
e, 
,I , 

NASA Contractor Report 189052 NASA-CR-189052 
19920010472 

Development of an Integrated BEM 
Approach for Hot Fluid 
Structure Interaction 

Gary F. Dargush, Prasanta K. Banerjee, 
and Keith A. Honkala 
State University of New York at Buffalo 
Buffalo, New York 

November 1991 

Prepared for 
Lewis Research Center 
Under Grant NAG3-712 

NI\S/\ 
National Aeronautics and 
Space Administration 





" 

LIST OF CONTENTS 

1. INTRODUCTION 1 

2. LITERATURE REVIEW 3 

3. INTEGRAL FORMULATION FOR SOLIDS . . . . . . . 4 
3.1 Introduction . . . . . . . . . . . 4 
3.2 Governing Equations . . . . . . . 4 
3.3 Integral Representations . . . . . . . 5 
3.4 Numerical Implementation .... ... 7 

3.4.1 Introduction .......... 7 
3.4.2 Temporal Discretization . . . . . 7 
3.4.3 Spatial Discretization ....... 8 
3.4.4 Numerical Integration ........ 12 
3.4.5 Assembly ..... ... . . . 13 
3.4.6 solution ......... ... . 16 
3.4.7 Interior Quantities .... . 17 
3.4.8 Advanced Features . .. .. 20 

3.5 Examples . . . . . . . . . . . . . 22 
3.5.1 Sudden Heating of an Aluminum Block . 22 
3 .5.2 Circular Disc . . . . . . . . 23 
3.5.3 Turbine Blade . 24 

4. INTEGRAL FORMULATIONS FOR FLUIDS ... . 32 
4.1 Introduction .................. 32 
4~2 Governing Equations ... . 32 

4.2.1 Compressible Thermoviscous Flow 32 
4.2.2 Incompressible Thermoviscous Flow 39 
4.2.3 Incompressible Viscous Flow .... 39 
4.2.4 Convective Heat Transfer ....... 40 

4.3 Fundamental Solutions ............. 40 
4.3.1 Compressible Thermoviscous FLow . .. 40 
4.3.2 Incompressible Thermoviscous Flow .. 51 
4.3.3 Incompressible Viscous Flow 52 
4.3.4 Convective Heat Transfer ........ 52 

4.4 Integral Representations ............ 55 

.4.5 
4.6 
4.7 

4.4.1 Compressible Thermoviscous Flow . 55 
4.4.2 Incompressible Viscous Flow . 60 
4.4.3 Convective Heat Transfer ... 61 
Numerical Implementation 61 
Coupling of Solid and Fluid . .. 64 
Examples . . . . . . . .. ... 64 
4.7.1 Parallel Flow . .. .... 64 
4.7.2 Driven Cavity . ~ . . . . . . 65 
4.7.3 Converging Channel . . . 66 
4.7.4 Flow Over a Cylinder .... 67 
4.7.5 Flow Over an Airfoil ... . ... 64 

5. SUMMARY . 95 

6. WORKPLAN FOR THE NEXT YEAR . 97 

i 



APPENDICES 
APPENDIX A - REFERENCES . . . . . . . . . . . . . . . . 
APPENDIX B - KERNELS FOR THERMOELASTICTY . . . . 
APPENDIX C - FUNDAMENTAL SOLUTION FOR CONVECTIVE 

COMPRESSIBLE THERMOVICOUS FLOW 
APPENDIX D - FUNDAMENTAL SOLUTION FOR CONVECTIVE 

INCOMPRESSIBLE THERMOVISCOUS FLOW . . . . 
APPENDIX E - KERNELS FOR STATIONARY INCOMPRESSIBLE 

THERMOVISCOUS FLOW . . . . . . . . . . 

ii 

. 98 
101 

105 

107 

108 



1. lNTlOXJCrIOO 

Accurate determination of the thermal stresses induced in hot section 

components remains one of the most difficult problems facing engine 

design/analysts. There currently exists no rational analytical. nor 

numerical techniques which can effectively deal with this problem. 

Analysts involved in hot fluid dynamics using the finite difference method 

have little interaction with those engaged in thermal stress analysis where 

the finite element method is dominant. However. the temperature 

distribution in many structural canponents is strongly influenced by the 

external hot gas flow. the internal cooling system of the component. and 

the structural deformation. As a result. the only effective way to deal 

with this problem is to develop an integrated solid mechanics. fluid 

mechanics. and heat transfer approach. 

In the present work. the boundary element method (BEM) is chosen as 

the basic analysis tool principally because the definition of temperature. 

flux. displacement and traction are very precise on a boundary-based 

discretization scheme. One fundamental difficulty is, of course, that a 

BEM formulation requires a considerable amount of analytical work, which is 

not needed in the other numerical methods. 

This report details progress made. during the period November 1987 -

Novenber 1988 in a multi-year program carmencing in March 1986, toward the 

development of a boundary element formulation for the study of hot fluid­

structure interaction in Earth-to-Orbit engine hot section components. The 

primary thrust of the program to date has been directed quite naturally 

toward the examination of fluid flow. since boundary element methods for 

fluids are at a much less developed state. 

During the first year, work focused on the completion of a 

comprehensive literature review of integral methods in fluids. the 
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developnent of integral formulations for both the solid and fluid, and some 

preliminary infrastructural enhancements to a boundary element code to 

permit incorporation of the fluid-structure problem. In the second year, 

emphasis shifted to the implementation and validation phases. Boundary 

element formulations were Unplemented in two-dimensions for both the solid 

and the fluid. The solid was roodeled as an uncoupled thermoelastic medium 

under plane strain conditions, while several formulations were investigated 

for the fluid. For example, both vorticity and primative variable 

approaches were implemented for viscous, incompressible flow, and a 

compressible version was developed. All of the above boundary element 

implementations were incorporated in a general purpose two-dimensional 

code.. Thus, problems involving intricate geometry, multiple generic 

modeling regions, and arbitrary boundary conditions are all supported. 

Further details can be found in Dargush et al (1986. 1987). 

In the early portion of this past year, a number of significant 

advances were made. First. two-dimensional integration schemes were 

enhanced to obtain more accurate coefficients with somewhat less,computing 

effort. This improvement was found to be particular ly beneficial for 

incompressible flow, where the precise determination of the coefficients is 

imperative. secondly. both full and modified Newton-Raphson algo~ithms 

were developed. This greatly tmproved the convergence characteristics of 

the set of nonlinear equations governing viscous flow. Additionally, a 

region-by-region reference velocity was introduced into the formulation to 

shift the' highly nonlinear portion away from the free stream and toward 

obstacles and walls, where a more refined model is appropriate. 

The combination of these advances permits the solution of a wide 

variety of thermoviscous flow problems in the low to moderate Reynolds 

number range. Several examples are included in this report. However. at 
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higher Reynolds numbers, there is a need to get nore of the physics of the 

problem into the boundary element fundamental solution. COnsequently. the 

development of new convective fundamental solutions and integral 

formulations has been the primary focus of our most recent efforts. 

In the next section, a brief review of the applicable boundary element 

literature is presented. '!his is followed by the developnent of integral 

formulations for the solid in Section 3 and for the fluid in Section 4. 

Several detailed numerical examples are presented at the end of each of 

those two sections. In the fluids portion, development of the new 

convective formulations is emphasized. The remaining sections then 

summarize the progress achieved to date, and outline the work plan for the 

next year. Tables and figures appear at the end of the corresponding 

section, while references are provided in Appendix ~ 

2. LrmRA'lURE REYIl'Ji 

Virtually nothing has appeared .in the literature on the analysis of 

coupled thermoviscous fluid/structure problems via the boundary element 

method, although some work has been done on the fluid and solid separately. 

In general, the, solldportion of the problem has been addressed to a much 

greater degree. For example, a boundary-only steady-state thermoelastic 

formulation was initially presented by Cruse et al (1917) and Rizzo and 

Shipp'{ (1977). Recently, the present authors developed and implemented the 

quasistatic counterpart (Dargush. 1987. Dargush and Banerjee. 1988a.b). 

which is presented in detail in Section 3. Others. notably Sharp and 

Crouch (1986) and Chaudouet (1987)' introduce volume integrals. to 

represent the equivalent thermal body forces. A similar domain based 

approach was taken earlier by Banerjee and Butterfield (1981) in the 

context of the analogous geanechanical problem. 

An extensive review of the applications of integral formulations to 
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viscous flow problems was included in the previous annual ref:X)rt <Dargush. 

et al. 1987). and will not be repeated here. Interestingly. only a few 

groups of researchers are actively pursuing the fUrther development of 

boundaIy elements for the analysis of viscous fluids. '!he work ref:X)rted in 

Piva and Morino (1987) and Piva et al (1987) focuses heavily on the 

development of fundamental solutions and integral fOImulations with little 

emphasis on implementation. On the other hand. Tosaka and Kakuda (1986. 

1987). Tosaka and Onishi (1986) have implemented single region boundary 

element formulations using approximate incompressible fundamental 

solutions. This latter group has developed sophisticated non-linear 

solution algorithms. and consequently. are able to demonstrate Iroderately 

high Reynolds number solutions. Meanwhile. as will be seen in Section 4. 

the present work represents a significant advancement in the state-of-the-

art from both a formulation and ~lementation standpoint. 

3. IN'ftX;RAL POlMJIATIOO FOR 9:lJDS 

3.1 Introduction 

In the current section. a surface only time domain boundary element 

method will be described for a thermoelastic body under quasistatic 

loading. Thus. transient heat conduction is included. but inertial effects 

are ignored. Formulations h~ve been developed for three-dimensional. two­

dimensional and axisymmetric problems Olargush. 1987. Dargush and Banerjee. 

1988a,b). however. only the 2D plane strain case is detailed below. 

Separate subsections present the governing differential equations. the 

integral equations, and an overview of the numerical implementation. 

3.2 Govemi.BJ Equations 

With the solid assumed to be a linear thermoelastic medium, the 

governing differential equations for transient therrnoelasticity can be 
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written: 

(3.1a) 

aa k a2a pc -
8 1£ - ax.ax' 

J J 
C3.1b) 

where 

ui displacement vector 

a te:nperature 

t time 

xi Lagrangian coordinate 

k thermal conductivity 

p mass density 

c specific heat at constant deformation 8 

)...11 Lame's coru¢ants 

(1 coefficient of thermal expansion 

Standard indicial notation has been employed with surrrnations indicated 

by repeated indices. For two-dimensional problems considered herein. the 

Latin indices i and j vary from one to two. 

Note that (3.1b) is the energy equation and that (3.1a) represents the 

momentum balance in terms of displacements and temperature. The theory 

portrayed by the above set of equations. formally labeled uncoupled 

quasi static thermoelasticity. can be derived from thermodynamic principles. 

(See Boley and Weiner (1960) for details.) 

3.3 Integral Representations 

Utilizing equation (3.1) for the solid along with a generalized form 

of the reciprocal theorem. permits one to develop the following boundary 
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integral equation: 

. . 
c~a(~)u~(~.t) = f (G~a*t~(x.t) - F~a*Ufl(X.t)]dS(X) • 

s 
where 

a.p. indices varying from 1 to 3 

s surface of solid 

u • t generalized displacement and traction 
a a 

T ua = (u1 u2 91 

T 
ta = (t1 t2 q] 

9.q temperature. heat flux 

(3.2) 

Gap.F ap generalized displacement and traction kernels (Dargush. 

1987. 1988a) 

cap constants determined ~ the relative smoothness of s at ~ 

and. for example. 
t 

~ *t = J ~ (x.t; ~.~) t (x.~} d~ ap a ap a 
o 

denotes a Riemann convolution integral. 

In principle. at each instant of time progressing from time zerQ. this 

equation can be written at every point on the bolDldary. The collection of 

the resul ting equations could then be sol ved simultaneously. producing 

exact values for all the unknown boundary quantities. In reality, of 

course, discretization is needed to limit this process to a finite number 

of equations and unknowns. Techniques useful for the discretization of 

(3.2) are the subject of the following section. 
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S.4 N\Jnerica1 Juplementation 

3.4.1 Introduction 

'!be botmdary integral equation (3.2), developed in the last section. 

is an exact statement. No approximations have been introduced other than 

those used to formulate the botmdary value problem. However. in order to 

apply (3.2) for the solution of practical engineering problems, 

approximations are required in both time and space. In this section. an 

overview of a general-purpose, state-of-the-art numerical implementation is 

presented. Many of the features and techniques to be discussed. in this 

section. were developed previously for elastostatics (e.g., Banerjee et al, 

1985,1988), and elastodynamics (e.g •• Banerjee et al, 1986. Ahmad and 

Banerjee. 1988). but are here adapted for thennoelastic analysis. 

3.4.2 Temporal Discretization 

Consider. first. the time integrals represented in (3.2) as 

convolutions. Clearly. without any loss of precision. the time interval 

from zero to t can be divided into N equal increments of duration At. 

By assuming that the prirrary field variables. t~ and u~. are constant 

within each At time increment. these quantities can be brought outside of 

the time integral. That is. 

N 

GpQ·t~(x.t) = ~ t~(X) 
n=1 

N 

= l u~(X) 
n=l 

nAt 

S G~Q(X-~.t-~)d~ (3.3a) 
(n-1)At 

nAt 

J F~Q(X-~.t-~)d~ • (3.3b) 
(n-l)At 

where the superscript on the generalized tractions and displacements. 

obviously, represents the time increment number. Notice, also. that. 

within an increment. these primary field variables are now functions of 
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p:>sition only. Next, since the integrands remaining in (3.3) are known in 

expli~it form from the fundamental solutions, the required temporal 

integration can be performed analytically. and written as 

N+l-n nAt 

G'a (X-~) = J Gpa(X-~,t-~)d~ U.4a) 
(n-1)At 

N+l-n nAt 

Fpa (X-~) = J Fpa(X-t.t-~)d~ • U.4b) 
(n-l)At 

'lbese kernel functions. G~a(X-U and F~a(X-~). are detailed in Appendix B. 

carbining (3.3) and (3.4) with (3.2) produces 

N 

cpa ( ~) uW ( e) = l 
n=l 

N+l-n N+l-n 
J [ Gpa(X-~)t~(X) - F'a(X-~)U~(X) ] dS(X) 
s u.S) 

which is the boundary integral statement after the application of the 

temporal discretization. 

3.4.3 Sj?atial Discretization 

With the use of generalized primary variables and the incorp:>ration of 

a piecewise constant time stepping algorithm. the boundary integral 

equation (3.S) begins to show a strong resemblance to that of 

elastostatics. particularly for the initial time step <i.e.. N=1). In this 

subsection. those similarities will be exploited to develop the spatial 

discretization for the coupled quasistatic problem with two-dimensional 

geometry. This approximate spatial representation will. subsequently. 

permit numerical evaluation of the surface integrals appearing in (3.S). 

The techniqUes described here. actually. originated in the finite element 

literature. but were later applied to boundary elements by Lachat anq 
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watson (1976). 

The process begins by subdividing the entire surface of the body into 

individual elements of relatively simple shape. The geometry of each 

element is. then. completely defined by the coordinates of the oodal points 

and associated interpolation functions. That is. 

(3.6) 

with 

~ intrinsic coordinates 

Nw shape functions 

xiw nodal coordinates 

and where w is an integer varying from one to W. the number of geometric 

nodes in the element. Next. the same type of representation is used. 

within the element. to describe the priIrary variables. Thus. 

U~( r) N ( ) n ..... = III ~ ualll (3.7a) 

(3.7b) 

in which un and t n are the nodal values of the generalized displacement alii alii 

and tractions. respectively. for time step n. Also. in (3.7). the ~nteger 

III varies from one to 0. the total number of functional nodes in the 

element. From the above. note that the same number of nodes. and 

consequently shape functions. are rot· necessarily used to describe both the 

geometric and functional variations. Specifically. in the present work. 

the geanetry is exclusively defined by quadratic shape ftmctions. In two­

dimensions. this requires the use of three-noded line elements. On the 

other hand. the variation of the primary quantities can be described. 

within an element. by either quadratic or linear shape functions. (The 

9 



introduction of linear variations proves computationally advantageous in 

sane instances.) 

Once this spatial discretization has been accomplished and the body 

has been subdivided into M elements. the boundary integral equation can be 

rewritten as 

N M N+1-n 
C~a(e)uW(e) = l (l f [ G~a(x(r;)-~)NlI)(1;)t~lI) 

n=1 m=l Srn 

N+1-n 
- F ~a(X( r;)-~)NlI)( dU~lI) ]as (X ( r;» } 

where 

M 

S=l Is.n. 
m=1 

(3.8) 

In the above equation~ t~w and U~lI) are nodal quantities which can be 

brought outside the surface integrals. Thus. 

N M N+1-n 
C~a(e)u:(e) = l (l t~lI) I G~a(X(r;)-e)NlI)(r;)dS(X(r;» 

n=l m=1 8m 

N+l-n 
- U~lI) I Fpa(X( r;)-e)N(J)( r;)dS(X( r;» }. 

Sm 
(3.9) 

The FOsitioning of the nodal primary variables outside the integrals is. of 

course~ a key step. since nOtl the integrands contain only knOtln functions. 

However, before discussing the techniques used to numerically evaluate 

these integrals~ a brief discussion of the singularities present in the 

kernels Gia and' F~a is in order. 

The fundamental solutions to the lmcoupled quasistatic problem contain 

singularities when the load FOint and field point coincide. that is. when 

r=O. The same is true of Gia and F~a~ since these kernels are derived 

10 
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directly from the fundamental solutions. Series expansions of terms 

present in the evolution functions can be used to deduce the level of 

singularities existing in the kernels. 

A n\lI'ltler of observations concerning the results of these expansions 
,. 

should be rrentioned. First, as would be expected, F!phaS a stronger level 

of singularity than does the corresponding G~p, since an additional 

derivative is invol ved in obtaining F!p from G~p. Second, the coupling 

tenns do not have as a high degree of singularity as do the corresponding 

non-coupling terms. Third, all of the kernel functions for the first time 

step could actually be rewritten as a sum of steady-state and transient 

components. That is, 

Then, the singularity is completely contained in the steady-state portio~ 

Furthermore, the singularity in Gij and Flj is precisely equal to that for 

elastostatics, while the G1a and F~ singularities are identical to those 

for potential flow. (For two-dimensions, the subscript 9 equals three.) 

This observation is critical in the numerical integration of the F Qp kernel 

to be discussed in the next subsection. However, from a physical 

standpoint, this means simply that, at any time t, the nearer one moves 

toward the load point, the closer the quasistatic response field 

corresponds with a steady-state field. Eventually, when the sampling and 

load points coincide, the quasistatic and steady-state responses are 

indistinguishable. As a final item, after careful examination of Appendix 

B, it is evident that the steady-state components in the kernels G~p and 

F~p, with n>l, vanish. In that case, all that remains is a transient 

portion that contains no singularities. Thus, all singularities reside in 

11 
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the sSc;a~ and sSF a~ canponents of G!p and F!Il' respecti vely. 

3.4.4 Numerical Integration 

Having clarified the Pltential singularities present in the coupled 

kernels. it is now possIble to consider the evaluation of the integrals in 

equation (3.9). 'nlat is. for artj. element In. the integrals 

U.I0a) 

(3. lOb) 

will be examined. To assist in this endeavor. the following three distinct 

categories can be identified: 

( 1) The point ~. does not lie on the element m 

(2) The point ~ lies on the element m. but only non-singular or 

weakly Singular integrals are involved 

(3) The point ~ lies on the element m. and the integral is strongly 

singular. 

In practical problEmS involving many elenents. it is evident that most 

of the integration occurring in equation (3.9) will be of the category (1) 

variety. In this case. the integrand is always non-singular. and standard 

Gaussian quadrature fODmulas can be employed. Sophisticated error control 

routines are needed. however. to minimize the computational effort for a 

certain level of accuracy. This non-singular integration is the most 

expensi ve pirt of a boundary element analysis. and. consequently. ImlSt be 

optimized to achieve an efficient solution. In the present implementation. 

error estimates. based upon the work of Stroud and Secrest (1966). are 

employed to automatically select the proper order of the quadrature rule. 
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Additionally, to improve accuracy in a cost-effective manner. a graded 

subdivision of the element is incorporated, especially when e is ~arby. 

For two-dimensional problems, the integration order varies from two to 

twelve. within each of up to four element subdivisions. . 
Turning next to Category (2). one finds that again Gaussian quadrature 

is applicable. however. a somewhat modified scheme must be utilized to 

evaluate the weakly singular integrals. This is acc9mplished in two­

dimensional elements via suitable subsegmentation along the length of the 

element so that the product of shape function. Jacobian and kernel remains 

well behaved. 

Unfortunately. the remaining strongly singular integrals of Category 

(3) exist only in the Cauchy principal value sense and cannot. in general. 

be evaluated numerically. with sufficient precision. It should be ooted 

that this apparent stumbling block is limited to the strongly singular 

t ' ss ss . 1 por lons, Fij and Fee, of the FQ~ kernel. 

including trFlj and ~rFij9' can be computed using 

The remainder of F~p. 

the procedures outlined 

for Category (2). However, as will be discussed in the next subsection. 

even the Category (3) SSFij and sBp99 kernels can be accurately determined 

by anploying an indirect 'rigid body' method originally developed by Cruse 

(1974) • 

3 • 4 • s Asserrbl,y 

The complete discretization of the boundary integral equation. in both 

time and space, has been described, along with the techniques required for 

numerical integration of the kernels. Now. a system of algebraic equations 

can be developed to permit the approximate solution of the original 

quasistatic problem. This is accomplished by systematically writing (3.9) 

at each global boundary node. The ensuing nodal collocation process. then. 
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produces a global set of equations of the form 

N 

~( [GN+1-n]{tn) - [FN+1-n]{un} ) = {OJ , 

n=1 
(3.11) 

where 

[GN+1-n] unassemb1ed matrix of size (d+1)P x (d+1)Q, with 

coefficients detennined from (3.10a) 

rFN+1-n] assembled matrix of size (d+1)P x (d+1)P, with coefficients 

determined from (3.10b) and c~Q included in the diagonal 

blocks 

{tn} global generalized nodal traction vector with (d+1)Q 

canponents 

fun) global generalized nodal displacement vector with (d+1)P 

catl!X)nents 

(O) null vector with (d+1)P com!X)nents 

P total number of global functional nodes 
M 

Q = lAm 
m=1 

Am number of functional nodes in element m 

d dtmensionality of the problem. 

In the above, recall that the tenns generalized displacement and traction 

refer to the inclusion of the temperature and flux, respectively, as the 

(d+1) com{X)nent at any J;X>int. 

Consider. now. the first time step. Thus. for N=1. equation (3.11) 
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becomes 

(3.12) 

HCMever. at this point. the diagonal block of [il J has not been canpletely 

determined due to the strongly singular nature of sSF ij and sSF 99' 

FollCMing Cruse (1974) and. later, Banerjee et al (1986) in elastodynamics, 

these diagonal contributions can be calculated indirectly by imposing a 

uniform 'rigid body' generalized displacement field on the same body, but 

under steady-state conditions. Then, obviously, the generalized tractions 

must be zero, and 

[SSF]{l} = {oJ , (3.13) 

where U} is a vector having all (d+1)P components equal to one. USing 

(3.13), the desired diagonal blocks, SSFij and SSF99, can be obtained from 

the summation of the off-diagonal tenns of [sSF]. The remaining transient 

portion of the diagonal block is non-Singular, and hence can be evaluated 

to any desired precision. With that step completed, (3.12) is rewritten as 

(3.14·) 

In a well-posed problem, at time t\t, the set of global generalized 

nodal displacements and tractions will contain exactly (d+l)~ unknown 

components. Then. as the final stage in the assembly process, equation 

(3.14) can be rearranged to form 

(3.15) 

in which 

{xl} unknCMn components of {ul} and {t1} 
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[AI]. [B1] associated coefficient matrices. 

3.4.6 SOlution 

To obtain a solution of (3.15) for the unknown nodal quantities. a 

decomposition of matrix [AI] is required. In general. [Allis a densely 

populated. unsyrmetric matrix. The out-of-core solver. utilized here. was 

developed originally for e1astostatics fram the LINPACK software package 

CDongarra et al, 1979) and operates on a submatrix1evel. Within each 

submatrix. Gaussian elimination with single pivoting reduces the block to 

upper triangular form. The final decomposed form of [AI] is stored in a 
( 

direct-access file for reuse in subsequent time steps. Backsubstitution 

then completes the determination of {xl}. Additional information on this 

solver is available in Banerjee et a1 (1985). 

After returning from the solver routines. the entire nodal response 

vectors. {u1} and {til. at time At are known. For solutions at later 

times. a simple marching algorithm is employed. Thus. from (3.11) with 

N=2. 

(3.16) 

Assuming that the same set of nodal camp:ments are unknown as in (3.1"4) for 

the first time step. equation (3.16) is reformulated as 

(3.17) 

Since. at this point. the right-hand side contains only known quantities. 

(3.17) can be solved for (x2). However. the decomPosed form of [AI] 

already exists on a direct-access file. so only the relatively inexpensive 

backsubstitution Ii'lase is required for the solution. 

The generalization of (3.17) to any time step N is simply 
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N-1 
[Al]{xN} = [Bl] {yN} - l ( [GN+1-n]{tn} - [FN+1- n]{un) ) 

n=l 
(3.18) 

in which the summation represents the effect of past events. By 

systematically storing all of the matrices and nodal response vectors 

com{:Uted during the rrarching process, surprisingly little conplting time is 

required at each new time step. In fact, for any time step beyond the 

first. the only major comp.ltational task is the integration needed to form 

(GN] and [FN]. Even this process is somewhat simplified, since now the 

kernels are non-singular. Also. as time marches on. the effect of events 

that occurred during the first time step diminishes. Consequently. the 

terms containing [GN] and [FN] will eventually become insignificant 

compared to those associated with recent events. Once that point is 

reached, further integration is unnecessary. and a significant reduction in 

the ccmputing effort per time step can be aChieved. 

It should be emphasized that the entire boundary element method 

developed. in this section. has involved surface quantities exclusively. A 

complete solution to the well-posed linear uncoupled quasistatic problem. 

with hanogeneous properties, can be obtained in terms of the nodal response 

vectors. without the need for any volume discretization. In many practical 

situations, however. additional information, such as. the temperature at 

interior locations or the stress at points on the boundary, is required. 

The next subsection discusses the calculation of these quantities. 

3.4.7 Interior Quantities 

Once equation (3.18) is solved. at any time step. the complete set of 

primary nodal quantities. fuN} and {tN]. is known. Subsequently. the 

response at points within the body can be calculated in a straightforward 
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manner. For any Ix>int ~ in the interior, the generalized displacement can 

be determined from (3.9) with ,cjia = 6jia' That is, 

N M 

= ~ ( l [t~w IS ~,:1-n(X( 1,;)-~l~CIl(OdS(X(I,;» 
n=l m=1' m 

(3.19) 

NcM, all the rodal variables on the right-hand side are known, and, as long 

as, ~ is not on the boundary, the kernel functions in (3.19) remain non­

singu1ar. However, when '~ is on the boundary, the strong singularity in 

ss 
F jia prohibits accurate evaluation of the generalized displacement via 

(3.19). and an al ternateapproachisrequired. The apparent dilemma is 

easily resolved by reca11ing that the variation of surface quantities is 

canpletely defined by the 'elemental shape functions. '!bus, for boundary 

points,thedesi red relationShip is simply 

ON( .• ) _ N ( ) N a" - w I,; uaw (3.20) 

where N.w< 1,;) are the shapefunc·tions for the appropriate element and 

I,; are the intrinsic coordinates corresponding to ~ within that element. 

Obviously, from (3.20), neither integration nor the explicit contripution 

ofpafit events are needed to evaluate generalized boundary displacements. 

In many problems. 'additional quantities. such as heat flux and stress. 

are also important. The boundary integra1 equation for heat flux, can be 

written 

N M 
qN ~ ~ nr N+l-n( ('), ) i (.~) = l ( l [ t~.wJSm E~9i X 1,;. -~ NCIl(1,; )dS(X(1,; » 

n=1 m=l 

(3.21) 
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where 

(3.21a) 

(3.21b) 

'Ibis is valid for interior IX>ints. whereas. when ~ is on the boundary. the 

shape functions can again be used. In this latter case, 

(3.22a) 

(3.22b) 

which can be solved for boundary flux. Meanwhile. interior stresses can be 

evaluated from 

N M 

~j(~) = l ( l [ tpw IS E~Ij-n(X(~)_~)Nw(~)dS(X(~» 
n=l m=l m 

(3.23) 

in which 

(3.23a) 

n n n 
2pv aF~l aF~i aF~j 

~i' (X( r;)-") = .....,.- & .. -n-- + J.l (-- + ) - P&iJ·~.Q • 
~ J .. ~~'" v 1J "101 aej aei ..,17 

(3.23b) 

Ekjuation (3.23) is. of course. developed from (3.19). Since strong kernel 

singularities appear when (3.23) is written for boundary points. an 
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alternate procedure is needed to determine surface stress. 'Ibis alternate 

scheme exploits the interrelationships between general ized displacement. 

traction. and stress and is the straightforward extension of the technique 

typically used in elastostatic implementations (Cruse and Van Buren. 1971). 

~cifica1ly. the following can be obtained 

N . N 
~(~)a··(~) = N (~)t· J 1) 00 100 

(3.24a) 

(3.24b) 

(3.24c) 

in which u~oo is obviously the nodal temperatures. and. 

Equations (3.24) form an independent set that can be solved ntnnerica11y for 

aYj ( ~) and uY, j (~) complete 1y in terms of known noda 1 quanti ties u!w and 

t~w' without the need for kernel integration nor convolution. Notice. 

however. that shape function derivatives appear in (3.24c). thus 

constraining the representation of stress on the surface element to 

sanething less than full quadratic variation. '!be interior stress kernel 

functions. defined l:¥ (3.23). are also detailed in Appendix B. 

3.4. 8 Advanced Features 

'!be thermoelastic formulation has been implemented as a segment of the 

state-of-the-art. general puq:ose boundary element comp~ter program. GP­

BEST. Consequently. many additional features. beyond those detailed aboVe. 

are available for the analysis of complex engineering problems. Perhaps. 
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the most significant of these items. is the capability to analyze 

substructured problems. This. not only extends the ana lysis to bodies 

composed of several different materials. but also often provides 

cOlTputational efficiencies. An individual substructure or generic modeling 

region (GMR) must contain a single material. During the integration 

process, each GMR remains a separate entity. The GMR's are then brought 

together at the assembly stage. where compatibility relationships are 

enforced on carmon boundaries between regions. Typically. compatibility 

ensures continuous displacement and temperature fields across an interface. 

h~ever. recent enhancements to the code pennit sliding between regions. 

spring contacts and interfacial thermal resistance to model air gaps or 

coating resistances. In the latter instances. discontinuities appear at 

the interface. In arrj case. the rulti-GMR assembly process produces block­

banded system matrices that are solved in an efficient manner. 

As another feature, a high degree of flexibility is provided for the 

specification of boundary conditions. In general. time-dependent values 

can be defined in either global or local coordinates. Not only can 

generalized displacements and tractions be specified, but also spring and 

convection boundary conditions·area available. Another recent addition 

permits t1me-dependent ambient temperatures. A final item. worthy of note. 

is the availability of a oamprehensive ~try capability which includes 

provisions for both planar and cyclic syrrmetry. 

These advanced features greatly extend the range of applicability of 

the present formulation. In the next section. several examples are 

presented to demonstrate the validity and applicability of this bounda~­

only fonnulation. 
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3. 5 ExaIII>les 

3. S. 1 SUdden Heating of an Aluminum Block 

As a first example, transient heating of an aluminum block is examined 

under plane strain conditions. '!be block, shown in Figure 3.1. initially 

rests in thenrodynamic equilibrimn at zero temperature. Then, suddenly, 

the face at Y = 1.0 in. is elevated to 100oF, while the remaining three 

faces are insulated and restrained against normal displacements. Thus, 

only axial deformation in the Y-direction is permitted. Naturally, as the 

diffusive process progresses, temperature builds along with the lateral 

stresses O'xx and O'zz. To complete the specification of the problem, the 

following standard set of·rnaterial properties are used to characterize the 

aluminum: 

E = 10xl06 psi • 

a = 13xlO-6/ oF • 

k = 25 in.-lb./sec. in.Of , 

v = 0.3,3 • 

pC a = 200 in.-lb./in. 30F • 

The two-dimensional boundary element ideal ization consists of the 

simple four element. eight node model included in Figure 3.1. A time step 

of 0.4 sec. is selected. corresponding to a non-dimensional time step of' 

0.05. Additionally, a finite· element analysis of this same problem was 

conducted using a IOOdified thermal version of the cCJll)uter code CRISP (Gunn 

and Britto, 1984). The finite element model is also a two-dimensional 

plane strain representation. however sixteen linear strain quadralaterals 

are placed along the diffusion length. In the FE run, a time step of 0.2 

sec. is enployed. 

Temperatures, displacements. and stresses are compared in Table 3.1. 

Notice that the boundary element analysis. with only one element in the 

flow direction. produces a better time-temperature history than does a 

22 



sixteen element FE analysis with a smaller time step. Both methods exhibit 

greatest error during the initial stages of the process. This is the 

result of the ifl1lX)sition of a sudden temperature change. Meanwhile. the 

comparison of the overall axial displacement indicates agreement to within 

~ for the BE analysis and SIJJ for the FE run. A steady-state analysis via 

both methods produces the exact answer to three digit accuracy. The last 

comferison. in the table. involves lateral stresses at an integration p:>int 

in the FE model. The boundary element results are quite good throughout 

the range. however. the FE stresses exhibit considerable error, 

particularly during the initial four seconds. Actually. these finite 

element stress variations are not unexpected in light of the errors present 

in the tanperature and displacement res};X)nse. Recall that in the standard 

finite element process, stresses are computed on the basis of numerical 

differentiation of the displacements. whereas in boundary elements. the 

stresses at interior points are obtained directly from a discretized 

version of an exact: integral equation. Consequently •. the BE interior 

stress solution more nearly coincides with the actual response. 

3.5.2 Circular Di§Q 

Next. transient thermal stresses in a circular disc are investigated 

The disc of radius 'a' initially rests at zero uniform temperature". The 

top and bottom surfaces are thermally insulated. and all boundaries are 

completely free of mechanical constraint. '!ben. suddenly. at time zero, 

the temperature of the entire outer edge <i.e •• r=a) is elevated to unity 

and. subsequently. maintained at that level. 

The boundary element model of the disc with unit radius is shown in 

Figure 3.2. Only four quadratic elements are employed, along with quarter 

symmetry. Ten interior points are also included strictly to monitor 

response. In addition. the following non-dimensionalized material 
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properties are arbitrarily selected for the plane stress analysis: 

E = 1.333 

\I = 0.333 

a = 0.75 

PCa = 1.0 

k = 1.0 

Results obtained under quasistatic conditions for a time step of 0.005 are 

canpared, in Figures 3.3. 3.4 and 3.5, to the analytical solution presented 
I 

in Timoshenko and Goodier (1970). Notice that temperatures, as well as 

radial and tangential stresses are accurately determined via the boundary 

element analysis. In particular from Figure 3.5, even the tangential 

stress on the outer edge is faithfully reproduced. 

3.5.3 TUrbine Blade 

For the final application. the plane strain response of an internally 

cooled turbine blade is examined under startup thermal transients. The 

boundary element model of the blade is illustrated in Figure 3.6. In this 

problem. the two GMR approach is chosen solely to enhance computational 

efficiency. This is accomplished by reducing the aspect ratio of 

individual GMR's and by creating a block banded system matrix. '!be leading 

(lefthand) GMR consists of 26 quadratic elements. while 24 elemen~s are 

used to roodel the trailing (righthand) region. 

The blade is manufactured of stainless steel with the following 

thennomechanical properties: 

PCa = 368 in.-lb./in. 30f 

\I = 0.30 k = 1.65 in.-lb./sec.in.oF 

During operation a hot gas flCMS outside the blade. while a relatively cool 
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gas passes through the internal holes. The gas temperature transients are 

plotted in Figure 3.7 for a typical startup. Convection film coefficients 

are specified as follows: 

outer surface at leading edge 

Remainder of outer surface 

Inner cooling hole surfaces 

h = so in.-Ib./sec.in. 20p 

h = 20 in.-lb./sec~in.20F 

h = 10 in.-lb./sec.in. 20p 

A time step of 0.2 sec. is employed for the OOW'ldary element analysis. 

The response at two points, A, on the leading edge and. B. at midspan 

are displayed in Figures 3.8 and 3.9. Notice that temperatures and 

stresses are consistently higher on the leading edge. reaching peak values 

of approximately 15000 F and -60 ksi. respectively. Also. as is evident 

from Figure 3.9. significant stress reversals occur during this startup. 

As a next step, these numerical results could be used as input for a 

fatigue analysis to assess the durability of the design. In that regard, 

it should be emphasized that the stresses presented for points A and Bare 

surface stresses. calculated by satisfying the constitutive laws. strain­

displacement and equilibrium directly at the boundary poin~ This can be 

expected to produce much more accurate results than the standard practice 

utilized in finite element approaches of extrapolating interior Gauss. point 

stress values to the boundary. 
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'mBLE 3.1 

rumEN HFA'J.'lR; OF A aBE 

Temperature (OF) Axial Displacement (~in.) Lateral stress (ksi) 
Time at Y =0 at Y = 1.0 at Y = 0.5312 
(sec) Exact FE GP-BEST Exact FE GP-BEST Exact FE GP-BEST 

0.8 4.7 3.4 3.8 910 860 920 -5.6 -3.9 -5.4 

1.6 22.0 19.8 20.7 1290 1250 1320 -9.1 -7.7 -9.2 

tv 2.4 38.3 36.4 37.7 1570 1540 1610 -11.3 -10.3 -11.7 m 

3.2 51.5 50.0 51.5 1780 1760 1840 -13.1 -12.2 -13.5 

4.0 61. 9 60.7 62.2 1950 1930 2000 -14.4 -13.8 -14.8 

4.8 70.1 69.1 70.5 2090 2070 2130 -15.5 -15.0 -15.9 

5.6 76.5 75.7 76.9 2200 2180 2230 -16.3 -15.9 -16.7 

6.4 81.5 80.9 81.9 2280 2270 2310 -17 .0 '·16.7 -17.3 

7.2 85.5 84.9 85.8 2340 2330 2370 -17.5 -17.2 -17.8 

8.0 88.6 88.2 88.8 2400 2390 2410 -17.9 -17.7 -18.1 
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IN'lBmAL FOlMJLATICES FOR PLUIOO 

4.1 Introduction 

Next. attention turns to the hot fluid. In the following. a munber of 

integral formulations are developed for compressible and incompressible 

thermoviscous flow and, additionally, for the simpler theory of convective 

heat transfer. Subsections present the governing equations. fundamental 

solutions, integral representations, an overview of the numerical 

~lementation, a brief description of the approach for coupling the fluid 

with the solid. and, finally. a l'll.lITi:ler of detailed numerical examples. 

4.2 Governir¥J ~tions 

4.2.1 Compressible Tberrnoyiscous Flow 

The governing equations for a thermally/sensitive. compressible. 

viscous fluid can be developed from the consideration of the conservation 

laws of mass, manentum, and energy. In each case, the law is first written 

for a continuum which is, in general. roving non-uniformly with respect to 

the observer. The local (differential) form of the law is then derived. 

Although a derivation of the governing equations of fluid qynamics. similar 

to the following, can be found in a number of texts, it is a useful means 

for establishing the underlying assumptions and limitations. 

The Principle of the Oonservation of Mass asserts that the time rate 

of change of mass must equal the rate of mass increase due to internal 

sources. '!hat is. 

~ J piN = J ~dV • (4.1) 

Vet) vet) 

where p is the rrass density. ~ is the rrass source rate per mit volume, and 

the operator DInt represents a rraterial time derivative. Notice that in 

(4.1) the nass of interest occupies vet). a region of Sf::ace which may vary 
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with time. Applying a generalized version of Leibnitz's Rule to the left­

har:dside of (4.1) produces 

(4.2) 

where Set) is the surface enclosing vet). and Vj and nj are the local 

velocities and outward normals on that surface. respectively. However. via 

the Divergence Theorem. the surface integral can be rewritten as 

<4 •. 3 ) 

Therefore. from (4.1). (4.2), and (4.3) 

J [ !.e + ~ (pv.) - 1jJ] iN = 0 • 
at ax]. J 

vet) 
(4.4) 

Since this integral rust vanish for all regions V(t), the integrand must be 

identically zero. Thus, 

u+ a () 0 at ax. pVj - 1jJ = , 
J 

(4.5) 

which is the desired local form of continuity or Conservation of· Mass. 

This can also be written 

~ aVj 
+p - 1jJ=o, Dt aX j 

(4.6) 

where 

XL a a 
Dt = at + Vj ax. 

J 
(4.7) 
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is again the material time derivative. 

Next, consideration is given to the Conservation of Linear Mornentlml. 

In this case. according to Newton's Second Law, it is postulated that the 

time rate of change of momentum is equal to the resultant of the applied 
. 

forces. Alternatively. these applied forces can be visualized as the rate 

of momentum entering the region through the surface plus the rate of 

manentum increase due to internal generation. Wi th either interpretation. 

(4.8) 

where a,. is the total stress tensor and fl' is the body force vector. 
1) 

Notice that the term vi~ is included in the last volume integral to 

account for the internal nornentum generation due to mass sources. Applying 

the generalized Leibnitz'sRule and the Divergence Theorem to the left-hand 

integral of (4.8) yields 

(4.9) 

TbeDivergence Theorem can also be invoked to convert the surface integral 

in (4.8) into a volume integral. Thus. 

(4.10) 

utilizing (4.9) and (4.10). Newton's Second law becomes 

(4.11) 

Again. since this integral must vanish for arbitrary regions. the integrand 

must be zero. That is. 
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L B Ba., 
(PVi ) + - (PV

1
.V

J
,) - .:...:.!1 - f. - v.1/J = 0 • at BXj aXj 1 1 

(4.12) 

However, equation (4. 12) can be rewr i tten as 

aVi BVi Baij [ ap B 
p at + pVJ' ax ' - - fl' + Vi - + - (pv.) - 1jI 

J aXj at BXj J 
] = 0 • (4.13 ) 

But since the bracketed term multiplying vi in (4.13) equals zero fran the 

continuity equation (4.5), the local form of the Conservation of Linear 

.Momentum becomes. 

avo avo aa. , 
p _1 + pv. _1 _ .:...:.!1 - f. = 0 

at J BXj aXj 1 ' 
(4.14) 

or simply 

IN i aa. , 
p - - .:..:::ll - fi = 0 . Dt BXj (4.15) 

Note that although continuity is invoked above, a flow field that conserves 

linear momentum does not automatically conserve mass~ In addition, the 

moment of momentum must also be conserved as a consequence of Newton's 

Second Law. However, satisfaction of this law only necessitates that the 

stress tensor aij be symmetric. 

Finally. the Conservation of Energy is examined For energy balance. 

the time rate of change of kinetic plus internal energy must equate the 

rate of work done ~ the body forces and surface tractions. along with the 

rate of energy entering via heat transfer across the surface. the rate of 

kinetic and internal energy increase due to mass sources. and the rate of 

energy input due to heat sources. In equation form. 
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J v·v· J 
+ ljJ ( ~ 1 + E)dV + (4.16) 

Vet) vet) 

where E is the internal energy per unit mass, qi is the heat flux vector 

and d is the heat source rate per unit volume. By first applying the 

generalized Leibnitz's Rule to the left-hand side of (4.16), and then 

invoking the Divergence 'Iheorem for all of the remaining surface integrals. 

equation (4.16) is transformed into 

Since this is valid for any region V(t), 

After further rearrangement this becomes, 

DE aqi av.· 
p - + - - (1 •• ax~ - ~ + vi [ 

Dt aXi 1J J 

v·v. 
+ (-1-! + E) [ ap + a (pVi) - ljJ ] = O. 

2 at aXi 

(4.17) 

(4.18) 

(4.19) 

Now, the first bracketed expression in (4.19) vanishes via the Conservation 

of Linear Momentum. while the second bracketed expression is zero from the 

Conservation of Mass. Thus, equation (4.19) reduces to 
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(4.20) 

as the expression for the COn~ervation of Energy. 

To recapitulate, the conservation laws for a thermoviscous fluid can 

be written collectively as 

Mass (4.21a) 

O\7i aaij 
p - - - fi = 0 Dt ax. 

) 
Manentmn (4.21b) 

Energy (4.21C) 

Next, constitutive relationships are introduced. In p:lrticular, a 

homogeneous isotroptc t~onian fluid is assumed such that 

avo avo aVk 
ail' = 211 (--.!. + .:..:.1) + ).6 i · -8 - - 6i )·p , aXj aXi J xk 

(4.22) 

where p is the thermodynamic pressure, while 11 and). are coefficients of 

viscosity. Fourier's law of heat conduction is also envoked, which for an 

isotropic rnedimn becomes 

ae 
q - -k -i - aX

i 
(4.23 ) 

where e is the thermodynamic temperature and k is the thermal conductivity. 

Additionally, the fluid is modeled as a perfect gas •. Thus,' the kinetic 

equation of state is simply 

p = pRe , (4.24) 
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in which R is the gas constant~ Finally, a relationship is needed for the 

internal energy E. From thenrodynarnic considerations for a perfect gas, 

h = E + E = E + R9 ( 4.2 Sa) p 

where h is the enthalpy. In addition, if the specific heat at constant 

pressure. cpo does not vary. wi th temperature. then 

(4.2Sb) 

and. hence, 

(4.26) 

where Cv is the specific heat at constant volume. Equations (4.22). 

(4.23). (4.24), and (4.26) lead to the following form of the governing 

equations for the idealized thermoviscous fluid: 

where ~ is the viscous dissipation defined by 

avo 
1 

I = 't •• -a ' 1J X. 
J 

and the fluid stresses 
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(4.27b) 

(4.27c) 

(4.28) 



aVi avo aVk 
't •• = 2f.1 (- + ~) + AS •• -a - • 
1J aXj aXi 1J xk 

(4.29) 

Equations (4.27). along with (4.24). define a highly non-linear set of six 

equations in the six variables: velocity (vi)' pressure (p). temperature 

(9). and density (p). 

4.2.2 Incompressible '1bernpyiscous Flow 

For incanpressible flow. a number of simplifications are in order. In 

particular. the divergence of the velocity is zero. which from continuity 

requires that the density remain constant. As a result. the governing 

equations reduce to the following: 

where 
avo avo 

'tiJ· = 2f.1 (--! + ~) aX j aXi 

(4.30a) 

(4.3Ob) 

(4.31) 
• 

and the viscous dissiptation ~ is again defined by (4.28). It should be 

noted that now the quantity p. appearing in (4.30a). is no longer the 

thermodynamic pressure determined from (4.24), but rather the mean fluid 

pressure. 

4.2.3 Incompressible Viscous Flow 

With the assumption of isothermal conditions. the energy equation 

(4.30b) is no longer required. All that remains is the famil iar Navier-

stokes equation 

(4.32) 
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4.2.4 Conyective Heat Transfer 

On the other hand. if the flow field is known or can be approximated. 

then equation (4.30a) is superfluous. Consequently, fluid temperatures can 

be determined directly from the scalar convective-diffusion equation 

De a2e 
pcv Dt - k axiaxi - /) = 0 • (4.33) 

In. (4.33). the effects of viscous dissipation are included as body heat 

sources. 

4.3 Pundamental SOlutions 

4.3.1 Conpr~ssible Tbernoyiscous PlOd 

One of the primary requirements for developing a boundary element 

formulation is that the fundamental solution of the governing differential 

equations must exist. These fundamental solutions can be viewed in same 

sense as the shape functions in the finite element method. For solid 

mechanics these have been very well explored. Starting with Kel vin's 

solution (1846). investigators such as Stokes. Poisson. Boussinesq. 

Mindlin. and Nowacki have provided both static and transient solutions 

whi.ch form the basis of the boundary element formulations in solid 

mechanics. It is unfortuna.te that workers in fluid mechanics have not 

found nuch use for these fundamental solutions in the infinite space and 

therefore have not derived the corresponding fluid solutions. The 

exception is the time-dependent fundamental solution for viscous. 

incompressible Stokes flow presented in Ladyzhenskaya (1969). Since the 

boundary element formulations could not be developed without these 

solutions, a substantial amount of effort has been devoted in the present 

work to successively derive more complete solutions of the differential 

equations. In essence. each advancement brings more of the physics of the 
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problem into the fundamental solution. Below is an overview of the 

derivation for compressible. thennoviscous flow. 

As a starting point, reference values for each of the primary 

variables are introduced in an effort to produce a linearized differential 

operator. 'Ibus, let 

(4.34a) 

(4.34b) 

(4.34c) 

(4.34d) 

in which Ui , Po' so' and Po are constant reference values. and ui' PA' &A' 

and PA are the perturbations. Plugging (4.34) into (4.27) yields, after 

some manipulation, 

(4.35a) 

= -

(4.35c) 

where 

(4.36) 

Now. in (4.35), the entire left-hand side involves a linear differential 

operator wi th constant coefficients. Notice that in the above form. the 
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operator for the energy equation involves only temperature (SA)' while the 

mass and momentum balance operators are coupled by the inclusion of both 

velocity (ui ) and pressure (PA). Terms on the right-hand side of (4.35) 

. are. in general. non-linear. and can for the present be considered as body 

sources and forces of unknown magnitude. Then. the governing equations 

become 

(4.37a) 

(4.37b) 

(4.37c) 

A fundamental solution of (4.37) is required for the boundary element 

fODnulation. 'Ibis will be obtained subsequently. and referred to as the 

convective ftmdarnental solution for compressible. thermoviscous flow. since 

a linearized portion of the convective derivatives are. included in the 

differential operator. Interestingly. it may also be viewed as the 

fundamental solution due to stationary point forces and sources in a 

tmiformly moving medium or. equivalently. as a uniformly moving IX>int force 

and source solution in a stationary medium. The concept of moving media 

ftmdamental solutions is clearly developed in the excellent monograph on 

aeroacoustics by Goldstein (1976). 

Consider •. first. the coupled set of equations (4.37a) and (4.37b). and 

introduce the Hemholtz decomposition of the velocity and body force. such 

that 
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af aFk 
f --+e -i - aXi ijk 3xj 

'!hen. (4. 3 7b) becomes 

with aFt = 0 
aXi 

For generality. the bracketed terms must vanish independently. '!hus. 

(4.38a) 

(4.3 Sb) 

Notice that equation (4.40b) is completely independent of wand PA' and. 

consequently can be sol ved separately. In fact. this is thevortical 

component of the flow, which behaves in an identical manner for both 

canpressible and inccmpressible flows. '!he fundamental solution of (4.4Ob) 

in the non-convective form was originally developed by Ladyzhenskaya 

(1969). This provides the basis for the development of the convective 

solution to C4.40b). as will be seen subsequently. However. next attention 

turns to the dilatational ccmp:ment of the flow. 

The velocity appearing in the linearized continuity equation C4.37a) 

can also be decomposed. As a result. 
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Dol' 2 
__ 11 + P a w = ~ • (4.41) 
Dt 0 ax.ax. 

1 1 

since the divergence of the vortical component is zero. Combining 

awropriate derivatives of (4.40a) and (4.41). to eliminate the variable w. 

yields the following third order differential equation for pressure: 

(4.42) 

where 

(4.43) 

with Co representing the speed of sound in the perfect gas at the reference 

state and 

C 
'It = ~ > 1 '-c 

V 

2 "fPo 
c = -. 
o Po 

(4.44) 

(4.45) 

The fundamental solution of (4.42). even in the oon-convective form. does 

not appear to exist in the literature. although an attempt was made 

recently to obtain the nonconvective form by Piva and Morino (1987). 

Actually. the solutions of (4.42) that are required for the boundary 

element formulation are those due to instantaneous point mass sources and 

point forces. Furthermore. in addition to the pressure response. the 

velocity field corresponding to these sources and force rust be determined. 

In all cases. the results can be determined directly fran the solution of 

the equation 
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(4.46) 

where the scalar variable ~u is introduced along with the usual generalized 

function &. '!he subscript. u. is merely a reminder that", is a unifomly 

moving medium solution.. Equation (4.46) is a scalar damped wave equation. 

which has an approximate fundamental solution of the fom 

where 

t' = t-"t' 

y. = x·-ei 1 1 

(4.47) 

(4.48a) 

(4.48b) 

(4.4Sc) 

(4.48d) 

(4.4Be) 

The presence of the Heaviside and delta functions. in (4.47) establishes the 

hyperbol ic nature of the dilatational response. Thus. ~U portrays the 

propagation of a scalar wave in a moving medium. Furthemore. the 

appearance of the convective radial distance ~ in the arguments of H and & 

leads directly to shock phenomena. As a result. equation (4.47) is 

appropriate for supersonic. as well as. subsonic flow. 

Consider. initially. the medium subjected to a unit pulse body force. 

In two-dimensions. let 

(4.49a) 
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$ = 0 • (4.49b) 

From Gel'fand and and Shilov (1964). equation (4.49a) can be written 

alternatively as 

- 5(t-~) a2 

ft. = 2" a a Un rle1•• Xj Xj 

which. in light of (4.38bL yields 

f = &(t-~) a (1 ) 
2n ax. n r ej 

J 

C4.49c) 

(4.49<1) 

(4.4ge) 

'!ben. the pressure field can be determined by using (4.49d) in (4.43) and. 

subsequently. (4.42). Fran the result. 

(4.50) 

and (4.46). it is evident that 

(4.51) 

Additionally,. eliminating the Laplacian operator in (4.40a), by employing 

( ... 41). produces 

(4.52) 

or 

(4.53) 
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The solution. w. of equation (4.53) can be found by integrating over time 

wi thin a uniformly moving media. Finally. the dilatational component of 

the velocity is determined via (4.3 sa) as 

u(dU) = aw 
i ax' i 

which from (4.53) can be written 

with 
6 (t-·t) 

0.. = - In r. u 2n 

(4.54) 

(4.55) 

(4.56) 

and Pu defined in Appendix C. Again. the subscripts. U. signify .that the 

solutions P and a should be expressed in convective coordinates. 

To complete the unit force sol ution. the vortical component of the 

velocity must be added to (4.55). In this case. the equation of interest 

is (4.40b) with Fl specified by (4.4ge). Thus. 

DoWl a
2wl 6(t-·t} a 

Po Dt - ~ ax.ax. + el.iJ· 2n (In r)eJ. = 0 • 
J J aXi 

(4.57) 

The solution to (4.57) can be determined in terms of a scalar ~. which is 

the fundamental solution of the convective heat equation 

2 
Do~ P CItJ 

- Po ----Dt + ~ a - 6(x-~)&(t-~) = 0 • x.ax. 
J J 

(4.58) 

detailed in ~ndix C. In r:erticular. from (4.57) and (4.58). 

(4.59) 
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Substituting (4.59) into (4.57). and then taking the curl of the result. 

produces 

(4.60) 

which from (4.3 sa) leads to the following fom of the vortical canponent of 

the velocity 

(4.61) 

Again. the subscript U is a reminder that the time integration should be 

performed for a uniformly moving media. 

To summarize. the unit instantaneous point force solution can be 

written. from (4.51). (4.55). and (4.61). in the following form 

(4.62a) 

(4.62b) 

(4.62C) 

This completely defines the fundamental solutions pertaining to point 

forces. however. instantaneous point mass source solutions are also 

required. Returni~g to (4.43) and letting 

f = 0 • 
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(4.63b) 
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leads to the sUnple result that 

(4.64) 

'!be corresponding velocity can be determined most easily by returning to 

equations (4. 40a) and (4.41). and eliminating the pressure. '!his produCes 

(4.65) 

which when canpared with (4.46). establishes 

w = ~ Pu 
Co 

(4.66) 

Additionally. since (4.40b) is independent of PA' w. and ~. the vortical 

canp:ment of velocity 

aWk 
e. 'k -a - = 0 , 1J X. 

J 
(4.67) 

and the velocity field becomes becomes 

(4.68) 

~tions (4.64) and (4.68), along with 

(4.69) 

canprise the instantaneous unit mass source fundamental solution. 

The final item that is required involves the response to an 

instantaneous unit heat source. In this case. 

'li = 0 (4.70a) 
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(4.70b) 

(4.7Oc) 

~n. fram (4.37), 

(4.71a) 

(4.7lb) 

and -GA 1s simply the solution to the convective heat equation. 

It is convenient, at this point to collect the fundamental point 

force, mass source, and heat source solutions into a tensor9~~, where for 

the Dirac delta functions in the infinite space. 

ua • 9~~1~ (4.72) 

and 

u ... a lUI u2 P -G}T (4.73a) 

f~ ... (fl f2 - ilT • 1jJ (4.73b) 

The superscript U denotes that 9~~ is a moving medium solution. 

Furthermore, the subscripts G and ~ vary from one to four, while in the 

followin9 i and j vary from one to two. Additionally. the subscript p 

always takes the value three and the subscript 9 is four. 'lben. 

U 
g1j 

U 
9ip 

U 
91t 

D U gU ~ (4.74) 9all 
... 9pj pp 

U 
gej 9~ 

U 
999 

The individual comp:ments of 9~~ are detailed in Appendix C. It should be 

emphasized that these are moving force and source fundamental solutions 
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and, as such, are quite involved. 'Ibe explicit form of these kernels have 

recently been obtained, however the accurate numerical evaluation of the 

flUlctions involved at high reference velocities (Oi) still requires some 

additional effort. 

It may be recalled that in previous work (e.g., Dargush et al, 1987; 

Dargush and Banerjee, 1988c,1989), all of the convective terms were brought 

to the right-hand side and included as. body forces and sources. The 

corresponding fundamental solutions then involve instantaneous stationa~ 

point forces and sources acting in a stationary medium. These solutions 

remain. time-dependent, but take a much simpler form than the convective 

Green's functions presented in Appendix C. Unfortunately. except in the 

low to medium Reynolds number range. the stationary flUldarnental solutions 

do not contain enough of the physics of the problem to produce numerical 

solutions. ('Ibis will be evident in a number of examples in Section 4.7.) 

On the other hand. the convective fundamental solutions do capture the 

nature of high velocity flows, although this is not at all obvious due to 

the complicated form of the convective kernels. However, the simplified 

fundamental solution highlighted in Section 4.3.4 for convective heat 

transfer will provide some additional insight. 

4.3.2 Incompressible Tbermoviscous Flow 

In the incompressible case, the pressure becomes superfluous and is no 

longer needed as a primary variable. Additionally. the dilational 

component of the velocity vanishes. As a result, the convective 

flUldarnental solution .for incanpressible therrnoviscous flow can be written 

u -ua = gapfp 

where 
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f - .('2 2 ~lT ,- 1:1 1:2 .1 . (4. 76b) 

with «and p varying from one to three. and the subscript & set to three. 

'lbekernel 9~~ is detailed in AgJendixD. Once again. the developnent of 

techniques for the numerical evaluation of these kernels is still undetway. 

Meanwhile. the stationary medium fundamental solutions. pertaining to 

continuous point forces and sources. are ·defined in Appendix E. 

4.3" 3 IncOlJl)tessible Viscous Flow 

Under isothermal conditions. the temperature is not required as an 

independent variable and the corresponding degree of freedom can be 

eliminated. The convective incompressible viscous flow fundamental 

solution is then equivalent to gYj fran Appendix D. 

4.3.4 Convective Heat Transfer 

The final case of oonvectiveheat transfer will be examined in some 

detail. As will be seen. the fundamental solutions are manageable. yet 

still reflect several aspects of compressible thermoviscous flow. To 

begin. the reference velocity Ui is introduced to (4.33) to modify the 

convective derivatives. 'Thus. (4.33) becomes 

(4.75) 

where~ again. 

(4.76) 

'ttle fundamental solution. gU. due to an instantaneous p:>int source. 

obtained from 

S2 



(4.77) 

is a well-known result. A slight generalization of the solution presented 

in carslaw and Jaeger (1947) produces. in two-dLmensions. 

where 

k c =­pcv 

t' = t-'t 

(4.78) 

(4.79a) 

(4.79b) 

(4.79c) 

(4.79d) 

The steady-state response can be obtained from (4.78) by integrating 

over 't. Thus, 

(4.80) 

which simplifies to 

(4.81) 

where 

(4.82a) 

(4. 82b) 

and Ko is the modified Bessel function of the second kind of order zero. 

It is of interest to compare (4.81) with its stationary counterpart. ,Of 

course, for a heat source in a stationary medium, the fundamental solution 
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1s just the IX>tential flow kernel 

(4.83) 

Figure 4.1 provides a comparison of the two kernels. cF and G •. for a source 

point: at the origin. '!he kernel values are plotted for field points along 

the xCaxis. and in the convective case for a medium moving uniformly in 

the xl-dire.ction with a velocity of ten. Notice, in particular, that the 

static response is symnetric about the source IX>int, hcMever the convective 

response is nagnified ahead of the source point, but greatly reduced behind 

it. This latter Plenanenon is just the Doppler effect applied to IOOving 

heat sources. '1hus. as illustrated for points on the IX>sitive Xl-axis in 

Figure 4.1. the strength of an oncoming source appears to be intensified. 

On the other hand. the source has already passed the points on the negative 

Xl-axis, and a quick silencing is apparent. 

Interestingly. from another vantage point, the convective Green's 

function GU can be viewed as the boundary e.lement counterpart of the so­

called 'upwinding' techniques that are required in finite difference and 

finite element approaches to convective problems. The distinguishing 

feature is that GU embodies an analytical form of upwinding. whi~e the 

other two methods use a.d hoc representations. As a result. a boundary 

element formulation based upon GU will have a significant advantage for 

convection-dominated problems. 

The. transient convective diffusion kernel can also be formed by 

integrating (4.78), but this time from zero to t. The result is a two­

dimensional fundamental soluti.on. which can be written in series form as, 

eUfi i I2.c GO 

= 4nk l 
(-Uiuitt4C)n R2 

n.~ En+l (4ct) (4.84) 
n=O 
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where En+1 is the exponential integral of order n+1. Figure 4.2 compares 

the steady-state kernel (4.81) with this transient kernel for several 

values of t. Note that the Doppler effect is still quite pronounced .... 

Before closing this section on fundamental solutions. it should be 

emphasized that behavior similar to that displayed in (4.81) and (4.84) 

will be included in the convective thennoviscous kernels. since the scalar 

Green's function GU provides the basis for the development of the more 

complicated fundamental solutions. In fact. for the incompressible 

theories, GU is the only scalar Green's function that is needed. (More 

precisely, a change in material constants is required to produce"" of 

equation (4.58) from GU.) However, for compressible flow a second scalar 

fundamental solution, ~U' comes into play for the dilatational coI'l'l(xment of 

the flow. As mentioned previously, this latter solution involves the 

propagation of a damped wave, which at high velocities produces shock 

phenomena. 

4.4 Integral Representations 

4.4.1 Compressible Thermoyiscous Flow 

The desired integral representation for general compressible 

thermoviscous flow can be derived directly from the set of governing 

differential equations. First, however. a convenient differential operator 

notation is introduced. As a result, equations (4.37) are rewritten as 

(4.85) 

where, again 

p (4.73a) 

(4.73b) 

and 
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u u U L .. Lip Lie 1J 

LU 
all = ~ ~ ~ (4.86) 

U 
Laj 

U 
Lap ~e 

(4.87a) 

U a 
L ---ip - aX

i 
(4.87b) 

(4.87c) 

LU = _ ~ _a_ 
pj 0 ax. 

J 
(4.87d) 

(4.87e) 

U l'Jpe = 0 (4.87f) 

U Lej = 0 (4. 87g) 

(4.87h) 

(4.87i) 

Then. using L~1l to operate on the fundamental solution g~1l of (4.74) 

produces 

(4.88) 
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In (4.88), the subscript r also varies from one to four and Kronecker's 

delta function has been generalized in an obvious manner. 

'!he governing equations (4.84) must, of course, hold for all points of 

the flow region at every instant of time. 'lherefore. the lefthand side of 

(4.85) multiplied by an arbitrary function 9 , and integrated over time ar 
and space must remain equal to zero. '!hat is. 

(4.89) 

where the standard notation for the inner product of two functions has been 

introduced. Returning to the explicit forms of the differential operators, 

this becomes 

(4.90) 

in which commas represent spatial derivatives and superposed dots are 

partial derivatives with respect to time. Next. the divergence theoren can 

be applied. repeatedly. to the applicable terms in (4.90) to transfer 

spatial, as well as, temporal derivatives from uA to;; • As a result. ,., ar 
equations (4.90) are transfonned into 

t t J J [garta - farua]dSd~ + J J [garlaldVd~ - f [garu:I~]dV 
o s 0 v v 

57 



· 
+ h~o<vge1 + 9oc.vtJmger,m + k9&1 .. mnJueldVd't = 0 » 

Where 

t=9· ni Pr 1.'1 . 

l _ .. ;; ~ 
8,. - A':I91. m~ 1TI 

(4.91) 

(4.92a) 

(4. 92b) 

.(4.92c) 

(·4.93a) 

(4.93b) 

(4.9le) 

(4.94) 

with ni defined as the unit oormal to the surface S at x.. To canplete the 

deri vation of the integ'tal equation for any p'int e interior 'to S at time 

t, the last volume int.egral appe,aring in (4.91) must be reduced to 

(4.9S) 

or after making use of the properties of the delta function 

(4.96) 

where the cperator t~a has components 

(4.97a) 

(4.97bl 
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(4.Sl7c) 

(4.97d) 

(4.97e) 

(4.97f) 

(4.97g) 

t119p = 0 (4.97h) 

-u DO aZ 

Loa = Pocv Dt ... k a~a~ • (4.97i) 

Formally. t~a is called the adjoint of the original compressible 

thermoviscous differential operator L~p. and 9a1 defined by (4.95) is the 

adjoint Green's function. This adjoint Green's function can be obtained 

simply by suitably transposing the fundamental solution presented in 

Section 4.3.1. That is. 

(4.98) 

Substituting (4.98) into (4.91) produces the desired integral equation. 

(4.99) 

in which. for simplicity, the initial conditions have been assumed zero. 

The • in (4.99) once again symbolizes a Riemann convolution integral. 

Notice that this integral equation for oornpressible thermoviscous flow 
/ 

. has a similar form to that for thermoelasticity as shown in equation (3.2). 

However. in (4.99). a volume integral is retained to include. in 

particular. the nonlinear body force tenns. 
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4.4.2 Incompressible Viscous Flow 

A derivation of the integral representation for the incompressible 

flow theories would follow the same lines as that just presented. and 

therefore. will rot be repeated. In fact. a general ized integral equation 

identical to (4.99) would result. The only differences are in the explicit 

form of the fundamental solutions g~a and in the corresponding definitions 

of the functions f~a and tao 

As may be recalled from (4.35), a portion of the convective effects 

are included in the body forces 'fa. Assuming for the moment that this is 

the only non-zero component of la' then the volurre integral in (4.99) can 

be rewritten as 

(4.100) 

Applying the divergence theorem to the right-hand side of (4.100) produces 

(4.101) 

since, for the incompressible case, uj , j is identically zero. Finally, 

equation (4.99) becanes 

(4.102) 

where 

(4.103) 

Notice. in particular. that (4.102) no longer involves velocity gradients. 

Consequently. from a computational standpoint, (4.102) is an attractive 

alternative to (4.99). 

A similar integral formulation can also be developed by utilizing the 

stationary nedium fundamental solutions gl'a. In this case, the reference 
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velocity Ui may still be used. but now the entire convective derivative 

must be included in the body forces. As a result. the integral equation is 

written 

(4.104) 

in which 

t·, = t - pu v n a a a j j 

and Vj is the total velocity. 

4.4.3 convective Heat Transfer 

In this Simplest case, equations (4.99) reduce to 

e(~,t) = J [-gU·q+fU.eJdS + J [gU·aJdV 
s v .. 

(4.106) 

where gU is defined by (4.7S) and 

(4.107) 

q = ke,~ + p C U 9~ • nnn 0 v m -1TI 
( 4.10S) 

Meanwhile, under steady conditions, equation (4.106) s~lifies to 

9(~,t) = J [-GUq+FU9JdS + J [GUaldV 
s v 

(4.109) 

in which 

(4.110) 

with GU given by (4.81). 

".5 tbDerica1 Int>lementation 

The numerical treatment of the equations in thermoviscous fluid 

dynamics follows very closely that described in Section 3 for transient 
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thermal stress analysis. However. now due to the volume integral appearing 

in (4.99). (4.102) or (4.104). the interior must be subdivided into cells. 

The geometry of each cell is defined by nodal points and quadratic shape 

functions. In two-dimensions. six and eight-noded cells are available • 

. Meanwhile. either a linear or quadratic variation can be employed for the 

functional representation. Details of the techniques used for cell 

integration can be found in Mustoe (1984). 

Just as for the thermoelastic case, a set of algebraic equations can 

be developed by writing the integral equation at each global node. 

However. now interior. as well as, boundary nodes must be included. and the 

resulting equations become highly nonlinear due to the convective terms. 

After the collocation process is complete. the final system of equations 

can be expressed in matrix form as 

(4.111a) 

for boundary points. and as 

(4.111b) 

for interior cell points. where the vectors aO and to have comp?nents 

defined by 

at each boundary and interior point. Once again x and yare the known and 

unknown boundary quantities. while u is the interior velocity vector. and 

the matrices A. B. D and G are developed from the integrals of the kernel 

functions appearing in (4.99). (4.102) or (4.104). At present. only 
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(4.104) has been implemented as a segment of the general PJrpose boundary 

element program, GP-BEST. 

Initially, an iterative algorithm, along the lines of those used for 

BEM elastoplasticity, was enployed to solve (4.111). However, convergence 

is usually achieved only at low Reynolds number. More generally, when 

employing the stationary fundamental solutions. the interior equatiOns must 

be brought into the system matrix along with the boundary equations. and a 

full or modified Newton-Raphson algorithm must be utilized to obtain 

solutions at moderate or high Reynolds number. Symbolically, at each 

iteration m, 

-~ ~ 
ax au 

= (4.112) 

agU 8gU 

ax au.J 

where 

and the derivatives on the lefthand side of (4.112) are evaluat-ed at 

(iffi,um). In the numerical ~lementation, the above equations are arranged 

to form a block banded system matrix for efficient multi-region solutions. 

It is anticipated that once the convective viscous kernels are 

implemented somewhat different solution strategies will be more 

appropriate. For example, at high velocities the system matrix will become 

sparse. In that case, bandwidth minimization is required and iterative 

equation solvers become quite attractive. 
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4.6 Coupling of Solid and Fluid 

The coupling of the solid and fluid phases is most readily 

accommodated via the concept of the generic modeling region. Thus. the 

fluid-structure interface is nothing more than a boundary between two 
. 

GMR's. In the simplest case. temperature. flux, and tractions are matched 

across the fluid-structure interface, while a temporal approximation is 

introduced to relate boundary displacements of the solid to the 

corresponding fluid velocities. However. additional sophistication is 

possible. For example, thermal resistance can be introduced to model the 

effects of coatings. 

4.7 Exaq>les 

4.7.1 Parallel FlOW 

The two-dimensional parallel flow in a duct is a good verification 

problem for incompressible computational fluid dynamics code~ It has a 

simple analytical solution which can be used to test many aspects of 

programs. The convective terms disappear in the nonlinear solution, hence 

linear and nonlinear velocity profiles should be identical (Tadmor and 

Gogos, 1977). 

As an example of a typical version of this problem. FiguFe 4.3 

illustrates a 10 cell mesh with two regions. This simulates a plate 

sliding along the top of the fluid in ~re shear. Pure shear tractions are 

applied at inlet and exit. ViSCOSity is unity and density is incremented 

to increase the effect of the convective terms in the equations. Newton 

iteration is used to converge to the nonlinear solution. It should be 

noted that this problem does not require this degree of refinement. This 

model merely tests many aspects of the computer program. 

Figure 4.4 illustrates the linear velocity profile at the exit of the 

region. .For density below 1000 the linear profile is reproduced exactly. 
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4.7.2 Driyen Cayity 

'!he two-dimensional driven cavity has become the standard test problem 

for incompressible computational fluid dynamics codes. In a way. this is 

unfortunate because of the ambiguities in the specification of the boundary 

conditions. However. numerous results are available for comparison 

purposes. 

The incompressible fluid of uniform viscosity is confined within a 

unit square region. The fluid velocities on the left. right and bottom 

sides are fixed at zero. while a uniform non-zero velocity is specified in 

the x-direction along the top edge. Thus. in the top corners. the x­

velocity is not clearly defined. To alleviate this difficulty in the 

present analysis. the magnitude of this velocity component is tapered to 

zero at the corners. 

Results are presented for the 144 cell boundary element model shown in 

Figure 4.5. Notice that a higher level of refinement is used near the 

edges. S{:atial plots of the resulting ve~ocity vectors are displayed in 

Figures 4.6. 4.7. and 4.8 for Reynolds numbers (Re) of 100. 400 and 1000. 

respectively. Notice that. in particular. the shift of the vortical center 

follows that described by Burggraf (1966) in his classic paper. ~ more 

quantitative examination of the results can be found in Figure 4.9. where 

the horizontal velocities on the vertical centerline obtained from the 

present analysis <i.e •• GP-BEST results) are compared to those of Ghia et 

al. (1982). It is assumed that the latter solutions are quite accurate 

since the authors employed a 129 by 129 finite difference grid. It is 

apparent. from the figure. that the ~resent boundary element model has some 

difficulty in capturing the sharp knee of the curve at Re = 400. This 

becomes accentuated as the Reynolds number increases. and consequently. a 

finer mesh is required. It should be noted that the simple iterative 
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algorithm fails to converge much beyond Re = 100. Beyond that range the 

use of a Newton-Raphson type algorithm is imperative. 

In order to obtain more accurate solutions at higher Reynolds number, 

the refined four region 324-cell boundary element model shown in Figure 

4.10 was also analyzed. This provides a significant improvement in the 

results. For example, at Re = 1000, as seen from Figure 4.11, the 

secondary vortex in the lower right-hand corner is clearly visible. 

Additionally, the resulting horizontal velocities are compared to Ghia et 

al (1982) in Figure 4.12. Now, even the solution at Re=1000 is in 

excellent agreement. 

4.7.3 Converging Channel 

The two-dimensional incompressible flow through a converging channel 

also possesses a well known analytical solution which is purely radial 

(Millsaps and PohI hausen. 19S3). A comprehensive finite element study of 

this problem has been made by Gartling, et al (1977). 

The boundary element model is shown in Figure 4.13. The mesh contains 

96 cells and is divided into two regions. The boundary conditions were 

modeled using an exact specification of the boundary conditions appearing 

in the analytical solution (Fig. 4.13). Viscosity is unity and tractions 

and density are incremented to reach higher Reynolds nl.mlbers. The Reyoolds 

number for this problem is defined as 

where V2(Ri ' is the rraximum velocity in the region, which is -24.0 for the 

problan solved here. 

Figure 4.14 illustrates the results for two Reynolds numbers, 

indicating' good accuracy along the entire width of the channel. Not only 
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are the velocities accurate, but the pressures and tractions are very 

accurate al so. 

It has been observed that finite element versions of this problem have 

several peculiarities which prevent the analytical solution from being 

reproduced. First of all, velocities are often specified at the inlet and 

at the wall and centerline, ambiguous boundary condition specification 

results. Also, typically a p:l.rabolic "fully developed" velocity profile 

is often specified at the inlet. However. the nonlinear solution has a 

flattened velocity distribution across the width of the channel (see Fig. 

4.14). Hence. the analytical solution cannot be reproduced exactly if the 

"fully developed" profile is specified at the inlet. Also. the finite 

element modelers of this problem usually leave out the traction 

distribution at the exit and specify zero tractions there. This also gives 

rise to ron-radial flCM. 

The reason for so much interest in the converging flow problem is that 

it is one of the few problems p:>ssessing an, analytical solution. HCMever, 

by specifying a rrodel which does· rot corresp:>nd to this problem, as in the 

fini te element case, one cannot accurately compare results to the 

analytical solution.. Arrj such COInp:l.riSOns are rrerely qualitative. In this 

light, the boundary element model here has utilized an exact model of the 

boundary conditions appearing in the analytical solution. This wayan 

accurate and meaningful comparison can be made. 

4.7.4 Flow OVer a cYlinder 

Next. an example of unconfined flow around an obstacle is considered. 

In particular. the oft-studied case of a unit diameter circular cylinder is 

examined. The boundary element mesh is illustrated in Figure 4.15. Notice 

that three distinct regions are evident. The smallest region, labelled 
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GMR1. represents a thermoelastic thick-walled cylinder. Only the surface 

of the solid is discretized. '!be next region. GMR2. IOOdels a thermoviscous 

fluid in the vicinity of the cylinder. In GMR2 volume cells are required 

due to convective body forces. However. sufficiently remote from the 

cylinder, these body forces become negligible and once again a boundary­

only region. in this case GMR3. is valid. 

steady-state velocity vector plots are displayed in Figures 4.16 and 

4.17 for Re = 20 and 40. respectively. The recirculating zone. behind the 

cylinder. is clearly visible. 

Additionally. the problem was extended to include thermal effects. 

The temperature of the fluid at inlet was specified as 1000oC. while that 

at the inner surface of the hollow cylinder was maintained at oOC. The 

effective heat transfer coefficient between the fluid and solid can then be 

obtained from the resulting temperature and flux at the outer surface of 

the cylinder. The distribution of the nondimensional Nusselt number (Nu) 

around the circumference is plotted in Figure 4.18. These curves agree. at 

least. qualitatively with the experimental results of Eckert and 50ehngen 

(1952). Of course. if the purpose of the analysis is to determine the 

temperature and stress in the SOlid. then there is really no need to 

compute the heat transfer coefficients. The desired solid temperatures and 
. . 

stresses come directly out of the analysis. 

4.7.5 Flow OVer an Airfoil 

As a final example. the themoviscous flow over a NACA 0018 airfoil is 

considered. The boundary element model shown in Figure 4.19 once again 

utilizes ~try and emplqys the multiregion concept with cells confined 

to the vicinity of the airfoil. The airfoil is heated externally by a hot 

gas. flowing from left to right. at unit temperature. and cooled to zero on 

the surface of an internal cooling hole. The conductivity of the airfoil 
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is set to one hundred times that of the hot gas. while unit values are 

assumed for the fluid density and viscosity. 

The resulting steady-state velocity distribution at Re = 150 is 

displayed in Figure 4.20, while Figure 4.21 details the velocity profile 

just ahead of the leading edge of the blade. It should be ooted that lift 

and drag can easily be calculated, since during the analysis, tractions are 

determined all along the blade surface. Next, shaded temperature contour 

plots of the region surrounding the airfoil are presented for Re = 10 ·and 

150 in Figure 4.22. In the latter diagram. the hot regions are black, 

while lower temperature locations appear white. The effects of convection 

are visible downstream of the airfoil. Lastly, the surface temperature of 

the airfoil is plotted in Figure 4.23. Notice that the overall temperature 

increases with Reynolds number. In this p:lrticular case, the distribution 

is strongly influenced by the location of the single internal cooling hole. 

When the Reynolds number is elevated further, the convective terms 

begin to dominate. In this flow regime. the physics of the problem demands 

that convective effects must be incorporated in the kernel functions. This 

is, in fact. true for ali of the viscous flow examples presented thus far. 

As rrentioned earlier, the inclusion of convection in the kernel functions 

is analogous to the upwinding techniques that are required in finite 

difference and finite element analyses. 

The development and numerical verification of these convective 

therrnoviscous flow kernels is now underway. However, the thermal portion 

of the new kernels, detailed in Section 4.3.4 and 4.4.3. has been 

~lemented and provides some interesting results. 

As an illustrative example, a convective heat transfer analysis was 

conducted for a pair of NACA 0018 airfoils in a uniform flow field. The 

boundary element model of the airfoils is shown in Figure 4.24. The hot 

69 



fluid once again flows fran left to right. while the airfoils are cooled on 

their inner surfaces. It should be emphasized that with the assumption of 

a uniform fluid velocity, the problem permits a boundary-only analysis. 

Thus, the only mesh that is needed is that disp1ayed,in Figure 4.24. 

However. a number of interior IX>ints were added in the flow field for IX>st­

processing purIX>5es. 

Figure 4.2 S depicts the temperature distribution in the f1 uid 

surrounding the airfoils at a Peclet (Pe) number of ten, where 

with fluid velocity U, chord length 1. and thermal diffusivity of the fluid 

c. Meanwhile, Figures 4.26 and 4.27 present the temperature field for 

Pe=100 and 1000. respectively. Strong convective effects are evident at 

the higher Peclet numbers. Finally. in Figures 4.28 and 4.29 the angle of 

attack is modified to 100 and 200 while maintaining Pe=1000. 

It should be reiterated that the results shown in Figures 4.25-4.29 

are based on a uniform flow field. Thus. the effects of viscosity have 

been ignored. However. the new convective theonoviscous kernels, when they 

are available. will have the same character as those for convectiv.e heat 

transfer. and hence. should provide a means for obtaining accurate high 

velocity solutions. 
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FIGURE 4.3 

PARPLLEL FLOW - BOUNDARY ELEMENT MODEL 
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FIGURE 4.5 

DR! VEN CAV ITY 
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FIGURE 4.7 
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FIGURE 4.9 
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FIGURE 4.10 

DRIVEN CAVITY - FOUR REGION MODEL 
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FIGURE 4.12 
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FIGURE 4.13 
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FIGURE 4.15 
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FIGURE 4.17 
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FIGURE 4.18 

FLOW AROUND A CYLINDER 
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FIGURE 4.20 

VELOCITY DISTRIBUTION AT RE = 150 
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FIGURE 4.22 

FLUID TEMPERATURE CONTOURS 
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FIGURE 4.23 
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FIGURE 4.24 

FLOW OVER NACA-0018 AIRFOILS 

BOUNDARY ELEMENT MODEL 

~: 
0 9 0 e 0--- a _Q 

• o ~~ 

~Q >4 o~ 
o~ ~ 0 0- --4-e--

~o ~ a -0- 9 
0 e 0 



FIGURE 4.25 
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FIGURE 4.27 
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FIGURE 4.28 
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FIGURE 4.29 
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5. ~ 

Significant advancements have been made in the last twel ve months 

toward the development of an integrated boundary element method for hot 

fluid-structure interaction. For the solids p:>rtion of the problem, the 

formulation is well developed. '!he boundary-only time domain thermoelastic 

formulation, detai led in Section 3 and Appendix B, was completed in the 

previous year. HCMever, a number of enhancsnents have been incorporated to 

make the numerical implementation more efficient, more accurate, and to 

increase its applicability. For example. regarding computational aspects. 

full advantage is now taken of the uncoupled nature of the thermoelastic 

theory. so that convolution is only carried out on the temperature and flux 

related quantities. Additionally, for time steps beyond the first. a much 

reduced level of numerical integration is employed to evaluate the 

completely non-singular kernel functions. Meanwhile. extensions of the 

basic formulations have been made to include several practical facilities. 

such as time-dependent ambient temperatures. thermal resistance between 

regions to simulate coatings and air gaps. and the introduction of region­

by-region reference temperatures. The resulting code has also gone through 

another round of verification testing, which has greatly improved its 

reliabil i ty • 

The primary emphasis of the work performed under this grant has, of 

course, been directed tCMard the fluid. since boundary element applications 

to fluids are at a much less developed state. COnsiderable progress has 

been made on two fronts. The first major area involves improvements and 

extensions of the incompressible thermoviscous formulation originally 

developed last year. During the past twelve months. the accuracy and 

efficiency of the numerical integration has been significantly upgraded, 

the volume integrals have been rewritten to eliminate the need for 
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computation of velocity gradients, reference velocities and temperatures 

have been introduced on ~ r;@~~on-by,""J;~gion pasis. and a Newton-Raphson 

algorithm has been developed to solve the highly nonlinear set of 

equations. _ '!he result. as is evident fran the examples of Section 4. is an 

accurate general purpose boqndary ~J.eme1')t approach to problems of 

thermoviscous flow in the low to medi4JJI R~¥nolds number range. As such. 

this development represents th~ firf!;t; Of its kind for this class of 

problt;!lls. 

Hgwever, during the cour~ of this wprk, it also became evident that 

the stationary media fundamental solut1onQ of Appendix E do not contain 

enough of the P'lysics of the problem at hi<;:lQ Reyoolds number. Moving media 

fundamental solutions and integral fo~ulations are imperative for higher 

speed flows. Since these fundament~~ solutions do not exist in the 

literature, considerable effort has beep expended toward their derivatio~ 

Approximate forms have been obtained for compressible thermoviscous flow. 

and are presented in Section 4.3. It Should be emphasized that these 

convecti ve solutions contain an analytical representation of uFMinding and. 

for compressible flow, shock. The development of techniques for the 

numerical evaluation of the convective Jternels is now underway. Meanwhile. 

the thermal portion pertaining to convective heat transfer. in a known flow 

field. has been completely ~lement~ '!his new formulation not only has 

produced some interesting results. but .alt:lO provides considerable optimisn 

for the success of the convective ~edia approach to high speed 

theDllOViscous flow. 
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6. tlJRKPIAN ~ '!BE NEXT YEAR 

Based upon the experiences of this past year, future emphasis will 

naturally be placed upon the convective media approach. although some 

ongoing work on the transient stationary media algorithm will be oornpleteCL 

The following rather ambitious set of tasks are planned, in approximate 

chronological order, for the ~riod November 1988 to NoIJember 1989: 

1. Complete development of numerical techniques (e.g., rational 

approximations, series representations) for the evaluation of the 

convective compressible theonoviscous kernels. 

2. Implement and val idate the transient convective heat transfer 

fOmlulation. 

3. Complete the investigation of transient incompressible flow using the 

stationary media approac~ 

4. ]mplement and validate the new convective incompressible flow kernels. 

s. Develop more efficient solution algorithms (e.g., iteration methods) 

and integration schemes for high Re flow. 

6. ]mplement ahd validate convective compressible flow kernels. 
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APPfX>IX B - KERNELS FOR 'J.BEIM)E'lAS'lCl'lY 

This appendix contains the detailed presentations of all the kernel 

functions utilized in the formulations contained in Section 3. Two-

dimensional (plane strain) kernels are provided. based upon continuous 

source and force fundamental solutions. For time-dependent uncoupled 

quasistatic thermoelasticity the following relationships must be used to 

determine the proper form of the functions required in the boundary element 

discretization. That is. 

for n=1 

for n>1 , 

with similar expressions holding for all the remaining kernels. In the 

specification of these kernels below. the arguments (X-e.t) are assumed. 

'l11e indices 

i.j.k,l vary from 1 to d 

a.p vary from 1 to (d+l) 

e equals d+l 

where d is the dimensionality of the problem. hlditionally. 

Xi coordinates of integration point 

ei coordinates of field point 
2 _ 

Yi = xi-ei r - YiYi • 

For the displacement kernel. 

G .. 
1) 

1 1 YiY' = - [ (:.!:.J
r2 

) - (&i)') (3-4v) 1n r ] 
8n l1(l-v) 
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whereas. for the traction ker~l. 

F. .. 0 
19 

In the above. 

CD -x 
E1(z) = I L dx z x 
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n2 

95('1) 
E1(4 ) 

= 2 

- -
f 6 ('1) = h1('1) 

- n2 

f,('1) 
h1 ('1) El (4 ) 

=--+ 2 . 2 

For the interior stress kernels, 

where 
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lOA 



where 

u r (). +2 IJ. ) 
g = 
PP p C2 

gu = 0 ep 

u 
giO = 0 

00 

6(t-,;) 
~. = - In r u 21f 

-R.../4c't' 
1 e'u 

ItJ = 471'1J. ----=-t.."...,--

lOS 



_~ . .I4ct ' 
1 e·'U 

eu = 4nk t' . 

Co t' Pu = ~ [ (1 + ~ H(c t'-R..) - !L Mc t'-R ) J 
2nR R2 O·U c2 0 ·U 

t' = t-"C 

y. = X'-~i 1 1 

o 
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where 

u gej = 0 

u 9ie = 0 . 

6 (t-·C) 
a..=- lnr u 211' 

-JL/4c't' 
1 e·u 

~ = 411'~ ---:-t-::"',--

-R../4ct' 1 e-u 
eu = 4nk --t-,--

t' = t-,; 
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This appendix contains details of the time-dependent incompressible 

kernels. based upon stationary media. necessary for the integral 

formulations of Section 4. ~!otation is consistent wi th that defined in 

Appendix B. 

For the generalized velocity kernels. 

2-

1 <-k1) [ E12(~ ) ] GQe = in 

whereas. for the generalized traction kernel. 

FQj = 0 

In the above. 

8 = r 
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c' = l!. 
p 

CD -u 
E1(Z) = J L du 

z u 

Meanwhile. for the interior strain rates. 

where 

1 1 
E, 'k = - (-) 

1J 4nt ~ 
[ -

2 
9 = 4s - 2e-e 14 1 1 
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93 = H(t) - 51 

_ 2 2 
91 = 245

1 
- 16e-l'l 14 - a2e-a 14 
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