
AIASA- 7_ - /o,1,_

NASA Technical Memorandum 104223 NASA-TM-104223 19920010422

COMPUTER OPTIMIZATION TECHNIQUES FOR
NASA LANGLEY'S CSI EVOLUTIONARY
MODEL'S REAL-TIME CONTROL SYSTEM

Kenny B. Elliott, Roberto Ugoletti, and Jeff Sulla

i

February 1992 LANGLEYRESEARCHCENTER
LIBRARYNASA

HAr_'iPTON,VIRGINIA

, IMASA
NationalAeronauticsand
SpaceAdministration

LangleyResearchCenter
Hampton,Virginia23665

COMPUTER OPTIMIZATIONTECHNIQUES FOR NASA LANGLEY'S
CSI EVOLUTIONARY MODEL'S REAL-TIME CONTROL SYSTEM

KENNY B. ELLIOTT
NASA Langley Research Center

Hampton, VA 23665

ROBERTO UGOLETTI AND JEFF SULLA
Lockheed Engineering and Science Company

ltampton, VA 23666

KEYWORDS

Digital Control Systems, Integrated Control Systems

ABSTRACT

Theevolutionandoptimizationofareal-timedigitalcontrolsystemispresented.Thecontrolsystemispartofatestbed
usedtoperformfocusedtechnologyresearchontheinteractionsofspacecraftplatformandinstrumentcontrollerswith
the flexible-bodydynamicsof the platformand platformappendages. The controlsystem consistsof CAMAC
standarddataacquisitionequipmentinterfacedto a workstationcomputer. Thegoalof thiswork is to optimizethe
controlsystem'sperformanceto supportcontrolsresearchusingcontrollerswithupto50statesandframeratesabove
200 Hz. Theoriginalsystemcouldsupporta 16-statecontrolleroperatingata rateof 150Hz. By usingsimpleyet
effectivesoftwareimprovements,1/Olatenciesand contentionproblemsare reducedor eliminatedin the control
system.Thefinalconfigurationcansupporta 16-statecontrolleroperatingat475Hz. Effectivelythecontrolsystem's
performancewas increasedbya factorof 3.

INTRODUCTION

Asspace-sciencedataqualityrequirementsbecomemorestringent,theperformanceof spaceplatformsbecomemore
critical. One of thekey elementsof a spaceplatform'sperformanceis the interactionof the platform/'mstrument
controllerwiththe flexible-bodydynamicsof theplatformandit's appendages.This controls/structureinteraction
(CSI)is the topicof a NASAsponsoredfocusedtechnologyresearchprogram.Theobjectiveof this focusprogram
isto developtechnologyto enhancetheCSIperformanceand designof futurespacecraftstructures.

TheCSIprogramconcentratesonthreecomplementaryareas:spacecraftdesign,groundtesting,andflightverifica-
tion. Theprogramhasleadto thedevelopmentof severaltestbedsfortestinganddemonstratingCSItechnology.At

theNASALangleyResearchCenter,a testbedhasbeendevelopedwhichsimulatesrealisticstructuralcharacteristics
andcontrolhardwareofagenericlargespaceplatform(1). Thetestbedisbeingusedtodeveloptestmethods,evaluate
flexiblestructurecontrol algorithmperformance,evaluatesensorand actuator technology,evaluateCSI design
concepts,and experimentallyassess the level of confidencewith whichCSI technologycan be appliedto space
platforms.

Thetestbed,shownin Figure1,iscalledtheCSIEvolutionaryModel(CEM).TheCEMcanbe subdividedintothree
majorcomponents:thestructure,the instrumentation,and thereal-timedigitalcontrolsystem. Thisbreakdownis
shownin Figure2. Thestructurehasbeendesignedto possessthedynamicpropertiesof a typicalfuturespacecraft.
It consistsof a 55 footlong truss-buswithseveralappendageswhichpossessvaryingdegreesof flexibility. The
structureismodularin design,andit's configurationcanchangein orderto supportprogramneeds. TheCEMcan
be adapted to carry almost any type of sensor/actuator,such as CMGs, gimbals, or IMUs. Currently,the
instrumentationislimitedtoinertialsensors(accelerometersandratesensors),alaser-basedline-of-sightsensor,and
cold-gasthrustersacting as actuators. The real-timecontrolsystemis a combinationof commercialand custom
components. The system performssystem monitoring,systemsafety, signalconditioning,and serves as a host
platformfor thecontrolalgorithm.

Oneof thestrengthsof thistestbedis it's flexibilitytosupportcurrentas wellas futureresearchneeds. Eachpartof
theCEMis equallyimportantto the testbed'sevolution,and eachpartwillevolveas theCSIprogramdevelops.

Thispaperdetailsthecurrentevolutionandcomputeroptimizationtechniquesusedto enhancethe CEM'sreal-time
controlperformance.

BACKGROUND

Thecontrolsystemisa digitalcomputerwhichreadsinformationfromthesensors,processesthisinformationthrough
a controlalgorithm,andsendscontrolcommandsto theactuators.Specificallythesystemperforms,in real-time,its
owndataacquisition,signalconditioning,datamanagement,computationsofstate,control,andsafetylimitchecking,
and providesa userinterface.

Originally,theCEM's controlsystemwasa carry-overfroma previousprogram;theCSIMini-Mastprogram(2).
Mini-Mast'scontrolsystemwaspartofasystemwhichwasdevelopedtosupportreal-timeflightsimulationresearch.
This systemis call theAdvancedReal-TimeSimulation(ARTS)system(3,4). Duringthe Mini-Mastprogramthe
ARTSsystemwasadoptedforreal-timecontrolsresearch(5). Thesystem'sconfigurationis showninFigure3. The
systemhassix majorcomponents:thedata acquisitionequipmentlocatednearthestructure;thenetworkswitchand
fiber-optichighways;the real-time computerlocatedat a central computingcomplex; a real-time clock/timer
subsystem,andsoftwareto runthesystem. Abriefdescriptionofthesystemfollows;however,a detaileddescription
oftheARTSsystemcanbefoundin Ref.3and4. ThedataacquisitionsubsystemisbasedontheCAMAC°standard
(5). Analog-to-digital(ADC)anddigital-to-analog(DAC)signalconvertersarecontainedonmoduleswhichconnect
intoa chassiscalleda crate with a backplanebuscalleda dataway. The crate functionsarecontrolledby a crate
controllerwhichinturniscontrolledbya mainframecomputer;,aCDCCYBER175.Thecratecontrollerisconnected
to themainframecomputerthrougha ringmaster/slavefiber-opticnetworkcalleda highway.Thisnetworkincludes
a networkswitchfordynamicallyswitchingbetweendifferentremotesites. Aclocksubsystemisprovidedforsystem
synchronizationandreal-timeclockservices.Thesystemis controlledthrougha consolesubsystem.Theoperating

* ComputerAutomatedMeasurementand Control.

2

systemisNOSwhichhasbeenmodifledtosupportreal-timeoperations.ThecontrolsoftwareisaFORTRANprogram
builtaroundalineargenericcontrollaw(GCL)subroutine.Adescriptionof thecontrolsoftwarecanbefoundinRef.
6.

The performanceof this systemis shownin Figure4. This figureshowstheavailablecomputationtime(the time
availableto performcontrolcomputations)asa functionofframerate. Theframerateistheinverseofthe timeit takes
toacquiresensordata,executethecontrollawandsafetychecks,andtransmittheactuatordata.Practically,thissystem
islimitedintwofundamentalways.First,theminimumclockresolution,atthistime,is5msec,resultinginamaximum
framerateof 200 Hz. Currently,thecontrollawimplementationrequiresover-samplingtechniqueswhichrequire
framerates from 150to 500Hz. The frameratemustencompassthe timerequiredto performallnecessarycontrol
computations.Astheframerateincreases,the timeavailableforcomputationsdecreases.Therefore,highframerates
handicapthecontroller'scomplexity.Forexample,ifa 16-statelineartime-invariantcontrollerisrun onthissystem,
thenthemaximumsystemframeratedropsto 125Hz.Thecomputationtimeofthecontrollerextendstheframesize.
This conditionis called"computebound." Currently,controllerswithup to 100statesarebeingconsidered.The
secondlimitationis scheduling. The ARTSsystemis a field-wideresource. As such,the systemmust be time
managed.Sessiontimeof 2 to 4 hoursareusuallyscheduled2 weeksin advanceof theplannedtest. This severely
limitsthe spontaneityof research.

SYSTEM DESCRIPTION

Shortly after the CEM became operational,an effort was undertakento evaluate methodsof increasingthe
performanceofthecontrollersystem.Thegoalwasto arriveata systemwhichwouldallowdailyunscheduledsystem
usewithcontrollersofa moderatesize,upto50states,ata speedwhichmeetsor exceedsthoseof theexistingARTS
system.Thesystemneededtobedevelopedata lowcapitalcostandfitintotheexistingcomputerenvironment.These
constraintsledto theuseof anexistinglocalworkstation,theexistingCAMACequipment,andtheGCLsoftwareto
developa localcontrolsystem.

Thebase-linesystemunderconsiderationisshowninFigure5. Thisconfigurationisaccomplishedbyaddingasecond
cratecontrollerwhichcommunicatesto a workstation.Thecratecontrollercommunicatesovera parallelbus to the
Q-busbackplaneof a DECVAXstation3200 workstation.The workstationis configuredwith a colorgraphics
terminal,16MBofmemory,areal-timeclockcardwitha 1Ilsecresolution,and300MBofdiskspace.Thecomputer
operatesusing the VAX/VMSoperatingsystem. This configurationis supportedby the CAMACequipment
manufacturer.Therefore,no customequipmentneededto bedeveloped.

TheinitialCEMcontrolprogramforthisconfigurationwasdesignedanddevelopedto operateassimilaraspossible
to theARTS system'sGCLcode. Duetodifferentoperatingsystems,differentdataacquisitioncallingmethods,the
largesoftwareoverheadrequiredbytheARTSsystem,anddifferentversionsofFORTRAN,mostoftheGCLsoftware
wasrewritten.However,thefundamentalcontrolalgorithmsandtheirimplementationwerenotchanged.Basically,
the programprovidessignalgeneration,open and closed-loopmodesof testing,digital filtering,softwaresafety
checks,test logging,and feed-backcontrol. Thecontrollawis implementedusingthe followingequations:

UIt.I=CXk.I+DUk

Xk_.I=AXk+BUk

where A, B, C, and D are constant matrices of appropriatedimension,

Xk = columnvectorof controllerstatesat timek,
Xk+1 = columnvectorof controllerstatesat timek+l,
Uk = columnvectorof actuatorcommandsat timek,
Uk.1 = columnvectorof actuatorcommandsat timek+l, and
k = timeindex.

The main section of the control code consists of the following steps:

1. read theanalogsensorsthroughtheCAMACcrate,
2. removesensorbias andlimitcheckthesensorinputs,
3. computeactuatorcommands,
4. limitcheckthenew actuatorcommands,
5. outputthe actuatorcommandsthroughthe CAMACcrate,
6. updatethecontrollerstateequations(closed-loop),
7. save currentsensordataand actuatorcommandsin a memoryarmy,
8. repeattheabovesequenceforanumberof iterationsbasedonthedeltalooptimeto achievethetotal

amountof controltest timerequired,
9. afterallloopsaredone, zerothefinalactuatorcommands,
10. writethe finalarrayof accumulatedsensordataand actuatorcommands.

Theinitialversionofthecontrolprogramon theVAXstation3200real-timecontrolsystemranand performedallof
theabovefunctions.Variouscontrollawscouldnowbe testedlocallywithouthavingto scheduletimeontheARTS
system. Theperformanceof thecontrolsystem,shownin Figure6"*in termsof controllerstatesand framerates,
approachedverycloseto thatoftheARTSsystem.A 16-statecontrollawexecutedata framerateof 125Hz.However,
theframerateswerenot stableand werehighlyaffectedby backgroundsystemactivity.

Inorderto quantifythestabilityof thesystem,twovariableswereaddedtothecontrolprogram;clockoverrunand
frameoverrun. A clockoverrunoccurswhenthesystemtakesa longertimethanspecifiedto completeoneframe.
Aframeoverrunoccurswhena frame,oronecycle,hasbeenskipped.Theprogramdetectstheseeventsbymonitoring
theclocktickgeneratedbythereal-timeclock.Aframeisthetimebetweentwoclockticks.Thestartofaframeoccurs
atthenextclocktick. Whenthecontrolcomputationsarecomplete,theprogramlooppollstheclockregisterandidles
untilthenextclocktickoccurs. If theprogramdetectstheclocktickalreadyset beforeit idles, itknowsthatit took
toolongtoexecuteandexceededitsallottedframetime;i.e.,itoverrantheclocktick(clockoverran).Also,iftheclock
hardwarerolledovertwicewithouta resetofthefirstclocktick,itwill flaganotherbit in thestatusregisterto inform
of a completelymissedclocktick duration(frameoverrun).

OPTIMIZATION TECHNIQUES

A post-analysis of the system's performance was performed. This analysis consisted of analyzing clock and frame
overruns to determine whenand how they occurred. Also, timinganalyses were performed on individual and groups
of hardware and software components. The analysis revealed several inefficiencies. Specifically, I/O was slow;

** qhe numberofcontrollerstateswasdeterminedto beamoremeaningfulmeasureof systemperformanceinsteadof availablecomputationaltime.
Thenumberof states,whichreferstothe sizeof matrixA inEq.1.combinedwiththenumberof inputsandoutputs,definethecomputationalloadofthe
system.Thenumberof inputsandoutputsareheldconstantat8 each.

4

virtual memory created delays; backgroundsystem activity caused delays, and the generic software itself was
inefficient. By addressing these problems, improvementsin controller performance could be made if certain simple
software methods are applied to the control program. These methods would involve:

1. getting more control over the CPU,
2. reducing background system activity,
3. defeating virtual memory,
4. reducingI/O bottlenecks,
5. implementing a real-timeoperating system, and
6. optimizing the controller software algorithm.

Each of these methods will be addressed below.

CPU AND BACKGROUND ACTIVITY CONTROL

Getting full control of the CPU means to use all the available CPU time that is present and not share time with other
users or background activities. CPU usage is directly attributable to the running of tasks and interrupts, and the
switching between them. A descriptionof task priorities, context switching, interrupts, andtheir effect on the control
program are explained below. Solutions to these problems that were applied arealso discussed.

Ina multi-taskingsystem,taskscan be directlyrelatedto usersas wellas backgroundactivitywhich is providing
networkservicesor workstationwindowingfunctions. The way tasks areprocessedis directlyaffectedby task
priorities.Task prioritiesareoperatingsystemvaluesassignedto a programor taskthatallowthemto havea more
or lessfavorablestatusas to whichtaskshouldexecutenext. Allmulti-taskingoperatingsystemshavetime-sharing
taskpriorities.Attheselevels,theschedulerallowsa tasktorunforamaximumfixedamountoftimebeforeswitching
tothenexttaskofhighestpriority.Minoradjustmentsoftaskpriorityareautomaticallymadebytheschedulertopermit
improvedinteractiveand I/OperformanceoverCPU-boundtasks. Time-sharingtask schedulingcannotguarantee
sufficientCPU time for a controlprogramto run at a regularrate. Prioritieswill fluctuateallowingbackground
processessuchasnetworkingandscreenwindowing'toaffectcontroltimesevenona singleusersystem. A limited
numberof multi-taskingoperatingsystemshavean additionalrangeof taskprioritiesreferredto as real-time.This
priorityrangeisalwayshigherthanthetime-sharingrangeofpriorities.At real-timeprioritylevels,a taskis allowed
to runas longas it needsto and is thehighestprioritytask readyto run.

Whentheschedulerswitchesbetweentasks(contextswitch),timeis t_en to performtheswitch. Theactualswitch
involvessavingall currentCPU registerssuchas programcounter,processorstatus,accumulators,stackpointers,
floatingpointprocessorregisters,etc.and loadingthesavedregistersforthenew taskintoCPUto executeit. The
schedulertypicallyperformsa contextswitchat a periodicrateusuallydeterminedby the systemclockrate(10ms
fora VAX/VMSsystem)and at therequestof a taskwhichwantsto start/stopanothertask oritself. Somesystems
alsolook fora possiblecontextswitchaftereveryI/Ocompletionevent. Contextswitchingbecomesa concernto a
real-timecontrolprogramwhenitmustrunata periodicratethat's fasterthantheschedulerrateor not a multipleof
it. Areal-timeclockmaysignaltotheoperatingsystemtostarta real-timetaskatanexacttime,buttheschedulermay
waituntilitsnextexecutionperiodbeforeactuallyperformingthecontextswitch.Anyreal-timeprogramthatcannot
toleratedelayscau_d by contextswitchingor mustguaranteeexacttiming,and doesnot havea sufficientlyrobust
scheduleror I/Oeventsignaling,shouldhot relinquishthe CPUbyhibernatingor sleeping.

CPUinterruptsandtheirserviceroutinescouldalsopreemptthe executionofthecontrolprogramandcausedelays.
Interruptsare eventsthat enablea CPU to respondasynchronouslyand immediatelyto an eventeitherinternalor
extemalto theCPU. Sinceinterruptsareusuallyurgentandmustbe servicedimmediately,theypreemptany andall
tasksthat are currentlyrunning.

Averysimpleprogramwaswrittento testtheoperatingsystemforbackgroundactivitythatwouldimpacta real-time
controltask. Acontinuouslyrunningsystemclockisreadrepeatedlyforthedurationof thetest(typically5-10minutes
issufficient).Adeltatimeis calculatedbetweeneachsuccessiveread.Theminimumdeltaistheclockresolutionand
themaximumdeltais theworstcasebackgroundactivitythatoccurredduringthe testperiod. Thetestmaybe runat
variousprioritylevels,simultaneoususer,network,andperipheraldeviceactivities. Thelowerthemaximumtime,
thequietertheoperatingsystemis orthehigherthe testprogram'staskpriorityisover allotheractivities.Theaffect
of variousbackgroundactivitieson thissystem'sperformanceis shownin Table 1. Thetestsshowedat worst-case,
acontrolprogram,runningatnormalpriority,couldbeinterruptedanddelayedbyupto320ms. Thisdelayistheresult
of backgroundsystemactivitydue to networking,interrupts,andtaskcontentionwithotherprocesses.

Thecontrolprogramwaschangedto handletaskprioritiesdynamically.This was implementedby usinga system
servicecallin thecontrolprogramto raiseand lowertask priorityas needed. Thecontrolprogramwasmodifiedto
startatnormalpriority,performuserinteractionandinitialization,thenraiseitsprioritytoa real-timetasklevelduring
the actualcontrolperiod. When the controlperiod is completed,priorityis restoredto normalto performf'mal
computationsanddatastorageasrequired.Thiseliminatedalmost78%oftheinterruptionanddelay,buta70msdelay
stilloccurred.

There are only two areas where the program had an opportunity to be affected by context switching. One areawas
at idle time waiting for the end of a frameclock tick. However, the program polls for the occurrence of the clock tick
status bit which requires no intervention of the operating system and therefore the possibility of a context switch
occurring. The second area of concero was the system I/O calls to CAMAC hardware. It was known that the I/O call
would relinquish CPU control to a lower priority task through a context switch, but unknown if itcould regain it back
at I/O completion right away. Timing tests showed no odd skewing of I/O times; therefore, the completion of the I!
O was causing arescbedule of tasks to occur and thehigher priority control taskwould immediately resume execution.
No changes to the control program were required to protect against context switching.

In the test, the source for interrupts was the simple moving of the workstation mouse which would send a series of
position change interrupts to the workstation. Only when all windowing and mouse movement activity were halted,
did background system activity decrease below detectable levels (10 ms which was the same as the system clock
resolution). The VAX/VMS operating system provided no way for a user program to lock out or inhibit specific
interrupts fromoccurring. The only resolution was to notmove the mouse andto stop running certainnetwork services
that were trying to respond to network broadcast messages and generate periodic status information.

These changes to runningthe control programgave much more consistent execution times. A specified total controller
run time of 30.0 seconds now executed in 30.0 to 30.1 seconds andnot an erratic longer execution time of 30.1to 31.5
seconds.

DEFEATING VIRTUAL MEMORY

Virtualmemoryisthe abilityfora programto referencemorememorythanisphysicallyavailable. Virtualmemory
is typicallyimplementedona computersystemby usingrandomaccessmassstoragedevices(harddisks)to storethe
virtualprogramcode,data,stack,andoperatingenvironment.Eithersmallsegments(paging)or theentireprogram
(swapping)maybe movedto/fromphysicalmemoryandmassstorage. Thisis a definiteadvantagefor multi-user

systemswhicharetryingto conservememoryresourcesbutdetrimentaltoreal-timeprogramswhichmustwaithuge
amountsof timefor pagefaultsandthe resultingdisk I/Oto completebeforecontinuingto execute. To insurethat
thecontrolprogramwasnot incurringpagefaultsduringits controllerexecution,certainstepshad to be performed
to keepthe programand its data in physicalmemory. The programneededto be loadedand lockedintophysical
memoryjust afterall initializationfunctionsweredoneand beforethereal-timecontrolphase.

The methodof forcinga programintophysicalmemoryon a VAX/VMSsysteminvolveslockingpagesinto the
workingset. Theworkingsetis a representationofthephysicalmemorythata processorprogramisusing. Itis used
bytheoperatingsystemandthememorymanagementhardwareto trackwhichvirtualaddresspagesof theprogram
actuallypointto physicalmemory.Ifexcessivepagefaultsoccur,theoperatingsystemwillincreasetheworkingset
size to allowmorephysicalmemoryto be used. Beforea programcanlockallof its virtualpagesinto the working
set andhavea one-to-onecorrespondencebetweenvirtualpagesandphysicalpages,it musthavea sufficientlylarge
workingsettoholdtheentireprogramatonce.Onceuseraccountquotasareraisedtosufficientlevels,asystemservice
routineiscalledto locka rangeofprogramvirtualaddresspagesintotheworkingset. If anypagesarenot currently
intheworkingset,theyarebroughtinbypagefaultingandthenlockedsothattheywillnotbemovedbackouttomass
storageandthe actualphysicalmemoryreusedby anotherprogram.

Withtheprogramcodeanddatalockedintomemory,theprocessheaderwasthelastunprotectedpartof theprogram
thatcould incura pagefault. A secondsystemservicecallwasaddedto thecontrolprogramto preventthe process
frombeing swappedout of the list of memoryresidentprocesses. The entire programnow had a physicalpage
associatedwitheachvirtualpageand wouldnot incuranyadditionalpagefaultsduringany partof its controlphase
execution.

Testsperformed showedthat no page faults wereoccurringin the control phase regardless of whether the program was
locked into the working set or not. Page faults did not occur because the data arrays, which incur the page faults, were
accessed previous to the control phase of the software. However, as a precaution, locking of pages into the working
set is still recommended and performed.

REDUCING 110 BOTTLENECKS

Oncethecontrolprogram'sexecutionwasstabilizedbycontrollingtheCPUand defeatingvirtualmemory,thefirst
detailedtimingtest couldbe performed. These tests showedthat the existingcontrol system,runninga 16-state
controllerat125HZ(8.0ms),wasusing2.8msto readanalogsensorchannelsand2.2msto writeactuatorcommand
channels.This translatedintoa totalI/Otimeof 5.0 msor 63%ofthecontrollooptime. Thesetimingtestsdearly
showedthatthemajorityof time wasspentperforming1/O(an I/Oboundproblem).Generally,thereare twoways
toimprovemostI/Otimes;eliminateorcombineI/Orequests,andreducetheamountofoverheadassociatedwitheach
I/Orequest.

SystemI/Ocallson atypicalVAXworkstation(VS3200)are timeexpensive,consuminganywherefromoneto three
milliseconds.AnywaytoreducethenumberofI/Ocallswouldimproveperformance.InthisCAMACconfiguration,
withstandardCAMACcommands,thereisno problemcombiningreadandwritecommands.Thisalloweda single
listof CAMACreadandwritecommandstobe createdandinitiatedwithjust oneI/Ocall insteadoftwo. Thissimple
changeimprovedCAMACI/Operformancefrom5.0millisecondsto3.4milliseconds.Thiswasa32%improvement
in I/O performanceandalloweda 16-statecontrollerto increasefrom125Hzto 150Hzfor a 16%improvementin
overallcontrollerperformance.

TodealwiththeoverheadassociatedwithanI/Ocall,anunderstandingof thecallprocessisneeded.SystemI/Ocalls
arerequestsmadeto theoperatingsystemto performan input,output,or controlto a device. Aftercheckingsome

7

parameters, the request is typically queued to a device driver. Device drivers are the last layer of software that
communicates directly with the device hardware by reading and writing to special registers on the interface card or
chip. I/Orequests that can not be completed immediately require await period for the device to perform the operation.
The device driver will perform these operations and wait for notification by the device of a stepor operation
completion. Although highly useful and functional, device drivers add an extra layer of software between a program
and hardware. With a single dedicated use of the CAMAC interface (nomultiuser arbitration is required) and a low
level of device register complexity, it is fairly easy to bypass the device driver and write directly to device control
registers themselves.

The first attempt to improve I/O performance was to use the 24-bit programmed transfer mode for CAMAC I/O, and
read/write the CAMAC registers directly in the main control program rather than performing system I/O calls to the
devicedriver. Programmed transfer mode requires the CPU to read andwrite every word between device andphysical
memory rather than having adedicated controller chip directly transferring the data to/from memory (DMA). Setting
up DMA transfers of data into physical memory is slightly more complicated and forsmall channel counts is not that
much faster.

From a programing point of view, reading and writingdirectly to device registers from a program after all necessary
system service calls are made is as simple as reading and writing to local program variables and arrays in memory,
hence the name memory-mapped I/O. The additional requirement for a program operating in a virtual memory
environment is to map aportion of its virtualaddress space into the physical address space where the particular device
is configured to appear/respond at.

The new memory-mapped I/Otechnique was implemented and timed. The CAMAC I/Operformance improved from
3.4 milliseconds to 0.8 milliseconds. This was an additional improvement in I/O performance of 325% and allowed
a 16-state controller to increase from 150 Hz to 270 Hz for a 80% improvement in overall controller performance.

IMPLEMENTING A REAL-TIME OPERATING SYSTEM

Aconcemstillremainingwasthat,fora fixedcontrollersize, theframeratecouldbe increasedfromthepointwhere
noclockoverrunswereoccurringto a pointwheretheoverrunsexponentiallyincreaseduntilfinallya frameoverrun
occurred,asshowninFigure7.Thereasonthatthereexistedaratedifferencebetweenoneclockoverrunandoneframe
overrunwas thattherewasadditionalbackgroundsystemactivityat a very highlevelthat couldnot be eliminated.

A real-timeoperatingsystemwouldallowa muchgreatercontrolof theCPUandeliminatemoreof thebackground
systemactivity. Themost compatiblereal-timeoperatingsystemwith theVAXstation3200and VAX/VMSwas
VAXelnfromDEC. VAXelncouldrunon thecurrentVAXstationwithoutanyhardwaremodifications.Sinceit is
a minimaloperatingsystem and fullyconfigurablefor the amountof systemservicesneeded,it will have less
backgroundtasksandperipheralsconsumingvaluableCPUtime. Thereal-timeoperatingsystemhasonlyreal-time
tasklevelpriorities.It alsoimplementsmostofthedevicedriverfunctionsat the tasklevelratherthanatan interrupt
level.Thismeansit ispossibleto runacontrolprogramabovetheactivitygeneratedinservicingaparticularperipheral
or networkservice.Thereal-timeoperatingsystemalsoprovidesthecapabilityto performfromaprogramlevel,the
startingand stoppingof networkfunctions,and theselectivedisablingof interrupts.

TheconfigurationofVAXelnallowedselectionofaminimalamountofdevicedriverstosupporttheexactperipherals
used. Thediskdevicedriverand fileI/OallowedVAXelnto accesstheexistingdiskdriveson theworkstationand
read/writethesamediskfileformat.Thismeantthatnochangeswererequiredtothecontrolprogramsothatitcould
read thesamedata files thatwereused forinitializationand writethe samedatafiles for savingsensorandthruster
commands.

8

Programdevelopmentused the exact samecompilersand linkers thatwere currentlyusedfor the CEM control
program;bothVAXFORTRANandVAX"C". Onlya differentrun-timelibraryhad tobe linkedwiththecompiled
codeto createan executablethat wouldrununderVAXeln. Theonly changesrequiredto be made to thecontrol
programwerethosethatperformedsystemservicecalls.Nolockingofpagesin memorywasrequiredsinceVAXeln
wasa real-timeoperatingsystemthatdid not supportvirtualmemory. All programsarerequiredby VAXelnto fit
intophysicalmemorydueto real-timeconstraints.Thesystemcallsto performmemorymappedI/O,andraise/lower
task prioritywere differentandrequireda smallchange. Thesewerethe onlychangesnecessaryto makethe CEM
controlprogramrununderthe VAXelnreal-timeoperatingsystem.

Thenewreal-timeoperatingsystemwasimplementedandtimed.The performanceofa 16-statecontrollerimproved
from270 Hzto 357 Hzfor a 32%improvement.Theeliminationof backgroundactivityis shownin Figure7.

OPTIMIZING THE CONTROL ALGORITHM

The controllerdesignsdevelopedby researchersfor the CEMvariedconsiderablyin their complexity. Some
controllersuse a low order,sparselypopulated,controllerA matrixwhileothercontrollersuse a high order,fully
populated,controllerAmatrix.Astheorderofthecontrollerincreased,thecomputationtimeassociatedwiththeA*X_
multiplyincreaseddramatically.Theincreasein computationtime severelylimitsthedigitalframerateatwhichthe
higherordercontrollerscouldbe run.

The firstapproachto optimizingthestatevectorcalculationwas totakeadvantageofthestructureofthe Amatrixin
second-ordercontrollers.Forsecond-ordercontrollers,theA matrixis ina block-diagonalform. Therefore,thestate
calculationroutinewasmodifiedto operateonlyon the2x2blockdiagonalelementsof thecontrollerAmatrix(all
otherelementsof theAmatrixarezero). This methodwassuccessfulin increasingtheallowableframerateforthis
typeof controllers.

Thesuccessof thisproceduremotivatedthedevelopmentofa procedureforblock-diagonalizingthemorecomplex
controllers.ThecontrollerAmatrixwasblockdiagonalizedusinganeigenvectortransformationprocess. Because
thediagonalizedmatrixcouldincluderealandcomplexpoles,thestatecalculationroutinewasmodifiedtoperform
thematrixmultiplyusinga tri-diagonalformof thecontrollerAmatrix.

ThecontrolprogramalsochecksfortheDmatrixuponinitialization.IfazeroDmatrixispresent,thecontrolleroutput
equationskipsthe D*Ukcalculation.

Theperformanceofthe 16-statecontrolleris increased33%from357Hzto475Hz. However,therealadvantageof
these techniquesare realizedfor largecontrollers. A 38 statecontrollerwill run at frame rateof 140Hz before
optimization,and afteroptimizationthecontroller'sperformanceis increasedto 280 Hz;a 100%improvement.

OVERALL SYSTEM PERFORMANCE

Theoverallperformanceevolutionof thesystemisshownin Figure8. Theperformanceis referencedto theoriginal
system'sperformancewhichisoriginallyshowninFigure6. Methodswhichdealtwiththeincreasingtheperformance
of the hardwarehave a greater affect over I/O bound problems(high frame rates). However,improvingthe
computationalefficiency(diagonalization)hasthegreateraffectoncomputeboundproblems(highnumberofstates).
Thegoalsof the systemwereexceeded.Thesystemfunctionslocallywithno scheduling.Thesystemcanbe used
to runcontrollawswithover 40 statesata moderaterate,andthesystemoutperformstheARTSsystemby a factor
of 3 to4 formediumsizecontrollers.

7

SUMMARY

The evolution and optimization of a real-time digital control system was presented. The goal of this work was to
optimize the control system's performance to supportcontrols researchusing controllers with upto 50 states andframe
rates above 200 Hz. The original system could support a 16-statecontroller operating at a rate of 150 Hz. The issues
addressed were CPU control, reduction of background activity, defeating virtual memory, reducing I/O bottlenecks,
implementing a real-time operating system, and optimizing the controller software algorithm. By using simple yet
effective software improvements, I/O latencies and contention problems are reduced or eliminated in the control
system. The final configuration could support a 16-state controller operating at 475 Hz. Effectively the control
system's performance was increased by a factor of 3 to 4.

REFERENCES

1. Belvin,W.B., et. al, "Langley'sCSIEvolutionaryModel:Phase0," TM 104165,NASALangleyResearch
Center,Hampton,VA, September1991.

2. Tanner, C. E., et. al.,"Mini-Mast CSI Testbed User's Guide,"TM 102630,NASA LangleyResearch Center,
Hampton, VA, September 1991.

3. Crawford, D. J. andJ. I. Cleveland, !II,"The New Langley Research Center Advanced Real-Time Simulation
(ARTS) System," AIAA-86-2680, Presented atthe AIAA/AHS/ASEE Aircraft System Design and Technol-
ogy Meeting, Dayton, Ohio, Oct. 20-22, 1986.

4. Crawford, D. J., J. I. Cleveland, III, andR. O.Staib, "The LangleyAdvanced Real-Time Simulation(ARTS)
System Status Report," AIAA-88-4595-CP, Presented at the AIAA Flight Simulation Technologies Confer-
ence, Atlanta, GA, Sept. 7-9, 1988.

5. Anonymous,CAMACInstrumentand InterfaceStandards,The Institute of Electricaland Electronics
Engineers,Inc.,NewYork,NewYork,1982.

6. Wood,D. V., D.W. Geyer,and J.Sulla,"Real-Time Control SystemforMini-MastUsingthe AdvancedReal-
Time Simulation System at NASA Langley Research Center," 61st Shock and Vibration Symposium,
Pasadena, CA, Oct. 1990.

[0

TABLE 1. Background Activity

TEST CONFIGURATION Minimum Maximum

Network Task No. Of Mouse Noise Noise
TerminalDevice Resolution Resolution

Active Priority Users Activity

Yes High VT 220 1 - 10 msec 10msec

Yes Normal VT 220 1 - 10 msec 10 msec

Yes Normal Workstation 1 No 10 msec 10 msec

Yes High Workstation 1 Yes 10 msec 70 msec

Yes Normal Workstation 1 Yes 10 msec 320 msec

FIGURE 1. Photograph of the CEM Testbed FIGURE 2. CEM Testbed Components

11

[BLDG1293B

Real-Time
Clock

CAMAC

Sensors Crate

Crate Fiber-Optic CYBER
Controller Network 175
Clock Highway Switch
Interface

Console

ADC
DAC I I

Actuators

! BLDG1268

FIGURE 3. ARTS System Configuration

25 ' ' ' J I I ' ' I I ' ' ' I I I ' ' ' I ' I ' '

2O

E 15
Q
E
F-
r-

.o 10

E

8 s

i , , , I, , , , I I, l I I , , t, I I , I ,
0

0 5O IO0 ISO 2O0 2SO

Frame Rate, Hz

FIGURE 4. ARTS System Available Computational Time

12

CAMAC

Sensors Crate Fiber-OpticHighwayto
Crate | ComputerCenter
Controller=_................................

Clock I_

C Crate | VAXstatlon3200U
C°ntr°llerI" 16 MBMemory

Aoc, !36DAC I
Actuators

I Real-TimeIClock

FIGUE 5. CEM Control System

40 ' ' ' I ' ' ' I ' ' '

35

3O

_ 2s

£

lO

5

, , , I , , , I , , , I , , , I , , ,
0

0 40 80 120 160 200

Frame Rate, Hz

FIGURE 6. Initial CEM Controller Performance

[3

70 , , , , I , , , , I , , , , i , , , , i , , l, ,

0

VMS Overruns

50 - 0" - - VAXeln Overruns

i°30

10

0 IIII III I I I I I I II

-10 , , , , I , , , , I , , , , I , , , , I I I

150 200 250 300 350 400

FrameRate,Hz

FIGURE 7. 16 State Controller Clock

4O ..._,....,...._,....,....,....
I

Peo,mnce
4

35 \
\ . _ -- I_- MemoryMappedI/OPerformance

30 _ . • Real-TimeOS Performance

_ 25 I_1 '_ k DlagonalizedA MatrixPerformance

\\\ " %

8_ '° " "°'" \\ "-.. ..
lO \ - . ._--

5 b "'_

O • = • = I • , , , I = , . • I , , . • I = • • m I , , , • | I I I I

0 100 200. 300 400 500 600 700

Frame Rate, Hz

FIGURE 8. Progres,sive Controller Performance

I

Form Approved

REPORTDOCUMENTATION PAGE OMBNo.0704-0188
i Pubh¢ rep_rt.lq bLJrden for _hl_ .olte_tlon of inforrn,ltlot_ i_ ,'_Tlm,ttPd tO .Iv,'_aQ," I hour per re_pOn_., including the time fOr revlewln_J instruction% searching exestlng data sources.

]atherinq and m,.nl.llnlncj IhP d,H,I ne-_lPd, and ¢ompletlriq and rPview,nq th,. qo11_< lion of in|orrnatlOn. Send comments regarding this burden estimate or any other aspect of this
; 40I1_'_t..b _f H_lo/m,lllO/t..t,.hl(Jll. I *,.gr|P_tl¢)f_s h]r redu_ Inq Ihl*_ t)_rdPn, to W,s_l.nqton th.adquaJtPrs S_rvl(e_. Directorate tot Information Operations and Reports, 1215 Jefferson
, [).Iris IIIqhway. ',.ale 1204. A,hll,llCbn. VA 2_20J.4 |0_'..._d tcJth*. ()lfh _' .)t Md.,nqPrnP.t .l/_d t_ud,let. Pap_.rwork Reduction Project (0/04-0188).Washington. DC 20_0].

;1. AGENCY USE ONlY (l,,ave blank) 2. REPORT DATE 3.' REPORT TYPE AND DATES COVERED
I,'_hruary 1992 Technical Memorandum

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Computer Optimization Techniques for NASA Langley's
CSI Evolutionary Model's Real-Time Contro] System WU 590-14-61-01

6. AUTHOR(S)

Kenny B. E1liott, Robert() Ugolett[, and Jeff Sulla

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

NASA l,angley Research Center

Hampton, VA 23665-5225

9. SPONSORING/MONITORINGAGENCYNAME(s) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCYREPORTNUMBER

National Aeronautics and Space Administration

Washington, I)C 20546-001 NASA TM-I04223

11.SUPPLEMENTARY NOTES

Elliott: Langley Research Center, Hampton, VA.
UgolettJ and Sulla: Lockheed Engineering & Sciences, Co., Hampton, VA.
Presented at ti_e38th International Instrumentation Symposium, Instrument Society
of America, Las Vegas, NV, A_ril 26-30, 1992.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category 39

13. ABSTRACT(Maximum200word$)

The evolution and optimization of a real-time digital control system is presented.

The control system is part of a testbed used to perform focused technology
research on the interactions of spacecraft pJatform and instrument controllers

with the flexible-body dynamics of the platform and platform appendages. The

control system consists of CAMAC standard data acquisition equipment interfaced
to a workstation computer. The goal of this work is to optimize the control

system's performance to support controls research using controllers with up to
50 states and frame rates above 200 Hz. The original system could support a

16-state controller operating at a rate of 150 Hz. By using simple yet effective
software improvements, 1/O latencies and contention problems are reduced or
eliminated in the control system. The final configuration can support a 16-state

controller operating at 475 Hz. Effectively the control system's performance
was _ncreased by a factor of 3.

14. SUBJECT TERMS 15. NUMBER OF PAGES
15

Digital Contro[Systems

Integrated Control Systems 16. PRICE CODE
A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-01-2B0-5500 Standard Form 298 (Rev. 2-89)
Prescrubed by ANSI Std Z39-18
298-102 [

