e

sy

[

N92-19425

=

A Method for Tailoring the Information Content of a

Software Process Model e/

. v - J/
Dr. Sharon Perkins P l ,fj A (7;/ / =

University of Houston, Clear Lake - otE -
Mark B. Arend z
Lo
/‘.. y Quston,) . A] .’
3! ME a2

ABSTRACT

This paper will define the framework of a general method for selecting a necessary and sufficient subset of a general
softwars life cycle’s information product, to suppart new software development projects. Procedures for character-

e

q
-

izing problem domains in generai and mapping w a tailored set of life cycle processes and products will be given. An.

overview of the method is shown using the [ollowing steps:

1. During the probiem concept definition phase. perform siandardized interviews and dialogs between devei-
oper and user, and between developer and customer.

2. Generate a quality needs profile of the software to be developed, based on information gathered in step 1.

3. Transiate the quality needs profile into a profile of quality criteria that must be met by the software to satisfy
the quality needs.
4. Map the quality criteria w a set of accepted processes and products for achieving each criterion.

L

Select the information products which mawch or support the accepted processes and product of step 4.
6. Select the design methodology which produces the information products selected in step 5.

This paper will address every step. but will not attempt to generate a full-up methodology. A few of the more popular
process models and design methodologies known today wiil be examined for therr informaucn content.

TERMINOLOGY NOTES

The terms "software process model” and "life cycle” will be used interchangeabty. The term “user™ will always mean
"customer and user”.

INTRODUCTION

The complete set of information products defined for common software process models and development method-
ologies is often wo large for certain development efforts. In many cases, a subset of informauon products and the
activines that produce them will suffice 1o admunister the development of a software product. The act of selecting
appropriate information products and activities to support the development effort is called "“wilonng™ the life cycle
or development methodology. This tailoring process is currently an ad hoc method performed by managers and
developers, in early meetings with the customer and user, as they begin w define some sort of Sofiware Management
or Development Plan. This paper explores a more formalized ailorning method to assist in the defintuon of such
plans. It is hoped that such a formalization will both speed the process and help ensure the selecuon of a necessary
and sufficient subset of information products (and by implicauon, the activies which produce them).

The comerstone of this tailoring method uses Software Quality Assurance (SQA) techniques. Traditionaily, SQA
has dealt with the detection and prevention of defective software. New deas in the field of SQA are concentraung on
beginning the function much earlier in the life cycle, as early as problem concept and initial requirements definttion
It is hoped that SQA principles will assist the user and developer in creaung complete, consistent and testaole
requirements-This assisance offers guidelines up front when we’re scrambling to put some sensibie words on paper

AN
T)/is paper QMASA cooperative agree- Copyngnt 1980. Marx 8. Arend. Permission to cogy '8 granted
ment NCC-3-16, gwough RICIS otfice of the Uni- provded that the copies are not made or gstbuted for srect
veruty of Houston, Clear Lake. Aprt 1990. cCommercial advantage.
M. Arend
McDonnell Douglas
Page 1 of 31

A Mathod for Talloring the Information Content of a Software Process Model

1 believe that two quotes [5], [21] can illustrate the idea of “engineering in” quality to a software product.

You can’t achieve Quality...
unless you specify it!

wrE— AR L AN ALY LA\ AN

Quality must be defined as conformance
to requirements, not as “goodness”

USING SQA TECHNIQUES TO SPECIFY QUALITY
Quality Factors

This is a common SQA term. Quality Factors are characteristics which a software product exhibits that reflect the
degree of acceptability of the product to the user. Since we're moving SQA up front, we’ll restate this: Quality
Factors are characteristics which the user requires the software to exnibit in order to reflect the best possible degree
of acceptability.

Table 1 shows a list of Quality Factors which has been coming into general use for some time [21]. It was first
proposed at the Rome Air Development Center (RADC) in 1977. I show a slightly expanded list, as it has evolved
somewhat since then [5].

There are more detailed meanings of the quality factors which guide the user & developer in determining how
important each factor is for their application.

Not every project requires all quality factors, which is good, because sore quality factors are at conflicting purpose.
Shown below is a list of factors whose characteristics cause conflicts of definition.

Quality Facror Conflict Erplanation of conflict

Efficiency vs. Integrity————Overhead required to control access negates efficiency.
Efficiency vs. Usability————Overhead required to ease operations negates efficiency.

Efficiency vs. Mainainability——Optimized code negates maintainability. Modularization, instrumentation
and well commented high-level code increases overhead.

Efficizncy vs. Testability———Optimized code negates testability.

Efficienzy vs. Pontability————Optimized code is dependerc on host processor services.
Efficiency vs. Flexibiliiy———Overhead required to support flexibility negates elficiency.
Efficiency vs. Reusability————Overhead required to supporn reusability negates efficiency.
Efficiency vs Interoperability—=Overhead required to support interoperability riegates efficiency.

Integrity vs. Flexibility Flexibility requires general ana flexible data structures, increasing data
security problems.

Integrity vs. Reusability—————Generality required by reusable software introduces protection problems.

Integrity vs. Interoperability———Coupled systems allow more avenues of access.

Reusability vs. Reliability————Genenality required by reusable software increases difficulty of providing
error tolerance (anomaly management) and accuracy.

The conflicts shown do not mean that the two factors are in strict mutual exclusion =- extra effort may be expended
to address the difficulties of specifying factors in conflict. Note that efficiency tends to conflict with many other
factors. This is due to the tradeolf with the additional overhead required to satisfy other quality factors that does not
necessarily apply ¢ the algorithm’s basic function. Efficiency issues may also be resolved by judicious hardware

M. Arend
2 McDonneil Douglas
Page 2 of 31

1.

[/]

f &

A Mathod for Tailoring the Information Content of a Software Process Model

ualiry E Meaning of factar in context of user ngeds for software product

Correctness—————————Conformance of software design and implementauon to stated require-

ments.

Elficiency
Expandability

Flexibility————————Ease of maintaining the software to work in environments other than

Economy of resources needed to provide the required functionality.

Ease of maintaining the software to meet new funcuonai or performance
requirements.

originally required.

Integrity
Interoperability

Maintainability
Manageability

Security against unauthorized access to programs and data.

Ease of coupling the software with software in other sysiems or applica-
tions.

Ease of finding and fixing errors.

Ease of administrating development, maintenance and operation of the
software.

Portability

Ease of maintaining the software . v execute on a processor or operating
system other than that originally required.

Usability

Reliability

Ease of learning & using the software, and of prepanng input & interpret-
ing output.

The rate of failures in the software that render it unusable.

Reusability

Suitability of software modules for use in other applications.

Safety

Survivability————————Continuity of reliable execution in the presence of a system failure.
Verifiability (testability)—£Ease of venfication of functionality against requirements.

Protection 2gainst loss of life or liability or damage to property.

Table 1 - Quality Factors

selection. Note that there is alsc a reverse—i.auix of quality factors (not shown) that tend to suppon one another,
such as testability and maintainability —— sirmular <ets of criteria support both factors.

So you get the idea of defining quality needs for specific applications. As this process of definitzon continues. a
_profile begins to emerge that describes the proposed software in terms of weighted quality factors.

he Quality Profil

[introduce this term to describe the prioritized, weighted list of quality factors that the user & developer define ior
their software development effort. The Quality Profile is a "signature™ or "fingerprint™ of & project’s quality needs.
Humphrey {10} offers a common-sense example of what kinds of factors are important for different applicatioss,
based upon the "primary concern” of the application.

Té Erimary Concern

High Priority Quality Facrors

Effect on human lives
Long life Cycle

Real time application
In-house tcol
Classified Information

me a0 g

Communicating systems

Reliability, Correctness, Testability
Mainaainability, Flexibility, Portability
Efficiency, Reliability, Correctness
Efficiency, Reliability. Correctness
Integrity

Interoperability

The High Prionty Quality Factors shown for each type of application begin 1o define that applicauon’s quality prof:le.

Arand 1990a

- The profile of an application of type "a" is given by high degrees of reliability. correctnezs and testaciiity. 309 lower

M. Arend
VcDoaneil Douglas
Page 3 of 1)

.

.. ce PReST eSS N "-“"*"r-—-.-——r‘:

A Maethod for Talioring the Inforrnation Contant of a Software Process Mode/

degrees of the remaining factors. [n practice, we define 2 more precise scale of degrees and assign a partcular =« the
to each factor. The resuitant set of quality factor weights defines the quality profile for the proposed sofv.:7e.
Another example, more generic, is given by Deutsch {5] to suggest an initial prioritization of Quality Factor: ox
"software category”.

Software Category High Priqrity Quality Factors
a. Critcal Safety, Survivability, Correctness, Maintaimbility, Efficiency
b. Support Mainaainability, Verifiability, Intercperability, Portability, Usability, Correctness
c. I/O Correctness, Interoperability, Maintainability
d. Dau Interoperability, Porability, Reusability
e. Computational Correctness, Mainuinability
f. Environment Maintainability, Verifiability, Correctness, Interoperability, Portabilicy. Reusabil-
ity, Efficiency, Integrity
MMI Integrity, Usability
h. Documentation Correctness, Maintainability
i. Design Expandability, Flexibility, Interoperability, Maintainability, Portabilicy, Reusabii-

ity, Verifiability
These two examples offer starting points for the development of a Quality Profile. Many applicaons will exhibu
multiple concerns or cover several categories. It is the job of the user & developer to define the Quality Profile for the
specific application.
Defini he Quality Profil
Deutsch [5] suggests a metric for ranking or weighting quality factors.

Level af auali red What sechni hould - , ity i

E E:xcellent Exceptional techniques

G Good Better than average techniques
A Average Normal corporate practices

NI Not an Issue No spetial techniques

He then extends the metric into the realm of cost and schedule prediction, using Jensen and COCOMO mode?
relative cost and relative schedule analysis factors. Cost and schedule prediction will not be pursued further here.

Latter day SQA is also developing standardized means by which the user and developer discuss and come = :2
agreement of these factors for each application. These means often take the form of questionnaires that prom::. ine
user to evaluate all needs for quality.

Ouality Criteri

This is a common SQA term. Quality Criteria are detailed subcharacteristics which the software extubizs that reflecz
the degree t0 which the Quality Factors are present. In other words, the planned presence of high—level quality
factors implies the presence of a detailed set of quality criteria.

The Quality Factors are user-oriented; they are designed to map easily to a user’s needs for the proposed software.
The Quality Criteria are more software~oriented: they are designed to map easily to characterisncs that may be
evaluated by direct testing of the software. The relationship between quality factors and quality criteria s analogous
1o that between the two common stages of requirements definition. The analogy does no¢ apply to thee amount of
effort needed to go from the early phase to the later -~ Quality Factors may be translated immeditedy to Qualicy
Criteria. Table 2 shows a list of Quality Criteria [5], [21].

Manping Quality F Ouality Criteri

There is 2 direct translation from each Quality Factor to a subset of Quality Criteria which suppon the factor. The
sets of criteria that support different factors 2y be disjoint or may intersect. Some criteria exhibit conflicts similar :o

4 M. Arend
‘- McDomneil Douglas
Page 4 of 31

FDY . . B et —
p «®
A Mathod for Talloring the Information Contant of a Software Process Mode/
'. l Quality Criterion Meaning of criterion in context of software product
Accuracy Achievement of required precision in calculations and outputs
Anomaly Mgmt Behawvior for recovery from failures
Augmentability Maintenance effort required to expand upon functions and data
Autonomy Degree of decoupling from execution environment
s * Commonality Use of siandards to match "look and feel” of similar applications

Communicativeness Appropriateness of inputs and outputs

Completeness Degree to which all software is necessary and sufficient

Conciseness Amount of code used to implement algorithm

Consistency Use of standards to achieve uniformity within software
Distributivity Physical (device) separation of function and data (addresses backup)

Document Quality Access to complete, understandable information
Communication Efficiency-Usage of communication resources

Usage of processing resources

Storage Efficiency Usage of storage resnurces

Functional Scope Range of applicability of software product’s functions
Generality Range of applicability of software’s internal units

Processing Efficiency

Independence Degree of decoupling from support environment

Instrumentation Amount of code devoted to usage measurement or error identification
Modularity Cohesion & Coupling of software’s modules (design & code)
Operability Ease of operating the software

Degree to which the design addresses hazard avoidance
Understandability of design & code

Safety Management
Self-Descriptiveness
Simplicity Degree to which algorithms map to the problem they solve

Support Functionality that addresses the administration of maintenance
System Accessibility-=———Controiled access to functions, data and.instructions

System Compatibility———Use of standards to match interfaces with hariware & communications

Tracesbility Ease of finding links between requirements, design and code
Training Provisions t0 help users learn the operation of the software
Virtuality Separation of logical implementation from physical component
Visibility -Objectivity of evidence of correct functioning — ease of test verification

Table 2 - Quality Criteria

those examined for quality factors. Table 3 shows a translation between Quality Faczors and Quality Criteria thas
shows how the criteria support and influence the factors, either positively or negatively, The traditional direction ot
translation is from criteria to factor — the SQA or test team measures the criteria from the software, and reports on
what quality factors the software thus exhibits. Our method will begin with the user definition of quality factors, and
develop a set of criteria that the software must meet in order to satisfy our quality needs.

This table is merged from two different authors’ approach to the factor/criteria map ($], [21]. Their perspecuves

€ .- overlap to a high degree, but each one shows a few more, different criteria than the other. | have included themall

: here in order to work with the most complete universe of factors and criteria possible. Detailed examination of the

authors’ text reveais that while some factors and criteria sound very similar, they actually do describe different
.- characteristics of the software.

M. Arend
Arend 1990a McDonnel! Douglas §
" Page S of 31

le
k-1 .

A Meathod for Tailoring the Information Contant of a Software Procass Model

Quality Factors Err_gtness rI_n'ter_gger'ability Eusa_bih'ty
Efficiency Maintaianability Safety
Expandaoility Manageability Survivability
Flexibility Portability Usability
et R m—
] o Integrity Reliability Verifiability
Quality Criteria — —
Accuracy - o
Anomaly Mgmt + - +4 + + N
Augmentability —f++]| + +
Autonomy - + + ++ + +
Commonality -] ++ +
Communicativeness - + + + +
Completeness ++ +
Conciseness + |+ ++ N
Consistency + + ++ + |+ -
Distributivity + | +
Document Quality ++ ++
Communication Efficiency ++ : -
Proccesing Efficiency *+ -—
Storage Efficiency ++ = -
Functional Scope + +
Generality — |+ l+e] -] + I
Independence - | + ++ -+ 4+
Instrumentation - + + -
Modulanty = |+ |+ ++ | ++ ++ ++ + ++
QOperability - + ++
Safety Mgmt ++
Self-Descriptiveness - | 4+r]++ ++ + ++ ++
Simplicity + | +] ¢ | ++ ++ + | ++] ¢+ ++
Suppaoart ++| + 4+ o
System Access Control - = |+] -- + +
System Compatibility -
Traceability ++ + + + ++
Training + ++
Virtuality + +
Visibility + —

Table 3 - Quality Factors <=> Quality Criteria Map

Symbols are used in the cells of the matrix in Table 3 to indicate the influence a cnterion has on various factors.
Another viewpoint is that they indicate which criteria are necessary to support each factor. A plus under a faczor
means that the software should be required to exhibit the corrssponding criterion, but is subject to trade-oif based
on any conflicts that arise. A double plus means that the criterion is more important, and less subjec: to trade-off. A
negative under a factor means that it would be wise not to require the software 1o exhibit the corresponding caiter:on,
but is subject to tracde~off based on the influence of other factors. A double negative means that extra effort must be
expended to require the software to exhibit the corresponding criterion.

M. Arend
6 VMcDonndl Douretas
Page 6 of 11

AT

A Method for Tailoring the information Cortent of 8 Software Process Mode/

The assignment of pluses and minuses is-a subjective process, but the concept has been refined over time by vanous
authors (5], (8], [10]. [21].

SOFTWARE PROCESS MODELS

"The software process is the technical and management framework established for applying tools. methods ard
people to the software task™ [10G].

There are a handful of well-defined "process models” or "life-cycles” in the industry today. They each describe 2
set of activities and products designed to support the successful creation of a software product. The most widely used
model is called the Waterfail model. Other models are coming into use that attempt to address the shortcormings of
the Waterfall, but they tend to generate very similar information products. Appendix D offers a brief descrzption of
other common process models.

The Waterfall model is characterized by a linear set of activities and products such that each acuvity uses the output
of previous activities as its input. Here we list general names of the primary technical products of a waterfall mocel.
Activity (phase) Major produces generated by activity (phase)
Concept Definition————Feasibility Study, Concept document
User Req. Definition:

Level-A Requirements Document, Software Management Plan, System Interface
Control Document (ICD)

Level-B Requirements Document, Subsystem ICDs
System Design Document, System Test Plan

System Req. Definition
System Design

Implementation——————=Software, Test Case Document
Testing Test Report
Maintenance ' Upgraded Soitware, Maintenance Report

(S-S0

Most users of the waterfall model recommend a larger set of documentation; these recommendatons are ustally a:.d
out in a documenuation standard.

Note that the waterfall model itself does not really define details of the informatcn products that are 1o te produz:d

SOFTWARE DOCUMENTATION STANDARDS

A Documenuation Standard defines ail information products that may be generated to support development of e
software product. Usually, a documentation standard is packaged with a life-cycle standard. Two ¢common standasds
are:

SMAP Information System Life Cycle & Documentation Standards [15]
DOD-STD-2167A (6]

For this study, we will use the document set defined by NASA's Information System Life Cycle Documentancn
Suandard -~ Appendix A shows the complete list. Qur tailoring method will address which of these procucts zre
most important for a given set of quality factors.

ANALYSIS & DESIGN METHODOLOGIES

Within the framework of the software process model, some method must be used to define the content of each
product. Formalized methodologies address the complex definition of the requirements and design products of :ze
software process. There are many different methodologies to choose from for use within any software process. T-e
information content of the requirements document, then, may vary according to the technique used to produce .

For example, one may choose to specify system requirements using:

Arend 1990a ::d';:'-":| Douglas -

Page7of 31

Concept Phase
-Activities

A Method for Tallaring the Information Content of a Software Process Model

a simple textual notation developed in an ad hoc manner, or from lessons learned during protocyping.
b. a funcrional decomposition hierarchy of diagrams, capturing the requirements in processes and data flows.
an information model, capturing the requirements in objects, relations and behavior diagrams.

d. a viewpointbehavior model. capturing requirements in data/action maps and state diagrams.

e. a hybrid of the above techniques, or other techniques.

Appendix C gives a brief overview of some of the more popular methodologies in use today, and lists ail the specific
products they offer. Our tailoring method may eventually be used to select a meaningful subset of these products: the

current version of the paper wil not explore this.

TAILORING INFORMATION PRODUCTS

The hierarchy of SMAP-recommended information products for the software development effort is shown in

Figure 1.
Software Process Model

———

Other

Design Phase
Phases

-Activities

Implementation Phase

Requiremernss Phase
~Activities

-Activities

-Information Products -Information Products ~Information Products ~Information Products
~Management plan -Development plan Eng & Integ plan Software components
- Acquisition plan -Test plan Support plan Maintenance manual
L.RFP -IV&V plan Architectural spec Unit test document
-WBS -SE&O plan Detailed spec Unit test reports
~Dev. contract -Requirements spec Integration test doc Customer inspect report
~Config Mgmt plan ~Interfaces -Prototyping reports
-Risk mgmt plan -User's guide
~Assurance plan - Acceptance test doc
-Concept spec Discrepancy reports
-Assurance specs Eng. change proposals
~Lessons learned doc

[-Assurance reports
~Phase transition re-
view reporss

\

It is the content of these documents that is addressed by the various
software development methodologies. The uiloring method will also
address recommendations for the contents of these documents.

Figure 1 - SMAP Information Product Overview

Each Information Procuct shown will be analyzed to determine which quality criteria it best supports. The same
analysis will be applied 1o the information products generated by variow: development methodologies. At this point,
we will be ready to translate a set of 15 user defined Quality Factors :n:.x a recommended set of ir:zrmation prod-
ucts.

Tailoring will proceed on three levels:
1. A subset of the documen universe will be selected for the specific quality profile. Example: recommend
producing a Software Recuirements Spec, among other documents.
2. Foreach selected informanon product, a subset of it's maximum table of contents will be selected. Example:
recommend defining a Dara Definition section in the Software Requirements Spec, among other secuons.
3. Foreach recommendation from the table of contents, a set of suggestions will be given 1o characterize the
nauwre of the information that should appear therein. Example: make the following recommendations for
the contents of the Data Definirion section: minimize the number of different data represenwations. mini-
mize number of data conversions, use dynamic memory allocation, pack all data items, etc.
The user/developer then examine the lists of recommendations, and decide whether they make sense in the context
of the project. There may still be some manual tailoring o do, but the bulk of the job will have been performed by
this method.

8 M. Arend
McDoonell Douglas
Page 8 of 31

A Mathod for Tailoring the Infarmation Content of a Software Process Modsl

FUTURE WORK

The length of this study was not great enough to develop the full translation from Quality Criteria to Information

Products. As a starting point, the requirements volume contents in Appendix B have been mapped to quality crite-

ria. Areas that need more work are:
1.

Develop the complete translation between Quality Criteria and all information products listed in the Appern-
dices. This will include not only the selection of specific products, but recommendations for the character of
that product’s content.

Extend the ailoring method to include the wiloring of Management and Assurance activity products, as we:ll
as technical development products.

Define a weighting scheme for ranking Quality Factors that is consistent with Software Process Model and
Design Methodology characteristics.

Analyze the list of information products generated by the outstanding process models in use today, and
annotate with descriptions of the information content of each product. These descriptions should be com-
patible with the weighting scheme defined in area 3.

Appendix A
LIFE CYCLE PHASES & INFORMATION PRODUCTS:
NASA’S SOFTWARE ACQUISITION STANDARD

This appendix lists the life cycle phases and information products for NASA's Software Acquisition Life Cycle as
! defined by the agency’s Software Management and Assurance Program (SMAP). This set of documentation wull

serve as the universe from which a tailored set will be extracted.

The SMAP plan for volume roll-cut describes a mechanism which allows the manager/developer to create informa-

tion products as sections of one volume, or as separate individual volumes, or as a combination, depending upon tze

required complexity and management of the particular information product. The tailoring method will select a subset
, of these information products by recommending the "complexity” of each information product. It is recognized that
; there are considerations for tiloring other than the quality profile, especially as apply to the Management Plac
: Initial wiloring guidelines will focus on the Product Specification, then the Assurance Specification.

Life Cycle Phases
Concept Definition Phase (CD)
, Requirements Definition Phase (Req): User requirements, System Requirements
. Design Phase: Software Architectural Design (SAD), Software Detailed Design (SDD)
Implementation Phase . (Impl)

Integration and Test Phase: Integration & Unit Test (1&T), Acceptance Test (AT)
‘ Maintenance, or Sustaining Engineering & Operations (SE&Q)

¥y

N Information Products: Data Item Descriptions (DID)

: Management Activity Products: the Management Plan

. Eroduct Phase(s) during which product is senerated. including update«

5 Camponent Management Plan CD 1&T SEXQ
Component Acgquisition Plan CD

i Regquest for Proposal cD

. Wark Breakdown Strucmure CD
Safrware Development Contract cD

i

. M. Arend

. Arend 1990a McDonnell Dovglas 3

Page 9 of 31

rll

L o L

10

A Method for Talloring the Information Content of a Software Process Mode!

Configuration Management Plan CD Req

Risk Management :an cD

Assurance Plan CcD Reg SAD

Component Development Plan Req

Test Plan Req SAD

Validation & Verfication Plan Reg SADR

Sustaining Epgineering & Operations Plag Req 12T
Engineering and (ntegration Plan SAD SDD _Impl
Product Suppant Plan SAD

Techpical (Devel | Activity Products: the Saf Product Sgeciflcari

Produce Phase(s) during which product is generated. including updares
Concept Document cD
Software Requiremert< Speq (Level=:: cD SE&Q
Software Requirements Speg (Level-F Req SELO
External Interface Requirements Req SELQ
Lser's Guide Req Impl 1&T AT SELQ
Saftware Architecrural Design Speg SAD SELO
Software Deraijled Design Speg SDD SELO
Software Component Impl _1&T AT SE&O
Saftware Maintenance Manual Impt SE&LO
I&T AT SELQO

Version Descrigtion D

\ \ctivity Products: the Ass Specificati

Broduct Phase(s) during which product is generated. including updares
Assurance Specs cD AT SELO
Acceprance Test Document Rea SAD SDD Impl [&T AT
Integration Test Document SAD Impl 1&T

Unit Test Document. Impl

‘M ¢ Contral & St R . ivity Prod

Praoduce Phase(s) during which product s generared, including updates

Lessons-Lesmed Daocument cD Reg SAD SDD Impl I1&T AT

Assurance Reports cD Reg SAD _SDD {mpol I&T AT

Phase Trapsition Review Reparts cD Req SAD _SDD__Impl (4T AT

Discrepancy Reparts Regq SAD _SDD Impl IXT AT _SELO

Engineering Change Proposals Reg SAD SDD Impl I&T AT SELO

Protntyping Reports SAD

Unit Test Reporis Impl

Customer Inspection Reports Ilmpl

Integration Test Reports 1T

Centification Reports AT

Performance/Metrics Reports I&T AT SELO
M. Arend
McDonneil Dougias
Page 10 of 31

A Method for TaHoring the Information Content of a Software Procass Mode!

Appendix B
INFORMATION CONTENT of the NASA-SMAP STAN.
DARD SOFTWARE PRODUCT SPECIFICATION

This appendix lists the full table of contents for SMAP’s Software Product Specification (SMAP-DID-P000-SW).
This document package contains a Software Concept Document, 2 Software Requirements Spec, a Software Archi-
tectural Design Spec, a Software Deuiled Design Spec, a delivery Version Description, a User's Manual and 2
Maintenance Manual. (from {15]). The contents have been extended to include a more complete list of informaton
items that may be useful (from [1]). The extended items are italicized.

An initial pass at mapping document sections to quality criteria has been performed for the Requirements Vciume --
the map uses abbreviations shown in the key below, and should be read “backwards” for each criterion. In other
words, the map is to be used by selecting those document sections that show a reference to each criterion that is
specified by the quality profile.

Ac: Accuracy DQ: Document Quality Si: Safety Management
AM: Anomaly Mgmt EC: Communication Efficiency Sd: Self-descriptiveness
Ag: Augmentability EP: Processing Efficiency Sm: Simplicity

At: Autonomy ES: Storage Efficiency Sp: Suppont

Cm: Commonality FS: Functional Scope SA: System Accessibility
Cc: Communicativeness Gn: Generality SC: System Compatibility
Cp: Completeness Ip: Independence Tc: Traceability

Cn: Conciseness Is: Instrumentation Tr: Training

Cs: Consistency Md: Modularity Vr: Virtuality

Ds: Distributivity Op: Operability Vs: Visibility

Key: Quality Criteria Abbreviations

The Introduction and Related Documentation sections are recommended in their entirety for every software devel-
opment effort. Content of the volumes following will be addressed by the tailoring method. (At present, caly the
Requirements Volume is addressed).

Introduction
Identification of Volume
Scope of Volume
Purpose and Objectives of Volume
Volume Status and Schedule
Volume Organization and Roll-Out

Related Documentstion
Parent Documents
Applicable Documents
Information Documents

Concept Volume

Definition of Software
Purpose and Scope
Goals and Objectives
Description
Policies
Anticipated Uses of System
Optional Configurations

User Definition

Arend 199Ca M. Arend

McDaonnell Douglas
Page 11 of 31

A Method for Taikoring the Inforrnation Content of a Software Process Model

Overview of the User Organization
Logical organization
Physical organization
Temporal organization
reporting cycles
scheduled events
Information flow organization
Capabilities and Characteristics
Sample Operational Scenarios
Anticipated Operational Strategy
System ownership
System administration
operational control
modification policy
change support
User administration
departmants
skill levei:
Funding stra:: 3y
Currently Used Procedures

Requirements Volume

12

Requirements Approach and Tradeoffs DQ, Te

Design Standards to be used Cm, Cs, Md, SC
World Model (Information model) type A Ag. Cc, Md., Sd. Vr

Entity-Relation summary (Data Requirements)
Entities: description, astributes, class size
Attributes: description, values, defaults, constraints,
class size, retention/archive requirements
Relationships: description, size, components, constraints
Individuals (instantiations of entities)
World Model (Information model) type 8— Ag, Cc, Md, Sd. Vr
Objects: description, allowed operations, class_size
Allowed Operations: constructors, interrogators,
iterators, etc.
Messages: sent, received
External Interface Requirements Ce, EC. SC
Operational Resources & Resource Limitations EC, EP, ES, Vr
Requirements Specification
Process and Data Requirements
Function Input data & Source Ac, Ag, AM, Cc. Cm, Gn, SC, Sd, Tc, Vs
Function Transactions and Algorithms Ac, Ag, AM, Cp. Cs, EP, FS, Gn, Md
Function Qutput data & Destination———————————Ac, Ag, AM, Cc, Cm, Gn, SC, Sd. Te. Vs

Function Triggering mechanisms & conditions AM, Cm, EP

Function Termination mechanisms & conditions AM, Cm, EP

Function Expected demand EP

Data Definitior Ac, Ag, At

Data Relationships AcC, Ag, At

Dana Protection requirements—————————————0p

Data Validity check requirements Ac, AM, Gn, Ip, Op, SA

Data Parameterization requirements Ac, Ag, Gn, Sd, Vr

Data Format or Implerentation Restrictions Ac, Ag, At

System Behavior Requirements

Phases & Modes Ac, Ag, AM, SI

System Actions Ag, AM, Cm, St
M. Arend
McDomneil Douglas
Page 12 0f31

—

u

PYSEN,
.

A Method for Talloring the Information Content of & Software Process Model

Performance and Quality Engineering Requirements

Timing & Sizing requirements EC, EP, ES
Sequencing & event timing requirements EC, EP
Throughput & capacity requirements EC, EP

Error Detection, [solation, Recovery requirements——Ac, AM, Ds, s, S
Quality Engineering requirements ALL
Quality factors required

Traceability to Parent's Design
Partitioning for Phased Delivery

Safety Requirements AM, Sf, SA
Security and Privacy Requirements
Access requirements
to functions —Cm, Sf, SA
to data —Cm, S[, SA
to code St, SA
Legal requirements Sf
Audit requirements Vs
Other policy-based requirements
Implementation Constraints Ag, Ds, Ip
Site Adaptation Ag, At, Gn
Design Goals —Cn, Cs, Gn, Sm

Human Factors Requirements
User type definition

level of computer sophistication —Op, Cc

technical competence required: Op, Cc
Physical constraints

response time —Cm, Op

special physical limitationsirequirements——————Cm, Op
On-line help requirements Op
Robustness requirements AM, Gn, Sf, SA
Failure message & diagnostic requirements AM, Cm, Ce, Gn, Is, Op
Input/Output convenience requirements————————Cm, Cc, Is, Op
defaults
formats

Tc, Sm.
DQ, Te, Vs

Design Volume
Architectural Design

Design Approach and Tradeoffs
Architectural Design Description
External Interface Design

Requirements Allocation and Traceability
Partitioning for Iricremental Development

Deuniled Design

Detailed Design Approach and Tradeofls
Detailed Design Description

External Interface Detailed Design
Coding and Implementation Notes
Firmware Support Manual

Version Description Volume
Product Description
Inventory and Product

Materials Released
Product Content

Change Suaatus

Installed Changes

Arend 1990a

M Arend
McDooneil
Page 13 of M

A Method for Tailoring the information Content of & Software Process Mode/

Waivers
Possible Problems and Known Errors

User Documentation Volume

User's Guide
Overview of Purpose and Function
Installation and Inidalization
Startup and Termination
Functions and their Operation
Error and Warning Messages
Recovery Steps

User’s Training Materials

Maintenance Manual Volume

Implementation Details
Modification Aids
Code Adaptation
Standards

Abbreviations and Acronn.t

Glossary
Notes

Appendices

Appendix C
DESIGN METHODOLOGIES and their INFORMA-
TION PRODUCTS

This appendix lists information products generated by the more popular analysis & design methodologies of the cay
(compiled from [3}, (9]). These products make up a portion of the contents of the Software Product Spec as listed 1n
Appendix A and Appendix B. It is hoped to extend the tailoring method to recormmend an appropriate set of design
methodology information products based cn the quality profile.

Functional D it

14

5 1 Design (SDY — C ine/M "Yourd
This is the traditional dawa flow diagram methodology that has been in use snce the early seventies. It's main
products are a hierarchical set of data flow diagrams. process specifications and a data dictionary. State transi-
tion diagrams may also be usad when deemed r.2:cessary by the analyst.

-loni T
This methodology is similar to SD, but includes the analysis and design of cortrol flow between processes. State
transition diagrams, decision tables and process activation tables are used »ith more regularity.

Q0D — Hooch

The objects defined in Booch’s OOD have associated antributes and allowed cperations. They use the concepts
of visibility, class and inheritance, and they communicate with each other via message passing. One of Booch's
goals in designing this methodology was to be compatible with the Ada language. and the objects map well 10 Ada
constructs.

GOOD (G 1 QOD) — Seidewit
The objects defined in this OQOD have associated attnbutes only. They are tied to one another not bty message

passing, but by defined reli tionships. This is an attempt to model the real world more closely, and appiies well 1o
non--=al time applicatons.

M. Arend
McDonnel Douglas
Page 14 of 31

A Method for Talloring the Information Content of a8 Software Process Model

Other Methodologies
Jackson Structured Design (ISD) = Iackson
This unique approach was an early contender on the requirements modeling scene, and is still going strong. As
industry has developed the terms, we discover that JSD is a natural hybrid of Object Oriented and Functionai
Decomposition methodologies. JSD has its own set of information products which do not match 100% any of the

traditional products in the map below, but I show what traditional products are most like those produced by JSD.
rather than specifying and defining new product categories.

Ada-hased Design Aporoach for Real Time Systems (ADARTS) — Gomaa

This methodology is an Ada-based version of DARTS; it builds upon the SCR module structuring criteria, the
Booch object structuring criteria, and the DARTS task structuring criteria to generats maintinable and reusable
software components, It offers consideration of the concurrent nature of real-time systems. The analysis and
design diagrams use the "Booch-gram™ Ada notation.

Software Cast Reduction (SCR) — Parnas

This real-time oriented methodology concentrates on the modules that will make up the software product, an

information-hiding hierarchy into which they fall, and the interfaces which they use among themselves. Without
trying, it is almost object oriented. The methodology offers strong support for software reuse.

Software Productivity Consortium Methodology (SPCM) —- Gomaa
This methodology is based on SCR. Its primary areas of focus are the inclusion of rapid prototyping techniques
and the production of reusable software.

Information Products of the Methodologies
Product Mechodologies which support generation of product
Cantext Diagram sD Risad
Data Flow Diagrams SD___ Risad GQOD ISD Adans
Control Flow Diagrams SD Risad
- LT, ¢ . (S Transitions) SD Risad 00D GOOD ST
Mini-Specs D Risad
Da:a Dictionary SD Risad 1SD
Structure Charns SD _Risad, ISD Adans
Hardware Diagram Q0D
Class Structure Diagram Q0D
Architecture Diagram QD
Ada Package Specs Q0D
Qbiect Diagram 00D GOOD ISp
Entity-Relation Diagrams._ Risad GOOD
Process Definitions (¢.6.0)0] SPCM
Qbiject Compasition (60.0)0)
Qbject Descriptions GQOD
Task Strucnure Specs Adans SCR ~ SPCM
Module Guide Adans SCR ~ SPCM
MMMQ QQD __ GOOD Adars SCR SPCM
ZUses” Structure Adans SCR ~ SPCM
Moduls Internal Design Spec SCR__ SPCM
Subset Speg SCR__SPCM

Appendix D
OTHER SOFTWARE PROCESS MODELS

A sampling of Software Process Models other than the Waterfall Model are briefly described here. Recall that their
associated information products are very similar to those described in Appendix A.

M. Arend
McDonnel! Douglas
Page 1S of 31

Arend 1390a

A Maethod for Talloring tha Information Content of g Software Process Model

Spiral

A management oriented model. Activities and products are almost identical to those of the waterfall model. butare
interspersed with regular prototyping and risk analyses efforts to guide the process.

This prototyping model covers the requirements definition phases of the waterfall or other similar model. It is gener-

ally recommended for never-before~artempted solutions, or when the user & developer deem areas of the problem
concept to be technologically difficult.

A pantial implementation of the system is constructed from informal requirements, usually of poorly understood
areas. Users exercise of the prototype to better understand and define requirements. The prototype must then be
discarded, and system design is begun {rom the requirements.

It is important to avoid temptations to keep and build upon the prototype, because the very nature of rapid prototyp-
ing causes generation of ¢code that is inefficient. unsafe, unreliable, unmaintainable, etz. If, during development of
the prototype, algorithms or designs are discovered that are particularly efficient, safe. reliable, maintainable, etc,
they should be documented for consideration during the “real” design.

Evolutionary Prototyping
This prototyping model is also recommended for technologically difficult problems. but covers a larger area of the

life cycle. It is hoped that the evolutionary prototyping efforts will help guide and speed the requirements definition.
system design and implementation phases.

A pantial implementation of the system is constructed {rom partially known, well defined requirements, usuaily of
well understood areas. Users exercise the prototype to better understand and define remaining requirements. The
prototype forms a set of baseline software which will be built upon to compiete the deliverable versions. At this point,
the model may transition to the Iterative Enhancement model.

Development of an evolutionary prototype begins with well defined requirements. It takes longer than rapid
prototyping, because good software engineering practices must be used to develop code that will eventually be partof
the working product.

Iterative Ephanc:ment a.k.a. Incremental Development

This model is recomr-cnded for applications that have a basic, well understood core set of functions. The model is
characterized by many releases of new versions which add new functionality. Many market-r=netration schemes will
use this model to get a product into the marketplace and generating revenue, to pay for later enhancements. A rather

complete set of requirements is known up front, and the releases of new functions are planned in advance: of ccurse,
the model is adaptable 10 new requirements and relies on user feedback to improve the product.

Software Reuse

This model may be used w0 cover the design portion of the waterfall or other similar model. It's design paradigm
relies mostly on the incorporation of previously proven designs and code into new software products.

Automated Software Synthesis

This is an advanced model that usually requires strict formulation of requirements using a regular grammar specifica-
tion language. This model offers the direct (and hopefully, automatic) transformation of requirements and/or high
level design into code, either algorithmically or using 2 knowledge based rule set. It is hoped to eliminate the middle
poruans of the documentation set, centering around the detiled design.

CASE tools currently exist that support this model to some degree. Typically, they will g=rerate Ada package specs
and the interface portions of package bodies from structure charts.

M Aread
16 MecDomnell
Page 16 of 31

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]
(11]

(12]
(13]
(14]

(15]

(16]
(17]

(18]
(19]

(20]
(21]

A Maethod for Talloring the !nforrnation Content of a Software Process Model!

REFERENCES

Abbot, R., An /ntegrated Approach to Software Development, John Wiley & Sons, NY 1986.

Basili, V.; Rombach, H., "Taioring the Software Process to Project Goals and Environments”, 9tk [nterna-
tional Conference on Software Engineering, IEEE Computer Society, Washington, DC 1987.

Davis, A., "A Comparison of Techniques for the Specification of External System Behavior™, Communica-
tions of the ACM, 31,9 (September 1988).

Davis, A.; Bersoff, E.; Comer, E., A Strategy for Comparing Alternative Software Development Life Cycle
Models® [EEE Transactions on Sofiware Engineering, 14,10 (October 1988).

Deutsch, M.; Willis, R., Software Quality Engineering: A Total Technical and Management Approach, Pren-
tice-Hall, Englewood Cliffs, NJ 1988.

DOD-STD-2167A, Military Standard: Defense System Software Development, Department of Defense,
Washington, DC, 1988.

Fox, G., "Performance Engineering as a Part of the Development Life Cycle for Large-Scale Software Sys-
tems” [Ith International Conference on Software Engineering, IEEE Computer Society, Washington,
DC 1989.

Gilb, T., Software Metrics, Winthrop Publishers, Cambridge, 1977.

Gomaa, H.; Kirby, J.; Weiss, D., "Comparison of Software Development Methodologies”,Presentation at
Software Productivity Consortium Methodology Workshop, Masch 1989.

Humphrey, W., Mianaging the Software Process, Addison-Wesley, Reading, MA 1989,

Humphrey, W., "Software Process Modeling: Principles of Entity Process Modeis™ 9th [nternational Confecr-
ence on Software Engineering, IEEE Computer Society, Washington, DC 1987.

IEEE, Software Engineering Standards, IEEE Computer Society, Washingtan, DC 1987.
Jackson, M., System Development, Prentice-Hall, Englewood Cliffs, NJ 1983.

Krasner, H.: Pore, M., " A Software Process Management Approach to Quality and Productivity™, Lockheed
Software Technology Center. 1989.

NASA, Software Managemen: and Assurance Program (SMAP) Information System Life Cycle and Documen-
tation Standards Release 4.3, NASA Office of Safety, Reliability, Maintainability and Quality Assur-
ance, 1989.

Poore, J., "Derivadon of Local Software Quality Metrics (Software Quality Circles)” Sofiware Practice and
Experience, 12,11 (November 1988).

Pressman, R., Making Software Engineering Happen: A Guide for In.rmuung the Technology, Prenuce-Hall,
Englewood Cliffs, NJ 1988.

Pressman, R., Software Engineering: A Practitioner’s Approach, McGraw-Hill. NY 1982.

Rowen, R., "Software Project Management Under Incomplete and Ambiguous Specifications” [EEE Transac-
tions on Engineering Managemens, 37,1 (February 1990).

Tully, C., Proceedings, 4th International Software Process Workshop, ACM Press, NY 1989.

Vincent, J.; Waters, A.; Sinclair, J.. Software Quality Assurance, Volume 1: Practice and Implementation.
Prendce-Hall, Englewood Cliffs, NJ 1988.

M. Arend

Arand 155Ca VMcDonneil Dougias

Page 17 of 31

>
’
‘
‘
1
!
T
{
(e
.o
H

i '.,""'" XTI

VIEWGRAPH MATERIALS
FOR THE
M. AREND PRESENTATION

Q3713 10N NNVI8 39vd ONIG3D3Yd

1£J0 81 33ed
puMY W

se(3nong PUCOEN

A Method for Tailoring
the
Information Content

H of a

Software Process Model

REVIEW PACKAGE 1

15th Annual Software Engineering Workshop -
Goddard Space Flight Center, Greenbeit, MD
November 28, 1990 __ :

Mark Arend (McDonnell Douglas) ,

Jor
David Howes (NASA JSC) : ';
and 1

Dr. Sharon Perkins (University of Houston, Clear Lake)

1£J0 g1 a%eg

staaq |PEIOER

PoIY "W

A Method for Tailoring the Informatio ontent of a Software Process Model

DEFINITIONS

SOFTWARE PROCESS MODEL (or LIFE CYCLE)

» "The technical and management framework established for ap-
plying tools, methods and people to the software task.”

» Applies to the entire development cycle of the software, from
concept to maintenance.

SOFTWARE METHODOLOGY
»» Definition of a means for capturing requirements and design.

v Applies to one or more portions of the development cycle, usu-
ally requirements analysis, specification or design.

TAILORING
»~ Selecting a subset of a Process Model or a Methodology for prac-
tical application.

SOFTWARE QUALITY
» The degree to which software matches customer/user needs.

USIC Suliwate Enginesting Workshop -1
November 28, 1990

Mark Arend

[__Jaac DT

1£00 07 33eg
sTdnog PoUOqI
PRUY "

.....A.i: .4-\: ..:

.- —— —— ————

A Maethod for Talloring the Information Content of a Software Process Model

INTRODUCTION

» MANY SOFTWARE PROCESS MODELS AND SOFTWARE
METHODOLOGIES RECOMMEND TAILORING.

» TAILORING IS TISUALLY GUIDED BY PERSONAL EXPE-
RIENCE, ABILITY, AND TRADITION.

» WE WILL DESCRIBE A METHOD FOR TAILORING.

CUSTOMER/
USER NEEDS

»,> TAILORING 5, TAILORING

ALL INFORMATION PRODUCTS OF
A SOFTWARE PROCESS MODEL

19005
{2 %8
Ler i

e e %,
W ooE 5 %A
G s 3 ’f

T e 1 T TN & o 6105 MRy AR L2 L R I H AL L b ad L rA A VYA

USEC Suliwate EBugineenng Wuikshop

November 28, 1990

-«
¢

-2- Maik Arend

1£J0 17 33y
PUMY K

Se{dno([RuvOEN

A Method for Tailoring the Informati. Content of a Software Process Model

CHARACTERIZING CUSTOMER/USER NEEDS

WE WILL USE CONCEPTS FROM SOFTWARE QUALITY

ASSURANCE (SQA) TO EXPLORE CUSTOMER NEEDS:

» What constitutes appropriate fitness for use of this software?

»» What attributes must this software exhibit to be considered of
high quality?

» Remember, software quality is more than ”goodness”, it is a
measure of how well the software matches the needs of the cus-
tomer and user.

SQA SHOWS HOW TO OBIJECTIFY A QUALITY RATING
OF SOFTWARE, BY EVALUATING QUALITY FACTORS.
»~ Capture Quality Factors through Customer/User interviews.

SQA SHOWS HOW TO TRANSLATE QUALITY FACTORS
TO QUALITY CRITERIA, WHICH ARE MORE DIRECTLY RE-
LATED TO SOFTWARE TESTABILITY.

»» Derive Quality Criteria from Quality Factors

v Derive development techniques to enforce Quality Criteria

GSEC Sotiware Engineening Workshop I
November 26, 1990

-Ue

Mark Arend

oy -

B by —

1£00 72 332g
R0 IPOROPN
pouy |

-

o——
PRvp——— s e >y

by Y o2 o

A Method for Tailoring the Information Content of a Software Process Model

THE METHOD’S STEPS

PERFORM STANDARD INTERVIEWS AND DIALOGS BE-
TWEEN DEVELOPER AND CUSTOMER/USER.

GENERATE A PROFILE OF QUALITY FACTORS OF THE
SOFTWARE TO BE DEVELOPED.

TRANSLATE THIS QUALITY-NEEDS PROFILE INTO A
SET OF QUALITY CRITERIA THAT MUST BE MET BY

THE SOFTWARCE.

MAP THE CRITERIA TO A SET OF REQUIREMENT AND
DEVELOPMENT TECHNIQUES.

SELECT AND TAILOR THE INFORMATION PRODUCTS
WHICH MATCH OR SUPPORT THOSE TECHNIQUES.

SELECT AND TAILOR DESIGN METHODOLOGY(S) TO
PRODUCE THESE INFORMATION PRODUCTS.

QSEC Soliware Engineering Wotkshop 4 -
November 28. 1990

«

v

Mark Arend

”

-

e,

. - j

pady K

1£)0 €7 3%eg

sei3no(] [ROVOPIN

-)
A Method for Tailoring the Information Content of a Software Process Model ®
THE METHOD’S STEPS
1 2 3,4 5 6
Fill out Build Define Tailor Select
USER QUALITY QUALITY CRITERIA and INFORMATION DESIGN
QUESTIONNAIRES PROFILE SUPPORTING PRODUCTS METHODOLOGY
(Factors) TECHNIQUES
TABLE OF
PA| CONTENTS
Correctness
Elficiency e
Expandability ——
Flexibility pe—
Integrity emmtem——

A Interoperability
Maintainability
Manageability
Ponability
Usability
Reliability
A___ Reusability
Salety

Survivability
Verifiability

»)
g'i’
52
I‘Em
o
am

WA

E——— —_— —_— —
Transformation Translation Selection and Selection
Tailoring

USFC Sofiware Enginesring Workshop Martk Arend

November 28, 1990

B
(]
i

1€ 0 ¢7 a3eg
stidnog pRuUuOHRN
PoayY K

O Maenbueg

A Method for Tailoring the Information Content of a Software Process Model

Step 1

PERFORM STANDARD INTERVIEWS AND DIALOGS BETWEEN DEVEL-
OPER AND CUSTOMER/USER

¢ QUESTIONNAIRES DESIGNED TO PROBE THE USER'’S
NEEDS FOR QUALITY.

» IMPORTANT TO DEFINE BOUNDARY OF SPECIFICA-
TION, TO PREVENT OVER- OR UNDER-SPECIFICATION
OF QUALITY NEEDS.

» DEVELOPER WRITES QUESTIONNAIRES, USING A
GREAT DEAL OF BOILERPLATE AND HELPS CUS-
TOMER/USER THROUGH THE PROCESS.

» EXAMPLE QUESTIONS
» How many users will want to use the system simultaneously?

»» What level of user training is acceptable?
v Will other computer systems rely on this one?

GSHC Sofiware Lngmecnng Worhshiop -6 - Math Arend

L V1))

«
€
»

»

A Method for Tailoring the Information Content of a Software Process Model

Step 2

GENERATE A PROFILE OF QUALITY FACTORS OF THE SOFTWARE TO
BE DEVELOPED

»
’

QUANTIFY RESPONSES TO USER QUESTIONNAIRES.

THE TAILORING METHOD DEFINES A TRANSFORMA.
TION BETWEEN POSSIBLE RESPONSES AND QUALITY

FACTORS.

THE TRANSFORMATION WILL APPLY WEIGHTED VAL-
UES TO EACH RESPONSE, BASED UPON THE EFFECT
THE ISSUE PROBED BY THE QUESTION HAS UPON ITS
RELATED FACTOR(S). (Most questions will deal with decisions
that influence several factors to varying degrees, even positively for

some and at the same time negatively for others).

SINCE SOME FACTORS CONFLICT WITH OTHERS, A SEC-
OND USER INTERVIEW MAY BE NECESSARY TO AM-
PLIFY RELATIVE IMPORTANCE. Factor conflict may assist

risk identification and management.

GSEC Bohwate Engneering Workshup o
November 28, 1990

Mark Arend

1£20 97 38y
®@ro(] (RUBOM
poBuY ‘|

A Method for Tailoring the Information Content of a Software Process Model

Step 3

TRANSLATE THE QUALITY-NEEDS PROFILE INTO A SET OF QUALITY
CRITERIA THAT MUST BE MET BY THE SOFTWARE

¢

PRE-DEFINED GUIDELINES MAP FACTORS TO CRITE-
RIA.

THIS TRANSLATION BRINGS US CLOSER TO WHAT
QUALITY MEANS IN TERMS OF A SOFTWARE PROD-
UCT, RATHER THAN IN TERMS OF THE USER.

SOME CRITERIA ALSO CONFLICT WITH ONE AN-
OTHER. THIS TRANSLATION WILL ASSIGN RELATIVE
WEIGHTS TO THE CRITERIA TO HELP REDUCE CON-

FLICTS.

REMEMBER, CONFLICTS ARE NOT IMPOSSIBILITIES,
THEY MERELY IDENTIFY AREAS REQUIRING EXTRA
EFFORT AND EXCEPTIONAL TECHNIQUES - RISK MAN-
AGEMENT.

GSFC Software Engineenng Worhshop w
November 248, 1990

)

Math Atcnd

-

»

.
| A Method for Tailoring the Information Content of a Software Process Model
Step 4
MAP THE CRITERIA TO A SET OF REQUIREMENT AND DEVELOP-
MENT TECHNIQUES
» TECHNIQUES OF DEVELOPMENT AND MANAGEMENT
MAY BE USED TO ENSURE THE PRESENCE OF VARIOUS
QUALITY CRITERIA.
» TYPES OF TECHNIQUES
» Product Recommendation
» Method Recommendation
» Standards Recommendation
» General Guidelines
» EXAMPLES
v Produce a traceability matrix to ensure Completeness.
e v Use prototyping to ensure Usability.
ﬁig v Adhere to interface standards to ensure Commonality.
R
o v Separate critical & non-critical functions to ensure Safety Man-
3 agement.
GSFC Soliware Engineering Workshop —9_

November 28, 1990

Mark Arend

€

1f Jo 87 33y

sefioog (pULOgIK

w

puaIY K

-

A Method for Tailoring the Information Content of a Software Process Model

Step 5

SELECT AND TAILOR THE INFORMATION PRODUCTS WHICH MATCH
OR SUPPORT THE TECHNIQUES

’

INFORMATION PRODUCTS ACT AS SPECIFIC GOALS
WHICH FORCE US TO RECOGNIZE, FORMALIZE AND
ADHERE TO TECHNIQUES TO SPECIFY, DESIGN AND
IMPLEMENT SOFTWARE OF APPROPRIATE QUALITY.

INFORMATION PRODUCTS DOCUMENT REQUIRE-
MENTS AND DESIGNS, PROVIDING FOR CONTINUITY
OF DEVELOPMENT AND MAINTENANCE.

WE WISH TO SELECT THE APPROPRIATE SUBSET OF
ALL POSSIBLE INFORMATION PRODUCTS.

THE TAILORING METHOD WILL DESCRIBE A UNI-
VERSE OF INFORMATION PRODUCTS, AND WILL OF-
FER A DIRECT TRANSLATION FROM QUALITY CRITE-
RIA TO RECOMMENDED SUBSET OF THAT UNIVERSE.

USEC Soliware Luginevenng Wuthshap - 10 -

L 4

<

NMath Arend

rd

»

ad

A Method for Tailoring the Information Content of a Software Process Model

Step 6 i

SELECT AND TAILOR THE DESIGN METHODOLOGY WHICH PRO-
DUCES THESE INFORMATION PRODUCTS

» MANY METHODOLOGIES ARE AVAILABLE FOR SOFT-
WARE REQUIREMENTS SPECIFICATION, SOFTWARE
DESIGN AND IMPLEMENTATION.

» THE TAILORING METHOD WILL DESCRIBE A UNI-
VERSE OF METHODOLOGIES, AND WILL CATEGORIZE
THEM BY THE INFORMATION PRODUCTS THEY PRO-

DUCE.

» THE MATCHUP BETWEEN INFORMATION PRODUCTS
PRODUCED BY A METHODOLOGY AND THOSE RECOM-
MENDED TO ACHIEVE THE QUALITY PROFILE FACILI-
TATES THE SELECTION OF AN APPROPRIATE METH-

ODOLOGY.

1£)0 62 33y
puUAIY W

$T3noQ [RUvO@IK

USIC Solware Lngineenng Wuorkshop o
- - k Arend
November 28, 1990 Mar ren

reN\

1€)0 0 3¥eg
RRnog [PUOEII
poay W

[

A Method for Tailoring the Information Content of a Software Process Model

CURRENT STATUS AND FUTURE WORK

THIS PHASE OF THE RESEARCH EFFORT DEALT WITH
DISCOVERY OF CONCEPTS AND ASSEMBLY OF DATA.

AREAS ALREADY DEVELOPED TO SOME EXTENT

» Translation from Quality Profile to Quality Criteria

v List of Techniques sorted by Quality Criteria

» Universe of Information Products (enhanced NASA SMAP

standard)
» Universe of Methodologies

AREAS FOR DEVELOPMENT

» User Questionnaire boilerplates

v Response weighting scheme

» Transformation of weighted responses to Quality Profile
» List of Information Products sorted by Quality Criteria

GSEC Soltware Engineening Workshop o

Nuwlul;ol i, 1vvo

<

»

-

Marh Aread

1

L)

5 Qe

1CJ0 15 394

stidoog [POUOP

TR T ~ TN T
v

PONY RN

CONTACTS

David B. Howes

[T PR S s e eriami ey g A £

o)

WQTITIROA g v e T

A Method for Tailoring the Infor, ‘Jon Conteni of a Software Process Mods!

(Manager for Engineering IRM, under Information Systems Directorate, Service Management Division)

Code PS2

Lyndon B. Johnson Space Center

National Aeronautics and Space Administration
Houston, TX 77058

(713) 483-8381

Mark Arend
839 Walbrook Drive
Houston, TX 77062
(713) 480-7332

Dr. Sharon Perkins

Assistant Professor of Computer Science and Information Systems
University of Houston, Clear Lake

2700 Bay Area Boulevard

Houston, TX 77058-1098

(713) 488-7170

GSFC Sofiware Engineering Workshop .
Nuvomber 25._ 1990

Marth Arend

