
Bias and Design in Software Specifications'
,. , -

Pablo A. ~ t r a u b t , ; C _ - *

Computer Science Department {

Marvin V. Zelkowitz
111 . .
i .

Computer Science Department and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

December 19, 1990

Abstract

Implementation bias in a speciiication is an arbitraq constraint in the so-
lution space. While bias is a recogrjzed problem, i t has not been studied in iu
own right. This has resulted in two effects: Either (1) specifications are biased.
or (2) they are incamplete, for fear of bias. In k t , what has been called 'bias"
in the literature is s o ~ ~ ~ e t i m e s the desirable record of deign constraints and
design tlecisions.

This paper presents a model of bias in software specifications. Biasis defined
in terms of the specification process and a classification of the attribntez of the
software product. Our definition of bias provides insight into both the origin
and the consequences of bias: it also shows that bias is relative and essentially
unavoidable. Finally we describe current work on definiq a measure of bias.
formalizing our model, and relating 3ias to software defecs.

Keywords. Implementation bias. software design, softuare defects. require
ments, formal specifications.

1 Introduction

Most informal software specifications a e ambiguous, imprecise, unclear, incompietc, %,

etc. Moreover, this is usually not evident by looking a t a puticular specif icat ia

'This research is supported in part by NASA Goddard Space Fligk Center, gxani -VSC-5;i3.
'Additional support from ODEPLAN Cliile and the Catholic Univa i ty of Chik.

P. -
Udr. d-
Page l dU

The need to produce better specifications has prompted research in several fea-
tures of specifications. Guttag and Horning (21 define suficient-completeness and
consistency of an algebraic specification in terms of existence and uniqueness of au-
ioms in the specification- Jones (31 defines bias for model-based specifications as
the property of nonuniqoeness of representation within the model. Yue [a] gives a
definition for completeness of a specification, in tams of the satisfaction of a set of
explicitly stated goals. He also defises pertinence, a property related to bias. Nicholl
[5] defines the concept of mchabil i fy for model-based specifications as the ability to
reach every consistent state by some sequence of operations, and plans to study other
features of specifications, including bias.

This current research work grew out of studies within the Software Engineering
Laboratory (SEL) of NASA Goddard Space Flight Center, which has been monitoring
the development of ground support software for unmanned spacecraft since 1976.
Our goal is to improve the quality of software sp&ifications within the SEL. On
the realization that existing specification languages were inappropriate for use by
programmers at NASA, we deveioped the executable s p d c a t i o n language PUC
(pronounced POOK), d w e d to be used with Ada in this environment 17).

The executability of specification languages like PUC had the disadvantage that
much detail had to be induded in specifications, limiting the creativity of the imple-
mentor and ruling out some possibly good designs. Hence, instead of looking at !he
language problem, now m e are looking at this problem itself, the so-called 'implemen-
tation bias' in specifications. The area of bias in specifications is largely unexplored
but is important. In fact. the probiem of bias is mentioned in several works, including
both description and critiques of specification methods.

1.1 Definitions
Some related concepts are defined.

Attribute An attribute of a product is a required or desired feature of the product,
its environment, or its development process.

CVe use 'attribute' instead of the more customary 'requirement', because the
latter is associated with mandatory features that are described in the initial
phases of deveiopnrent.

Specification A spaif;cntion of a product is a description of a set of i ts attributes.

Under this definition, both the nquinments document and the preliminary de-
sign document of the waterfall model are specifications.

Solution set The solution set of a problem is the set of all products that solve the
problem, regardless of the spec3ca:i~n.

1.2 The Problem of Bias

.An ideal specification is genqal and precise enough so that a software system satisfies
the specification if and only if it solves the problem at hand. This view is too opti-
mistic, because there can be many solutions to the real world problem that do not
even involve software. In practice, we only need that software systems satisfying the
specification be solutions, and that no substantial class of solutions does not satisfy
the specification.

A specification is biased if it arbitrarily. favors some implementations over others.
Biased specifications can overly constrain the solution set, precluding some valid
implementations as solutions t c the problem at hand. Hence, the amount of bias is a
common yardstick to judge software specification methods: those that are considered
biased are usually rejected.

One of the main problems of not having a good definition of bias is that i t is
sometimes confused with intended constraints in the solution set. For example, a
designer may want to favor some realizations over others for compliance with some
programming techniques that are customary at that site. In fact, we argue that
much of what has been called bias is simply a manifestation of design decisions, that
purposely constrain the solution set. Of course, we also have many specifications that
are indeed biased.

2 A Model of Bias

We present a framework to discuss bias, based on a classification of the attributes of
the product being specified and the process of creation of attributes.

We classify the attributes of a product with respect to their inclusion in the specifi-
cation. The main criteria we consider are explicitness and origin.

2.1.1 Explicitness

An attribute is -licit if it is present in the specification; otherwise, it is noneqlicit.
Nonexplicit attributes are further classified in four classes.

Implici t attributes are those that are understood to be part of every product in the
application domain, and so they are unstated.

Impl ied attributes are logical consequences of other attributes.

Absent attributes are requirements unintentionally omitted in the specification.
These are not part of every product in the application domain.

P. %
Udr. d X u y h d
-3dU

Ficti t ious attributes [4] are not attributes at all, but assumptions made by the
reader of the specification: the reader believes that they are either implicit,
implied or absent attributes.

2.1.2 Origin

An explicit attribute is new with respect to a certain specification stage if it is first
made explicit at that stage; otherwise, the attribute is inherited from previous stages.

In an ideal setting all attributes new in a specification stage are the consequence
of design decisions taken at that stage. However, nonexplicit attributes ir the previ-
ous specification usually induce the specifier of the current stage to introduce extra
attributes. Besides, some attributes may be imposed by the limitations of the spedfi-
cation method and language used. This motivates the following classification of new
attributes with respect to their origin.

Designed attributes are the consequence of design decisions taken a t the current
specification stage. They are purposely set to guide the implementation process
and constrain the solution set.

Expl ica tory attributes are created by making explicit attributes that are implicit
in, implied by, or absent from previous stages.

Imposed attributes are those imposed by the limitations of the specification method
and language used.

For example, a method may accept only *completen specifications (a defined
by the language), which leads to introduce attributes to satisfy the rules of the
language.

E x t r a n e o u s attributes are created by making explicit fictitious attributes.

For exam?le, a fictitious attribute seen by the designer in a requirements doc-
ument may introduce explicit constraints in the design document.

2.2 The Nature of Bias
The process of refining successive specifications makes explicit attributes that -re
previously implicit, implied, or absent. This process also makes explicit design de-
cisions taken at the current stage. Unfortunately, it also makes explicit fictitious
attributes (i.e., creates extraneous attributes1) and creates imposed attributes (Fig-
ure 1). This leads to the definition of bias in terms of the origin of the attributes
described in a specification.

'Extraneous attributes lead to errors and constrainb in the mlution &; here we an studying
only the constraints.

Figure 1: Classification of attributes. Fictitious attributes are shown with segmented
line, because they are not real attributes but misconceptions. Dotted lines show the origin
of new explicatory and extraneous attributes.

Definition. .A specification containing extraneous or imposed attributes is biased.

This definition provides insight into the problem of bias, including both its origins
and consequences. The-origin of bias is either wrongful interpretation of nonesplicit
attributes or the limitations imposed by the specification method. The consequences
are that the set of possible solutions can be overly constrained or that the solution
adopted can be suboptimal. That is, a biased specification will lead the design towards
particular implementations that are not necessarily the best possible.

Bias content in a specification cannot be measured directly, because bias is defined
in terms of the origin of attributes which is usually uncertain. Furthermore, bias is
relative to the application domain and the software engineering environment, because
the domain and environment define what is implicit.

The relative nature of bias is an essential characteristic. It stems from the existence
of nonexplicit attributes and the inherent uncertainty with respect to those attributes.
As long as there are canexplicit attributes, there will be doubt about these attributes
and hence possibility of bias. Furthermore, making explicit all implicit attributes of
a certain domain and environment still leaves two sources of bias: restrictions on the
method and languages, and zbsent attributes.

P. sb.clb
Udr. d M u y h d
P a g e S d 2 4

2.3 Example
Assume an environment in which all programs are written in a particular program-
ming language. In this environment the presence of idioms of this lmguage ill a
specification is not necessarily bias, unless another implementation language is intro-
duced to the environment.

This is what happened at the SEL where software specifications for satellite dy-
namic sim~llators were 'heavily biased toward FOEYTRAN. In fact the high level

IS was not design for the simulators is actually in the specifications documeiltn (11. Th'
a problem--on the contrary, it facilitated both development and reuse of specification
and c o d e u n t i l the first development in Ada: the specifications had to be rewritten
first.

Given our definition of bias these FORTRAN-oriented specifications were not nec-
essarily biased; they contained many designed attributes. Before Ada was introduced,
the use of FOEYTRAN was implicit. After that, the language used had to be decided:
assuming a FORTRAN implementation was a fictitious attribute.

3 Current Research

We are improving the model presented in this paper in several aspects.

Formalization One weakness of our model as presented here is that we do not
formalize the concept of 'attribute'. Moreover. we define 'specification' as a se: of
attributes, disregarding dependencies among attributes. At least two kinds of de-
pendencies are relevant: attributes defined in terms of other attributes, and origin
relationships among attribctes.

To address this problem, we have develped a formalism to write specifications that
is flexible and extensible enough to include information about the specification itself
(e.g., origin information). Within the system, called Extensible Description Formal-
ism (EDF), attributes are defined as mappings from objects to values; objects are
represented by extensible polymorphic records whose fields are the attribute names.
EDF can Idpresent both functional dependencies of attributes and also attributes
defined as aggregations of several attributes. Origin information is stored by repre-
senting all attribute vaIues as objects that have an origin attribute and a content
attribute.

We developed a prototype of EDF and used it in the context of ciassification of
reusable software components. We are currently developing a complete version based
on a formal specification of the language [6].

Measuring Bias In this work we have not provided a characterization of biased
specifications. Because of the relative nature of bias we cannot develop a precise

metric of bias, but we can define approximate metrics, based on origin information
explicitly recorded in a specification.

.An important feature of EDF is that it is possible to compare two specifications
defining some distance from one specification to another. There is a predefined com-
parator function to estimate the adaptation effort in the context of reuse of software
components, and it is possible to define other comparator functions.

We can measure bias comparing the distance between two succesive specification
stages. If we use the predefined comparator function we get a gross upper bound on
bias (as i f all attributes new to the secdnd stage were bias). On the other hand, by
defining a comparator function that uses origin information, we expect to provide a
reasonable estimate of bias introduced in the second stage.

Bias Propagation Our model does not explain how bias propagates, because we
have defined bias in terms of new attributes. Strictly speaking, within our model no
inherited attribute is bias. Since we want to measure bias content in a specification,
we have to consider those attributes whose origin include extraneous or imposed
attributes. For example, if a design decision is taken consistently with some inherited
attribute that was extraneous when created, then this decision has some form of bias
too.

Bias and Software Defects Our model describes the origin for software attributes,
and defines bias as the e::istenc:: of some attributes with 'iilezitirnate' origin. The
reader can realize that these illegitimate origins are also the cause of software defects.

Software defects are classified in three groups: errors are conceptual rnisunder-
standings, fauIls are ccncrete (explicit) manifestations of errors in documents, and
failures are manifestations of faults during execution.

There is an intimate relashionship between errors and fictitious attributes. and
betweer. sritware faults and bias. In a sense, bias is like a very minor fau!t that
instead c,i leading to failures, leads to inefficiencies. The consequence of this is that
methcds to avoid bias (e.g., making explicit implicit requirements) will also avoid
software defects.

4 Conclusion
Even though bias is widely recognized as an undesirable property of specifications, it
has not been adequately studied. This has cauzed confusion with the related concepts
of design constraint and design decision, so that the presence of designed attributes
in specifications has been considered undesirable. This is in contrast with the use
of specifications in other engineering disciplines, where a specification may include
many designed attributes (e.g., materials, manufacturing methods).

In this paper we presented a model to describe the nature of bias and distinguish
bias from designed attributes and other attributes in a specification. This m ~ d e l is
baed on a classification of all the attributes described in a specification and also
tliose that are not described (i.e., nonexplicitj; it explains the nature of bias, but
since i t uses nonexplicit attributes it does not lead to any definite method to detect
bias. However, the model does explain both the relative and unavoidable nature of
bias. Moreover, because the model explains the origin of bias, it provides insight into
bias avoidance.

Our goal is to improve the quality of the specifications by removing bias and
including all relevant implementation-oriented information. To achieve this goal we
need to tell bias from designed attributes. This requires information on the origin of
the attributes, which is usually unknown. Hence. we have developed a formalism in
which origin information can be recorded, as a ,;tneralization of the common prac-
tice of tracing design documents and actual cote back to the original statement of
requirements.

Acknowledgements
Thanks to Sergio Ckdenas-Garcia and Eduardo Ostertag for their helpful cornmenu.
The Extensible Description Formalism (EDF) was defined jointly with Eduardo Os-
tertag, who is also the implementer.

References

[I] Carolyn E. Brophy, W.W. Agresti, and Victor R Basili. Lessons learned in use of
.Ada-oriented design methods. In Proceedings of the Joint Ada Conference, Mar&
1987.

[2] John V. Guttag and James J. Horning. The algebraic specification of abstract
data types. Acta Infonnatica, 10:27-52, 1975.

[3] Cliff B. Jones. Systematic program development. In N. Guehani and AD. JfcGet-
trick, editors, Sojtwan Specification Techniques. Addison Wesley, Reading, Mas-
sachusetts, 1986.

[4] Edward V. Krick. An Introduction to Engineering and Engineering D e s i p John
Wiley and Sons, New York, N.Y., second edition, 1969.

[5] Robin A. Nicholl. Unreachable states in object-oriented specifications. IEEE
Transacfions on Software Engineering, 16(4):472-477, April 1990.

[> !.
1. i

,.
f
I
.r

'I- - t T
5

*

1

(61 Pablo A. Strauh and Eduardo J. Ostertag. Semantics of the Extensible Description
Formalism. Technical Report CS-TR-2561, UMIACS-TR-90- 137, University of
Maryland, Department of Computer Science, November 1990.

[7] Pablo A. Straub and Marvin V. Zelkowitz. PUC: A functional specification lan-
guage for Ada. In X International Conjerence of the Chilean Computer Science
Society, pages 111-122, Santiago, Chile, July 1990.

[a] Kaizhi Yue. What does it mean to say a specification is complete? In Fourth
IntJl Workshop on Software Specification and Design, pages 42-49, Los Alamitos.
California, 1987. CS Prcss.

VIEWGRAPH MATERIALS

FOR THE

R STRAUB PFlESENTATlON

Bias and Design
in Software Specifications

Pablo A. Straub Marvin V. Zelkowltz
f. i- Computer Science Department
f . -
k I Institute for Advanced Computer Studies
i- i
i

University of Maryland a t College Park

Contents

e Introduction

Classification of requirements

The nature of bias

Conclusions

Introduction
Importance o f specifications

Life-cycle models consist of refinement o f

succesive specification stages.

Specification: description o f a set o f
requirements.

'Requirement' is used in al l stages, not just

the first.

Staged specifications imply

errors in previous stages are castly

product quality depends on specification

We need high quality specifications.

Introduction
We want specifications that are.. .

abstract

complete

consistent

correct

reusable

3 traceable

8 concise

executable

feasible

forn~al

modifiable

e realizable

structured

verifiable

our focus

Introduction

Solutions vs. specified products

U = product universe
A = acceptable products (solutions)

S = specified products
S - A = specified unacceptable products
A - S = solutions not specified

Ideally: S = A

Needed: S - A = 8
Desired: A - S is small

P. Stnub
Unlv. r(W u f l ' d
Page 13dU

Introduction
The what and how dilemma

Typical rule t o avoid overspecification

Specify what the system should do,

not how t o do it.

But what's arrd how's depend on viewpoint.

What: something already fixed

How: an option

How's become what's.

Confusion creates underspecification.

Classification o f requirements
Explicitness

Requirements of a product are classified as

Explicit: written in the specification

Inherited: comes from previous stages

New: created a t this stage

Nonexplicit: not written

Fictitious: not a requirement, but a
misconception

Implicit: belocgs t o all products

Implied: consequence of other
requirements

a Absent: unintentionally omitted

Classification of requirements
Explicitness

P. Sad
Udr. d M u) . l d
-16dU

Classification of requirements
Origin o f new requirements

New requirements are classified as

Designed: restriction on purpose

Imposed: restriction o f method or
language

Extraneous: makes explicit a fictitious
requirement

Explicatory: makes explicit a-nonexplicit
requirement

Classification of requirements
Creation of new requirements

I Requirements 1

. I

Bias

P. -
Cdr. d Y a.jrad
* I S d L (

-
The nature of bias

Definition

Definition

A specification containing extraneous
or imposed requirements is biased.

Origin of bias

wrongful interpretation of nonexplicit
requirements

limitation imposed by method or language

Consequences of bias

solutions not specified

adoption of a nonoptimal solution

The nature of bias

Essential limitations

Bias is not an absolute property.

Bias depends on origin.

Bias depends on application domain and
environm.ent, because o f different implicit
requirements.

Bias cannot be completely eliminated.

The nature o f bias
Example (a t NASAIGSFC)

Before introduction of Ada, FORTRAN was
implicit.

Specifications had many FORTRAN-orientea
requirements.

During first Ada project, the specifications
had t o be rewritten.

After introducing Ada, assuming FORTRAN

was a fictitious requirement.

Conclusions
Other Considerations

Formal definition of 'requirement'.

Method t o find bias.

Formalism t o write specifications with
attrib'utes (e.g. , origin o f requirements).

P. !%m&
Unh. d M q b d
Page22d34

- -

Conclusions
Contributions

A theory o f bias

classification o f requirements

origin o f requirements

precise definition o f bias

bias is inherent t o specifications

The Extensible Description Formalism (EDF)

a language to

describe requirements and their attributes

compare specifications

measure bias

Bias in relationship with software defects:

errors tt fictit ious requirements

faults ++ bias

Conclusions
Next Steps

Try these ideas measuring bias in a specific
project.

Extend this theory t o explain creation o f

software defects.

