
SEL ADA REUSE ANALYSIS AND REPRESENTATIONS

Rush Kester

Computer Sciences Corporation
J

Greenlkc II
10110 Aerospaa Road r,

INTRODUCTION
The Software Engineering Laboratory (SEL) is an organization sponsored by rhe
National Aeronautics and Space Adminisuation/Goddard Space Flight Center
(NASAIGSFC). It was created in 1977 to investigate the effectiveness of software en-
gineering technologies applied to the development of applications software. The SEL
has three primary organizational members: NASAIGSFC, Systems Developmnr
Branch; Universit); of Maryland, Computer Science Department; and Computer
Sciences Corporation, Flight Dynamics Technology Group.

Applications developed in the SEL environment are used primarily to determine and
predict the orbit and orientation of earth orbiting satellites. There are many similari-
ties among systems developed for different satellites, and those similarities creare a
climate in which software reuse enhances efficiency and cost effectiveness in the devel-
opment process. Consequently, reuse has always been an important SEL prioriry.
Over the last several years, with the introduction of Ada and objea-oriented design
(OOD) techniques, the SEL has been able to achieve a significant increase in ri;e
amount of s o b a r e reuse. Figure 1 represents-graphically the increase in software
reuse on recent Ada projects as compared with reuse on FOIiTRAN projects in a simi-
lar time period (Reference 1).

Incorporated into all SELdevelopment is the Process Improvement Paradigm (Refer-
ence 2). which includes the following four steps:

1. Understand and characterize h3e current en~ronment.

2. Try a candidate improvement.

3. Measure any change and provide feedback on experiences

4. Adopt candidate improvements with favorable results: reject those with un-
favorable results.

This Ada reuse study has as a primary objective the first process improvement srep.

R W
CSC
P p r l d l)

Figure 1. Reuse of Simulator Components

This paper describes the analysis performed and some preliminary findings of a study
of software reuse on Ada projects at the SEL

It describes the representations used to make reuse patterns and trends apparent. The
paper focuses on those aspects of the analysis that are applicable to other environ-
ments and demonstrates graphically some of the specific patterns of reuse studied by
the SEL

THE STUDY

The study examined software components (i.e., source code files) of three general
types: those that were developed on an earlier project within the SEL environment
those that were acquired from an externai source, such as a public domain repository
or commercial vendor; and those that were adapted from a similar component on the
same project. The reuse information in the SEL data base (Reference 3). combined
with the source code filesand design documentsfor each executable program. enabled
the study team to trace the evolution of software components over a 5-year period that
included several generations of similar app!ications.

PLS part of the S E b standard data collection process (Reference 4). the projects
involved in the study had recorded each component of the programs comprising each
system. Each component was classified according to the percentages of new and
reused code it contained.

For those components considered reused, the parent projea (or library) was identified
and recorded.

Reuse Defined by SEL Study

This SEL Ada study focuses on the reuse of source code files obtained from existing
projects or libraries. Although projects in the SELapply other forms of reuse. such as
specification or design products, those other forms were not the subject of this study.

During development, project developers classified (Reference 4) the origin of each
component m r d i n g to the amount of new versus reused code it contained. The high-
est degree of reuse was for components that were reused verbatim (i.e., unchanged).
The next d e p e was for components that were slightly modified (25 percent o r less of
their source d c changed). Finally, thc lowest degree was for components that were
extensively modified (more than 25 percent changed).

The following types of components were excluded from the definition of reuse for this
study:

All components developed from scratch. induding any cuch component that
may have contained fragments of code from one or more source files or de-
sign concepts borrowed from eldsting components.

Common components developed for a given project, whether used un-
changed multiple times in a given executable program or in multiple pro-
grams within the project.

Ada Projects Studied

The study induded nine Adaprojects. Three projects are dynamics simulators that
model the spacecraft's orbit and attitude to evaluate attitude control algorithms.
Three projeas are telemetcy simulators used to generate test data for attitude deter-
mination software. One project is an embedded orbit determination system. Another
projea studied developed or collected components for a reuse library. Finally, one
project developed a tool for assembling systems from reusable components. Figure 2
shows a timeline of the nine Ada projects studied.

Representations of Reuse

To identify patterns of reuse over time or within the s o h e ' s architecture, the SEL
study created a series of graphical, texnral, and combination graphicalltextual repre-
sentations of component origination and reuse information.

Rwc Across Projects Ovu Time

One group of four reports graphically represents software reuse by multiple projets
over time: PROJECT REUSE !SUMMARY, PROJECZ REUSE NETWORK,
REUSE FROM LINEAGE, and REUSE BY LINEAGE

The PROJECT REUSE !jUMMARY report shows at the project level. the number of
components reused from each project or libraxy. The report is wnsauaed as a matrix

Figure 2. Ada Projects in the FligM-Dynamics Division

with projects producing reusable components along the horizontai axis and projecs
consuming reusable components along the vertical axis. Each cell gives the number ci
components obtained from a produang projea and reused by a consuming projer
Two versions of this report could be produced: a detailed report (not shown). whicj
gives subtotals for each of the three degrees of reuse defined for the study, and a r o d
reuse report (shown in Table 1). which gives only the total for all three degrees d
reuse.

The PROJECT REUSE NETWORK report (Figure 3) illusnates reuse as a dire&
graph. The nodes in the graph represent each projen..while the fill pattern i n d i a m
the type of application. The thickness of each arrow indicates the rough order of mag
nitude for the number of components reused. md the direction of the arrow indicarn
the producing and consuming projear In h s report, an increase was evident in tk
amount of reuse for successive generations of both telcmeay simulator and dynamk -

simulator applications

A REUSE FROM LINEAGE repon focuses rn the origin of each reused mrnponm
For each instance of a component's use, the projea name. the subsystem name. rte

RXesE
CSC

Table 1. Number of Retlsed Components by Project

component name, and degree of change required are given. The lineage history of
each component is shown by indentation, with each level of indentation hdicating a
prior reuse generation. The following example shows the lineage of the project
EUVEDSIM, subsystem SHEM's component EARTH-KLMOSPHERE.

EUVEDSIM SHEM EARTH-ATMOSPHERE Reused (Unchanged) from

GOADA SHEM EARTH-ATMOSPHERE Reused (Exrcnsively modified) h m

GRODY TM ATMOSB New

Note that the names of the original component, m O S B , and subsystem, TN. of
GRODY =re changed by GO=

AKEUSE BY LINEAGE report was used to show the project(s) that have reused each
component For each instance of a component's use, the project name, the subsystem
name, the component name, and degree of change are 'given. The family tree of each
component is shown by indentation, with each level of indentation indicating a subse-
quent generation of reuse. Using this report and focusing on the degree of change

Figure 3. Project Level Reuse Network

quired, tbc s d y staff noticed two common patterns. The first pacten a sample of
mhich follo;as, is for amponens that implement a general solution.

,component-name (NEW) Reused by
... (UNCHANGED)
... (UNCHANGED)
... (UNCHANGED)

'The second panern, shown in the following example, was wen in components hat
have incorrpletdy or incorrectly implemented a general solution.

,component-me (NEW) R e w d by
(,MODIFIED)

RKdu
CSC
P a g e L d Y) - -

* I

1

Another component attribute that can be determined by using the REUSE BY
LINEAGE report is the component's domain of reuse. Assuming, as is the case in this
study, that the researcher knows the application type (or domain) of each project, the
domain of reuse can be derived by examining the type of projects reusing a given corn-
ponent.

Both the REUSE FROM LINEAGE and the REUSE BY W A G E repom a n also
be usefui for configuration management purposes, by identifying the projects rsing a
given component If one of the projects suggests an enhancement or correction, the
other reusing projects could also be notified.

Reuse W1thi.u a Project's Architexturr

In addition to examining reuse over time, this study also examined reuse within each
project's architecture. To illustrate the findings on a system-wide scale, component
reuse was superimposed on graphicaUtextual representations of each system's static
structure, its calling hierarchy, and its compilation order. Architectural representa-
tions were derived from the source code and/or design documents

Each representation of a project's architecture requires between 3 and 10 pages of
graphical/textuaI hard copy, which made it difficult to observe the overall reuse pat-
terns To overcome this difficulty, the degree of change was color-coded on all repre-
sentations of reuse within a project's architecture. These representations could h e n
be posted on a wall and the color-coded reuse patterns observed from a distance.

Reuse on a Project's Static Structure

Components were organized according to the Ada package to which they kIong.
These packageswere further organized according to the logical subsystems delked by
the original developers The degree of component reuse was then overlaid on the sub-
system and the resulting representation analyzed for patterns. The following is a sam-
ple from the REUSE ON STP;ilC STRUCTURE report for the GOADA project.
This sample shows the degree of reuse in one package, EPHEM-FILE - MAVAGER.
which is part of the SHEM subsystem.

s Name ComwnentTvne O ~ R ~ U ~ C

k h g e Spec
Fadrage Body
Roctdure Body
Function Body
Function Body
Funaion Body
Function Body
Proctducc Body
Funaion Body
Function Body

Unchqcd
un-ed
Unchaqed
New
Unchanged
Unchanged
un-
Un-
Uncfianqed
Unchanged

Examination of this representation confirmed our intuition that in most clscs the
granularity of reuse was library units (such as packages or standalone procedures or

functions). The granularity of reuse for telemetry simulators changed i-amatically to
the entire system architecture in the EUVETELS projecf in which structure and al-
most all components from the UARSTELS project were reused unchanged.

The study examined the hypothesis that a component's interface (i.e., its Ada specifica-
tion) is reusable with fewer changes than its implementation (i.e., its body). In general.
the hypothesis was confirmed by the preceding representation. The notable exception
was the second generation of dynamics simulators (i.c, the GOADAproject), in which
previously large packages were divided into smaller packages Ln that case, new pack-
age specifications were created for unchanged or slightIy modified package bodies.

Another hypothesis examined was that for some groups of components (i.e.. a package
or a subsystem), there are some parts that must be consistently tailored to each use.
Although parts of some packages or subsystems were modified in each successive gen-
eration, it was not possible to distinguish mission-tailored pans from those modi6ed
for other reasons.

Another hypothesis e d n e d was that some parts of an application's architecture lend
themselves to reuse more than do others. The study confirmed the hypothesis by re-
vealing that the highest concentration of consistentiy reused components &as among
those implementing basic data structures and mathematical functions or operating on
standardized data files

Reuse on Project's Call ' h e

The static analysis of subprogram calls in each comporient, starting with the main sub-
program, is used to create a call tree. The call tree is represented textually as an
indented outline, in which each level of indentation denotesa level of nested calls. The
order of subprograms in the 0 1 1 tree reflects the order in which each subprogram call
appears in the text and, for sequential code, reflects rhe execution order of the calls.
The call analysis demonstrates whether reuse occurs predominantly at the branch or
leaf-node level of the call tree.

Reuse on Project's Compilation Order

To study reuse on compilation order, the study group generated a textual representa-
tion combined with co!or-coded graphical elements Each project's library units were
ordered in a roughly bottom-up fashion according to Ada W l l H dependency (i.e.. the
units with fewer WITH dependencies were listed 5rs.t). Component reuse was hen
overlaid on the library units. Examination of this representation revealed that the
ability in Ada to separate specification from implementation was effective in isolating
higher level reused components from extensive changes in lower level components.
Also evident using this representation was the ability to reuse Ada generics without
change, even in cases :;.here their functionality induded endnIy new capabilities im-
plemented by gener.: subprogram parameters. A sample from a REUSE ON
PROJECT'S COMFL-;IION ORDER repon is shown in Figure 4.

(Spec - OLDUC Body - OLDUC Subuain W U C - 8)
(Sw - 0muC)
(Spec - OLDUC)
(Spec - OUUC)
(Spec - NEW)
(Spsc - OLDUC Body - OIDUC)
(Spec - o=uC)
(Spec - OLDUC bdy - SWOD. Subunib =OD - 2. OLDUC - 4)
(Spec - SLMOD. b f y - SWOD. Sutnmib -OD - 2)
(Spec - OLDUC, Body - OIDUC Subunib SIUOD - 1)
(SF - SU1OD)
(SF - 0muC)
(Body - OLDUC)

Figure 4. Reuse on Compilation Order

CONCLUSIONS
Overall, the study revealed that the pattern of reuse has evolved from initial reuse of
utility components into reuse of generalized application architectures. Utility compo-
nents were both domain-independent utilities, such as queues and stacks. and
domain-specific utilities, such as those that implement spacecraft orbit and attitude
mathematical functions and physics or astronomical models. The level of reuse was
sigdicantly increased with the development of a generalized telemetry simulator
architecture.

The use ofAda generics significantly increased the level of verbatim reuse, which is
due to the ability, using Ada generics, to parameterize the aspeas of design that are
cofigurable during reuse. A key factor in implementing generalized architectures
was the ability to use generic subprogram parameters to tailor parts of the algorithm
embedded within the architecture.

The use of object-oriented design (in which objects mode! real-wgrld entities) signifi-
cantiy improved the modularity for reuse. Encapsulating into packages the data and
operations associatedwith common real-world entities creates natural building blocks
for reuse.

REFERENCES
1. Qftware Engineering Laboratory, SEL-89-007. "Experiences in the SEL-

AppIying Software Measurement," Proceedings of the Forneenth A n d Sofi-
w r e Engineering Wonk~fiop, F. E. McGarry (GSFC), S. R. Waligora (CSC), and
?: I? McDermott (CSC), November 1989

2. Software Engineering Laboratory. SEL-89-007, "The Experience Factory:
Packaging Sofcware Experience," Proceedings of the Fourteenth AnnualSofmare
Engineering Workhop. V. R. Basili (University of Maryland), November 1989

3. Software Engineering Laboratory, SEL-89-101. "Sof~warc Engineering Labora-
tory (SEL) D a h e Organhion and User's Guide (Revision I) . M . So.
G. Heller. S. Steinberg, K. Pumphrey, and D. Speigel, February 1980

4. Software Engineering Laboratory, SEL-87-008, Dota Cofledon P r o c h - for
the Rehosted SEL Daubare, G. Heller, October 1987 I

VlEWGRAPH MATERIALS

FOR THE

R. KESTER PRESENTATION

Ada Reuse Analysis and
Representation at the

Software Engineering Laboratory
(SEL)

Rush Kester
Rhea White
Robert Kazden

Agenda

I Background
Representations of reuse

H Preliminary observations

Computer gclcr~ccs Corporallor)
ystem Scicnces Division

5 Ada source code obtained from existing projects
or libraries

B Each source file (a.k.a. component) classified
according to percent of lines reused without
change

H Definition does not include other forms of reuse

Definition of Reuse

Computer Sciences Corporation
System Sciences Division e ~ s l q l z)

With high-level reuse, delivered systems can be

W Delivered sooner and at lower cost

Incrementally improved
I More reliable

Potential Benefits of Reuse

Computer Sciencm Corporation C5C System Sciences Division 6151q12)

- -
? L

Develop similar systems for different satellites
E Knowledge carried between missions

Reuse an important part of culture
Economic benefits directly related to amount of
code reused without change
Introduction of Ada and OOD significantly
increased reuse of code

Flight Dynamics Environment

Computer Sciences Corporation
bdL system sciences Division elslqrz)

Reuse of Simulator Components

5 Projects Using FORTRAN 5 Projects Using Ada and OOD

TOTAL REUSE

0 RRCUI UNCHANOLD

Computer Scienccr Corporation CSC Syatcm Scicncca Diviaion

Steps in Process Improvement

1. Understand and characterize current
environment

2. Try candidate improvement
3. Measure change - feedback experience
4. Adopt candidates with favorable results;

Reject candidates with unfavorable results

Computer Sclcncer Cnrporrtlan CsC Syatcel Sclc~lccs Dlvlalan

Goals of Current Phase of Study

Understand and characterize reuse
- Determine patterns and trends of reuse
- Determine characteristics distinguishing

reused from nohreused components
ldentify candidates for reuse library
Identify domain of component's reusability within
the environment
Address some CM issues related to reuse

Computcr Scicncm Cotporntion CSC system ~ciences ~iv is ion 81e1qta)

- .-

Questions Addressed by Study

Does separation of interface specification and
implementation affect degree of change required?
Do Ada generlcs improve the level of reuse
without change?
Does the extent of intercomponent dependencies
affect reuse?
What is the granulqrity of reuse?
Where in software architecture does reuse occur?

H Do patterns of component evolution suggest
guidelines for more effectlve reuse?

Computer Scicnccr Corporation CSC ~ysrnnl ~ciencer ~livirion a151~ (t2)

-

Ada Projects in the Flight Dynamics Division

E U V m l . 8 Y ULOC

croiwr p KSmC

ins I/M 1/87 IIM 118~ 1190 1101

Computer Sciencca Corporation CSC system sciences ~ivirion elslqlz)

d

,

Size of Study
- 9 Ada projects, over 5 years
- Over 1900 reused components

Input Used
- SEL Component Origination Forms
- Source code files
- Representations of software design

Data Used

C pp Computer Sciences Corporation
d System Sciences Division

1. Multi-Project Reuse Summary
2. Project Level Reuse Network
3. Component Lineage Reports

4. Reuse on Software Static Structure
-5. Reuse on Software Call Tree
6. Reuse on ~ d a Compilation Order

Representations of Reuse

Computer Sciences Corporation CSC ~yateln ~ c i e t ~ e s s ~ivialun etsrqtz)

1. Multi-Project Reuse Summary Report

Total Total

Producer Projects ... Reusable Components

Consumer
Projects

Total
Reused

E Represented as a matrix or spreadsheet
1 Identifies producer and consumer projects

ldentifies number of components reused
I ldentifies degree of change required

I I

Computer Sciencea Corporation CSC ~yrtem ~cienccr 13ivisian 6151(3(12)

- - -

2. Project Level Reuse Network

Computer Sciences Corporation CSC Syste~a Scicnccr 1)ivlrion

3. Component Lineage Reports

Represents reuse over time
- From origiqating project forward
- From reusing project back to origin

ldentifies parent - child relationship
ldentifies components:

- Implementing general solution
- Gene[alized incorrectly or incompletely
- Domain of applicability

Useful for CM purposes

Computer Sciences Corporation CSC Synen, Sciences 1)iviriun

Represents reuse at project level

Reflects developer's logical view
1 Makes visible:

- Granularity of reuse
- Project dependent parts

4. Reuse on Software Static Structure

ppp Computer Yclcnca Corporallon
bdb System Sciences Division 8t6lql2)

Represents reuse at project level
Reflects actual calling hierarchy

W Makes visible:
- Level of functionality reused
- Location of reuse within architecture

?

5. Reuse on Software Call Tree

Compr~ttr Sciences Corporation CSC System Sciences Division srsrqrz)

D

R Represents reuse at project level
4 Reflects coupling between "Library Units"
III Makes visible:

- Scope of change required toreuse
- Location of reuse within architecture

6. Reuse on Ada Compilation Order

Computer Scienctr Corporation CSC System Sciences Division rtslqc?)

PR" 1 S

Reuse Patterns and Trends Observed

-

Initially application independent components
reused, now majority reflect organization's
problem domain
Ada generics significantly increased the level of
verbatim reuse
OOD (where objects model real world entities)
significantly improved modularity

ppp Computer Sciences Corporation
bdb Systc111 !kicnces Division

616lql2)

- - - - - - -

Work Remaining

Computer Bclonctr Corpontlon CSC Syatcm Scirnro Division 8161q11)

*

Develop guidance for improving verbatim reuse
Investigate rationale behind characteristics that
distinguish reusable components
Confirm hypot hesls -- Achieved highly reusable
solution for Telemetry Simulator applications

