
A Framework for Assessing the Adequacy and Effectiveness of

Software Development Methodologies*

James D. Arthur and Richard E. Nance
f ?

1 ' 0 I
Virginia Tech d ' : "

Index Terms: Software Development Methodologies, Procedural Evaluation, Evaluating Method-

ologies, Software Engineering Objectives, Software Engineering Principles, Induced

Attributes, Indicators.

1. Introduction

Over the past two decades the software development process has changed dramatically. Early

software development practices were guided by "seat-of-the-pants" programming styles. Recog-

nizing maintenance difficulties associated with such styles, the software development cornmunit?

began to investigate and identify software engineering principles that could significantly enhance

the maintainability and quality of a resulting product. Consequently, development techriques that

exploited software engivering principles like abstraction [LISB75], information hiding [Pr\RD72]

and stepwise refinement [WIRN71] were formulated and integrated into many software development

processes.

The subsequent demand for increasingly complex software systems. however, mandated the

coordinated use of complementary principles, guided by an encompassing software development

philosophy that recognized project level goals and objectives, i.e. a methodological approach to

software development. Today, a myriad of tools, techniques, and development methodologies scl-

dress the challenging task of producing high quality software. For example. SCR [HENKiY] alitl
-. - -. . -

* Work supported by the U.S. Navy through the Systems Research Center under Basic Ordering

DARTS [GOMH84] are development methodologies that emphasize specific software engineering

goals (reducing software development costs and facilitating the design of real-time systems, respec-

tively). SREM [ALFM85] and SADT [ROSD77] are methodology based envimnmcnk Both focus

on particular phases of the software life cyde and are supported by unified sets of complementary

tools.

The steady proliferation of design methodologies, however, has nct been without a price. In

particular, users find increasing difficulty in choosing an appropriate methodolopjcal appi .~a& and

recognizing reasonable expectations of a design or development methodology. Addressing this

concern, the research described in this paper outlines a well-defined procedure for

evaluating the adequacy of a software development methodology relative to project goals.

and

assessing the effectiveness of a methodology relative to the quality of the product produced.

The evaluation procedure is based on a substantiated set of linkages among accepted software

engineering objectives, principles, and attributes. These linkages reflect an assessment perspective

structured by the needs, process, and product sequence for system development. and enable a

comparative scale for determining the adequacy and effectiveness of the supporting development

methodology. The identification of code and documentation properties and the definition of metrics

for these properties enables an accumulative determination of software engineering attributes.

principles and objectives.

To provide a uniform basis for discussion, Section 2 outlines the role of a methodolog in

the software development process. Section 3 discusses the relationship of software engineering

objectives, principles and attributes to the software development effort. Section 3 identifies the

commonly accepted objectives, principles and attributes, defines the relationships among tieni.

and then discusses how one evaluates a methodology based on the those relationships. Finally.

Section 5 describes an application of the assessment procedure to two Savy software development

methodologies.

2. W h a t C o n s t i t u t e a Methodology

Fundamental t o the research presented in this paper is a common understanding of what

constitutes a "methoddogyn. Simply stated, a methodology is a collection of complementary

methods, and a set of rules for applying them (FREP771. More specifically, a methodology

(1) organizes and structures the tasks comprising the effort to achieve a global objective,

establishing the relationships among tasks,

(2) defines methods for accomplishing individual tasks (within the framework of the global

objective), and

(3) prescribes an order in which certain classes of decisions are made. and ways of making

those decisions that lead to the overall desired objective.

In general, software development methodologies should be guided by accepted software engineerins

prinaples that, when applied to the defined process, achieve a desired goal. Based on this coninloll

understanding of what constitutes a methodology, the follo~.ving sections present a procedural

approach to evaluating the adequacy and eflectiveness of software development methodologies.

3. T h e Ro le of Objectives, Principles, a n d At t r ibu tes i n Sof tware Development

The development of large, complex software systems is considered a project activity, i~ivolvi~lg

several analysts and programmers and at least one manager. What then is the role of a methodology

in this setting and how does it relate to objectives, principles and attributes? Figure 1 assists ill

providing an answer to this question.

In general terms, an objective is 'something aimed at or striven for." More specific to the

software development context, an objective pertains to a project desirable - a characteristic tllat

can be definitively judged only a t the complc . .~~, of the project.

3

DOCUMP.CTATlON (+) PROGRAMS

RchcdConplrriy
Wdl-Dbmsd ~ L O C S

~rrabili~y ATlRIBUTES
Visibility d Bebtrmr
h l y Bm-

Figure 1

Illustration of the Relationships Among Objectives, Principles, Attributes

in the Software Development Process

A software engineering principle describes an aspect of how the process of software development

should be done. The process of software development, if it is to achieve the stipulated objectives,

must be governed by these 'rules of right conduct."

Attributes are the intangible characteristics of the product: the software produced by project

personnel following the principles set forth by the methodology. Unlike objectives, which pertain

only to the total project activity, attributes may be observed in one unit of the product and

absent in another. The daim of presence or absence of an attribute is based on the recognition of

properties, which contribute evidence supporting the claim. Properties are observable. and can be

subjective as well as objective in nature.

Influenced by Fritz Bauer's original definition of software engineering [BAUF72] and reflecting

the above description cf software engineering objectives, principles and attributes, the rationale for

the evaluation procedure described in this paper is founded on the philosophical argument that:

T h e mison d'etrr of any software development methodology is the achievement of one
or more objec!ivu through a proiress governed by defined principles. In turn. adherence
to a process governed by those principles should result in a product (programs and
documentation) that possesses attributes considered desirable and beneficial.

This philosophy, exemplified by Figure 1, is tempered by practical concerns:

(1) While a set of software engineering objectives can be identified, this set might not be

complete, and additions or modification should be permitted.

(2) Objectives can be given different emphasis within a methodology or in applications of a

methodology.

(3) Attributes of a large software product might be evident in one component yet missing in

another.

4. A F r a m e w o r k f ~ r Evaluat ing Sof tware a e v e l o p m e n t Methodologies

A broad review of software engineering literature (BERG81, CHMLSO, GAFJ78, JXChIi5.

PARD79, PA-9D72, SCOL78, WARJIB] leads to the identification of seven objectives com~nonly

recognized in the numerous methodologies:

(1) Maintainability - the ease with which corrections can be made to respond to recogr.ized

inadequacies.

(2) Correctness - strict adherence to specified requirements,

(3) Reusability - the use of developed software in other applications,

(4) Testability - the ability to evaluate conformance with requirements,

(5) Reliability - the error-free performance of software over time.

(6) Portability - the ease in transferring software from one host system to another. and

(7) AdaptabiLity - the ease with which software can accommodate to change.

The authors note that these definitions, as well as others presented in this section, are abridged:

they are primarily intended to reflect a working understanding based on general literature usage.

Achievement of these objectives comes through the application of principles supported (en-

couraged, enforced) by a methoddogy. The principles enumerated bdow are extracted from the

references cited above (and others) as mandatory in the creative process producing high qualie

programs and documentation.

(1) Abstraction - defining each program segment at a given level of refinement.

(a) Hierarchical Decomposition - components defined in a t o p d w n manner.

(b) Functional Decomposition - components partitioned along functional boundaries.

(2) Information Hiding - insulating the internal details of component behavior.

(3) Stepwise Refinement - utilizing a convergent design.

(4) Structured Programming - using a restricted set of control constructs.

(5) Concurrent Documentation - management of supporting documents (system specifia-

tions, user manual, etc.) throughout the life cycle.

(6) Life Cycle Verification - verification of requirements throughout the design. developmenr.

and maintenance phases of the Life cycle.

Employment of well-recognized principles should result in software products possessing z-

tributes considered to be desirable and beneficial. A short definition of each attribute is givm

below.

(1) Cohesion - the binding of statements within a software component.

6

(2) Coupling - the interdependence among software components.

(3) Complexity - an abstract measure of work assodated with a software component relative

to human understanding and/or machine execution.

(4) Well-defined Interfaces - the definitional darity and completeness of a shared boundary

between a pair of components (hardware or software).

(5) Readability - the difficulty in understanding a software component (related to complexity).

(6) Ease of Change - the ease with which software accommodates enhancements or extensions.

(7) Traceability - the ease in retracing the complete history of a software component from its

current status to its design inception.

(8) Visibility of. Behavior - the provision of a review process for enor checking.

(9) Early Error Detection - indication of faults in requirements specification and design prior

to implementation.

The software development process, illustrated in Figure 1, depicts a natuml relationship that

links objectives to prindples and principles to attributes. T h a t is. one achieves the objectives of

a software development methodology by applying fundamental principles which. in turn, induce

particular code and documentation attributes. From a more detailed perspective. Figure 2 defines

the specific set oflinkages relating objectives to principles and principles to attributes. -4s described

below, these linkages provide a framework for assessing both the adequacy of a methodology =
well as its effectiveness.

4.1 Assessing t h e Adequacy of a Methodology

The enunciation of objectives should be the first step in the definition of asoftware development

methodology. Closely following is the statement of prindples that, employed properly, lead to the

attainment of those objectives. In tur-. the application of those principles within a j t r u c t u ~ d

software development process will yield a product that exhibits desirable attributes. The important

Early Error Detection

Visibility of Behavior

Well-Defined Inurfacc

Figure 2

Linkages Among t h e Objectives, Principles and Attributes

correspondence between the objectives and principles and between the principles and attributes is

shown i n Fjgnre 2; a literature confirmation of these relationships is discussed in [.-\RTJSi].

The adequacy of asoftware development methodology can be defined as its ability to achieve tlic!

software engineerkg objectives corresponding to those dictated by system needs and cequiremel~ts.

Intnitiveiy, the adequacy of a methodology is assessed through a top-down evaluation sc11e111e

starting with an examination of stated methoddogical objectives relative to system needs and

requirements. This step is then followed by a comparison of stated methodological principles

and attributes with those deemed most appropriate. An examination of linkages defined by the

e d n a t i o n procedure reveals the 'most appropriate" set. Relative trl the framework depicted by

F i v e 1 and the sets of linkages defined in Figure 2, an application of the evaluation procedr~re to

the assessmezlt of methodological adeqwcy is outlined below.

Objectives cf the Methodology: The identification of objectives and the relationships tying objec-

tives to needs and requirements is usually accomplished by reading the descriptions of a software

development methodology. Evaluation a t this level is quite subjective; however, the absence of a

dear statement of objectives for a methodology should trigger an alarm: Is the 'methodology"

only a tool or an incomplete set of tools without coherent structure? A methodology should not

be faulted, however, for emphasizing certain objectives at the expense of others; such prioritization

can be highly dependent on the application domain.

Principles Defining the Process: Based on the objectives emphasized by the methodology and the

predefined set of linkages among objectives and principles, the next step in assessing the adequacy

of a methodology is an investigation of the software development process. That is, gven a stated set

of methodological objectives, one asks: Are the principles supported by the methoddogy consistent

with those deemed necessary (through linkage examination) to achieve the stated set of objecti*;es?

The presence of principles without corresponding objective(s) or vice versa should evoke concerns.

.iUthough this level of evaluation is inherently subjective, some analytical qualit:/ is introduced

through the established objective/principle correspondence.

Attributes of the Product: The third step in the assessment process, formulating the set of erpected

product attributes, is based on the fact that principles govern the process by which a software

product i s produced. That is, a given set of principles should induce a consequent set of product

attributes. Obviously, the expected set of product attributes should correspond to those desired by

the software engineer, and to some extent, be implied or stated in the description cif the software

development methodology. More objectivity is introduced a t this level because, although intangible.

evidence of the attributes should be discernible in the product.

4.2 Assessing the Effectiveness of a Methodology

While a top-down evaluation process reveals deficiencies of a software developne~it metliod-

ology, the effectiveness of a methodology is assessed through a bottom-up evaluation process. .is

the term implies, the effectiveness of a methodology is defined as the degree to which a method-

ology produces a desired result. In particular, the etfrctiveness of a methodology is reflected by

a product's conformance to the software development process deined by that methodology. We

note, however, that elements independent of the methodology can influence i ts effectiveness, e.g.

an inadequate understanding and/or use of the methodology.

The E&tence of Product Attributes: Assessing methodological effectiveness starts with an exwni-

nation of the software product (code and documentation) for the presence or absence of attributes.

Because attributes are intangible, subjective qualities, the current evaluation is based oa defined

prc~er t ies tha t provide evidence as to the presence or absence of attributes. More specifically.

the computation of metric values reflect the extent to which particular properties are observed.

In turn, this information is used to synthesize the extant set of product attributes. Clearly, the

set of attributes determined from a product evaluation should agree with those induced hy tt.e

corresponding development methodology. Set mismatch can imply an inappropriate software de-

velopment methodology, an inadequate understanding of the methodology. or perhaps, the failure

of users to adhere to the prinaples advocated by the methodology.

Implied PTinriples and Objectives: Knowing which attributes are present in the product. and

the extent to which they are assessed present, provides a basis for implying the use of software

engineering principles in the software development process. The rationale for such a statement is

based on the observation that a principle-to-attribute Linkage conversely indicates an attribute-to-

principle relationship. Implying principle usage must be tempered, however, because of the many-

t e o n e relationships evistinq between attributes and principles. Similarly. using the established

Linkages among objectives and principles, one can speculatr on the achievement of stated software

engineering objectives.

In summary, the three levels of examination defined by top-down evaluation process establishes

a procedure for determining how well a methodology can support perceived needs, requirements.

and the software development process. Conversely, the bottom-up evduation process reveals how

R Yance
VPI
Page 10 olM

Figure 3

Lllustration of the Evaluation Process

well the methodology is applied in the software deueloprr.ent process through the nse oC ~~uaniitolice

measures to support an objective, qt~alitative assessment.

4.3. An Illustration of the Evaluation Process

To illustrate how the eva1ua:ion scheme can be applied. we r&er the reader t o F i g r e 3 whiie

considering the single objective of maintainnbility. Formally, maintainability can be deiined as :he

ease with which maintenance can be performed to a functional unit in accordance with prescribed

requirements. Accepting maintainability as an objective mandates the indusioa of iix prindpes

(hierarchical decomposition, functional decomposition, information hiding, s tqwise refinemat,

structured programming and concurrent documentation) contributing to the realization of tbat

objective. T h a t is, if a methodology emphsizes maintainability as an objective, then it should

also stress the use of the six principles :hat are related to maintainability.

Expanding on one of those prinaples, information hiding, we note the five attributes (reduced

coupling, enhanced cohesion, well-defined interfaces, ease of change, and low complexity) that

should be evident in software developed using a process governed by the principle of information

hiding. This set of expected attributes is then compared to the desired set for correspondence.

Ln general, a methodology should emphasize the same set of software engineering objectives

derived from project level requirements. The methodology should correspondingly stress the set of

principles linked to those objectives. Additionally, the expected set of product attributes (defined

by the linkages among prinaples and attributes) should agree with the set deemed most desirable

by the project manager. If the above conditions are met. then the candidate methodology is

assumed to be adequate relative to project level, software engineering objectives.

On assessing the effectiveness of an methodology, let us first observe the relationship between a

particular attribute and specific p r o d ~ c t characteristics. Reierring again to Fiqurr? 3. and ~ ~ a r r o w i i ~ q

our attention to one of the attributes, well-defined interfaces, we identify one set of characteristics

related to the well-defined interfaces attribute. These characteristics form the set of ob.sert.nblr

properties which contribute to the claim that a piece of software exhibits a well-defined interface.

Although the properties shown are only a subset of those previously identified [.ARTJSG]. they

represent k t h confirming and contrasting elements. For example, the use of global variables has a

negative impact on well-defined interfaces. The use of structured data in parameter calls. however.

has a positive impact.

Hence, t o determine the effectiveness of a methodology one assesses the extent to which product

attributes are present (or absent), and then propagate the results o i that assessment through the

sets of linkages defined by the evaluation procedure. As discussed by Kearney [K E x J ~ ~] , however.

that assessment process must be predicated on validated metrics.

5. Appl ica t ion o f t h e Evaluat ion P r o c e d u r e

Based on the defined set of linkages among objectives, principles, and attributes, the opera-

tional specification of the evaluation procedure is guided by two fundamental axioms:

(1) the methodology description and project requirements provide standards, conventions,

and guidelines that describe hour to produce a product, and

(2) the project documentation, code, and code documentation reflect how well the develop-

ment process prescribed by the methodology is followed.

As described below, an application of the evaluation procedure, guided by the above two

&oms, illustrates the utility and intrinsic prower of the evaluation procedure in assessing the

adequacy and effectiveness of a methodology. Provided in this illustration is a characterization

of the components used. in the evaluation process, an individual assessment of two methodolog

descriptions, an analysis of associated products, and a summary of the results. The authors

note that a substantial part of the characterization and assessment process is embodied in the

operational aspects of applying the evaluation procedure. Length restrictions, however, prevent

their discussion. For information on the operational aspects the authors refer the interested reader

to [ARTJ86, ARTJ87j.

5.1 Data Sources

A joint investigation of two comparable Navy software development methodologies and respec-

tive products is detailed in [NANRSJ]. The investigation effort utilizes:

a Four software development m e t h o d o l o ~ documents for

(1) identifying the pronounced software engineering objectives. principles. and attributej.

and

VPI
Page 13of46

(2) assessing the adequacy of each methodology through the objective/prinaple/attribate

linkages defined by the evaluation procedure, and

Eight software system documents and 118 routines, comprising 5300 source lines of code,

for

(1) determining the evident set of product attributes, and

(2) via the attribute/principle/objective linkages, empirically assessing the principles and

objectives emphasized during product development.

The following section provides a summary of the results and illustrates the utility anc 2rsatiiity

of the procedural approach t o evaluating software development methodologies. For simplicity. we

refer to the software systems as system A and system B (and methoddogy A. methodology B,

respectively).

5.2 Analyzing t h e Xiethodological Description and Associated P r o d u c t

The initial step in the evaluation process is to perform a 'top-down" analysis of rnethodolo!gies

A and B, t o reveal the set of claimed software engineering objectives. principles, arid attributes.

Because both methodologies have experienced evolutionary development. a clear statement of tieir

respective methodologicai objectives is lacking. Nonetheless, as detailed in Figure 4, the docu-

mentation for methodology -4 does appear to stress the objectives of rrliability and correctness

supported by the principles of structured progmmming, hiemrchical decomposition, a d functiciml

decomposition Following the objective/principle relationships defined by the evaluation pnce-

dure. for each objective stressed in methodology A only three of the necessary six principles are

emphasized. The implication is, that unless the principles of Life-cycle i-erification. information

hiding and stepwise refinement are implicitly assumed and utilized, correctness and reliability. are

compromised.

Figure 4

Pronounced Objectives. Principles, and Xttributes

Using metric values and properties, a corresponding "bottom-upn e~amination of product x

provides some interesting results. The Kiviat graph displayed in Figure j a illustrates the extent to

which each attribute is nssessed as present in the product. (Attribute ratings are restricted to ~ Z I

arbitrarily chosen 1-10 scale.) Note that (reduced) complexity attains the highest rating - 8.0 out od

10.0, closely followed by readability (7.4) and cohesion (6.8). Based on the three principles stressed

in methodolog A, the evaluation procedure predicts that (reduced) complexity, readability. and

cohesion should, in fact, be among the product attributes.

Ln concert with the stated objectives and principles for methodology A, f igure 5b reveals that

structured programming (7.7) is the prominent pnnaple used in developing system A. fdlowed

by stepwise refinement (6.i), hierarchical decomposition (6.41, and functional decomposition (6.4).

Figure 5c depicts the results of emphasizing these principles in terms of methodology objectives. In

Visibility Complexity
of Bchrvior

Interface

Ease of Readability
-Be

Hiemchid
Dccompositim

Flmct id
Decomposition

Hid@

Progmmhg R e f i e n t

Mainlainability

Figure 5

Detected Presence of Objectives, Principles, and Attri hutes

particular, reliability is rated as the major software development objective (6.7). .ilthough correct-

ness is also stressed by methodology A, ascertaining correctness necessitates life-cycle verification.

This prindple is neither emphasized by methodology A, nor evident in the software product. .Is

illustrated by Figures Sa, 5b and 5c, other objectives and principles are given some emphasis during

the software development process for system A. It is the authors' opinions. however. that because

they are not explicitly stressed in methodology A, the assodated product suffers.

For methodology B, the objectives enundated in the documentation are maintai~nabilif y, udapl-

ability, and reliability. Structured prcgmmming and concumnt documentation are the e m p k i z e d

principles. Like methodology A, however, a complete set of supporting principles are not -tared.

Hiemrchicnl decomposition, junctional decomposition, and to some extent injonnaiion hiding are

implicitly assumed as underlying principles of methodology B. According to the linkages among

objectives and principles, dl of the above principles (both stated and assumed) are required to

achieve the objectives expliatly stated in methodology B.

Subsequent analysis of product B and a "bottom-upn propagation of the results through the

Linkages defined by the evaluation procedure reveals structured programming as the most prominent

principle (8.3), closely followed by concurrent documentation (7.0). hforeover, the evaluation also

indicates that the impliatly assumed principles of methodology B are utilized - stepuise refinement.

hierarchical decomposition, functional decomposition, and information hiding rate 6.9, 6.7.6.7, and

6.3, respectively. Finally, the results imply that during the development of product B the objectives

of maintainability, adaptability, and reliability are most emphasized. The above assessments are

illustrated in Figures 5 4 5b, and 5 ~ .

To summarize, the evaluation procedure reveals that both methodologies lack a d e a r statement

of goals and objectives, as well as sufficient principles for achieving the ohjectives that are em-

phtsized. hioreover. glaring deficieacies are apparent in both software development methodologies.

Tha t is, both fail to actively support the principle of information hiding and also have difficulties

in incorporating the desirable attributes of traceabili ty and well-defined interfaces in respective

system products. In general, the evaluation procedure does accurately assesses the software engi-

neering cbjectives, principles, and attributes espoused by methodologies X and B. Of particular

significance, however, is that the objectives and principles determined to be 'emphasized" during

the product development process, yet not stated in the methodology documentation. are precisely

those that are implicitly assumed important by the software engineers developing products .I and

B. A more detailed account of the evaluation can be found in [NXNR85].

0. Conclusion

T d . techniques, environments, and methodologies dominate the software engineriny: lit-

erature, but relatively little research in the evaluation of nethodologies is evident. T 5 s work

reports an initial attempt t o develop a procedural approaLh io evaluating software development

methodologies. Prominent in this approach are:

(1) an explication of role of a methodology in the software development process,

(2) the development of a procedure based on linkages among objectives. principles, and

attributes, and

(3) t,he establishment of a basis for reduction of the subjective nature of the evaluation through

the introduction of properties.

.in application of the evaluation procedure to two Navy methodologies has provided consistent

results tha t demonstrate the utility and versatility of the evaluation procedure (NANRSS]. Current

research efforts focus on the continued refinement of the evaluation procedure through

(a) the the identification and integration of product quality indicators reflective of attribute

presence, and'

(b) the ccllidation of metrics supporting the measure of those indicators.

The consequent refinement of the evaluation procedure offers promise of a flexible approach that

admits t o change as the field of knowledge matures. In conclusion, the procedural approach

presented in this paper represents a promising path toward the end goal of objectively evaluating

softvare engineering methoddogies.

R ?ism
VPI
Page 18 d46

References

[ALFMS] ALford, M., "SREM at the age of Eight; The Distributed Computing Design System."
'* IEEE Computer, V d . 18, No. 1, April 1985, pp. 36-54.

(ARTJ861 Arthur, J.D., Nance, R E . and Henry, S.M., "A Procedural -1pproach to Evaluating Soft-
ware Development Methodologies: The Foundation," Technial Report T R - S 2 4 , Virginia
Tech, 1986.

[ARTJ87! Arthur, J.D. and Nance, R.E., "Developing an Automated Procedure for E~aluating
Sof txae Development Methoddogies and Assodated Products.' Techn id Report SRC-87-
007, Systems Research Center, Virginia Tech, 1987.

[BAUF72] Bauer, F.L. "Software Engineering," Information Pmcesing 71, North Holland Pub-
lishing Company, 1972.

(BERG811 Bergiand, G.D. "A Guided Tour of Program Design Me&odologid Computer, v01.
14, Xo. 10, October 1981, pp. 13-36.

[CHMLSO] Chmura, L.J., Norcio, A.f., and Wianski, T.J., 'Evduatiag Software Design Processes
by Analyzing Change Data Over Time." IEEE Tmns~ctions on Softway Engineennc. Val.
16, No. 7, July 1990, pp. 729-740.

[FREP77] Freeman, P., "The Nature of Design," -4 Tutorial on Sof twm Design Techniques. Second
edition, IEEE Computer Society Press, 1977, pp. 29-36.

[GAFJal] Gdeney, J. E., "Metrics in Software Quality Assurance,' Proceedings of the .Yational
AC,U Conference, November 1981. pp. 126-130.

[GOMHM]Gonaa, H. "A Software Design Method for Real-Time S!-stems," Communications of
the ACM, Vol. 27, No. 9, September 1984, pp. 938-9-19.

[HENK78] Heninger, K. L., J. W. Kallander, J. E. Shore, and D. L. Parnas. %oftware Require-
ments for the A-7E Aircraft," NRL Memorandum Report 3876. Yaval Research Labocztory,
Washington, D. C., November, 1978.

[JACM75] Jackson, M., Principles of Program Design, London: Academic Press. 1975.

[KEAJ86! Kearney,J., el. al., 'Software Complexity Measurement.' Commnnimtiom of fhe
A.C..U., Vo1.29, No. 11, November 1986, pp. 1044-1050. Yonterey, CX, March 19.37.
pp. 238-252.

R S-
VPI

19dY

[LISB75] Liskov, B., Zlles, S., 5pecification Techniques For Data Abstraction," IEEE Tmnsm-
tiom on Software Enginechg , Vol. SE-I, NO. 1, March 1975, pp. 7-19.

[N A N W] Nance, RE., Arthur, J.D. and Dandekar, A.V. "Evaluation of Software Development
Methoddogies," X Final Report of the Immediate Software Development Project, The De-
partment of Computer Saences, Virginia Tech, December 1985. .

[PAR!376] Parnas, D., "On the Design and Development of Program Families," IEEE Tmnsactiorrci
on Software Engineering, V d . SE-2, NO. 1, March 1976, pp. 1-9.

(PARD721 Parnas, D.. "On the Criteria to be Used in Decomposing Systems into Modules.'
Communimtions of the A m , Vol. 15, NO. 5, May 1972, pp. 330-336.

[ROSD77] Ross, D., "Structured Analysis: A Language for Communicating Ideas," IEEE Tmm-
actions on Software Enginem'ng, Vol. SE-3, No. 1, January, 1977, pp. 16-34.

[SCOL78] Scott, L., '.h Engineering Methodology for Presenting Software Functional .-\rchitec-
ture," Proceedings ofthe Third Internotiona! Conference on Software Engineeriny , YY, 1973.
pp.222-229.

[WARJ76] Warnier, J. Logical Cmlruc t ion of Pmgmms, 3rd edition, trans. B. Flanagan, YY: Van
Nostrand Reinhold, 1976.

[WIRN71] W ~ r t h , Y., *Program Development by Stepwise Refinement," Communications of the
ACM, Vol. 14, No.4, Xpril, 1971, pp. 221-227.

R Y a u
VPI
RgeBdU

VIEWGRAPH MATERIALS

FOR THE

R. NANCE PRESENTATION

A FRAMEWORK FQR ASSESSING THE
ADEQUACY AND EFFECTIVENESS OF

SOFTWARE DEVELOPMENT METHODOLOGIES

A Presentation to the
Fifteenth Annual Software Engineering Workshop

Richurd E. Nance
James D. Arthur

Systems Research Center
and

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, Virginia

28 November 1990

PRECEDING PAGE BLANK NOT FILMED

THE ORIGIN

Immediate Software Development Issues
for

Embedded Systems Applications
in Surface Combatants

(25 March - 15 September 1985)

Issue: Multiple Software Development Methodologies

(a) Review two software development "methodologies" (A and B)

(b) Compare and evaluate A and B

(c) Assess the costs and benefits of:

Continuing witn multiple sofnvare development
methodologizs

Using only one software development methodology

Transitioning to an alternate s o f ~ a r e development
me thodology

OUTLINE

Evaluation Approach

- Objectives, Principles, Attributes Framework

Development of an Evaluation Procedure

- Software Engineering and Software Development
- A Structured Evaluation Procedure
- Data Sources

Application of the Evaluation Procedure

- Summary of Sample Data
- Illustration of Procedure Application

Summary of Results

Future Work

EVALUATION APPROACH

1. Develop an Evaluation Procedure

- What is a methodology?

- How can they be compared?

2. Apply the Evaluation Procedure

- In consonance with our Navy sponsor, and with

- Contributions from software development sites
and oversight agencies.

ON METHODOLOGES

I What is a methodology?

j A methodology is a collection of complementary methods,
and a set of rules for a.pplying them. More specifically, a

i ' methodology
i

(1) organizes and structures tasks comprising the effort to
achieve a global objective, establishing the
relationships among tasks,

(2) defmes methods for accomplishing individual tasks
(within the context of the global objective), and

(3) prescribes an order in which certain classes of
decisions are made, and ways of making those
decisions that lead to the desired objective.

RATIONALE FOR
THE EVALUATION PROCEDURE

A set of obiectives can be identified that include those

postulated by any software engineering methodology. A

methodology defines those principles that characterize a

proper and appropriate development process. Adherence to a

process governed by these principles should result in a

product (programs and documentation) that possesses

attributes considered desirable and beneficial.

Philosophy tempered by practical concerns:

(1) Sets of objectives, principles, attributes areopen.

(2) Prioritization of objectives recognized.

(3) Components of large software system vary - attribute
sampiing.

(4) Flexible application of evaluation procedure -
consonant with project objectives.

FRAMEWORK FOR SOFTWARE DEVELOPMENT

OB JECTNES

Maintainability
Correctness
Reusability
Testability
Reliability
Portability
Adaptability

E!Imaus
Hierarchical Decomposition
Functional Decomposition
Information Hiding
S tepwise Refinement
Structured Programing
Life-Cycle Verification
Concurrent Documentation

I

lllnaam
Reduced Coupling
Enhanced Cohesion
Reduced Complexity
Well-Defmed Interfaces
Readability
Ease of Change
Traceability
Visibility of Behavior
Early Emr Detection

PROCESS

11 PRODUCT

DOCUMENTAnON (+) PROGRAMS

Properties

A r n u T E S

R Y a m
VPl
page n ol M

PROCEDURE DEVELOPMENT

1. Identlfy Objectives

- What qualities are desirable?

2. Define Principles

- How are desirable qualities obtained?

3. Link Principles to Objectives

- Which principles contribute to each objective?

4. Defme Resulting Attributes

- Use of a principle induces what desirable attributes?

5. Defme Properties Associated with Attributes

- What properties give evidence of attribute presence or
absence?

- How to measure properties?

PRIMARY SOFTWARE ENGINEERING
OB.TECTM3S

-# -
(1) Adaptability - the ease with which software can

I accommodate to changing requirements

! (2) Correctness - strict adherence to specifications

I
(3) Maintainability - the ease with which corrections

can be made to respond to recognized
inadequacies

I

(4) Portability - the ease in transferring software to
another host environment

! I (5) Reliability - the error-free behavior of software over
time

* -

(6) Reusability - the use of developed software in other
. . applications

.*
4 a
1 - (7) Testability - the ability to evaluate conformance
. - with specifications

PRIMARY SOFTWARE ENGINEERING
PRINCTPLES

(1) Abstraction - defming each program segment at a
given level of refmement

(a) Hierarchical Decomposition - components
defmed in a top-down manner

@) Functional Decomposition - components
partitioned along functional boundaries

(2) Concurrent Documentation - management of
supporting documents (system specifications, user
manuals, etc) throughout the life cycle

(3) Information Hiding - insulating the internal details
of component behavior

(4) Life Cycle Verification - verification of
requirements throughout the design, development,
and maintenance phases of the life cycle

(5) Stepwise Refinement - utilizing convergent design

(6) Structured Programming - .:sing a restricted set of
program control constructs

OBJECTIVES I PRINCIPLES LINKAGES

Adaptability

Correctness

Maintainability

Portability

Reliability

Reusability

Testability

Concurrent Documentation

Functional Decomposition

Hierarchical Decomposition

Information Hiding

Life Cycle Verification

S tepwise Refinement

Structured Programming

PRIMARY SOITWARE ENGINEERING
ATTRIBUTES

(1) Cohesion - The binding of statements within a
software component

(2) Complexity - an abstract measure of work
associated with a software component

(3) Coupling - the interdependence among software
components

(4) Early Error Detection - indication of faults in
requirements, specification and design prior to
implementation

(5) Ease of Change - software that accommodates
enhancements or extensions

(6) Readability - the difficulty in ~nderstanding a
software component

(7) Traceability - the ease in retracing the complete
history of a software component from its current
status to its design

(8) Visibility of Behavior - the provision of a review
process for error checking

(9) Well-Defined Interfaces - the definitional clarity - -

and completeness of a shared boundary between
software and/or hardware (software/software,
softw arehardware)

PRINCIPLES / ATTRIBUTES LINKAGES

Documentation

Early Enor Detection

Information Hiding

Well-Defined Interfaces

ILLUSTRATION OF THE EVALUATION PROCEDURE

/ Use of Global 1
Variables

Excessive #
of Parameters

Use of Data

SETS OF DEFINED LINKAGES

R S a m
VPl
PalcUd46

THE OPA FRAMEWORK FOR EVALUATION:
SUMMARY

Fundmental to the evaluation procedure are several sets of
linkages:

Linkages Defined Substantiated

Objectives / Principles (33). (33)
Principles / Attributes (24) (24)
Attributes / Properties (125) (1 14)

66 Automatable

Assessing the adequacy of a methodology is achieved through a
" top-down" evaluatior? process.

Assessing the effectiveness of a methodology is achieved through
a "bottom-up" evaluation process.

R S a m
VPI
Page 3 6 4 3 6

APPLICATION OF THE PROCEDURE:
SUMMARY OF SAMPLE DATA

Documents Primary)

A: The Combat System Developmext Plan

The Computer Programming Manual

The Program Development Manual

Six. Numbered Documents (PDS, IDS)

Functional Description Document

Two Numbered Documents (PDS, IDS)

Source Code:

A: Routines = 17

SysProcs = 2

Routines = 99

SLOCS = 1170

SLOCS = 1370

SLOCS = 5729

DATA SOURCES AND IMPLICATIONS

Methodology
Description Standards Objectives

Conventions + do it Principles
Project Guidelines

Requirements

Project
Documentation

PPS
IDS + How well {Principles +
PDS is it done Attributes

Code and Programs
Code Documentation

AN ACCUMULATION OF EVIDENCE

"Demonstrating that software possesses a desired attribute
(or does not) is not a proof exercise; rather, it resembles
an exercise in civil litigation in that evidence is gathered
to support both contentions (the presence or absence) and

weighed on the scales of comparative judgement."

Offsettin

Measurement Scale

ELEMENTS, METRICS AND PROPERTIES

Relationship

Elements

Subjective d -
Code Example

Documentation

Cil)
ii of Distinct
Parameterless

Calls

Example

Awareness
of V&V

-

(Y2)
of Distinct

Calls
-

ASSESSING "METHODOLOGICAL" EFFECTIVENESS
(ATTRIBUTES)

Coupling

Cohesion

Complexity

Well-Defmed Interfaces

Readability

Ease of Change

Visibility of Behavior

Early Error Detection

Traceability

B 0th have difficulty with Traceability and Well-Defied
Interfaces

R N u t
VP!

41 d 4 6

Coupling

Ease of Readability
Change

KMAT GRAPH FOR mm Methodology A - - - - -
Mc~lrodology B - - - - - - - - -

Hierarchical
Decomposition

Concumnt

, - '/
' I I

Information
Lifccyclc Hiding

Verification

Maintainability

KIVIAT GRAPII FOR O D J E m Methodology A - - - -
Methodology D - - - - - - -

RESULTS OF PROCEDURE APPLICATION

Assessing "Methodological" Adeauacv

A: Stresses Objectives of Reliability and Correctness
Emphasizes Principle of Structured Programming

Methodology A was (and is) an "evolving
me thodology "

Stresses Objectives of Mainrainability,
Adaptability, Reliability, and Correcmess

Emphasizes Principles of Modular Decomposition,
Structured Programing and Concurrent
Documentation

At the Objectives level, both "methodologies" support stated
project objectives.

At the Principles level, both "methodologies" lack the
enunciation of proper Principle usage.

No reference to desired Attributes is found

FUTURE RESEARCH

Applying the Evaluation Procedure to
Sofbvare Quality Assurance

Predicting and/or assessing software quality necessitates a

Systematic approach to
Ass~ssing product (or process) conforma~ce with
Acceptance criteria (standards and guidelines)

The Evaluation Procedure

Currentiy supports a well-defmed, svstematic
approach for evaluating software products, and

Provides a rigorous framework for

- Relating acceptance criteria based on attributes
to software engineering principles and
objectives, and

- Defining acceDtance levels based on measures
reflecting the achievement of objectives,
adherence to principles and realization of
attributes.

