routines =17 SLOCS=1170
SysProcs =2 SLOCS = 1370
. B: Routines =99 SLOCS = 5729

1dA
duey ¥

970 gt alny

DATA SOURCES AND IMPLICATIONS

Methodology
Description Standards How to [Objectives
- Conventions > 4 Principles
Project Guidelines
Requirements
PrOjeCt PPS
Documentation IDS How well [Principles
> PDS ™ isitdone UAttributes
Code and Programs

Code Documentation

LW T AN PN
) . B o w

AN ACCUMULATION OF EVIDENCE

"Demonstrating that software possesses a desired attribute
(or does not) is not a proof exercise; rather, it resembles
an exercise in civil litigation in that evidence is gathered

to support both contentions (the presence or absence) and

weighed on the scales of comparative judgement.”

Presence

10
or
Offsetting
Measurement Scale
R. Nance
VPI
P&(e afie

e B . . I3

ELEMENTS, METRICS AND PROPERTIES

« Relationship

Elements
Y

Subjective
Opinion
Z

« Code Example

(Y1)
of Distinct
Parameterless]
Calls
Parameterless
Calls
(unclear realtion)

(Y2)
of Distinct
Calls

« Documentation
Example

Awareness
of V&V

Discussion of
Need for V&V

R. Nance
VP1
Page 40 of 36

o) |t

ASSESSING "METHODOLOGICAL" EFFECTIVENESS

(ATTRIBUTES)
Coupling
Cohesion
Complexity
Well-Defined Interfaces
Readability
Ease of Change
Visibility of Behavior

Early Error Detection

Traceability

A

5.4
6.8
8.0
47
7.4
5.6
5.6
5.6

12

B

5.9
6.4
8.4
4.8
8.2
6.0
5.8
5.8

53

Both have difficulty with Traceability and Well-Defined

Interfaces

R. Nasmce

Page 41 of 46

(2

9P Jo 7y 3384

3w\ d

Coupling

Early Error

Detection Cohesion

Visibili Complexit
of Bcha\:lyor omplextty
Traceability Well-Defined
Interface
Easc of Readability
Change
Methodology A o o0 e — —
KIVIAT GRAPH FOR ATTRIBUTES &Y

Mecthodology B == = = o= = o= o= o= —

‘14

Hierarchical
Decomposition

Functional
Concurrent Decomposition

Documentation

lnfogn}ation
Life-cycle Hiding
Verification

Stepwise
Refinement

Structured
Programming

9t)0 Cp 3Bey
1dA
ueN

KIVIAT GRAPH FOR PRINCIPLES Methodology A —
Methodology B — — — —~ — . _

1 -

9F Jo vt 33ty

IdA
ey

Maintainability

Adaptability Correctness

Reusability
Portability

Testability

Reliability

KIVIAT GRAPH FOR OBJECTIVES Mecthodology A -— — — —

Methodology B — — —~ — — — —

-4

rp

RESULTS OF PROCEDURE APPLICATION

Assessing "Methodological" Adequacy

A: Stresses Objectives of Reliability and Correctness
Emphasizes Principle of Structured Programming

Methodology A was (and is) an "evolving
methodology"

B: Stresses Objectives of Maintainability,
Adaptability, Reliability, and Correctness
Emphasizes Principles of Modular Decomposition,
Structured Programing and Concurrent
Documentation

At the Objectives level, both “methodologies” support stated
project objectives.

At the Principles level, both “methodologies” lack the
enunciation of proper Principle usage.

No reference to desired Attributes is found

R. Nance
VP1
Page 45 of 46

L

r¥)

FUTURE RESEARCH

Applying the Evaluation Procedure to
Software Quality Assurance

Predicting and/or assessing software quality necessitates a

» Systematic approach to
+ Assessing product (or process) conformance witii
» Acceptance criteria (standards and guidelines)

The Evaluation Procedure

» Currentiy supports a well-defined, systematic
approach for evaluating software products, and

+ Provides a rigorous framework for

— Relating acceptance criteria based on attributes
to software engineering principles and
objectives, and

— Defining acceptance levels based on measures
reflecting the achievement of objectives,
adherence to principles and realization of
attributes.

R. Nance
vel
Page 46 of 46

h

