]

-

l‘—-1 .——ﬁ1 1—-—* ln—~1

Fre W
N

b
. L

G ors nn B PYUTp——
. . .

NO2-19434-

Effect Of Formal Specifications
On Program Complexity And Reliability:
An Experimental Study *

Amrit L. Goel' -

Department of Electrical and Computer Engineering P
Syracuse University T
Syracuse, NY 13244
(315)443-4350
goel@suvm.acs.syr.edu

Swarupa N. Sahoo?
School of Computer and Information Science

October 16, 1990

‘ \j}

Abstract

In this paper we present the resalts of an experimeatal study usder-
taken to assess the improvement in program quality by using formal spec-
ifications. Spedifications in the Z notation were developed for a simple
but realistic anti-missile system. These specifications were then used to
develop 2 versions in C by 2 programmers. Anothex set of 3 versions im
Ada were independently developed from informal specifications in English.
A comparison of the reliability and complexity of the resulting programs
suggests the advantages of using {ormal spedficatiors in terms of number
of errors detected and fault avoidance,

*Funding during the course of this project was provided via US Amy contract no. DAKF
“711.89-C-0038 and NASA Grantno. NAG-1-806. —_—
1Professor, ECE and CIS —_— -
$Graduate Assistant, CIS

A. God
Syracrse Univ.

Pagel of 28

EXTENDED ABSTRACT

Specification languages are widely accepted as a stepping stone for design
and development of a complex software system [1, 2, 3, 4, 5]. The advantagesofa
specification language are often not immediately clear in terms of program qual-
ity and reliability. Proving an executable program correct for complex systems
is computationally an intractable task (6]. Also "an effective testing stratagy
which is reliable for all programs cannot be -onstructed” (7]. In such a setting,
formal specification languages coupled with structured design methodologies (8]
provide z streamlined approach for software design and development.

In this experimental investigation, we study the effect of the specification
language Z [11] on program reliability and complexity. For our experiment we
chose the NASA Launch Interceptor Problem(LIP) since it has been used ex-
tensively for several other studies in software reliability and fault tolerance. It
is a simple but realistic representation of an anti-missile system. Tae origiaal
specifications were taken from Knight and Leveson [12]. The LIP is a constraint
satisfaction problem, a solution to which is a decision procedure which takes a
set of input points and launch characteristics to evaluate a set of initial launch
conditions, called the preliminary unlocking matrix. The procedure then eval-
uates a logical combination(the combination is decided by an input matrix) of
the initial conditions called the final unlocking vector the components of which
collectively decide if the Jaunch signal should be true or otherwise.

The experiment consisted of usual phases of software design and develop-
ment with minor differences. In the specification phase a set of specificazions of
the requirements was develops? in the Z notation and was validated by other
specifiers. Several versions were developed based on informal and formal require-
ments specifications separately, by independent groups of programmers. For
testing, a hybrid approach [13] was developed based on functional and struc-
tural information about the LIP. For generating test cases, the hypothetical
launch conditions were divided into 7 relatively independent groups. The truth
values of one of the groups was fixed a priori, annd'an input data set was con-
structed to satisfy the prefixed truth values of t*.s group and the truth values
of the rest war- ~omputed against the irput set. Such manually designed test
cases were used to test each program. Ai: .- debugging, when the computations
of launch conditions for all the versions match, the cyclomatic complexity mea-
sure [9] is applisd to ~ompute internal complexity of each individual module.

A. Goel
Syracuse Univ.
Prge2 of 28

pE— Sy

—

Also computed are the external complexity due to the interconnections between
various modules based on "information flow” concepts [10], and finally the total
system complexity as a weighted sum of internal and external complexities.

The versions based on informal requirements are found to be afflicted with
usual problems caused by the inherent ambiguities in the informal requirements.
However, a significant reduction was observed in the number of errors detected
in the testing pbase in case of the versions based on formal requirements. Fur-
ther, complexity measures strongly suggest that versions based on formal spec-
ifications are .sss complex and more reliable than thcse based o2 informal re-
quirements. The study also suggests that the formal specifications developed
through several successive stages of operntions refinement lend themselves to an
automatic modular program development(special case of a divide and conquer
technique) in an optimal way, and thus reduce the error-proneness of the pro-
gram and make it more reliable.

Summary of Experimental Results
L Productivity:

Table 1 - specification development time

Version aumber | Total Specification Development Time(bours)
Spec 1 47

Table 2 - program development time

Version number | Total Program Development Time(kours)
Cver | ' 18
Cver 11 38
Adaver [76
Adaver [1 73
Adaver 11 89

II. Reliability(in terms of number of errors detected)

Table 3 - Number of errors detected during development

Version number | Total Number of Errors
Cver | 3
Cver [1 8
Adaver [8
Adaver I 7
Adaver 111 4

A. Goed

Syracuse Uniw.
Page3af 28

Table § - Number of errors detected during testing

Version number | Total Number of Errors -

Cver [0 .
Cver 11 7

. Adaver [13 -

o Adaver II 11 >
Adaver 111 8

) References)

(1] D. L. Parnas, The Use of Precise Specification in the Development of Soft- -

ware, Proceedings of IFIP Congress 77, Toronto, 1977.

S (2] I. Hayes, editor. Specification Case Studies. Prentice-Hall International,
e London, 1987.

[3] C. Morgaz, B. Sufrin, Specification of the Uniz Filing System, IEEE Trans.
Software Eng., March 1984.

(4] D. Bjorner, C. B. Jones. Formal Specification and Software Development.
Prentice-Hall International, London, 1982, -

[5] C. B. Jones, Systen:atic Software Development using VDM, Prentice-Ilall
International, 1986.

{6] D. L. Parnas, When can Software be Trustmorthy £, COMPASS-88 Confer-
ence, Wanhiugtan, D. C., July)84,

(7} W. E. Howden, Reliabilily of the Path Analysis Tesling Siralegy, 1EEE
Trans. Software Eng., Sep 1976.

(8] E. Yourdon, L. L. Constantine, Structured Design. Prentice-IIall Inc., 1979.

9] T. J. McCabe, A Complezily Measare, IEEE Trans. Software Eng., Sep
1981.

t10] K. S. Lew, T. S. Dillon, K. E. Forward, Software Complezity and its Impact
on Software Reliability, IEEE Trans. on Software Eng., Nov 1988.

(11] J. M. Spivy, The Z Notation: A Reference Manual, Prentice Hall Interna-
tional, 1989.

(12] J. Knight, N. Leveson, An Ezperimental Evalsation Of The Assumption
Of Independence In Multi-version Programming, IEEE Trans. on Software

Eng., Jan 1986.
{13] A. L. Goel, An Ezperimental Investigation Inio Software Reliabilily,
RADC-TR-88-213, Oct 1988. "4
A. Goel
Syracuse Univ.
Paged of 28 Y
—_ -
-— ————— —_— —

_ VIEWGRAPH MATERIALS
FOR THE
A. GOEL PRESENTATION
l
i‘
i
o
!
| 62690
(N
. B _ /s
- et — - — -—-—._

[W
0

EFFECT OF FORMAL SPECIFICATIONS ON PROGRAM
COMPLEXITY AND RELIABILITY: AN
EXPERIMENTAL STUDY

Amrit L. Goell
Swarupa N. Sahoo?

Syracuse University
Syracuse, NY 13244

Presented at the Fifteenth. Annual Software Engineering
Workshop (SEL) held at NASA/G SFC, Greenbelt, MD,
November 28-29, 1990.

I professor, Electrical and Computer Engineering and School
of Computer and Information Sdence, (315) 443-4350,

goel@suvm.acs.syr.edu.
2 Research Assistant
A. Goel
Syracuse Uniy.
PageSof 28

OUTLINE

Objectives of Study

Experimental Appraoch

Resuits of Experiment

Comparison with Versions from Informal Specifications

Fault Aviedance by Using Z

Concluding Remarks

A. Geel
Syracese Uniyv.
Page6of =3

¥ 4

b T e e B B

[. \

OUTLINE

Objectives of Study

Experimental Appraoch
- LIP Problem

- Z-Specifications
- Experiment Description

Resuits of Experiment
- Development Effort
- Size and Complexity Metrics

- Errors During Development
- Errors During "Operational Testing"

Comparison with Versiotis from Informal Specifications

Fault Aviodance by Using Z

Concluding Remarks

A. Goel
Syracuse Univ.
Page 7of 3

OBJECTIVES OF STUDY

« Investigate the effect of using formal specifications on
- productivity

- reliability
- complexity

o Compare results with versions developed from informal
specifications

A. Goel

Syracuse Univ.

Page Sof 28

A

*

R

.____--

pm——

Current
Experiment

Informal Specs

EXPERIMENTAL APPROACH

Formal
2-Specs

3 Versions
in C

Function
Testing
(54 Tests)

One Million
Random Test
Cases

3 Versions
in ada

Function
Testing
{54 Tests)

1000 Randem
Test Cases

Comparison of
Results

A Previc
Experime

Syracuse Univ.

EXPERIMENTAL APPRAOCH

Used NASA - Launch Interceptor Problem (LIP)

Developed Z-specifications from English specifications of
LIP (Two independent Z specifications)

Used Z-specs to develop 3 indipendent versions in C

Each version tested for a set of 54 test cases from a previous
experiment involving LIP

Each version exectted for one million random test cases to-
simulate operational testing

A. Geed
Syracme Univ.
Page (0028

 ———— sibe.
: >l

o B

LIP

+ Simple, but realistic anti-missile system.

« Studied elsewhere” in connection with fault-tolérant and
Fortran/Ada comparison software research

+ Program reads inputs which represent radar reflections,
checks whether some prespecified conditions are met and
determines if the reflections come from an object that is a
threat and if yes, signals a launch decision

* Knight and Leveson, IEEE-TSE, January 1986.
Goel, etal, COMPSAC 87 and RADC-TR-88-213.

A. God
Syracwe Unmiv.
Page llof28

¥-6

LCM, PUM-DIAGS

10

Z
D

PUM

FUV

uTPuy

SR TLAy
- %%

-apm) mowsks

[T] [SV
. .]

EXAMPLE

Launch Inte\rcepter Conditions

LIC 1: There exists at least one set cf two consecutive data
points that are a distance greater than LENGTH 1
apart

0<=LENGTH1

LIC 11: There exists at least one set of three data points
separated by exactly E and F consecutive
intervening points, respectively, that are the vertices
of a triangle with area greater than AREA1

1<E
1<F
E + F <NUMPOINTS - 3

A. Goel
Syracuse Univ.
Page 130028

Z-SPECIFICATION LANGUAGE i

+ Well known specification language developed by
Programming Research Group at Oxford University

«+ Has been applied to develop specifications for several
software systems but we are not aware of experimental
results comparing it with informal approaches

A. Goef
Syracuse Univ. 4
Page 140028

SOME COMMENTS ON Z FOR LIP

Z-specifications were helpful in several aspects.

Some Examples:

« In resolving certain ambiguous issues

- whether two identical (x, y) pairs can beleng to a sequence
of input data points

« In expressing invariant properties

- the LCM matrix is symmetric, can be easily expressed
mathematically

+ In exploiting the repetitiveness of certain launch conditions
which was helpful in functional groupings for design and
testing.

- a closer look at LIC 1, & and 13 indicates that they are
related. We exploit the similarity by defining a
"prototype” schema, and then using it to define each of
these separately

A. Goel
Syracuse Undv.

Page 1S of 28

Expressing Requirements in the Z
Notation

Example:LIC1

Informal Specification

LIC 1: There exists at least one set of two consecutive
data points that are a distance greater than LENGTH]1 apart.
(LENGTH]1 2>0)

Formal Specification

LICI{NUMPOINTS,LENGTHI|

POINTS :seq Rx R

cmv,cmv N = B

cmv’ = cmv®

{1 (1 < #{(POINTS(i), POINTS(j))IVi,j : L.NUMPOINTSe
j=i+1A(LENGTH! < edist(POINTS(i), POINTS(;)))}
ALENGTH1 > 0)}

Cxlvhere edist(p,q) computes the distance between points p
and q.

A Goel
Syracuse Univ.
Page 16 of 28

rv‘p'

Expressing Requirements in the Z
Notation

Example:LICT

Informal Specification

LIC 7: There axists at least one set of N PTS consecutive
data points such that at least one of the points lies a dis-
tance greater than DIST from the line joining the first and
last of these points. If the first and last points of these N_PTS
points are identical, then the calculated distance to compare
with DIST will be the cistance from the coincident point to all
other points of the N.PTS coasecutive points. (DIST >0)

Formal Specification

LICTINUMPOINTS, NpTS, DIST)

POINTS :seq Rx R

cmv,cmv’: N — B

emy’ = emv®

{7+ (1 S #{(POINTS(3), POINTS(j)){Vi,j: L..NUMPOINTSe
j=i+NPTS—-1A3k:i+1.5-1e
(pt.cmp(POINT S(i), POINTS(}))

A(edist(POINTS(i), POINTS(k)) > DISTY))
V(-pt_cmp(POINTS(3), POINT5(5))

A(pdist(POINTS(i), POINTS(5), POINTS(k)) > DIST))}
ADIST >0)}

where edist(p,q) computes the distance between points p
and g, pdist(p,q, r§ computes the perpendicular distance from
point r to the line through p and g and pt_cmp(p, q) returns a
boolean value true if p and q are identical, and otherwise false

A. Ged

Syracaee Uniw.
Page 728

DR

Expressing Requirements in the Z

Notation(contd.)
Example:LI1C7

pdist: R*xR*x R* —» R*
Vp,g,r€R3 e
2 x Aarea(p,q,r)

edist(p,q)

~(pt_cmp(p, q)) = pdist(p,q) =

Note that the line must be well defined, i.e, at least the points
on the line must not be identical. Obviously this is a partial

function.

A. Gael
Syracmee Univ.
Page 18 0of 28

RESULTS OF EXPERIMENT

A. Goel
Syracuse Uaiv.

Page 190028

SOME PROGRAM METRICS

Programmer

C-Code From
Z2-Specs

Ada Code From
Informal Specs .

A B c

D E F B

Source Lines
Comment Lines

System Complexity”

373 407 669
82 80 S9
56 53 81

691 624 851
59 126 251
334 309 297

See Lew et al, TSE, November 1988.

A Geel
Syracene Univ.
Page20 028

o |

COMPLEXITY METRIC®

System S has n modules, each with complexity M;

System complexity = VIM;

M; depends on

- Internal complexity
- External complexity (measures module interrelationships)

Internal complexity

- McCabe’s cyclomatic number

External complexity

- Amount of interaction with the environment
- Depends on the information content of input and oatput
parameters

*Lew et al, IEEE-TSE, November 1988, pp. 1645-1655.

A. Goel

Syracase Univ.
Page 21 of 28

PROGRAM DEVELOPMENT EFFORT (hours)

Develop l
Versions Z-Specs Design Coding Testing Total
A 27 6 6 6 45
B 10” 10 10 8 38
o 33 8 6 4 51
* B used specs. developed by A

Learning Z: A -20 hrs.
C - 21 hrs.

A Goel
Syracuse Univ,
Page 220028

pn—q.-' O-...u.

S =y

R Ry
.

[e
.

NUMBER OF ERRORS*
Function "Operational”
Development and Testing Testing
Programmer Unit Testing (54 TC) (1 million TC) Total
A 3 0 0 3
B 1 7 0 8
c 3 0 0 3
*Does not include compilation errors
A. Goel
Syracuse Unis.
Page 23 of 28

COMPARISON OF DATA FROM C AND ADA VERSIONS

« We compared the effort and error data from a previous
experiment that used Fortran and Ada languages.

« We do not think that our results are biased because
language dependent aspects are not under study here. Also,
the programmers in these studies were reasonably proficient
in the respective languages so that the choice of the language
should not affect our results

« However, to enhance our conclusions, we plan to develop C
versions from informal specifications

A. Goel
Syracuse Univ.
Page 250028

ey N>

& PR T o e gt T Ty

Ce e

il = e e ¢

Gas Sww Saey

Vo

COMPARISON OF EXPERIMENTAL RESULTS: EFFORT AND ERRORS

2 Informal
Programmer A B o D E F
Effort 45 32 51 | 76 73 89
D&UT 3 1 3 5 4 4
Errors FT 0 7 0 8 7 4
Total 3 8 3 13 11 8
D&UT - Development and uUnit Testing
FT - Functioa Testing
A Goel
Syracuse Univ.
Page 2S of 28

FAULT AVOIDANCE BY USING Z

« We believe that certain types of faults can be avoided by
wing formal specifications

+ Following are two explicit examples of faults avoided by
using ~ for LIP®

- Caluclation of angle between = and 2x rather than between
0Oandn

- Calculation of distance from point to line when points are
collinear and first point not between other two

=" See Brilliant et al, TSE, February 1990, page 242.

A. Gaed
Syrace<e Univ.
Page 26 nf 23

r——

e e
-

!

-

FAULT-AVOIDANCE - EXAMPLE LIC 7

« Consider 3 collinear points (A, B, C) as shown

" - Py

A B C

-

» Need to compute distance from B to line AC (LIC 7)

« Computation” from informal specs can lead to

Dist(A, C, B) = min (dist(A, B), dist(B,C))

+ However, formal specifications always compute zero, the correct
result

*See Brilliant et al, TSE, February 1990, p. 242.

A. Goel
Syracuse Univ.
Page 27 of 2%

CONCLUDPING REMARKS

+ Use of Z specifications was clearly helpful in reducing errors
(and hence increasing reliability)

+ Based on a few metrics, it is also evident that the complexity
of code developed from Z was also lower

+ Total effort involved, including learning Z and development
of Formal specifications, was comparable to the effort
involved in developing versions from informal specifications

Yet —-

+ This experiment does not provide conclusive evidence about
the superiority of formal specification over informal ones

« Further investigation necessary to explore the feasibility and
usefulness of Z for large problems

« Reusability of such formal specifications also needs to be
investigated
A. God

Syracuse Univ.
Page 28 of 28

iy

IS

