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ABSTRACT

In this dissertation, an advanced implementation of the direct
boundary element method applicable to free-vibration, periodic (steady-
state) vibration and linear and nonlinear transient dynamic problems
involving two and three—dimensional isotropic solids of arbitrary shape is
presented. Interior, exterior and half-space problems can all be solved by
the present formulation.

For the free-vibration analysis, a new real variable BEM formulation
is presented which solves the free-vibration problem in the form of
algebraic equations (formed from the static kernels) and needs only surface
discretization.

In the area of time-domain transient analysis the BEM is well suited
because it gives an implicit formulation. Although the integral
formulations are elegant, because of the complexity of the formulation it
has never been implemented in exact form. In the present work, linear and
nonlinear time domain transient analysis for three-dimensional solids has
been implemented in a general and complete manner. The formulation and
implementation of the nonlinear, transient, dynamic analysis presented here
is the first ever in the field of boundary element analysis.

Almost all the existing formulation of BEM in dynamics use the
constant variation of the variables in space and time which is ve.ry
unrealistic for engineering problems and, in some cases, it leads to
unacceptably inaccurate results. In the present work, linear and
quadratic, isoparametric boundary elements are used for discretization of
geometry and functional variations in space. 1In addition higher order

variations in time are used.
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These methods of analysis are applicable to piecewise-homogeneous
materials, such that not only problems of the layered media and the soil-
structure interaction can be analyzed but also a large problem can be
solved by the usual sub-structuring technique.

The analyses have been incorporated in a versatile, general-purpose
computer program. Some numerical problems are solved and, through
comparisons with available analytical and numerical results, the stability

and high accuracy of these dynamic analyses techniques are established.
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NOTATTIONS

A short list of notation is given below. All other symbols

are defined when first introduced. A few symbols have different

meanings in different contexts, but no confusion should arise.

ui’ ti

Cse
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ij

ol
ij

X

E=

Gij'Fij

[A], [B]

{x} .y}
(Ry)

Young's modulus

Poisson’s ratio

Lame’s elastic constants
mass density

pressure wave velocity
shear wave velccity

time

Laplace transform parameter
circular frequency

surface of the domain
volume of the domain
displacements and tractions
stresses

Kronecker'’s delta function
initial stress

global coordinates of the receiver or field point

global coordinates of the source point

displacement and traction fundamental singular solutions

matrices of coefficients multiplying the known and unknown

field quantitites, respectively
known and unknown boundary field quantities
vector containing past dynamic hisotry

spatial shape functions for boundary elements

spatial shape functions for volume cells
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N

incremental quantity
spatial derivative

summation

time derivative

Laplace or Fourier transformed quantity
quantity related to interior stress
quantity related to interior displacement
quantity related to a boundary point

quantity related to elasto-static
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INTRODUCTION




I.1 THE NEED FOR THE PRESENT WORK

The dynamic analyses of engineering problems involving two and three-
dimensional solids have been a subject of intense research for the last two
decades. For these problems, closed-form analytic solutions are extremely
difficult to obtain except for very simple geometries and boundary
conditions which hardly exist in practice. Experiments, on the other handg,
are expensive and difficult to perform. They also involve elaborate
apparatus in order to reproduce the desired excitations and to scale the
important parameters correctly. Therefore, resort has to be made to
numerical methods of solution.

There are currently two major categories of numerical methods
available for dynamic analysis of solids; namely, approximate continuum and
discrete (lumped parameter) models. The most widely used approximate
continuum method at present is the Finite Element Method (FEM). 1In
principle it appears to be a very versatile technique because it can handle
complex structure geometry, medium inhomogeneities and complicated material
behavior in both two and three dimensions. The finite element formulation
results in a system of equations that may be solved by modal analysis,
Fourier transform techniques, or step-by-step integration schemes (Ref.
Zienkiewicz, 1977). However, the major deficiency of the FEM is that an
infinite or semi-infinite medium has to be modeled by a mesh of finite
size. This results in undesirable wave reflections from the artificial
boundaries. This situation is remedied by the use of transmitting
boundaries (e.g. Kausel et al, 1975), hybrid techniques (e.g. Tzong et al,
1981), or infinite elements (e.g. Bettess, 1977). The use of infinite

element is restricted to homogeneous far fields because it does not permit
. variation in material properties, and hence problems involving layered

media cannot be solved by using infinite elements. Similarly, a




transmitting boundary encompassing all possible cases of waves impinging at
the ends of a mesh has yet to be devised. Furthermore, the computational
cost involved in analyzing three-dimensional problems by the FEM is so
enormous that only a few researchers can afford it. Another continuum
method is the Finite difference method (FDM). It has been used less
frequently than the FEM, primarily because of the difficulties associated
with it in handling complicated geometries and boundary conditions.

Discrete models are also in use for a certain class of problems (Ref.
Hadjian et al, 1974). The basic idea behind the discrete model approach is
the evaluation of the mass, stiffness and damping coefficients that
essentially represents the medium. With the use of these frequency
dependent coefficients known as impedance functions, the dynamic analysis
of the structure is possible. However, exact expressions for impedance
functions can be obtained for very few cases only and therefore the use of
discrete models is rather restricted to some simple problems, e.g. some
foundation problems (Ref. Arnold et al, 1955: Veletsos, 1971).

In contrast, it is convincingly demonstrated that accurate and
efficient solutions to dynamic problems can be easily obtained by using the
Boundary element method (Ref. Banerjee and Butterfield, 1981) because the
radiation condition is automatically (and correctly) satisfied and for
linear problems only the surface of the problem needs to be discretized.
Even for problems with material nonlinearity (e.g. soil), in addition to
the surface discretization, only a small part of the domain where nonlinear
behavior is expected needs to be discretized. Thus, a tremendous reduction
in the size of the problem can be achieved. A brief description of the
Boundary element method (BEM) is provided in Section II.2 and a complete
review of the existing work on dynamic analysis by BEM is presented in

Chapter III. From this review, it can be seen that most of the existing




work on dynamic analysis by BEM suffers either from the lack of generality
or from unacceptable level of accuracy. In addition, all of the existing
work is based on the assumption of linear elastic behavior and most of them
assume steady-state conditions. However, in the real world of engineering
problems, steady-state conditions and linear behavior are at best a first
order approximation. For truly transient processes it is thus mandatory to
consider time response and nonlinear behavior.

Because of the reasons discussed above, there is a need for a complete
and general analysis method for dynamic problems of two and three-
dimensional solids, particularly for problems related to the semi-infinite
mediums.

The work described in this thesis represents a comprehensive attempt
towards the development of a general numerical methodology for solving two
and three-dimensional dynamic problems by using BEM. The developed
methodology is applicable to free-vibration, periodic vibration and linear
as well as nonlinear transient dynamic analysis of solid bodies of

arbitrary shape.

I.2 RELEVANT B OF TNEERING ANALYSTS AND
THE SCOPE QF THE PRESENT WORK

The ability to predict the dynamic response of solid bodies subjected
to time and space dependent loads and boundary conditions has gained
considerable importance in all engineering fields such as machine
foundation design, seismology, non-destructive testing of materials, soil-
structure interaction analysis, structural dynamics, metal forming by
explosives, auto-frettage, and aircraft structure design.

The methodology for dynamic analysis presented in this dissertation
can be used for solving a number of problems described above. Brief

descriptions of some of these problems are given below.




(i) Machine Foundation Design: The design of a machine foundation

essentially consists in limiting its motion to amplitudes and frequencies
which will neither endanger the satisfactory operation of the machine nor
will they disturb the people working in the immediate vicinity. Therefore,
for a successful machine foundation design, a careful engineering analysis
of the foundation response to the dynamic loads from the anticipated
operation of the machine is desirable. The existing methods for analyzing
machine foundations can be categorized into two groups: namely, lumped
parameter approaches and the finite element method. In the lumped
parameter approach all the motions are assumed to be uncoupled and for
complicated gecmetries it is impossible to find impedance functions. On
the other hand, as discussed earlier the finite element method is unable to
handle realistic three-dimensional foundation problems because of its
finite boundaries and computational costs. Therefore, the methodology
presented here provides a viable tool for analyzing machine foundations
with complex geometries embedded in layered soils. The multi-region
capability of the present code will allow the realistic modeling of the
foundation as well as the soil. It should be noted that the assumption of
a rigid or flexible foundation is not needed in the present case. Also,
different combinations of dynamic loading and boundary conditions can be

easily incorporated.

(ii) Seismology: In the field of seismology, one is concerned with the
study of wave propagation in soils. For this purpose, linearized theory of
elastodynamics are commonly used. Thus, the present work provides a
general methodology for studying wave propagation in a homogeneous

halfspace as well as in layered soils.




(iii) Auto-frettage Process: This process is used in gun-building and in
the construction of pressure vessels. In this process, walled structures
such as pipes and spherical and cylindrical shaped containers are
deliberately subjected to high pressure during their construction. This
causes plastic deformation and thereby raises the yield strength of the
material and induces favorable stress distributions. As a result, the
working loads (i.e. internal pressures) are now carried out by purely
elastic deformations. In order to achieve an optimum design of a pressure
vessel by auto-frettage, the auto-frettage process has to be analyzed
numerically. For this purpose, nonlinear static analysis algorithms are
generally used. However, a realistic simulation of this problem can only
be achieved by using a nonlinear dynamic analysis algorithm. The nonlinear

transient dynamic algorithm presented in this thesis can serve this

purpose.

(iv) Structural Dvnamics: The problems related to forced and free-
vibration of structural components such as beams, columns, and shear walls
can all be analyzed by the proposed methodology. The nonlinear behavior of
a structure subjected to an arbitrary transient loading can also be
obtained by using the present method including the cracking and yielding of

joints.

(v) Sojl-structure Tnteractijon: The safety of structures such as nuclear

power plants, dams, bridges, schools, hospitals, and utility pipelines
during an earthquake is of great concern to the designers and the local
authorities. Thus, to determine the response of these structures during an
earthquake, a great deal of research has been done and several techniques
have been developed. WNevertheless, the problem is so complicated that it

is still a subject of intensive study.




The response of structure during an earthquake depends on the
characteristics of the ground motion, the surrounding soil, and the
structure itself. FPor structures founded on soft soils, the foundation
motion differs from that in the free-field due to the coupling of the soil
and structure during an earthquake. Thus, soil-structure interaction has
to be taken into account in analyzing the response of structures founded on
soft soils. The available soil-structure analysis techniques can be
categorized in two groups: i.e., the direct method and the substructure
approach. In the substructuring approach, one of the steps involved is the
determination of the dynamic stiffness of the foundation as a function of
the frequency. The steady-state dynamic algorithm of the present work can
be used to determine the dynamic stiffnesses of two or three-dimensional
foundations and embedment of the foundation and layering of the soil can
both be taken into account. As discussed earlier this methodology is a
better alternative to the finite element method for this type of problem.

The time-domain, nonlinear, transient algorithm presented in this
thesis is a strong candidate for realistic analysis of soil-structure
interaction problems because, in addition to embedment and layering, it can
also take into account the nonlinear behavior of soils. Finally, for
structures subjected to wind load, the present implementation provides an

accurate and efficient analysis.

I.3 QUILINE OF THE DISSERTATION

This dissertation presents a complete and general numerical
implementation of the direct boundary element method applicable to free-
vibration, periodic vibration and linear and nonlinear transient dynamic
problems involving two and three-dimensional isotropic piecewise

homogeneous solids of arbitrary shape.




The early history of elastodynamics is presented in Chapter II. Also
presented is a brief introduction to the boundary element method, its
historical background and recent cdevelopments.

A literature review of the existing work on dynamic analysis by
boundary element method is presented in Chapter IXI. In this chapter, for
completeness, work on scalar wave problems is also reviewed although it is
not related to the present work because in elastodynamics waves are
considered to be vectors not scalars.

In Chapter IV, an advanced implementation of the direct boundary
element method for two-dimensional problems of periodic vibrations is
introduced. The governing equations of elastodynamics are presented
followed by the boundary integral formulation in transformed domain.
Subsequently, numerical implementation is introduced which includes
discussions on the use of isoparametric elements, advanced numerical
integration techniques, and an efficient solution algorithm. Some
numerical problems are solved and the results are compared with available
analytical and numerical results.

A rew real-variable BEM formulation for free-vibration analysis and
its numerical implementation for two-dimensional problems are presented in
Chapter V. This method solves the free-vibration problem in the form of
algebraic equations and needs only surface discretization. First, the
formulation of the problem is introduced and then scme simple problems are
solved and compared with available results to demonstrate the accuracy of
this new method.

In Chapter VI, an advanced implementation of the BEM applicable to
steady-state dynamic problems of three-dimensional solids is presented.
The governing equations and boundary integral formulation are the same as

those introduced in Chapter IV. The numerical implementation for three-




dimensional problems is discussed first. Additional features like built-in
symmetry and sliding at interfaces are also introduced. Finally, a few
numerical problems are solved and are compared with the available results.

The Laplace-transform-domain, transient, dynamic algorithm applicable
to two and three-dimensional solids is introduced in Chapter VII. The
basic formulation and the inverse transformation techniques are discussed
first followed by a number of example problems which demonstrates the
stability and accuracy of this algorithm.

In Chapter VIII, the boundary element formulation for time domain
transient elastodynamits and its numerical implementation for three-
dimensional solids is presented for the first time in a general and
complete manner. Higher order shape functions are used for approximating
the variation of field quantities in space as well as in time. The
unconditional stability and accuracy of this algorithm is demonstrated by
solving a number of problems and comparing the results against available
analytical solutions.

Chapter IX presents for éhe first time in the history of boundary-
element analysis a direct boundary-element formulation for nonlinear
transient dynamic analysis of solids and its numerical implementation for
three-dimensional problems. The formulation is discussed first followed by
discussions on constitutive model, volume integration, time stepping and
iterative solution algorithm. Subsequently, a few numerical problems are
solved and results are presented.

Finally, conclusions and recommendation for future research are set

forth in Chapter X.
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II.1 HISTORICAL ACCOUNT OF ETASTO-DYNAMICS

The study of wave propagation in elastic solids has a long and
distinguished history. Until the middle of the nineteenth century light
was thought to be the propagation of a disturbance in an elastic ether.
This view was espoused by such great mathematicians as Cauchy and Poisson
and to a large extent motivated them to develop what is now generally known
as the theory of elasticity. The solution of the scalar wave equation as a
potential was first achieved by Poisson (1829). In 1852, Lamé added the
vector potential appropriate to the solenoidal displacement component to
the Poisson’s general solution. Thus, through the efforts of Poisson and
Lamé it was shown that the general elastodynamic displacement field can be
represented as the sum of the gradient of a scalar potential and the curl
of a vector potential, each satisfying a wave equaticn (i.e. longitudinal
and transverse wave equations). Clebsch (1863), Somigliana (1892), Tedone
(1897), and Duhem (1898) provided the proof for the completeness of Lamés
solution; and in 1885 Neumann gave the proof of the uniqueness for the
solutions of the three fundamental boundary initial value problems for
finite elastic medium (recently, the proof of the uniqueness is extended to
infinite medium by Wheeler and Sternberg, 1968). Later, Poisson’s soluticn
was presented in a more general form by Kirchoff (1883). This problem of
scalar wave was further studied as a problem with retarded potentials by
Love (1904).

Investigation of elastic wave motion due to body forces was first
carried out by Stokes (1849) and later by Love (1904). In 1887, Rayleigh
made the very important discovery of his now well known surface wave. In
1904 Lamb was the first to study the propagation of a pulse in an elastic
half-space. He derived his solutions through Fourier synthesis of the

steady-state propagation solutions. The ingenious technique of Cagniard
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for solving transient wave problems came along in 1939. He developed the
technique of solving the problem in the Laplace transform deomain and then
obtained the solution by inverse Laplace transform. This technique is the
basis for much of the modern work in transient elastodynamics.

The classical works on elastodynamics are collected and presented with
the recent analytical developments in a number of books, such as Achenbach
(1973), Eringen and Suhubi (1975), and Miklowitz (1980).

During the early 1960s,some pioneering work using an integral equation
formulation was done for acoustic problems by Friedman and Shaw (1962),
Banaugh and Goldsmith (1963a), Papadopoulis (1963) and others. Kupradze
(1963) also has done a great deal of work in the extension of Fredholm
theory to the formulation of problems ranging from linear, homogeneous,
isotropic elasto-statics to the vibrations of piecewise homogeneous bodies.
The general transient problem was attempted by Doyle (1966) who used the
singular solution for the transformed equations to obtain representations
for the displacement vector, dilatation, and rotation vector. Hcwever, he
did not attack the general boundary value problem in terms of boundary data
and did not attempt a solution and inversion to complete the problem.
Nowacki (1964) also treated the transient problem but his solution method
required finding a Green’s function before attempting the Laplace
inversion. During the past two decades, Banaugh and Goldsmith (1963a) were
the first ones to use the boundary integral formulation to solve an
elastodynamic problem. After that, a number of researchers have used the
boundary element method for solving elastodynamic problems. A complete

review of these works is presented in Chapter III.
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II.2 HISTORICAL DFVETOPMENT OF THE BOUNDARY ELEMENT METHOD

The boundary element method (BEM) has now emerged as a powerful
numerical technique for solving problems of continuum mechanics. In recent
years, it has been successfully employed for the solution of a very wide
range of physical problems such as those of potential flow, elastostatics,
elastoplasticity, elastodynamics, acoustics etc. The BEM, has a number of
distinct advantages over the Finite element (FEM) and Finite difference
(FDM) methods such as:; discretization of only the boundary of the demain of
interest rather than the whole domain (i.e., the dimensionality of the
problem is reduced by one), ability to solve problems with high stress
concentrations, accuracy, and the ease of solution in an infinite and semi-
infinite domain.

This method essentially consists of transformation of the partial
differential equation describing the behavior of the field variables inside
and on the boundary of the domain into an integral equation relating only
boundary values and then finding out the numerical solution of this
equation. If the values of field variables inside the domain are required,
they are calculated afterwards from the known boundary values of the field
variables. The above cdescribed transformation of the partial differential
equation into an integral equation is achieved through the use of an
arpropriate reciprocal work theorem, the fundamental singular solution of
the partial differential equation (Green’s function) and the divergence
theorem. The BEM yields a system matrix which is much smaller than that of
a differential formulation (i.e. FEM or FDM) but, in BEM, the system matrix
is fully populated for a homogeneous region and block banded when more than
one region is involved.

Historically, the first use of integral equations dates back to 1903

when Fredholm (1903) formulated the boundary value problems of potential
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theory in the form of integral equations and demonstrated the existence of
solutions to such equations. Since then they have been studied intensively
particularly in connection with field theory (e.g. Rellog, 1953; Kupradze,
1963; Muskhelishvili, 1953; Smirnov, 1964). During the 1950s, a major
contribution to the formal understanding of integral equations was provided
by Mikhlin (1957, 1965a, 1965b) who studied the singularities and
discontinuities of the integrands. Due to the difficulty of finding
closed-form analytical solutions, all of the classical work has, to a great
extent, been limited to the investigations of existence and uniqueness of
solutions of problems of mathematical physics, except for the simplest of
problems (Ref. Morse and Feshbach, 1953). However, the emergence of high-
speed computers in late 1960s spurred the development of numerical
algorithms based on adaptations of these integral formulations to the
solution of general boundary value problems and the resulting technique
came to be known as the Boundary Element Metheod.

The pioneering works in the field of BEM was done by Shaw and Friedman
(1963a,b) for scalar wave problems; Banaugh and Goldsmith (1963a,b) for
elastic wave scattering problems: Hess (1962a,b), Jaswon (1963), and Symm
(1963) for potential problems; Jaswon and Ponter (1963), and Rizzo (1967)
for elastostatic problems; Cruse (1967) for transient elastodynamic
problems; Swedlow and Cruse (1971) for elastoplastic problems; and Banerjee
and Butterfield (1977) for problems of gecmechanics.

In recent years, advances such as the use of higher-order elements,
accurate and efficient numerical integration techniques, careful analytical
treatment of singular integrals and efficient solution algorithms have had
a major impact on the competitiveness of the BEM in routine linear and
nonlinear two and three-dimensional static analyses. The contributions of

Lachat and Watson (1976), Rizzo and Shippy., (1977), Curse and Wilson
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(1977), Banerjee et al (1979, 1985), Banerjee and Davies (1984), Raveendra
(1984), Telles (1983, 1981), and Mukherjee (1982) should be mentioned. A
number of textbooks, such as Banerjee and Butterfield (1981), Brebbia and
Walker (1980), Liggett and Liu (1983), Mukherjee (1982), Brebbia, Telles
and Wrobel (1984), and advanced level monographs, such as Banerjee and
Butterfield (1979), Banerjee and Shaw (1982), Banerjee and Mukherjee
(1984), and Banerjee and Watson (1986), provide a full description of the

recent developments in the Boundary element method.
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CHAPTER IIX
REVIEW OF THE EXISTING WORK ON DYNAMIC ANALYSIS BY BEM
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III.1 SCATAR WAVE PROBLEMS

The phenomenon of scalar wave propagation is frequently encountered in
a variety of engineering fields such as acoustics, electromagnetic field
theory and £luid mechanics. The existence of integral equations for scalar
wave problems in terms of unknown potential functions dates back to
Rirchoff (1883). However, the use of boundary integral equations to solve
the scalar wave problems started in early 1960s with Friedman and Shaw
(1962) solving the transient acoustic wave scattering problem followed by
Banaugh and Goldsmith (1963b) solving the steady-state (time harmonic) wave
scattering problem. Since then a number of researchers have contributed in
this field. Both transient and steady-state behavior have been analyzed
for wave scattering as well as radiation problems. A radiaticn problem is
one where a given displacement or velocity field is specified on a part of
the surface. A problem wherein an obstacle with a prescribed boundary
conditions (usually homogeneous) interacts with some incident wave field
generated by sources elsewhere is called a scattering problem. It should
be mentioned that both of the above problems are related to infinite or
semi-infinite space where btoundary element method has no competitor.

Some comparisons of the BEM against the FDM and the FEM are provided
by Schenck (1967) for time-harmonic, acoustic scattering and radiation,
Shaw (1970) for transient and time-harmonic, acoustic scattering and
radiation, Chertock (1971) and Kleinman and Roach (1974) for acoustic
problems, and Mittra (1973) for the electromagnetic case. For water wave
problems, the boundary-integral-equation approach has been used by Garrison
and Seetharama (1971) and Garrison and Chow (1972), with success. Recent
works on scalar wave problems include that of Shaw (1975a,b), Shippy
(1975), Meyer et al (1977), Morita (1978), Davis (1976), Groenenboom

(1983), Mansur and Brebbia (1982), and Misljenovic (1982).
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It should be noted that the scalar wave problem is much simpler than
the elastodynamic problem because of the reduced dimensionality of the
parameters involved in scalar problems and because the analytic

complexities of the fundamental solutions are also not so severe.

III.2 TWO-D TO SS_ANALYST
(A) Transi ics

The existing work on two-dimensional linear transient elastodynamic or
visco-elastodynamic problems can be categorized into the following four
groups.

(i) Fourier domain solution: In this approach, the time domain
response is reconstructed by Fourier synthesis of the steady-state
solutions obtained by a frequency domain BEM formulation. This approach
has been used by Banaugh and Goldsmith (1963b), Niwa et al (1975, 1976),
and Robayashi et al (1975, 1982). Banaugh and Goldsmith solved a problem
of elastic wave scattering, Niwa et al and Kobayashi et al solved the
problem of wave scattering by cavities of arbitrary shape due to the
passage of travelling waves. Kobayashi and Nishimura (1982) also
introduced a technique for the problems of fictitious eigenfrequency in
certain exterior problems.

(i1) Laplace domain solutjon: This approach involves solution of the
problem in the Laplace-transform domain by the BEM followed by a numerical

inverse transformation to obtain the response in the time domain. Doyle
(1966) was the first to develop a Laplace domain formulation by BEM,
but he did not solve any problem while Cruse (1967) presented numerical
results for the two-dimensional problem of the elastic halfspace under
transient locad in plane strain. WNumerical results using this approach have

been also presented by Cruse and Rizzo (1968) and Manolis and Beskos
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(1981),

(iii) Time domain solution: In this approach, the problem is
formulated in the time domain by the BEM and solved through a step-by-step
time integration scheme. The fundamental solution used in this approach is
a function of time and has time retarding properties. This approach has
been used by Cole et al (1978) for the anti-plane strain case (i.e. one-
dimensional problem), by Niwa et al (1980) for the two-dimensional wave
scattering problem, by Rice and Sadd (1984) for anti-plane strain wave
scattering problem, and by Spyrakos (1984) for strip-footing problems.

(iv) Domain integral transform approach: In this approach the domain
integral related to the inertia term is transformed into a boundary
integral by approximating the displacements inside the domain. This
results in a finite element type matrix differential equation formulation
which can be solved by using a direct time integration procedure such as
the Wilson theta method, Houbolt method etc. This approach has been used
by Brebbia and Nardini (1983) to solve a two-dimensional simple frame.
This method uses a static Green’s function instead of time embedded Green's
functions and therefore it cannot satisfy the radiation condition nor can
it reproduce the actual transient response at early times. Because of the
radiation condition, it cannot be used for semi-infinite problems where the
BEM has a definite edge over all other numerical methods.

A comparison of the first three approaches on the basis of their
accuracy and efficiency was done by Manolis (1983). It should be noted
that, in the above, some simple two-dimensional or anti-plane strain
elastodynamic problems were solved such as: (a) the case of an unlined or
lined circular cylindrical cavity under the passage of longitudinal or
transverse waves; (b) the cases of square or horseshce shaped cylindrical

cavities under longitudinal waves; (c) the case of wave propagation in
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half-planes, etc.

Most of the above mentioned work suffers from one or more of the
following: 1lack of generality, crude assumption of constant variation of
the field variables in space and time, inadequate treatment of singular
integrals, and unacceptable level of accuracy. For example, Cole et al
found the transient dynamic formulation to be unstable, leading to a
building up of errors as the time stepping progresses:; Rice and Sadd found
that dominant errors in the method arises from integrating the Green’s
function over the singularity and the time domain formulation when applied
to time harmonic problems reveals solution error propagation; Spyrakos
finds his flexible strip results to be affected due to the absence of
corner and ecges in his modeling (this is a consequence which arises due to
the use of constant elements); and Wiwa et al (1976) suggest that use of
higher approximating techniques for time and space variation of field
variables may improve the accuracy and stability of their method. All
these fears has been put to rest in the present work by using a higher
order interpolation function in time and space, taking care of singular
integral in an accurate and elegant manner (Ref. Sec. IV.4), using superior
and sophisticated integration techniques and implementing the BEM
formulation in a complete and general manner. The time-domain transient
algorithm developed in this work is unconditionally stable and capable of

producing accurate results for general three-dimensional problems.

(B) STEADY-STATE (PERIODIC) DYNAMICS

Two dimensional steady-state dynamic problems have been solved by
using the BEM by a number of researchers, such as, Banaugh and Goldsmith
(1963b) and Wiwa et al (1975) obtained the steady-state solution of their

respective problems before reconstructing the transient response by Fourier
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synthesis. Recently, Dravinsky (1982a,b) used a indirect BEM formulation
to study two-dimensional problems of plane wave diffraction by subsurface
topography, Alarcon and Dominguez (1981) applied the direct BEM to
determine the dynamic stiffnesses of 2D rigid strip footings, and Kobayashi
and WVishimura (1983) used the direct BEM to obtain steady-state responses
of a tunnel and a column in the halfspace subjected to plane waves of
oblique incidence. Askar et al (1984) presented an interesting,
approximate, iterative boundary-element formulation for steady-state wave
scattering problems which does not require any matrix inversion. He
presented the results for the problem of wave scattering by a tunnel in
half-space. Another interesting study has been done by Nakai et al (1984),
they introduced viscous dashpots in a two-dimensional analysis to simulate
energy dissipation in the third direction due to radiation. Lately,
Estorff and Schmid (1984) has applied the BEM to study the effects of depth
of the soil layer, embedment of the foundation, and percentage of
hysteretic soil damping on the dynamic stiffness of a rigid strip in a
viscoelastic soil. Another work related to rigid strip footing was
recently presented by Abascal and Dominguez (1984, 1985), where they
studied the influence of a non-rigid soil base on the compliances
(flexibility) of a rigid surface footing and response of the rigid surface
strip footing to incident waves.

In all the works discussed above, the singularity which arises in the
traction kernels (fundamental solution) is not taken into account properly
(Ref. Sec. IV.4), and in all of them except that of Kobayashi and Nishimura
(1983) it is assumed that the field variables remains constant within an
element. As pointed ocut by Kobayashi and Nishimura, it is crucial to use
higher-order boundary elements for boundary modelling of a steady-state

dynamic problem so that it is fine enough to be compatible with the wavy
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nature of the solution. In addition, it should be noted that none of the
above mentioned algorithm, is capable of solving general two-dimensional
steady-state elastodynamic or visco-elastodynamic problems because they
cannot take care of corner and edges which are always present in a real
engineering problem. To remedy all the above discussed problems, this
thesis presents a versatile steady-state dynamic algoritlm by BEM which is
capable of solving two-dimensional problems involving complicated

geometries and boundary conditions.

ITI.3 E-D ST AMALYST

Three-dimensional problems of elastodynamics were not attempted until
recently principally because of enormous computing requirements and
formidable task of numerical implementation. In order to reduce the
computation and complications involved, simplifications of the BEM
formulation dictated by the mature of the problem to be solved have been
developed by a number of workers.

Domingquez (1978a) simplified the steaéy—state dynamic kernel functicns
for the special case of periodic surface loading on rectangular
foundations. He also used another simplified formulation (1976b) to study
the response of embedded rectangular foundations subjected to travelling
waves. Karabalis and Beskos (1984) have done similar simplifications to
the time domain transient boundary integral formulation. Yoshida et al
(1984) used a simplified BEM formulation for determining the response of a
square foundation on an elastic halfspace, subjected to periodic loading
and harmonic waves. Tanaka and Maeda (1984) have developed a Green'’s
function for two-layered visco-elastic medium, and using this Green
function in a simplified BEM formulation they numerically calculated the

compliances for a hemispherical foundation. More complex problems
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involving the periodic response of piles and pile groups have been
attempted by Sen et al (1984, 1985a, 1985b), and Kaynia and Kausel (1982).
They simplified the boundary integral formulation so that only displacement
kernels are involved in the formulation. Scme authors (Ref. Apsel, 1979
Dravinski, 1983) have introduced a potentially unstable method involving an
'‘auxiliary boundary’ so that singular integration can be avoided. In all
of the above works, the displacements and tractions are assumed to be
constant within each element.

Recently, Rizzo et al (1985) and Kitahara and Nakagawa (1985) have
implemented the BEM formulation for steady-state elastodynamic problems in
a general form. Rizzo also implemented a mixed-transform inversion to
obtain the response in the time domain and a technique for the problem of
fictitious eigenfreguency in certain exterior problems with homogeneous
boundary conditions. Kitahara and Nakagawa have introduced a series
expansion of the periodic kernels for low frequency range, to obtain a
stable solution at low frequencies.

In the present work, the direct boundary element formulations for
periodic dynamic analysis, transformed demain transient analysis and time-
domain transient analysis have been implemented for problems involving
isotropic, piecewise-homogeneous, three-dimensional solids. These
implementations are general and complete in all respects. In addition, for
nonlinear transient dynamic analysis of three-dimensional solids, the
direct boundary element formulation and its numerical implementation are
presented for the first time. To the best of the author’s knowledge, a
comparable system for steady-state and time dependent analyses by the BEM

has not yet appeared in the published literature.

23




III.4. FREE-VIBRATTON ANATYSTS

The existing methods for free-vibration analysis by Boundary element
method can be classified into the following two categories:

(A) Determinant search method, and

(B) Pomain integral transform method.

(A) Det inant c od:

Most of the existing work on the application of BEM to eigenvalue
problems falls into this category. This includes the work of Tai and Shaw
(1974), Vivoli and Filippi (1974), DeMey (1976, 1977), Hutchinson (1978,
1985), Hutchinson and Wong (1979), and Shaw (1979) for membrane (Helmholtz
equation) and plate vibrations. WNiwa et al (1982) also used this method
for free-vibration problems of Elasto—dynamics. A review of the existing
work by this approach can also be found in Shaw (1979), and Hutchinson
(1984).

In this method, after the usual discretization and the integration
process, the boundary integral equation for the eigenvalue problem leads to

a homogenecus set of simultaneous equations, i.e.

[A(w)1{X} = {0} (3.1)

where the elements of vector {X} are the unknown boundary conditions at
each node and the coefficients of matrix [A] are the transcendental
function of the frequency. These coefficients are complex when calculated
by using the fundamental solution for the corresponding forced vibration
problem (e.g. Tai and Shaw, 1974; Niwa et al, 1982), or real when
calculated by using an arbitrary singular solution (e.g. Hutchinson (1978),
DeMey (1977)).

The necessary and sufficient condition for equation (3.1) to have a

non-trivial solution is
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D= la(w)] =0 (3.2)

The eigenvalues are characteristic roots of this determinant.
However, in the numerical calculation, the eigenvalue can only be
determined as parameters which attain local minima of the absolute value of
the determinant, D , as a function of the frequency, o . This requires
the formation of equation (3.1) for a large number of trial frequencies,
which makes this method extremely uneconocmical for practical applications.
Moreover, when the eigenvalues are closely spaced, this method may fail to
give correct eigenvalues.

As pointed out by Shaw (1979), this approach also leads to fictitiocus
roots when an arbitrary singular solution is used rather than a fundamental
solution. However, Butchinson (1985) justifies the use of an arbitrary
singular solution by stating that one can easily sort out the fictitious

roots by a brief lock at the mode shapes.

(B) Domain I T Met :

In this approach, the displacements within the domain are approximated
by some suitable functions. Due to this approximation, the domain integral
(related to the displacements within the domain) of the integral equation
is transformed into boundary integrals by using the divergence theorem.
Since all the integrals of the integral equation are now related to the
boundary, after some manipulation, the integral equation is reduced to a
simple algebraic eigenvalue equation. This method was first proposed by
Nardini and Brebbia (1982). A similar way of achieving volume to surface
integral conversion has also been outlined recently by Kamiya and Sawaki
(1985).

The main advantage of this method is that the boundary integrals need

to be computed only once as they are frequency independent rather than
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frequency dependent (as in the case of determinant search method).
Moreover, since all of the calculations are in terms of real arithmetic, it
appears to be economical when compared to the determinant search method.
The method proposed in this thesis has some superficial similarities with
this method and, therefore, it is briefly reviewed below.

The governing differential equation for free-vibration of an isotropic

homogeneous elastic body can be written as:

2, -
%ik,k tPOU = 0 (3.3)
where u; = components of displacement amplitudes
Sik = stress tensor ccmponents
o = natural circular frequency
p = mass density.

By using the static Kelvin’s point force solution the above differential

equation can be transformed into an integral representation:

04593 (® = [ Gyt (wds - [ Py DU was
S S

2
+ pw jui(;)Gij(z._t;)dv (3.4)
v
where x = field point

& = source point

t; = traction components = ;0

n, = components of outward normal on the boundary

Fij = traction kernel corresponding to the displacement kernel
Gi]

cl] = 813 - Bl:] » where Bl] is the jump term.

Equation (3.4) not only contains the unknown displacement u;(x) and
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the traction t,(x) on the boundary, but also the unknown displacements

ui(z) within the domain appearing in the inertial term. In order to
formulate the problem in terms of the boundary unknowns only., the
displacements within the domain u;(2) are approximated by using a set of
unknown coefficients @ and a class of functions £M(z) (superscript m

denoting the member of the class), such that

u; (z) = ay £1(z) (3.5)
where

£Mz) = ¢ - r(z.&) (3.6)
where c = a suitably chosen constant

r(z.;m) distance from the point En where the function is

applied to a point z .

With this approximation, the domain integral of equation (3.5) becomes,

- m
j' 0y (2)G;4(Z BV = ayy [¥: @Gy (k. 8w (3.7
v v

Now if one can find a displacement field “’I:tl‘.i with the corresponding

Stress tensor r’{‘ ik Such that
m m
tlik.k = Glif (3.8)

the volume integral in (3.7) can be transformed into a boundary integral
via the divergence theorem. Thus equation (3.4) can be expressed as (Ref.

Nardini, 1982).

Ci5u;(® - [ 65wty @ds + [ Py (s
s 5
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= po? (e v + [ G 0Elwds - [P0 of; @astoy,
S 5
(3.9)

where p‘i’i = crfiknk = traction vector corresponding to the displacement

field w’i‘i , where

m _ri-2v r 9-10v 3
v1i = 1555 © * Soaw ] Yoy - sociswy Ouif (3.10)

After the usual discretization and integration process, equation (3.10) can

be written in a matrix form as
(Fl{u} - [GI(t) = pw?([G)(p} - [F1{¥}){a} (3.11)

The relationship between {ul and {e} can be established using

equation (3.5), i.e.
{u}l = [Q){al (3.12)

where elements of matrix [Q] are simply the values of the functions
fMz) at the nodal points.

Since matrix [F] 1is square and possess an inverse, therefore
ta} = (@} (3.13)

It is important to note that [Q] is a fully populated matrix and
therefore its inversion is costly for a realistic problem.

Substituting (3.13) into (3.11), we obtain

[F1{u} - [GI{t} = w?M](u} (3.14)
where

Ml = p(IG1{p} - [FI1{v})IQl™> (3.15)
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Equation (3.14) is now written in a submatrix form as follows:

12| || |G Gl | & 2| My Mo | W

=00

11 11

21 Fa2 u, Gy Gy, 1) My, Moy u,

(3.16)
where uy and u, are the displacement vectors related to boundaries Sq
and s, respectively, and t, and t, are the traction vectors related to
boundaries Sq and S, respectively.

The homogeneous boundary conditions state that on any part of the

boundary either u or t is zero. Therefore, assuming u; = 0 and t, = 0:
_ 2
(Fi,1{u,} - (Gy1{t Y = "M, 1 {u,) (3.17)

2
(F,,](u,) - [G, 11t} = w”[M,,](u,) (3.18)

Frem these two sets of equations, [tll can be eliminated resulting in:
[F1{uy) = oM (u,) (3.19)

Equation (3.19) represents the generalized eigenvalue problem.

Although the method outlined above (first proposed by Nardini and
Brebbia) eliminates much of the difficulties of the determinant search
techniques, it still has a number of deficiencies as a practical problem
solving tool:

(1) the form of proposed approximation for the internal displacements via
equation (3.5) seems to be based on a rather ad hoc basis,

(2) it is rather difficult to find the displacement tensor vyg and the
corresponding stress tensor t;;, to satisfy equation (3.8) for more
complex problems such as axi-symmetric and three-dimensional ones or

those involving inhcmogeneity and anisotropy,
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(3) the matrix algebra involved in the construction of the final system
equations via (3.13), (3.16-18) restricts the method essentially to
small test problems. In particular, equation (3.19) cannot be formed
for a multi-region problem where the interface traction and
displacements must remain in the system equations for the algebraic

eigenvalue problem.

In addition to the two above discussed methods, Benzine (1980)
presented a mixed boundary-integral finite-element approach for plate
vibration problems which also reduces the problem to a standard algebraic
eigenvalue problem. However, his approach is computationally more

expensive than the Nardini and Bretbia’s (1982) method.
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CHAPTER IV
ADVANCED TWO-DIMENSIONAL STEADY-STATE DYNAMIC ANALYSIS
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Iv.1 INTRODUCTION

In this chapter an advanced numerical implementation of the boundary
element formulation for the periodic dynamic analysis of two-dimensional
problems is described. In this implementation, isoparametric curvilinear
boundary elements are used. The present analysis is capable of treating
very large, multizone problems by substructuring and satisfying the
equilibrium and compatibility conditions at the interfaces. With the help
of this substructuring capability, problems related to layered media and
soil-structure interaction can be analyzed.

In the next few sections, the governing equations of elastodynamics
are presented follcowed by a discussion on the boundary element formulation
of elasto-dynamic problems in the transformed domain. Subsequently,
materials pertaining to the numerical implementation and the solution
algorithm are introduced. A number of numerical examples are finally

presented to demonstrate the accuracy of the present implementation.

Iv.2 ATION
The governing differential equation of linear elastodynamics for
homogeneous, isotropic, linear elastic bodies is called Navier-Cauchy
equation, which is expressed as
2 2) 2

u +b: = U. (4.1)

i,i5 TC2 %5,41 Y P37 Yy

where ui(g.T) is the displacement vector and bj is the body force
vector. Indices i and Jj corresponds to cartesian coordinates; these
ranges from 1 to 2 for two-dimensional problem and 1 to 3 for three-
dimensional problems. Commas indicate differentiation with respect to

space, dots indicate differentiation with respect to time T , and repeated
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indices imply the summation convention.
The constants ¢, and c, are the propagation velocities of the
dilatation (P-wave) and distorsional (S-wave) waves, respectively, and are

given as

2 . (L + 2u)/p c,“ = ulp (4.2)

¢ 2

1

where A and p are Lamé constants and p is the mass density.

In equation (4.1) the displacement uy is assumed to be twice
differentiable with respect to space and time, except at possible surfaces
of discontinuity due to shock wave propagations. The kinematical and
dynamical conditions related to the Lpropagating surfaces of discontinuity
are discussed in Appendix B.

Finally, the constitutive equations for the homogeneous, isotropic,

linear elastic material are of the form

0., = p[(c12 - 2c22)um'mt‘>ij + c22(u. s+ U )] (4.3)

1]

where °ij is the stress tensor and

sij is the Kronecker delta.

Iv.3 THE BOUNDARY-INITIAL, VALUF PROBLEMS OF FIASTODYNAMICS
For a well posed problem, the governing differential equations (4.1)

and constitutive equations (4.3) have to be accompanied by the appropriate
boundary and initial conditions. Thus, the displacements u, (x,T) and

tractions ti(g.T) must satisfy the boundary conditions
ui(;g.T) = qi(z.T) _ X €S

u
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where nj is the outward unit normal at the surface,

S, 1s the part of the surface where displacements are specified,
S¢ is the part of the surface where tractions are specified and the
bonding surface of the body is S = Sy + Sg

and the displacements and velocities satisfy the initial conditions:

u; (x,T=0) = U; (x) AL

ui(x.'l‘=0)

Uio(x) XEV+S (4.5)

In addition, the displacements and velocities have to satisfy the
Sammerfeld radiation condition at infinity.

The proof of the existence and uniqueness of the boundary-initial
value problems of elastodynamics was first provided by Neumann (1995) for a
bounded region. Later, it is extended to the infinite domain by Wheeler
and Sternberg (1968). These proofs are discussed in detail in Miklowitz
(1980, Secs. 1.11 and 1.12), Eringen and Suhubi (1974, Chapter V),

Achenbach (1973, Sec. 3.2) and Hudson (1980, Sec. 5.3).

IV.4 BOUNDARY INTFGRAL FORMULATION

In many practical applications, it is desirable to predict the dynamic
response of structures under harmonic excitation. If we assume that enough
time has elapsed after the initial excitation, the transient part of the
response will vanish and we will be dealing only with the steady-state
motion. This problem of steady-state motion can be formulated by taking
the Fourier or Laplace transform of the equations of motion.

In steady-state, the excitation and response both are harmonic,

therefore, the displacement and traction will have the form
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_ = -iuT
ui(x,T) = ui(x,w)e

~1iuT

ti(g,T) ti(z.m)e

where w 1is the circular frequency,

Gi is the amplitude of the displacement,

or |

i is the amplitude of the traction, and

i=v-1
Substitution of (4.6) into the governing differential equation (4.1)

and cancellation of the common factor e'i‘”T Yields the Helmholtz equation

(c,? - czz)Ei,ij + szaj,ii" pmzu; =0 4.7
The time variable is thereby eliminated from the governing
differential equation and the initial-value-boundary-value problem reduces
to a boundary value problem only. In equation (4.7) the body force is
assumed to be zero. |
Similarly, substitution of (4.6) in the constitutive equation (4.3)

and cancellation of the common factor e 1T yields:

- 2 _ 2, 2= -
S5 = P [(c1 2c, )um.msij +c, (ui.j + uj.i)] (4.8)

where ;ij is the stress amplitude, and is given by

Uij = ti n (4.9)

]

Similarly, application of Laplace transform to the governing equation
(4.1) under zero initial conditions and zero body force, and to the

constitutive equation (4.3) yields
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2 _ 2= 2 2T

(c1 C,y )ui,ij + c, uj,ii s uj =0 (4.10)
- _ 2 _ 2\ 2,7 -

o34 = plic, 2, )um.msij +c, (ui.j + uj.i) (4.11)
aljn] = ti (4.12)

where the Laplace transform £(x.s) of a function £(x.T) with respect to

T 1is defined as

LIE(X. T} = E(x.8) = J'a £(x,Te STat (4.13)
o
where s is the Laplace transform parameter.

A comparison of equation (4.7)-(4.9) with (4.10)-(4.12) indicates that
the steady-state, elastodynamic problem can be solved in the Laplace domain
if the complex Laplace transform parameter s is replaced by -ie , o
being the circular frequency. It should also be noted that the transformed
Vavier-Cauchy equations are now elliptic, and thus more amenable to
numerical solutions.

The boundary integral equation in the Laplace transformed comain can
be derived by combining the fundamental, point-force solution of equation
(4.10) with the Graffi'’s dynamic reciprocal theorem (Graffi, 1947), as

cij(g)ui(g.s) = I [Eij(;.;.s)Ei(x.s) - Eij(x.i.s)ui(x.s)]dS(x)

5 (4.14)

In the above equation, & and x are the field points and source points,
respectively, and the body force and initial conditions are assumed to be
zero. The fundamental solutions aij and ﬁij (Ref. Cruse and Rizzo,
1968) are the displacements and tractions at x , resulting from a unit

harmonic force of the form e'lmT (or eST) at & and are listed in
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Appendix Al. It can be seen that these fundamental solutions have modified
Bessel functions embedded in them. The asymptotic series expansions of
these functions for small and large values of argument (i.e. frequencies)
are also discussed in the Appendix Al.

The tensor C.. of equation (4.14) can be expressed as:

1]
where Bij is the discontinuity (or jump) term and it has the following

characteristics: (i) for a point & inside the body Bij =0, (ii) for a

point & exterior to the body 8 = Sij

surface it is a real function of the geometry of the surface in the

, and (iii) for a point & on the

vicinity of & . For Liapunov smooth surfaces, Bij = 0.5 sij .
Once the boundary solution is obtained, equation (4.14) can also be
used to find the interior displacements; and the interior stresses can be

obtained from

(4]

'ij(g.s) = j [E‘i’jk(x.g.s>€i(x.s) - Eijk<x._§.s)ﬁi(x.s)1d5(x>
S

(4.16)

The functions -G-ijk and F?.jk of the above equation are listed in
Appendix A3.

The stresses at the surface can be calculated by combining the
constitutive equations, the directional derivatives of the displacement
vector and the values of field variables in an accurate matrix formulation
(Ref. Sec. IV.5.H). Also, the loads and moments on the elements can be
obtained by numerically integrating the known tractions on the elements.

The boundary integral formulation can also take account of internal

viscous dissipation of energy (damping); this can be accomplished by
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replacing the elastic parameters A and p (Lame constants) by their

complex counterparts A* and p* .

A* = A(1 + 2iB)

p* = p(1 + 2ip) (4.17)

leaving Poisson’s ratio unaltered. By analogy with single degree-of-
freedom systems, the damping ratio B 1is equal to on/2p, where n is

the coefficient of viscosity for a Kelvin-Voigt model.

IV.5 NUMERICAL IMPLEMENTATION
The boundary integral equation (4.14) cannot be solved analytically

and therefore resort must be made to the numerical methods of solution.

The basic steps involved in a numerical solution process for the boundary

element formulation are:

(i) Discretization of the boundary into a series of elements over which
the geometry and the variation of displacements and tractions are
approximated by using a suitable set of shape functions.

(ii) Application of the equation (4.14) in discretized form to each nodal
point of the boundary and thereby evaluation of the integrals by a
numerical quadrature scheme.

(iii) Assembly of a set of linear algebraic equations by imposing the
boundary conditions specified for the problem.

(iv) Finally, the system of equation are solved by standard methods to

obtain the unknown boundary tractions and displacements.

In the present work, the numerical implementation of the transformed
boundary element formulation for two-dimensional problems of elastodynamics

has the following aspects and features:
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(A) Representation of Geometry and Functions

For the discretization of equation (4.14) the boundary S is
approximated by using a series of elements whose geometry is defined using
the quadratic shape functions of intrinsic coordinates proposed by
Ergatoudis (1968). The boundary elements for two—dimensional problems are
shown in figure 4.1. On each element the variation of the cartesian

coordinates X;(n) are approximated as:
xi(n) = Na(n)xia (4.18)

where ?{ia are the nodal coordinates of the element, and N, are the
interpolation functions (Ref. Appendix C1). For a quadratic variation e
ranges from 1 to 3, and for a linear variation it ranges from 1 to 2.

Isoparametric shape functions are used to approximate the variaticn of
displacements and tractions over each element. In some cases, the full
quadratic variation of the field quantities is not required so the option
of using the linear, the quadratic or a mixture of linear and quadratic
interpolation functions for displacement and traction variation is
provided. However, the boundary is always modeled using the quadratic
shape functions. Using the interpolation functions, the displacement and
traction at an arbitrary point of a boundary element are expressed in terms

of nodal values of displacements and tractions by:

u; (n) = Nam)Gia

Eim) =N (t;, (4.19)

where n is the intrinsic coordinate which ranges from 0 to 1, and

us . and t;, are the values of the displacement and traction vectors

at node a.
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(B) ubstructuri Ca i1i

In the present implementation, the substructuring capability is
provided. This is a very useful tool for solving problems related to
piecewise homogeneous material, layered media and soil-structure
interaction. This technique actually allows a problem geometry to be
modelled as an assembly of several generic modeling regions (GMR). The
GMRs are joined by enforcing appropriate compatibility conditions across

common boundary elements.

(C) ical Integratio
Taking into account the boundary discretization and function

representation, the transformed, boundary-integral equation (4.14) can be

written as:

Q
oy (&9 = 3 [[ (6@ .0, (nE; dstx))
g=1 Sq
- [ P g e g e ] (4.20)
K

In the above equation, Sq is the length of the gth element and Q is

the total number of elements. In order to express dS(x) in intrinsic

coordinates, we have
das(x) = 13l dn (4.21)

where 1J] is the Jacobian which performs the transformation from the

cartesian coordinate system (x,y) to the elements intrinsic coordinate

system n , and is given by
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aN (n) aN (n)
_ a 2 a 2
lam | = [ & Xla] + [ = x2a] (4.22)

Therefore, in view of the above, the equation (4.20) can be written as

Q A

- A
;@& = 3 [ 3 &, [ 6yam.Lom migla
a1 a=1 o

A

- ) U, _[1 Py (&), 29N, (0 17ldn (4.23)
a=1 o]

where A 1is the number of nodes in an element.

The global system of boundary element equations is obtained by the
usual nodal collocation scheme, i.e., by allowing field point E 1in
equation (4.23) to coincide sequentially with all the nodal points of the
boundary. All the boundary integrals involved are calculated numerically.
Essentially two types of integrals, singular and nonsingular, are involved.
The integrals are singular if the field point for which the equations being
constructed lies on the element being integrated. Otherwise, the integrals
are nonsingular although numerical evaluation is still difficult if the
field point and the element being integrated are close to each other.

In both singular and nonsingular cases a Gaussian quadrature scheme is
used. The basic technique was first developed by Lachat (1975) and is
discussed in detail by Watson (1979) and Banerjee and Butterfield (1981).
For the nonsingqular case, an approximate error estimate for the integrals
was developed by Lachat based on the work of Stroud and Secrest (1966).
This allows the determination of element subdivisions and orders of
Gaussian integration which will assure roughly uniform precision of
integrations throughout the integration process. In the present work, this

automatic choice of integration order and element subdivision has been
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implemented: where the order of integration points varies from 2 to 12 and
the number of element subdivisions varies from 1 to 4. When the field point
is very close to the element being integrated, use of a uniform subdivision
of the element leads to excessive computing time. Therefore, in order to
improve efficiency while still retaining accuracy, a graded element
subdivision is employed. This subelement division grows geometrically away
from the point closest to the field point on the element being integrated.

In the case of singular integration, which arises when the field point
is on the element being integrated, the elementsis divided into
subelements. The nature of this division depends on the node of
singularity of the element. This division produces nonsingular behavior in
all except one of the required integrals. WNormal Gaussian rules are used,
with orders 4 to 8. The integral of the traction kernel times the shape
function which is 1.0 at the source point is still singular and cannot be
numerically evaluated with reasonable efficiency and accuracy. Hence, this
integral is evaluated indirectly by a scheme discussed in the next section.

The integration of the surface integrals required for the calculation
of displacement and stress at interior points are carried out in the same
manner as that for boundary values (described above) except, in this case,

all the integrals are nonsingular.

(D) Evaluatjon of the Diagonal Blocks of F Matrix

The diagonal 2x2 block (or 3x3 block for three-dimensional problems)
of the assembled F matrix contains the tensor i3 as well as the Cauchy

principal value of the traction kernel integral, i.e.

Dyy = cyq + | Fy N ds (4.24)

51
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where:

cij is the term which depends only on the gecmetry at the

singular node,

Bij is the diagonal 2x2 (or 3x3 for 3D) blocks of the assembled
F matrix for the dynamic problem,

Eij is the singular traction kernel for the dynamic problem,

N, is the shape function for the singular node, and
51

is the length of the singular element.

Similarly for a static problem:

s _ s ’
DY = ey * I P35, @8 (4.25)
51

where the variables are the static counterpart of those of equation (4.24).

From (4.24) and (4.25) we can obtain

~ S py S
D;y = D, + I (Fy5 = F§y)N, ds (4.26)
Sy

In the above equation, the diagonal blocks D?j of coefficients of the
traction matrix,for a static problem of the same geometry can be obtained

by using the rigid body motion, i.e.

o ci.j +I Fo.N.dS

i 131
5y
A Q A
-=-[3 F?jNadS 3y Y Ffjwads] (4.27)
a=2 S, g=2 a=1 Sq

In addition, the integral involving the difference (F‘ij - Fsij) is

nonsingular, therefore, equation (4.26) can be used to obtain Bij .
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Recently, a somewhat similar approach is used by Rizzo et al (1985) for
three-dimensional problems.

In almost all of the past works, the nonsingular integral of equation
(4.26) has been neglected. This results in inaccuracy, particularly at
high frequencies. However, for problems related to ground surface the
above technique is not applicable. Thus, for halfspace problems a new
scheme is developed to calculate the diagonal blocks of F matrix. This

scheme is discussed in the following section.

(E) Diagonal Blocks of F Matrix for Problems of Halfspace
Having Corpers and Fdges

The conventional approach of assuming 0‘5513'

terms of the F matrix does not hold true for cases where the gecmetry of

as the block diagonal

the problem has corners and edges except for the case where the field
variables are assumed to be constant within each element. Thus, for higher
order variation of the field variables, one needs to have a general method
for calculating the diagonal blocks of F matrix for halfspace problems.
In the present work, a new technique to handle the above discussed problem
in an approximate manner has been developed. To this purpose, this new
technique uses special types of elements called 'enclosing elements’ (Ref.
figure 4.2). The basic assumption in this technique is that the
displacements and tractions at the enclosing elements has negligible effect
on the displacements and tractions at any point on the modeled boundary.
Using this scheme, the diagonal blocks D?_j of F matrix are
obtained by the summation of nonsingular integrations of the static
traction kernel over all the boundary elements as well as all the enclosing

elements, i.e.

44




A Qa A
D?j --[Y ] F?jNads +y 3| F§{N 48
a=2 Sq a=2 a=1 Sq

+ j FS.N ds] (4.28)
s

where the third summation of the integrals corresponds to the enclosing
element (L being the total number of enclosing elements). Once D?.j is
evaluated, the diagonal blocks ﬁij related to the dynamic problem can be
easily found by using equation (4.26).

In order to show the validity of the above techﬂique. the dynamic
response of a rigid strip on an elastic halfspace under vertical loading is
analyzed by using this approach and other two approaches. The real and
imaginary part of the vertical stiffness for two different frequencies were
tabulated in table 4.1 obtained by using all the three approaches for
calculating the block diagonals of F matrix. It can be seen that results
obtained by using the enclosing element technique compares well with the
correct results (method 1). However, method 2 which is invariably used by
the past researchers gives erroneous result at high frequencies (e.g.

compare the real part of the stiffness at non-dimensional frequency a, =

mb/c2 = 7.0)

() Ass o st ions
Once the boundary collocation and integrations are completed, we have
a set of coefficients which function as multipliers of field quantities,

i.e. (Ref. Banerjee and Butterfield, 1981):

(Gl {t} - [Fl{u} = {0} (4.29)

where:
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[G] is an unassembled matrix whose coefficients are the values
obtained by the numerical integration of the product of the
tensor éij » the shape functions and the Jacobian. The
size of matrix [Gl is dn x dm ;

[F] is an assembled (for nodes) matrix whose coefficients are
obtained by the numerical integration of the product of the
tensor Fij » the shape functions and the Jacobian. The
size of matrix [Fl is dnx dn;

{t} and {4} are the transformed traction and displacement
vectors at the boundary of the problem, with size dm and dn,

respectively;

n is the total number of nodes;

Q
m = E Aq , where @ is the total number of elements and
g=1

Aq is the number of nodes in the gth element; and
d is the dimensionality of the problem (i.e. for two-

dimensional problems d = 2).

Since some of the field quantities are known from the specified
boundary conditions, during the assembly of the system equations the
coefficients related to the known and unknown variables are separated. For
the case when the boundary conditions are specified in local coordinate
system, the corresponding coefficients of the matrices [G] and [F] are
multiplied by the appropriate local transformation matrix. Finally,
boundary conditions are imposed including any required modification to the
coefficient matrices for bonded or sliding contact between different
regions (GMRs). The results of all the above operations is a linear system

of matrix equations of the form:
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[Al(x} = (Bl{y) = (b} (4.30)
Wi = %) + Byl (4.31)
{c} = [A%1{x} + (B®1(y} (4.32)

where
{y} and {x} are the vectors of known and unknown field
quantitites, respectively;
{uin } and {0} are the vectors of displacements and stresses at
interior points, respectively.

In any substructured (multi-zone) problem, the matrix [A] in (4.30)
contains large blocks of zeros because separate GMRs communicate only
through common surface elements. In order to save both storage space and
computer time, the matrix [A] is stored in a block basis with zero blocks
being ignored. Since interior results in any GMR involves only the
boundary values related to that GMR, the matrices in (4.31) and (4.32) are
also block diagonal. In addition, for added accuracy the system equations
are scaled so that all the coefficients of matrix [A] (and [B]) are of the

same magnitudes (for detail, Ref. Banerjee and Butterfield, 1981).

(G) Solution of Fquatjons

Since the system equations (4.30) are complex it requires a complex
solver. In the present work, an out-of-core complex solver is developed
using softwares from LINPACK (Dongarra et al, 1979). In this solver in
order to minimize the time requirements the solution process is carried out
using block form of the matrix. Thus, this block banded solver operates at
the submatrix level using software from LINPACK to carry out all operations
on submatrices. The system matrix is also stored by submatrices on a

direct access file. The first operation in the solution process is the
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decomposition of the system matrix using the block form of it. This
decomposition process is a Gaussian reduction to upper triangular
(submatrix) form. The row operations required during the decomposition are
stored in the space originally occupied by the lower triangle of the system
matrix. Finally, the calculation of the solution vector is carried out by

using the decomposed form of the system matrix from the direct access file.

(H) i S o or_2D_Pro

Once the boundary solution is obtained, the stress and strain at any
point on the boundary can be calculated without any integration by using
the procedure outlined as follows.

Let us assume that we are interested in finding stress and strain at a
point P, which lies on a boundary element and has intrinsic coordinate

nb . PRecalling equations (4.19), we can write:

A
b, _ b
u;(n”) = 2 N (O,
a=1
A
b, _ b
£, = ) N Ot (4.33)
a=1

where:

A is the mumber of nodes in the element,

N, is the shape functions, and

us . and tia are the nodal values of u.

land ti'

In addition, we also have the following relationships:

£, = 0,0, (4.34)
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Yg,1%Y1,k

. =u, . 4.36

Yi,n = 91,5890 ( )
A an,

o .= } T g, (4.37)
a=1

where:
cijkl is a tensor containing elastic constants, and

Xj . are the directional derivatives.

Equations (4.34), (4.35) and (4.36) can be combined to form a matrix

equation:

o T r 3 * y

n1 0 n2 0 0 0 0 %1 t1

0 n2 n1 0 0 0 0 L2V t2

1 0 0 -A-2nx O 0 -A 612 0

0 1 0 - ] 0 -A-2p <u1.1 &,= 40 -

0 0 0 —n2 0 n1 0 u1,1 ul:ﬂ

0 0 0 0 =-n 0 n u u (4.38)
| 2 1] 22 | 2.

where n, and n, are the unit normal on the boundary at point P : i.e.

n, =X

1 andn2=-x

2, 1,

Now, the stress and strain at point P can be obtained by inverting
the matrix of equation (4.38) and then multiplying the inverted matrix by
the right-hand-side vector. For this purpose, the right hand side vector
is obtained by using equations (4.33) and (4.37). The procedure described

above is valid for both plane stress and plane strain problems. However,
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for plane strain problems the Poisson’s ratio Vv has to be replaced by ©

v
I+ °

Iv.6 EXAMPLES OF APPLICATIONS

In order to demonstrate the accuracy and applicability of the present
implementation, the detailed solution of three numerical examples are
presented. In the first example, the forced oscillations of a massless
rigid strip foundation on an elastic halfspace (plane strain) subjected to
external dynamic forces is analyzed. The purpose of this example is to
compare the response predicted by the present implementation to that
available in the literature. The second example is that of a machine
foundaticn embedded in an elastic halfspace (plane strain) and subjected to
external dynamic forces, and the third example is a wall in an elastic
half-space subjected to a time-harmonic lateral pressure distribution.
These last two examples are intended to show the applicability of the
present implementation to real engineering problems. In both examples,
English units are used with foot (ft.) for length, pound (1bf.) for force,

and second (s) for time.

(a) i s igid i Elastic c

A large number of numerical results have been published for the rigid
strip with vertical, horizontal and rocking vibrations (Karasudhi et al,
1968; Luco et al, 1974; Luco and Westmann, 1972: Wickham, 1977; Hryniewicz,
1981; etc.). However, most of them are limited to a small range of
frequency parameter and are based on the assumption that one of the contact
stress components is zero. For the purpose of comparison, a rigid strip
footing on an elastic halfspace under relaxed boundary conditions is

analyzed for vertical, horizontal and rocking vibrations. The rigid strip
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footing and the boundary element mesh used are shown in figure 4.3 (this
mesh was selected after a convergence study at a high frequency). 1In all
cases, a homogeneous soil material with a Poisson’s ratio v = 1/4 |is
considered. The dynamic stiffnesses obtained by the present method are
compared with that reported by Hryniewicz (1981). He defines the vertical,

horizontal and rocking stiffness coefficients by the following expressions

respectively:
K., +iC,, = E (4.39)
11 11 LEL .
. __H
Kya *1Cyp = TR (4.40)
. __M
mub 9,
where:

P, Hand M are the amplitudes of vertical forée. horizontal force
and moment, respectively:

or Yo and é, are amplitudes of vertical displacement, horizontal
displacement and rotation, respectively:

K K,, and Ky, are the real parts of the stiffness coefficients;

Cyqr C,, and C;; are the imaginary parts of the stiffness
coefficients:;

2b is the width of the footing:

n is the shear modulus of the soil; and

i=y-1

The real part of the stiffness coefficients are plotted against non-

dimensional frequency (ao = wb/c, , where o 1is the excitation frequency)
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in fiqure 4.4. It can be seen that the present results are in good
agreement with the results of Hryniewicz (1981) for low to medium
frequencies. However, for higher frequencies the the agreement is not
good, particularly for rocking stiffness. This difference is due to the
fact that in the present work quadratic shape functions are used for
representation of the variation in the boundary variables over each element
whereas Hryniewicz assumes that the unknown contact stresses are constant
within each element. This results in stress discontinuities at the
interface of two elements. Therefore at high frequencies, Hryniewicz’s
method will produce correct results only when the foundation-soil interface
is divided into a very large number of elements. Figure 4.5 shows the plot
of imaginary part of the stiffness coefficients against the nondimensional

frequency a_ . A good agreement between the present results and the

(o]
results due to Hryniewicz can be seen. Real and imaginary parts of
vertical stiffness for a bonded rigid strip are also plotted in figures 4.4
and 4.5, respectively. The imaginary part is identical to that of a
frictionless rigid strip.

Dynamic contact-stress distributions at the interface between the

rigid strip and the halfspace are also presented. For the purpose of

plotting, the contact stresses are defined as follows:
For vertical vibration:

W

_ o TR . I | _ieT
Gzz = b (o'zz + i czz)e
W .
- o = . —I | 1uT
L 5 (ze +1 cxz)e (4.42)
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Fo izo ibrati

O22 = ~ ”;u (;zi *1 ;gz)eidr

o, = - n;u° (Ef:z + i Z}I(z)ei“"r (4.43)
For_rocking:

o,, = - md, (or, + i oL relT

o, = - mub, (o + 1 ;}{z)ei‘”’r (4.44)

where superscripts R and I represent real and imaginary parts,
respectively.

The real and imaginary parts of the contact stress distribution for
vertical vibration are plotted in figures 4.6 and 4.7, respectively.
Because of the singularity at the edge, the contact stresses on the element
close to the edge are obtained in an average sense (by taking the average
of nodal values) and are indicated by dashed lines. From the figures, it
can be seen that the contact stresses are quite sensitive to variations in
the frequency parameter a, . As frequency increases, the imaginary part
of the contact stress distribution increases and the singularities at the
ecge gets sharper for real and imaginary parts. Figures 4.8, 4.9, 4.10 and
4.11 shows the dynamic contact stress distributions for horizontal
vibration and rocking. In all cases, the preceding comment about the

singularities at the edge holds true.
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(b) ic a Machij Foundati d
in the Elastic Halfspace

In order to show the applicability of the present implementation for
solving real engineering problems, the dynamic stiffnesses of a machine
foundation (made of concrete) embedded in the halfspace are computed.
Dynamic contact stress distributions at the interface between the
foundation and the soil are also presented. The machine foundation and the
boundary element discretization for this problem are shown in figure 4.12.
The discretization of the soil free-surface are the same as in figure 4.3.
The substructuring technique is used in solving this problem, i.e., the
concrete foundation is modeled as one GMR (or region) and the halfspace as
another GMR. The contact between the foundations and the soil is assumed
to be welded (or glued), and the weight of the foundation is considered
automatically by the analysis. This problem has corners and edges, and
therefore, enclosing elements are used to obtain the diagonal blocks of the
F matrix. The conventional approach of using o.ssi.

J
blocks cannot be used for this type of problem which has corners and edges.

as the diagonal

The material properties are as follows:

. . 5
Soil: Elastic modulus, Eg = 8.64 x 10
Poisson's ratio, vg = 0.3
Mass Density, pg = 3.57
. . 8
Foundation: Elastic modulus, E, = 4.527 x 10

Cc

Poisson's ratio, Ve = 0.17

Mass density, = 4.5

P
o
In order to compute the foundation stiffnesses, unit displacements and unit
rotation are prescribed on the top face of the foundation with zero
traction conditions being imposed along the soil free-surface. Upon the

solution of boundary equations, the tractions over the element at the soil-
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foundation interface are obtained. The resultant of these tractions for
different rigid body motions gives the foundation stiffness coefficients.
The real and imaginary parts of the stiffnesses (minus the inertial
contribution of the foundation block) are plotted against the frequency
parameter a, in figures 4.13 and 4.14, respectively. It can be seen
that, in general, the stiffnesses in this case are greater than that of a
rigid strip. This is understandable, because the embedment reduces the
maximum frequency response (Ref. Estorff and Schmid, 1984) and therefore
increases the stiffness. Figures 4.15 and 4.16 show the real and imaginary
parts of the contact stresses between the foundation and the soil for
vértical vibration whereas figures 4.17 and 4.18 show the same for rocking
of the foundation. It is obvious from the results, that at higher
frequency the stresses at the edge are more severe.

(c) ic d i =

ject o _a_Ti i P ure Dj

A wall with its base embedded in an elastic half-space is subjected to
a time-harmonic lateral pressure distribution as depicted in figure 4.19.
The dimensions of the wall and its base are shown in figure 4.19. The
material properties of the wall, its base and half-space are the same as
those of the machine foundation of example (b).

The boundary element discretization of the wall consists of 20
quadratic line elements, and its base is modelled by 17 quadratic line
elements. The discretization of the soil free-surface is the same as in
figure 4.3. Plane strain conditions are assumed for the present problem.

The distribution of the applied lateral pressure is shown in figure
4.19. It can be seen that it is a triangular pressure distribution with
maximum pressure P(t) = 600 psf at the free end of the wall. This

problem is analyzed by using two different approaches to model the half-
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space, namely, (i) continuum model , and (ii) spring-dashpot model. For
the spring-dashpot model, the values of stiffness coefficients are
calculated by assuming the base of the wall to be rigid, and using the
present dynamic algorithm by following a procedure similar to that
described in example (a). The lateral displacements along the loaded face
of the wall are plotted in figure 4.20. From this figure, it can be seen
that the results obtained by using spring-dashpot model are almost similar
to those obtained by using continuum model for the half-space. This
example shows the usefulness of the present algorithm for obtaining the
response of a structure partially embedded in a half-space in one single
step or in two-steps, i.e. by using spring-dashpot approach.

In all of the examples presented in this section, the material damping
is neglected because for halfspace problems the radiation damping is
dominant and the material damping is negligible. However, the present
implementation has the capability for the inclusion of material damping

(Ref. Sec. IV.4).

Iv.7 CONCLUDING REMARKS
An advanced implementation of the direct boundary element method for

dynamic analysis of two-dimensional problems in the frequency domain is
presented. By comparing the results with those obtained by other methods,
the accuracy and the stability of the present method is established. Since
only the boundary of the region of interest has to be discretized instead
of the whole domain, the proposed methodology is a better alternative to
the conventional finite element methoed, particularly for the solution of
soil-structure interaction problems. For soil-structure interaction
problems the finite element method presents two restraints: (i) the model must

be bounded at the bottom by rigid bedrock, and (ii) the soil away from
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the vicinity of the foundation is represented by parallel layers unbounded
on the horizontal direction. These two conditions are not always close to
reality. On the other hand, in Boundary element method, the fundamental
solution satisfies the radiation condition at infinity and therefore no
bounding surfaces are needed and only a small number of elements is
necessary to model the problem. Furthermore, the numerical implementation
employed here is one of the most general currently available and can be
used in conjunction with substructuring technique to solve not only the
problems of layered media and soil-structure interactions, but also any

problem of two-dimensional solids of complicated geometry and connectivity.
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Table 4.1. Vertical compliance of a rigid strip footing on half-space,
by using three different methods to obtain the diagonal
blocks of [F) matrix

Real part of Imaginary part Real part of Imaginary part
the stiffness of the stiffness the stiffness of the stiffness

at at at at

ao = 2.0 ao = 2,0 a, = 7.0 ao = 7.0
Method 1 0.330 2.24 0.408 7.85
Method 2 0.335 2.27 0.456 7.81
Method 3 0.334 2.27 0.410 7.81

.. - Fo.)ds as the diagonal blocks.

Method 1: wusing 0.5 5ij + Jl (E‘lj i3

AS

Method 2: using 0.5 sij as the diagonal block.

Method 3: using enclosing elements.
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CHAPTER V
FREE VIBRATION ANALYSIS OF TWO-DIMENSIONAL PROBLEMS
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V.1 INTRODUCTICON

In this chapter a new method for free-vibration analysis by BEM is
presented. It utilizes a fictitious vector function to approximate the
inertia forces and then uses the well Kknown concept of complementary
functions and particular integrals to solve the resulting governing
differential equations. This method not only reduces the problem of free-
vibration to an algebraic eigenvalue problem but also saves the computation
time by having fewer matrix manipulations as compared to that of the domain
integral transformed method (outlined earlier in III.4). Because of the
generalized form proposed here it can be used for multi-region problems and
extensions to axi-symmetric problems as well as those involving
inhomogeneity and anisotropy are possible. Some example problems, such as
a triangular cantilever plate, a square cantilever plate, a cantilever
beam, a shear wall and a fixed elliptic arch are presented to establish the

accuracy, efficiency and convergence of this new method.

V.2 COVERNING EQUATIOM:

The governing differential equation for free-vibration of an elastic,

homogeneous and isotropic bedy can be written as:

azu. azu-

i 2
(A + p) J+p —— + puw*u, = 0 (5.1)
0%, 8x%. 9X.0%. i °
17%5 *39%5

where:

A and p are Lame's constants,

u, = displacement amplitudes

1

p mass density

€
I

natural circular frequency.
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V.3 PARTICULAR INTEGRAL:
The governing differential equation (5.1) can also be written in

differential operator notation as
L(u.) + pwlu, = 0 (5.2)
i i )

The solution of the above equation can be represented as the sum of a

complementary function uS satisfying

L) =0 (5.3)
and a particular integral u? satisfying

LBy + pmzui =0 (5.4)

However, equation (5.4) still contains the unknown displacement field
uy within the domain, which can be eliminated by using an unknown
fictitious density function ¢ and a known function C , exactly as in an
indirect boundary element analysis (Ref. Banerjee and Butterfield, 1981).
More specifically:

W@ = ) C(x EMe (™ (5.5)

m=1
where ék is a fictitious density and
Cik is a known function which can be selected as any linear
function of spatial coordinates.
The above approximation in the inertia term is a valid practice in other
numerical methods such as the use of lumped mass matrix in finite element
method. This is possible because the inertia term does not contain any

derivative and, hence, it can be approximated by using simpler functions.
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A simple function which is selected for Cik in the present analysis

has the fomm:
Co (%, E™ = 8. (R - 1) (5.6)
ik ‘& ik

where:
R = largest distance between two points of the body

r = distance between x (field point) and & (source point).

On the basis of above assumption (5.5), equation (5.4) can be written

as

LBy + pu? ) € (x.EME (EM =0 (5.7)

m=1

Now, the particular integral ug can be chosen as any function which
satisfies the differential equation (5.7). Accordingly it can be
represented as:

Proy m m
Pix) = ) Dy (%, EM, (21 (5.8)
m=1

The displacement field satisfying equation (5.7) is found to be

2
pw
my, _ . _ 2 _
Dik(x._t; ) = . [(clr czR)sikr c3yiykr]
where: Y =% - F,I;'

2(d+3) (1-v)-1

18(3d-1) (1-v)

€1
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1-2v

CZ ==
2[(1+d)-2vdl
1
C3 ==
6(3d-1) (1-v)
vV = Poisson’s ratio, and
d = dimensionality of the problem (e.g. for 2D problems, d = 2).

For 2-D analysis;

D 2

_ pu? [ (L9-10v) 1
T}

=2v 1 :
ik ~ 50(1- ° = 6=8v B! 8ikI T 3o(1) YiYkr] (5.9)

By comparing the functions C;, and D;, (for 2D) with the corresponding
functions f" (eq. 3.6) and ‘b"]ti (eq. 3.10) of Nardini’s method, it can be
seen that even though the functions Cik and f™ are similar, their
displacement functions Dix and ‘U’i‘i are different from each other. One
of the reasons for this difference is that the function Dik satisfies the
governing differential equation (5.7) but the function '”Ti does not.
Instead, the function \bri‘i satisfies the differential equation (3.8) which

has the form:

m - m

The surface traction tlz related to the displacement ulz can be
determined using the strain-displacement relationship and constitutive
equation and is given by:

P = 5 m m
ti(;) 2 Tigx. &8¢, (& ) (5.11)

m=1
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where:
T(gm)=m2[(cr—cR) n. + (c.r - 2C,R)y.n
ik & P 4 57/ ¥gNy 6 2 Y1y

+ {(cer - 2c,R)8,, - 2c3yiyk/r}yjnj]

(5.12)
and:

(G+#3) v~ 1
Cy= T

3(3d-1) (1~-v)

2v :

cg = A

(1+d)-2vd

(d+2)-(d+3)
Ce = ————

3(3d-1) (1-v)

V.4 BOUNDARY ELEMENT FORMULATION:
The boundary values of real displacements and tractions uy and t;

can be related to the complementary and particular integral via:
=S P
u; =u; +uy (5.13)
= +C
t; = t7 + 23 (5.14)

The boundary integral equation related to the displacement function

u‘i: can be written as

c _ c _ c
ey @@ = [ fo i@ - Fiypuge ] dseo (5.15)
S

where Gij (x,&8) and Fij (x,&) are the fundamental solution of equation
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(5.3) (Ref. Banerjee and Butterfield, 1981), i.e., Gij (x,&) 1is the
resulting displacement at any peint x 1in direction i of an infinite
medium due to a static unit force acting at a point & indirection j,

and Fij (x,8) 1is the resulting traction.

By usual discretization of boundary S , we can express equation

(5.15) in matrix form as

(G1{t%) - (F11u®) = (0} (5.16)

Equation (5.16) can be solved once the displacements uci: and the
tractions tc]-:_ are expressed using equation (5.13) and (5.14) in terms of

real displacement ug and traction o i.e.
[G1{t} - (F1{u} = (GI{tP} - [F1{uP} (5.17)

where vectors {tP} and {uP} can be obtained at boundary nodes from

equations (5.8) and (5.11) as

WP} = pu® [D1{8) (5.18)

(P} = pu? [T1(4} (5.19)

Substituting these equations into equation (5.17), we obtain
[Gl1{t} - [Fl{u} = pmz([G] [T] - [FI1[D1) {4} (5.20)

Recalling that

ny, _ _ .m m
u; (x™ ) 534(R = Iy (M
mn=1

where ™ is the distance between the points x" and £™, we can

express this relationship between the displacements and the fictitious
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density at all boundary ncdes as:

n _ m
é? = sin"mu% (5.21)
where g - (pm~l

It should be mentioned here that we only have to invert a NxN matrix
(P] instead of [Q] (as in the case of Nardini’s method, eq. 3.12), a
dNxdN matrix, where d = 2 and 3, respectively for two and three-
dimensional problems and N is the total number of boundary nodes of the
problem.

We can now write (5.21) as
{6} = [R1{u} (5.22)

Substituting {é} from equation (5.22) into equation (5.20), we get

Gl {t} - [Fl1(u} = pw?([GI(T] - [FIID))IKI{u} (5.23)

pwZ[M] {u} (5.24)

or [Gl{t} - [Fl{u}

Equation (5.24) can also be written in terms of known and unknown variables

as
[Al(x} - [Bl{y} = pu?([MI{x} - [M*1{y}) (5.25)

Since all the known variables are zero, (i.e. specified boundary conditions

are either u; =0 or t,=0)equation (5.25) reduced to

(A]{x} = pu?[M](x} (5.26)
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The modified mass matrix [M] contains zero in its sub-columns related

to specified displacements (i.e. fixed boundaries).

V.5 EIGENVAIUE EXTRACTTON:

Equation (5.26) is an algebraic expression for the eigenvalue problem
which can be solved by using a eigenvalue extraction subroutine. It should
be noted that both the matrices [A] and [M] are fully populated and
nonsymmetric. There is no satisfactory eigenvalue extraction routine
available for efficient determination of eigenvalues of such a system. In
the present work the algorithm developed by Moller and Stewart (1973) was
utilized. The necessary set of subroutines were developed by Garbow (1980)
of Argonne National Laboratory. In general a nonsymmetric fully populated
system such as (5.26) cannot be guaranteed to provide real eigenvalues.
However, it will be seen from the examples presented in this chapter that

the eigenvalues of (5.26) are in fact real.

V.6 ADVANTAGES OF THE PROPOSED METHOD:

In comparing this new method with that of Wardini’s (1982), the
following three important points need to be mentioned:

(i) The final algebraic expression of Wardini’'s method 1is in terms of
unknown displacements whereas that of this new method is in temms of
unknown variables (both displacements and tractions). Inamulti-
region (piecewise homogeneous) problem both the displacements and
tractions are unknown at the interface. Therefore, Wardini’'s
assumption that at any node either the displacement or the traction is
zero is not always valid.

(ii) Nardini's approach involves too many matrix manipulations which are

costly and somewhat impractical for a realistic practical problem.
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(iii) Because of the use of a well-established method of solving any
nonhomogeneous differential equation by using complementary functions
and particular integrals, we can now utilize a large number of
particular integrals already in use in BEM for dealing with
centrifugal forces. Many of these have already been developed for
axi-symmetric and three-dimensional problems involving anisotropic
materials and, with minor modifications, can be made to satisfy the

governing differential equation (5.7).

V.7 EXAMPLES OF APPLICATIONS:
(a) Comparison with Nardini and Brebbia (1982)

In order to provide a meaningful comparison between the present methed
and that described by Nardini and Brebbia, both methods were implemented.
Tables 5.1 and 5.2 show the convergence studies of the first four modes of
triangular and square cantilever plates of unit thickness under in plane
vibration. The triangular plate had a 10-inch depth at the support and an
8~-inch span. The square plate was 6 inch deep and had a span of 6 inches.

4 and v = 0.2. Three-noded,

The material parameters were E/p= 10
isoparametric-conforming boundary elements were used to describe both
geometry and functions.

Both these problems were also solved by Nardini and Brebbia (1982).
The results of the present implementation agree exactly with their quoted
results indicating that their analysis has been correctly interpreted.
They do not, however, agree well with those given by the new method
proposed in this paper for some modes. Specifically, for the triangular
cantilever, there is a marked difference in the third mode and small

differences exist in all other modes. For the rectangular cantilever once

again third-mode response differs significantly but the second mode agrees
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quite well.

(b) Comparisons with Finite Element and Beam Theory

The finite element system MHOST (MARC-HOST) was used to analyze a
cantilever beam. The beam has a length of 6.5 units and a square (1 x 1)
cross section. The finite element mesh (using 8-noded isoparametric
elements) was matched with the boundary element mesh to provide the same
number of boundary nodes. The first four bending modes from BEM were
(0.368, 2.214, 5.591 and 9.986 Hz) and those of the FEM were (0.378, 2.188,
5.583 and 9.908 Hz), indicating good agreement between the two analyses.

Further the mode shapes calculated using the two techniques are
indistinguishable. The first and the fourth bending modes are shown in
Figure 5.1. It should be noted that the fourth mode displays a nonzero
slope near the fixed end. This real feature of the two-dimensional
solution is absent in the beam theory with the imposed fixed end boundary
conditions normally used in the beam theory. The material parameters for

4 and v =0,

the beam are assumed to be E/p =10

In order to study the convergence of the results with an increase in
number of boundary elements, a similar cantilever having a span of 6.0
inches was analyzed. Figure 5.2 shows the convergence of the first six
modes plotted against the boundary mesh numbers. Total number of boundary
elements is equal to 2x(Mesh number + 2) (Ref. Fig. 5.3). The convergence
is excellent for the first six modes. Since this analysis is fully two-
dimensional rather than based on beam or column theory, it provides both
the axial and flexural modes. 1In addition, some of the higher modes (not
shown here) have mixed responses. As expected, a finer discretization is
required for higher modes of vibration. Even the most slowly convergent

case, the fifth (the fourth flexural) mode required only 8 boundary

elements. This indicates that the present analysis could be further
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developed to provide a powerful analytical tool for free vibration
analysis.

Figure 5.2 also shows the beam theory results for modes 1, 2 and 4
(the first three flexural modes). The increasing departure of the results
from the beam theory is due almost entirely to the neglect in beam theory
of shear distortion. Approximate modifications of the beam theory results
for a simply supported beam (Ref. Clough and Penzien, 1975) to account for
this effect indicate frequency reductions of approximately the magnitude

cbserved.

() Ex o] W

In order to compare the results obtained from the proposed method with
those frem the Finite element method and Nardini's BEM, a shear wall with
four square openings was analyzed for in-plane vibration. The boundary
element and the finite element meshes (Ref. Nardini and Brebbia, 1982) are
shown in Figure 5.4. The material parameters were E/p = 104 ang
v = 0,2,

Table 5.3 shows free-vibration pericds for the first eight modes. The
first mode is identically same as that obtained by FEM. The present
results for 2nd, 3rd and 5th modes are also close to the FEM results. The
results from the present analysis agree well with those reported by Nardini
for 4th, 6th, 7th and 8th modes. However, they do not agree well for the
rest of the modes.

(@ An Example of an Arch with Square Openings

An arch in plane stress and fully fixed at the supports was analyzed
(Figure 5.5) for in-plane vibration. Four different cases involving the
full arch with or without openings and symmetric halves with or without

openings were considered. The material parameters were E/p = 107 and
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v = 0.2 .

Table 5.4 shows the natural frequencies of the full arch with and
without openings. In general the natural frequencies are reduced due to
the presence of openings which affects some modes more than others.
Similar results for the symmetrical half of the arch are shown in Table
5.5. In this latter case, of course, some of the nonsymmetric modes of the
full arch are absent. Modes 1 and 6 of the full arch are identical to the

first two modes of the symmetric half.

V.8 QONCLUDING REMARKS:

A new method based on the well known technique of solving a
nonhomogeneous differential equation by complementary function and
particular inteqgrals for the analysis of free vibration problems by
boundary element is presented. The method has been compared with that of
Nardini and Brebbia (1982) and found to yield different results for some of
the higher modes of vibration. It has also been compared with MARC-HOST
finite element analysis and was found to yield essentially similar results
for a cantilever beam problem. When the beam theory is corrected for the
shear deformation, the analytical results tend to agree well with those of
the present analysis.

The present analysis can be easily extended to axi-symmetric and
three-dimensional problems involving inhomogeneity and anisotropy by
utilizing a number of particular integrals already in use in boundary

element analysis.
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TABLE 5.1: Time Periods of Free Vibration of a Triangular Cantilever Plate

Number Mode 1 Mode 2 Mode 3 Mode 4
of Nardini's New Nardini’'s New Nardini‘'s New Nardini's New
Elements method method method method method method method method

3 0.415 0.432 0.216 0.207 0.174 0.138 0.089 0.081
6 0.415 0.430 0.223 0.212 0.200 0.180 0.097 0.095
9 0.416 0.430 0.225 0.212 0.206 0.189 0.108 0.104
12 0.416 0.430 0.226 0.212 0.210 0.191 0.113 0.109
15 0.416 0.430 0.226 0.212 0.212 0.192 0.119 0.111
18 - 0.430 - 0.212 - 0.192 - 0.112
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TABLE 5.2: Time Periods of Free Vibration of a Square Cantilever Plate

Number Mode 1 Mode 2 Mode_3 Mode_4
of Nardini’s New Nardini’s New Nardini’s New Nardini’'s New

Elements method method method method method method method method

4 0.536 0.561 0.232 0.235 0.195 0.172 0.109 0.107
6 0.545 0.568 0.234 0.237 0.214 0.179 0.118 0.116
8 0.559 0.581 0.236 0.238 0.210 0.185 0.127 0.122
10 0.562 0.581 0.236 0.238 0.209 0.187 0.129 0.123
12 0.563 0.584 0.237 0.238 0.209 0.187 0.131 0.125

16 - 0.585 - 0.238 - 0.187 - 0.125
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TABLE 5.3: Time Periods of Free Vibration of a Shear Wall

Modes 1

2 3 4 5 6 7 8
FEM 3.029 0.885 0.824 0.526 0.409 0.342 0.316 0.283
(SAP1IV)
Nardini‘'s 3.022 0.875 0.822 0.531 0.394 0.337 0.310 0.276
BEM
New
Method 3.029 0.878 0.823 0,533 0.400 0.337 0.311 0.276




TABLE 5.4: Free vibration modes of full arch without and
with openings (Hz)

Modes Without openings With openings
1 87.8 78.9
2 124.1 113.5
3 177.4 146.8
4 230.9 212.4
5 275.7 235.0
6 380.7 265.5
7 428.1 401.1
8 506.1 537.1
9 622.0 590.9

10 648.0 595.2

TABLE 5.5: Free vibration modes of the symmetric half of the arch
without and with openings (Hz)

Modes Without openings With openings
1 123.9 113.4
2 378.9 264.4
3 429.3 395.7
4 649.4 590.5
5 820.1 670.6
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CHAPTER VI
ADVANCED THREE-DIMENSIONAL STEADY-STATE DYNAMIC ANALYSIS
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VI.1 INTRODUCTION

In this chapter, an advanced implementation of the direct boundary
element method applicable to the steady-state dynamic analysis of problems
involving three-dimensional solids of arbitrary shape and connectivity is
presented. Isoparametric curvilinear surface elements are used for mapping
gecmetry and for approximating variation of the field variables. In the
present implementation, substructuring capability is incorporated for
solving problems involving piecewise-homogeneous materials such as problems
of layered media and soil-structure interaction. Also provided is a
feature called built-in-symmetry; this allows one to solve the problems
having geometric and loading symmetry by modelling only a part of the
actual geometry. In this chapter, the discussion starts with the boundary
element formulation for steady-state dynamics followed by techniques
related to the numerical implementation. The assembly and solution
algoritims for general three-dimensional problems are the same as those for
two—dimensional problems (Ref. Secs. IV.4.G and IV.4.H), and therefore they
are not repeated in this chapter. Finally, a number of numerical examples
are presented to demonstrate the accuracy and applicability of the present
implementation. This dynamic analysis technique seems to provide an
accurate and efficient tool for solving truly three-dimensional problems
and particularly those relevant for problems of soil-structure interaction,

where it has clear advantages over existing finite element solutions.

VI.2 BOUNDARY INTEGRAI, FORMULATION

The boundary integral equation for three-dimensional problems of
steady-state elastodynamics is the same as that of two-dimensional problems

(eq. 4.13) and it can be expressed as:

77




Cij (_E_)ui(g,m) = _[ [Gij(_x,g.w)ti(x.m) - Fij (_x.g.w)ui(x.m)]dS(x)
S (6.1)
The above equation is identical to equation (4.13), except that here
the field variables and the fundamental solution are functions of circular

frequency o rather than that of the Laplace parameter s . This is

possible because s and o are interchangeable (s = -iw) . The
fundamental solution aij and Eij are listed in Appendix A2. It should be
noted here that although the functions aij and Fij becomes identical to

their static counterpart as s tends to zero, it is important to evaluate
this limit carefully because of the presence of s in the denominator.

Once the boundary solution is obtained, the stresses at the boundary
nodes can be calculated by combining the constitutive equations, the
directional derivatives of the displacement vector and the values of the
field variables at the boundary nodes in an accurate matrix formulation
(Ref. Sec. VI.3.G). Also the loads and moments can be obtained by
numerically integrating the known tractions on each element.

For displacements at interior points, equation (6.1) can be used with
appropriate C.. tensor (Ref. Sec. IV.3); and the interior stresses can be

]
obtained from

(6.2)

The functions 'c';‘;jk and 'E"‘;jk in the above equation are listed in
Appendix A3.

The constitutive equations and boundary conditions are the same as
described in Chapter IV (Ref. Secs. IV.1-IV.3). This boundary integral
formulation presented above can also take account of viscous damping (Ref.

Iv.3).

78




Iv.3 NUMERICAL IMPLEMENTATION:

Since the basic governing equations for dynamic analysis in the
transformed space (either in o or s space) are similar to the
corresponding equations for the static analysis, the numerical
implementation developed for the static case can be used to extract
solution for the dynamic problem for one value of the Laplace transform
parameter s or frequency parameter o . The current numerical
implementation of the boundary integral equation for three-dimensional

problems of steady-state dynamics has the following aspects and features.

(A) Repres ion o try and Field Variables

The boundary integral equation (6.1) represents an exact formulation
involving integrations over the surface of the domain. Therefore, if one
does not make grossly simplified assumptions in the spatial variations of
the boundary quantities, accurate solutions can be obtained. To this
purpose, each surface is discretized in a number of elements with each
element defined in terms of several gecmetric nodes. All surface-element
types employed represent surface geometry using quadratic shape functions.
Three sided elements, defined using six rather than eight geometric nodes,
are used for mesh transition purposes. The terms quadrilateral and
triangle are normally used to refer to the eight and six noded elements
although the real geometry represented is, in general, a nonplanar surface
patch in three dimensions (Ref. Fig. 6.1). Over each element the variation
of field variables can be defined using either the linear or quadratic
shape functions. Linear and quadratic elements can share a common side
which is then constrained to have linear displacement and traction
variation.

In addition to the element types mentioned above, elements which

extend to infinity are provided. These elements are designed to allow
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modeling of structures connected to the ground and automatically
incorporate appropriate decay conditions. The characteristics of the

various element types are summarized below (Ref. Appendix C2).

Element type Geometry Nodes Field variable Nodes

Linear @uadrilateral
Linear Triangle
Quadratic Quadrilateral
Quadratic Triangle
Quadratic Infinite

0 N O N
W AWM

The cartesian ccordinates X4 of an arbitrary point P on a surface

element are given in terms of the nodal coordinates Xia as:
x;(p) = Na(n)xia (6.3)

where i=1,2,3 and « =1,2,...,A, with A the number of nodal points
necessary to describe the element. Furthermore, N, are the shape
functions defired in the local or intrinsic coordinate system (nl,nz). The
Jacobian matrix relating the transformation from the cartesian ccordinate

system (x,v.2) to the element’s intrinsic coordinate system ("1"‘2) is

Jij

(aNa/anj)Xia (6.4)

where Jj = 1,2 and the summation convention is again implied for repeated
indices suchas a.

The field variables are also represented by the same shape functions,

= Na(n)Uia and

el
<
|

T
)
]

Na(n)Tia (6.5)
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where ﬁia and Tia are nodal values of the displacements and tractions,
respectively, in the transformed domain.

Infinite elements, which are essential if problems involving the half-
space are to be solved, can be constructed by modifying the eight-node
quadrilateral as shown in Fig. 6.3. The intrinsic coordinate along the
dimension of the quadrilateral that we want extended to infinity (say n,)
is modified as

ni = (3111 + 1)/(1 - nl) (6.6)

This way the original interval (-1,1) is mapped into (-1,+=)., It should be
noted that only the three nodes on the side of the infinite element that is
adjacent to a surface element belonging to the ‘'core’ region contribute to

the system equations. The original shape functions N for these three

nodes are then modified by the ratio d = [(xi-zi)(xi—zi)/(yi-zi) vy~

1/2

zi)] for the displacement kernel and a% for the traction kernel where

x; are the cartesian coordinates of the integration points, y; their

projection on the common side with the core, and z; an arbitrary
reference point. This type of stretching of a quadrilateral results in a
Jacobian determinant equal to 4/(1-111)2 that must be included in the
kernel integrations. The infinite element thus obtained reproduces the

correct spatial decay of the fundamental singular solutions as r -> =,

(B) Built-i t d structuring Capabiliti

In obtaining the numerical solutions, the built-in symmetry capability
allows one to solve the problems having geometric and loading symmetry by
modeling only a part of the actual geometry. The major steps in this
procedure are briefly explained as follows. If the geometry and the
boundary condition are symmetric with respect to a plane (or a number of

planes), then only that portion of the boundary which lies on the one side
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of the plane (or planes) is modeled. The symmetry can be with respect to
y-z plane (half-symmetry), y-z and x-z planes (quadrantal symmetry), or y-
Z, x-z and x-y planes (octan symmetry). The effect of the unmodeled part
of the boundary is included according to the following scheme: For all the
field points, the contribution of the unmodeled portion to the matrices of
coefficients Fij and Gij are accounted for by reflecting the modeled
surface elements with respect to the plane (or planes) of symmetry and then
integrating over the reflected elements (with proper normals). For the
source nodes on the plane (or planes) of symmetry the contributions are
added up directly whereas for all other source nodes the correct signs of
the contributions are determined by the directions associated with the
field variables with respect to the plane (or planes) of symmetry. By
avoiding the calculation of identical quantities, this procedure shortens
the time required to evaluate the matrices. 1In addition, it reduces the
time required to solve the set of linear equations, because the system
matrix will have fewer rows and columns.

The substructuring capability allows a structure to be modeled as an
assembly of several generic modeling regions (GMR). The GMRs, each of
which must be a complete portion of the structure, are joined by enforcing
appropriate compatibility conditions across common surface patches
(elements). This feature can also be used to solve piecewise inhomogeneous

problems because the GMRs can have different material properties.

(C) Mumerical Integration
In view of the surface elements introduced in the previous section,
Eq. (6.1), when integrated over the surface of the problem in question, assumes

the following form:
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Q
i@ = ) ] Gy, LN, WESE@T,,
g=1 Sq

- j Py, (&), 2,900, (0 dS(x (@) T; ) (6.7)

®q

In the above equation, Sq is the surface of the gth element and Q is the
total number of elements. The global system of boundary element equations
at a given value of s 1is obtained by the usual nodal collocation scheme,
i.e., by allowing point & to coincide sequentially with all the nodal
points of the boundary.

With the exception of strongly singular traction integrals, all
surface integrals in the numerical implementation have been calculated
numerically. Since this is the most time consuming portion of the
analysis, it is essential to optimize this effort. Essentially two types
of integrals, sinqular and nonsingular, are involved. The integrals are
singular if the field point for the equations being constructed lies on the
element being integrated. Otherwise, the integrals are nonsingular
although numerical evaluation is still difficult if the field point and the
element being integrated are close together.

In both the singular and nonsingular cases, Gaussian integration is
used. The basic technique is developed in Banerjee and Butterfield (1981)
and was first applied in the three-dimensional boundary element method by
Lachat and Watson (1976). 1In the nonsingular case an approximate error
estimate for the integrals was developed based on the work of Stroud and
Secrest (1966). This allows the determination of element subdivisions and
orders of Gaussian integration whichwill retain a consistent level of

error throughout the structure. Wumerical tests have shown that the use of
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3x3 , 4x4, and 5x5 Gaussian rules provide the best combination of accuracy
and efficiency. In the present implementation the 4x4 rule is used for
nonsingular integration and error is controlled through element
subdivision. Typical element subdivisions into three-node triangles and
four node quadrilaterals are shown in Fig. 6.4. The distance R that
controls the subdivision process is measured from the field point to the
point closest to the field point on the element being integrated. 1In
general, higher values of s require lower integration tolerance leading
to more element subdivision. If the field point is very close to the
element being integrated, use of a uniform subdivision of the element can
lead to excessive computing time. In order to improve efficiency while
still retaining accuracy, a graded element subdivision is employed. Based
on one-dimensional tests, it was found that the subelement divisions could
be allowed to grow geometrically away from the origin of the element
subdivision. WNumerical tests on a complex three-dimensional problem have
shown that a mesh expansion factor as high as 4.0 can be employed without
significant degradation of accuracy.

In the case of singular integration, which arises when the field point
is on the element being integrated, the element is first divided into
triangular sub-elements. The integration over each sub-element is carried
out in a polar coordinate system with the origin at the field point. This
coordinate transformation produces nonsingular behavior in all except one
of the required integrals. WNormal Gaussian rules can then be employed.
The integral of the traction kernel times the isoparametric shape function
which is 1.0 at the source point is still singular and cannot be
numerically evaluated with reasonable efficiency and accuracy. Its
calculation is carried out indirectly as discussed in Chapter IV, Section

4D. It has been found that subdivision in the circumferential (angular)

84




direction is required to preserve accuracy in the singular integration. A
maximum included angle of 15 degrees is used. Subdivision in the radial
direction has not been found necessary. This process is illustrated in
Fig. 6.5 for a quadrilateral element.

The surface integrals required for calculation of displacement and
stress at interior points are of the same type as those involved in the
boundary problem with the exception that only nonsingular integrals are
involved. In general, the integrals appearing in the surface integrals are
continuously differentiable and solution accuracy can, therefore, be

improved by use of increased integration order.

(D) Calculatjon of Stresses on cund or 3D Prob

Once the boundary solution is obtained, the stress and strain at any
point on the boundary can be calculated without any integration, by using
the procedure outlined as follows.

Let us assume that we are interested in finding stress and strain at a
point P, which lies in a boundary element and has intrinsic ccordinates

(n?.ng). Recalling equations (6.5), we can write

A
b b, _ b _ b
ugnmy) = 3 N DaDuy,
a=1
A
b by, _ b .b
a=1

where:

A is the number of nodes in the element,

Na is the shape functions, and

uia and tia are the nodal values of uy and ti .

In addition, we also have the following relationships:
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t: = o..n. (6.9)

i i35
u, ,+u
k,1 "1,k
A aN_
ui.n = } -3-11_ Ui (6.12)
a=1

where
Ci.jkl is a tensor containing elastic constants, and

Xj, n are the directional derivatives.

Equations (6.9), (6.10) and (6.11) can be combined to form a matrix

equation:
[Sl{p} = {q} (6.13)

where [S] 1is a 15x15 matrix which contains unit normals, a 3x3 unit
matrix and material constants; {p} is the unknown vector of cij and
aui/atj ; and {gl 1is a vector containing the tractions £y and local
derivatives of the displacements at point P .

Finally,the stress and strain at point P can be obtained by
inverting the matrix of equation (6.13) and then multiplying the inverted
matrix by the right-hand-side vector. For this purpose, the right hand

side vector is obtained by using equations (6.8) and (6.12).

VI.4 EXAMPLES OF APPLICATIONS
A number of representative problems were solved in order to test the
steady-state solution. In all cases, English units are used with foot (ft)

for length, pound (1bf) for mass, and second (s) for time.
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(@) i jected t d a

A uniform beam with a rectangular cross-section is completely fixed at
one end and a uniformly distributed traction ty = 1000 eim‘, with @ = 314
r/s, is applied at the other end. Traction-free conditions hold along the
sides. The dimensions of the beamare L=10, w=1, and d=3. The
material properties are as follows: modulus of elasticity E = 1.16 x 107
and mass density p = 2.0 . In order to reproduce the one-dimensional
characteristics the Poisson’s ratio is assumed to be equal to zero. This
cantilevered beam is modelled by 18 quadrilateral surface elements
resulting in 56 nodes. In reference to Fig. 6.6, it is observed that the
surface elements are arranged closer to the locaded end. This is so because
the displacement function varies more sharply at the lcaded end than at the
fixed end. The same figure plots the absolute value of the vertical
displacement ﬁy along the length of the beam at a frequency o equal to
the forcing frequency @ . The results are in very good agreement with the

analytical solution for a flexural beam which was developed from Clough and

Penzien (1975).

(b) nti jected to H ic Trans

The same model discussed in (a) was subjected to a time harmonic patch
load as shown in Fig. 6.7. The agreement between the three-dimensional
calculation and beam theory (Clough and Penzien, 1975) was, once again,

excellent.

(c) tic iapce o Rigid Footj

A rigid square foundation of side length 2b =2 1is resting on the
surface of a homogeneous halfspace under relaxed boundary conditions (i.e.,
there is no friction between soil and foundation). The halfspace has a

shear modulus pu = 1.0, v =1/3, and p = 1.0 . The foundation is
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subjected to a uniform harmonic vertical displacement u, of amplitude
equal to unity. The surface of the halfspace is traction free. The
traction distribution under the foundation obtained by the BEM is
integrated to give the total vertical load P, . The foundation’'s
normalized compliance in the vertical direction is obtained as CVV =
pbuz/Pz . The two meshes shown in Fig. 6.8 are used for modelling the
foundation as well as surface of the halfspace. Since the transformed
domain BEM computer program can take advantage of symmetry, only 1/4 of the
problem needs to be discretized. The coarse mesh uses 4 and 12 elements to
model the foundation and the halfspace, respectively. Note that the
outermost 4 elements are infinite elements. This discretization results in
44 nodes. The finer mesh uses 6 and 12 elements for the same purpose.
There are 2 infinite elements here and 65 nodes.

This problem was originally solved by Wong and Luco (1976). They
numerically integrated the vertical displacement at the surface of a
homogeneous halfspace due to a unit point load over the foundation, which
was discretized into small squares. This problem was recently revisited by
Rizzo et al (1985) using a BEM approach. In their work (Rizzo et al), both
frictionless and welded cases are considered and two approaches are used:
The exact one employs the halfspace kernels (Lamb’s solution) and the
approximate one uses the fullspace kernels (Stoke's solution). In both
cases, only the rigid foundation is discretized and these two approaches
are practically indistinguishable except at the very low frequency range.
All three solutions mentioned are plotted in Fig. 6.9, along with the
vertical compliance obtained by the present method using the fine mesh.
The good agreement between the present results and that of Rizzo et al
(1985) should be noticed. Bowever, the major difference between Wong and

Luco’s results and the boundary element results is due to the fact that
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quadratic shape functions are used for representation of the variation in
the field variables over each element in the present work as well as that
of Rizzo et al whereas Wong and Luco assumed that the unknown contact
stresses are uniform within each element which is a crude approximation.
Fimally, the difference in results obtained by both coarse and fine meshes

is contrasted in Table 6.1.

VI.5 CONCLUDING REMARKS
An advanced algorithm based on the direct boundary element method for

the steady-state dynamic analysis of structures behaving elastically or
viscoelastically has been presented. The numerical implementation employed
is one of the most general presently available and can be used in
conjunction with substructuring to treat three-dimensional solids of
complicated gecmetry and connectivity. The algorithm is stable and capable
of producing very accurate results except perhaps at high frequencies in
which case finer meshes are required for better accuracy. Nevertheless,
the present method is a viable alternative to algorithms based on finite
element methodology. Specifically for halfspace problems, the present
method does not require discretization of the domain of the halfspace and
the use of energy absorbing elements as is required by the finite element
method.

The present method can very easily be extended to solve time-harmonic
wave scattering problems by simply adding the displacements due to the

incident field on the right hand side of the final system equation.

89




Table 6.1: Comparison of vertical compliances cbtained by using
two different meshes

Re[va(aol Im{CVV(ao)}
a =4
0 ¢ Coarse Mesh Fine Mesh Coarse Mesh Fine Mesh
0.5 0.118 0.117 -0.057 -0.058
1.0 0.064 0.069 -0.083 -0.081
1.5 0.032 0.034 -0.076 -0.070
2.0 0.021 0.018 -0.059 -0.052
2.5 0.015 0.015 -0.052 -0.048
3.0 0.010 0.012 -0.036 -0.037
3.5 0.005 0.006 -0.035 -0.032
4.0 0.004 0.004 -0.027 -0.027
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CHAPTER VII
TRANSIENT DYNAMIC ANALYSIS BY LAPLACE TRANSFORM
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VII.1 INTRODUCTION

In this chapter, an advanced implementation of the transformed domain
boundary element formulation applicable to transient dynamic problems
involving two and three-dimensional solids of arbitrary shape and
connectivity is presented. Using the correspondence principle (Lee, 1955),
the transient dynamic problem is first solved in the Laplace transform
space and then time domain solutions are obtained by numerical transform
inversion. The transformed governing equations and the transformed
boundary element formulation are presented in Chapter IV (Sec. 4). The
materials pertaining to the fundamental singular solutions and the
numerical implementation of the boundary integral equation for one value of
Laplace transform parameter are discussed in Chapter IV (Secs. 4-5) and
Chapter VI (Secs. 2-4) for two and three-dimensional problems,
respectively. This chapter starts with a discussion on the Laplace
transformed equations of elastodynamics followed by numerical inversion of
Laplace transform. WNumerical examples are finally presented and, through
comparisons with available analytical and numerical results, the stability

and high accuracy of this dynamic analysis technique are established.

VII.2 NSFORMED EQIJATIONS OF
The governing differential equation of linear elastodynamics in

Laplace transform domain can be written as:

2 2. 2= = 2- _
(c1 - Cy )ui.ij +c, “j.ii + bj ] uj + Ujo + SUjO =0 (7.1)

With the assumption of zero initial condition and absence of body

force, the above equation reduces to:

92




2 2,7

2- 2”
+02 uj'ii-suj-"o (7.2)

Since the boundary condition and the constitutive equations do not

involve time derivatives, their Laplace transforms are simply:

u.

i qi(x.s)

ti = dijl’lj = pi(xﬂs)

- 2 2,7 2, -
o35 = 0 [leg” = 2000y pByy *+ C2 (U4 5 + uy 4)] (7.3)
Finally, the boundary integral equation in Laplace transform dcmain

has the form

045 (00; (4.8) = [ 6529t (%:8) - Fi4(x.2,9); (x.5)] dSx)

S : (7.4)

The main advantage of casting the equations in the Laplace transform
domain is that the equations of motion become elliptic partial different;'Lal
equations, and as such are more amenable to numerical solutions than their
hyperbolic counterparts in the time domain. The numerical solution of the
transient elastodynamic problem in the Laplace-transform domain essentially
consists of a series of solutions to a static-like problem for a number of
discrete values of the transformed parameter s . The final solution is,
of course, then obtained by a numerical inversion of the transformed domain

solutions to the time domain.

VII.3 DIRECT LAPLACE TRANSFORM OF BOUNDARY CONDITIONS

In order to solve equation (7.4), the boundary conditions have to be

transformed to the Laplace domain. As the input boundary conditions are
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piecewise linear in time, a numerical scheme is used to transform the
boundary conditions from time domain to Laplace dcmain. The formula used
for this purpose is exact for the forcing functions (i.e. boundary

conditions in our case) which are piecewise linear in time, and is given by

N-1
_ -sT -sT -sT -sT
£(x,s) = E . {AF(e M-e n+1) +SAT(Fe "-F_..e n+1)}

2 n n+l
n=1 S 4T
(7.5)
where:

E‘rl = f(x.Tn) = value of £ at time Tn , and
AF = F

n+1 - Fp

The above formula is tested for a number of trial functions (such as
cosowt, e-T, logT, etc.) for ¥ =20 and N =50. The average error for
N =50 is 0.5 percent and that for N = 20 is 1.2 percent. Therefore,
(7.5) can also be used for taking Laplace transform of any arbitrary

loading function.

VII.4 TON _OF TRAN, MA LUTION

After numerically integrating equation (7.4) over the surface and
imposing known boundary conditions, the final system equations can be

assembled to the form

[Al1{X} = [B]{Y} (7.6)

All expressions in the above equation are dependent on the transform
parameter s . Therefore, for a transient dynamic problem, the above
equation is formed and solved for {X} for a spectrum of values of the

transform parameter.
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Finally, all that remains to be done is to invert the solutions back
to the real time domain. In general, transformation from the Laplace
transform domain back to the time domain by analytical methods is
impossible except for simple functions. Therefore, numerical evaluation of
the inverse Laplace transform is imperative. The inverse Laplace transform
can be defined as

y+ie

1 p— . —
£(x,T) = z—ﬁj' £(x,8)eSTas , i =v-1 (1.7)

y-i=
where y ( > 0) 1is arbitrary but greater than the real part of all the
sinqularities of f(x,s) and s is a complex number with Re(s) > v > o.
The various methods available for numerical inverse Laplace
transformation may be grouped (Ref. Narayanan, 1982) as follows: (a)
Interpolation-collocation methods, (b) methods based on expansion of
orthogonal functions, and (c) methods based on numerical Fourier
transforms.
In this work, Durbin’'s (1974) method is used because of its high
accuracy (Ref. Manolis et al, 1981; and Ahmad et al, 1985). Durbin's
method is classified under group (c) and combines both the Fourier sine and

the cosine transforms to arrive at the inversion formula:

. N-1
ej'yAT _ .
£T) = 285~ 0.5 ReEx.y)) +Re ) A + BrW" )]
N _
n=o
(7.8)
where
TN = total time interval of interest,
- 2mn _ i2n/w
sn =9 + 1 TN , W=e »
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L

A = Y ReE(x.y + iln + 1M 2D},  and
1=0 N
L
B = Y IniE(x.r + itn + 1M 25)
- N
1=o (1.9

Thus, the numerical values of £(x,T) are computed at N equally
spaced time points Tj = jAT , j = 0,1,2,...,N-1 . For best results, it
is suggested that the product LxN must range from 50 to 5000 and yTN
from 5 to 10 . The computations involved in equation (7.8) are performed
by employing the Fast Fourier algorithm of Cooley and Tukey (1965). 1In
case of the Fourier transform (s = -iw), the above algorithm is equivalent
to a Fourier synthesis.

The above algorithm was tested for a number of trial functions (Ref.
Ahmad, 1983). For L =1, N =200, and YTN = 6 the numerical inversion
results were highly accurate. Using N = 20 and neglecting the results for
very early time steps (up to t = 0.05T) and for late time (after t = 0.75T)
introduces a maximum error of only 2-3 percent and an average error of 0.6
percent. Since use of M = 20 results in very substantial savings in
computation time, this option is employed for three-dimensional problems
and the results are plotted up to 15 time steps (i.e. T = 0.75TN).

However, for two-dimensional problems both W = 20 and N = 50 are used.

VII.S F_AP T

In order to demonstrate the range and accuracy of the transformed
domain solution with the numerical inverse transformation, a series of
examples are presented ranging from a simply supported beam to a cavity in
infinite space. The accuracy of the technique developed is compared to the

available analytical and numerical results. In all cases, English units
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are used with foot (ft) for length, pound (1bf.) for force, and second (s)

for time, except otherwise specified.

(A) o-dimensio Applicatio

(a) i =S £ ject:

A simply supported beam with a rectangular cross-section is subjected
to a uniformly distributed step pressure as shown in figure 7.1. The
dimensions of the beam are, length L = 30, depth d = 2, and width w = 1.
The material properties are, modulus of elasticity E = 3 x 107, Poisson’s
ratio v= 0.3, and mass density p = 0.733 x 1073 .| The purpose of this
analysis is to compare the solution predicted by the present method with
that reported by Bathe et al (1974) by using NONSAP. The Boundary element
mesh as well as the finite element mesh are also shown in figure 7.1.

Figure 7.2 shows the response (i.e. deflection at midspan) calculated
using BEM and that from NONSAP. The time step used in the finite element
solution to obtain the same results from the Wilson & and the Newmark
integration schemes was AT = 0.5 x 1074 sec; whereas, the time step used
in the present analysis is AT = 0.5 x 1073 sec. In spite of the larger
time step, the present analysis produces results identical to that reported
in NONSAP. This help confirm the high accuracy and stability of the method
presented in this chapter.

(b) - und scri ime—d d

In this application, the results obtained by the present transformed
domain., transient, dynamic formulation are compared against the solutions
from finite difference by Tseng et al (1975) and those from time-domain
Boundary elements by Mansur and Brebbia (1985).

The problem to be analyzed is depicted in figure 7.3(a). The half-

space was initially at rest and then a part of its surface is disturbed by
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a vertical pressure which is continuous in both time and space. Tseng used
a transmitting boundary along with a generalized lumped parameter model to
analyze this problem. His finite difference grid is shown in figure
7.4(a). The boundary element discretization is shown in figure 7.4(b).

The material properties of the half-space are, modulus of elasticity
E = 200 ksi, Poisson’s ratio Vv = 0.15 , and mass density
p = 1.9534 x 10"41b-sec?/ in4. For this problem, the time increments used
by Tseng and Mansur and Brebbia was AT = 1 msec and AT = 3.65 msec ,
respectively whereas, in the present analysis, a much larger time
increment, AT = 6 msec , is used.

The time history of the vertical displacements plotted in figures
7.3(b), 7.5, 7.6 and 7.7 are in reasonably good agreement with the previous
results, even though a larger time-increment is used in the present
analysis. The major difference in the results are in the displacements of
point G(150,-10). In Tseng'’s work, this point is located on the
transmitting boundary hence the finite-difference displacements at this
point are not accurate. Similarly, in the case of boundary element
analysis by Mansur, this point is located just below a boundary node which
is a very difficult point to calculate interior displacements In the
present analysis, none of the above mentioned problem is present and thus
the displacements obtained in the present work is more accurate. The
difference between the displacements, at point F(80,-60) obtained by
Mansur and Brebbia and present analysis is probably caused by the error due
to numerical integrations. The present analysis uses a more sophisticated
integration scheme than that used by Mansur and Brebbia and hence the
results obtained by the present analysis should be more accurate.

The time history of stresses at points A(45,-75), B(75,-75) and

C(5,75) are plotted in figures 7.8, 7.9 and 7.10, respectively. It can be
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seen that the results from the present analysis are in very good agreement
with the results reported by Tseng during earler times, and are in good
agreement with those reported by Mansur and Brebbia during later times.
The difference at short times is due to an approximation used by Mansur and
Brebbia in the calculation of interior stresses, i.e., the stress at a
interior point is obtained by calculating the stresses on a triangular cell
with the specified point as its centroid, whereas, the difference at later
times is caused by errors generated at the transmitting boundaries used by
Tseng. Finally, it should be noted that the results from the present
analysis are in reasonably good agreement with the finite difference and

the time-domain, boundary element solutions.

(c) i-infinjte b subjected to udd -
bending_moment:

A semi-infinite beam simply supported along its edge is subjected to a
suddenly applied bending moment M = MOH(T-O). as shown in figure 7.11.
The beam is considered to be under a plane-stress condition and the Poisson
ratio is takenas v =1/3.

A finite element analysis of this problem was carried out by Fu
(1970), and a boundary element analysis was carried out by Mansur and
Brebbia (1985). Boley and Chao (1958) obtained the results for the same
problem using beam theory. Transverse displacements along the axes of the
beam obtained by the above researchers and the present method are shown in
fiqure 7.12. This displacements plotted in figure 7.12 refer to T = Sr/co
where r is the radius of gyration of the beam cross section and S is
the one—dimensional wave propagation speed.

In the present analysis two types of boundary conditions are used. In

the first case, the beam is fixed from transverse movement by incorporating

zero transverse displacement at the midpoint of the finite end of the beam,
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and in the second case, zero transverse displacements are incorporated for
all the nodes along the finite end of the beam. The displacements obtained
by incorporating the first boundary-condition case are in good agreement
with finite element results whereas the displacements obtained by using the
second boundary-condition case are in good agreement with the beam theory
and Mansur’s solutions . Therefore, the difference in the results of

Mansur and Fu are essentially due to end boundary conditions.

(B) imensional Applicatj

(a) ) tilev ject o ti i i ion:

A uniform beam with a rectangular cross-section has a modulus of
elasticity E = 1.16 x 107 , a Poisson’s ratio Vv = 0.0 , and a mass
density p = 2.0 . It is fixed at one end and a uniformly distributed
axial tension p =1000 sinQT, Q@ = 0.628 r/s , is applied at the free end.
Traction-free conditions hold along the sides. The dimensions of the beam
lare length L =4, depth d=2, andwidth w=1. The beam is modelled
by six quadrilateral elements resulting in 20 nodes, as shown in Fig. 7.13.
The same figure plots the axial displacement at the free end as a function
of time alcng with the analytic solution developed from Clough and Penzien
(1975). Agreement is very good considering that only 20 points were used
in the Laplace transform domain and that the sinusoidal load was
represented by straight line segments for the purpose of the direct Laplace
transformation, Eq. (7.5).

(b) ical c

A spherical cavity is embedded in an infinitely extending medium with

6 4

E = 8.993x10°, v=0.25, and p = 2.5x10 . The radius of the cavity is

a =212 and its surface is discretized into 3 triangular elements per
octant for a total of 50 nodes, as shown in figure (7.14). The

characteristic times required for the pressure and shear waves to travel a
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cavity radius are 0.00102s and 0.00177s , respectively. Two cases are
considered:

(i) Spherical cavity under sudden radial pressure: A radial pressure
p = 1000 is suddenly applied and maintained at the cavity surface. Figure
7.15 shows the radial displacement history obtained by using the inverse
Laplace transform algorithm with only 20 data points. The response is
obtained for two different time steps, AT equal to 0.0005s and 0.00035s .
Concurrently plotted is the exact solution (Ref. Timoshenko, 1970). 1In
general, the numerical results are in good agreement with the analytical
solution. These is some oscillation in the Laplace transform solution
towards the end of the total time so that about 85% of the time spectrum
obtained is actually plotted.

(ii) Spherical cavity enqulfed by a3 pressure wave: A propagating
plane pressure wave whose front is perpendicular to the Z-axis first
impinges on the pole with coordinates (0,0,212). The resulting non-zero
incident stresses are “zéi) = -~1000 H(T-To) , and °x;i) = °y§i) =
(V/(I-V))czéi), where H 1is the Heaviside function and To the time
required for the wave to reach the station in question. This wave
propagation type of problem is solved by superposition (Ref. Eringen,
1975). A three—quadrilaterals-per-octant mesh resulting in 74 nodes (Ref.
figure 7.14) is used here‘in conjunction with the numerical inverse
transformation utilizing 20 data points. Figure 7.16 shows the hoop
stresses cgé and “;e normalized by the magnitude of the incident stress
cz;i) versus the non-dimensional time <* = aT/cl. The plots are for
three locations on the surface of the cavity: the two poles (6 = 0,n) and
the equator (é = n/2) . Concurrently plotted are the analytic results

(Ref. Pao and Mow, 1973). Good agreement is observed between the two

solutions.
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VII.6 QONCLUDING REMARKS
An advanced algorithm based on the transformed domain boundary element

formulation for transient dynamic analysis has been presented. The
numerical implementation employed is one of the most general currently
available and can be used in conjunction with substructuring to treat two
and three-dimensional solids of complicated geometry and connectivity.
Interior, exterior and halfspace problems can all be solved by the present
algorithm. The current implementation is also capable of handling sliding
interfaces in the soil-structure interaction problems. Thus, the algorithm
presented is a viable alternative to that based on finite elemgnt

methodology.
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CHAPTER VIII
TIME DOMAIN TRANSIENT DYNAMIC ANALYSIS
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VIII.1 INTRODUCTION

The work described in this chapter is based on the numerical
implementation of the direct boundary element method for time-domain,
transient analysis of three-dimensional solids in a most general and
complete manner. The present formulation employs the space and time
dependent fundamental solution (Stoke’s solution) and the Graffi's dynamic
reciprocal theorem to formulate the boundary integral equations in the time
domain. A time-stepping scheme is then used to solve the boundary-initial
value problem by marching forward in time. Interpolation functions in
space and time are used to approximate the field quantities, and a
combination of analytical (time-integration) and numerical integration is
then carried out to form a system of linear equations. At the end of each
time step, these equations are solved to obtain the unknown field
quantities at that time.

In the following sections, a description of the proposed methodology
is presented in detail. The materials related to the representation of
geometry, spatial variation of field quantities, numerical integration and
soluticn of equations at each time step are similar to those already
described in Chapter VI for one value of transform parameter s except for
the fact that, in the present case, all the quantities are real. The
matrix equation solver used for the present case is a real-variable version
of the out of core complex solver described in Chapter IV, Sec. 4.G. The
built-in symmetry and substructuring capabilities described in Sec. VI.3.B
are also included in this implementation. A number of numerical examples
are finally presented to demonstrate the stability and accuracy of this

dynamic analysis technique.
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VIII.2 TRANSIENT BOUNDARY INTFGRAL FORMULATTION

The direct boundary integral formulation for a general, transient,
elastodynamic problem can be constructed by combining the fundamental
point-force solution of the governing equations (4.1) (Stoke’s solution)
with Graffi's dynamic reciprocal theorem. Details of this construction can
be found in Banerjee and Butterfield (1981). For zero initial conditions
and zero body forces, the boundary integral formulation for transient

elastodynamics reduces to:

s
where:

T

Gij‘ti = j‘ Gij (an;iof)ti(xnf)d‘f
(o)
T

Fy5®; = | Fiy @ TLDY,; (x,0)de (8.2)
0

are Riemann convolution integrals and £ and x are the space positions of
the receiver (field point) and the source (source point). The fundamental
solutions Gij and Fij are the displacements and tractions at a point x
and at a time T due to a unit force vector acting at a point & at a
time <« . These functions are listed in a compact form in Appendix A4.
Equation (8.1) represents an exact formulation involving integration
over the surface as well as the time history. It should also be noted that
this is an implicit time-domain formulation because the response at time T
is calculated by taking into account the history of surface tractions and

displacements up to and including the time T . Furthermore, equation

(8.1) is valid for both regular and unbounded domains.
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Once the boundary solution is obtained, the stresses at the boundary
nodes can be calculated without any integration by using the scheme
described in Sec. VI.3.D. For calculating displacements at interior points
equation (8.1) can be used with C;4 =8;; andthe interior stresses can

] 1]
be obtained from

= d _ s
o4 (&) = j’ (6 (&£ D% (5.1 - Py (5,8, %; (x, D 14S(x)
S (8.3)

The functions G(;jk and F;jk of the above equation are listed in
Arpendix AS.
The constitutive equation and the boundary and initial conditions are

described in Chapter IV (Ref. Secs. IV.1 and IV.2).

VIII.3 TIME STEPPING SCHEME

In order to obtain the transient response at a time TN , the time

t

axis is discretized into ¥ equal time intervals, i.e.

N

Ty = ) nAT (8.4)

n=1

where AT is the time step.

Utilizing equations (8.4) and (8.2), equation (8.1) can be written as:

T
N

¢j4u; (& Ty - j { [Gy5t; - Fyqu;ldsdr
Ty S

-1
=0 S
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where the integral on the right hand side is the contribution due to past
dynamic history.

It is of interest that equation (8.5) like equation (8.1) still
remains an exact formulation of the problem since no approximation has yet
been introduced. However, in order to solve equation (8.5), one has to
approximate the time variation of the field quantities in addition to the
usual approximation of spatial variation. For this purpose two types of
interpolation functions are used which are described with the resulting

time-stepping algorithms as follows.

(d) Constant Time Interpolation
In this case, both displacements and tractions are assumed to remain

constant during a time step, i.e.,

N

U (g0 = ) ulRIe(x) and .
n=1
N

_ n

£ () = ) thRe (o) (8.6)

n=1
where
én(t) =1 for (n-1)AT { * { nAT , and

0 otherwise; and
u’g(x) and tri’(x) represents the spatial variation of u; and t, ,

respectively, at time Th

For illustrative purposes, first consider the form of equation (8.5)
for the first time step; i.e.
S}

To S
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The time integration in (8.7) is done analytically (Ref. Appendix D1) and
the surface integration is performed in the usual manner (i.e.
numerically). After the integrations and the usual assembly process, the

resulting system of algebraic equations is of the form:
1l = whieh (8.8)

where A and B are coefficient matrices, ¥ and X are the known and
unknown components of the boundary tractions and displacements
respectively, and the superscript pertains to the time step.

Mcew consider the boundary integral equation for the second time step,

i.e.;
T
2
T1 S
T
T S

If the time interval (Tz'Tl) is same as (Tl-To) the resulting
coefficient matrices of the left hand sides of equations (8.7) and (8.9)
become identical. This is so because the time translation properties of
the fundamental solutions G]-_j and Fij (Ref. figure 8.1), contain time
functions with arguments (T-t) and therefore the convoluted integral
corresponding to the interval T1 £t {T, with T=T, isidentical to
that of the interval To £TLT, with T=T, .

The right hand side of equation (8.9) is evaluated at time T = T,

with the time integration over the interval To to T; and thus provides

the effects of the dynamic history of the first time interval on the
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current time node (i.e. T,). WNow, the resulting system equation for this

time node ('1‘2) is of the form:

;alix? = ehie? - a2t + BReh (8.10)

where superscripts on X and ¥ pertains to the time nodes and superscripts
on A and B denote the time step in which they are calculated.
Using equations (8.8) and (8.10), equation (8.5) can be written in an

assembled form as:

N
aha™ = Bt - ) [wha™™h - et
e (8.11a)
or Al = Bl + @ (8.11b)

where RV is the effect of the past dynamic history on the current time
node.

The above equation can ke solved to find the unknown XV at time Ty
It may appear at first glance that a prodigious coefficient calculations
are involved. Bowever, a closer examination will reveal that:

(i) If the time step size is constant, the a' and B! matrices do
not change from time step to time step.

(ii) For each time step, a new RY needs to be formed. This
involves the evaluation of a new set of coefficients A" and B" involving
the effects of the dynamic history of the first time interval on the
current time node. Eventually, however, this contribution to RY reduces
to zero and from that point onwards no new coefficients need to be

evaluated.
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In the present implementation, the representative values of the
displacements and tractions during a time stepping interval is obtained by
averaging the values of these quantities at two time nodes of that

interval.

(B) Linear Time Interpolation
In this case, both displacements and tractions are assumed to vary

linearly during a time step,i.e.

N
_ o 1 > N
ui(x,r) = 2 [Mlui (x) +M2ui(x)]
=1
N
_ o on-1 ¥ N
ti(xif) = 2 [Mlti (K) + Mzti(x)] (8.12)
n=1

where ﬁl and ﬁz are the time functions, and are of the form:

- Tn -

Ml == eSn(':)

- *-T,

M2 = én('c) (8.13)

Again for illustration proposes, consider the boundary integral equation

for the first time step, i.e.

T
Cijui(ngI) - Il I [Gijti - Fijui]def =0 (8.14)
S

To

The time integration in equation (8.14) by utilizing (8.12) is done

analytically (Ref. Appendix D2). After the usual numerical integration and
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assembly process, the resulting system equation is of the form:
i1ty -1l + A71°) - [B]1X0) = (0) (8.15a)

where:

A and B are the matrices related to the unknown and known field
quantities, respectively;

X and Y are the vectors of unknown and known field quantities,
respectively;

for X and ¥ superscript denotes the time:

for A and B supercript denotes the time step at which they are
calculated, and the subscript denotes the local time nodes (1 or

2) during that time-stepping interval.

Since all the unknowns at time T = 0 are assumed to be zero,

equation (8.15a) reduces to
(ag1xhy = 1!y + (B]1Y%) (8.15b)
For second time step, the assembled system equation has the form
alix? - Bt + mhix' - sph -
- tiaZixly - B21yh + a21x% - B21v°n) (8.16a)

Similar to the constant time variation scheme, only the matrices on the
right hand side of equation (8.16a) need to be evaluated. However, one
needs to integrate and assemble four matrices at each time step as compared
to two in the case of constant time variation. This can be done with only
a small increase in computational time by integrating all the kernels
togetﬁer and then assembling all the matrices together. Equation (8.16a)

can be rearranged such that:
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(al1x%) = (B311v%) - (a]+A21x') - (B1+BJ1 (YY) + B210¢®)
(8.16b)
In the above equation, all the quantities on the right hand side are known.
Therefore the unknown vector x? at time T2 can be obtained by solving
the above equation.
Thus, for the present case, the boundary integral equation (8.5) can

be written in a discretized form as:

N
A1 - et = - ) [afal i
n=2
- rl pn—1, (oN-n+1 Ny (4,0
Bl ™™ ] + BT (8.17)
or
1™ = Blie™ + /Y (8.18)

The discussion in the previous section regarding the causal properties
of the fundamental solution holds true for the present case also.

It is of interest to note that, if time interpolation functions Fdl
and M, are replacedby M, =M, = 0.5 é,(v) , the time stepping scheme
for linear variation can be used for the case of constant variation with

averaging between the local time nocdes.

VIII.4 ME OF 1 TTON

The numerical implementation of the boundary integral equation for
time-domain, transient elastodynamics is essentially similar to that
described in Chapter VI for steady-state elastodynamics, except for the
following:

(i) All the quantities involved in the time domain analysis are real,

instead of complex as in the case of steady-state dynamics.
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(ii) There is a fundamental difference between static or steady-state
dynamic analysis and time-demain transient analysis when it comes to the
numerical integration schemes outlined in Chapter VI. 1In the static or the
steady-state case, the integrands in all of the nonsingular surface
integrals are infinitely differentiable and solution accuracy can,
therefore, always be improved by the use of increased integration order.
In the transient case, however, the point load solutions are only
continuous. Physically this corresponds to the fact that the disturbance
at some later time fiue to an impulse applied to a spatial location at a
given time (past) is only present in a finite portion of the space (Ref.
figure 8.19). This means that the kernel function may be nonzero over only
part of a given surface element. While the integrand is infinitely
differentiable within both the zero and nonzero regions considered
separatelyl. its overall continuity over the entire element is only Co ¢
The use of higher order quadrature rules is, therefore, of little use in
improving accuracy. Based on these observations, a revised integration
strategy was adopted for the transient case. All surface elements are
subdivided into a relatively large number of subelements and relatively
low-order (usually 2nd or 3rd) quadrature rules together with the usual
distortion in mapping (so that the kernel shape functions and Jacobian
products remain well behaved) are used over each subelement. This has led
to much improved accuracy in the transient analysis.

(iii) In the case of singular integration, the subelements are
subdivided in the radial direction also. This subdivision has been found
to increase both the accuracy and the stability in the time domain
approach.

(iv) In time domain analysis, the fundamental solution as well as the

field variables are functions of real time T and therefore the system
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equation at each step corresponds to a time T rather than to a
transformed parameter s as in the case of Laplace domain analysis (Ref.
Chapter VII).

(v) All the matrices related to the past convolution are stored on
sequential tapes, and at each time increment they are used along with the
boundary excitation history (of tractions and displacements) to calculate
the effect of the past dynamic history on the current time node.

(vi) The matrix B! (Ref. eq. 8.11) is stored on a sequential tape arid
at each time increment it is used to calculate the contribution to the
right hand side due to the known field quantities at the current time.

(vii) During the solution process at the first time increment, the
decomposed form of the system matrix Al (Ref. eq. 8.11) is stored on a
direct-access file for later use. After that, at each time step, all of
the known tractions and displacements are multiplied by appropriate
coefficient matrices to form a new right-hand-side vector. The decomposed
form of the system matrix is then used with the new right hand side vector
to calculate the unkncwn displacements and tractions at the current time.
This process of repeated solution by using the decomposed form of the
system matrix is highly efficient and thus results in considerable saving

in solution time.

VIII.S5 I A D_ Q0¥

In order to investigate the accuracy, stability and convergence of the
proposed numerical technique, the problem of the radial expansion of a
spherical cavity in an infinitely extending medium, subjected to suddenly
applied and maintained internal pressure [p(T) = 10001 was studied. The
mater’ial properties were as follows: E = 8.993x10° psE, v=0.25, and »p

= 2.5x10"9 lb-seczlft:4 . The radius of the cavity was taken as R = 212 ft
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and three different meshes shown in figure 7.11 were used to discretize the
cavity surface. Using built-in symmetry capabilities, this problem was
modeled by one cctant only. The f£irst mesh has one six-noded triangular
element, the second has three triangular elements (total of 10 nodes), and
the third has three eight-noded quadrilateral elements (total of 16 nodes).

In figures 8.2-8.4 the radial displacement ur(r = R,T) normalized
by the static value is plotted against time for a total of nine different
time steps. Concurrently plotted is the exact solution (Ref. Timoshenko,
1970). These results conclusively demonstrated the unconditional
stability of the BEM formulation. The accuracy is highest when the time
step is between 1/3 to 3/4 of the characteristic time R/c1 . Inall
cases the results approach the static response without exhibiting any
supurious oscillations.

The effect of the surface discretization is demonstrated in figure
8.5, where the time variation of ur(R.T) is plotted for all three meshes
for the same time step AT = 0.00035 s . It is observed that the errors
in the dynamic response are consistent with the average error committed in
the static response which is 12% for the first mesh, 3% for the second
mesh and 1.5% for the third mesh. Thus, the numerical technique presented
here converges to the actual results with finer discretization of the

surface of the boundary.

VIII.6 EXAMPLES OF APPLICATIONS

A number of representative problems are chosen to test the accuracy
and the stability of the time-stepping solution. In all cases, English
units are used with foot (ft) for length, pound (1bf) for force, and

second (s) for time.
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(a) Bar Subjected to a Transient End Load.

(i) Sguare cross-section: A bar with square cross-section is held
along its sides by lubricated rollers and is fixed at one end. The free
end is subjected to a suddenly applied and maintained uniform compression
t, = 1000. The dimensions of the bar are L =8.0 and b =2.0. Inview
of the material properties, the characteristic time required for the
compressive wave to reach the fixed end is 0.03578 sec. Figure 8.6 shows
the discretization and the numerical results for the normal stress L
in which the results from the time domain algorithm for two different time
steps AT are compared with the exact analytical solution for one-
dimensional stress wave propagation (Ref. Timoshenko, 1970). Although the
numerical results are in good agreement with the analytical solution, it is
clearly very difficult to reproduce the sharp jump in the stress as the
disturbance reaches the point initially and when the reflected stress wave
returns to the same location. This difficulty has been observed elsewhere
as well (Ref. Belytschko et al, 1976).

The axial displacement history at the free end is shown in figure 8.7.
The displacements are normalized by static displacements and the time is
normalized w.r.t the characteristic time required for the compressive wave
to reach the fixed end. It can be seen that the numerical results are in
good agreement with the analytical solution. The differences are mainly
due to the three-dimensional nature of the simulated problem.

(ii) jrcular-cross-sectjon: In order to investigate the effects of
the cross-section on the numerical results, a bar with circular cross-
section having the same material properties and boundary conditions as
described in the last example was analyzed. The boundary element mesh for
this problem is shown in figure 8.8. The bar has a length L = 5 and

diamater d = 1 . Thus, the characteristic time required for the
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compressive wave to reach the fixed end is 0.02236 sec. The time step used
in this example is AT = 0.004475 sec.

Figure 8.9 shows the numerical results for the normal stress L at
the midspan of the bar against a one-dimensional analytical solution. As
mentioned in the last example, the sharp jumps in stress are diffused in
the numerical results. However, by using more elements and smaller time
steps, the numerical results in the vicinity of the jumps will agree more
closely with the analytical solution.

The time history of the normalized axial displacements at the free-end
is plotted in figure 8.10 against the one—dimensional analytical solution.
The results are in good agreement, except for the peak displacements. The
numerical peak values are less than that of the analytical solution and
this results in an increase in the difference between the two solutions at
later times. The difference, once again, is mainly due to the three-
dimensional nature of the problem under consideration.

(b) Spherical Cavity.

A spherical cavity is embedded in an infinitely extending medium with
E = 8.993x106, v=20,25,and p= 2.5x10-4. The radius of the cavity R =
212 and three different meshes for its surface discretization are shown in
figure 7.11. Using the built in symmetry capabilities, this problem is
modeled by one octant only. The characteristic times required for the
pressure and shear waves to travel a cavity radius are 0.00102s and
0.00177s , respectively. Four cases are considered:

(i) Spherical cavity under sudden radjial expansion: A radial
pressure p = 1000 is suddenly applied and maintained at the cavity
surface. Figure 8.11 shows the time variation of deviatoric stress at the
cavity surface obtained by the time domain algorithm. Concurrently ploéted

is the result reported by Hopkins (1960) based on the work of Hunter
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(1954). In general, the numerical results are in good agreement with the
analytical solution. The transient, time-domain solution remains stable
and reaches the expected static solution at larger times. It can be ssen
that the maximum deviatoric stress for the transient case is 1.77 times the
applied pressure whereas for static case it is 1.54 times the applied
pressure.

(ii) gpherical _cavity subjected to 3 rectangualr pulse of radial
pressure: A triangular pulse of radial pressure, as shown in figure 8.12
is applied at the cavity surface. This example is solved by using linear
time interpolation functions and two different time steps. The radial
displacements at the cavity surface are plotted in figure 8.12. The
numerical results from both the time steps are almost identical. Thus,
this example once again demonstrates the stability of the present
algorithm.

(iii) gSpherical cavity subjected to a rectangular pulse of radial
pressure: A rectangular pulse of radial pressure as shown in figure 8.13
is applied at the cavity surface. This example is also solved by using
linear-time interpolation functions and two different time-increments.
Figure 8.13 shows the time history of the radial displacement of the
cavity. By comparing this results with those due to a triangular pulse
(i.e. fig. 8.12), it can be seen that, in general, displacements at any
time interval due to the rectangular pulse are twice that due to the
triangular pulse. This is because the response depends upon the total
impulse and the total impulse due to the rectangular pulse is double that
due to the triangular one. Hence, the displacement amplitude response due
to the rectangular pulse is also approximately double that of the
triangular pulse. In addition, since the energy input is the same in both

problems, the response curves for both cases have the same shape.
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(iv) Spherical cavity engulfed by a pressure wave: A propagating
plane pressure wave whose front is perpendicular to the Z-axis first
impinges on the pole with coordinates (0,0,212). The resulting non-zero
incident stresses are cz;i) = -1000 , °x>(<i) = ayy('i) = (v/(l—v))az;i).
This wave propagation type of problem has been solved by superposition
(Miklowitz, 1978). The three quadrilaterals per octant mesh is used here

in conjunction with the time-domain approach. Figure 8.14 plots the hoop

stresses oy, and gy normalized by the magnitude of the incident stress
cz;i) versus the non-dimensional time <=* =RT/c, . The plots are for
three locations on the surface of the cavity: the two poles (6 = 0,r) and
the equator (6 = n/2) . Concurrently plotted are the analytic results (Pao
and Mow, 1973; Norwood and Miklowitz, 1967), obtained by analytical
inversion of the Fourier transformed solution. Good agreement is observed
between the two solutions. Finally, figure 8.15 plots the radial
displacement time history at the same three locations as before.

(c) Transient point load on halfspace.

This example is Lamb’s problem for an impulsive vertical point force
on the surface of a semi-infinite solid (Pekeris, 1955). The modelling
difficulty encountered here is that the point load must be represented by a
finite (yet small) area, and hence the complicated mesh shown in figure
8.16. There are 7 co-centric rings, with four elements per ring, resulting
in a total of 85 nodes. However, by using the symmetry only one quarter of
the mesh is modeled as a input geometry data. Uniform vertical tractions
t, = 1000 are prescribed on the triangular elements of the inner ring
which has an outer radius of 0.05. The outer ring has an inner radius of
3.0 and is modelled by infinite elements. Obviously the small circular

load solution behaves differently from the analytical, point-force solution

(labelled solution A). The static solution showed that the results agree
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well at a radial distance of 0.2 where there is a 4.5% and a 1.0%
difference in the horizontal and vertical displacements, respectively.
Therefore, the results from the time domain algorithm shown in figure 8.17
are for the normalized horizontal displacements at r = 0.2 . When the
exact solution (Pekeris, 1955) is used to calculate the superimposed
effects of multiple point forces to reproduce a finite area loading
(labelled as analytic solution B), good agreement with the BEM results is
obtained.

(@ Square flexible footing on half-space.

In this example, a square flexible footing on half-space is subjected
to a time dependent vertical tractions. The mesh for this problem is shown
in figure 6.8(a) and is the same as that used for calculating vertical
compliance for rigid square footing. The side of the footing is B = 2b =
2 , and the material properties of the half-space are: elastic modulus E
= 2,6, Poisson’s ratio v= 0.3 and mass density p = 1.6 . The time step
used for this analysis is AT = 0.2 . The time history of the applied
pressure and the vertical displacements at the center and corner of the
loaded area are plotted in figure 8.18. It can be seen that the vertical
displacement at the center of the footing converges to the static value
after 2.4 seconds. Whereas the vertical displacement at the corner of the
footing seems to be converging to its static value at a later time. The
mesh used for this problem gives a maximum error of 2% for static
analysis, hence the results obtained for the present problem are supposed
to be reasonably accurate. Finally, this example shows the usefulness of
the present algorithm for transient dynamic analysis of half-space

problems.
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VIII.7 CONCLUDING REMARKS
An advanced algorithm based on the direct boundary element formulation

for time-dependent elastodynamic analysis of three-dimensional solids has
been presented. The algorithm is an unconditionally-stable, implicit,
time-marching scheme and is capable of producing very accurate results.
However, for better accuracy, it is recommended that the time step should
remain smaller than L/c; - L being the smallest distance measured along
the surface between two corner nodes of an element. This algorithm is a
viable alternative to that based on the finite element methodology,

particularly for soil-structure interaction problems.
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CHAPTER IX
NONLINEAR TRANSIENT DYNAMIC ANALYSIS
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X.1 INTRODUCTION

In this chapter, a direct boundary element formulation and its
numerical implementation for nonlinear transient dynamic analysis of
three-dimensional deformable solids of arbitrary shape and connectivity is
presented. The formulation is based on an initial stress approach, and is
the first its type in the field of Boundary Element technique. The
nonlinearity considered in this analysis is that due to the nonlinear
constitutive relations, i.e. material nonlinearity. The boundary integral
equations are cast in an incremental form, and thus, elasto-plastic
relations of the incremeftal type are used for material description. These
equations are solved by using a time-stepping algorithm in conjunction with
a iterative solution scheme to satisfy the constitutive relations. The
resulting algorithm is an unconditionally stable implicit scheme. However,
the size of the time step that can be used is restricted by the size of the
elements used for modelling the surface of the problem under consideration.

In the present analysis, the geometry and the field variables are
represented by higher-order isoﬁarametric shape functions to model complex
geometries and rapid functional variations accurately. In this chapter,
the discussion first focuses on the formulation of the method, follcwed by
the numerical technique for discretization and spatial integration of
volume integrals. For discretization and spatial integration of surface
integrals, the numerical integration techniques developed in earlier
chapters (Ref. Secs. VI.3 and VIII.4) are used. The material pertaining to
the time-stepping scheme along with the iterative solution algorithm are
presented next. WNumerical examples are finally presented to demonstrate

the accuracy and applicability of the present methed.
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X.2 D T DYNAMT ITY

The direct boundary integral formulation for a nonlinear transient
dynamic problem, based on an initial stress approach, can be constructed by
following a procedure similar to the one that has been used for a nonlinear
static problem (Ref. Sec. 12.4(b), Banerjee and Butterfield, 1981). Under
zero initial conditions and zero body forces, the boundary integral

equation for nonlinear transient dynamics is of the form

o435 () (6D = f (Gy (& & (1) - Py (6,2, %, (3, D18S()
s

o]
| Bjy 481 %63 (5. DAV () (9.1)
v

where * denotes convolution (Ref. Sec. VIII.2);
& and ¥ are the space positions of the receiver (field point) and
the source (source point), respectively;
621 is the initial stress tensor:;

V denotes the volume of the body; and

the fundamental solutions Gij’ E‘lj and Bil] are listed in

Appendices A4 and A6.
Assuming all the field quantities to have a zero value at time T = 0,

the boundary integral equation (9.1) can be written in an incremental form

as follows:

¢y4 (B Au; (£,T) = j' [Gy4 (8, & TI*AL; (X.T) - Fyj(x,£,T)*u; (x,1)1dS()
s

+ Bj14 (K £.T)*40d) (x, YAV () (9.2)
v

where A denotes the incremental quantity.

The stress increment at an interior point £ can be obtained by
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taking derivatives of equation (9.2) and using the constitutive

. . _ _ [o) .
relationships (Aaij = DijklAekl Acij) as:

- o o
Aoy (D) = j (63 (&, £, *4E; (D) = Py (x,8,T)%4u; (x.T)1dS
S
ag ] o]
+ _[ BY) 4k (& 2D *409) () + Ty 5y 809, (2. T)
v (9.3)

The functions G‘i’jk, F‘i’jk, B‘{ljk and J;; 5, are defined in Appendices AS
and A6.

In equation (9.3), the volume integral must be evaluated in the sense
of (V- V. ) with limit V, => 0 and the tensor Jiljk is the jump term
arriving from the analytical treatment of the integral over VE . This
jump term is the same as that of static plasticity and is independent of
the size of the exclusion V_  provided the initial stress distribution is
locally homogeneous (Ref. Banerjee and Davies, 1984; Raveendra, 1984;
Banerjee and Raveendra, 1985).

The equations for incremental stresses cannot be constructed at the
boundary points by taking the field point (&) in equation (9.3) to the
surface due to the strongly singular nature of the integrals involved.
However, the equations for incremental stresses at boundary points can be
constructed by using a scheme similar to that described in Sec. VI.3.D.
Using this scheme, the incremental stresses and the global derivatives of
the incremental displacements at a boundary point ;b can be obtained by

coupling the following set of equations:

b _ b b b _ .0 ,,b
Aoy (27T = [xsijAum’m(; )+ nlduy (22T + Aug (& 1] 809, (22,T)

b - b b
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b
dAu, dAu, 9E:
3__L = —t 3 (9.4)
Mg 8§b a“a
]
where n_ is a set of local axes at the field point (;P) .

The above equations can be combined together and written in a matrix

form as
[S1{p} = {q) (9.5)

where [S] 1is a 15x15 matrix which contains unit normals, a 3x3 unit
matrix and material constants; p is the unknown vector of Aaij and
aAui/aaj ; and q 1is a vector containing the tractions Ati and local
derivatives of the displacements Aui .

By making use of equation (6.5), the right hand side of equation (9.5)

can be written as
{q} = [El{qg} (9.6)

where [E] 1is a 15x48 matrix of shape functions and derivatives of shape
functions; and g is a vector of incremental nodal tractions and
displacements over all of the local element nodes.

Inverting matrix [S] and utilizing equation (9.6), the set of
equations (9.5) can be rearranged to form

b - a0
Aajk(_& ,T) Gi

=0 o ,.b

It should be noted that the above equation is free of any integration and

time convolution.
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IX.3 CONSTITUTIVE MODEL

In dynamic plasticity, the choice of an appropriate constitutive model
depends largely on the material properties and the loading conditions of
the problem in hand. For this reason various constitutive models have been
used for dynamic plasticity. However, for simplicity in the present
analysis, the Von Mises model with isotropic variable hardening is used.

In this model, the behavior in the elastic and plastic region is

governed by the stress-strain relations:

3S..S
- ~ o — 137kl
Aoys = 2 [Aeij + 15 bishe T Mgy, ] (9.8)
o
where Acij = D(ia?klmkl = incremental stress tensor,

D?.?kl = incremental elastoplastic material modulus,

M = elastic shear modulus,

% = uniaxial yield stress =V 3Sijsij/ 2,

Sij = deviatorit stress = G’ij - Sijckk/S ,and

H = plastic-hardening modulus, the current slope of the uniaxial

plastic stress-strain curve.
The present implementation is such that any other constitutive model

can be included without any difficulty.

IX.4 DISCRETIZATION AND SPATIAIL, INTEGRATION OF THE VOLUME INTEGRALS
(A) Discretizatjon

Equations (9.2) and (9.3) provide the formal basis for developing the -
dynamic plasticity algorithm. However, the initial stresses Aagj defined

in equations (9.2) and (9.3) are not known a priori and have to be
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determined by satisfying the constitutive relations discussed in Section
IX.3. Thus, equations (9.2) and (9.3) and (9.8) can be regarded as a
coupled system of nonlinear equations. 1In the present implementation,
equation (9.3) and (9.7) are used to calculate the stresses at interior and
boundary points and the nonlinear material model is then used to evaluate
the inelastic stresses. Since the volume integrals of inelastic stress
vanish except in regions of nonlinear material response, approximations of
geometry and field quantities are required only where nonlinearity is
expected. In the present work, isoparametric (quadratic) volume cells are
used for approximating the geometry and the variation of initial stresses

such that:

X; = M, (n)X

B ip

o _ e
o = ¥g(mojsg (9.9)
where X4 are carterian coordinates,

iiB are nodal coordinates of the volume cell,

Mg
B represents the nodal points of the volume cell, and

is a quadratic shape function for the volume cell,
— denotes nodal quantities.
A typical volume cell is shown in figure 9.1.

The volume integral of equation (9.2) can be then represented as

T
j J.Bilk(x.ngb,t)Acgl(x.t)dvdr
oV

irr

T
m b om
[ Bjy (&™) T8 ) My ()@, Achyf de (9.10)
o Vv
m
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where:

;b 1s the field point on the boundary (boundary node),

™n) 1is the point in cell m,

A;?]_I; are the nodal values of incremental initial stress of the

nth cen1,

Vm is the mth volume cell, and

L is the total number of cell in a single region.

Similarly, the volume integral of interior stress equation (9.3) can

be expressed as

T
c . o
J- I Biljk(x'T'g"t)Acil(K't)dth
oV

L
™
= o m . “om
2 | J syt ma o mav, 4o f a (9.11)
m=1 o Vm

in which the time integral is treated analytically as before.

(B) Spatial Integration
The nonsingular, spatial integration of volume integrals of equations
(9.2) and (9.3) are evaluated numerically by applying the Gaussian

quadrature technique of the transformed integral as

1 1 1
| Blxm.z wwav, - J, 5., I, miew . ey wdndnydng

Vm

It A1 W

cC
Y wAIPBIx, (1), £1 M (n3) 3 (a0 (9.12)
1c=1
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where the Jacobian is defined by

de = J(“l'“Z'“s)dnld"zd"s
and is given explicitly as

9x

.
1 | .
— i, =1,2,3

I

J(nloﬂztﬂs) = {

For singular volume integrals, the volume cell can be transformed to a
unit cube and the cube is subdivided into tetrahedra through the field
point, as shown in figure 9.2. Using a local spherical polar coordinate

system (r,8,8) with its origin at the field point,the integral of the sub-

cell can be transformed by the Jacobian as
V) = Jdrdéde = r’sina drddde

The integrand involving the B, 5 kernel is singular of the order 1/ r? and

3
therefore the integral is bounded in the transformed domain. However, the
volume integral Biljk is singular of the order 1/r3 and in the
transformed domain the behavior is approximately of the order 1/r . The
integral, however, is made bounded by excluding a sphere and mapping the
remainder of the tetrahedra to a unit cube as shown in figure 9.3. The
integration is computed by applying the Gaussian quadrature to the
transformed domain. A series of numerical trials with different sizes of
the spherical exclusion led to the surprising conclusion that it could be
set to zero for the most accurate three—dimensional analysis.

The above described volume integration scheme is based on the work of

Mustoe (1984), Bajernee and Davies (1984), Raveendra (1984) and Banerjee

and Reveendra (1985).
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IX.5 TIME- P A T TON
(4) Time-stepping

In order to obtain the nonlinear transient response at a time TN’ the
time axis is discretized into N equal time intervals, i.e.

Ty = ) MAT (9.13)

where AT is the time step.

Using equation (9.13), the integral equation (9.2) can be written as

TN TN

o)
Ty-1 5 T-1 v
T-1 Ty .
=0 S TN-l v

(9.14)

For the present case, the linear time interpolation scheme described in
Sec. VIII.3.B is used to approximate the time variation of the field
quantities during a time step because the same scheme can also be used for
constant time interpolation with averaging.

Thus, after the usual discretization and integrations (time and

spatial both), the integral equations (9.14) are transformed into an

assembled system equation of the form

(o)
(a1 (ax™) - L1y - 1cl1ad™

N
= - ) [raleal 1 eax™ Yy - (el (ayNRt
=2
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(o]
+ [C’2‘+c’1“1] {AaN'“‘“l}] (9.15)

(o}
or (al1ax™ = Bh10av™} + [C]1iAc) + ®Y (9.16a)

or 2Pag¥ = APV + PN (9.16b)

where A and B are the matrices related to the unknown and known

incremental displacements and tractions;

c is the matrix related to the initial stresses:

AX and AY are the vectors of unknown and known incremental
displacements and tranctions:

for AX, AY and A?r. superscript denotes time, i.e. AX" = X7 - 1

for A, B and C matrices, superscript denotes the time step when
they are calculated, and the subscript denotes the local
time node (1 or 2):

Y

is the effect of past dynamic history
PN = Bliay™ + /Y

Ab = [A%] , and

o

%N = 1cl11ad™ .

Similarly, the integral equation for stresses can be written in a

discretized form as

{ AO’N}

- - - o]
Al ax™ + Bl + cliadh + @M (9.17a)

or AV = %Y + ARV + apOcN (9.17b)

Q
\
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where ‘'-' indicates that the matrices are related to the stress equation:
2% = ;] ; ag = [BL1(AY) + (R™N) ; and
00N _ (=1, ,oN
Ab = [C2] {Ac’'}

(B) . . . i« Plastici

The algorithm described here provides the solution of system equations
given by equations (9.16) and (9.17). The solution of these system
equations requires complete knowledge of the initial stress distribution
AZJQ within the yielded region that is induced by the imposition of the
current increment of boundary loading. This, unfortunately, is not known a
priori for a particular load increment and therefore an iterative process
must be employed within each time step.

This incremental algorithm can be described as follows:

(1) Obtain the transient elastic solution for an arbitrary increment of

boundary loading AXN during the time interval Tn_1 to Ty » as

abaxl = apd¥
and

AgN - AGAKN + AQGN

where W is the time step number.

If the material has not yielded yet, accumulate X-vectors, i.e.
KN = KN-I + AKN .

(ii) If the material was yielded before go to step (vi).

(iii) Check whether any node has yielded during the current time step. If

the material has not yielded yet, accumulate stress and strain, and go

back to step (i).
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(iv)

(v)

(vi)

m.6.

Calculate the value of o, » equivalent stress by using c_y_T =

Ao‘N

M.

as the stress chnages and compile a list of yielded nodes. For
elastic nodes accumulate the stress and strain, i.e., g'_N = g_T and §_N
= e_N'l + [De]—lAg_N . Calculate the correct stress at the elasto-
plastic nodes by using the elastoplastic stress-strain relations Ag®P

= erAg_ and using the elastic strain increments as a first

approximation. Modify the stress history for yielded cells gN = gN-l
+ Ag_ep . Calculate initial stress Ago = gT - gN .
Assume Apr = 0 and AQ"N = 0 and using the generated initial

stress Ac® calculate a new AXN by using equation (9.16b) and A_o’_N

by using equation (9.17b). Calculate the equivalent stresses by using

the history gT = g’_N + Ag_N and compile a list of yielded nodes. For

elastic nodes, accumulate the stress aN = aT

and strain. For the

elastoplastic nodes calculate the currect stress Ac®P = D°Pag . The

initial stresses generated are Aa_° = AgN - Ac_ep . Modify the stress

o

history for the yielded nodes g_N = gN + Ac®P . Accumulate AKN and A_N
o] o

(i.e. A&N = A&N + ASN and AgN = Ag_N + Ag_o). so that they can be used

in the next time step for past convolution.

Check if the initial stresses Ag® are less than the acceptable norm
and 1if so go to step (i) and if not go back to step (v). If the
number of iteration exceeds, say, 50 then it is reasonable to assume

that collapse has occurred.

EXAMPLE OF APPLICATION
In order to demonstrate the accuracy and applicability of the proposed

nonlinear transient dynamic analysis algorithm, a presentative problem is

analyzed. English units are used with foot (ft) for length, pound (1bf)

for force, and seconds (s) for time.
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(a) Bar subjected to a step end Joad.

A bar with circular cross-section is held along its sides by
lubricated rollers and is fixed at one end. The free end is subjected to a
suddenly applied and maintained uniform compression tz = =333 which
exceeds the yield stress of the bar (i.e. yield stress of the bar is Y =
300). In this example, the bar has dimensions and material properties
identical to that of example VIII.6.b(iii). The discretization of the bar
is similar to the one shown in figure 8.8 except, in the present example,
the full cross-section of the bar is modeled instead of one—quarter of it.
The volume of the bar is discretized by using five 20-noded, volume cells
of equal dimensions. A bilinear stress-strain relation as shown in figure
9.4, is assumed to describe the rod’s material property. The time step
used for this example is AT = 0.004473. In figure 9.4, the elasto-plastic
response of the bar at time T = 0.8 To (where T = clT/I.. i.e. the time
taken by the compression wave to reach the fixed end of the bar) is plotted
against the one-dimesnional analytical solution (Ref. Garnet and Armen,
1975). In this, the normal stress o,, are normalized by the elastic
modulus and the distance along the bar is normalized by the length of the
bar. The numerical results are in reasonable agreement with the analytical
solution except for the sharp jumps in the stress which are diffused by the
numerical analysis. The major differences in the results between the two
solutions can be attributed to the three-dimensional nature of the present
example. As the bar is on lubricated rollers, in addition to longitudinal
stress, lateral stresses also exist in the bar. Simple one-dimensional
theory considers longitudinal stress only and thus, the difference between

the two solutions.
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X.7 CONMCLUDING REMARKS

A direct boundary element formulation and its numerical implementation
for nonlinear transient dynamic analysis of three-dimensional isotropic
homogeneous or piecewise homogeneocus solid has been presented. Due to the
lack of available solutions for three-dimensional nonlinear transient
dynamic problems, it was found impossible to compare results for a real
three-dimensional problem. However, the present algorithm is found to
preduce very accurate results for three-dimensional static nonlinear
problems by using large time steps.’ (i.e. when the loading is done slowly).
Similarly. when a large value of yield stress is selected, the incremental
nonlinear transient algorithm is found to produce results identical to that
produced by the linear transient algorithm. This new formulation provides
a numerical tool for solving three-dimensional transient problems involving
material nonlinearity which are now impossible to solve by any other

method.
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X.1 GENERAL COWCLUSIONS

A complete and general numerical irplementation of the direct boundary
element method applicable to free-vibration, periodic vibration, and linear
as well as nonlinear transient dynamic problems has been presented. The
developed methodology is applicable to problems involving two or three-
dimensional, isotropic, piecewise-homogeneous solids of arbitrary shape.
Since all of the proposed analyses are based on the boundary element method
(BEM), they have all the advantages of the BEM over the Finite Element and
Finite Difference methods such as, discretization of only the boundary of
the domain of interest rather than the whole domain, ability to solve
problems with high stress concentrations, accuracy and the ease of solution
in infinite and semi-infinite mediums.

The real-variable BEM formulation presented in this dissertation
provides a numerical tool for free-vibration analysis of solids with
complex geometries. This method has been compared with MARC-HOST Finite
element analysis and was found to yield essentially similar results for a
cantilever team problem. Thus, the proposed method is a viable alternative
to algorithms based on Finite element schemes. 1In addition, it needs only
the boundary discretization of the problem rather than the whole domain.

The advanced implementation of the BEM for steady-state dynamic
analysis of two and three-dimensional, visco-elastic solids, presented in
chapters IV and VI, are one of the most general numerical implementation
presently available. By comparing the results obtained by the present
implementation with those by other methods, the accuracy and stability of
the present method is established. For half-space problems, the proposed
methodology is a better alternative to the conventional finite element
method. For half-space problems Finite element presents two restraints:

(i) the model must be bounded at the bottom by a rigid bedrock, and (ii)
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the soil away from the vicinity of the foundation is represented by
parallel layers unbounded on the horizontal direction. These two
conditions are not always close to reality whereas, in BEM, the fundamental
solution satisfies the radiation condition at infinity and therefore no
bounding surfaces are needed and only a small number of elements are
necessary to model the problem.

The transformed-domain boundary element formulation presented in
chapter VII is capable of providing accurate solutions to transient elasto-
dynamic problems. The accuracy and stability of the present implementation
are established by comparing the results obtained against the available
solutions from Finite element, Finite Difference and Time-domain Boundary
element methods. However, the transformed domain formulation suffers from
the following defects.

(i) The transform solution is essentially a superposition of a series
of steady-state solutions and is therefore applicable only to linear
elasto-dynamic problems. For nonlinear problems, the solution must be
obtained in the real time domain.

(ii) Since the Laplace/Fourier transform casts the entire problem in
the complex domain, the computer time and storage requirements are
consicderably increased.

The time-domain boundary element formulation for linear and nonlinear
transient dynamics presented in chapters VIII and IX eliminate the above
mentioned problems. The proposed time demain methodology, in conjunction
with the direct step-by-step integration, provides the transient response
directly and thus it has been extended for nonlinear problems by using an
iterative algorithm. Using this method, the transient phenomena during
early response times, preceding the harmonic steady-state motion, can be

captured while frequency domain methods are incapable of detecting them at
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all. In addition, approximations related to the value of Poisson’s ratio
and to the number of modal shapes required in frequency synthesis are
eliminated.

The versatility of the proposed time-domain methodology is evident in
view of the results presented in this dissertation for various three-
dimensional transient problems. Due to its general character, it can be
used for solving more sophisticated problems. This algorithm is an
unconditionally stable implicit time marching scheme and is capable of
producing accurate results. However, for better accuracy, it is
recommended that the time step should remain smaller than L/c1 ; where L
being the smallest distance measured along the surface ketween two corner
noces of an element and ¢, being the propagation velocity of pressure
wave.

By taking the material nonlinearity into account, the proposed
methodology for time-domain nonlinear transient analysis has the potential
to provide a numerical tool for solving soil-foundation problems in a more
realistic manner which cannot be accomplished by using the available

transform domain algorithms.

X.2 RECOMMENDATIONS
In order to facilitate future research based on the findings of the
present work the following are recommended:
1. The stability of the time-domain transient dynamic algorithm has
been established for simple problems by analyzing the problem of
radial expansion of a cavity in an infinite space for different time
steps and meshes. However, to insure the stability and convergence of
this algorithm for more sophisticated problems, further investigation

by using a complex problem is recocmmended.
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2. As mentioned earlier, the transformed domain dynamic analysis
yields erroneous results when the forcing frequency happens to be one
of the rmatural frequencies (or fictitious eigenfrequencies in the case
of exterior problems) of the structure under consideration. To
eliminate this problem, a computationally feasible modification of the

transformed domain algorithm is needed.

3. In the present work, for nonlinear dynamic analysis, the Von
Mises constitutive relations are used to model the material behavior.
However, for materials like soils, a more realistic material model
needs to be included to model the nonlinear material behavior during
dynamic loadings and unlcadings. Moreover, only a simple test problem
has been solved in the present work. However, for solving realistic

engineering problems further work is needed.

4. - The problems of soil-structure interaction during an earthquake
excitation is of considerable importance to civil engineers. This
problem can be tackled in a deterministic way by modifying the present
formulations. For this purpose, extension of the present algorithms
to solve the general wave scattering problems by including the

effects of incident waves in the formulation is recommended.

5. The proposed time-domain transient formulation involving
convolutions provides accurate results, but it is computationally

expensive. However, for certain class of problems such as those

related to structural dynamics, an approximate and computationally
inexpensive boundary element formulation can be developed. This can
be achieved by extending the method proposed for free-vibration

analysis to linear and nonlinear transient dynamic analysis of solids.
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6. In practice, inhomogeneity and anisotropy are present in most
engineering problems. Whilst the inhomogneity can be handled by
substructuring, it is of extreme importance to develop appropriate
fundamental solutions for dynamic analysis of problems involving

anisotropy.

7. Some of the dynamic problems such as non-destructive testing of
materials involve material nonlinearity as well as geometric
nonlinearity. Therefore, extension of the present nonlinear transient

dynamic formulation to include geometric nonlinearity is desirable.
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Disturbance propagation from a point as a
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Figure 8.19
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Figure 9.1
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APPENDIX Al

BOUNDARY KERNELS FOR TWO-DIMENSIONAIL, STEADY-STATE DYNAMICS
The tensors éij and Fij in the transformed domain are of the form:
Elj(x,;,m) = 2“p (A8;5 - Br ;r 4] (A1.1)
Fij<x.;.m) = [p(s13 55 +x n;)
+ Q(r'inj - 2r'ir’j gﬁ + Rr,ir,j %% + Sr'ir’j] (A1.2)

where

A= Ko(zz) + (1/22)[K1(zz) - (c2/c1)K1(zl)]

B = Ry(2,) - (cy/c,) R, (zy)

= 3A/dr - B/r
Q= - 2B/r
R = - 29B/dr
S = {(c,/c,)? - 2) (aa/ar - aB/ar - B/r)
D = normal vector (Al1.3)

where z, = mr/c1 and z, = 1mr/c2 ; and

Ky» K, and K, are the Modified Bessel functions of second kind,

having the following recursive properties:




K,(2) = Ko(z) + (2/z)K1(z)
Ké(z) = - Kl(z)
Ki(z) = - Ko(z) - Kl(z)/z (A1.4)

where the bar denotes the differentiation w.r.t. z .
Using the recursive formulas (Al.4) the tensors aij and ﬁij can be
expressed in terms of Modified Bessel functions of the second kind of
orders zero and one. These functions are given below along with their

expansions for small and large arguments.

Modifi sel Function o ond_Kind
Zero_order:
2 2,442
/4 (z2/4)
K (z) = [1n(z/2) + 71I.(2) + om0+ (1 + 1/2) ===
° o (112 (21?2
2,3
£ (1 +1/2 +1/3) _‘_z_’_“;_ M (A1.5)
(31)
2 2 2 2 3 2 4
Io(z) =1+Z/42+LL/4; +(z /4)2 +(—Z/4; + ... (A1.6)
(11) (21) (31) (41)
where y = 0.5772156649
First order:
< (z2/ )
R,(2) = (1/2) + In(z/2)1,(2) - 2/4 3 [b(mH) + vm2)] —E=aes
m=0
(A1.7)




2,\m
(z°/)
IL(2) = (2/2) ) —~%ioy
=0
where ¢(1) = -y , and
n-1
v(n) = -y + E nl for n2
m=1
Small argument expansion:

If z->0 (i.e. abs(z) < 10°%)

Ko(z) = - In(z) and KI(Z) = 1/2

Large arqument expansion:
If z is large (i.e. abs(z) > 3.5)

2 2 2,02
- (1) (3) (3)2(5)
K (z) = /3- eZf1-0+ -
° 22 [ 82 31(82)2 31(82)°

2 2 2
+ (3)°(5) 27) - ... ]
41(82)

, - 3 3x5 Ix5x21
2 2 21(82) 31(82)

However, for abs(z) > 100 , Ko(z) = Kl(z) 0.0

(A1.8)

(Al.g)

(A1.10)

(A.11)

(A1.12)

(A1.13)




APPENDIX A2
FOR _THREE-D IO Y-STATE DYNAMIC

The tensors aij and ﬁij in the transformed domain are of the form:

Gij(x.i.S) =m[A8ij -Br.ir’J (A2.1)
and
= 1 ar
ar ar
+ .r . - . L . = T .
Q(njr,l 2r T an) + Rr’lr’J an Sx:.:’r:'l (A2.2)
where s is the laplace transform parameter. In addition,
-sr/c
2
3c§ 3c, e ci 3ci 3¢, -sr/c1
A= (vt ) -G lggtrtg *1)e
s“r r c] sr St (A2.3)
and
-sr/c -sr/c
cg Ccy e 2 cg ci c, e 1
Belgata* ) T "algzts) T (3z.4)
s°r r r c] st
where e is the exponential function. Furthermore,
=9 _B =-2B - _, 2B
P-ar rp Q r » R Zarl
c2
and S=(=2-2)R_38B_28, (A2.5)
ci or ar r




APPENDIX A3
INTERIOR RERNELS FOR Y-STATE DYNAMIC

The interior tensors G ik and F, g for two-dimensional steady-

ij
state dynamic analysis are of the form:

aG_. aG 3G 4
_ mi ]1 i,
le(x yE,0) = xsjk aék + aék ag (A3.1)
oF_. aF. aF, .
=o _ mi ji ki
k k j
where
aG. .
—ii . -1 daA - _E -
3%, 2mn [51j ar L.k ~ar T.kE,if,5 T BE4F gk * ‘.j‘.ik’]
(A3.3)
aF. .
1 P
agk Py [ rlk(513 an +r Jn ) + P(8 r’mknm tr kn )
+ 8Q

ar ar.
L(T,iny = 20,3T 4 ) * Qr gyny = 20 44F 5 an’

or ar
=2 3% 5k ag ~ 2%,i%,35,mk™n * 3¢ L.kE,i%.5 o
or or
*R(E 50F 550 * £,iF,5k an * L. iF, 55, mk™m)
a_s
+ r.kr'lnj + S r’lknj] (A3.4)

where the functions A,B,P,Q,R and S are listed for two and three-

dimensional problems in Appendix Al and A2 , respectively.
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APPENDIX A4

BOUNDARY KERNELS FOR _TRANSIENT DYNAMICS
The tensors Gij and Fij are of the form:
1/c2
1
1/c1

+ ag; t/ehstu-r/ey) - (1/epslv-r/cy) + (by5/c3)8(v-r/c,) |
(B.4.1)

where v =T-<

ij ~

i/c
2
: =1 T_6c2 - - -
Fis G TL0 = 37 [-6c5(Sagybyy) [ Astv-anar + (12a34-25; )
/ey
(8(v-r/c,) - (c2/c1)28(v—r/c1)} + 2raij/c2{6'(v-r/c2)
- (eyrep s (v-r/ey) 1= o4y (1-203/c]) (8tv-r/ey) + (z/e;)8” (v-r/cy))
- 8y, (8(v-x/C,y) + (£/cy)8’ (vor/c,} | (34.2)
where v =T-=<

5
35 = ¥i¥5¥ni/T

3
cij ani/r
d.. = (yin; + 85,y n )/
ij i"y ¥ %ii¥m™m

bjy = €45 * dij




APPENDIX AS

R FOR_TRANSIENT DYNAMIC

The tensors G;ﬁk and ngk are of the form:

1/c2
o . N S P -
Gijk(x,T.g.t) = n [6c2(5aijk-bijk) I AS(v-Ar)da
1/c1

2
(12aijk-2bijk){8(v-r/c2) - (c2/c1) 8(v—r/c1)}

2ray gy /e, (8" (v-r/cy) = (cylep)®s” (v-r/ey))

+

cijk(l—zcilci)ts(v-r/cl) + (r/c1)6'(v-r/c1)}
+ dijk{S(v-r/cz) + (r/c2)6'(v-r/c2)}]

T-<

where v

5
ijk = Yi¥s¥k/T

Q
|

3
ijk = d5k¥i/r

- 3

bk = Cijk * dijk
. 0 . 1/c2
1/c1

_ ac? 25 (yo

(A5.1)




- 4czr(10aijk—bijk){8'(v-r/c2) - (c2/c1)38'(v—r/c1)}

+

23 (1-2¢3/¢]) (3, 5y 284 ) (8(v-L/Cy) + (x/ey)8" (v-r/cy)])

+

2 " (7=
cz(sfijk - Zgijk){S(v—r/cz) + (£/c,y)8' (v-r/cy)}

- 4aijkr2{6"(v-r/c2) - (c2/c1)48"(v-r/c1)}

+

2 2,2, ,.2 2 2,2 .
r (1-2c2/c1){2c2dijk/c1 + (1-2c2/c1)eijk}8 (v—r/cl)

+

2 'O (e
= AL r/cy) | (A5.2)

where v =T-<
/r7

ijk = ¥i¥5¥k¥mm
Ao = (YayoRy + V¥ 850/
ijk M T Yy mm’ 3k
_ 3

- 5
ijk = Wi¥ynye *+ Yi¥ihy * Yo (By¥4*854yp) 3/

= 3

5k = isk * fijk

ijk = ®ijk * 9ijk




APPENDIX A6

KER FOR_TRANSIENT C

. 4 g .

The tensors Bilj , Biljk and Jiljk are as follows:
1/c2

1 2

Bj1 @& TE™) = g [-(15ailj-3bilj) j', M8 (v-AD)AA + 1/C3(6ay 5Dy )

1/c
1

(8(v-r/c,) - (c2/c1)28(v—r/c1)} + railj/c;{5'(v—r/c2) - (c2/c1)35'(v-r/c1)}
- ©4145/263 (8(v=r/c,) + (£/cy)8" (v=tley ] - (26.1)

where v =T-<
5
i1 = ¥Yi¥1¥y't

= ) 3

3
bilj = cilj + silyj/r
1/cq
BY, o (X T5E, ) = - = [62(35a,y. -0 patcn) | AS(v-Ar)dA
119k & o5 4n L%C219°2414k79P114k 114k
1/c
1

25 (v-
2(45ailjk-6biljk+ciljk){8(V-I/C2) = (c2/c1) 8(v r/cll

[ 3 14 o
2r/c2(10ailjk-biljk){8 (v—r/cz) - (c2/c1) 5' (v r/cl)]

2,2 t (y—
+ (3fi1jk”giljk)(1‘2°2/°1)[S(V“‘/c1) + (r/cy)8' (v-r/cy)}

+

(1.5diljk - eiljk){S(v—r/cz) + (r/c2)8'(v-r/c2)




- (2r2ailjk/c§)[8"(v—r/c2) - (c2/c1)48"(v-r/c1)}
2 2 2 2 e - 2 2 re .
+ (¢ filjk/cl)(1—2c2/c1)6 (v r/cl) + (r diljk/2c2)8 (v r/cz)]

where v =T -<
a = /r7
iljk = Yi¥1¥5¥k
- 5
113k = Bi5¥1¥k * B15¥i¥k * SiVa¥y * Sn¥i¥4)/r
iy = (8;:87y + 8:0.89:)/0°
i13k ij"1k ik"1j
iyap = 81 VY /rs
iljk Jk¥ifl
Jiq21, = 5.,5. /r3
i13k = °3k°i1
iqar, = Qoqay * Foqan + 8:q74Y /e’
iljk iljk iljk 11454k

Ci14k = i1k * Jilik

1

a . e —————— -— -—
Iik = - THA=Y LT-598358 + (1-59185,8,, ] (26.3)
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APPENDIX B
PROPAGATION OF WAVEFRONTS AS SURFACES OF DISCONTINUITY

When a body is disturbed from a quiescent state by excitation at a
portion of the boundary or within a restricted domain inside the body,
neighboring domains are soon set in motion and put into states of
deformation. The moving surface which separates the disturbed from the
undisturbed part of the body is called the wavefront. At wavefronts, the
field quantities and/or their derivatives may be discontinuous. However,
if the material remains coherent and does not fracture, the displacements
will certainly be continuous in both space and time. In many situations,
involving very sudden loadings, the particle velocities and/or stresses
will have sudden variations (discontinuities) at the wavefront over a very
small interval of space and time. These variations at the wave fronts can
be quite closely approximated by finite jumps based on the basic techniques
developed towards the end of last century for the study of propagating
surfaces of discontinuity in continuum mechanics.

Love (1904) sets down the following basic kinematical and dynamical
conditions that must hold at a propagating surface of discontinuity in an
elastic solid.

Ki ic_co

Consider a surface of discontinuity S , propagating in an unbounded
medium. The situation is shown in figure B.1, for a fixed instant of time.
It is assumed that S propagates into region (2), leaving a region (1)
behind it, and moves normal to itself with velocity c¢, i.e., each point
P(x) of S propagates with velocity ¢, along the outward unit normal
vector n to S at that point. If one supposes the components of dij
are discontinuous across S, the jumps will be denoted by the standard

bracket notation.




n Region (2)
Region (1) P(x)

Fiqure B.1

where the subscript 1 denotes the value of the field variable on S when
S is approached through region (1), and the subscript 2 is employed to
denote the value when S 1is approached through region (2).

As mentioned earlier, since the material should maintain its integrity
at the wavefront, the jump in the displacement components at S is zero,

i.e.
[ui] =0 (B.2)

Moreover, if the strains and velocities at a wavefront are discontinuous
(i.e. shock waves), the finite jumps in them must satisfy the following

kinematic relations.

[ui] + C[ui,j]nj =0
[ui] + c[aui/an] =0
[ui]nj + C[ui.j] =0 (B.3)




However, if the first derivatives of the displacements across S are
continuous but the second derivatives are discontinuous (acceleration
waves), then the following kinematic relation has to be satisfied at the

wavefront.

[ui.jk] - qjnyny = 0

[(l:li)’j] + cqjng = 0

[u;1 - c?q; = 0 (B.4)
where q; is an unknown function.

ical condi

The dynamical conditions, which has to be satisfied at the moving
surface of discontinuity S, are determined by considering the momentum
changes of a thin slice of the medium adjacent to S and the corresponding
impulse-momentum equation. It has the form

3

[aij]nj + pc[ui] =0 (B.S)

For acceleration waves, the jumps in the second derivatives of u should
satisfy the linear momentum equation, i.e.

uum,im] + ulu uj.ij] = p[ui] (B.6)

.35 7

The fundamental singular solution of transient elastodynamics, for the
displacements generated by a suddenly applied concentrated load at a point
of the unbounded elastic medium was first developed by Stokes (1899).
Love (1903) performed an extensive study of Stokes’ solution for initial
value problem with arbitrary initial values, and related wavefront

discontinuities. He pointed out that Stokes’ formula yields correct

B-3




results only when the input field quantities are continuous at the
wavefront. He also found that the Stokes’ formula satisfies the necessary
continuity conditions on the displacements (eq. B.2), the kinematical
conditions on the velocities and strains (eq. B.3) and the dynamical
conditions on the stresses and velocities (eq. B.5), provided the input
function is continuous. Thus, if the input excitation is a step loading,
it has to be modeled as a ramp loading in the first time step. Also, a
very small time step cannot be used for this purpose, because it will

result in non-vanishing dilation and rotations at the wavefronts.




APPENDIX C1
P ARY ELEMENT 2-D B
Both the three noded quadratic and two noded linear elements were
depicted in figure 4.1. The shape functions for the three noded quadratic

elements are:

Nl(n) =2(n - 1/2)(qn - 1)
Nz(n) = =4n(q - 1)
N;(n) = 2n(n - 1/2) (C1.1)

where n is the intrinsic coordimate (0 { n £ 1).

The shape functions for two noded linear element are:
Nl(n) =1-1
Nz(n) = q (C1.2)

The normal unit vectors along the positive x and y axes are defined as:

n, = (3y/an)/13(n) |

n, = (-3x/3n) lg(n) | (C.1.3)

where |J()| 1is the magnitude of the determinant of the Jacobian matrix

(Ref. Sec. IV.4).




APPENDIX C2
1%/ ARY R 3-D P
Both the six node triangular and the eight node rectangular surface
elements were depicted in figure 6.2, It is worth noticing that these
intrinsically planar elements becomes curved in three-dimensional space.

The shape functions for the six node triangle are:

ﬂa(2na -1 if a=1,2,3

4n 4,5.6 with B =a -3

- and y=a - 2 (C2.1)

where n; and n, are two linearly independent coordinates and ng =
The shape functions for the eight node rectangle are:

0.25(1+8 ) (14n ) (§ n~1) if @ = 1,3,5,7
- 2 1
N = 0.50(1-¢ )(l—no) if a=2,6
0.50(1+ ) (1-1%) if a=4,8 (C2.2)

where 50 = F Ea and 1q N, - with & and n being the two linearly
independent coordinates and (& a'Mg) the coordinates of node a .

Two base vectors along the intrinsic coordinates &,n (or n,,m,) can

be defined as
d . 0 . d
31=—§d§1+5}§d§1+£d§k
d . G} . 2

vwhere i, J, and k are unit vectors along the x, y, and z coordinates,

c-2




respectively. Their cross product

€ =81 X g (C2.4)

is a vector normal to the surface of the element and its magnitude is equal

to the value of the determinant of the Jacobian matrix.




APPENDIX D1

ANALYT TION OF TRANSI
DYNAMIC K FO NSTANT TIME POLATTON

For constant time interpolation the field variables are expressed as

N
£x0) = ) £ (X6, (0) (D1.1)

n=1
where
¢ (v) = [H(r - (-1)AT) - H(z - nAD)] ;
fn(x) represents the spatial variation of the field variable
f(x,t) at time Tn(= naT) ;
N is total number of time steps; and
H 1is heaviside function.
Each of the transient dynamic kernels listed in Appendices A4, A5 and A6

has one or more of the following time functions:

(1) 8(T - = - r/c) (D1.2)
1/c2

(2) j AS(T - © - r/c)dxr (D1.3)
1/c1

(3) 8(T - = - r/c) (D1.4)

(4) 8(T - = - /) (D1.5)

where c is either pressure wave velocity ¢, or shear wave velocity ¢,
and & is the delta function.
Using equation (D1.1), the time integrals related to the above time

functions can be expressed as

T
[ g - - ot vde
o




N nAT

Y [ [ g - - o, (ode] (D1.6)
n=1 (n-1)AT

The time integrals on the right hand side of equation (D1.6) are

evaluated analytically as follows.

Time function 1:

nAT

[ sa--- £/c)é (v)dz = 6 (T - r/c) (D1.7)
(n~-1)AT

Time functjon 2:

nAT 1/c

2
| [ s - < - wan (nae
(n-1)AT 1/c1

1/c2 nAT
- I j AS(T - © - Ar)d, (t)dedh
1/c1 (n—-1)AT

1/c2

5 1/c2
= e - anar = [aM26 (T - xr)]llcl (D1.8)
1/cq

An important characteristic of the transient dynamic kernels is the
time translation property (Ref. Chapter VIII and Appendix A4). Because of
this characteristic, at each time step only the effects of the dynamic
history of the first time interval on the current time node needs to be
evaluated; i.e. at each time step the analytical time integrations has to

be done only for n=1. Thus, equations (D1.7) and (D1.8) reduce to

T
JA (T - < - r/c)él(r)dr = él(T - r/c) = H(T - r/c) = H(T - AT - r/c)
° (D1.9)




T /¢, 1/e,
[ aser - < - r/oand, (n1ae = [A2/238,(T - D ] ¢
1

o} 1/c1
1/c 1i/c
_ 2 _ 2 [,.2 L 2
= [a%r2acr xz)]llcl [2/2mCT - AT xr)]uc1 (D1.10)
where
2 1/c2
[@2/2)mcT - xr)]llc1 =0 if T <rlcy -
= ;!; - -15 if T> r/c1 and T < r/c2
2r 2c1
= Lz - —15 if T) rle, (D1.11)
2c2 2c1

The second term on the right hand side of equation (D1.9) can be

obtained in a similar manner by replacing

(D1.11).

Time function 3:

'T' by '"T-AT' in equation

The time integrals involving time function (3) are approximated by

using a backward finite difference scheme, i.e.

nAT .
I 8(T - v - r/c)f(x,v)dr
(n-1)AT
NAT
= I (T - = - r/c)é(x.t)dr
(n-1)AT

£ (x) - £ _.(x)
n n-1
AT én(T - r/c)

D-3

(D1.12)




APPENDIX D2

A TEMPO TIO TRANSIENT DYNAMIC K
FOR LINEAR TIME INTERPOLATION

Assuming the field variables to vary linearly during a time step, a
field variable £(x,t) can be expressed as:
N

£ = ) IME_ (x) + My ()] (D2.1)
n=1

where ¥, and M, are the temporal shap functions, and are of the form:

Tn—-:

1= g 9,(0)

=1
I

«t-T

n-1
2 = T at én(r) (D2.2)

=1
I

As mentioned in Appendix D1 and Chapter VIII (Section 3), at each time
step only the effects of the dynamic history of the first time interval on
the current time node needs to be calculated. Therefore, for n=1 (i.e.
T = AT' T 1 = 0)

n n-
= - A
f(x,=) = (1 AT)él(r)fo(x) + (AT)él(r)fl(x) (D2.3)
The analytical time inteqrations related to 61(1:) are same as those

described in Appendix D1 and the time integrations related to <d,(z) are

presented as follows.




- i 1 . D1.2):

T
IA S(T -t - r/c)rél(r)dr = (T - r/c)él(T -r/c) (D2.4)
o)
Time—function 2 (eq. D1.3):

1/c,
fﬁr [ a8 - < - An)aaed, (2)ae
o

1/c1
1/c2 .
- j A(T - AL), (T - Ar)ax
1/c1
1/c2 1/c2 \
= [ méyr-wan-[  nleyr-aina
1/c1 . 1/c1
1/c . 1/c
2 2 3 2
=Ti(A°/2)d, (T -~ A/r) - i (A°/3)8,(T - Ar) (D2.5)
[ 1 ]1/c1 [ 1 ]1/c1

i/c
where the temm [(lez)dl(T - x/r)]l/c2 is evaluated in the same way as
1

described in Appendix D1, and the second term is evaluated as follows.
1/c
3 2
[a3/916 (T - Mo Jyer

1/c 1/c
_ 3 _ 2 _ 3 - -
= [ k/;:)]llc1 [a3/9a(r - a7 - a0 ]

2

(D2.6)
1/c1

where




[ 3 ]1/c2
(A"/3)H(T - Ar) =0 if T<rl/c
1/c1 1

3 1 .
= — - = if T>r/c, and T < r/c
3 3 1 2
3r 3c1
=L L if T)> rlc (2.7)
3 3 2
3c2 3c1

The second term on the right hand side of equation (D2.6) can be

obtained in a similar manner.

Ty ion 3 . D1.4):
ndl . £ - £,
j 8(T - © - r/e)E(x, )dr = = 6.(T - z/c)  (D2.8)
(n-1)AT
Ti i 4 . D1.5

The temporal integrations involving the time function 4 (i.e. 5(T - =

- r/c)) are approximated by using a backward finite different scheme as

follows:
nAT
[ 8-« -ofgoar
(n-1)AT )
nAT
= j §(T - - - r/c)f(x.r)dt
(n-1)AT

£ (x) - 2 (x) + £ (%)
- n n-1 = n-2 6,(T - r/c) (D2.9)
(AT)

D-6
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