NASA-TM- /0%, 223

NASA Technical Memorandum 104223 NASA-TM-104223 19920010422

COMPUTER OPTIMIZATION TECHNIQUES FOR
NASA LANGLEY'S CSI EVOLUTIONARY
MODEL'S REAL-TIME CONTROL SYSTEM

Kenny B. Elliott, Roberto Ugoletti, and Jeff Sulla

Ll

[;,\;'3
o -:-'x

g
5 J
@
=
=X

B'J uﬁﬂ

HAR 1 11892

February 1992 LANGLEY RESEARCH CENTER
LIBRARY NASA
HARPTON, VIRGINIA

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

COMPUTER OPTIMIZATION TECHNIQUES FOR NASA LANGLEY’S
CSI EVOLUTIONARY MODEL’S REAL-TIME CONTROL SYSTEM

KENNY B. ELLIOTT

NASA Langley Research Center
Hampton, VA 23665

ROBERTO UGOLETTI AND JEFF SULLA
Lockheed Engineering and Science Company
Hampton, VA 23666

KEYWORDS

Digital Control Systems, Intcgrated Control Systems

ABSTRACT

The evolution and optimization of a real-time digital control system is presented. The control system is part of atestbed
used to perform focused technology research on the interactions of spacecraft platform and instrument controllers with
the flexible-body dynamics of the platform and platform appendages. The control system consists of CAMAC
standard data acquisition equipment interfaced to a workstation computer. The goal of this work is to optimize the
control system’s performance to support controls research using controllers with up to 50 states and frame rates above
200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. By using simple yet
effective software improvements, 1/0 latencies and contention problems are reduced or climinated in the control
system. The final configuration can support a 16-statc controllcroperating at475 Hz. Effectively the control system’s
performance was increased by a factor of 3.

INTRODUCTION

As space-science data quality requircments become more stringent, the performance of space platforms become more
critical. One of the key elements of a space platform’s performance is the interaction of the platform/instrument -
controller with the flcxible-body dynamics of the platform and it’s appendages. This controls/structure interaction
(CSI) is the topic of a NASA sponsored focuscd technology rescarch program. The objective of this focus program
is to develop technology to cnhance the CSI performance and design of future spacecraft structures.

The CSI program concentrates on threc complementary arcas: spacecraft design, ground testing, and flight verifica-
tion. The program has lead to the development of scveral testbeds for testing and demonstrating CSI technology. At

the NASA Langley Research Center, a testbed has been developed which simulates realistic structural characteristics
and control hardware of a generic large space platform (1). The testbed is being used to develop test methods, evaluate
flexible structure control algorithm performance, evaluate sensor and actuator technology, evaluate CSI design
concepts, and experimentally assess the level of confidence with which CSI technology can be applied to space
platforms.

The testbed, shown in Figure 1, is called the CSI Evolutionary Model (CEM). The CEM can be subdivided into three
major components: the structure, the instrumentation, and the real-time digital control system. This break down is
shown in Figure 2. The structurc has been designed to possess the dynamic properties of a typical future spacecraft.
It consists of a 55 foot long truss-bus with several appendages which possess varying degrees of flexibility. The
structure is modular in design, and it’s configuration can change in order to support program needs. The CEM can
be adapted to carry almost any type of scnsor/actuator, such as CMGs, gimbals, or IMUs. Currently, the
instrumentation is limited to incrtial sensors (accclerometers and rate sensors), a laser-based line-of-sight sensor, and
cold-gas thrusters acting as actuators. The real-time control system is a combination of commercial and custom
components. The system performs system monitoring, system safety, signal conditioning, and serves as a host
platform for the control algorithm.

One of the strengths of this testbed is it’s flexibility to support current as well as future rescarch needs. Each part of
the CEM is cqually important to the testbed’s evolution, and cach part will evolve as the CSI program develops.

This paper details the current evolution and computer optimization techniques used to enhance the CEM's real-time
control performance.

BACKGROUND

The control system is a digital computer which reads information from the sensors, processes this information through
a control algorithm, and sends control commands to the actuators. Specifically the system performs, in real-time, its
own data acquisition, signal conditioning, datamanagement, computations of state, control, and safety limit checking,
and provides a uscr interface.

Originally, thc CEM’s control systcm was a carry-over from a previous program; the CSI Mini-Mast program 2).
Mini-Mast's control system was part of asystem which was developed to support real-time flight simulation research.
This system is call the Advanced Real-Time Simulation (ARTS) system (3,4). During the Mini-Mast program the
ARTS system was adopted for real-time controls research (5). The system’s configuration is shown in Figure 3. The
system has six major components: the data acquisition cquipment located near the structure; the network switch and
fiber-optic highways; the real-time computer located at a central computing complex; a real-time clock/timer
subsystem, and software to run the systcm. A brief description of the system follows; however, a detailed description
of the ARTS system can be found in Ref. 3 and 4. The data acquisition subsystem is based on the CAMAC" standard
(5). Analog-to-digital (ADC) and digital-to-analog (DAC) signal converters are contained on modules which connect
into a chassis called a crate with a backplanc bus called a dataway. The crate functions are controlled by a crate
controller which in turnis controllcd by a mainframe computer; a CDC CYBER 175. The crate controlleris connected
to the mainframe computer through a ring mastcr/slave fiber-optic network called a highway. This network includes
anctwork switch for dynamically switching between different remote sites. A clock subsystem is provided forsystem
synchronization and real-time clock services. The system is controlled through a console subsystem. The operating

Computer Automated Measurement and Control.

systemis NOS whichhasbeen modificd to support real-time operations. The control software isaFORTRAN program
built around a linear generic control law (GCL) subroutine. A description of the control software can be found in Ref.
6.

The performance of this systcm is shown in Figurc 4. This figurc shows the available computation time (the time
available to perform control computations) asa i unction of frame rate. The frame ratc is the inverse of the time it takes
to acquirc sensordata, cxecute the control law and safety checks, and transmit the actuatordata. Practically, this system
islimited intwo fundamental ways. First, the minimum clock resolution, at thistime, is 5 msec, resulting inamaximum
frame rate of 200 Hz. Currently, the control law implcmentation requires over-sampling techniques which require
frame rates from 150 to 500 Hz. The frame ratc must encompass the time required to perform all necessary control
computations. As the frame rate increascs, the time available for computations decreases. Therefore, high frame rates
handicap the controller’s complexity. Forexample, if a 16-state lincar time-invariant controller is run on this system,
then the maximum system frame rate drops to 125 Hz. The computation time of the controller extends the frame size.
This condition is called “compute bound.” Currently, controllers with up to 100 states are being considered. The
second limitation is scheduling. The ARTS system is a ficld-wide resource. As such, the system must be time
managed. Session time of 2 to 4 hours arc usually scheduled 2 weceks in advance of the planned test. This severely
limits the spontancity of rescarch.

SYSTEM DESCRIPTION

Shortly after the CEM became operational, an cffort was undertaken to evaluate methods of increasing the
performance of the controller system. The goal wasto arrive ata system which would allow daily unscheduled system
use with controllers of a modcrate sizc, up 10 50 states, at a speed which mects or exceeds those of the existing ARTS
system. Thesystem needed to be developed at alow capital cost and fitinto the existing computer environment. These
constraints Ied to the usc of an existing local workstation, the existing CAMAC equipment, and the GCL software to
develop a local control systcm.

The base-line system under consideration is shown in Figure 5. This configuration isaccomplished by addinga second
crate controller which communicates to a workstation. The crate controller communicates over a parallel bus to the
Q-bus backplanc of a DEC VAXstation 3200 workstation. The workstation is configured with a color graphics
terminal, 16 MB of memory, a real-time clock card witha 1 pscc resolution, and 300 MB of disk space. The computer

operatcs using the VAX/VMS operating system. This configuration is supported by the CAMAC equipment
manufacturer. Therefore, no custom equipment nceded to be developed.

The initial CEM control program for this configuration was designed and devcloped to operate as similar as possible
to the ARTS system’s GCL code. Duc to different operating systems, different data acquisition calling methods, the
large softwarcoverhead required by the ARTS system, and different versions of FORTRAN, mostof the GCL software
was rewritten. However, the fundamental control algorithms and theirimplementation were not changed. Basically,
the program provides signal generation, open and closcd-loop modes of testing, digital filtering, software safety

checks, test logging, and feed-back control. The control law is implemented using the following equations:
U, =CX,, DU,

X,,,=AX,+BU,

where A, B, C, and D are constant matrices of appropriate dimension,

column vector of controller states at time k,

column vector of controller states at time k+1,
column vector of actuator commands at time k,
column vector of actuator commands at time k+1, and
= time index.

o =R=E
|

The main section of the control code consists of the following steps:

rcad the analog scnsors through the CAMAC crate,

remove sensor bias and limit check the sensor inputs,

compute actuator commands,

limit check the new actuator commands,

output the actuator commands through the CAMAC crate,

update the controller state equations (closed-loop),

save current sensor data and actuator commands in a memory array,
repeat the above sequence for a number of iterations bascd on the delta loop time to achieve the total
amount of control test time required,

after all loops are done, zcro the final actuator commands,

10. write the final array of accumulated scnsor data and actuator commands.

PN E WD =

o

The initial version of the control program on the VA Xstation 3200 real-time control system ran and performed all of
the above functions. Various control laws could now be tested locally without having to schedule time on the ARTS
system. The performance of the control system, shown in Figure 6* in terms of controller states and frame rates,
approached very close to thatof the ARTS system. A 16-state control law executed ata frame rate of 125 Hz. However,
the frame rates were not stable and were highly affccted by background system activity.

In order to quantify the stability of the system, two variables were added to the control program; clock overrun and
frame overrun. A clock overrun occurs when the system takes a longer time than specified to complete one frame.
A frame overrun occurs when a frame, orone cycle, has been skipped. The program detects these events by monitoring
the clock tick generated by the real-time clock. A frame is the time between two clock ticks. The start of aframe occurs
at the next clock tick. When the control computations arc complete, the program loop polls the clock register and idles
until the next clock tick occurs. If the program detects the clock tick already set before it idles, it knows that it took
too longto cxecute and exceeded its allotted frame time; i.c., itoverran the clock tick (clock overrun). Also, if the clock
hardware rolled over twice without a reset of the first clock tick, it will flag another bit in the status register to inform
of a completely missed clock tick duration (framc overrun).

OPTIMIZATION TECHNIQUES

A post-analysis of the system’s performance was performed. This analysis consisted of analyzing clock and frame
overruns to determinc when and how they occurred. Also, timing analyses were performed on individual and groups
of hardwarc and softwarc components. The analysis revcaled several incfficiencies. Specifically, I/O was slow;

" The number of controller states was determined to be a more meaningful measure of system performance instead of available computational time.

The number of states, which refers to the size of matrix A in Eg. 1, combined with the number of inputs and outputs, define the computational load of the
system. The number of inputs and outputs are hcld constant at 8 each.

virtual memory created delays; background system activity caused delays, and the generic software itself was
inefficient. By addressing these problems, improvements in controllcr performance could be made if certain simple
softwarec methods are applied to the control program. Thesc methods would involve:

getting more control over the CPU,

reducing background system activity,

defeating virtual memory,

reducing 1/0 bottlenecks,

implementing a real-time operating system, and
optimizing the controller softwarc algorithm.

b LN =

Each of these methods will be addressed below.
CPU AND BACKGROUND ACTIVITY CONTROL

Getting full control of the CPU mcans to use all the available CPU time that is present and not share time with other
users or background activities. CPU usage is directly attributable to the running of tasks and interrupts, and the
switching between them. A description of task prioritics, context switching, interrupts, and their effect on the control
program arc explaincd below. Solutions to these problems that were applied arc also discussed.

In a multi-tasking systcm, tasks can be dircctly related to uscrs as well as background activity which is providing
network services or workstation windowing functions. The way tasks are processed is directly affected by task
prioritics. Task priorities arc operating system values assigned to a program or task that allow them to have a more
or less favorable status as to which task should cxecute next. All multi-tasking operating systems have time-sharing
task prioritics. At thesc levels, the scheduler allows atask to run foramaximum fixed amount of time before switching
tothe next task of highest priority. Minoradjustments of task priority arc automatically made by the scheduler to permit
improved interactive and /O performance over CPU-bound tasks. Time-sharing task scheduling cannot guarantee
sufficient CPU time for a control program to run at a regular rate. Priorities will fluctuate allowing background
processcs such as networking and screen windowing to affect control times even on a single user system. A limited
number of multi-tasking operating systems have an additional range of task priorities referred to as real-time. This
priority range is always higher than the time-sharing range of prioritics. At real-time priority levels, a task is allowed
to run as long as it nceds to and is the highest priority task ready to run.

When the scheduler switches between tasks (context switch), time is taken to perform the switch. The actual switch
involves saving all current CPU rcgisters such as program counter, processor status, accumulators, stack pointers,
floating point processor registers, ctc. and loading the saved registers for the new task into CPU to execute it. The
scheduler typically performs a context switch at a periodic rate usually determined by the system clock rate (10 ms
for a VAX/VMS system) and at the request of a task which wants to start/stop another task or itself. Some systems
also look for a possible context switch after every I/O completion cvent. Context switching becomes a concern to 2
real-time control program when it must run at a periodic rate that’s faster than the scheduler rate or not a multiple of
it. A real-time clock may signal to thc opcrating system 1o start a rcal-time task at an exact time, but the scheduler may
wait until its next exccution period before actually performing the context switch. Any real-time program that cannot
tolerate delays caused by context switching or must guarantee exact timing, and does not have a sufficiently robust
scheduler or I/O event signaling, should not relinquish the CPU by hibemating or sleeping.

CPU interrupts and their service routines could also preempt the execution of the control program and cause delays.
Interrupts arc events that enable a CPU to respond asynchronously and immediately to an event either intemnal or
external to the CPU. Since interrupts are usually urgent and must be serviced immediately, they preempt any and all
tasks that are currently running.

A very simple program was written to test the operating system for background activity that would impact a real-time
control task. A continuously running system clock is rcad repeatedly for the duration of the test (typically 5-10minutes
is sufficient). A deltatime is calculated between cach successive read. The minimum deltais the clock resolution and
the maximum delta is the worst case background activity that occurred during the test period. The test may be run at
various priority levels, simultancous uscr, network, and peripheral device activities. The lower the maximum time,
the quicter the operating system is or the higher the test program’s task priority is over all other activities. The affect
of various background activities on this system’s performance is shown in Table 1. The tests showed at worst-case,
acontrol program, running at normal priority, could be interrupted and delayed by up to 320 ms. Thisdelay is the result
of background system activity due to networking, interrupts, and task contention with other processes.

The control program was changed to handle task prioritics dynamically. This was implemented by using a system
service call in the control program to raise and lower task priority as needed. The control program was modified to
start at normal priority, perform user interaction and initialization, then raisc its priority to a real-time task level during
the actual control period. When the control period is completed, priority is restored to normal to perform final
computations and data storage as required. This climinated almost 78% of the interruption and delay, buta 70 ms delay
still occurred.

There are only two arcas where the program had an opportunity to be affected by context switching. One area was
atidle time waiting for the end of a frame clock tick. Howcever, the program polls for the occurrence of the clock tick
status bit which requires no intervention of the operating system and therefore the possibility of a context switch
occurring. The sccond area of concem was the system 1/O calls to CAMAC hardware. It was known that the I/Ocall
would relinquish CPU control to a lower priority task through a context switch, but unknown if it could regain it back
at 1/O completion right away. Timing tests showed no odd skewing of I/O times; therefore, the completion of the I/
O was causing a reschedule of tasks to occur and the higher priority control task would immediately resume execution.
No changes to the control program were required to protect against context switching.

In the test, the source for interrupts was the simple moving of the workstation mouse which would send a series of
position change interrupts to the workstation. Only when all windowing and mouse movement activity were halted,
did background systcm activity decrease below detectable levels (10 ms which was the same as the system clock
resolution). The VAX/VMS opcerating system provided no way for a uscr program to lock out or inhibit specific
interrupts from occurring. The only resolution was to not move the mouse and to stop running certain network services
that were trying to respond to network broadcast messages and generate periodic status information.

These changes to running the control program gave much more consistent exccution times. A specified total controller
run time of 30.0 scconds now exccuted in 30.0 to 30.1 secconds and not an erratic longer execution time 0f 30.1t0 31.5
scconds.

DEFEATING VIRTUAL MEMORY

Virtual memory is the ability for a program to refercnce more memory than is physically available. Virtual memory
is typically implemented on a computer system by using random access mass storage devices (hard disks) to store the
virtual program code, data, stack, and opcrating environment. Either small scgments (paging) or the entire program
(swapping) may be moved to/from physical memory and mass storage. This is a definite advantage for multi-user

systems which are trying to conserve memory resources but detrimental to real-time programs which must wait huge
amounts of time for page faults and the resulting disk I/O to complete before continuing to execute. To insure that
the control program was not incurring page faults during its controller execution, certain steps had to be performed
to keep the program and its data in physical memory. The program needed to be loaded and locked into physical
memory just after all initialization functions were done and before the real-time control phase.

The method of forcing a program into physical memory on a VAX/VMS system involves locking pages into the
working set. The working sct is a representation of the physical memory that a process or program is using. Itisused
by the operating system and the memory management hardware to track which virtual address pages of the program
actually point to physical memory. If excessive page faults occur, the operating system will increase the working set
size to allow more physical memory to be used. Before a program can lock all of its virtual pages into the working
set and have a one-to-one correspondence between virtual pages and physical pages, it must have a sufficiently large
working sct to hold the entire program at once. Once user account quotas are raised to sufficientlevels, asystem service
routine is called to lock a range of program virtual address pages into the working set. If any pages are not currently
inthe working set, they are brought in by page faulting and thenlocked so that they will not be moved back out to mass
storage and the actual physical memory rcused by another program.

With the program code and data locked into memory, the process header was the last unprotected part of the program
that could incur a page fault. A sccond system service call was added to the control program to prevent the process
from being swapped out of the list of memory resident processes. The entire program now had a physical page
associated with cach virtual page and would not incur any additional page faults during any part of its control phase
exccution.

Tests performed showed that no page faults were occurring in the control phase regardless of whether the program was
locked into the working set or not. Page faults did not occur because the data arrays, which incur the page faults, were
accessed previous to the control phase of the software. However, as a precaution, locking of pages into the working
sct is still recommended and performed.

REDUCING /O BOTTLENECKS

Once the control program’s execution was stabilized by controlling the CPU and defeating virtual memory, the first
detailed timing test could be performed. These tests showed that the existing control system, running a 16-state
controller at 125 HZ (8.0 ms), was using 2.8 ms to read analog scnsor channels and 2.2 ms to write actuator command
channels. This translated into a total I/O time of 5.0 ms or 63% of the control loop time. These timing tests clearly
showed that the majority of time was spent performing 1/0 (an 1/0 bound problem). Generally, there are two ways
toimprove most 1/0 times; eliminatc or combine I/O requests, and reducc the amount of overhead associated with each
1/0 request.

System J/O calls on a typical VAX workstation (VS3200) are time cxpensive, consuming anywhere from one to three
milliscconds. Any way to reduce the number of /O calls would improve performance. Inthis CAMAC configuration,
with standard CAMAC commands, there is no problem combining read and write commands. This allowed a single
list of CAMAC read and write commands to be created and initiated with just one I/O call instead of two. This simple
change improved CAMAC I/O performance from 5.0 milliscconds to 3.4 milliseconds. This wasa 32% improvement
in 1/O performance and allowed a 16-state controller to increase from 125 Hz to 150 Hz for a 16% improvement in
ovcrall controller performance.

To deal with the overhead associated with an I/0 call, an understanding of the call process is needed. System /O calls
are requests made to the operating system to perform an input, output, or control to a device. After checking some

parameters, the request is typically queucd to a device driver. Device drivers are the last layer of software that
communicates directly with the device hardware by reading and writing to spccial registers on the interface card or
chip. I/O requests that can not be completed immediately require a wait period for the device to perform the operation.
The device driver will perform these operations and wait for notification by the device of a step or operation
completion. Although highly uscful and functional, device drivers add an extra layer of software between a program
and hardware. With a single dedicated usc of the CAMAC interface (no multiuser arbitration is required) and a low
level of device register complexity, it is fairly casy to bypass the device driver and write directly to device control
registers themselves.

The first attempt to improve 1/O performance was to use the 24-bit programmed transfer mode for CAMAC/O, and
rcad/writc the CAMAC registers dircctly in the main control program rather than performing system 1/0 calls to the
device driver. Programmed transfer mode requires the CPU to read and write every word between device and physical
memory rather than having a dedicated controlier chip directly transferring the data to/from memory (DMA). Setting
up DMA transfers of data into physical memory is slightly more complicated and for small channel counts is not that
much faster.

From a programing point of view, reading and writing dircctly to device registers from a program after all necessary
system service calls are made is as simple as reading and writing to local program variables and arrays in memory,
hence the name memory-mapped 1/O. The additional requirement for a program operating in a virtual memory
environment is to map a portion of its virtual address space into the physical address space where the particular device
is configured to appear/respond at.

The new memory-mapped I/0 technique was implemented and timed. The CAMAC 1/O performance improved from
3.4 milliseconds to 0.8 milliseconds. This was an additional improvement in I/O performance of 325% and allowed
a 16-state controller to increase from 150 Hz to 270 Hz for a 80% improvement in overall controller performance.

IMPLEMENTING A REAL-TIME OPERATING SYSTEM

A concern still remaining was that, for a fixed controller sizc, the frame rate could be increased from the point where
no clock overruns were occurring to a point where the overruns exponcentially increascd until finally a frame overrun
occurred, as shownin Figure 7. The rcason that there existed arate difference between one clock overrunand one frame
overrun was that there was additional background system activity at a very high level that could not be eliminated.

A rcal-time operating system would allow a much greater control of the CPU and eliminate more of the background
system activity. The most compatible real-time operating system with the VAXstation 3200 and VAX/VMS was
VAXeln from DEC. VAXcln could run on the current VAXstation without any hardware modifications. Since it is
a minimal operating system and fully configurable for thc amount of system services needed, it will have less
background tasks and peripherals consuming valuable CPU time. The real-time operating system has only real-time
task level priorities. It also implements most of the device driver functions at the task level rather than at an interrupt
level. This meansitis possible to run a control program above the activity generated inservicing a particular peripheral
or network service. The real-time operating system also provides the capability to perform from a program level, the
starting and stopping of network functions, and the sclective disabling of interrupts.

The configuration of VA Xeln allowed selection of aminimal amount of device drivers to support the exact peripherals
used. The disk device driver and file 1/0 allowed VAXeln to access the existing disk drives on the workstation and
rcad/write the same disk file format. This meant that no changes were required to the control program so that it could
read the same data files that were used for initialization and write the same data files for saving sensor and thruster
commands.

Program development used the exact same compilers and linkers that were currently used for the CEM control
program; both VAX FORTRAN and VAX “C”. Only adiffcrent run-time library had to be linked with the compiled
code to create an executable that would run under VAXcln. The only changes required to be made to the control
program were those that performed system service calls. No locking of pages in memory was required since VAXeln
was a real-time operating system that did not support virtual memory. All programs are required by VAXeln to fit
into physical memory due to real-time constraints. The system calls to perform memory mapped I/O, and raise/lower
task priority were diffcrent and rcquired a small change. These were the only changes necessary to make the CEM
control program run under the VAXecln rcal-time operating system.

The new real-time operating system was implemented and timed. The performance of a 16-state controller improved
from 270 Hz to 357 Hz for a 32% improvement. The climination of background activity is shown in Figure 7.

OPTIMIZING THE CONTROL ALGORITHM

The controller designs developed by rescarchers for the CEM varied considerably in their complexity. Some
controllers usc a low order, sparscly populated, controller A matrix while other controllers use a high order, fully
populated, controller A matrix. As the orderofthe controllerincreased, the computationtime associated withthe A*X_
multiply increascd dramatically. The increase in computation time severely limits the digital frame rate at which the
higher order controllers could be run.

The first approach to optimizing the state vector calculation was to take advantage of the structure of the A matrix in
second-order controllers. For second-order controlicrs, the A matrix is in a block-diagonal form. Therefore, the state
calculation routine was modificd to operate only on the 2x2 block diagonal clements of the controller A matrix (all
other elements of the A matrix arc zero). This method was successful in increasing the allowable frame rate for this
type of controllers. ‘

The success of this procedure motivated the development of a proccdure for block-diagonalizing the more complex
controllers. The controller A matrix was block diagonalized using an cigenvector transformation process. Because
the diagonalized matrix could include real and complex poles, the state calculation routine was modified to perform
the matrix multiply using a tri-diagonal form of the controlicr A matrix.

The control program also checks forthe D matrix upon initialization. If azero D matrix is present, the controller output
cquation skips the D*U, calculation.

The performance of the 16-state controller is increased 33% from 357 Hz to 475 Hz. However, the real advantage of
these techniques arc realized for large controllers. A 38 state controller will run at frame rate of 140 Hz before
optimization, and after optimization the controller’s performance is increased to 280 Hz; a 100% improvement.

OVERALL SYSTEM PERFORMANCE

The overall performance evolution of the system is shown in Figure 8. The performance is referenced to the original
system’s pcrformancc whichis originally showninFigurc 6. Mcthods which dealt with the increasing the performance
of the hardware have a greater affect over /O bound problems (high frame rates). However, improving the
computational cfficicncy (diagonalization) has the greater affect on compute bound problems (high number of states).
The goals of the systcm were exceeded. The system functions locally with no scheduling. The system can be used
to run control laws with over 40 statcs at a modcratc ratc, and the system outperforms the ARTS system by a factor
of 3 10 4 for medium size controllers.

SUMMARY

The evolution and optimization of a rcal-time digital control systcm was presented. The goal of this work was to
optimize the control system’s performance to support controls research using controllers withup to 50 states and frame
ratcs above 200 Hz. The original system could support a 16-state controller operating at a rate of 150 Hz. The issues
addressed were CPU control, reduction of background activity, defeating virtual memory, reducing I/O bottlenecks,
implementing a real-time operating system, and optimizing the controller software algorithm. By using simple yet
effective software improvements, I/0 latencies and contention problems are reduced or eliminated in the control
system. The final configuration could support a 16-state controller operating at 475 Hz. Effectively the control
systcm’s performance was increased by a factor of 3 to 4.

REFERENCES
1. Belvin, W. B, ct. al, “Langley’s CSI Evolutionary Modcl: Phasc 0,” TM 104165, NASA Langley Research
Center, Hampton, VA, September 1991,
2. Tanner, C. E., ct. al.,”Mini-Mast CSI Tcstbed User’s Guide,” TM 102630, NASA Langley Research Center,
Hampton, VA, Scptember 1991.
3. Crawford, D.J. and J. I. Cleveland, 111, “The New Langley Research Center Advanced Real-Time Simulation

(ARTS) System,” AIAA-86-2680, Presented at the ATAA/AHS/ASEE Aircraft System Design and Technol-
ogy Mecting, Dayton, Ohio, Oct. 20-22, 1986.

4. Crawford, D.J.,J. I. Cleveland, 111, and R. O. Staib, “The Langley Advanced Real-'f‘ime Simulation (ARTS)
System Status Report,” AIAA-88-4595-CP, Presented at the ATAA Flight Simulation Technologies Confer-
ence, Atlanta, GA, Sept. 7-9, 1988.

S. Anonymous, CAMAC Instrument and Interface Standards, The Institute of Electrical and Electronics
Engineers, Inc., New York, New York, 1982.

6. Wood,D.V.,D. W.Geycr, and J. Sulla, “Real-Time Control System for Mini-Mast Using the Advanced Real-

Time Simulation System at NASA Langley Research Center,” 61st Shock and Vibration Symposium,
Pasadena, CA, Oct. 1990.

10

TABLE 1. Background Activity
TEST CONFIGURATION Minimum M
Noise Noise
Network Task . . No. Of Mouse i i
Active Priority Terminal Device s Activity Resolution Resolution
Yes High VT 220 1 - 10 msec 10 msec
Yes Normal VT 220 1 - 10 msec 10 msec
Yes Normal Workstation 1 No 10 msec 10 msec
Yes High Workstation 1 Yes 10 msec 70 msec
Yes Normal Workstation 1 Yes 10 msec 320 msec

Actuators

Sensors

INSTRUMENTATION

CONTROL ROOM

Real-Time Contro!l
System

FIGURE 1.

Photograph of the CEM Testbed

FIGURE 2. CEM Testbed Components

11

r B8LDG 1293B | res T T T T T : |

Real-Time
Clock

Sensors

|
|
|
|
|
!
!
|
!
|
|
|
!
|

FIGURE 3. ARTS System Configuration

25 rrrrorrrrrrpprr e T e r T

L .

»]

20 __ =

£ 15 __]

g []

E n]

B - i
c

S 10 - —

a n i
=]

[+ 8 = .

E N B

8 s [~

0 BRI B S ST T F ST A S A I S MU ENT B T W N A

0 50 100 150 200 250

Frame Rate, Hz

FIGURE 4. ARTS System Available Computational Time

12

CAMAC

Fiber-Optic Highwa
Sensors Crate i Opto ighway
Computer Center

Crate
Controlier Reammesssmsmmmmess

Clock
Interface

Crate

VAXstation 3200

Controller 16 MB Memory
ADC
DAC < g
S’

Real-Time
Clock

FIGUE S, CEM Control System

40 AN NN St B RS B B S (R RN R Y NN SN N BN S BN BN R
s [.
3 | =

g = [-
5 20 [-
° o :
§ ¥ F]
10 [-

5 | =

-]

o A | 1 l) | 1 J 1 l 1) | 1 I | 1 | l 1 ' ' n

0 40 80 120 160 200

Frame Rate, Hz

FIGURE 6. Initial CEM Controller Performance

13

FIGURE 7.

FIGURE 8.

Controller States

—O—— VMS Overruns

- *D' = = VAXeln Overruns

Clock Overruns

RS N R R NN SRR AR A RN N AR RN RARRS
SETEISENIRENTERRENE RENRESURNEANATE REEN!

'R (N S T NN W JOUK VN T NN YN S NS N NN N NG MO UM NN

b
o
b=

150 200 250 300 350 400

Frame Rate, Hz

16 State Controller Clock

90 7T T
s Qe 1\]
a5 - —O0— Original Performance
- —0— Memory Mapped I/O Performance
30 - -0 - Real-Time OS Performance
C —A - Diagonalized A Matrix Performance
25 | =
20 [AN 3
- N h
15 F . 3
: s]
10 [T \ —:
: s 5
5 F »]
0 :l PR S N L S T SN S N S S S S N SH SN SN U AT SN SH N NN N ST N ST W G S S 1 x:
0 100 200 . 300 400 500 600 700

Frame Rate, Hz

Progressive Controller Performance

14

Form Approved
REPORT DOCUMENTATION PAGE OMB N 07080188
Public reporting burden tor this rollection of information 1s estimated ta average 1 hour per response, including the time tor reviewinq instructions, searching existing data sources,
qathering and mantaning the data needed, and completing and reviewing the «ollection of information. Send comments re?arqu this burden estimate or any other aspect of this
collection of mvmm won, nduding suggestions tor reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Sute 1204, Adhngton, VA 222024307, and 1o the Ot e of Management and udqget, Paperwork Reduction Project (0/04-0188), Washington, DC 20503.
1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1992 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Computer Optimization Techniques for NASA Langley's

CSI LEvolutfonary Model's Real-Time Control System WU 590-14-61-01

6. AUTHOR(S)

Kenny B. Elliott, Roberto Ugoletti, and Jeff Sulla

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITQORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration
Washington, DC 20546-001 NASA TM-104223

11. SUPPLEMENTARY NOTES
Elliott: Langley Research Center, Hampton, VA.
Ugoletti and Sulla: Lockheed Engineering & Sciences, Co., Hampton, VA.

P¥Lbentcd at the 38th International Instrbmentation Symposium, Instrument Society
America, Las Vegas, NV, April 26-3

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 39

13. ABSTRACT (Maximum 200 words)

The evolution and optimization of a real-time digital control system is presented.
The control system is part of a testbed used to perform focused technology
research on the interactions of spacecraft platform and instrument controllers
with the flexible-body dynamics of the platform and platform appendages. The
control system consists of CAMAC standard data acquisition equipment interfaced
to a workstation computer. The goal of this work is to optimize the control
system's performance to support controls research using controllers with up to

50 states and frame rates above 200 Hz. The original system could support a
l6-state controller operating at a rate of 150 Hz. By using simple yet effective
software improvements, L[/O latencies and contention problems are reduced or
eliminated in the control system. The final configuration can support a l6-state
controller operating at 475 Hz. Effectively the control system's performance

was increased by a factor of 3.

14. SUBJECT TERMS 15. NUMBER OF PAGES
15
Digital Control Systems T PTiCE COOE
Integrated Control Systems :
b ’ A03 B

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

