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ABSTRACT

This paper investigates the unnotched tensile properties of 2-D triaxial
braid reinforced composites from both an experimental and an analytical
viewpoint. The materials are graphite fibers in an epoxy matrix. Three
different reinforcing fiber architectures were considered. Specimens were cut
from RTM composite panels made from each braid. There were considerable
differences in the observed elastic constants from different size strain gage and
extensometer readings. Larger strain gages gave more consistent results and
correlated better with the extensometer readings. Experimental strains
correlated reasonably well with analytical predictions in the longitudinal, 0°,
fiber direction but not in the transverse direction. Tensile strength results were
not always predictable even in reinforcing directions. Minor changes in braid
geometry led to disproportionate strength variations.

The unit cell structure of the triaxial braid was discussed with the
assistance of computer analysis of the microgeometry. Photomicrographs of
braid geometry were used to improve upon the computer graphics
representations of unit cells. These unit cells were used to predict the elastic
moduli with various degrees of sophistication. The simple and the complex
analyses were generally in agreement but none adequately matched the
experimental results for all the braids.



INTRODUCTION

Braid reinforced composites are one of the many textile fabric reinforced
composites that are under consideration as lower cost and higher impact
resistant/tolerant materials for aircraft applications. The wide variety of cross-
sectional forms that can be braided promises to reduce fabrication costs for
standard and custom made stiffeners, truss members, rotor blade spars,
longerons, and frames. However, the analytical tools to evaluate these materials
are just now being developed and reliable data bases of fundamental properties
are incomplete. Both of these needs are addressed in this investigation.

The specific objective of this study was to understand the role of the braid
reinforcement microgeometry in laminate mechanical behavior. This was
accomplished through combined analytical and experimental efforts. Fabric
preforms were modelled using a process science model. Cured laminates were
investigated and their fabric geometries were characterized. The materials'
mechanical properties were experimentally measured in unnotched tensile tests
and compared to predictions made using analytical models.

A series of three 2-D triaxial braid geometries were investigated in this
study. The specimens, which were designed by Boeing and supplied to NASA
Langley as part of a joint NASA-Boeing investigation, had a 0/+0 braid pattern.
The materials' Young's moduli, Poisson's ratios, and ultimate strengths were
experimentally determined under in-plane tension load. The sensitivity of these
measurements to strain gage size was also studied.

The architecture of the fibers is the key to understanding the mechanical
behavior of textile composites. The fabric geometry controls the material
response. It must be well understood to interpret the experimental data.
Similarly, the ability of any material model to predict material behavior hinges
upon the accuracy of its treatment of the fiber geometry.

Graphical modelling of the braided unit cell was carried out using a
processing science model coupled with a graphical rendering on a personal
computer. This approach permits the construction of a mathematical
representation of the surfaces and orientations of the braided yarns within the
composite material. The geometric description of the unit cell was validated
through optical microscopy and the model was updated to incorporate secondary
fabrication effects. Based on the definition of fiber architecture provided by the
process science model, it is possible to characterize material properties in local

'regions within the unit cell.
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The analysis of braids is usually based on the use of either a simple
diagonal brick model or a more complex inhomogeneous finite element model.
Each approach was applied to predict the Young's moduli and the Poisson's ratios
of the braided material. In addition, the application of a laminated plate model
to these materials was investigated as a simple approximation tool.

MATERIAL SYSTEMS

The materials employed in this study featured triaxially braided AS-4
fabric impregnated with Shell 1895 epoxy resin. A triaxially braided fabric, as
shown schematically in Figure 1, consists of three yarns, 0°, +0 °, intertwined in a
single layer. The fabrics studied were braided in a 2/2 pattern. That is, a +0
braided tow continuously passes over two -0 tows and then under two =0 tows
and vice versa. The 0° or longitudinal tows are introduced into the fabric during
braiding through stationary guide eyes. These tows are straight (without crimp)
and are parallel to the braid axis. Note, the gaps shown between fibers in this
schematic are exaggerated for clarity in illustrating the braid pattern.

Three braid geometries were investigated. The braid angle, the yarn sizes,
and the longitudinal yarn content were varied to assess material sensitivity to
these parameters. The last parameter listed is typically expressed as percentage
of 0° yarns. It is the volumetric proportion of longitudinal yarns to total yarn
content and is a function of braid angle and yarn size. Yarn size is expressed in
terms of the number of filaments per yarn. The longitudinal yarns were larger
than the braider yarns in all cases.

The nominal braid configurations are summarized in Table I. In addition
to the three parameters listed above, the table also lists the nominal spacings of
the longitudinal and braid yarns. Both quantities are expressed in terms of yarn
per inch.

Table I. TriaXial Braid Configurations

IMATERIAL BRAID BRAIDER 0° YARN PERCENT 0° 0° YARN BRAID YARN

PATTERN YARN SIZE SIZE YARNS (%) SPACING SPACING

fFiber No.) iFiber No. ! _Yarn/in.) (Yarn/in.)

A1 0/+ 63° 12K 24K 31.5 4.17 9.16

B1 0/+66.5° 6K 18K 37.6 4.77 11.98

B2 0/+7 0 o 6K 18K 34.0 4.37 12.74

Note: K indicates thousands. For the AS-4 yams, fiber diam. equals 7 microns.
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Figure 1. Triaxial braid pattern.
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The fabrics investigated in this study were formed with a 144 carrier New
England Butt triaxial braider, incorporating 72 longitudinal yarns in a 2/2
regular braid pattern. The braids were formed on cylindrical mandrels, and the
desired preform thickness was achieved by over-braiding layers. Since all
specimens were to have a nominal thickness of 0.125 in., the number of layers
increased as yarn bundle size decreased. Mandrel diameter, D, was also
increased to vary longitudinal yarn content.

Table II summarizes the processing parameters employed for each
architecture.

Table II. Braid Processing Parameters

MATERIAL NUMBEROFLAYERS MANDREL DIAM.

(in.)
A1 4 5.5
BI 5 4.8
B2 5 5.25

After braiding, the fabric was cut longitudinally, removed from the
mandrel, and'border stitched to maintain handleability. The resulting flat pieces
of layered fabric were placed in molds and resin was applied through a resin
transfer molding (RTM) process.

The braid configurations listed in Table I can be related to the braid
process parameters described in the previous paragraphs through mathematical
models. A process science model [1] is being developed to relate braid pattern to
machine parameters. It also provides a mathematical description of the fiber
architecture. This la.tter aspect of the model will be discussed in the next
section, Geometric Modelling.

The models developed to date, however, are approximate because they
cannot account for all secondary manufacturing effects which can alter braid
architecture. Empirical data, gathered from cured laminates, is required to
update these models.

The final fiber architectures of the three braid types were experimentally
characterized. The laminates' braid angles, percentage of longitudinal fibers,
fiber content, resin content, and their thicknesses were determined.
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Digital images of sample specimens from the composite panels were
produced and image analysis software was used to calculate braid angles. Each
braid was formed with one carrier supplying a nickle coated graphite yarn for
post-manufacturing optical and X-ray investigation of the fabric and composite.
These yarns were used to verify the placement of yarns in the structure.

Figure 2 shows a scanned image of a typical braided specimen. The nickle
coated AS-4 is clearly visible in this scanned image. Samples from different
architectures and different panels of the same architecture were scanned for
quantification. By tracing the nickle coated yarn, the braid angle was measured
for each of the specimens examined. The variation of the braid angle within
panels was negligible; the variation of braid angle between panels was found to
be less than 1°

Figure 2. Scanned Surface of Braided Composite Specimen (Type B1) Showing
Nickle Coated AS-4 Yarn in Braider Position.

Internal fiber architecture was examined by sectioning and polishing
samples of the material. Cross-sectional photomicrographs of the various
specimens were also scanned into the computer and examined to determine the
placement and frequency of longitudinal yarns. Additionally, the shape of the
yarn cross-sections, longitudinal and braid yarn curvatures, and interstitial
areas were assessed. Finally, the thickness of the composites were also
measured from these micrographs.

The photomicrograph in Figure 3 shows the cross-section of a specimen
made from the B2 material. The specimen has been sectioned along the 0°
yarns. The three bright horizontal bands that traverse the photomicrographs are
sections of axial yarns that intersect the polished surface. The 0° yarns in the
two remaining layers did not intersect this plane. The figure illustrates that the
inserted 0° yarns exhibit no crimp and are quite straight. Figure 4 contains a
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Figure 3. Longitudinal cross-section (20X) of a B2 laminate.
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Figure 4. Transverse cross-section (20X) of a B2 laminate.



All five layers of braided preform material can be identified in the figure. The
photomicrograph indicates that the axial yarns do not stack on top of one
another. Instead, the layers of material nest during the braiding operation. For
this reason, only three axial yarns are visible in Figure 3. Finally, the
photomicrograph shown in Figure 5 shows the cross-section of a B2 laminate
that has been sectioned along the braided yarns. As in the case of the axial
yarns, braided yarns for each layer do not appear. The degree of crimp
developed in the braided yarns as they intertwine is illustrated in the figure.

The measured braid angles, frequency of longitudinal fibers, and the
laminate thicknesses were input to the process science model. The materials'
fiber volume fractions and their percentages of longitudinal fibers were
predicted with this model using the description of the braiding process as input.
The results of the observations and calculations are summarized in Tables III
and IV. The physical characteristics and the fiber and resin content were not
measured for all panels.

Table III. Physical Characteristics of Test Panels

MATERIAL PANEL THICKNESS BRAIDANGLE PERCENT0°

..... NUMBER (in.) (o) YARNS(%)
A1 15L .135 62.2 31.8

1U .137 62.4 31.7
BI 2L .136 67.1 36.8

4U .126 67.7 36.3
B2 10L .139 68.3 35.7

IlL .137 67.5 36.5

No significant differences were noted between the nominal braid
configurations (Table I) and the measured and calculated physical properties
listed in Table III. The braid angles and the ratio of longitudinal yarns to total
yarn content showed only minor variations from the nominal values.

Though not listed in the table, the longitudinal yarn spacing was also
measured from the photomicrographs. Comparing the measured values to the
theoretical yarn spacings listed in Table I indicates negligible lateral
expansion/contraction occurred during handling of the cut fabric.

Fiber volume fraction was predicted by the process science model and
measured experimentally on specimens cut from the same panels used for
tensile test coupons. Experimental measures of fiber and resin content were
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Figure 5. Cross-section of B2 laminate sectioned along braid yarns (20X).
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Figure 5. Cross-section of B2 laminate sectioned along braid yarns (20X).



conducted in accordance with ASTM D-3171 [2]. Using this procedure, material
samples were digested using concentrated sulfuric: acid and 30% hydrogen
peroxide. The weight fractions were measured and volume fractions calculated
on the basis of density. The density value used for AS-4 was 1.80 g/cc and for
the resin was 1.18 g/cc. These results are summarized in Table IV along with
the predicted fiber volume fractions.

Table IV. Laminate Fiber and Resin Content

MATERIAL PANEL DENSITY THICKNESS RESIN FIBER VOLUME

NUMBER (g/cc) (in.) VOL. Measured Predicted

i

AI IU 1.51 .137 45.7 54.0 54,5

6L 1.51 .137 45.6 54.0 -

BI 2L 1.48 .136 52.8 48.2 50.4

3U 1.50 .127 47.4 52.3

4U 1.50 .126 46.7 52.8 55.9

B2 IlL 1.48 .137 50.9 48.9 46.3

11U 1.52 .124 44.7 55.2

As Tables III and IV indicate, the B1 and B2 materials exhibited a
significant panel to panel variation in thickness. Their braid angles and the
frequencies of their longitudinal yarns, however, remained relatively constant
from panel to panel. Since the fiber preforms did not vary from plate to plate,
the thinner laminates contained the same amount of fiber (as the thicker
laminates) but less resin. This is reflected in the thinner laminate's lower resin
volume percent and, conversely, in their higher fiber volume percent.
Consequently, the fiber volume fraction of each individual panel needs to be
determined before carrying out analytical modelling.

The correlation between thickness and resin content for panels with the
same architecture is apparent. The process science model accurately predicts
the fiber volume.

The data in Tables III and IV demonstrate the importance of
characterizing material microstructure. Although the braided preforms seem
consistent from panel to panel, variations in the RTM process altered the panels'
resin content and changed their fiber volume. Since fiber and resin content
effect the material's mechanical response, they should be measured for each
pane! tested and accounted for in predicting mechanical response.



GEOMETRIC MODELLING

An accurate description of the fiber architecture is required to predict the
mechanical properties of textile reinforced composites. The process science
model noted earlier provides a three dimensional geometric model of the
braided reinforcement. It is used as a front end to other analytical models
which predict the materials mechanical properties.

The approach to the geometric modelling consists of three principal steps:
i) construction of mean centerline points for each yarn, ii) smoothing the
centerlines with a B-spline interpolation to construct a smooth and minimum
strain energy curve, and iii) constructing a three dimensional object by
sweeping a cross-section along the centerline and forming a surface.

The construction of the mean centerline was carried out on the basis of the
processing science model which predicts the ideal architectural arrangement.
Since the model cannot account for all secondary manufacturing effects,
measured values (braid angle, thickness, distribution of longitudinal yarns, yarn
cross-sectional geometry) were used to modify the predicted values. This
update creates a good approximation of the actual geometry. Discrepancies
between predicted geometries and actual geometries are eliminated prior to
performing the mechanical analysis.

Figures 6-8 show the rendered graphics for architectures A1, B1, and B2
respectively. The figures are not drawn to scale.

Figure 6. Graphical Rendering of Braid Architecture A1.
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Figure 7. Graphical Rendering of Braid Architecture B1

Figure 8. Graphical Rendering of Braid Architecture B2

The graphics can be validated in terms of braid angle, percent longitudinal
tows, and fiber volume fraction. In the cases presented above, the renderings
were formed based upon these measured values, thus the fit is excellent.

The rhombic frames shown in these figures define unit cells of the three
braids studied. A unit cell is a repeatable unit of fabric geometry. It represents
the complete yarn or tow intertwinement pattern. It is desirable, for analysis
purposes, to define the smallest unit cell possible. Rectangular unit cells are also
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preferable. Figure 9 shows the smallest unit cell for a 2/2 triaxial braid. It is
contained within the rhombic unit cell.

In a braid, the unit cell width is dependent on mandrel diameter and the
number of yarns braided. The height of the unit cell is dependent on the cell
width and the braid angle. The sizes of the minimum unit cells for the three
braids tested are summarized in Table V. The significance of these dimensions,
particularly the width will be discussed further in the following section.

Table V. Summary of Minimum Unit Cell Sizes.

!

MATERIAL I WIDTH (in.) HEIGHT (in.)

AI I 0.48 0.12

1

BI [ 0.42 0.09B2 0.46 0.08

In addition to the graphic capability illustrated above, the code provides a
t_umerical description of the reinforcing architecture. It is capable of sectioning
ti_e unit cells into arbitrarily small volumes and examining the material
orientations and proportions within each volume. These volumes can be re-
combined using finite elements to predict the mechanical response of the unit
cell and to predict the mechanical properties of the braided composite structure
131.

Figure 9. Smallest Unit Cell
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EXPERIMENTAL RESULTS

The mechanical properties of the three material systems were
experimentally determined in a series of unnotched tensile tests. Test panels
were fabricated and machined to permit direct determination of the materials'
performance in both the longitudinal direction (parallel to the 0° yarns) and the
transverse direction (perpendicular to the 0° yarns). The principal Young's
moduli, the Poisson's ratios, and the ultimate tensile strengths were measured in
these tests.

All tests were conducted in displacement control (0.01 in/min), on a 50
Kip MTS test machine. The longitudinal or axial tension specimens were 1.5 in.
wide and 10.0 in. long. They had 2.25-in.-long fiberglass tabs at the ends
yielding a 5.5 in. test section. The transverse tension specimens were 1.5 in.
wide and 7.0 in. long. They featured 1.25-in.-long tabs to provide a 4.5 in. long
test section.

Axial and transverse strain gages were mounted on each face of the
specimen at its center. A range of strain gage sizes were employed to test the
sensitivity of the measurements to strain gage size. A 0°/90 ° rosette gage which
featured .125 in. square gages, the largest available in stock, was used on all
specimens. Sizes of the gages used on the other face of the coupons varied from
.062 in. to .187 in. An extensometer with a 1.0 in. gage length was also
employed during each test. It was also mounted ori the face of the coupon
straddling the .125 in rosette gages.

Thirty-five specimens were tested in the program. Seventeen were loaded
to failure to determine ultimate strength, modulus, and Poisson's ratio. Eighteen
were loaded to 2000 .lxin/in of strain to measure modulus and Poisson's ratio
only. Stress-strain curves recorded during the strength tests indicated that this
strain level was well within the linear range for all of the braids tested.

• Results of the strength tests are summarized in Table VI. The table
contains the average strengths and ultimate strains (as recorded by the
extensometer) for the longitudinal (direction of 0° yarns) and transverse
(perpendicular to the 0° yarns) tension tests.

15



Table VI. Material Strength Test Results

I

MATERIAL LONGITUDINAL I TRANSVERSE

STRENGTH ULTIMATE I STRENGTH ULTIMATE

(KSI) STRAIN (KSI) STRAIN

(%) • (%)

A1 62.6 + 3.7 1.16+. 13 I 35.3 0.67
1

B1 80.7 + 1.4 1.36+ .07 [ 41.7 + 3.6 0.67+ .12B2 57.1 5:1.7 0.96 5:112 46.55:5.7 0.70 5:.14
Note: Data in table represents the average for three specimens.

Results of only two transverse tests on material A1 were available.
Longitudinal denotes 0° yarn direction; transverse denotes perpendicular direction.

Longitudinal strengths and strains were greater than transverse strengths
and strains for all _three materials. In fact, transverse strengths and strains
showed little sensitivity to fiber architecture. The longitudinal strengths and
strains-at-failure showed a range of values, however. For example, the B2
specimens' longitudinal strength was only 20% greater than their transverse
strength. The B1 specimens, by comparison, were 50% stronger in the
longitudinal direction than they were in the transverse direction.

The most significant result was the difference in longitudinal strength of
the BI and B2 materials, 80.7 ksi vs 57.1 ksi, respectively. The extent of this
difference, 41%, is surprizing since the materials differ so little. The specimens
had comparable fiber architectures: their braid angles differed by only a few
degrees; they contained comparable percentages of 0° fibers. The measured
fiber volumes of the two materials also showed no significant differences.

Observations of the tests and the failed specimens gave no particular
insights into the failure progression. Failures were sudden, catastrophic and
somewhat confined to the vicinity of the break. This last observation is more
applicable to the transverse specimens than to the longitudinal specimens.
Visible surface tow segments gave the appearance of behaving like small
structural units that separated from each other. Fracture within tow segments
was infrequent. Delaminated tows were always evident adjacent to the fracture
site. However, delamination was less extensive in the transverse specimens
than in the longitudinal specimens. The extent of delamination in the transverse
specimens was on the order of the unit cell dimensions. Delamination in the
longitudinal specimens extended over a region of two or three unit cell heights.

As indicated earlier, the three materials' Young's moduli and Poisson's
ratios were also measured in these tests. The results of the longitudinal tension
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tests are summarized in Table VII. Table VIII lists the transverse tension test
results.

Several general observations may be made from these data. There was
little difference in the longitudinal and transverse moduli for the A1 and B1
materials. The B2 specimens' transverse modulus was slightly higher than its
longitudinal modulus. In general, the longitudinal moduli data had less scatter
than the transverse moduli data.

The data in the tables may also provide some insight into effective
instrumentation practice for future tests. If nonuniform strain fields develop in
these materials as a result of their microstructure, then the size and orientation
of the gage will have a significant effect on the measured results. Assuming the
nonuniformity is on the scale of the smallest unit cell, larger gages, which span
larger portions of a unit cell, should have less scatter since they effectively
average material response over a larger volume. Ideally, of course, the gage
should span several unit cells.

In the longitudinal tests, the axial strain gages are aligned with the short
dimension of the unit cells. However, even the longest gage used, 0.187 in. ,
spanned only two unit cells. The extensometer with its 1.0 in. gage length, on
the other hand, spanned several more unit cells in this direction. The general
trend in the data indicates that moduli measured using the extensometer strains
had less scatter than the results computed from strain gage readings.

By comparison, scatter in the transverse moduli data is larger than the
scatter in the longitudinal moduli results. In the transverse direction, (the long
dimension of the unit cell), the extensometer spans only about two unit cells
(compared to 8 12 in the longitudinal direction). The strain gages span less
than half a unit cell and their scatter is, likewise, greater.

The longitudinal tension specimens tested were machined from six panels;
two for each of the three materials. Although their fiber architectures were
comparable, the B1 and B2 laminates' thicknesses varied. This was reflected in
their fiber volume fractions, as noted earlier, and in their moduli. The thinner
laminates which had higher fiber volumes had proportionately higher moduli.

The Poisson's ratio data may be subject to the same strain gage and unit
cell size interactions suggested above. In general, the data shows that Poisson's
ratio increases with strain gage size. This effect was most pronounced in the
longitudinal data. The Poisson's ratio measured using .187 in. gages were
'significantly larger than those measured using .125 in. gages.
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Table VII. Longitudinal Modulus and Poisson's Ratio Measurements

• IMATERIAL PLATE THICK MODULUS (MSI) POISSONrS RATIO

NO. (in.) .062 Gages .125 Gages .187 Gages Extensometer .062 Gages .125 Gages .187 Gages

A1 15L .135 6.51 + .49 6.51 _+.58 6.62 _+0.22 .192 + .026 .300 _+.031

6L .137 7.10 6.25 6.60 .264 .274

B1 2L .136 6.74 + .68 6.88 + .61 6.55 + 0.25 .176 _+.018 .268 z .026

3U .127 7.18 + .06 7.14 _+.21 6.88 _+.54 .186 + .043 .194 *_.036

B2 10L .139 6.16 + .09 6.21 -+.32 6.31 + .44 .150 + .006 .183 _+.013

co llU .124 6.24 + .27 6.47 +.20 6.51 -+.23 .165 + .018 .151 -+.013

Table VIII. Transverse Modulus and Poisson's Ratio Measurements

MATERIAL ] PLATE [ THICK. MODULUS (MSI) ] POISSON'S RATIONO. (in.) .062 Gages .125 Gages .187 Gages Extensometer .062 Gages .125 Gages .187 Gages

A1 1U .137 6.26 6.42 _+.92 6.24 6.59 -+.79 .215 .275 + .040 .307

B1 4U .126 7.45 + 1.05 6.13 +1.24 6.80 + .15 6.45 + .35 .291 -+.022 .163 + .031 .199 -+.012

132 llL .137 7.34 _+1.79 7.18 + .88 7.11 + .68 7.03 + .62 .161 +_.045 .181 -+.044 .190 + .008

Note: Longitudinal denotes 0° yarn direction; transverse denotes perpendicular direction.



MECHANICAL PROPERTY PREDICTIONS

The ability to analytically model textile composites and predict their
performance is a necessity to the efficient development of these materials and
to their effective application.

Linear elastic moduli predictions were made on the basis of four different
mechanical models of the various 2-D braid composites tested in the program.
These models ranged from simple to complex in the manner in which they
represented the fiber architecture. The purpose of this exercise was twofold.
The first was to compare the predictions from the various models to each other
and to experimental results. The second was to establish the level of accuracy
necessary to predict the principal elastic constants of these materials for a
typical preliminary design application.

(0°/+0°) LAMINATE MODEL

The simplest model ignores the out-of-plane undulations of the braided
tows and treats each set of tows as if it were a unidirectional ply in a (0/+0)
symmetric laminate. The 0° longitudinal tows are considered to be the 0°
unidirectional plies in the laminate. The + 0 material corresponds to the braided
tows with 0 as the average braid angle. When there is a significant percentage
of 0° tows in the construction the influence of braid tow undulations may be
expected to be minimal. Figures 10 and 11 illustrate the various principal
moduli estimates for (0/+0) laminate as derived from a conventional laminate
analysis using the following unidirectional ply properties:

Ell = 18.0 MSI E22 = 1.2 MSI

v12 = 0.3 G12 = 0.6 MSI

where the subscripts 1,2 indicate the fiber direction and the normal to the
fiber direction, respectively.

These values correspond to an AS4/epoxy composite with a fiber volume
fraction of 52%. Most experimental data for unidirectional AS-4 composite is in
the 60 - 65% fiber volume fraction range. Micromechanics estimates of the
appropriate corrections factors were applied to the higher fiber volume fraction
data in order to obtain the 52% fiber volume fraction values. The three average
experimental braid angles of 62.3°, 67.1°, and 67.9° are designated by the
vertical lines in Figures 10 and 11. For analysis purposes, the percentage of 0°
material in the figures is 34% of the total fiber content. This represents the
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average for all materials investigated; measured 0° yarn content ranged from
31.7% for an AI panel to 36.8% for a B1 laminate. Deviations of the individual
material averages from this overall average was not more than +2.8%.

A correction factor that accounts for braid undulation can be applied to the
laminate analysis. First, an average absolute value of the braid undulation
angle, the average out-of-plane angle of the braid tows, (+_) can be obtained by
examination of the composite photomicrographs such as Figure 5. Any non-zero
Ill should lead to an effective reduction in the longitudinal moduli of the plies
representing the two sets of braid tows. The effects on the other principal
moduli of these plies should be minimal. The reduction in longitudinal moduli of
these plies can be estimated by comparison of the longitudinal modulus of the
unidirectional material and the 0° modulus of a +_ symmetric laminate made
from the same unidirectional material. This reduction in longitudinal modulus
on the braided plies in the original laminate model leads to the corrected
estimates of the (0/+0) elastic moduli shown by the dashed lines in Figures 10
and 11. The average braid undulation angles for materials BI and B2 with the
smaller yarns was +6°. Material A1, made from the larger tows, had a
significantly higher average braid undulation angle of almost +9°. The corrected
moduli estimates are based on these two observed average undulation angles.
The symbols in the figures represent the experimental moduli measured for the
three braids. The moduli computed using 0.187 in. strain gages are shown in
the figure.

The Ex moduli correlation, where x is the braid direction, was good for all
three braids. The Ey moduli correlation, where y is normal to the braid
direction, indicated that the analysis was consistently higher than test data. The
analytical predictions of the in-plane Poisson's ratio generally followed the trend
of the test data. The correction for braid undulations improved the correlation
slightly.

DIAGONAL BRICK MODEL

The second mechanical model is based on the concept of the unit cell
representation of the composite reinforcing microstructure. The specific model
applied here consists of a brick-shaped element of bulk resin with four parallel
bar elements along four edges of the brick plus four diagonal bar elements [4].
See Figure 12 for details. The edge bars represent the longitudinal yarns. The
main diagonal bars represent the braided yarns. The stiffness of the bar
elements (EA/L) are chosen such that they reflect the amount of fiber
reinforcement within the unit cell. The dimensions of the brick are determined

'by the braid angle (+0) and average undulation angle (+_') of the braided yarns.
Table IX compares the moduli predictions from the diagonal brick model with
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the predictions from the laminate models and the test data for the three
different braids. Unlike the results shown in Figures 10 and I1, analytical
estimates in Table IX were based on observed fiber volumes, braid angles,
undulation angles, and longitudinal yarn content.

The diagonal brick model gave lower Young's moduli estimates than the
corrected laminate model resulting in slightly better data correlation. The
Poisson's ratio estimates were no better than the laminate analysis.

R
Braid angle, 0 = arctan--_

A

C
Undulationangle,_F= arctan--

A

C

B

A

Figure 12. Diagonal Brick Model

FINITE ELEMENT MODEL

Mechanical properties were also predicted using an analytical approach
developed by one of the authors [51. This method, which is shown schematically
in Figure 13, analyzes a detailed unit cell of the reinforcing architectures in
terms of sub-cells which can be combined in a finite element methodology to
predict the unit cell properties. One of the advantages to this approach is that
employing sub-cells of arbitrary fine size mitigates the approximation
techniques associated with piecewise linear interpretation of the reinforcing
geometry.

For the materials under investigation in this paper, the unit cell was
constructed with the geometric model described earlier. The unit cell was
divided into 9 sub-cells (3 elements per side) and the material properties of
each sub-cell were calculated using an inhomogeneous finite element [3]. The
elastic properties of the unit cell were then predicted by creating a stiffness
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matrix (K) for the structure, and solving unit displacement problems for
appropriate boundary conditions.

The results of this analysis are a completed K matrix which can be used to
derive elastic properties. For purposes of this evaluation, only Ex and Ey, Vxy,
and Vyx are reported. Table IX summarizes the average predicted values for
the various materials.

SUBCELLASSEMBLY-
Stiffnessmatricesdefined
foreachsub(ell.

UNITCELL- Stiffnessmatricesassembled
toformunitcel stiffnessmatrix.

Figure 13. Schematic of Finite Element Approach.

ANALYTICAL CONCLUSIONS

In addition to tabulating the moduli and Poisson's ratios predicted by the
various models, Table IX also lists the experimental results obtained using the
0.187 in. strain gages. A column of root mean square (RMS) error values is also
included to provide a measure of the agreement of the experimental results to
the values predicted by each analytical method.

The data indicate that all the analytical models gave consistent and
accurate predictions for the Young's moduli of the three braids in the direction
of the longitudinal tows. The agreement of predicted and experimental
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transverse modulus values was, however, not as good. Although the RMS values
ranged from 25 to 30%, inspection of the data indicates that this was due largely
to the models' inability to match the modulus measured for the B1 material.
Predicted and experimental results for both the AI and the B2 materials were in
much closer agreement. The reason for this discrepancy are not fully
understood.

Each of the models gave reasonable approximations to the Vyx Poisson's
ratio but not the Vxy value. Large disagreements between experimental and
measured values for the BI material again account for most of the RMS error.

In general terms, increasing the rigor with which the model represented
the fiber architecture improved the agreement of predicted and experimental
results. The diagonal brick model gave a better correlation to the Young's
moduli than the corrected or uncorrected laminate analysis. The finite element
analysis provided the closest overall agreement although the improvement was
not dramatic.

The finite element analysis was marginally better in the sense of
minimizing root mean square error of correlation but required more skill in
application than is usually available in preliminary design. The main advantage
of the finite element model is its generality. It is equally applicable to a wide
variety of weaves, braids, or knits.

There is a need for improved methods of analysis and a wider range of
test data with regard to braid angles, percent of longitudinal material and fiber
content.

SUMMARY REMARKS

Triaxial braid reinforced composites have the potential for improved
impact resistance and lower fabrication costs. However, there are problems
associated with their application. Their basic design properties have not been
adequately characterized. Moreover, the data that is available raises questions
regarding the material behavior, the use of standard composite test methods
and procedures, and the ability to predict the elastic properties.

Textile reinforced composites must be analyzed and evaluated as a
structure and not a material. The fiber architecture plays a more dominant role
in these materials than in unidirectional tape materials. It is, therefore, most

25



important to define the fiber architecture in these composites to interpret
experimental results and to form the basis of analytical models.

Table IX. Correlation of Braid Composite Properties

PROPERTY MODEL MATERIAL MATERIAI_ MATERIALI RMSAI BI | B2 ERROR

Ex EXPERIMENT 6.62 6.55 6.31

(MSI) LAMINATE 6.98 7.22 6.68 7.5%

LAM. CORR. 6.98 7.22 6.68 7.5%

DIAG. BRICK 6.61 6.95 6.40 3.6%

FINITE ELEM. 6.81 6.89 6.32 2.9%

Ey EXPERIMENT 6.59 6.45 7.03

(MSI) LAMINATE 7.93 9.49 7.97 30.1%

LAM. CORR. 7.55 9.27 7.75 27.4%

DIAG. BRICK 7.24 9.07 7.61 24.9%

FINITE ELEM. 7.71 9.01 7.41 25.1%

Vx y EXPERIMENT 0.300 0.268 0.183
LAMINATE 0.276 0.166 0.181 22.5%

LAM. CORR. 0.232 0.166 0.182 25.5%

DIAG. BRICK 0.280 0.162 0.175 23.8%

FINITE ELEM. 0.259 0.187 0.169 19.6%

Vyx EXPERIMENT 0.307 0.199 0.190
LAMINATE 0.314 0.218 0.216 9.7%

LAM. CORR. 0.251 0.213 0.211 13.0%

DIAG. BRICK 0.307 0.212 0.208 6.7%

FINITE ELEM. 0.305 0.211 0.214 8.1%

Three different triaxial braids were investigated both analytically and
experimentally. A process science model was used to create a three dimensional
representation of the braid reinforcement. This representation was then used in
conjunction with a finite element analysis to predict the materials' mechanical
properties. In addition, the ability of a variety of simpler models to predict

26



performance was also studied. The experimental effort consisted of a series of
unnotched tension tests which were run in the two principal directions of
material orthotropy.

The process science model, used in conjunction with knowledge of the
braid process employed to fabricate the preforms, successfully predicted the
braid architecture and the significant braid parameters such as average braid
angle, fiber content, unit cell dimensions, tow spacing, and longitudinal!braid
yarn ratio.

The test data indicated that the Young's moduli in the 0° direction, the
longitudinal direction, were stable (in the sense of varying gradually with small
changes in microgeometry) and predictable by any of the common analysis
methods. Tensile strength in the same direction was erratic and inexplicable.
Young's modulus in the other principal direction, the transverse direction, was
stable with reinforcement parameter changes but not predictable analytically.
The correlation of predicted and experimental transverse modulus results was
acceptable for two of the three materials studied. Strength in the transverse
direction was somewhat consistent and intuitively acceptable. Poisson's ratio
measurements were reasonable but failed to correlate closely with analysis in
the case of contractions in the transverse direction.

The experimental results also indicate the need to carefully consider test
methods and procedures in view of the unique aspects of these materials.
lnhomogeneities may exist in the strain field due to the intertwining of the
fibers. This places increased demand on the instrumentation. The accuracy of
the strain readings, for example, is shown to be sensitive to the strain gage size.
Results indicate large gage sections were preferable in the braids studied. The
extensometer, with its one inch gage length, gave more consistent results than
any of the smaller gages. The largest strain gages correlated best with the
extensometer readings. In retrospect, significantly larger strain gage sizes and
extensometer lengths seem more appropriate to this class of material.

The effects of the fiber architecture on the material response also
necessitates an examination of the sizes of the specimens tested. If edge effects
are on the order of the unit cell dimensions then 1.5 in. wide specimens may not
be wide enough to represent the average material behavior.

The various different analysis models that were applied to the braid
reinforced laminates correlated well with each other. The data indicates that
the agreement between predicted and experimental values improved as the

'rigor in which the analyses modeled the fiber architecture increased. For
example, incorporating the effect of the braided fiber crimp into the corrected

27



laminated plate theory improved the agreement between predicted and
measured transverse moduli. The diagonal brick model with its more detailed
representation yielded even better results. The finite element model yielded
the best agreements although the improvements was not large in some cases.
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