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1. OVERVIEW

This research should lead to the development of new nonlinear methodologies for the adaptive

control and stability analysis of high angle-of-attack aircraft such as the F18 (HARV). The present

progress report reviews project research over the first half of the second year.
*.

The emphasis has been on nonlinear adaptive control, but associated model development, system

identification, stability analysis and simulation is performed in some detail as well. Table 1 summarizes

various models under investigation for different purposes.

Models and simulations for the longitudinal dynamics have been developed for all types except 6

hi Table 1. A very preliminary analysis has been made on type 6 (neural net models) for adaptive control
t

thus far. It has been shown that dynamic accuracy roughly increases with ascending order of model type

from 1 to 7, except that perhaps 3 (Volterra series) and 6 (neural nets) should be interchanged. However,

such comparisons depend on how the models are utilized. Here, the focus is on adaptive control,

generated by model-reference types 1 to 6, of a complex nonlinear aircraft motion represented by 7

(nonlinear ordinary differential equations). Preliminary analyses use a nonlinear second-order

approximation [1] which we found useful for changes in angle of attack (a) by about 10°. A fifth-order

nonlinear longitudinal model with the traditional stability derivatives generated as functions primarily of

a, for a given altitude and mach number, successfully mimicked F18 flight trajectories [2], and is being

utilized for our nonlinear adaptive-control studies at the present time. These models are discussed in the

project's first annual report [3].

Briefly, studies completed indicate that nonlinear adaptive control can outperform linear adaptive

control for rapid maneuvers with large changes in a. Figures 1 and 2 compare the transient responses

where the desired a varies from 5° to 60° to 30° and back to 5° all in about 16 sec. Here, the

horizontal stabilator is the only control used with an assumed first-order linear actuator with a 1/30 sec

time constant. Unfortunately, an additional rate constraint significantly reduces the system performance

for both the nonlinear and linear adaptive control as shown in Figures 3 to 5 and analyzed in the next



Table 1. Aircraft Models

Type Purpose Remarks/Limitations

1. Linear perturbations at
a = 5°, 15°, 35°, 60°

Local control, check of nonlinear
system, application of well devel-
oped linear control methodologies

Local stability

Only valid for small maneuvers

Special case of types 2-5

Gain scheduled (non-
linear function of or)
from 1

Gain-scheduled adaptive control
based on well developed methodolo-
gies

Simplified description of complex
system

Approximate stability

May have stability problems
with small number of reference
states and/or large fast maneu-
vers

Volterra series
a) at reference states
b) general case

Nonlinear adaptive control via cross-
correlation and/or £ priori dynamic
structure

stability approximation

Simplified dynamic description of
complex system

Non-orthogonal series approxi-
mation

Sufficiency of 2 or 3 kernels

Large computation time for
adaptation

Bilinear system
a) continuous
b) BARMA

Polynomial time series

Nonlinear adaptive control via model
reference identification (NLMRAC)

Stability approximation

Simplified dynamic description

Large computation time

Bilinearizing controllers may be
more practical than linearizing
ones

Polynomial approximation may
be more accurate but more time
consuming than linear or bi-
linear approximation

Neural network Potential application to adaptive
control

Probably less accurate than 4 or
5 for a given data set but accu-
racy may be more robust out-
side the available data set

Nonlinear ordinary
differential model

Accurate approximation to fast large
maneuvers for "final" design and
simulation

Stability

Neglects flexible modes and
other complications
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section. Such lack of controllability can be improved, of course, by introducing thrust vectoring as used

in [2]. Appropriate thrust-vector control to supplement the traditional pitch-motion stabilators is

underway for the nonlinear adaptive controllers, and preliminary results are encouraging.

A preliminary analysis of time-optimal control of a is studied in Section 3. Here, a new algorithm

is derived from the switching-time variational method [4,5] and then applied successfully to the simplified

second-order nonlinear model [1]. The method is presently being adapted to the more complex nonlinear

fifth-order model. This study should provide a "yard stick" by which to evaluate controller performance

as well as provide a base for more effective controller designs. As a byproduct of this analysis the

complicated Jacobian of the longitudinal dynamics will be computed as a function of a and other

variables. While it is used here to compute bang-bang controller switching times, it may have other uses



for approximate dynamic-system identification beyond the usual time-invariant linearized models at trim

states.

Finally, linear stability arguments are developed in Appendix C which tend to at least an

approximation of die admissible range of model parameters as applied to the nonlinear second-order

approximation [I].

2. NONLINEAR MAC ALGORITHM STATUS

Model algorithmic control (MAC), described in [3], starts with

"le/k*1) = cemod(k'1'1) * (ot(k) - "niodOO) ^

where

"modC**1) =P.T*(k) (?)

4>(k) = [a,a2,a3,q,qa,qa2,qa3,u,ua,ua2,uo3,l]T(k) @)

As the control at the moment k must be already computed at moment k the values of a(k) and q(k) are

not available for its computation so their estimates must be used instead. The correction term is taken

to be the prediction error from the moment k-1 and the equation becomes

with

[a,a2,d3,q,qo,qd2,qd3,u,ua,uo2,ua3,l]T(k)

a(k) = pj

q(k) = p



The controller is assumed to know the values of angle of attack and of pitch rate at the moment k-1.

Then it estimates their current values a(k) and q(k) taking into consideration previous prediction errors,

and based on them it calculates the control required to achieve a^f at the moment k+ 1. The value of

control is found as:

where

1) (6)

and a = a(k), q = q(k) as described above.

This algorithm was made to be adaptive, or self-tuning, by incorporating on-line identification of

the parameters. A recursive least squares (RLS) algorithm was implemented in the form taken from

p(k) . Q(k-2H(k-l) _

ock-2) - - - - - ( 8 )
) * <J»(k-l)TQ(k-2)4)(k-l)J

-l) =y(k) -P
T<|)(k-l) (9)

where y may denote a or q and p may stand for pa or pq, respectively. The forgetting factor X was

introduced to enable the algorithm to change the estimates of parameters with the change of operating

conditions. To avoid the unlimited growth of covariance matrix Q at the steady state when the input is

not persistently exciting, the variable forgetting factor policy was implemented:

= 1 - e (10)
e(k)2



where e(k) is the current prediction error, e(k) is the average prediction error from last 10 samples, and

e is equal to 0.01. As an additional precaution, the trace of the covariance matrix Q was monitored and

Q was reset to diagonal matrix whenever the threshold value was exceeded.

To further damp the response, the controller is designed to minimize the one step ahead cost

function:

with ymod> yr as before. Minimization of (11) with respect to u(k) yields

u(t) . y. - •)"
b2 + p

where

a = Pt«« + P2««2 + P3««3 + P4«3 + Ps«<Ia + P6«9a2 * P?.*!"3 + Pita

Obviously, for p = 0 (12) reduces to (5) while for p = oo we have u(k) = u(k-l) = const.

This controller is used in Figures 2, 4, and 5 with only the linear portion of a,b used in Figures

1 and 3. The algorithm will be generalized to include thrust vector control and variable-horizon cost.

3. TIME-OPTIMAL CONTROL

3.1 Introduction I

Various control strategies have been developed by the team and to find their merits it seems usefu

to have an idea of what are the best output and state trajectories theoretically possible, given the existing

constraints on the control variables. For substantially nonlinear systems the problem of synthesis of the

optimal feedback control law is usually untractable. On the other hand, there exist numerical technique

that allow us to calculate "open loop controls" - i.e., the specific control signals necessary to achieve

minimum performance index. Aware of the difficulties connected with the controller synthesis problec

8



we do not seek its exact solution; at this time, we merely want to find the limit for the performance of

a controller assuming perfect knowledge of plant dynamics and absence of any unforeseen disturbances.

This report is concerned with the problem of time-optimal control in which we are interested in

transferring the system's state from an initial value to some prescribed terminal set in minimal time. In

the aircraft problem this might mean changing the flight's pitch angle, path angle, or angle of attack from

an initial equilibrium value to some other terminal value, preferably also with all other states moving to

the equilibrium. The control value (stabilator or elevator angle) is naturally bounded from below and

from above. For some systems it turns out that in case of such simple cube-type constraints on control

variables, the time-optimal control is of bang-bang type. However, for quite a large class of systems that

are affine in control, we may approximate any measurable control signal with a bang-bang signal with

arbitrary accuracy in the sense that corresponding state trajectories are arbitrary close to each other in

L1 metric. Hence, also time-optimal control, if it exists, may be approximated by a bang-bang control,

even if it contains singular arcs. Therefore, the approach presented here is to find the bang-bang control

that will minimize the transition time. The computational algorithm used here is the switching-time-

variation method developed in [4,5]. Since the algorithm gives as an output a control signal with finite

number of switchings, it is tacitly assumed that with large enough finite number of switchings, we are

able to achieve good enough approximation of optimal control. This, unfortunately, does not follow from

the theory I am aware of, since the above mentioned approximation result holds only for bang-bang

signals with possibly infinite or even uncountable number of switchings. This delicate question is left

aside for the time being to be clarified later. Another point worth indicating here is that resulting control,

in an attempt to approximate a continuous "singular" control, may have inter-switching tunes very small,

thus precluding any practicality of the approximation. This, however, is of no concern to us since, as

mentioned before, we are interested only in finding the best possible output, or state, trajectories - not

the actual control signals corresponding to them at this time.



A computer program has been developed for numerical solution of the problem. The program, due

to its modular construction, easily allows various plant models to be plugged into it. The switching-time-

variation method is used in it for fixed terminal time with the quality function being the weighted distance

of the target set. Then the smallest such time is found that allows it to hit the target exactly, and finally

the optimal number of switchings is iteratively found that gives minimal transition tune.

In what follows the switching-time-variation method is briefly characterized in Section 3.2. Section

3.3 discusses briefly the approximation dieorem for bang-bang controls in systems affine in control. The

computer implementation of the algorithm is discussed in Section 3.4. Section 3.5 contains the test

results of the program for a second-order model of longitudinal dynamics of an aircraft. The concluding

remarks discuss the possibilities of application of the computer package to solutions of more complex and

problems more close to reality.

3.2 Switching-Time-Variation Method

The switching-time-variation method used here was taken from [4], and the original thesis [5] was

also consulted for the details. The method is designed for the computation of optimal control in the class

of bang-bang control signals with finite number of switchings. The quality criterion is assumed to be

J -/' '(foOO + go(x)u(t))dt (13)

for the system of the form

^ = f(x) + g(x)u(t) (14)
at

where x e Rn, u e R1, t e [tg,tf]. To ensure the existence and uniqueness of solutions of (14), f and

are assumed to be continuously differentiable with respect to x. The control values are constrained by]

-1 * u(t) <> 1

10



Of course, any control constraints of the cube-like type u^ ^ u(t) ^ u,,̂  may be transformed to form

(15) for system affine in control. The control objective is to minimize the quality criterion (13) for given

initial state XQ with possible penalty term connected with final state already included in f0 and g0 by

standard transformations, assuming that admissible controls are bang-bang with finite number of

switchings. The version of the algorithm described in [4] was developed for systems with scalar controls

and the computer program described here is also designed for this special case. However, it is not of

any particular difficulty to generalize the algorithm to the case of u e Rm. If the need arises, the

computer program may also be modified to accommodate this possibility. Here the scalar version will

be presented because of its notational simplicity.

The method is an iterative one - in each step the gradient of the quality criterion with respect to

switching times is computed. The switching vector is defined as:

t = (V-,tN) (16)

where N is the number of switchings, with constraints:

t,, z tt <; ... * TN * t, (17)

The control value on the interval [Tj,ri+1) is then equal (-1)1. The augmented system is defined as:

^ = f(x) + g(x)u(t) (18)
at

where F = (f0,f
T), t7 = (g0>§T)» *o = (°>xo)' and me adJ°int system equation is

T

with terminal conditions X^tf) = (d]ldx$(tf). Then the gradient of the quality criterion with respect to

the switching vector may be calculated by means of the formula

11



.(-ly-i^t,) (20)
dTj

with function <j> defined by

4>(t) = 2<g(x(t)U) (21)

with gradient calculated the method consists of iterative descent steps

T.(k+l) =T,(k) + ]q|L (22)
ati

where kj are such that constraints (17) are satisfied and sufficiently small to ensure that J(k+ 1) < J(k).

The algorithm is terminated if either the gradient is zero or no feasible (i.e., descent) step may be

executed.

On top of the algorithm of rinding the optimal switchings with their number given there is an outer

loop modifying this number. If the optimal control results in a constraints r-t £ r-l+l active than the

switchings i and i+ 1 should be removed. On the other hand, if there are two zeros of <j>(t) not coinciding

with any of the switching times than two switchings should be added between these zeros. After the

modifications of the dimensionality of the switching vector the inner loop of optimization is again

performed and the process is terminated when no more changes of the number of switches are necessary.

It is worth noticing that the above algorithm of finding the optimal bang-bang control may be also

generalized for broader class of systems dx/dt = f(x(t),u(t)). The main difference would be the formul

for function <£(tO) which would become

- f(x(t),UnilI)) , X) (23)

Of course, the technical assumptions ensuring the existence of solutions should be satisfied.

12



3.3 Approximation for Systems Affine in Control

The algorithm described above calculates the optimal control within the class of bang-bang control.

However, for systems affine in control a result is available stating that we may approximate an arbitrary

admissible control with a bang-bang control such that corresponding trajectories are arbitrary close.

The theorem, stated and proven in [6], assumes that we have a system of the form (14) with

constraints (15). Functions f and g are continuously differentiable, and a Lipshitz type condition

< f(x) + g(x)u,x > < K(l + I x ||2) preventing finite escape-time is also assumed to be satisfied for all

x in the region of interest. Then an arbitrary measurable control signal u(t), t e [tQ,tf] satisfying (15) is

considered with corresponding state trajectory x(t). Then the theorem states that given any e > 0 is

always possible to find a bang-bang control u*(t) satisfying | u*(t) | ^ 1, such that the corresponding state

trajectory x*(t) approximates x(t) uniformly on [t^tf] with accuracy less than e, i.e., |x(t) - x*(t)| ^ e

for all t e [tg.tf].

Although the theorem stated above considers a bang-bang control with not necessarily finite or even

countable number of switchings, it gives some justification to using the switching-time-variation method

for systems with singular optimal controls. Intuitively for reasonably smooth systems there should be

some kind of continuity enabling in turn approximating the bang-bang control u* with a sequence of bang-

bang signals u with finite number of switchings. However, I am not aware of any such result, and in

monograph [7] from 1990 the aforementioned result is cited after [6] as the only available. It still seems

feasible to come up with some, maybe more restrictive, assumptions which would justify using finite

number of switchings.

3.4 Computer Implementation

The algorithm discussed in Section 3.2 was implemented as a quite general software package. It

finds the time-optimal control for the case when the terminal set is a single point y. The time-optimal

13



problem with fixed terminal set is replaced with a sequence of fixed time and free terminal state problems

with quality index

' - s P^t,) - yf (24)

Switching-time-variation method is used to solve this problem, and the desired final time is decreased if

the resulting quality is zero or is increased in the opposite case. This iteration is repeated until we get

to the limit time tf below which the quality is always positive, i.e., it is not possible to find a bang-bang
ii

control transferring the system from XQ to y.

The optimization method described in Section 3.2 was modified somewhat in details of the gradient

minimization routine. Instead of performing single step in the direction, a directional search is performed

with constrained step size. A combination of two-point gradient parabolic approximation and three-point

non-gradient parabolic approximation is used to find the minimum in the direction. The generation of

the descent direction is also somewhat different. First, if any of the constraints (15) are active and the

gradient points outside the feasible region, the gradient is projected on the proper constraining

hyperplane. The special structure of constraints causes the projection to consist solely of putting the

appropriate coordinates of the gradient to zero. Then the direction is tangent to the constraining

hyperplane, and we get an optimization problem of reduced dimensionality. This problem is solved using

a conjugate gradient method in the version proposed in [6]. The conjugate gradient is restarted not onlj

every N iterations, where N is the current dimensionality of the problem, but also whenever the set olj

active constraints changes - i.e., when the algorithm hits or leaves a constraining hyperplane. The

termination of the procedure occurs when the projected gradient is zero - i.e., no feasible descent ste

is possible, or equivalently when the dimension of the current optimization hyperplane becomes zero.

The calculation of the quality criterion and of its gradient involves numerical integration of Eqsl

(18) and (19). This is done using a fourth-order Runge-Kutta integration method. To integrate thd

14



adjoint equation (19) the whole state trajectory resulting from integrating (18) must be stored, but for

calculation only a small number of points from the costate trajectory is needed.

The program is written in the fashion enabling easy substitutions of different plant models and

different optimization tasks. To use another model one has simply to provide the routines calculating the

right-hand sides of Eqs. (18) and (19). The problem is defined in a straightforward fashion by setting

the values of initial state> terminal state, initial estimate of the final time, etc., hi the main routine. The

whole program is written in C programming language, and although compiled and run on an IBM PC,

it may be easily ported to any machine with C language compiler. The only difficulty that may occur

with more complex systems is the rather severe storage requirements - whole state trajectory has to be

stored with sufficiently small discretization step in order to calculate the gradient. And, of course, there

will always be the problem with the speed of calculations for higher dimensional systems.

3.5 Simulations

The program described above was tested on a model previously used (in our NASA project), i.e.,

a simplified longitudinal aircraft model of second order (so called "Stalford model") described in [6].

For the aircraft model the problem solved was to increase or decrease the value of angle of attack

with the requirement that the maneuver should move the system from the equilibrium corresponding to

starting value of the angle of attack to the equilibrium corresponding to its final value. The control

signal, the elevator angle, was assumed to be between 0 and -20 degrees. The series of maneuvers

simulated was labeled in the following way:

maneuver A: from 0 to 15 degrees; 'A': from 15 to 0 degrees

maneuver B: from 0 to 18 degrees; B': from 18 to 0 degrees
/

maneuver C: from 0 to 20 degrees; C': from 20 to 0 degrees

maneuver D: from 5 to 15 degrees, D': from 15 to 5 degrees

maneuver E: from 5 to 18 degrees, E': from 18 to 5 degrees

15



maneuver F: from 5 to 20 degrees, F*: from 20 to 5 degrees

' maneuver G: from 10 to 15 degrees, G': from 15 to 10 degrees

maneuver H: from 10 to 18 degrees, H': from 18 to 10 degrees

maneuver I: from 10 to 20 degrees, I': from 20 to 10 degrees

maneuver J: from 15 to 18 degrees, J': from 18 to 15 degrees

maneuver K: from 15 to 20 degrees, K': from 20 to 15 degrees

The results of the optimization for each of these maneuvers is depicted in Figures 6-16. It may be

observed that for all of them the time-optimal control had only one switch. In all cases the time-optimal

trajectory for a had a substantial overshoot and consisted of an almost linear first portion with high slope

before the switch and of slowly decreasing second portion.

3.6 Conclusions

The computer program presented here is suitable for calculating the time-optimal controls for

arbitrary finite-dimensional systems which are affine in control. The simulation results discussed here

have mainly testing value showing that the program is in operation. The next step should be to use the

program on some more complex models such as the fourth-order longitudinal-aircraft model, which

together with a linear actuator is definitely affine in control. The resulting time-optimal trajectories for

different maneuvers could be used as benchmark tests for other controllers or as reference trajectorie

for time-series-based, adaptive, one-step-ahead (or many-steps-ahead) control. The work on this is

underway.
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1. INTRODUCTION

Two nonlinear algorithmic controllers, MAC, are studied here. One uses a

block-canceling Volterra approximation, and the other MAC consists of solving an

approximating polynomial time series instate and control. Both methods synthesize

discrete control sequences and are applied successfully to the control of a simple

nonlinear longitudinal aircraft model for large variations in angle of attack.

The Volterra-series approach used here was introduced by Modyaev and Averina

[1], and a form of inverse generating control according to an assumed structure is

presented by Harris [2]. This work formed the basis for the methods used here. The

high angle-of-attack aircraft model derived by Stalford, et al. [3] was the plant

simulated for the MAC application. In many traditional design studies, a sequence

of linearized perturbation models are derived for different equilibrium flight

conditions with linear controllers appropriately derived. Linear adaptive control can

be derived according to nonlinear gain scheduling of the control law. A highly

successful version of such control, which includes proportional plus integral plus filter

(PIF) terms, is presented by Ostroff [4,5]. However, such designs usually require a

large number of set-point design computations, and may have stability problems for

large fast changes in angle of attack and/or mach number.

For generation of the nonlinear control, a nonlinear time-series based model

reference is used. In order to identify such model, experimental data was collected

for angle of attack (a) and pitch rate (q) subject to random steps of control



(stabilator, 5). To capture such phenomena as limit cycles in the data the steps were

rather long (40 s). There were 64 such steps with time discretization of 0.1 s

resulting in 25,600 points in a state plane for 64 values of control.

For a least-squares simulated data fit, the following approximation was

surprisingly accurate:

«(k+1) = Pi««(k) + P2a«
2(k) + P3a«

3(k) +

P5aq(k)«(k) * P6«q(k)o2(k) + P7aq(k)o3(k) *

P9au(k)a(k) + P10au(k)o2(k) + p11au(k)a3(k) + p12a

= P1qa(k) + P2qa
2(k) + P3qa

3(k) +

p4qq(k) + P5qq(k)o(k) + p6qq(k)a2(k) + p7qq(k)a3(k) +

Paqqu(k) + P9qU(k)a(k) + p10qu(k)a2(k) + p11qu(k)o3(k) + p12q

Even limit cycles are accurately rendered by this model, as well as the stable zone

behavior, although large discrepancies occur when the control values are close to the

stable/unstable zones border.

2. ADAPTIVE CONTROL APPROACHES

2.1 Nonlinear Volterra-Based Control

Here, as in [6], the Volterra series serves as a conceptual starting point for a

nonlinear time series base control. Continuous time controllers based on Volterraj
series were systematically developed in [7] with formulae for the controller's kernels

given those of the plant and of the desired feedback system. In particular, the

problem of so-called exact feedback linearization was solved here. However, those

formulae may be of limited practical value because of the properties of Volterra

series under feedback. The problem is that even finite (e.g., second order) Volterra

series of the open loop results in infinite Volterra series of the closed loop. This

makes it necessary for the controller to include theoretically an infinite number of



compensating terms even for a quadratic system. The same problem for the discrete

time systems was treated in [1] with multidimensional Z transforms to derive the set

of formulae equivalent to those for so-called exact feedback linearization [8].

However, they also provided a very elegant transformation of which results in a

controller requiring only as many Volterra terms as there are in the assumed plant.

One attractive feature of this controller is that its structure makes it possible to

utilize it not only with models represented in the form of Volterra series, but in fact

with any model with easily divided linear and nonlinear parts of the dynamic

equations such as (2) above.

The following algorithm results:

a) according to the linear part of the plant, calculate the linear control uL(k)

b) calculate the predicted value of the output at the moment k

y(k) = L(y(k-1) ..... y(k-M)fu(k-1),...,u(k-M))
) ..... y(k-M),u(k-1) ..... u(k-M)

c) solve the "linearizing" control equation for x(k) such that

tf(y(k),y(k-1) ..... y(k-lvU1),uL(k)-x(k),u(k-1) ..... u(k-IVM)) =

=L(x(k),x(k-1) ..... x(k-M+1),y(k),y(k-1) ..... y(

3) calculate the control by

u(k) = UL(k) - x(k)

This algorithm becomes a sort of prediction controller which tries to estimate the

effects of the previous controls knowing the previous values of outputs and then to

adjust the current value of control so that the nonlinear part of predicted output is

canceled.

This discrete time nonlinear a control algorithm is generated according to an off-

line identification of model (1) with a nonlinear aircraft simulation based on [3].

Also, a linear controller was designed according to the linear parts of (l)-(3).

The design was performed to obtain the closed loop model reference behavior

of the form



G(z) = 0.05/(z2 - 1.6z + 0.65)

In order not to cancel the zero of the plant, the observer polynomial (z-0.7) was

introduced. The algorithm for the control value u(k) is as follows. First the estimate

of the output at moment k is calculated from (1) with k replaced by k-1.

Then it can be shown that the control becomes

U(k) - P8aUL(k) " K°2 * p3«*3 * Ps"^ * Peqq«2 * P?.̂ 3 * Pi2.) (4)

(Ps« + Pg«« + Pio««2 + Pna"3)

with a(k) and q(k) designating estimates taken from (1). It is seen that if there are

no nonlinearities in the model the control reduces to a regular linear controller

u = UL.

Simulations were run to test the controller performance especially in the

unstable range of angle of attack. The system is successfully stabilized and the

transients are very smooth and without significant overshoots for the nonlinear

control as demonstrated by Figure la. By different choice of the reference model

it is possible to obtain much faster, but at the same time much more "nervous"

transients. The elevator control is also relatively smooth and within the range

corresponding to the terminal equilibria. As can be seen from Figure Ib, the similar

linear control is unstable.

2.2 On-Line Adaptive MAC Algorithm

.1

Model algorithmic control (MAC), described for example in [2], consists of

solving the model equation for the value of control necessary to obtain required

value of output. Usually this desired output trajectory is generated form the setpoint

by means of a reference model. In case this model is linear, the algorithm in essence

becomes a linearizing one.



Here, the controlled output is assumed to be the angle of attack such that the

reference equation becomes:

with

= [fi, a2, a3, q, qa, qa2, qa3, U, ua, Ua2, Ua3, l]T(k)

500 - P.T*(k-l) * («(k-l) - a^k-t))

q(k) = pq
T4>(k-1) + (q(k-1) - qmod(k-1))

The controller is assumed to know the values of angle of attack and of pitch rate at

the moment k-1. Then it estimates their current values ec(k) and q(k) taking into

consideration previous prediction errors and based on them it calculates the control

required to achieve aref at the moment k+1. The value of control is found as:

U(k) = r " Pl2tt

Ps. + P9«« * Pio««2 + Pn««3

(6) .

where

or = are((k+1) - (a(k-1) - amod(k-1))

and a = a(k), q = q(k) as described above.

The results of the simulations are seen in Figures 2a,b. The-reference trajectory

was chosen to be l/z2-1.6z+0.65). The actual output of the plant is seen to follow

the reference very closely, even though the region of operation was that of the most

severe nonlinearities. The control action is also remarkably smooth.

The discrete time nonlinear state space model (1) describes the behavior of the

complex nonlinear plant quite accurately in the entire region of operation. In

practice, however, such a global model is rather difficult to fit, and consequently one



should look for local approximations, depending on the current operating conditions.

In such a situation, on-line adaptive control seems to offer an ideal solution.

The algorithm discussed in the previous section can be made adaptive, or self-

tuning, by incorporating on-line identification of the parameters. A recursive least

squares (RLS) algorithm was implemented in the following form taken from [8]:

p(k) -- - - e(k)

Qflc-1) = _L_ (Q(k_2) - Q(k-2)4>(k-
-1) -Kt>(k-1)TQ(k-2)4>(k-1)J

= y(k) - pT<t>(k-1) w

where y may denote a or q and p may stand for p. or pq, respectively. The forgetting

factor X was introduced to enable the algorithm to change the estimates of

parameters with the change of operating conditions. To avoid the unlimited growth

of covariance matrix Q at the steady state when the input is not persistently exciting

the variable forgetting factor policy was implemented:

1 - e do)
e(k)2

where e(k) is the current prediction error, e(k) is the average prediction error form

last 10 samples and e is equal to 0.01. As an additional precaution the trace of the

covariance matrix Q was monitored and Q was reset to diagonal matrix whenever the

threshold value was exceeded. Starting values of parameters were taken to be as in

(1).

Figure 2 displays the simulation results for a reference model specified as

l/(z2-1.8z+0.82). Remarkably exact following of the reference trajectory may be

observed, although, surprisingly enough, the performance is slightly worse than in the

nonadaptive case. Most probably this is due to the fact that prediction error now

changes much more quickly because of the ongoing identification process. Thus,

approximating the term (y(k+l)-yniod(k+l)) by (yCk-lJ-y^k-l)) may worsen the



behavior of the system as two values of y,,,,,, no longer correspond to the same

parameter vector. Since the on-line identification process assures (at least in

principle) that the prediction error should asymptotically converge to zero it is

possible that the correction terms in i(k), q(k), and in control equation (5) ought to

be omitted.

The performance of the adaptive nonlinear MAC controller was compared to

the linear one, which uses the same control strategy but with a strictly linear model

being identified and used for the calculation of the control action. Clear difference

between the performance of linear and nonlinear controller can be seen from Figure

3. particularly in control action at the setpoint o = 15°. The linear identifier has

obvious difficulties with fitting the parameters of a linear model to the behavior of

the plant which is highly nonlinear in this region. As a result, the control starts

oscillating for a while. Also, it was seen that the nonlinear algorithm results in

control plots that are more smooth, although they still contain one-pulse spikes. To

eliminate these spikes weighting of the increments of control can be introduced into

the algorithm with little performance deformation.

4. CONCLUSIONS

The nonlinear control applications to high angle-of-attack aircraft, as reported

here, is of a preliminary nature. However, the analysis does suggest that nonlinear

adaptive control can be quite effective to stabilize large rapid maneuvers in angle of

attack. Of the comparisons made, the on-linear, nonlinear-time-series and adaptation

performed the best and was quite superior to a similar linear MAC.

5. ACKNOWLEDGEMENT

The research reported here is supported by NASA Grant No. NAG-1-1081 with

supplemental support from NSF Grant No. ECS8913773.



REFERENCES

[1] A.D. Modyaev, A.D. Averina, "Analysis and synthesis of discrete control systems
based on multidimensional z transforms," in Philosophy of Nonlinear Systems
(B. Naumov, ed.), Mir Publishers/CRC Press, 1990.

[2] K. Harris, "Properties of nonlinear model algorithmic control," Proceedings of
24th Conference on Decision and Control, Ft Lauderdale, 1985, vol. 1, pp. 663-
665.

[3] H. Stalford, W.T. Baumann, F.E. Garrett, T.L. Herdman, "Accurate modeling
of nonlinear systems using Volterra series submodels," Proceedings of the 1987
American Control Conference, Minneapolis, 1987, Vol. 2, pp. 886-891.

[4] A. Ostroff, "Application of variable-gain output feedback for high-alpha control,"
AIAA Guidance, Nav. & Control Conf., Boston, 1989.

[5] A. Ostroff,"Superagility application of a variable-gain output feedback control
design methodology," NASA High Angle of Attack Tech. Conf., Hampton, VA,
1990.

[6] H. Wakamatsu, "Model reference nonlinear adaptive control system using
nonlinear autoregressive moving average model derived from Volterra series and
its application to control of respiration," Proceedings of IF AC 10th Triennial
World Congress, Munich, 1987, Vol. 10, pp. 191-196.

[7] S.A. Al-Baiyat, "Nonlinear feedback synthesis: a Volterra approach," Ph.D.
dissertation, Department of Electrical Engineering, University of Notre Dame,
1986.

[8] G.C. Goodwin, K.S. Sin, Adaptive Filtering,. Prediction and Control. Prentice
Hall, 1984.



Figure la: Step response with non- Figure Ib: Step response with linear
linear controller vs. nominal response controller

It II • 14 !• 10 It 14 I*

Figure 2a: Nonlinear adaptive MAC Figure 2b: Nonlinear adaptive MAC
(with reference trajectory)

7 -10

-II

-IS

-14

V j

Z

i T

K i

Figure 3a: Linear adaptive MAC (with Figure 3b: Linear adaptive MAC
reference trajectory)



APPENDIX C

Analysis of Nonlinear System Stability Using

Robust Stability Analysis for Linear Systems



ANALYSIS OF NONLINEAR SYSTEM STABILITY USING ROBUST STABILITY

ANALYSIS APPROACH FOR LINEAR SYSTEMS

Jerzy E. Kurek

Instytut Automatyki Przemyslowej, Politechnika Warszawska

ilnst. of Industrial Automatics, Warsaw University of Technology)

ul. Chodkiewicza 8, 02-525 Warszawa, Poland

Fax (22) 29-2962, Tel (22) 49-9616, Tlx 813307 pwpl

During the research author was with

Department of Electrical and Computer Engineering

Oregon State University, Corvallis, Oregon 97331-3211, U.S.A.

Summary

The stability analysis of an airplane using its nonlinear model is

presented. The analysis is based on the robust stability analysis

approach for linear systems. Then, based on analysis, a small

static feedback gain is designed such that the robustness of the

closed-loop nonlinear system stability is significantly improved.
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1. INTRODUCTION

The stability is one of the most important issues in the cont

system design. Recently there has been observed a great inter

in the methodology of robust stability analysis and design

robust control systems for linear dynamic systems [6] .

objective of this paper is to investigate the applicability

this approach for nonlinear dynamic system such as an aircr

flight in high angle of attack/sideslip flight. The unsta

control system can result in the plane crash.

There is considered stability of nonlinear, simplified howev

model of the airplane. The organization of the paper is

follows. In section 2, the model of the plane is present

Stability of the aircraft is considered in section 3. Final

concluding remarks are given.

2. THE AIRCRAFT MODEL.

Model of an airplane is highly nonlinear, [4,5]. There

usually, however, used simplified models for control sys

design, e.g. [1,3,9]. In this paper we consider very simple mo

given in [8]:

x=A(x)x+Bu+D

where x= a is a state vector, a is the angle of attack

degrees, q is the pitch ratio in degrees per second and u is

elevator control in degrees,

A= 9.168c(«)z

-5.73

R f-1.83361 n _f-5. 4732961
a~L-8.5950j' U~[ 2.865000J

and c (a) is a nonlinear function. This function can, however,

approximated as follows:



C (a) =z

-0.072815870 for 0° s a * 14.74°
0.088470922-2.3774/a for 14.74° < a s 17.40°
0.033099050-1.4068/a for 17.40° < a s 18.87°
-0.016633734-0.4743/a for 18.87° < a s 28.00°

It is easy to find that

° °-0.072818087 < c (a) s -0.048161261 for 14.74° < a £ 17.40
Z

-0.047751524 < c (a) * -0.041453149 for 17.40° < a s 18.87

-0.041768869 < c (a) s -0.033573019 for 18.87° < a s 28.00°

This model approximates model taken from measured wind tunnel

values of the T-2C airplane [7] . It is known that numerical values

of c (a) and b,, are uncertain.
Z &

Our purpose is to consider stability of system (1) in the range of

angle of attack 0°̂ â 28°, and to find a static feedback which can,

eventually, improve the stability of the plane in this range.

3. STABILITY ANALYSIS.

Consider linear time- invariant system

x=Ax (4)

where xeRn is a state vector. Then, assuming that the system is

asymptotically stable one can define the following notions, [2].

Definition 1 .

A connected set flT in the system parameters -space (parameters of

matrix A) is a robust time invariant stable (RTIS) set for system

(4) iff AeQ... and every time -invariant system

x=4x ( 5 ) .

is asymptotically stable for sten.-.



Definition 2_.

A connected set £1. in the system parameters-space is a robust t:

varying stable (RTVS) set for system (4) iff AeO^ and every tlr

varying system (5) is asymptotically stable for

Then, consider four linear models instead of (2), respectively:

c (a) =z

-0.072815870 for 0° s a s 14.74°
-0.048161261 for 14.74° < a s 17.40°
-0.041453149 for 17.40° < a s 18.87°
-0.016633734 for 18.87° < a s 28.00°

It is easy to find that all models are asymptotically stable,

are, however, interested in the set of (k-,k~) such that all '
J_ ^

linear closed loop systems will be stable with the follow:

feedback

u=Kx, K=[k- k]

An appropriate region n, can be easily calculated based

algorithm 2 proposed in [2]. This is, however, only the sec

order system and one can simply obtain analytical formulas for

RTIS region in this case. The characteristic polynomial for

2nd order system has the following form

2
s +as+b=0

It is known that all roots of this polynomial are in the left h

plane, i.e. a system is asymptotically stable stable, iff a>0

b>0. Based on this, the RTIS region a., for 'stable' feedback ga

was calculated. The region, is presented on fig. 1, a dashed ]

represents RTIS region for model PI, 0°sosl4.74°, a dotted moc

P2 for 14.74°«xil7 .4°, a dash-dotted model P3 for 17 .40°<asl8.8

and a continuous line model P4 for 18.87°<as28°. It -is easy to

that the system without feedback, i.e. k-.=k2=0, sign + on

plane (k-,k~), is very close to the stability region boundary,

can improve stability assuming appropriate K from Q (k^k-).



Next, RTVS sets Qy were calculated for these models, according to

the algorithm given in [2], for uncertain parameters a..., and a--,

in A. They are presented on fig. 2. All four models are inside the

RTVS region calculated for the model P4 . Moreover, since all time

varying (nonlinear) a1;L=9 .168cz (a) is smaller than nominal values

used in linear models it means that the whole nonlinear system (1)

is asymptotically stable for 0°sô 28°. However, there is a very

small upper bound for a-., in this model, namely

+Aa1:L < 0.0227

This can cause that with small system uncertainty the system can

be unstable. The vertexes of RTVS quadrilateral O^ on the plane

(Aa11,Aa-1) are as follows:
.1. X ^ J_

Vyo = { (-176.5,0), (0.0226,0), (0, -0.2274) (0,0.2944) }

In order to improve system stability feedback gain matrix K was

chosen from QT . Intuitively, it seems that a good gain is "a small

one - a high gain can result in a lack of system controllability

because of saturation of the control input, and such that the

stability margin with respect to K will be rather large.

Thus, the good choice seems to be K-=[0 0.2]. For this gain one

obtains significant improvement of RTVS set. This set is shown on

fig. 3. In this case also all models are inside the n...- calculated

for the model P4 . However, an upper bound for a,, is more than 8

times greater:

< °-1835

Also range for uncertain parameter a--, is almost 6 times larger.

Indeed, the vertexes of RTVS quadrilateral in this case on the

plane (Aa.,,,Aa21) are as follows

Vvl = { (-25049,0), (0.1835,0), (0,-3.547), (0,3.211) }



Then, it was considered feedback gain K2=[0.2 0] . This ga

however, seems to be worse situated in the RTIS set Q_ than

considering the stability region with respect to K. Neverthele

also in this case one obtains improvement of robust stability

the closed loop system. The appropriate RTVS set £1, is shown

fig. 4. In this case an upper bound for â .. is as follows

< 0 .0613

Similarly, range for perturbation in a--, is larger than for K

The vertexes of RTVS set Q are as follows

VV2 = { (-65.15,0), (0.0613,0), (0, -0.5770), (0,1.3641) }

It should be noted that all RTVS sets were calculated un<

assumption Q=I in algorithm 3 [2] .

From the above analysis follows that relatively small sta

linear feedback gain K=[0 0.2] significantly improves stabil.

of the system. It should be emphsized that every nonlinear/tij

varying system (1) with a^ and a21 from the obtained RTVS set

will be asymptotically stable. This way we have designed a robu

stable nonlinear closed-loop system.

j
4. CONCLUDING REMARKS.

A robust-stable nonlinear controlsystem has been designed. It

shown that small linear static feedback gain can significa

improve stability of the airplane. The feedback gain seems to (|

so small that it should not constrain control signal during pi

maneuvering. This should also results in better a controllabil

of the plane.
/

The stability analysis and feedback gain synthesis were done us

methods designed for linear systems [2]. This, approach can

also used for more complicated nonlinear systems. For instar



assuming as a base model for the airplane, the linear 9th order

model given in [1,9]. This model is unstable, but, as it was shown

in [2], one can deal also with unstable models using the same
approach.

Presented results also show the power of the approach proposed in

[2] .

REFERENCES.

[ 1] S.Grag, D.L.Mattern and R.E.Bullard, "Integrated flight/
propulsion control system design on a centralized approach",
J. Guidance Control and Dynamics, vol. 14, 1991.

[ 2] J.E.Kurek, "Robust stability region for linear systems - part
I: continuous-time systems", IEEE Trans. Automat. Control,
submitted.

[ 3] R.R.Mohler et. al., Nonlinear stability and control study of
highly maneuverable high performance aircraft, OSU-ECE report
NASA 91-01, Oregon State University, 1991.

[ 4] R.R.Mohler, Nonlinear systems v. 1: Dynamics and control,
Prentice-Hall, Englewood Cliffs, 1991.

[ 5] A.J.Ostroff, "Application of variable-gain output feedback
for high-alpha control", AIAA Guidance Navigation and Control
Conf., Boston, paper No. 89-3576, 1989.

[ 6] D.D.Siljak, "Parameter space methods for robust control
design: a guided tour", IEEE Trans. Automat. Control, vol.
AC-34, pp. 674-688, 1989.

[ 7] H.Stalford, "Application of the estimation-before-modeling
(EBM) system identification method to the high angle of
attack/sideslip flight of the T-2C jet trainer aircraft",
Naval Air development Center Report NADC-76097-30, vol. Ill,
1979.

[ 8] H.Stalford, W.T.Baumann, F.E.Garret, T.L.Herdman, "Accurate
modeling of nonlinear systems using Volterra series
submodels", Proc. 1987 American Control Conference,
Minneapolis, vol. 2, pp. 886-891, 1987.

[9] T.Troudet, S.Garg, W.C.Merrill, "Neural network application
to aircraft control system design", Proc. AIAA Guidance,
Navigation and Control Conference, New Orleans, Loiusiana,
vol. 3, pp. 993-1009, 1991.



1.2
Fig. 1. The RTIS region on plane (kl. k2)- for PI. P2. P3. P4
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Fig. 2. The HTVS region for PI. P2. P3, P4 with K-[0. 0]
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Fig. 3. The RTVS region for PI. P2. P3. P4 with K-[0.0.2]
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Fig. 4. The RTVS region for PI. P2. P3. P4 with K-[0.2. 0]
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