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Due to the large number of product, project and people parameters which impact large custom
software developmunt efforts, measurement of software product quality is a complex undertaking. Fuz-
thermore, the absolute perspective from which quality is measured (customer satisfaction) is intangible.
While we probably can't say what the absolute quality of a software product is, we can determine the
relative quality, the adequacy of this quality with respect to pragmatic considerations, and identify good
aad bad trends during developmeat. While no two software eagincers will ever agree on an optimum
definition of software quality, they will agree that the most important perspective of software quality is
its ease of change. We can call this flexibility, adaptability or some other vague term, but the critical
characteristic of software is that it is soft. The easier the product is to modify, the easier it is to achieve
aay other software quality perspective.

This paper presents objective quality metrics derived from consistent lifecycle perspectives of rework
which, when used in concert with an evoiutionary development approach, can provide useful insight
to produce better quality per unit cost/schedule or to schieve adequate quality more efficiently. The
usefulness of these metrics is evaluated by applying them to a large, real world, Ada project (CCPDS-R).

These messures can be antomated, consistent, and easy to use. Along with subjective interpretation
to account for the lifecycle context, objective insight into product quality can be achieved carly where
correction or improvement can be instigated more efficently. )

Indez Terms- Evolutionary Development, Software Quality Metrics, Ada, Maintainability, Process
Improvement.

BACKGROUND

There have been many attempts to define measures of soft ware quality in the past 20 years. For many
reasons, none of these has caught on as accepted practice in the soft ware industry. {2] discusses many of
the problems and tradeoffs assodated with defining and measuring software quality. One of the recurring
themes in this work was the need for subjectivity and expensive human resources in both the collection
and interpretation of quality metrics. Furthermorte, the concept of a technology independeat set of
metrics, although an acknowledged desire, was not well understood. [8] provides an excellent discussion
of the need for objective, measurable soft ware quality metries which remain technology independent. (9]
defines a complete company metrics program with actual data that provides some valuable experience
and lessons learned. {10] describes the most current motivation for measuring software quality, process
improvement.

Afler three years of successful software development on the Command Ceater Processing and Display
System - Replacement (CCPDS-R) project using modern Ada software engineering techniques ({12}, {13]
and {15]), TRW has derived a subset of software quality metrics which are measurable, objective, and
useful in providing a basis for improving downstream quality of prodacts and processes. One of the
problems with typical government contracted systems like CCPDS-R is that most are one of a kind
projects. This characteristic provides added complexity to measurerment since the experience may be only
partially useful between different project domains. The metrics presented herein have been formulated
to be as usefnl as possible while remaining relatively domain independent so that comparisons between
different projects are possible. This is not as simple as it sounds and the literature on software quality
metrics reinforces this experience. After many iterations, the data presented herein has demonstirated
objective and valuable insight in its application to CCPDS-R and it provides s credible basis from which
beiter metrics can be deriven.
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Software Quality Metrics Objectives. Software quality metrics should be simple, easy to use, and
hard to misuse. They should be useful to project management, stimulate continuous improvement of
our development process, and low cost to administer consistently across different projects.

Usefglnesy. Conventional testing techniques exist for assessing the functionalily, relisdilily and
performance of a software product, however, there are no accepted methods for assessing its Zexibility
(modularity, changeabilily, or masntainabilily). While there are many other perspectives of quality (e.g.,
portability, interoperability, etc.), our experience in executing an cvolutionary development process has
demonstrated that its flexibility aspects aze the most important. The easier the product is to modify, the
casier it is to achieve any other software quality pesspective except perhaps performance. The tradeoff
between flexibility and performance is highly depeadeat on the application domain as well as many other
architectural issues and for the purposes of this discussion we will assume that performance is achieved
through proper hardware selection and that the project is priortised “software first®. A project which
is prioritized more towards performance (i.e., 1750A flight program), may not interpret these metrics in
the same fashion as a project prioritised towards continuous lifecycle modification (i.e., ground besed C3
System). This paper will attempt to provide useful, objective definitions for modularity, changeability
and maintainability. The intent of this metrics program is to provide a mechanism for quantifying both
end-product quality as well as in-progress development trends toward achieving that quality,

Development Langnage. Ada has proven to support increased quality and the evolutionary process
model in large software development efforts. Furthermore, Ada appears to be the language of choice for
the majority of current and future large government projects. While this paper assumes that Ada is
the language for design and implementation of software development projects which use these soltware
quality metrics, it shouald be straightforward to sdapt this approach to other languages through a suitable
redefinition of & Source Line of Code (SLOC).

Development Approach. An evolutionary development approach as prescribed in the Ada Process
Model [12] is necessary to maximise the usefulness of these metrics across & broader range of the life
cycle. The metrics are derived from controlled configuration baselines. Therefore, an approach with early
incremental baselines will see an increased benefit. As a prerequisite to understanding the denvation
of the software quality metrics, the following section provides an overview of the Ada Process Model
employed on CCPDS-R.

Ada PROCESS MODEL

An Evolutionary Process Model is fundamental to this approach for Sofiware Quality Assessment.
Without tangible intermediate products, ><:” vare quality assessment would be ineffective and inaccurate.
Conventional experience has repeatedly seen ‘rojects sequence through highly successful prelimirary and
critical design phases (as perceived by conventional Design Review assessment of design quality) only to
have the true quality problems surface in the integration and test phases witk little or no time for proper
resolution. An Evolutiopary 7--:+:s Model provides a systematic approach for achieving early insight
into product quality and a un::.::1 lifecycle measure for its assessment. It also avoids the inevitable
degradations in quality due to :ate breakage and rapid fixes which are shoehorned into the product
without adequate software engineering.

TRW’s Ada Process Model is, in simplest terms, & uniform application of incremental Ada product
evolution coupled with a demonstration-based approach to design review for continuous and insightful
thread testing and risk management. The techniques employed within this process are derived from the
philosophy of the Spiral Model (7] with emphasis on an evolutionary design approach. The use of Ada
as the life cycle langusze for design evolution provides the vehicle for uniformity aad provides a basis
for consistent software progress and quality metrics.

TRW'’s Ada Process Model recognizes that all large, complex softwaze systems will suffer from design
breakage due to early unknowns. It strives to accelerate the resolution of unknowns and correction of
design flaws in a systematic fashion which permits prioritited management of risks. The dommant mech-
anism for achieving this goal is a disciplined approachk to incremental development. The key strategies
inherent in this approach are directly aimed at the thzee main contributors to software disecomomy of
scale: minimising the overhead and inaccuracy of interpersonal communications, eliminating rework, and
converging requirements stability as quickly as possible in the lifecycle. These objectives are ackieved
by:
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1. requiring continuous and eatly convergence of individual solutions in a homogeneous lLife cycle
language (Ada).

2. eliminating ambiguities and unknowns in the problem statement and the evolving solution as
rapidly as practical through prioritized development of tangible increments of apability.

Although many of the disciplines and techniques presented herein can be applied to non-Ada projects,
the expressiveness of Ada as a design and implementation language and support for partial impiemen-
tation (abstraction) provide a strong platform for creating 8 uniform approach.

Many of the Ada Process Model strategies (summarised in Figure 1} have been attempted, in part, on
other software development efforts; howevcr, there are fundamental differences in tkis approach compared
to conventional software development models.

Process Model Strategy Conventional Counterpart

Uniform Ada Lifecycle Representation PDL/HOL

Incremental Development Monolithic Development

Design Integration Integration and Test

Demonstration Based Design Review Documentation Based Desigr Review
Total Quality Management Quality by Inspection

(B

Figure 1: New Techniques vs. Conventional Techniques

Uniform Ada Lifecycle Represeatation. The primary innovation in the Ada Process Modd is the
use of a single language for the entire software lifecycle, including, to some degree, the requirements
phase. All of the remaining techniques reiy on the ability to equate design with code so that tke only
variable during development is the level of abstraction. This provides two essential benefits:

1. The ability to quantify units of sofiware (design/development/test) work in one dimension, Source
Lines of Code (SLOC). While it is certainly true that SLOC is not a perfect absolute messure of
software, with consistent counting rules, it has proven to be the best normalized measure aad does
provide an objective, consistent basis for assessing relative trends across the project life cycle.

2. A formal syntaz and semantics for lifecycle representation with automated vergication by en Ada
compiler. Ada compilation does not provide complete rverification of a compogeat. It does go a
long way, however, in verifying configuration consistency, and ensyring a standard, usamiigucus
tepresentation,

Incremental Development. Although risk management through incremental devedopment is smpha-
sized as a key strategy of the Ada Process Model, it was (or always should have been) a key part of most
conventional models. Without a uniform lifecycle language as a vehicle for incremental design /code/test,
conventional implementations of inczemental development were difficuit to manage. This mansgement
is simplified by the interated techniques of the Ada Process Model,

Design Integration. In this discussion, we will take a simple minded view of “desiga” as the stractural
implementation or partitioning of software components (in terms of fuaction and petformance) and
definition of their interfaces. At the highest level of design we could be talking about conveational
requirements definition, at the lowest level, we are talking about conventional detailed design z2nd zoding.
Implementation is then the development of these components to meet their interfaces while providing
the necessary functional performance. Regardless of level, the activily being performed s Ada coding.
Top level design means coding the top level components (Ada main programs, task =xecutives. global
types, global objects, top-level library units , etc.). Lower level design means cocing the lower level
program unit specifications and bodies.

The postponement of all coding until after CDR in conventional software development approaches
also postponed the primary indicator of design quality: integrability of the intetfacez. The Ada Process
Model requires the early development of a Sofiware Architecture Skeleton (SAS) a2 a vehicle for enrly
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interface definition. The SAS essentially corresponds to coding the top level components aad their
interfaces, compiling them, and providing adequate drivers/stubs so that they caa be executed. This
early development f(orces early baselining of the software interfaces to best cffect smooth evolution,
esrly evaluation of design quality and avoidance of downstream breakage. In this process, we have
made integration a design activity rather than a test activity. To a large degree, the Ada language
forces integration through its library rules and consistency of compiled components. It also supports
the concept of separating structural definition (specifications) from runtime function (bodies). The
Ada Process Model expands this concept further by requiring structural design {SAS) prior to ruatime
function (executable threads). Demonstrations provide a forcing function for broader runtime integration
to augment the compile time integration enforced by the Ada language.

Demonstration Based Design Review. Many conventional projects built demonstrations or bench-
marks of stzndsione design issues (e.g., user system interface, critical algorithms, ctc.) to support
design feasibility. However, the design baseline was represented on paper (PDL, simulations, flowcharts,
vugraphs). These represeatations were vague, minbiguous and not amenable to configuration control.
The degree of freedom in the design representations made it very difficult to uncover desigs flaws of
sabstance, espedially for complex systems with concurrent processing. Given the typical design review
attitude thst a design is “innocent until proven guilty”, it was quite easy to assert that the design was
adequate. This was primarily due to the lack of a tangible design representation from which trae design
Iaws were unambiguously obvious. Under the Ada Process Modedl, design teview demonstratioss provide
some proof of innocence and are far more efficient at identifying and resolving design flaws. The subject
of the design review is not¢ ouly a briefing which describes the design in human understandable terms,
but also a demonstraiion of important aspects of the design baseline which verify design quality (or lack
of quality).

Total Quality Management (TQM). In the Ada Process Model there are two key advaatages for
spplying TQM. The first 13 the common Ada format throughoat the lifecyele which permits consistent
software metrics across the software development work force. Although these metrics don't ail pertain
to quality (many pertain to progress), they do permit & uniform communications vehicle for achieving
the desired quality in az efficient manner. Secondly, the demonstrations sezve to provide a common goai
for the software developers. This “integrated product” is a reflection of the complete design at various
phases in the life cycle for which all personnel hare ownership. Rather than individually svaluating
components which are owned by individuals, the demonstzations provide a mechanism foz reviewing the
team’s product. This team ownership of the demonstrations is an important motivation for instilling a
TQM attitude.

SOFTWARE QUALITY METRICS APPROACH

In essence, the approach we are taking is similar to that of {8] who proposes to measure software qual-
ity through the absence of spoilage. While his definitions are purposely vague (to remain techaology and
project independent), curs are quite explicit. The key to this metrics approach is similar to coaventional
cost estimmtion techniques such as COCOMO (3] where quantifiability and consistency of application
sre important. Note that software cost estimetion has subjective inputs and objective outputs. Qur
approach will define objective inputs which may require subjective interpretation for project context.

Our primary metric for software quality will be rework as measured by changed SLOC in configured
basslines. This metric will also need to be adjusted for project context to accommodate the product
characteristics, the life cycle phase, etc. The software quality assessment derived {rom this objective
collection of rework metrics will require subjective analysis in some cases. The subjectivity here is in
the fact that we are trying to assess quality doring development (this requires subjective analysis) using
the same metrics used to assess quality following development (objective analysis). For example, the
volume of rework following product delivery is an objective measure of quality, or lack of quality. The
amount of rework following the first configuration baseline during development is a subjective measure.
Zero rework might be interpreted as a perfect baseline (unlikely), an inadequate test program, or aa
unambitioes first build. The following paragraphs define some of the foundations in this appeoach:

Software Quality Definition. Software qualily is the degree of compliance wth the customer ezpec-
tations of function, performance, cost and schedule. This is an incredibly difficult concept to make
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objective. The only mechanisms available for defining “customer expectations” are Software Require-
ments Specifications for function and performance, and an approved expenditute plan which quantifies
cost and schedule goals (basically, this corresponds to the “contract”). These two mechanisms are tra-
ditionally the lowsst quality products produced by a project since they are required to be agreed upon
with numerous unknowns far too early in the lifecycle. The evolutionary process model and software
quality metrics should provide better insight into the degree of compliance with customer expectations
in the above four perspectives.

Software Change Order (SCO). A Softwate Change Order constitutes direction to proceed with
changing a configured software componeat. This change may be needed to 1) rework a component
with bad quality (a fix), or 2) rework a component to achieve better quality (an enhancement) or
3) accommodate a customer directed change in requirements. The difference between the first two
types of rework is inhereat in the necessity for the change. If the change is required for compliance
with product specifications, then the rework is type 1. If the change is desired for cost-effectiveness,
increased testability, increased usability, or other effidency reasons (assuming the unchanged component
is compliant), then the rework is type 2. In both cases, the rework should result in incressed z=d
product quality (requitements compliance per dollar), however, type 1 also indicates inadequate quaiity
in a current basuiine. In practice, differentiating between type 1 and type 2 may be quite subjective.
As discussed later, most of the metrics are insensitive to the categorization, but if the differentiation is
consistently applied, it can provide useful insight. Conventionally, SCOs were called Software Problem
Reports (SPRs). To avoid confusion (“problem” has a negative connotation, and not all changes are
necessasily problems), we have changed the terminology. The software quality metrics collection and
analysis will use type 1 and type 2 SCOs in an appropriate manner. Type 3 SCOs need to be separated
since they do not reflect any change in quality, they do however, redefine the customer expectaticns.
Furthermore, Type 3 SCOs typically reflect a change which is of more global impact thereby requiring
various levels of software and system engineering as well as high level regression testing. These types of
SCOs will not be used in these metrics due to this wide range of variability. Rather, the data derived
from type 1 and type 2 SCOs should provide a solid basis for estimating maintainability and the effort
tequired for type 3 SCOs.

Source Lines of Code (SLOC). There has always been a controversy as to whether SLOC provides
a good metric for measuring software volume (DeMarco calls this bang). (11] identifies some of :he
preeautions necessary when ‘ealing with SLOC. Upon reading open literature which discusses project
productivities (SLOC/MM), it is easy to see that there is little, if any, comparability betweea projects
within the same company no less projects from different companies. [4] identifies the pros aad cons of
various measures and comes to the conclusion that there is nothing better. Everyone agrees howerver,
that whatever one uses, it most be defined objectively and consistently to be of value for comparison.
How we define the absolute unit of SLOC is not as important as defining it consistently acroas all projects
and all areas of a specific project. Therefore, the preferred way to define 8 SLOC is the following:

The number of SLOC for a given set of Ada program units is defined as the output of a
SLOC Counting Tool.

Enforcing this definition is simple to achieve by providing a portable tool. By accepting certain nca-
controversial and simple standards for program unit headers and program layout the tool caa provide
more valuable outpuis than simply SLOC counts (e.g., static hierarchies, and complexity ratings).

Ada/COCOMO (5], [6] defines SLOC for Ada programs as: Within an Ada specification part, each
carriage return counts as one SLOC. Specifications shall be coded with the following standards (rationale
is provided in italics):

L. each parameter of a subprogram declaration be listed on a separate line ( The design of s subpro-
gram inlerface is done in one place and generally the effort associated with the inlerface design is
dependent on the number of parameters.)

2. for custom enumeration types (e.g., system state, socket names, etc.) and record types each
esumeration or field should be listed on a separate line. (Custom types wsually involve custom
design and engineering, hence an increased number of SLOC.)

5 W. Rosce
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3. for predefined enumerstion types (e.g., keyboard keys, compass directions), enumerations should
be listed on as few lines as possible without loss of readability. (These kinds of types generally
require no cusiom engineering.)

4. Initialization of composite cbjects (e.g., records or arrays) should be listed with one component
per line. (Frequently, each of these assignments represenis a custom statement, an others clause
is typically used for the non-custom assignments.)

Within Ada bodies esch semi-colon counts as one SLOC. Generic instantiations count one line for each
generic parameter (spec or body)-

The definition above treats declaralive (specification) design much more seasitively than it does
executable (body) design. It also does not recognise the declarative part of a body as the same importaace
as a specification part. Although these and other debstes can surface with respect to the “optimum”
definition of a SLOC, the optimum absoluie definition is far less important than a consistent relative
definition.

Quality Control Board. The QCB constitutes the governing body responsible for authorixing changes
to a configured baseline product (conventionally known as a configuration control board - CCB). This
body is composed, at a minimum, of the development manager, customer representative, each product
maneger, systems cfectiveness representative and the test manager. The QCB decides on all proposed
changes to configured products and approves all SCOs. The QCB is responsible for collecting the
Softwaze Quality metrics, objectively and subjectively analyzing treads, and proposing changes to the
deveiopment process, tools, products or personnel to improve future quality.

Configured Baseline. A configured baseline constitutes s set of products which are subjected to
change contzol through a Quality Control Board (QCB). Configured baselines usually represent interme-
diate products which have completed design, development, and informal test and final products which
have completed formal test. :

METRICS DERIVATION

The remainder of this paper provides substantial detail in the definition and description of the
necessary statisties to be collected, the metrics derived tom these statistics aad their interpretation.
This section provides a simple overview of how these mesrics were derived, the nece=sity of some of
the collected statistics and their raison d'étre. The following derivations are not an obvious top down
progression, rather, they resulted from substantial trial and error, numerous desd end analyses, intuition
and heuristics.

The fundamental hypothesis was that their was significant information content in the character
of rework being performed over the project lifecycle. The obvious raw stalistics to collect include
aumber and type of software changes, SLOC damaged, and SLOC fixed. The problem was to find
_the right filtering techniques for the raw rework statistics which identify useful trends and to uncover
objective measures which quantify product attributes botk during developmens and as an end-product.
Our original intent was to provide a quaatification of the product’s modulasity, changeability, and
maintainability. The first two are intuitively simple to define as a function of rework, the third is more
subtle:

Modularity (Qmes): The average extent of breaksge. This identifies the aeed to quantify eztent of
breakage {wz will use volume of SLOC damaged) and number of instances of rework (Number of
SCOs). In effect we are defining modularity as a messure of breakage localization.

Changeability (Q¢): The average complexity of breakage. This identifies the need to quantify com-
plezity of breakage (we will use effort required to resolve) and number of instances of rework
(Number of SCOs).

Maintainability (Qa¢): Theoretically the maintainability of a product is related to the productivity
with which the maintenance team can operate. Productivities however, are so difficuit to compare
between projects that this definition was intuitively unsstisfying. If we ratio the productivity
of tework to tbe productivity of development, we end up with a value which is independent of
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productivity but yet a reflection of the complexity to change a product in relation to the complexity
to develop it. This normalises out the project productivity differences and provides a relatively
comparable metric. Maintainability then, will be defined as the ratio of rework productivity and
development productivity. Intuitively, this value identifies a product which can be changed three
times as efficgently (Qar = .33) a3 it was developed as having a better (lower) maintainability than
a product that can be changed twice as efficiently (Qar = .5) as it was developed, independent of
the absolute maintenance productivity realised. The statistics needed to compute these values are
the total development effort, total SLOC, total zework effort and total reworked SLOC.

While the values above provide useful ead-product objective measures, their intermediate valuesas a
function of time would also provide insight during the development process into the expected end-product
valoes. Furthermore, once we have gained some experience with maintenance of early increments, this
experience should be useful for predicting the rework inherent in remaining increments.

The above brief derivation is starting to push the limits of our first goal (simplicity) aad the following
sections, on the surface, will appear to be somewhat complex. A few remarks about this are ia order.
First, there will always be a tradeoff between simplicity and real insight. Surface insight is asually
attained very simply, detailed insight requires added knowledge and complexity. We have chosen a set
of metrics which range from simple to moderately complex to cover the multiple perspectives needed by
project management to ensure accuracy. It is not necessary to deal with these metrics as a complete set.
Subsets, or different sets are also useful. Secondly, most of the analysis, mathematics and data collection
inherent in these metrics should be automated so that managers need only interpret the results and
understand their basis.

The above values were determined through extensive analysis, trial and error, and intuition. There
are certainly other metrics derivable from rework statistics which would also provide useful insight. The
following sections provide more detailed descriptions and notations for the collected statistics (Table 1),
in-progress indicators (Table 2), and end-product quality metrics (Table 3). Hypothetical expectations
are provided in Figure 2 for the in-progress indizators and collected statistics.

Collected Statistics

Table 1 identifies the necessary statistics which must be collected over the lifecycle to impiement our
proposed metrics.

Total Source Lines The SLOCr metric tracks the estimated total size of the product under develop-
ment. This value may change significantly over the life-of the development as early requirements
unknowns are resolved and as design solutions matare. This total should also include reunsed
softwate which is part of the delivered product and subject to contractor maintenance.

Configured SLOC This metric simply tracks the transition of software components {rom a maturng
design state into a controlled configuration. For any given project, this metric will provide insight
into progress and stwbility of the design/development team. {12] discusses some of the tradeoil= and
risk management philosophy inherent in laying out an incremental build approach. For projects
with reased software, there will be an early contribution to SLOC¢ and thus “immediate progrees”
and quality metrics as defined below.

Errors Real errors (type 1 SCOs) constitute an important metric from which many of the foilowiag are
derived. The expectation is that the highest incidence of uncovering errors happens immediately
after the tarnover and decreases with time (i.e., the software matures).

Improvements The other stimulus for changing a baseline, improvements (type 2 SCQs), are also key
to the assessment of quality and progress towards produding quality. The expectation for improve-
ments is approximately inversely proportional to errory, in that as the error rate starts off high and
damps out, the improvements start off low (the focus is on errors) and increase. This phenomenon
is basically derived from the assumption that a fixed team is working the Test/Maintenance pro-
gram and:
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Statistic Definition Insnight
Total Source Lines SLOCr = Total Product SLOC Total Effort
Configured Source Lines | SLOCc = Standalone Tested SLOC | Demonsirable Progress
Errors SCO¢ = No. of Open Type 1 5COs Test Effectiveness
SCO$ = No. of Closed Type 1 SCOs Test Progress
S5C0Oy = No. of Type 1 SCOs Reliability
Improvements SCO% = No. of Open Type 2 SCOs Value Enginesring
SCO% = No. of Closed Type 2 SCOs Design Progress
SCO3 = No. of Type 2 SCOs
Open Rework By = Damaged SLOC Due to SCO} ' Fragility
By =Damaged SLOC Due to SCO3 Schedule Risks
Closed Bework Fy =SLOC Repaired after SCO§ Maturity
F3 =SLOC Repaired after SCO3 Changeability
Total Rework Ri=F+ 58 Design Quality
Ry = F; 4 B,y Maintainabiiity

Table 1: Collected Raw Data Definitions

Effortareers + Ef foritmpreraments = Conatant

The actual differentiation between Type 1 and Type 2 is somewhat subjective. The metrics dedzed
herein are not particulady seasitive to either type since they rely on the sum of the impacts from
both types. However, the difference between Type 1 damage and Type 2 damag= may provide
useful insight 2s demonstrated on CCPDS-R.

Open Hework Theoretically, all rework cotresponds to an increase in quality. Either the rewort is

necsssary to remove an instance of “bad” quality (SCO4), ot to enhaace a ccmponemt for life
cycle cost effectiveness (SCO3). The dynamics of the rework coupled with the projecs schedale
coxtext must be evaluated to provide an accurate assessmeat of quality trends. A certaim amount
of rework is a zecessity iz a large softwate engineering effort. In fact, early rewortk is considered
& sign of hesithy progress in the evolutionary process model Continuoes rework, late rework, ot
gero rework due to the non-existence of a configured baseline sre generally imdicators of negative
quality. Interpretation of this metric requires project context. In gemeral however, tire rework
must altimately go to sero at product delivery. In order to provide a cossisteat and auzomatadle
collection process, rework is defined as the number of SLOC estimated to change due to an SCO.
The absolute sccuracy of the estimates is generally unimportaat and since open rework 3 tracked
with an estimate and closed rework (see below) is tracked separately with actuals, the vaizes
coxtinually correct themselves and zemain consistent.
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Closed Rework Whereas the breakage metrics estimated the damage done, the repair metrics should
identify the actusl damage which was fixed. Upon resolution, the corresponding breaksge estimate
should be updated to reflect the actual required repair that remains in the baseline. The actual
SLOC fized will clearly never be absolutely accurate. It will, howerver, be relatively accarate
for assessing trends inherent in these metrics. Since fized czn take on several diffetent meanings
depending on what is added, deleted and changed, a consistent set of guidelines is necessary.
Changed SLOC will increase R, without a change to SLOC;. Added code will incresse Ry and
SLOC¢, although not necessarily in the same proportion. Deleted code (not typicaily a problem)
with no corresponding addition could reduce both R, and SLOCs. A conventional differences
tool with an appropriate preprocessor which converts properly formatted source files into a format
which contains no comments and 1 SLOC per compared tecord would be the best methed for
computing changed SLOC. A simplet method (and the one used here) would be to imply catimate
the magnitude of the fixed SLOC. Given the volume of changes and the need for only roughly
accurate data for identifying trends, the accuracy of the raw data is relatively unimportant.

In-Progress Indicators
Table 2 defines the in-progress indicators and Figure 2 identifies relative expectations. It is difficuit to

define the absolute expectations for the in-progress metrics withovt comparable data {rom other projects.
Relative expectations are described in the following paragraphs. ’

Indicator Definition Insight
Rework Ratio RR = SALLS—:_% Futare Rework
Rework Backlog | BB = 5%{-3%: Open Rework

Rework Stakility | SS = (R + Ri) - (F1 + F1) | Rework Trends

Table 2: In Progress Indicator Definitions

Rework Ratio The sum of the currently broken product (By + B;) and the alteady repaired breakage
(F\ + F3) corresponds to the mass of the current product baseline which has needed rework (Ry +
R3). The rework ratio (RR) identifies the current ratio of SLOCc which is expected to undergo
sework prior to maturity into an ead product. The expectation for RR shown in Figure 2 is to
increase to a stable value with minor discontinuities following the initial delivery of each build.

Rework Backlog The current backlog of rework is defined as the percentage of the current SLOCc
which is currently in need of repaiz. In general, one would expect that the rework backlog should
rise to some level and remain stable through the test program until it drops off to zero. Large
changes from month to month should cleatly be investigated.

Rework Stability The difference between total -ework and closed rework provides insight into the
trends of resolving issues. The important use of this metric is to easure that the breakage rate is
not outrunning the resolution rate. Figure 2 ideatifies an idealised case where the resolution rate
does not diverge (except for short periods of time) {rom the breakage rate. Note also that the
breakage rate somewhat tracks the SLOCc delivery rate. A diverging value of SS would indicate
instability of rework activities. A stable value of SS would indicate systematic and straightforward
resolution activities.

9 W. Royce
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Figure 2: In-Progress Indicators Example Expectations

End-Product Quality Metrics

The end-prodoct metrics reflect insight into the maintainability of the software products with respect
to type 1 and type 2 SCOs. Type 3 SCOs are explicitly not included since they redefine the inherent
target quality of tie system and tend to require more global system and software engineering as well as
some =ajor re-vexiication of system level requirements. Since these types of chaages are dealt within
extremely diverse ways by different customers and projects, they would tend to cloud the meanings and
companbility of the data. However, the metrics data below should be very helpful in detesrmining and

plannizg the expezted effort or implementing type 3 SCOs.

Rewotk Proportions The Rg valne identifies the percentage of effort spent in rework compared to
the total effort. In esseace, it probably provides the best indicator of productivity. The activi-
tes included in these «forts should only include the technical requirements, sofiware engineering,
design, development, aad fanctiocal teat. Higher level system engineering, management, configu-
ration contwoi, verification testiag and higher level system testing should be excluded since these

10 W. Royce
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Metric Definition Insight
Rg = Ellmiszsat lintioe, Productivity
Rework Proportions . Rework

Rs = %’-}_{.—"“—"— Project Efficiency

Modularity Qmed = 3?3:-4‘%‘2.71 Rewark Localization
Changeability Qc = E—”—m—;%’%z’%::——"ﬂ’- Risk of Modification
Maintainability Qu =42 Change Productirvity

Table 3: End-Product Quality Metrics Definitions

activities tend to be more a function of the company, customer or project attributes independent of
quality. The goal here is to normalize the widely varying buresucratic activities out of the metrics.
Rgs provides a value for comparing with similar projects, {uture increments, or future projects as
well as other in progress analyses. Basically, it defines the proportion of the product which had o
be rewotked in its lifeeycle. Note that the actual value could be greater than 100% .

Modularity This value identifies the average SLOC broken per SCO which reflects the inherent ahility
of the integrated product to localize the impact of change. To the maximum extent possible, QCBs
should ensure that SCOs are written for single source changes.

Changeability This value provides some insight into the ease with which the products can be changed-
While a low number of changes is generally s good indicator of a quality process, the magnitude
of effort per change is sometimes even more important.

Maintainability This value identifies the relative cost of maintaining the product with respect to its
development cost. For example, if Rg = Rgs, one could conclude that the cost of modification is
equivalent to the cost of development from scratch (not highly maintainable). A value of Qpr muck
less than 1 would tead to indicate a very maintainable product, at least with respect to developmens
cost. Since we would ingtuitively expect maintenance costs of a product to be proportional o its
development cost, this ratio provides a fair normalization for comparison between different projects.
Since the numerator of Qy¢ is in terms of efort and its denominator is in terms of SLOC, itis a
ratio of productivities (i.e., effort per SLOC). Some simple mathematical rearrangement will saow
that Q¢ is equivalent to:

QH - Preductio
Productiviyp eeiapmons

Expectations It is difficait to define the expectations for the end-product metrics without comparable
data from other prcjects. Now that we have solid data for CCPDS-R, we can form expectations
for future increments of CCPDS-R as well as other projects.

The above descriptions identify idealized tzends for these metrics. Undoubtedly, real project sit-
uations will not be ideal. Their differences from ideal, however, are important for management and
customer to comprehend. Furthermore, the application of these metrics on project increments as well
as the project as a whole, should be useful. ’

1 W. Royce
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APPLICATION RESULTS

Figure 3, Figure 4 and Table 4 ptovide the actual data to date for tke CCPDS-R project. The Command
Ceater Processing and Display System Replacement (CCPDS-R) project will provide display Informatioa
used during emergency conferences by the National Command Authorities; Chairmas, Joint Chiefs of
Staff; Commander in Chief North American Aerospace Command; Commander in Chief United States
Space Command; Commander in Chief Strategic Air Command; and other nuclear capable Commanders
in Chief. It is the missile warning element of the new Integrated Tactical Warming/Attack Assessment
System developed by Nortk American Acrospace Defense Command/Air Force Space Command.

The CCPDS-R project is being procured by Air Force Systems Command Headquazters Electronic
Systems Division (ESD) at Hanscom AFB and was awarded to TRW Defense Systems Group in June
1987. TRW will build three subsystems. The first, identified as the Common Subsystem, is 30 moaths
into development. The Common Subsystem consists of 350,000 source lines of Ada with a developmeat
schedule of 38 months. It will be a highly relisble, real-time distributed system with a sophisticated
User Interface and stringent performance tequitements implemented eatirely in Ada. CCPDS-R Adas
tisks were originally a very serious concern. At the time of contract definition, Ada host and target
environment, along with Ada trained personnel availability were questionsble.

The data provided in this paper was collected by manually anslysing 1500+ CCPDS-E SCOs main-
tained online and in hard copy notebooks. Most of the data defined in the previous section was available
in the SCOs. Each problem description and resolution was evaluated to determine whether the SCO
was type 1 or type 2 and whether the SCO was relevant to the operational product (out of the 1500
SCOs, 910 were relevant, the remainder were SCOs {or initial turnovers, support tools, t=st software or
commercial software). Furthermore, each SCO opened contained an estimate of the effort to fix and
each closed SCO provided the actual (technical) effort required for the fix. The statistic xhich was not
present, unfortunately, was the actnal breakage assessment in SLOC. For each relevant SCO, the SLOC
breakage estimate was based on experience with the fix, the detailed description of the resolution, the
hours of analysis and the hours requited for implementing the fix. While not perfectly accurate in all
cases, these estimates are at least consistent relative to each other and given the latge sample space,
relatively sccurate for the intended use. Again, it is not that importaat to be absolutely exact when the
metries and treads are derived from a large sample and only useful to at most 1 or 2 digits of accuracy.

CCPDS-R Common Subsystem Analysis

The following paragraphs discuss the quality metrics revalts for the CCPDS-R common subsystem
as a whole with conclusions drawn where applicable. Figure 3 providess CCPDS-R actuals with the
incremental build sequence (SLOCc) overlayed for comparison.

Configured SLOC. The CCPDS-R installments of SLOCc delivered small initial builds (A0/A1
and A2) with the highest risk components. The middle build (A3), while less risky, was bulky and a
substantial portion of the build was produced by (somewhat immature) automated toois. Nevertheless,
it was installed in two increments (A31 and A32).

SCOs. As expected, the SCO rate is proportional to the SLOCc rate. The actuals also suggest
that the state of the first two builds was higher quality at delivery than the third build. The feeling
of the development managers on the project concurs with this assessment but also added that it was
during the A3-A4 timeframe when substantial requirements volatility accurred in the user interface and
external interface definitions. The number of open SCOs has remained fairly constant with respect to
the number generated and hence indicative that the rework is being resolved in a timely fashion.

Rework Resolution, The total rework (R + R3) hss also grown at a rate proportional to SLOCc
growth but its rate of growth is decreasing. Now that the software is all configured and turnovers are
complete, breakage should start damping out rapidly. The resolved rework (Fy + F3) tracked the total
tework closely with little, if any divergence. The last thres months indicate thas the rate of resolution is
exceeding the rate of breakage. This should indicate to the management team that no sedious problems
are lurking in the future.

Rewotrk Ratio. The rework rate has grown from the initial builds to sn apparently stable value of
.15. This would imply that the initial build way more mature =i delivery than the second and third
builds. With over 98% of the software in SLC ¢, this value shouid be expected to be fairly stable and a
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Figure 3: CCPDS-R Collected Statistics

good predictor of {uture rework. The amcunt of rework backlog in propottion to SLOCc has remained
. fairly constant and implies that the divergence of breakage rate and resolution rate should correct itseif
shortly.. The situation here is that substantial increments are being added to SLOC¢ and an increase
in breakage vs resolution is expected since the development team is likely focusing on installing baseline
components rather than fixing components.

SCO Effort Distributions. Figure 4 identifies the disiribution of SCOs by the effort required for
resolution. This graphic also suggests that the software is generally easy to modify. A deeper analysis
of the data shows that the majority of complex SCOs occurred in the more complex early builds.
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Figure 4: SCO Effort Distribution

Rework Proportions. Rg (Table 4) defines the percent of the development efforts devoted to rework
Since we only tracked the technical effort in analysing and implementing resalutions, we have compared
it to the software development effort devoied ta the same, namely, the requirements, design, development
and test effort. In both cases we eliminste the cost of management, facility, secretarial, configtration
management, quality assurance, and other level of effort administrative activities. Note that we have
included the software requirements analysis effort since, in our evolutionary approach, there is omly a
subtle difference between requirements and design. Rs defines the percentage of source ccde which has
undergone rewotk. CCPDS-R is currently projecting & rework ratio of 14% .

Metric Definition CCPDS-R. Value
Re = ll!ﬁ‘:eo,.::f“‘[- tsco, 6.7%
Rework Proportions
Rs = 32520 13.5%
Modulasity Qmes = Flitha— 53 3£I°
Changeability Qc = = gggnifriees 15.7 {55
Maintainability Qe = §2 49

Table 4: End-Product Quality Metrics Definitions

Modularity. This value characterizes the extent of damage expected for the average SCO. A value
of 53 SLOC implies that the average SCO only affected the equivalent of one program unit. Since most
of the trivial errors get caught in standalone test and demoanstration activities, this value indicates the
average impact for the non-trivial errors which creep into a coarguration baseline. This value suggests

14
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that the soflware design is flexible but with no besis for comparivon, this is purely comjectare. An
additional metric which would be useful in asvessing modularity would be the number of files affected
per change, This would provide insight into the locality of change as well as the exteat. This information
was not available in the CCPDS-R historical data, but it is being collected in futaure data.

Changeability. The average effort per SCO provides a mechanism iot comparing the complexities of
change. As a project average, 16 hours suggests that chaage is fairdy simple. When change is simpde,
a project is likely to increase the amount of change thereby increasing the inherent quality,

Rework Improvement. Figure § identifies how the changeability (Qc) evolved ovex the project
schedule to date. While conventional experience is that changes get more expensive with time, CCPDsS.
R demonstrates that the cost per change improves with time. This is consistent with the gosls of an
evolutionary development approech [12] and the promises of a good layered architecture {13] where the
early investment in the foundation components ard high risk componeats pays off in the remainder of
the life cycle with increased ease of change. The trend of this metric would indicate that the CCPDS-R
software design has succreded in providing sn integrable component set with effective control of breakasge.
Had the trend of this metric showed growth in effort pex SCO without stabilisation, management may be
concerned about the design quaiity and downstream risks in rewocking an incressingly hard to chamge
product. Note that Q¢ metric: do not include the cost of dowmstream re-verification of higher lewel
requirements since the broad rangz of these activities would corrupt the intent of the mettic. Q¢ has
been purposely defined to reflect tie technical risk of change, not the cost of reverification in & lasmger
context or the management risk. For example, a late change of minoe complexity could result in regressaon
test by inspection or a complete reverification of numerous performance threads. This range of effart
varies with the context of the chaage, the customer/contractor parancia and a vatriety of other isswmes
which are not teflective of the ease of change. The technical cost of change is not dosed out kowewer,
until this reverification is complete since it may result in reconsideration.
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Figure 5;: Rework Improvement: Changeability Evolution

Maintainability. The ratio of Rg to Rg characterises the cost of reworking CCPDS-R componemts
compared to developing them from scratch. This value along with the change traffic experienced durimg
the last phase of the life cycle could be used to predict the maimtenance productivity expecied frem
the current development productivity being experienced. The overall change traffic during developrment
should not be used to predict operational maintensnce since it is overly biased by immature prodmct
changes. The FQT phase change traffic (likely a lower value than the complete development lifecycle
traffic), is a mote accorate measure. A value of .49 seems like a good maintainability rating, but further
project data would permit a better basis for assessment.

This value requires some caveats in its ussge. First, this maintenance productivilty was deriwed
from small scale maintenance actions (fixes and enhancements) as opposed to large scale wpgradies
where system engineering and broad redesign may be necessitated. Secondly, the data is derived rom
the development lifecycle, therefore, it should be treated as more of an upper bound in piamming the
expectations during the maintenance phase of a product where the existence of defects should be fess
than that experienced during development. The personns! performing the maintenance actions howewer,
were knowledgeable developers which may bias the maintainability compared to the expertise of the
maintenan.: team., The message here, is that this data, like any productivity dsts, must be w=ed
catefully by people cognisant with its derivation to ensure proper usage.
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Functional CSCI Analysis. A complete lower-level analysis- was performed to analyse the vagious
contributions to the values in Table 4 by the individual CSCIs. While the evaluation of this lower level
data will not be discussed here in detail, they did uncover some intetesting phenomena which have since
been incorporated into the plans of future subsystems. There were significant differences in the various
CSCl level values which provided insight into various levels of quality and the need for perturbations to
fature plans. The Q¢ varied from .12 to .85 across 8 CSCla. For example, telatively low values were
observed for algorithm (.12) aad display (.27) software where case of change was a clear design goal.
Higher values were observed for the external communications sofiware (.51) and system services software
(.85) where changes in an external message set for example, could result in broader system impacts. The
range of values clearly identifies the relative difference in risk associated with changing various aspects
of the design. The absolute risk associated with these changes is difficult to assess without further data
from other similar projects.. :

Global Summary. In general, the CCPDS-R program appears to be converging towards a very
high quality product with high probability. This assessment is implied from the visible stability im the
quality metrics. The fact that these metrics are stable generally implies that the remaining efforts are
predictable. If the predictions do not extrapolate to better than required performaace, action cam be
taken. The key to optimising the value of these metrics is to achicve stabilisation as escly as powsible
so that if predicted performance does not match expectations, management can instigate improvement
actions a3 early in the life cycle as possible. Some characteristics wf CCPDS-R which are importaut to
keep in mind when interpreting the above metrics include:

1. Many changes incurred by the project were really type 3 (tzrue requitements change). However,
since most of these were small it was easier to incorporate them rather than go through the formal
ECP process. In retrospect, the sum of all these little changes was quite substantial.

2. These metrics are derived from the development phase, comparison with other project’s mainte-
pance phase metrics is misleading. The metrics available in the final 3 months prior to delivery
(as opposed to the lifecycle averages presented here) however, should be fairly comparable.

Operational Concept. The concept of opesations for the software quality metrics program is to
provide insight for the purposes of managing product development with minimum interfereace to the
development team. This will be accomplished by integrating the standards for metrics collection into
the tools and QCB procedures. The responsibilities of this initiative are allocated as foilows:

Software Developers: Follow the core Ada Design/Development Standards

Software Development Managers: Follow the evolutionary process model, adhere to core software
quality metrics policy, coordinate with project systems effectiveness any project unique policies,
interpret systems effectivencas SQM analysis and be accountable for issues and resolutions.

Corporate Systems Effectiveness: Define the SQM policy/tools/procedures, evaluste project im-
plementations, improve the policies/tools/procedures and easure consistent usage across different
projects. This is the same function proposed by [8] as the standards group.

Project Software Engineering: Flowdown the SQM policy/tools/procedures into a project im-
plementation, implement project QCB, SQM collection, SQM analysis, SQM reporting, evaluate
project implementations, and propose candidate improvements to the policies/tools/procedures.
Note that we are putting this function in the hands of knowledgeable project personnel (as op-
posed to conventional independent QA personnel) since the administrators of these metrics should
be motivated for effective use through ownership in both the process and the products.

We would foresee SQM metrics reporting on a monthly or quarterly basis depending on project phase,

size, risks, etc. Furthermore, the eatire SQM initiative should be relatively dynamic during its infancy
as real project applications determine what is most useful and feedback is incorporated.
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SUMMARY

By itself, CCPDS-R is perthaps a bad example {or testing these metzics. In general, the project ins
performed ss plaaned and has a high probability of delivering a quality product. It would be usehi
to examine a less successful project to illustrate the tendencies which every peoject manager sinould e
looking for as indicators of trouble ahead.

Furthermore, zone of these metrics by themselves, provides enough data to make an asmsessoment ofa
project’s quality. They must be examined as a group in conjunction with other conventicnal rnesswm
to arrive at an accurate assessment. They also do not represent the only set of useful metrics possikie
from the collected statistic oa SCOs and rework. There are many other ways to examine this data and
preseat it for tread analysis. With further automation, these other views would be simple to peoduc.

Although not fally implemented on e large project to date, subsets of the metrics presented heren
have proven useful in the long term planning and development process improvement ca CCPDS-L
TRW iy currently in the process of expanding these concepts into a uniform practice scross its Aa
software development projects supported by automated tools. With the brosd acceptance of Ada axd
cvolutionary deveopment techniques, this approach has the potential of providing a aniform techniqee
for quality metrics collection, reporting and history. This data is paramount to the implementation sf
a consistent TQM approach to software development for enhanced software product quafity amd mae
efficient software production. The following activities still need to be performed to provide a complee
initiative:

1. Enhance the standard SCO form with definitions, standards and procedures for usage.

2. Develop a portable SLOC Counting Tool (the current CCPDS-R Metrics Tool would satixfly tha
with minor modifications).

3. Identify Adastandards {which would be mandatory across all Ada projects) necessary to gumrantes
consistent metrics collection across projects and within projects. This primarily involves standarts
for program unit headers and program layout which are not controversial.

4, Develop an SCO data base management system with supporting tools for automated collecticn,
analysis and reporting in the formats defined above and other, as yet undiscovered, wseful formas.

S. Define QCB procedaures, guidelines for metrics enalysis and candidate reporting formats.
6. Incorporate this inmitiative into corporate policy.
As a conclusion, we should evaluate the approach presented herein with ouwr otiginal gosls:

1. Simplicity. The number of statistics to be maintained in an SCO database to implement ths
approach is 5 (type, estimate of damage in hours and SLOC, actual hours and actsal SEOC
resolve) aloag with the other required parameters of an SCO. Furthermore, metrics for SLOCe
and SLOCr need to be accurately maintained. If sutomated in an online DBMS, the remmaininy
metrics could be computed and plotted from various perspectives (e.g, by build, by CSCI)
a straightforward manser. Depending on the extent of discipline already inherent in a project’s
CCB aad development metrics, the above effort could be viewed as very simple (as in the case of
CCPDS-R) to compilex (nndisciplined, management by conjecture projects).

2. Base of Use. The metrics described herein were easy to use by CCPDS-R project pemsoant
aad managers familiar with the project context. Furthermore, they provide an objective besis for
discussing carrent trends and future plans with outside authorities and customers. Most trends
are obvious aad casily explained. Some trends require further snalysis to understand the umdesty-
ing subtleties. End-product metrics provide simple to understand indicators of different ot ware

quality aspects for the purposes of comparison and future planning as well as assexsment of proces
improvement.
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3. Probability of Misuse There are encugh perspectives that provide somewhat redundant views
so that misuse should be minimised. Without fuzther experience, howerer, it is not clear that
comtractor and customer will always interpret them correctly. Although correct interpretation
could never be guaranteed, it would be beneficdal to obtain more experience to evaluate where
misinterpretation is most likely.
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Large Software Project Issues

7z {72

e Rework

Primary Contributors To Software Diseconomy of Scale (Boehm):

e Interpersonal Communications

o Requirements Volatility

Ada COCOMO (Boehm/Royce) Speculates That Economy of Scale Is Possible

e Use an Evolutionary Development Approach

o Use Ada as a Lifecycle Language
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TRW Evolutionary Development Objectives

Optimize Rework
e Minimize Ineffective Rework
~ Do Hard Parts First
— Compartmentalized Breakage
e Maximize Rework Efficiency
— Fix it Early
— Design for Change
Minimize Interpersonal Communications
e Small Expert Design Team
e Layered Architecture
o Self Documenting Lifecycle Language (Ada)
Optimize Requirements Volatility
e Stablize Necessary Primitives Farly
o Change Requirements As Product Matures

e Design for Change
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- SQM Focus
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Most Important Software Quality is that it is [SOFT

¢ Modularity:

~ Breakage Extent When Changed
¢ Changeability:

— Complexity of Effort to Analyze/Implement Change
¢ Maintainability:

— Productivity of Change

Assumptions:

e Evolutionary Process Model

e Consistent SLOC Counting

¢ Configuration Control Board For Change Assessment




TRW SQM Definition 772

Quality: Degree of compliance with customer ezpectations of function, performance,
cost and schedule

Quality Metrics Derived from Measurement of Rework
e Type 1 Rework: Fix Bad Quality Instance
e Type 2 Rework: Improve Quality
e Type 3 Rework: Requirements Change

All Rework Corresponds to Quality Increase

Quality Metrics Approach
e Collect Statistics on Rework over Project Lifecycle
e Quantify Meaningful Metrics

1 ; o Plot Processed Statistics Over Time
-~ Quality Progress Trends
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CCPDS-R CDR STATUS

TRy

¢ Evolutionary Approach Permits Tangible Insight into End-product

SDR SSR PDR

FCA/PCA
<z

Traditional AV AR v A V

SDR SSR PDR
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FCA/PCA
\Vi

CCPDS-R AV AV

v

Traditional Approach CCPDS-R Approach

Software Design Complete
Code development ~10%
Software Integration Negligible
Formal Test 0%
Performance Assessment Modeling

Complete

This New Approach Enables Early Software Quality Assessment

80% of Operational
S/W Demonstrated
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TRW CCPDS-R Experience ryc< 2
% of Total
SLOC Configured
~  Configured SLOC __ - 100
900 - A
' Total SCOs g - 80
600 - Open SCOs - 60
300 7 [ 40
- - 20
i ! -t
Software Turnov%y; “V A§7 mv Mv Mv
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TRW CCPDS-R Experience 71wy
KSLOC
.
: Total Rework
50 - R+ R
i 1 2'..
30 - o 0
] 0.0
20 - OF+F
10 -

ry
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TRW CCPDS-R SCO Experience Tilww
424
400
300
No. of
SCOs
200 175
146
101
100
41
14 9
I
< 4hrs < 8hrs < 16hrs < 40hrs < 80hrs < 1G0hrs > 160hrs
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TRW CCPDS-R Quality Metrics Actuals Ty
Metric Definition CCPDS-R Value

Rework: Rg =% of Effort 6.7%
Rework Proportions

Rework: Rg¢ =% of Product 13.5%
Modularity Qmod =Average Breakage per Change 53 —S—slico—oq
Changeability Q¢ =Average Effort per Change 15.7 75%%
Maintainability Qa =Normalized Rework Productivity .49
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Conclusions

Y75

Important Needs For Successful Use:

e Consistency of Application
e Automated Tools

e Management And Practitioner Acceptance

Advantages:

e Quantitative Data For Decision Making

¢ Quantitative Data For Subjective Requirements Compliance
— Maintainability, Modularity, Adaptability, etc.
e Historical Data for Better Future Planning

Disadvantages:

e No Existing Multi-project Historical Database
— Only CCPDS-R Data Exists Now
e No Existing Project Independent Toolsuite
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Quality Metrics Can Be Used Fffectively|
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