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ABSTRACT

In the past, analytical and measurement-based models have been developed to char-

acterize computer system behavior. An open issue has been how these models can be

used, if at all, for system design improvement. This thesis attempts to address this issue.

It proposes a combined statistical/analytical approach to use measurements from one

environment to model the system failure behavior in a new environment. A comparison

of the predicted results with the actual data from the new environment shows a close

correspondence.
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1. INTRODUCTION

1.1 Motivation

The evaluation of computer system performability is an important research issue.

The need for both higher performance and dependability motivates the development of

accurate and powerful models to aid in system design, tuning, and reliability evaluation.

This thesis is concerned with developing measurement-based performability models and

the use of such models for predicting system behavior under new and yet unmeasured

conditions.

Previous research [1], [2] has shown that system failure rate is dependent on resource

usage and that increased resource usage is accompanied by increased failure. Physically,

this dependence can be caused by several factors: Increased usage can result in higher

probability of detecting faults as more of the system is exercised. Increased usage can

also result in more stress on the hardware, in the form of higher levels of electronic noise,



temperature, and device and mechanical stress. Finally, increased usage can result in

increased likelihood of human error which can lead to system failure.

The dependence of reliability on resource usage suggests that error/failure behavior

may be predicted. By observing the resource usage behavior and failure occurrences

of a system over some period of time, the interaction between workload and reliability

can be characterized. Using this characterization, the failure behavior of a new usage

environment may be predicted, given knowledge of the workload characteristics of that

environment. This thesis characterizes the relationship between usage and failure by

building measurement-based state-transition models, and presents a method for using

these models to evaluate the reliability of the system under specified usage characteristics.

1.2 Related Research

Past studies have focused heavily on developing analytical models for system failure

[3], [4], [5], [6]. The approach has been to assume a distribution for the time to failure of

various system components. Whether the modeling technique is combinatorial or Markov,

exponential distributions have been typically assumed because of the tractability of the

resulting models. However, this assumption is in general not supported by real data.

On the other hand, field measurements have been used in several studies. The con-

sensus is that system failure is resource-usage dependent. Early studies based on real

measurements [1], [2], [7], [8] show that the operational environment of a system is an



- important factor in predicting its reliability. Increased system failure rates due to in-

creased utilization have been documented and modeled [2], [9]. Results in [10] indicate

that CPU-related failures increase exponentially with resource usage after the system uti-

lization reaches a saturation point. A fault prediction method based on failure patterns

in error log files has been explored in [11]. Performability models which combine analyt-

ical modeling and measurements have been developed [12]. The study in [13] describes

a diagnostic methodology for detecting anomalous behaviors of a network environment.

A failure prediction method based on intermittent error characteristics has been inves-

tigated in [14]. Studies based on real data not only provide accurate quantification of

system dependability but also reflect dynamic changes in system behavior. Several ana-

lytical models that take into account resource-usage effects have recently been proposed

[15], [16].

This thesis constructs performability models based on real data as in [12] but,goes

further by developing a methodology to predict reliability using the performability mod-

els.

1.3 Overview

Based on the assumption that system failure is resource-usage dependent and given

that resource-usage information is available, failure characteristics should be predictable.



This thesis investigates this predictability. Based on measurements of the resource-

usage/error/failure behavior of a system, we attempt to predict the failure behavior

of a new environment for which only the resource-usage information is known.

In particular, resource usage and error-related activities are first recorded over a

period of time. Using the recorded data, a state-transition mode is constructed to rep-

resent resource-usage behavior. This model is then extended to include the recorded

error/failure behavior. The relationship between the usage-only model and the full us-

age/error model is characterized empirically by regressing the parameters which describe

error/failure rates on the resource usage indices (e.g., CPU utilization). Reliability under

a new usage environment is then predicted by using the regression relations to estimate

the error/failure rates corresponding to the new usage environment. In effect, the us-

age model of the new environment is extended to the full resource-usage/error/recovery

model through regression-based estimation.
«

The remainder of the thesis is organized as follows. Chapter 2 discusses the modeling

and prediction method in detail. Chapter 3 validates the method by applying it to

an independent data set. Chapter 4 summarizes the method, offers some concluding

remarks, and explores possibilities for future work.



1. MODELING AND PREDICTION METHODOLOGY

The prediction method is developed on data collected from an IBM 3081 system, but

it does not use any information that is unique to the particular IBM system. Therefore,

the approach is system-independent, and in principle can be applied to other systems as

well. In essence, the method consists of four steps:
.-r

1. Collect resource-usage and error/failure/recovery data on a system for different

periods of time.

2. Using the measured data, construct the system resource-usage model and its cor-

responding resource-usage/error/recovery model for each period of time.

3. The models identified above are then used to derive, via nonlinear regression, em-

pirical relationships between resource-usage indices (e.g., CPU utilization) model

parameters as well as other necessary auxiliary relationships.



4. The derived regression models are used to extrapolate the system failure behavior

of a new environment by predicting the resource-usage/error/recovery model that

corresponds to the resource-usage model of the new environment.

2.1 Measured Data

The data used to develop the proposed methodology are collected from an IBM 3081

dual processor and channel system running under the MVS operating system over a period

of about three months. The resource usage data are recorded by the IBM MVS/370

system Resource Management Facility. The sampling time is 0.5 seconds. Every hour,

the average values are computed for each index and stored to depict resource usage of the

particular hour. The resource-usage indices that describe the state of the system include,

CPU utilization (the percent of time that the CPU is executing instructions), channel

busy (the fraction of time that the channel is busy and the CPU is waiting, which reflects

the memory contention), I/O usage (the number of successful Start I/O and Resume I/O

instructions issued to the channel), and disk usage (the number of requests serviced on

the direct access storage devices).

The error and recovery data are logged by the operating system. At every occurrence

of an error, the operating system records the time, description, system status, and recov-

ery attempts associated with the error. Because the manner in which errors are detected

and reported in a system, a single fault may manifest itself as more than one error, de-

pending on the activity at the time of the error. To address this problem, errors occur in



Table 2.1: IBM3081 Data Intervals

interval span no. of obs. no. of err.

" I 1/7/85 - 1/18/85 101 151
2 1/28/85 - 2/4/85 100 187
3 2/4/85 - 2/22/85 102 204
4 2/22/85 - 3/15/85 100 184

close succession (within five minutes) are merged together [12]. The resulting error data

are classified as CPU-related errors, channel errors, software errors, direct access storage

device errors, and multiple errors. Multiple errors are identified for instances in which

different types of error occur in close succession, but due to a common cause.

The data are divided into four temporal intervals. Models are constructed for each

interval. Models from the first three intervals are used in the regression. The last interval

is reserved for verification of prediction results. The data set, divided into intervals, is

shown in Table 2.1.«

2.2 Workload/Failure Model

Having divided the available data, the next step is to use the data to identify state

transition models for each interval to quantify system characteristics. This is similar

.to the analysis performed in [12]. First, the normal resource-usage model is identified.

The set of resource-usage data depicts the state of the system at each time interval

in n-dimensional space; each dimension describes one aspect of the system status (CPU

utilization can be one of the dimensions). The set of data may potentially have an infinite
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number of n>dimensional vectors. To make the problem manageable, cluster analysis is

used to summarize the data. The n-dimensional vectors are partitioned into a small

number of groups or clusters suggested by the data. The vectors in the same cluster tend

to be similar in various dimensions; those in different clusters tend to be dissimilar.

A k-meaus clustering algorithm is used in this study. The k-means algorithm min-

imizes the sum of the squares of the Euclidean distances between the members of each

cluster and the centroid in the dimensions of the clustering variable and, at the same

time, maximizes the intercluster centroid distances. In essence, observations that are

spatially close in the dimension(s) of the clustering variable(s) are grouped into the same

clusters and represented by the centroids of the clusters which are determined by the

means of the members of the cluster.

In this study, the effect of CPU utilization on failure is of interest. The two di-

mensions used for cluster analysis are CPU utilization and channel busy. Hence, those

observations in the same cluster have similar CPU utilization and channel busy charac-

terizations. Channel busy is used in addition to CPU utilization because channel busy is

inversely related to CPU utilization and has the effect of improving the clustered parti-

tions. Table 2.2 shows the result of the k-means algorithm applied on the first interval.

The data are grouped into four clusters; the numbers of observations that belong to each

cluster are 9, 5, 25, and 61. The centroids are defined by the means of the clustering

variables (CPU utilization and channel busy) over the observations in the cluster. For



Table 2.2: An Example of CPU Bound Clustering

Cluster
1
2
3
4

No. of observations
9
5

25
61

CPU utilization
0.233
0.244
0.667
0.961

Channel busy
0.133
0.371
0.099
0.114

example, Cluster 1 is defined by a CPU utilization of 0.233 and channel busy of 0.133,

the mean CPU utilization and channel busy over the 9 observations in that cluster. .

After the resource usage data are clustered, each cluster is used to depict a system

state, and a state transition model is constructed. Each state is defined by the centroid

of the cluster in terms of the clustering variables. A state transition model is defined by

interstate transition probability and holding time distribution. The interstate transition

probability py between any two states is defined to be

Pij =
observed number of transitions from state i to state j

observed number of transitions from state i

Observe that consecutive observations belonging to the same state are not defined as

transitions. In addition, a "nonmeasured" state is defined to represent time intervals

for which measurements have not been recorded. Figure 2.1 is an example of a state

transition diagram. The arrows originating from states 3 and 4, but not terminating on

any of the other states, indicate transitions to the "nonmeasured" state. Similarly, the

fact that state 2 is not entered from any of the other states shown, indicates that it is

entered from the "nonmeasured" state. The holding time between any two states, i.e.,

the time the process remains in a state before it makes a transition to another state, is
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0.09

Figure 2.1: Resource-Usage State Transition Diagram Corresponding to Table 2.2

defined by the distribution A,-j(£). Thus, the state transition model of resource-usage is

generated. The model can give insights to other important parameters of the system.

In a similar fashion, the measured error events are classified into five different cat-

egories: CPU error, software error, channel error, DASD error, and multiple error, as

suggested by the data. The recovery procedures are also divided into categories based

on recovery cost which is measured by the system overhead required to handle an error.

At the lowest cost level is the hardware recovery which uses an error correction code or

hardware instruction retry. At the second level is the software recovery which involves

software-initiated recovery. At the highest level, no recovery is possible; the system has

to be brought down for repair.

As a final step in model construction, the normal resource-usage, error, and recovery

models are combined into one unified model. Figure 2.2 shows an example of the resource-

usage/error/recovery model that corresponds to the resource-usage model in Figure 2.1.
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1

to resource-usage states

Figure 2.2: Resource-Usage/Error/Recovery State Transition Diagram Corresponding to
Figure 2.1
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Table 2.3: Transition Probabilities from Resource-Usage States to Error States for Fig-
ure 2.2

State
1
2
3
4

CPU utilization
0.233
0.245
0.667
0.961

CPU
0
0
0
0

Channel
0
0

0.046
0.011

DASD
0.140
0.500
0.538
0.543

Software
0.290
0.167
0.123
0.202

Multiple
0.210
0.083
0.046
0.128

To preserve the clarity of the figure, the transition probabilities from normal workload

states to error states are not shown, but instead are listed in Table 2.3.

It is very important to note that a resource-usage model contains only normal resource-

usage states and a resource-usage/error/recovery model contains error and/or recovery

states in addition to the normal resource-usage states.

2.3 Parameters of Semi-Markov Models

The state transition models are semi-Markov and are defined by the transition prob-

ability and holding time distribution associated with each transition. In this study, the

mean holding time is of interest. When pij and r,, axe defined for every transition, a

semi-Markov model is identified. Formally, p,-j is the probability that a semi-Markov

process that entered state i on its last transition will enter state j on its next transition,

and Tfj = /0°° thij(t)dt is the mean holding time for the transition i —»> j, the time the

process will spend in state i before making a transition to state j...

Next, there is a series of other interesting parameters that can be defined [17]. Their

relevance will become obvious in the next section. The mean waiting time, r,-, for state
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i, defined as

is the time that the process will spend in state i before making a transition. In essence,

a waiting time is merely a holding time that is unconditional on the destination state.

The limiting destination probability, 7,-j, defined as

is the probability that at a time instant in the steady state, the process is in state i and

planning to make its next transition to state j.

The limiting entrance probability, e^, defined as

« - 2 (2.3)

is the probability of the process entering state i at any time in the steady state, inde-

pendent of the starting state.

The mean time between transitions, r, defined as

r = |>.Tt. . (2.4)

is, in essence, a waiting time that is unconditional on the starting state.

The limiting state probability, TT;, for the imbedded Markov process described by the

transition probability from matrix P, is defined as

(215)
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or

Equation (2.6) along with

IX = 1 (2-7)

gives the unique nonnegative solution of i?j.

In this study, only the transitions with » = normal resource-usage state and j = error

state are of interest. Unless otherwise specified, for every model parameter, i implies

normal resource-usage states and j implies error states.

2.4 Development of Prediction Methodology

Under the premise that system reliability is a decreasing function of system activity,

empirical relationships between system resource usage variables and model parameters

are sought in order to generalize the effect of resource usage on system error rate.

One of the promising model parameters used in this study is the limiting destination

probability 7,-j. For each error state, the limiting destination probabilities from normal

resource-usage states to the error states are plotted as a function of CPU utilization

of the normal resource-usage states, using models from the first three intervals. As an

example, Figure 2.3(a) shows the limiting destination probability 7^ to software errors

as a function of CPU utilization of all the normal resource-usage states from the first

three intervals. Using nonlinear regression, an exponential function is fitted to this data.

It is apparent that the limiting destination probability to the software error state is an
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Figure 2.3: Regression Models for Software Error
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increasing function of CPU utilization. The predicted, values and the 95% confidence

limits are shown in the figure. To determine whether models based on the first three

intervals could accurately predict the error behavior in the fourth interval, the data

points for the fourth interval are also shown in the same plot. The majority of the data

from the fourth interval falls within the 95% confidence limits. Such findings are also

true with destination probabilities to other types of error vs. CPU utilization functions.

This indicates that models based on the measurements from the first three intervals can

be used to predict the behavior in the fourth interval with reasonable accuracy; i.e., it

is clear that the behavior of a new environment can be predicted by system operational

information from old environments.

A closer look at 7,-̂  indicates the necessity of solving the equation

f(x,y)xy = b (2.8)

Clearly, there is a lack of equations for a definite solution for x and y.

The answer is to make assumptions about two of the terms. Attempts are made to

establish regression relations between pij and CPU utilization and between TV, and CPU

utilization. Neither demonstrates strong uniform relations. Thus, a new model variable

1ij is defined as

Tij = e,-py* (2.9)

where e,- and ft- are the projected limiting entrance probability and the mean waiting time

of the new resource-usage/error/recovery model, respectively. The projection is done by

plotting a as a function of e< (Figure 2.3(d)) and r,- as a function of r/ (Figure 2.3(c)),



is

where e,- and T{ axe the "limiting entrance rate and mean waiting time, respectively, of

the normal resource-usage states in the resource-usage/error/recovery models; e( and r{

are the limiting entrance rate and the mean waiting time of the normal resource-usage

states in the resource-usage models. The new variable, 7^-, plotted as a function of

CPU utilization exhibits similar characteristics as 7,^, as shown in Figure 2.3(b). By

introducing the additional regression models, the prediction of transitions to error states

in the new resource-usage/error/recovery model becomes possible; the transitions are

in turn defined by the transition probability p,-j and holding time r,j where i =normal

resource-usage states and .;' =error states.

Before the prediction procedures are introduced, the regression construction process

is outlined as follows.

1. Collect resource-usage and fault data for different intervals of time.

2. Identify resource-usage indices, and construct the resource-usage model and the

resource-usage/error/recovery model for each interval.

3. Calculate the assortment of model parameters for each resource-usage model and

resource-usage/error/recovery model.

4. Build the 7,, regression models by plotting 7,-j as functions of resource-usage for

each error state (.;'=error state).

5. Explore whether the p,-/'s to each error state are increasing functions of the resource-

usage index.
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6. Build the e, regression model by plotting e, vs. e\. The predicted line represents

e,-, which is the projected limiting entrance probability of a normal resource-usage

state in the predicted resource-usage/error/recovery model.

7. If the p,-j's are not increasing functions of the resource- usage index, build the r,-

regression model by plotting r,- vs. r{. The regression line represents f,, which

is the projected mean waiting time of a normal resource- usage state in the pre-

dicted resource-usage/error/recovery model. Then, calculate 7^- and establish 7^-

regression models.

2.5 Prediction of the Resource-Usage/Error/Recovery Model

Using the regression- models that developed above, and given the resource- usage in-

formation of a new environment, the new resource-usage/error/recovery model can be

derived. The procedure to derive the new model is outlined below.

1. Construct the resource-usage model for the new environment.

2. Derive the pt-/s using the 7^ or p,-,- model.

3. Derive the r^-'s using the 7,̂ - model.

4. Normalize the pis such that

5. Set pij = ir'j where i=recovery state and ^normal workload states.
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6. Let r,j = f,- where i=recovery state and j=normal workload states.

First, a state transition model (similar to Figure 2.1) is formed, based on the resource-

usage information. To calculate the predicted values of pij from the 7' regression, the

values e'i and r{ of the resource-usage model have to be derived. The projected e,- and f,-

are then extrapolated from the e,- and r,- regression models. For example, a state in the

new model with a CPU utilization of 0.571 is used; the associated e\ and r{ are 0.0000342

and 29223.1. The 7;.-'s from the resource-usage states to each error state are extrapolated

from the 7' regression models (Figure 2.3(b)) with projected values of e,- and f;. From

Figure 2.3(b), the 7^- to software error is 0.0358. The values of p^ to each error state axe

calculated from Equation (2.9) using the values for 7^-, e,-j, and f,-. For the state in the

example, the p^ to software error becomes 0.393.

Next, to derive the T,-J'S of the new resource-usage/error/recovery model, the 7,-j's

from the resource-usage states to each error state are extrapolated from the 7,-j regression

model (Figure 2.3(a)), and found to be 0.0324 for the state in the example. The values

of pij and e,- which have just been derived from the previous two regression models, are

then applied to Equation (2.2) to determine r,-j. The value of T.-J to software error for the

state in the example is 1619.7 seconds.

Note that the predicted p>,-/s from resource-usage states to error states must be nor-

malized so that they sum to one. After normalization, pt-_, for the state in the above

example is 0.2704.
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For the transitions from the recovery and failure states to normal resource-usage

states, the state probability it\ of the resource-usage model best estimates the transition

probabilities, and the mean holding time is estimated by the average of the mean waiting

time of each recovery states in the first three intervals.

The prediction of the transition probabilities and mean holding times from normal

resource-usage states to error and from recovery states to normal resource-usage com-

pletes the new resource-usage/error /recovery mcj&el.

2.6 Results of the Prediction Methodology

Using the data from the first three intervals, the resource-usage/error/recovery model

for the fourth interval is obtained. We compare the predicted transition probabilities and

holding times of the transitions from the normal resource-usage states to the error states,

with the ones measured for the fourth interval.

For simplicity, the resource-usage model for the fourth interval is modeled as a one-

state model. Using the prediction method developed in the previous sections, the fail-

ure behavior in terms of state transition probabilities and mean holding times from

the normal resource-usage state to error states is determined. The predicted resource-

usage/error/failure model is shown in Figure 2.4. Figure 2.5 contains the resource-

usage/error/failure model constructed by the actual failure data from the fourth interval.

Tables 2.4 and 2.5 list the predicted and actual transition probabilities and mean

holding times from the normal resource-usage state to error states. To quantify the
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0.026' 0.16(1 0.54K 0.2

to resource-usage states

Figure 2.4: Predicted Resource-Usage/Error/Recovery Model for the Fourth Interval

to resource-usage states

Figure 2.5: Actual Resource-Usage/Error/Recovery Model for the Fourth Interval
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Table 2.4: Transition Probabilities

dest.
Channel
Mult
Disk
Software

no. obs
1

27
111
45

expected
0.00.543
0.14674
0.60326
0.24457

predicted
0.02578
0.15999
0.54388
0.27036

cliff.
0.02035
0.01325

-0.05938
0.02579

90%
0.00892
0.02609
0.05933
0.05213

99%
0.01397
0.04086
0.9091
0.8163

Table 2.5: Mean Holding Time

dest.
Channel
Mult
Disk
Software

no. obs
1

27
111
45

expected
2210.68
1550.90
1172.86
1708.40

predicted
1164.77
1430.19
1421.95
1691.69

diff.
-1045.91
-120.71
249.09
-16.71

90%
.

517.75
176.04
547.70

99%
.

810.77
275.67
857.67

• goodness of the prediction method, consider the confidence intervals for the expected

p,-j's and r,-j's. Since the expected p,-j's and r,j's are estimates, there are confidence

intervals associated with them. When the absolute difference between the predicted and

expected is less than the x% confidence interval, the predicted value is said to fall within

x%. For example, for the transition probability to disk error, the absolute difference is

0.05938 is slightly greater than 0.05933, but less than 0.09091. Thus, the predicted value

is close to the 90% interval. For the most part, the predicted values fall within the 90%

interval. The large difference for channel error is due to the fact that the actual number

of transitions to channel error is statistically insignificant.
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3. A SECOND EXAMPLE

In this chapter the prediction methodology is further illustrated by applying it to a

multicomputer system configuration. The data set used to develop the method in the

previous chapter is referred to as Data Set I, and the new data set is referred to as Data

Set II.

3.1 Data

Data Set II contains a system resource-usage and failure log collected on two IBM

370/168 mainframes over a period of three years [10]. Again the resource usage is mea-

sured by the SMF (System Management Facility). The recorded indices include CPU

load, batch memory requests and usage, batch I/O wait time and load, and batch paging

in and out. For every hour, the average values for each index are computed to depict

the system resource usage for that hour. The clustering algorithm is later applied on

the hourly averages. Again, the dependence of system reliability on CPU usage is inves-

tigated. The recorded CPU-related indices are TOTCPU, a measure of the total CPU
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usage as a fraction between 0 and 1, and BATCPU, a measure of the batch CPU usage as

a fraction between 0 and 1. An additional index, SYSCPU, a measure of the interactive

and system workload, is calculated as the difference between TOTCPU and BATCPU.

The failure data, recorded by the built-in failure detection facilities, contain error oc-

currences and recovery attempts. Errors occurring within five minutes of each other are

coalesced into one error to eliminate the many manifestations of a single fault. As a re-

suit, a new type of error is created to account for different types of errors occurring close

in time. Thus, four types of errors are defined: cpu-related errors in the central proces-

sor and storage (MCH), channel-related errors in I/O channels and associated interfaces

(CCH), other errors in addition to MCH and CCH (OTH), and different types of error

occurring in close succession (MUL). The choice of six clusters represents a compromise

between two conflicting requirements. For regression, it is desirable to have a significant

number of intervals (greater than seven). From the clustering point of view, the number

of observations in each cluster has to be substantial for meaningful clustering results.

The decision of six intervals is based on trial-and-error. Table 3.1 shows Data Set II

divided into six intervals.

3.2 Modeling

First, the resource-usage data from the first five intervals are clustered by BATCPU

and SYSCPU. Data from each interval are clustered into five clusters. Each of the
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Table 3.1: IBM370 Data Intervals

interval span no. of obs. no. of err.

1
2
3
4
5
6

2/79
7/79
1/80
7/80
1/81
7/81

- 6/79
- 12/79
- 6/80
- 12/80
- 6/81
- 12/81

3600
4416
4368
4416
4366
4416

498
311
313
721
730
338

resource-usage models is therefore a five-state model, with each state varying in mean

BATCPU and mean SYSCPU.

Next, the corresponding resource-usage/error/recovery models are constructed. To

simplify the model, recovery states are combined with the error states. In other words,

instead of making transitions to recovery states and then to resource-usage states, the

error states make transitions directly to the resource-usage states. Each of the resource-

usage/error/recovery models, therefore, has a total of nine states—four error/recovery

states and five normal resource-usage states.

After all of the resource-usage and failure models are constructed, the necessary model

parameters are calculated for regression purposes. Again, the parameters of interest are

those with * = each resource-usage state and j = each error state.

3.3 Regression

As a first step in finding regression relations, the 7,-/s from the first five intervals are

plotted versus CPU usage for j = {MCH, CCH, OTH, MUL) (not shown). It is observed
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that, for j = {MCH, CCH}, 7,^ vs. TOTCPU is the most pronounced increasing function,

and for j = {OTH, MUL}, 7,-j vs. SYSCPU is the most pronounced increasing function.

Regression relations are then established. Examples are shown in (Figure 3.1).

To solve the f(x,y)xy = 6 dilemma, pij vs. CPU usage relations are plotted and

found to be more pronounced increasing functions of CPU usage than 7^ vs. CPU usage

relations. Thus, p^ vs. CPU usages regression relations are established for the four error

states. In addition, the e'^ regression relation is determined.

3.4 Prediction

To predict the resource-usage/error/recovery model for the last interval, the resource-

usage model is constructed as a five-state model. Using the regression relations deter-

mined in the previous section, p>j and r^ from the resource-usage states to the error

states can be predicted. Transition probabilities p,-j's are determined directly from the

the p^ regression models, and mean holding times rtj's are determined by the e!^ and

7,j regression relations along with the calculated pij'a. The resulting values for p,-j's are

shown in Table 3.2, and for r,-j's in Table 3.3.

3.5 Discussion

Observe Tables 3.2 and 3.3. For both the p,-j's and r.-j's, most of the predicted values

fall within the 90% confidence interval. All of the predicted values fall within the 99%

confidence interval with very few exceptions. All of the exceptions are transitions of very
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0.01 —i

7.7

0.005 —

0 I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

SYSCPU

(a) 7ij for j =OTH

0.0006 —

0.0004 —

0.0002 —

I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

SYSCPU

(b) Tfc for ; =MUL

Figure 3.1: Limiting Destination Probability from Normal Resource-Usage States to Er-
ror States
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Table 3.2: Expected vs. Predicted ptj for i = Resource-Usage States and j = Error States
for the Sixth Interval

j

MCH

CCH

OTH

MUL

i
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

obs.
13
3

11
1
5

35
29
46
24
22
14
50
47
3

23
4
3
4
0
1

exp. pa
0.0253
0.0110
0.0266
0.0038
0.0144
0.0682
0.1062
0.1114
0.0906
0.0634
0.0273
0.1832
0.1138
0.0113
0.0663
0.0078
0.0110
0.0097
0.0000
0.0029

pred. p^
0.0136
0.0133
0.0156
0.0189
0.0072
0.0724
0.0633
0.0714
0.0797
0.0606
0.0427
0.1897
0.1050
0.0347
0.0439
0.0041
0.0134
0.0084
0.0035
0.0042

cliff.
-0.0118
0.0023

-0.0110
0.0151

-0.0072
0.0042

-0.0430
-0.0400
-0.0108
-0.0029
0.0154
0.0065

-0.0089
0.0234

-0.0224
-0.0037
0.0024

-0.0013
.

0.0014

90%
0.0114
0.0104
0.0130
0.0062
0.0105
0.0183
0.0307
0.0255
0.0290
0.0215
0.0118
0.0385
0.0257
0.0107
0.0220
0.0064
0.0104
0.0079

.
0.0047

99%
0.0179
0.0163
0.0204
0.0097
0.0165
0.0287
0.0480
0.0399
0.0454
0.0337
0.0185
0.0603
0.0403
0.0167
0.0344
0.0100
0.0163
0.0124

.
0.0074
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Table 3.3: Expected vs. Predicted r,-y for i = Resource-Usage States and j = Error States
for the Sixth Interval

;

MCH

CCH

OTH

MUL

i
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

obs.
13
3

11
1
5

35
29
46
24
22
1

50
4*
3

23
4
3
4
0
1

exp. T^
2736.4
2587.3
4752.4
373.0

3862.6
4289.1
6629.9
4938.6

14985.6
8561.1
2662.2
7107.5
4251.8
1175.0
5349.8
1328.2
3474.7

11325.5
0.0

980.0

pred. Tij
3319.1
6456.2
4471.9
5372.2
5130.3
4360.0
9226.6
6562.0.
8353.0
4846.4
4344.2
5807.6
4776.6
7711.6
6152.4
4271.6
5534.8
4611.8
7611.8
6048.9

diff.
582.8

3868.9
-280.5
4999.2
1267.7

70.9
2596.7
1623.5

•6632.6
-3714.7
1682.0

-1300.0
524.9

6536.6
802.6

2943.4
2060.1

-6713.7
7611.8
5068.9

90%
1775.5
2816.0
2628.2

.
5093.4
1080.3
2529.6
2001.9
7968.2
3486.5
1526.9
2372.6
1256.4
1637.2
3396.1
1216.6
1964.5
9661.4

.
•

99%
2780.4
4409.7
4115.7

.
7976.0
1691.7
3961.2
3134.9

12477.9
5459.7
2391.0
3715.4
1967.5
2563.8
5318.1
1905.2
3076.3

15129.3
.
•
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few observations which again make the result statistically insignificant. For example, for

both p,-j's and r,-j's, the exceptions are (t=4, j=MCH), one observation, (i=4, j=OTH),

three observations, and (i=4, j'=MUL), zero observations.
•

The inaccuracies in prediction are explained by the long time span of an interval and

by the low error rate. In general, the longer the time that a data set spans, the more

variation is contained in the data set. Simply stated, exceptional phenomena are much

more likely to occur over a period of three years than over three months. Low error

rate makes the regression less statistically significant. Data Set I is a better candidate

for the method, because Data Set I has an average of 323 errors per month while Data

Set II has 83 errors per month. The inaccuracies occur when the transitions are few,

as discussed in the previous two paragraphs. When errors are rare or infrequent, any

statistical inferences made based on the few observations can be unsound. Predicting--the

rare and infrequent is almost impossible and probably unrewarding.
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4. CONCLUSIONS

In the past, analytical and measurement-based models have been developed to char-

acterize system behavior. An open issue has been how these models can be used, if at all,

for system design improvement or system tuning. This thesis has attempted to address

this issue. Past studies have shown the resource-usage dependency of system failure be-

havior. The current study shows that it is possible to predict the system error/failure rate

when given resource-usage information. Previous fault prediction schemes have lacked

the use of real measurements; with the proposed method, measurement-based modeling

finds its place in fault prediction application.

This thesis has proposed a combined statistical/analytical approach to use measure-

ments from existing environments to forecast the system failure behavior in a new envi-

ronment. Using regression, the method makes generalizations about the system failure

behavior from models extracted from the measurements of the existing environments.

When the resource usage of a new environment is known, predictions can be made from

the generalized system failure behavior. Comparisons of the predicted results with the
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actual data from the new environment show a close correspondence for both data sets on

which the method has been applied.

However, the method is somewhat data-sensitive, while mostly system-independent.

Improved accuracy is possible when the errors are frequent. In the case of very low error

rates, the method attempts the almost impossible — to predict accidental and infrequent

events, and hence may not succeed.

During the course of the research, many fascinating ideas that have arisen which

deserve future investigation. Some of these are

1. Other standardizing variables in addition to the steady-state destination probability

can be explored.

2. The effect of other measured resource-usage variables can be studied.

3. Regression on multiple resource-usage indices can be explored.
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