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FOREWORD

This represents a collection of the work completed in the past and in recent
years in the field of infrared radiative energy transfer in molecular gases. The
primary motivation of this compilation has been due to recent demand of the
subject by graduate students working on research projects in the areas of high
temperature gas dynamics, design of high pressure combustion chambers and high
enthalpy nozzles, entry and reentry phenomena, supersonic and hypersonic
propulsion, and in defense oriented research. The materials presented here should
provide some essential information on spectral models, gray as well as nongray
radiative formulations, computational procedures, and a few specific applications.

This work, in part, was conducted in cooperation with the NASA Langley
Research Center (Fluid Mechanics Division-Theoretical Flow Physics Branch) and
the Institute of Computational and Applied Mechanics (ICAM) of Old Dominion
University. The work on this project was partially supported by the NASA Langley
Research Center through grant NAG1-363. The grant was monitored by Mr. Robert

L. Yang, Assistant University Affairs Officer.
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RADIATIVE ENERGY TRANSFER IN MOLECULAR GASES

By
S. N. Tiwari®
Department of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, Virginia 23529

ABSTRACT

Basic formulations, analyses, and numerical procedures are presented to investigate radiative
interactions in gray as well as nongray gases under different physical and flow conditions. After
preliminary fluid-dynamical considerations, essential governing equations for radiative transport
are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions.

Auxiliary relations for relaxation times and spectral absorption models are also provided.

For specific applications, several simple gaseous systems are analyzed. The first system
considered consists of a gas bounded by two parallel plates having the same temperature.
Within the gas there is a uniform heat source per unit volume. For this system, both vibrational
nonequilibrium effects and radiation-conduction interactions are investigated. The second system
consists of fully developed laminar flow and heat transfer in a parallel plate duct under the
boundary condition of a uniform surface heat flux. For this system, effects of gray surface
emittance are investigated. With the single exception of a circular geometry, the third system
considered is identical to the second system. Here, the influence of nongray walls is also
investigated, and a correlation between the parallel plates and circular tube results is presented.
The particular gases selected for this investigation are, CO, CO,, H,0, CH4, N,O, NH3, OH, aqd
NO. The temperature and pressure range considered are 300-2000K, and 0.1-100 atmosphere,
respectively. Illustrative results obtained for different cases are discussed and some specific

conclusions are provided.

° Eminent Professor, Department of Mechanical Engineering and Mechanics, College of Engineering and Technology.
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1. INTRODUCTION

In order to understand and investigate radiative interactions in gases, one should be quite
familiar with basic transfer processes (mass, momentum, and energy) in gaseous systems.
It is also essential to have fundamental knowledge of different numerical and computational

procedures. For a basic understanding of these subject areas one should refer to [1-10]).

In the past three decades, a tremendous progress has been made in the field of radiative
energy transfer in nonhomogeneous nongray gaseous systems. As a result, several useful books
[11-29] and review articles [30-40] have become available for engineering, meteorological,
and astrophysical applications. In the sixties and early seventies, radiative transfer analyses
were limited to one-dimensional cases. Multidimensional analyses and sophisticated numerical
procedures emerged in the mid-to-late seventies. Today, the field of radiative energy transfer in
gaseous systems is getting an ever increasing attention because of its application in the areas of
the earth’s radiation budget studies and climate modeling, fire and combustion research, entry

and reentry phenomena, hypersonic propulsion and defense-oriented research.

The main objectives of this study is to explore the extent of radiative contributions of
different molecular gases under varying physical and flow conditions. Attention has been directed
specifically towards infrared active diatomic and polyatomic gases, wherein the absorption
and emission of thermal radiation occurs as a result of vibration rotation bands. In order to
present a systematic study, it is necessary to assume a suitable model for vibration-rotation
bands, and to obtain relevant spectroscopic information for the gases under consideration. The
assumption of local thermodynamic equilibrium (LTE) will have to be justified, and any influence
of nonequilibrium (NLTE) should be investigated. Wherever applicable, radiative contributions

from weaker combination and overtone bands should be included in the general nongray analysis.
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In addition the effect of surface emittance (gray as well as nongray) upon gaseous radiation
should be investigated. |
Basic governing equations and essential information on molecular radiative interactions are
provided in [11-29]. Radiative properties for important molecular species are available [33-37].
In this report, basic equations of fluid mechanics and heat transfer are presented and radiative
transport models are provided for molecular radiative interactions. The extent of radiative
interactions are investigated for several illustrative cases of absorbing-emitting species between
parallel plates and circular geometries. The entire procedure can be extended to investigate

radiative interactions in other geometries.




2. BASIC THEORETICAL FORMULATION

The governing equations for fluid mechanics and heat transfer are available in standard
references [1-8]. These are presented here without providing detailed derivations. Specific
conservation equations for a Newtonian fluid are derived in [1-3, 5].

The law of conservation of mass applied to a material volume yields the equation of
continuity as

Op/Ot+V - (pz) =0 (2.1a)
For an incompressible fluid, this reduces to

V.u =0 (2.1b)

The Newton’s second law applied to a Newtonian fluid yields the Navier-Stokes equation as

Dy, 0 Ou; = Ou; 2. Ou
Dt ~ L VPt g [“(ax,- + 63:,-) - §5vf‘a—z;] (2.22)

where é;; is the Kronecker delta function and ¢, j, k£ = 1,2, 3. In the derivation of Eq. (2.2a),

it has been assumed that the coefficient of bulk viscosity is zero. For an incompressible fluid
and constant viscosity (¢), Eq. (2.2a) reduces to a simpler form as
Du [Dt=f ~Vp[p+ uv2i (2.2b)
It should be noted that Eq. (2.2b) is not applicable to a fluid whose viscosity is a strong function
the temperature.
The energy equation for a simple homogeneous system is expressed usually in three different
forms as [1, 5, 6]
p(De/Dt) = 0Q[0t~V - q ~ p(v : z’i) +o (2.32)
p(Dh/Dt) =6Q/6t—V-i +DP/Dt + & (2.3b)

pcy(DT/Dt) = 8Q[8t + V - (kVT) — V - qp + BT(Dp/Dt) + & (2.3¢)




where
g = gc+ ¢ = —kVT + qr

o=y [2(314/375)2 +2(8v/dy)* + 2(Ow/Dz)?
+ (8v/0z + Ou/dy)’ + (Ow/By + v[0z)®
+ (8u/0z + Buw/dz)? g(au/am + 8v/0y +0u/02)’]
and () represents the heat generated (or lost) per unit volume by external agencies, and f is
the coefficient of thermal expansion of the fluid. Simplified forms of Egs. (2.3) can be obtained
easily for specific applications.
In order to close the system of conservation equations (2.1)-(2.3), it is essential to establish
relations between the thermodynamic variables p, p, T, e and h and relate these to transport
properties g and k. Since the local thermodynamic state is fixed by any two independent state

variables, one may express the equations of state for a simple system as

p=p(e,p) (2.4a)

T = T(e, p) (2.4b)

For a perfect gas, the following thermodynamic relations are applicable:

p=pRT, e=c,T, h =T (2.52)
¢o = R/(y=1),¢p =vR/(7—1),7 = ¢p/cv (2.5b)
where R is the gas constant, c, is the specific heat at constant volume, ¢, is the specific heat

at constant pressure, and « is the ratio of specific heats. Thus, for a perfect gas, Eq. (2.4) may

be expressed as

p=(v-1)pe (2.62)

T=(y-1)e/R (2.6b)




The transport properties are related to the thermodynamic variables through use of the kinetic

theory of gases. The variation in viscosity is given by Sutherland’s formula
p=c1T?)(T + c3) Q.7

where ¢, and c¢; are specific constants for a given gas. The thermal conductivity & usually is
determined through use of the Prandtl number defined by Pr = ¢,u/k. This is possible because

for most gases the ratio ¢,/ Pr is essentially constant.

Following the nomenclature of the kinetic theory of gases, Eqs. (2.1)-(2.3), in general, are
referred to as the Navier-Stokes equations. For computational conveniences, it is quite often
desirable to express these equations in a compact vector form. For the case of no external heat
addition and in the absence of body forces, the Navier-Stokes equations are expressed in the

vector form as [9]

ouU OE OF 040G
W_+a—+%+5;=0 (2.8)

where U, E, F, and G are vectors and are defined as

pu
U= | pv
pw
Et

pu
pu2 +P— Tz
E= PUV — Tgy
PUW ~— Tgy

L (Et + p)u — UTgz — UTgy — WTgz + ez + 4Rz
[ pv ]
pUV — Ty

F= pv? +p = Tyy

pOW — Ty,

L (Et +P)v = UTgy — UTyy — WTyz + ey + 4Ry




pw

pUW — Tz,

G = pUW — Ty,

p,wZ + P— Tz

L(Eﬂ + p)w — UTgz — UTyz; — WTzz + 9cz + qR:

E; = p(e + V2/2);V2 =ul 40?4+ w?

2 ou Ov Ow
Tez = §"<20z T3y 3z)
2 dv 0Ou OJw
w=5(2% -5 3)
2 26w du Ov
=55 -5 5)

Note that the first row of the vector Eq. (2.8) corresponds to the continuity equation as given by
Eq. (2.1a). Similarly, the second, third, and fourth rows represent the three momentum equations,
and the fifth row represents one form of the energy equation.

It should by noted that derivations of the governing equations presented in this section
assume the conditions of continuum and existence of a local thermodynamic equilibrium. For
the case of two-dimensional laminar flow in channels, the energy equations given by Egs. (2.3)

and (2.8) reduce to [18]
a_T_’_ug_*.va_T -—i kaT +ﬂT d_P
PP\t T"0: "oy ) T oy \ oy Yz
Au\? )
+ul — ) —divgp (2.9)
dy
The energy equation given in this form can be applied to radiatively induced nonequilibrium

situation by replacing the divergence of the radiative flux by its nonequilibrium counterpart.

At the same time it must be assumed that the departure in population distribution over excited
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states from the Boltzmann distribution will not significantly change the internal energy, and the
transport properties from their equilibrium values [16]. As discussed in [19], this assumption is
justified under the conditions where vibrational characteristic temperature hv/k is greater than or
is of the order of vibrational temperature. Consequently, the temperature appearing in Eq. (2.9)

will be regarded as the kinetic temperature.

In obtaining Eq. (2.9), it has been assumed that the conduction heat transfer in the x direction

is negligible compared with the net conduction in the y direction. This represents the physical
condition of a large value of the Peclet number. By an analogous reasoning, the radiative heat
transfer in the x direction can be neglected in comparison to that transferred in the y direction. If,

in addition, it is assumed that the Eckert number of the flow is small, then Eq. (2.9) reduces to

2
or  or or_ o'T 1 3

E-F Oz 5y—=a6y2_pCp y

(2.10)

In the preceding equation a = k/pC,, represents the thermal diffusivity of the fluid and it has

been assumed that the fluid properties are constant locally.

It should be evident that in ordef to apply the energy equation to any problem involving a
radiation participating medium, it is essential to have an appropriate formulation for the radiative
flux vector g . However, before going into the formulation of the radiative flux equations, it is
desirable to present some heat transfer results already available in the literature for simplified
geometries and conditions without the radiative interactions. These are discussed briefly in the

next section.




3. SIMPLE FLUID-DYNAMICAL APPLICATIONS

Attention is directed here to present solutions of the viscous heat conducting equations for
simple internal flows. These solutions are available in the literature and are presented here for
the sake of comparison with the solutions of radiative interactions obtained in Sec. 6. Before
presenting solutions for specific cases, it is desirable to provide some basic definitions associated

with velocity and temperature variations in internal flows.

3.1 Basic Definitions for Internal Flows

The basic definitions needed for description of internal flow in channels are provided in

this section.

1. Entrance (or Inlet) Region

It is the region in the flow up to which the velocity profile changes its shape due to presence

of the boundary layer (Fig. 3.1). The flow in such regions are divided into the boundary-layer
flow and the potential flow in the core. Because of the developing boundary layers, the velocity
U in the core (outside the boundary layer) increases along the length. This is the region of
potential flow (i.e., the region of negligible frictional effects). The change in core velocity is

related to the pressure change in the core.

2. Fully-Developed Flow

The flow in the region where the shape of velocity profiles remains constant is called the

fully-developed flow. For such a flow, the velocity components v =0, w = 0 and u = u(y).




3. Mean Velocity

The mean velocity (u,, or u) is defined as the average (or mean) velocity at any particular

location in the direction of flow. For the case of a fully-developed flow, this is defined as

ﬁ=um=AL/ udA 3.1

where A, is the cross-sectional area of the duct.

4. Hydraulic (or Equivalent) Diameter

The concept of hydraulic diameter is very useful in the study of turbulent flows and
noncircular duct flows; however, it is extensively used also in the study of laminar flows.

The hydraulic diameter D, is defined by the following relation
D, =4A/P 3.2)

where A represents the flow area (or the area of the duct) and P is the wetted perimeter. For
circular ducts with actual diameter D, Dy, = [4(xD%/4)]/(xD) = D. For square ducts with
sides a, Dy, = [4(a®)]/(4a) = a. For parallel plates a distance L apart, Dy = [4(L x 1)}/2 = 2L,
i.e., the hydraulic diameter is equal to twice the depth of the channel.

5. Friction Factor (or Darcy Friction Factor)

In duct flows, the pressure drop along the flow direction varies, in general, as follows
Ap/L = F(V,D, p, p,e) (3.3)

where e represents the statistical measure of surface roughness. Dimensional analysis of Eq. (3.3)

yields the nondimensional equation for the friction factor f as

(=dp/dz) Dy,

/= pul,/2

= F(Re,¢/Ds) (3.4)
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where Re = pu,, D /p. Thus, the pressure drop in ducts may be expressed by a simple relation

between f and Re. Based on the concept of Eq. (3.4), the friction factor is defined in general as
f = 4ru/ (pusa/2) (35)

where T, represents the wall shear stress.

6. Skin-Friction Coefficient (or Fanning Friction Factor)

The concept of the fanning friction factor is used in the study of external flow fields. The

skin-friction coefficient (or simply the friction coefficient) ¢y is defined as

cf = 1w/ (pul,/2) (3.6)
For external flows, ¢y varies with the location z along the flow. Thus, an average skin-friction
coefficient for a characteristic length L is obtained by the relation

1 L
¢f = Z/) Cf(:l:)d.’c 3.7

7. Slug Flow

The slug flow is a case of an idealized fluid motion. It assumes that the flow in ducts is
of uniform (constant) velocity in the direction of flow. The concept is useful is preliminary

estimations of the pressure drop and drag.

8. Thermal Entrance Region

The thermal entrance region is the region of the thermal boundary layer (TBL) development

(Fig. 3.2). In this region, the shape of the temperature profile changes because of the presence

of the thermal boundary layer.
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9. Thermally Fully-Developed Flow

The flow in the region where the shape of the temperature profile remains constant is called

the thermally fully-developed flow (TFDF). Mathematically, for any set of boundary conditions,

a fully developed temperature profile is said to exist when the nondimensional temperature is a
unique function of y only (i.e., it is independent of the x coordinate).

10. Convection Heat Transfer Coefficient

The convective heat transfer coefficient A is defined by the Newtons law of cooling as
qw = Q/A = h(Ty — Ty) (3.8)

where T is the fluid temperature adjacent to the wall.

11. Bulk Temperature

The bulk temperature (or mixing-up temperature) is the mean temperature at any location x
in the flow direction. It is the temperature which fluid would assume if it was instantaneously
and adiabatically mixed after leaving the cross section under consideration. Mathematically, the
bulk temperature T} (or Ty,) is defined as |

Ty = ! /quA 3.9

umAc

3.2 Steady Fully-Developed Duct Flows

Steady fully-developed duct flow solutions are available for different geometries and flow
conditions. Results for flows between two parallel plates and within a circular tube are presented
here.

Consider first a steady incompressible constant properties laminar flow between two parallel

plates (Fig. 3.3). The governing equations for this case are simplified form of Egs. (2.1b) and
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(2.2b). If a conservative body force is assumed then Vp — pf = Vp. Since the plates are
infinite in z-direction, the velocity w in 2z direction is negligible. Also for a fully-developed
flow v = 0. Thus, for steady fully-developed flow between two parallel plates, Egs. (2.1b) and

(2.2b) combine to yield
d?u/dy® = (1/u)dp/0z = const. (3.10)

With boundary conditions u(+L/2) = 0 and (du/dy),_o = O, the solution of Eq. (3.10) is
found to be

o 1dpfrr
u(y) = —2—,‘-3;(7 -y ) (3.11)

By using the definitions of um, Re, D and f, it can be shown that
fRe =96 (3.12)

where D = 2L, Re = pumDy/u. It should be noted that , for fully-developed flow, fRe =
constant for all ducts; the value of the constant depends on the shape of the duct. The result of

Eq. (3.12) is obtained for a laminar flow but it applies quite accurately also to turbulent flows.

Next, consider the case of steady, incompressible, constant properties, and fully-developed
laminar flow in a circular tube (Fig. 3.4). A combination of Egs. (2.1b) and (2.2b) in this case

results in
d*ufdr® + (1/r)du/dr = (1/p)dp/dz (3.13)

With boundary conditions u(r,) = 0 and (du/dr),_, = 0, the solution of Eq. (3.13) is found

to be

u(r) = —(1/4p)(dp/dz)(rd — r?) (3.14)
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This is referred to as the Hagen-Poiseville profile.

The maximum velocity occurs in the center of the tube and is given by
Umax = —(r§/4n)dp/dz (3.15)
The mean velocity u,, is found to be upyax/2. The volume flow rate @, is given by
Qv = Aupy, = (Wrg)um = —(7rr3/8p)dﬁ/dz (3.16)
The friction factor in this case is found to be
fRe =64 3.17)

where Re = pDup/pu.
3.3 Heat Transfer in Laminar Duct Flows

The heat transfer in duct flows is influenced directly by the conditions at the bounding
surfaces. The two typical conditions are that of the constant wall heat flux and constant wall
temperature. However, a combination of these also occurs in some cases.

For a constant wall heat flux, 0T /0z is found to be constant, but this is not the case with
the constant wall temperature condition. To demonstrate this, consider the case of a laminar
fully-developed flow with constant properties between parallel plates (Fig. 3.5). For this case,

let us define the nondimensional temperature as
0 =(Tw—T)/(Tw—Ts) = f(€);€ =y/L (3.18)
Thus, for a thermally fully-developed flow, it follows that
0
00/0z = %I(Tw -D)/(Tw-Tp)]=0 (3.192)

or

%(Tw ~T) = [(Tw = T)/(Tw — Tb)]g’;(Tw ~Ty) =0 (3.19b)
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For constant properties, an energy balance on the differential distance dz results in
Q — W =mAH = (pumAc)(cpAT) (3.20a)
Since W = 0 and Q = ¢,A, Eq. (3.20a) becomes.
quA = (pumAc)cp(0T [ Oz)dx (3.20b)

Note that we have assumed a colorically perfect gas in developing the relations in Eq. (3.20).
Also, A is the area normal to the direction of g,,. Thus, for a parallel-plate geometry, A = 2 dz,

and for a circular duct, A = P dz, where P is the perimeter of the duct.
For the parallel-plate geometry, Eq. (3.20b) is expressed as

0T [0z = 2¢y/(pumAccy) (3.21)

Equation (3.21) demonstrates that for the case a constant wall heat flux (and fully-developed

flow), the temperature gradient along x axis is constant.

The heat transfer to (or from) the wall can be written as
qw = hA(Ty — Tp) (3.22a)
and
= —kAi(T T (3.22b)
Qw - ay w = ) .

Since Tj is constant along y and T, is fixed for a given x, a comparison of the two relations

for the heat flux in Eq. (3.22) provides the relation
0
h = —ka[(Tw —-T)/(Tw — Tp)) (3.23)

For a thermally fully developed flow, a comparison of Egs. (3.19) and (3.23) indicates that the
derivate in Eq. (3.23) has a unique value at the wall that is independent of x. Thus, for a

fully-developed flow, h must be uniform along the duct.
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It is evident from Eq. (3.22a) that for a constant gy, h, and A, (T, — T}) is constant along

the x axis. Consequently,

9 T, T
LTy —Ty =L _ b _ 24
pc v =T =5~ 5 =0 (329

Thus, for the case of a fully-developed flow and heat transfer with constant surface heat flux, a

combination of Egs. (3.19b), (3.21), and (3.24) yields the result

oT _ 0T, 9T, _
5:; = -a—m _6—:; = const. (3.25)

and the value of the constant is obtained from Eq. (3.21).
For the case of a constant wall temperature, 87,,/0z = 0 and from Egs. (3.18) and (3.19)
one obtains

ALY

- Tw-—Tb Jz

0T
52 =05 (3.26)

In this case, therefore, 3T'/0z is a function of the normal (or radial) position in the duct.
Aside from the specification of the boundary conditions, the problem of heat transfer in

laminar duct flows may also be classified according to the velocity distribution, i.e, heat transfer

in slug 'ﬂow, in fully-developed flow, and in entrance region flow. The cases of heat transfcf

in fully-developed laminar flows between two parallel plates and within a circular tube are

considered in the following subsections.

3.3.1 Parallel Plates: Constant Wall Heat Flux

Consider the case of laminar fully-developed flow as shown in Fig. 3.5. For steady flow,
the momentum equation for this case is Eq. (3.10) and with plate spacing of 2L, the expression

for the velocity distribution u = u(y) is found to be

u=—(1/2 u)(dp/dz)(1? = y?) = (Bum/2)[1 - (4/L)?] (3.27)




The general form of the energy equation (Eq. (2.3c)) reduces, in this case, to

udT/dz + vdT[dy = a(8°T/dz? + 3°T/0y?) + (v/cp)(Du/y)?
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(3.28)

For constant properties, Eq. (3.28) is a linear equation in T since velocities can be determined

independent of temperature. Thus, Eq. (3.28) may be solved by superposition, first obtaining

the solution neglecting the viscous term and then including it. For low and moderate subsonic

velocities, the frictional term is negligible.

By noting that for fully-developed flow v = 0 and for thermally fully-developed flow with

constant wall heat flux §T/dz = const., Eq. (3.28) can be expressed (for the case with negligible

frictional heating) as
udT/Bz = ad’T/dy’; (dT/dy),—o = 0, (T)y—y = Tu(z)
By using Eq. (3.20b), the value of JT/dz in the above equation is found to be
0T [0z = const. = aqy/(umlLk); a = k/pcy
A combination of Egs. (3.27), (3.29) and (3.30) gives
d*T/dy* = c(L? — y®);c = 3qu/(2kL?); (dT/dy) ;=g = 0; T(L) = Tu(z)
The solution of this readily follows as

Tw—T = (quL/8k)(5 — 662 + £*);¢ = y/L

By defining nondimensional temperature as

6= (T - Tw)/(QwL/k); 0y = (Tb' - Tw)/(qu/k)

the solution given by Eq. (3.32) is written as

6(¢) = (1/8)(6¢ - ¢* — 5)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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Now, by using the definition of the bulk temperature, Eq. (3.9), and combining it with Eq. (3.27),
there is obtained

3

! 2
0 =3 /0 0(¢)(1 — €2)de (3.35)

By substituting Eq. (3.34) into Eq. (3.35) and integrating, one obtains
—0, = 17/35 (3.36)

If one defines the Nusselt number as Nu = hL/k and uses the relation for heat transfer as

qw = h(Ty — Tp), then
Nu = hL/k = (gu/ (T — To)(L/K) = —1/0, (337)

However, for duct flows, it is customary to express the Nusselt number in terms of the hydraulic
diameter as Nu = hDy/k. For the parallel-plate geometry, Dy = 4L and the expression for

the Nusselt number is found to be
Nu = hDy[k = —-4/6, =8.235 (3.38)

This is the relation for nondimensional heat transfer between two parallel plates and is a constant
only for the case of fully-developed flow.

Solutions for the parallel-plate geometry with constant wall temperature are available in
the literature for different flow conditions [1, 5-8]. Some specific results for the case of a
fully-developed flow aré available in [6, 10].

3.3.2 Circular Tube: Constant Wall Heat Flux

Consider the case of a laminar fully-developed flow with negligible frictional heating in
a circular tube with constant wall heat flux (Fig. 3.6). For this physical problem, the fully-

developed velocity profile is given by Eq. (3.14) and this may be expressed alternately as

u = 2um;, [1 - (r/ro)Z] = (Zum/r;‘;) (r% - 1‘2) (3.39)
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The energy equation in Cartesian coordinate is given by Eq. (3.28) which for fully-developed

flow with no viscous dissipation is expressed in cylindrical coordinates (with appropriate bound-

ary conditions) as

udT [0z = a [;1‘-% (r—aa—::)} | (3.40a)
(0T [0r),—0 =0; T(ro) = Tw(z) (3.40b)

It should be noted that for the constant wall heat flux case 9T /0z = 8T;/0z = 0Ty/dz = const.,
and therefore, the term (8%T/0z?) in the energy equation becomes zero. The value of the
constant 0T /0z is evaluated from an energy balance on a differential volume as in Fig. 3.5 (see

Eq. 3.20b). For this case of circular geometry, one finds

0T [0z = 0Ty0z = 29y /(pcpumro) = 2aqy [(kumro) (3.41)
A combination of Egs. (3.40) and (3.41) results in the energy equation for this case as
10 ( oT

r-——) = A(rd —r?); A=4qu/kr} (3.42)

An integration of Eq. (3.42) and application of the boundary conditions given by Eq. (3.40b)

results in

Ty — T = (A/16)(3r§ — 4rgr? + %) (3.43)

From the definition of the bulk temperature, as given by Eq. (3.9), one obtains

Ty — Ty = (1/umAe) / w(Ty — T)dA,
Ac

2r ro
Y — /0 /0 w(Ty — T)(rd8)dr (3.44)
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A combination of Eqgs. (3.39), (3.43) and (3.44) results in the relation for the bulk temperature as

Tw— Ty = (11/24)(roquw/k) (3.45)
consequently,
qw = h(Tw — T,) = h(11/24)(r0qw/k)

and

Nu = hD/k = (24/11 rg)(2ro) = 4.364 (3.46)

Equation (3.46) provides the result for nondimensional heat transfer for fully-developed
laminar flow in a circular duct with uniform surface heat flux. There are several variations of

this physical problem and extensive results for most cases are provided by Shah and London [10].

3.3.3 Circular Tube: Constant Wall Temperature

This is the same physical problem as discussed in the preceding section but the boundary
condition is changed now to the uniform wall temperature. To make the problem a little more
interesting, let us include the viscous heating term in the energy equation and neglect the axial
temperature gradient (i.e., assume a fully-developed temperature profile). For this case, the

energy equation and boundary conditions may be expressed as

d .
%(r%) = —(;z/k)r(du/dr)2 (3.47a)
(dT/dr),—o =0, T(ro) = Ty = const. (3.47b)

The solution of Eq. (3.47) is obtained by utilizing Eq. (3.39) as

T - Ty = (uuda/k) |1 = (r/ro)’] (3.48)
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If T, represents the temperature at the center of the tube, then the expression for the maximum

temperature rise in the duct is obtained from Eq. (3.48) as
T, — Ty = pul, [k (3.49)
The heat transfer from the wall, in this case, is found to be

qw = —k(8T/0r),_q = 4pu’, [ro = 4k(Te — Ty)/r0 (3.50)

For the physical problem where the viscous heating is negligible but the axial temperature
variation is given by Eq. (3.26), the expression for the nondimensional heat transfer is found

to be [8, 10]
Nu = 3.658 (3.51)

A comparison of results given by Eqgs. (3.46) and (3.51) reveals that the extent of heat transfer

is influenced significantly by the surface temperature variation.
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4. RADIATIVE TRANSPORT MODELS

As mentiohed in Sec. 2, an appropriate model for radiative transport is essential in applying
the energy equation to any problem involving participating mediums. This section provides
essential information on rate equations and equations for relaxation times, the equation of

radiative transfer, band absorption and correlations, and radiative flux equations.
4.1 Physical Model and Coordinate System

For many engineering and astrophysical applications, the radiative transport equations are
formﬁlated for one-dimensional planar system. For this study, the physical model consists of an
absorbing-emitting gas bounded by two infinite parallel plates (Fig. 4.1). The plate surfaces are
assumed to emit and reflect in a diffuse manner.

Diatomic and polyatomic gases are considered at sufficiently low temperatures such that the
electronic, ionization, and dissociation effects can be neglected. For nonequilibrium analyses, the
gas model is considered to be that of a rigid rotator and harmonic oscillator. It is assumed that the
translational energy is governed by the Boltzmann law and a local kinetic temperature, referred
to simply as the temperature, is defined. Rotational modes requiring only a few collisions to
attain equilibrium are assumed to be in equilibrium at the kinetic temperature. Consequently, the
governing equations given by Eqgs. (2.8)-(2.10) are applicable to the case of radiation participating

mediums.
4.2 Rate Equations and Equations for Relaxation Times
The rate of change of vibrational energy of a system of oscillators can be expressed as

dE, dE, dFE,
_ (& 1
dt ( dt >co” * ( dt )rad (4 )

where terms on the right represent contributions due to collisional and radiative processes

respectively. The radiation field exchanges energy with rotational as well as vibrational degree -
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of freedom, and one can write

, dE, dE,
s, = (&)t (7). “

where E, represents rotational energy per unit volume. Because of small separation of rotational

levels, the change in rotational energy is small as compared to the change in vibrational energy

and therefore its contribution in Eq. (4.2) is usually neglected.

The divergence of radiative flux gqg is related to the specific intensity I,,, and for one-

dimensional problem considered here it is given by the expression

. oo 4x
divg, = ‘Zq_yﬂ = /0 dqR"du = / / ———deu (4.3)

A combination of Eqs. (4.1)-(4.3) results in

dE,, 4x
T ( )coll / / _de (44)

The vibrational energy of a system of oscillators undergoing a collisional relaxation process

is given by the Bethe-Teller relation

= = 4.5)

where E; represents the cquilibrium value of vibrational energy, and 7. having the dimensions
of time is called the vibrational relaxation time. In general, the relaxation time is referred to
as the average time required to transfer energy from one mode to another by collision. It is
inversely proportional to the collisional frequency.

A simple derivation of Eq. (4.5) is given in [16, 19]. Since no assumption about the size of

the difference E; — E, was made in its derivation, Eq. (4.5) should be valid for large departure

from the equilibrium. However, the assumption of simple harmonic oscillators restricts its
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applicability to small departures. By employing the initial condition E,,, an integration of

Eq. (4.5) gives,
E, —E} = (Ey, — E;)exp(—t/nc) (4.6)

It is obvious from this equation that the relaxation time is the time required for the difference

E, — E; to come to l/e of its initial value.

Before making use of Eq. (4.5), certain limitations inherent in its derivation must be justified.
The equation was derived on the assumption of dilute concentration of the system of oscillators
in a heat bath of constant statc. However, it was pointed out in [16] that for all practical
purposes, Eq. (4.5) is valid irrespective of the number of excited molecules. Another assumption
made in the derivation is of a single quantum transition between adjacent levels of harmonic
oscillators. The effect of multiple quantum transitions was investigated by Northup and Hsu
[41]. They conclude that results of multiple transitions follow the general pattern of the Bethe-
Teller relationship up to a temperature of 7000K. The effect of anharmonicity was investigated
by Bazley an Montroll [42.]. Their calculations show that the deviations of the fractional level
population from the harmonic oscillator values are generally of the order of the anharmonicity.
Consequently, the relaxation behavior of a system of anharmonic oscillators can be represented
quite accurately by that of a system of harmonic oscillators. Goody [14] suggests that it
would probably be wisest to accept Eq. (4.5) as an experimental rather than a theoretical result.
Whatever reasoning one might adopt, for the physical model considered in this study, there

should be no doubt now in accepting the relation given by Eq. (4.5).

In order to be able to use Eq. (4.5) an explicit relation for 5, = (T, P) is required. This

is provided by the Landau-Teller relation

ne = K1P~'exp (1{2T—1/3) , (4.7
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where K, and K, are positive constants and depend on the physical properties of the molecule.
It should be noted that the vibrational relaxation time increases with decreasing pressure and
temperature. Generally, the product of pressure and relaxation time is plotted against the
temperature on a logarithmic scale. Such a plot is known as Landau-Teller plot and for two
level transitions it is a straight line for a wide range of temperatures.

Information on collisional relaxation times is available in the literature for some molecular
gases [43-66]. For diatomic gases, an empirical relation is given by Millikan and White [50,

52, 66]

Pre = exp [A (T2 - 0.015;11/4) - 18.42] (4.8)

where A is a constant and is related to the molecular constants of the colliding species and u
is the reduced mass of the colliding pairs. Values of A and p are given in the references, and
for CO colliding with CO these are A = 175, and g = 14. The collisional relaxation time for

CO, is given by the relation [53]
Py, = exp (AT-1/3 - B) x 10~6 (4.9)

where A = 36.5 and B = - 3.9. The collisional relaxation-time for methane is given by Richards

and Sigafoos as [56]
Pn. = exp (—5.4 + 40T-1/3) x 10~ (4.10)

In all expressions for 5., P is the total pressure in atmosphere, Me is in seconds, and T represents
the temperature in degrees Kelvin. Although these relations show a strong dependency of 7, on
pressure, in reality it has a larger temperature variation. This is because collisional frequencies
are higher at higher temperatures and consequently it takes relatively less time to deactivate the
excited states. Further discussions on collisional relaxation times for different colliding pairs are

provided by Tiwari and Manian in [67].
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4.3 The Equation of Radiative Transfer

The equation of radiative transfer is derived for a simple harmmonic oscillator on the
assumption that rotational and vibrational levels are populated according to the Boltzmann
distribution. The rotational energy is characterized by the equilibrium temperature whereas
the vibrational energy is described by the nonequilibrium temperature T,,. The derivation which

follows is analogous to that of Goody [14] and Gilles [69].

Two level transitions between the vibrational states are considered such that there results
a single independent vibration-rotation band corresponding to the fundamental frequency of
vibration. Consequently, the nonequilibrium transfer equation, as presented here, is only
applicable to fundamental bands of diatomic and polyatomic gases. At moderate temperatures,
however, the combination and overtone bands do not contribute significantly to the radiative
transfer processes except at very large path lengths. For the conditions where the assumption of
local thermodynamic equilibrium is valid, the transfer equation given here will reduce directly to

the traditional macroscopic equation for radiative transfer available in the literature [11, 12, 18].

For a two level system let n(v — 1) and n(v) represent the number density of molecules
in the lower and upper vibrational levels respectively. In each vibrational level, molecules are
assumed to be distributed over rotational levels according to the Boltzmann distribution function
f(J) such that EJ: f(J) = 1. Here v is the vibrational quantum number and J is a set of
rotational quantum numbers corresponding to the lower vibrational level. Consequently, number
density in the state (v — 1, J) will be given as n(v — 1) f(J). Number of molecules that actually
make the transition from a state (v —1,J) to (v,J') are governed by the Einstein coefficients,
a (J',J)A(v,v — 1) for spontaneous emission, b(J',J)B(v,v — 1) for induced or stimulated
emission, and b(J,J')B(v — 1,v) for absorption. Based on the assumption that rotational and

vibrational wave functions are separable, the multiplication of J and v coefficients is possible.
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Further, for J coefficients it can be assumed that
Y a(2, ) =Y 80,0y =D b(J, ) =1
Spontaneous emissior: is independe;t of radiationJﬁcld, ie., it is isotropic. However,
absorption and induced emission depend upon the intensity of radiation I,. Following Goody
[14], sharp energy levels are initially considered and the transition is assumed to take place with
the loss of a quantum of energy hv. In a rigorous analysis, by considering the broadening of
the energy levels and by defining a line shape function, Gilles {68] derives the same transfer
equation as given by Goody after the latter relaxes the requirements of sharp levels. For details,
reference should be made to these works.

For a two level transition of molecules contained in a volume of depth ds and unit cross

section, the change in radiative intensity, within the solid angle dQ2, may be written as

a , ' dQ
’E;dﬂ - n(v)f(-] )a(J ,J)A(v,v - 1)([;)

= [n(v = 1)f(J)b(J,J) B(v — 1,v)
—n(v)f(J')b(J',J)B(v,v— 1)]I—:dQ . (411
where the first term on the right hand side represents the contribution due to spontaneous
emission, the second and third terms represent absorption and induced emission respectively,
and c is the speed of light.
Application of the principle of detailed balance gives the following relationships between

the Einstein coefficients

a(J',J)A(v,v = 1) = §,b(J', J)B(v,v — 1) (4.122)
' 1Y — 9(J) \Blv —1.v
b(J',J)Blv,w = 1) = 55(J,7) Bo ~ 1,0) (4.12b)

where §, = 8mv?/c3, and g(J) is the statistical weight of J rotational level. For a simple

harmonic oscillator, the following expression is obtained from quantum mechanics

B(v,v—1) =vB(0,1) 4.13)
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Introduction of Eqgs. (4.12) and (4.13) into Eq. (4.11) enables one to write the transfer equation
solely in terms of the coefficient B(0,1). Since each pair of vibrational levels of a simple
harmonic oscillation absorb and emit identical quanta, a summation over all vibrational levels
must be taken. In doing so, following relationships are further employed
00
E,=) vn(v) (4.14)
v=1

where FE, is written in the normalized form, and
E?! = nlexp (hv,/kT) — 1] (4.15)
such that [16]
Ey/E; = [exp (hvo/kT) — 1]/|exp (hvo/kTy) — 1] (4.16)

In writing Eq. (4.16) it has been assumed that the energy distribution over the vibrational levels
is of the Boltzmann type with a corresponding nonequilibrium temperature T,,. Goody [14] does
not explicitly make this assumption and derives the transfer equation directly in terms of the
ratio E,/E;.

By making use of all above information, the transfer equation, Eq. (4.11), can now be

written as

dI, _ nB(0,1)6(J,J)f(J) {2hv® hive v=—ve
E“cu—exp(—h%/knn{ a P [‘F(E+ T )]

— I, + I exp [_%(¥+ ";”")]} (4.17)

where n is the total number of molecules. The form of this equation is identical to that of

Eq. (4.11), i.e., the terms on the right hand side represent contributions due to spontaneous
emission, absorption, and induced emission, respectively. Equation (4.17) is analogous to the

transfer equation obtained by Gilles [68].
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Defining the net absorption coefficient «, and a source function S, in the following manner,
Eq. (4.17) is expressed as

‘% = 5,(S, — 1) (4.18a)

where

ot ML [ 5)]} wm

S,(T,T,) = (2hs3/c?) {exp [%(;’,— +Z '1',")} - 1} (4.18¢)
For the physical model considered here, Eq. (4.18) is the most general form of the radiative
transfer equation. Under the assumption of LTE, T, = T, and there is obtained from Egs. (4.18b)
and (4.18c)

kt(n,T) = 3@ b(J, J') £(J) 11_‘::;’ ((_':l://’;:;)) (4.192)

Sy = By(T) = (2hv®/c?) /[exp (hv/kT) — 1] (4.19b)

where B, represents the blackbody intensity of frequency v at local temperature.

A combination of Egs. (4.16) through (4.19) gives an alternate form of the radiative transfer

equation as

dI .
v = n,,(""B By _ 1,,) — (B B _ %I.,) (4.20)

ds ~ V\x, "E; "E; K}
This is the form of nonequilibrium transfer equation obtained by Goody [14]. It is seen
that the quantity B,(x}/x,)(E,/E;) is the source function S(T,T,). Another form of the
nonequilibrium transfer equation is derived by Tiwari and Manian in [67].
Before proceeding further, it is necessary to clarify a few points pertaining to the preceding

eqhations and then make some useful approximations. From Egs. (4.18b) and (4.19a), it is
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apparent that at the band center the nonequilibrium absorption coefficient x, is equal to its
equilibrium counterpart «}. Away from the band center x, has a very weak dependence on
T,. It was pointed out by Goody [14] that at atmospheric temperatures, the ratio x,/x}
differs from unity by less than 1.5% in the wings of the 154 CO; band (probably the worst
case), as E,/E} varies over a wide range of 0 to 2. In reality, it is the equilibrium value
of the absorption coefficient actually measured in the laboratory. Following such reasonings,
the differences between x, and «} are usually ignored. With this in mind, an examination
of Egs. (4.17) and (4.20) would reveal that the effect of vibrational nonequilibrium is only
important in the spontaneous emission. This fact has also been discussed and experimentally
established by Millikan [47] and Hooker and Millikan [49]. However, according to Gilles [68]
this corresponds to a low temperature approximation and is only valid when vibrational and
kinetic temperatures are of the same order of magnitude. He argues that at high temperatures
NLTE effects cannot be ignored from the induced emission and absorption terms, and introduces

two other approximations.

Further, from Eq. (4.18), it should be noted that at » = v, the source function becomes the
Planck function evaluated at the nonequilibrium temperature T, and away from the band center

it has only a weak dependency on the kinetic temperature.

For the present study, the difference between «, and &} are ignored, and Eq. (4.20) is
taken' as the nonequilibrium radiative transfer equation. In essence, it is assumed here that the
absorption cbefﬁcient is independent of the nonequilibrium effects and that the NLTE effects
come only through the source function, which can now be written as J,(T,T,) = B,(E,/E}).
This notation for the source function is introduced to distinguish it from the previous notation

of S,(T,T,).

Under steady-state conditions, for each fundamental band, a combination of Eqs. (4.4), (4.5)




36

and (4.20) yields

(E.,/E;)[(E:/nc)+ / dQ / fc,,B,,du] = (E/ne) + / dq / xy I, dv 4.21)

where integration is taken over the frequency range of an individual band and over the solid

angle from zero to 4r. Defining a time constant 5, as

e = E;/[ / Q / fc,,B,,du] | (4.22)

and combining Egs. (4.20) and (4.21), there is obtained

dl,
731 =&y (J, — 1) (4.23a)

where

Jy = Bu[(’lr + Tch)/(rlr + Vc)] (4.23b)

X = (/ dQ/n,,I,,du)/(/ dﬂ/n,,B,,du) (4.23c)

It can be shown [33] that 5, = 1/A(1,0) is the radiative lifetime of the vibrational states, where

A(1,0) is the Einstein coefficient for spontaneous emission from the first vibration level.

By employing Egs. (4.3) and (4.23), the source function J,, can be expressed in an alternate

form as

J, = an in{"' +nc[(ﬁ+ / dg / n,,J,,du) /( / dQ / rc,,B,,du)]} (4.24a)

where

h = —/(dqRy/dy)du (4.24b)

It should be noted here that J, like B, is a slowly varying function of v and for narrow bands

it can be assumed as being independent of v. The value for B, and J, are, therefore, taken to
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be the values evaluated at the band center. Further, by noting that both B, and J,, are isotropic,

Eq. (4.24) is expressed as

1 _
Jv. = By, + §(nc/nr)H

H="h/ (2#/&,,(11/) (4.25b)

For isotropic radiation, the blackbody intensity of radiation B, is related to the Planck function
ew by e = wBy.

In the limit of very low pressure, the collisional relaxation time 7, is large and in Eq. (4.23b)

n, can be neglected by comparison. The source function then becomes J, = B, X. Further,
from Eqgs. (4.3), (4.23), and (4.24), it can be shown that the divergence of radiative flux is zero.
The transfer equation for this case becomes as for incoherent sc_attcring and a general integral
formulation of this is given by Wang [69]. In the limit of high pressure, on the other hand, the
collisional relaxation time approaches zero and the source function, Eq. (4.23b), becomes the
Planck function. This is the situation of LTE usually assumed in most radiation transfer analyses.

The degree of nonequilibrium effects is characterized by the order of magnitude of the
parameter (7./7,) in the transfer equation. Significant deviations from the LTE results will start
when this ratio is unity or higher.

By combining Eqs.. (4.15), (4.19b), and (4.22) and by noting that within the band B, is

assumed to be independent of frequency, an expression of 7, is obtained

nl= 87r(Vo/c)2/(n,,/n)du = SWaUE(P/n)/(nw/P)dw (4.26)

where n is the number density of molecules, and w, = (v,/c) is the wave number corresponding
to v,. In order to be consistent with the definition of «, as given in Eq. (4.19a), B, was first

divided by hv and then used to obtain the above relation. Applying the perfect gas law P = nkT,
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and by using appropriate units for ¢ and k, Eq. (4.26) is expressed in an alternate form as
07} = (87w?)(4.08 x 10712)T,5(Ts) 4.27)

where S(T,) having the units of cm=2 — atm™! is the integrated band intensity and is defined in
the next section, 7, is a reference temperature, and #, has the units of seconds. For fundamental
bands of some important molecules, values of 5, were calculated and these are provided in

Appendix A.
4.4 Band Absorption and Correlations

The study of radiative transmission in nonhomgeneous gaseous systems requires a detailed
knowledge of the absorption, emission, and scattering characteristics of the specific species under
investigation. In absorbing and emitting mediums, an accurate model for the spectral absorption
coefficient is of vital importance in the correct formulation of the radiative flux equations. A
systematic representation of the absorption by a gas, in the infrared, requires the identification of
the major infrared bands and evaluation of the line parameters (line intensity, line half-width, and
spacing between the lines) of these bands. The line parameters depend upon the temperature,
pressure and concentration of the absorbing molecules and, in general, these quantities vary
continuously along a nonhomogeneous path in the medium. In recent years, considerable efforts
have been expended in obtaining the line parameters and absorption coefficients of important
atomic and molecular species [70-76].

A quantity that has application with respect to the band approximation is the integrated band

absorption S, also known as integrated band intensity or simply band intensity, and is defined as

Ky
S(T) = /A P (4.28)

where «,, is the spectral absorption coefficient. This quantity is independent of pressure because

the total area of he individual rotational lines is not dependent on pressure. The temperature




39

variation of the integrated band intensity is given by the relation [33-37]
TS(T) =T,5(T,)F(T) (4.29)

where T, denotes an arbitrary reference temperature. F(T) = 1 for fundamental and pure
rotation bands, but it differs from unity for overtone and combination bands. For combination
and overtone bands of important molecules, relations for F(T") are available in the literature [35,
70-74]. Band intensities for some important gases are presented in Appendix A.

As discussed by Sparrow and Cess [18], optically thin radiation can often be formulated in
terms of the Planck mean absorption coefficient xp, and the modified Planck mean absorption
coefficient «,,, which for a single band are defined as

wa Kw(T)ew(T)dw

kp(T) = o) (4.30)
(T, Ty) = L2 '““(T;‘Z‘"(T‘)d“’ (431)
01y

In accordance with the previous assumption of the Planck function e, (7T") being independent of
wave number within the band, and by making use of Eqs. (4.28) and (4.29), Egs. (4.30) and

(4.31) can be expressed as

5o(T) _ ewe(T) g

. T S(T) 4.32)

and

'Cm(Ta Tl) — eu.vz:(Tl) ’Cp(Tl)zl_
P an P T

It must be noted here that both «,(T)/P, and «,,(T,T1)/P are independent of the actual line

(4.33a)

S(T) =

structure of the band. However, the line structure will influence the range of applicability of
the optical thin limit. This is due the fact that the gas must be optically thin for all values of

wave number, such that (k,),.x L << 1, where (x,),,, denotes the maximum value of «,

within the band.
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In general, definitions of «, and k., can be extended to mult-band gases, and through a

combination of Egs. (4.29) through (4.3}), the following relation can be established

Trn(T,Ty) _ 25 TSTIRT)

_2 (4.33b)
T]ch(Tl) E ew"(Tl)S"(To)F‘l'(Tl)
=1

where n represents the number of bands. By including the contributions from overtone and
combination bands, calculations performed for CO, CO,, and H,O indicate [77] that the ratio
on the right side of Eq. (4.33b) is approximately equal to unity and, therefore, Eq. (4.33a) can
be regmded as an excellent approximation of Eq. (4.33b).

Equation (4.32) is expressed for a multiband system of a homogeneous gas as
i _
wp(T) = P Y [eslwei, T)S:(T))/ (oT*) (4.34)
=1

This can be modified to apply to a mixture of different gases as

kp(T) = ZP,-{Z [e,,(wc;,T)S,-(T)]} /(eT*) (4.35)
J =1 j

where j denotes the number of species in the mixture and P; is the partial pressure of the jth
species. |

Several models for the mean absorption coefficient are available in the literature [18, 33, 78].
Since these models account for detailed spectral information of molecular bands, this approach
of radiative formulation is referred to as the “pseudo-gray formulation.”

For an accurate evaluation of the transmittance (or absorptance) of a molecular band, a
convenient line model is used to represent the variation of the spectral absorption coefficient.
The line models usually employed are Lorentz, Doppler, and Voigt line profiles. A complete
formulation (and comparison) of the transmittance and absorptance by these line profiles is given
in [33-37]. In a particular band consisting of many lines, the absorption coefficient varies very

rapidly with the frequency. Thus, it becomes very difficult and time-consuming task to evaluate
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the total band absorptance over the actual band contour by employing an appropriate line profile
model. Consequently, several approximate band models (narrow as well as wide) have been
proposed which represent absorption from an actual band with reasonable accuracy [33-37,
79-88]. Several continuous correlations for the total band absorption are available in literature
[33-37, 84-88]. These have been employed in many nongray radiative transfer analyses with
varying degree of success. A brief discussion is presented here on the total band absorption,
band models, and band absorptance correlations.

The absorption within a narrow spectral interval of a vibration rotation band can quite

accurately be represented by the so-called “narrow band models.” For a homogeneous path, the

total absorptance of a narrow band is given by -
Ay = / [1 — exp (—KuX)]dw (4.36)
Aw

where k,, is the volumetric absorption coefficients, w is the wave number, and X = py is the
pressure path length. The limits of integration in Eq. (4.36) are over the narrow band pass

considered. The total band absorptance of the so-called “wide band models” is given by
A= / [1 — exp (—kwX)]d(w — w,) ' (4.37)
—-00

where the limits of integration are over the entire band pass and w, is the wave number at the
center of the wide band. In actual radiative transfer analyses, the quantity of frequent interest

is the derivative of Eqgs. (4.36) and (4.37).

Four commonly used narrow band models are Elsasser, Statistical, Random Elsasser, and
Quasi-Random. The application of a model to a particular case depends upon the nature of the
absorbing emitting molecule. Complete discussion on narrow bands models, and expressions for
transmittance and integrated absorptance are available in the literature [33-37, 79-81]. Detailed

discussions on the wide band models are given in [33-37, 82-88]. The relations for total band
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absorptance of a wide band are obtained from the absorptance formulations of narrow band

models by employing the relations for the variation of line intensity as [33-37, 85-88]
Si/d = (S/Ao) exp {[—bolw — wol]/ Ao} (4.38)

where S is the intensity of the jth spectral line, d is the line spacing, S is the integrated intensity
of a wide band, A, is the band width parameter, and b, = 2 for a symmetrical band and 4, = 1 for
bands with upper and lower wave number heads at w,. The total absorptance of an exponential
wide band, in turn, may be expressed by

Alu, B) = A(u, B)/ Ay = — /w  [An(u, B)ld(w — w) (4.39)

Ao Jpiae
where u = SX/A, is the nondimensional path length, 8 = 27+ /d is the line structure parameter,
71 is the Lorentz line half-width, and Ay (u, 8) represents the mean absorptance of a narrow
band.
By employing the Elsasser narrow band absorptance relation and Eq. (4.38) the expression

for the exponential wide band absorptance is obtained as [36, 37].
_ X
A(u,f)=~+ (l/n)/ [Iny + E1(y))dz (4.40)
o

where 9 = usinh /(cosh § — cos z), vy = 0.5772156 is the Euler’s constant, and E,(v) is the
exponential integral of the first order. Analytic solution of Eq. (4.40) can be obtained in a series

form as [36, 37]
A, 8) =D {~(A)"[SUM(mn)]/ [n(B + 1)"nl(n — 1)!] } (4.41)
n=1

where

SUM(mn)= Y _ [(n +m — 1)}(2m — 1)IC™}/ (zm(m!)2)
m=0

A= —utanhf,B=1/cosh 8

C=2/(1+coshf)=2B/(B+1) .
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The series in Eq. (4.41) converges rapidly. When the weak line approximation for the Elsasser

model is valid (i.e. G is large), then Eq. (4.40) reduces to
A(u) =y +In(u) + Ey(u) . (4.42)

In the linear limit, Eqs. (4.40) and (4.41) reduce to A = u, and in the logarithmic limit they
reduce to A = v + In(u). It can be shown that Eq. (4.40) reduces to the correct limiting form
in the square-root limit. Results of Egs. (4.40) and (4.41) are found to be identical for all
pressures and pathlengths. For p > 1 atm, results of Egs. (4.40)-(4.42) are in good agreement
for all path lengths.

By employing the uniforrﬁ statistical, general statistical, and random Elsasser narrow band
models absorptance relations and Eq. (4.38), three additional expressions for the exponential
wide band absorptance were obtained in [36, 37]. The absorptance results of the four wide
band models are discussed in detail in [37]. The expression obtained by employing the uniform
statistical model also reduces to the relation given by Eq. (4.42) for large £.

Several continuous correlations for the total absorptance of a wide band, which are valid
over different values of path length and line structure parameter, are available in the literature.
These are discussed, in detail, in [33-37, 85-88] and are presented here in the sequence that
they became available in the literature. Most of these correlations are developed to satisfy at
least some of the limiting conditions (nonoverlapping line, linear, weak line, and strong line
approximation, and square-root, large pressure, and large path length limits) for the total band
absorptance [34-37]. Some of the correlations even have experimental justifications [33-83].

The first correlation for the exponential wide band absorptance (a three piece correlation)
was proposed by Edwards et al. [35, 82, 83]. The first continuous correlation was proposed by

Tien and Lowder [33], and this is of the form

A(u, B) = In (uf(){(u + 2)/[u + 2f(1)]} + 1) (4.43)




where

F(t) = 2.94[1 — exp (—2.60¢)),t = B/2

This correlation does not reduce to the correct limiting form in the square-root limit {34-37], and
its use should be made for # > 0.1. Further discussions on correlations proposed by Edwards

et al. and by Tien and Lowder are provided in Appendix A.
Another continuous correlation was proposed by Goody and Belton [87], and in terms of

the present nomenclature, this is given by
i 2] o_o,
A(u, B) = 210 {1+ u/l4 + (ru/at) "/}, 5 = 2 (4.44)

Use of this correlation is restricted to relatively small g values [34-37]. Tien and Ling [88)

have proposed a simple two parameter correlation for A(u, ) as
A(u) = sinh™! (u) (4.45)

which is valid only for the limit of large §. A relatively simple continuous correlation was

introduced by Cess and Tiwari [34], and this is of the form
A(u, B) =2in (14 u/{2+ [s(1 +1/B)]"*}) (4.46)

where 3 = 4t/ = 2f/n. By slightly modifying Eq. (4.46), another form of the wide band

absorptance is obtained as [36, 37]
A(u,B) = 2In (1 +u/{2+ [u(c+ 7r/2ﬂ)]1/2}) 4.47)

where

01, pf>landu<l
0.25, B>1andu>1.

Equations (4.46) and (4.47) reduce to all the limiting forms [34].

{ 0.1, B <1 and all uvlaues
Cc=
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Based on the formulation of slab band absorptance, Edwards and Balakrishnan [85] have

proposed the correlation
- 1
Aw)=ln(u)+ Ey(u) + v+ 5 Ej3(u) (4.48) -

which is valid for large 5. For present application, this correlation should be modified by using
the technique discussed in [36, 37]. Based upon the formulation of the total band absorptance
from the general statistical model, Felske and Tien [86] have proposed a continuous correlation

for A(u,pB) as

A(u, B) = 2E1(tpu) + E1(pu/2) — Eal(pu/2)(1 + 2t)]

+In [(t,o.,)2 /(14 2t)] + 2y (4.49)

where
pu = {(t/u)[L + (t/u)]}/?

The absorptance relation given by Eq. (4.42) is another simple correlation which is valid for
all path lengths and for ¢ = (3/2) > 1. The relation of Eq. (4.41) can be treated as another
correlation applicable to gases whose spectral behavior can be described by the Elsasser model.
In Ref. 37, it was shown that the Elsasser as well as random band model formulations for the

total band absorptance reduce to Eq. (4.42) for ¢t > 1.

Band absorptance results of various correlations are compared and discussed in some detail in
[36, 37]. It was found that results of these correlations could be in error by as much as 40% when
compared with the exact solutions based on different band models. Felske and Tien’s correlation
was found to give the least error when compared with the exact solution based on the general
statistical model while Tien and Lowder’s correlation gave the least error when compared with
the exact solution based on the Elsasser model. The results of Cess and Tiwari’s correlations

followed the trend of general statistical model. Tiwari and Batki’s correlation [Eq. (4.41) or
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(4.42)] was found to provide a uniformly better approximation for the total band absorptance at
relatively high pressures. The sole motivation in presenting the various correlations here is to
see if their use in actual radiative processes made any significant difference in the final results.
From the basic information presented in [36, 37], it may be concluded that use of the
Tien and Lowder’s correlation should be avoided at lower pressures, but its use is justified (at
moderate and high pressures) to gases whose spectral behavior can be described by the regular
Elasasser band model. For all pressures and path length conditions, use of the Cess and Tiwari’s
correlations could be made to gases with bands of highly overlapped lines. In a more realistic
problem involving flow of an absorbing emitting gas, results of different correlations (except the
Tien and Lowder’s correlation) differ from each other by less than 6% for all pressures and path
lengths. Use of Tien and Lowder’s correlations is justified for gases like CO at moderate and
high pressures. For gases like CO,, use of any other correlation is recommended. The Felske
and Tien’s correlation is useful for all pressures and path lengths to gases having random band
structure. Tiwari and Batki’s simple correlation could be employed to gases with regular or

random band structure but for P > 1.0 atm.




4.5 Radiative Flux Equations

Following the procedure described in [18], for the physical model illustrated in Figs. 4.1 and

4.2, and integration of the transfer equation, Eq. (4.23a), gives

qRw = 2Ble3(Tw) - 2BZwE3(Tow - Tw)

i Tw Tow
1 + 27 [/ Ju(t)Ez(1, — t)dt — / Ju(t)Eq(t — Tw)dt] (4.50a)
where
Tw = Kol 5, Tow = Kuwl (4.50b)
Jw(t) = e_wg + ’;‘U}—I(t)’ n= Uc/ﬂr (4.50c)
fi(y) = ~%anl) _ ~  (dano [ dy)ds (4.50d)
~ 2xPS(T) ~ 2nPS(T) ’

In this equation 7, is the optical path length and ¢ is a dummy variable for 7,. The quantities Bj,,
and B, represent the surface radiosities, and E,(t) are the exponential integral functions. In
writing the expression for the source function J,, use was made of the relation e, = 7B,.
Further, it has been assumed that the spectral absorption coefficient x, is independent of

temperature, i.e., restriction is made to moderately small temperature differences within the gas.

Following the procedure outlined in [18], expression for the surface radiosities are obtained

as

By = €1we1w +2(1 — €14) [Bsz;;(Tow) + 7r/ - Jw(t)Ez(t)dt] (4.51a)
0

Tow
By, = eqpe0, + 2(1 - €2w) [Ble3(Tow) + 7r/ Jw(t)Ez(Tow — t)dt] (4.51b)
o
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Equations (4.51) constitute two simultaneous equations for By, and B,,. For black surfaces,
Biw = e1, and By, = ez,. Under the assumptions of LTE, J,,(t) = e,(t)/n. For these specific

situations, the simplified form of Eq. (4.50) should be obvious.

The total radiative flux is given by the expression

o0
= [ anado (4.52)

In general, for nongray gases, Eq. (4.50) does not possess a correct optically thick limit.
However, a correct large path length limit does exist and it will be discussed in a separate

subsection. A correct optically thin limit of Eq. (4.50) exists and is given by [18]

q}lw('rw) = Blw(l - 2Tw) - BZw(l — 270w + 2Tw)

+21r[ / ¥ Jutydt - / - Jw(t)dt] (4.53)

Differentiating Eq. (4.53) with respect to 7, and neglecting terms of 0(7,.), one finds an

expression for the divergence of radiative flux as

) [ dq R [oe)
—divgp (y) = — “dy =2 Kw[Biw + Baw — 21 J,(y)]dw (4.54)

o o
By noting the assumption on J,(y) as being independent of wave number, and using the

definitions of Planck mean and modified Planck mean absorption coefficients as given by

Eqgs. (4.30) and (4.31), Eq. (4.54) is written in an alternate form as

_ <1 + %) ‘Zq_yﬂ = 2B16m(T, T1) + 2B2km(T, T2) — 4xy(T)oT*(y) (4.55)

The expressions for surface radiosities corresponding to the optically thin limit are available
in [18].
The obvious simplification of NLTE effect in Eq. (4.55) should be noted. As such, all

optically thin analyses based on the assumption of LTE can be modified to include the effect
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of NLTE simply by multiplying the divergence of the radiative flux by a constant involving the
nonequilibrium parameter n = 7./7,.

Under the assumption of LTE, Eq. (4.50a) may be expressed for black bounding surfaces as

qRw(Tw) = €10 — €20

+2[ / " F(t)Ea(re - t)dt — / ™ BB —rw)dt] (456)

w

where Fy,(t) = ey (t)—e1w; Fa(t) = eu(t)—eq,. A direct differentiation of Eq. (4.56) results in

._d;f“’ = ~2[F(70) + Fou(1w)]

w

Tow

Fau()Ey(t — rw)dt] 4.57)
Equation (4.56) and (4.57) are the LTE equations for one-dimensional absorbing-emitting medium
with diffuse nonreflecting boundaries and are very useful for many engineering applications

4.5.1 Fundamental Approximations and Resulting Equations

An often employed approximation in radiative transfer problems involves replacing the expo-
nential integral E,(¢) by an exponential function. The procedure for obtaining this approximation
and its validity is discussed in [18]. For the present situation, the exponential integrals F,(t)

and E3(t) are approximated by

Ex(t) ~ Z—exp (-—gt) (4.58a)
E3(t) = - / Ez(t)dt o~ -12—exp (—-g—t) (4.58b)

Employing these approximations, Eq. (4.50) is expressed in physical coordinates as
3 3
qrw = B, exp —iﬁwy — By, exp —iﬂw(L - y)
v
+ 31{/ Ju(z)kw exp —énw(y —z)|dz
2 \J, 2

_ /,, * () exp [—%nw(z—y)]dz} (459)
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At the same time Egs. (4.58) should also be used in Egs. (4.51) to obtain corresponding

expressions for the surface radiosities. In order to avoid writing expressions for the radiosities
in the subsequent discussion, attention will be directed only to black bounding surfaces.

Again, by noting the assumptions on J,(y) as being independent of wave number within

the band, for black bounding surfaces, a combination of Egs. (4.52) and (4.59) gives

qrR = €1 — €2
3 [Y 3
+ —/ [7Jwe(2) — e1we] KwexXp |—=kw(y — z)|dwdz
2 [} Aw 2
3 [k 3
— -—/ [ Jwe(z) — egwc]/ KweXp | —=ku(z — y)| dwdz (4.60)
2 v Aw 2

Equation (4.60) may now be formulated in terms of the derivative of the total band absorptance,
A'(y), since the kernal of the integrals in this equation have exactly the same form as the
derivative of the total band absorptance obtainable from Eq. (4.37). After expressing Eq. (4.60)
in terms of A'(y), it should be noted that the correlations for the total band absorptance are
available in terms of the dimensionless path length u. Thus it would be convenient to re-
express the resulting equation in terms of u. This is done by defining u, = (S/A,)PL, and by
letting u' be the dummy variable for u. After this has been accomplished then by defining the

dimensionless independent variable as

(4.61)
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the equation for the radiative flux is expressed in its final form as

gr(§) =e1— ez
¢ )
# 3] [ R 3 [Jute - )] e
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[ ()rfeolu]

where A'(u) denotes the derivative of the dimensionless band absorptance A(u) with respect to u.

Performing spatial integration by parts, Eq. (4.62) can be expressed in an alternate form as

@ =1 —ert af [ Lo alSue - €)]

1 deye -[3 . ,
[ pofio]e)
3 [d
(o]
! dfuz
[ elie-ole

In obtaining this equation it was assumed that e,.(0) = ejuc, and ey c(1) = egue, Which is
correct only in the large path length limit. Consequently, Eq. (4.63) is applicable only in the
limit of large u,.

Since restriction is made to moderately small temperature differences within the gas, Planck

function e, (¢) can therefore be linearized as
ew(€) ~ e1w + (dew/dT ), (T — Th) (4.64)

By employing Eq. (4.64), linearized form of the radiative flux equations, Eqs. (4.62) and (4.63),
can be obtained.

Because of the restrictions of two level transitions inherent in the nonequilibrium transfer
equation, the radiative flux equations given by Eqgs. (4.62) and (4.63) are applicable to gases with
only one fundamental band contributing to the radiative process. These equations, therefore,
are useful in describing radiative transfer only in diatomic gases where contributions from the
overtone bands are not important. For gases with more than one fundamental band, where each

band independently contributes to the radiative process, Eq. (4.62) is written in the form

qr(f) =e1—e2
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+ g; Aai“oi{[ Flw.A' [ uot(f £ )dﬁ]
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—%Zn{/ U2 11| Suale - )

! dQR ' !
-/ A 1 e — )] '} (4.65)

Here n denotes the number of fundamental bands. Equation (4.63) can also be written in a

similar form.

For the situations where assumptions of LTE are valid, the last two terms on the right
hand side of Eq. (4.65) vanish and then there remains no restriction of taking summation over
fundamental bands only. However, for the conditions (low pressure and moderate temperature)
where NLTE effects are important, fundamental bands are of main importance to the radiative
process. Contributions from the combination and overtone bands become significant only at
higher temperature and pressure where conditions of LTE usually prevail. As such, Eq. (4.65)

could be regarded as a general expression for the radiative flux in nongray gases.

4.5.2 Optically Thin Limit

As pointed out by Sampsoh [72], the effect of nonequilibrium radiation is more prominent in
the optically thin limit. Many physical problems involving nonequilibrium radiation can therefore
be formulated in this limit with considerable mathematical simplification. In a particular analysis,
this limit is approached when optical thickness 7,, pressure path length X, or dimensionless path
length u, is small. There are two ways of obtaining this limit. One is to employ the Planck mean
and modified Planck mean coefficient and make use of Eq. (4.55), while the altenate method is

to directly obtain limiting forms of govemning equations. Following the second approach, and
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by noting that for u, << 1, A(u) = u, A'(u) = 1, there is obtained from Eq. (4.62)

ddqéR <l + = 3 ) = g—Aouo{[ewc(é.) - elwc] + [ewc(f) - Gch]} (4.66)

Equation (4.66) along with the equation for the conservation of energy will describe a physical
problem completely in the optically thin limit. It should be noted that Eq. (4.66) is essentially

the same as Eq. (4.55).

4.5.3 The Large Path Length Limit

As discussed in [77, 89, 90], conventional Rosseland (or diffusion) limit does not apply to
infrared gaseous radiation. For Rosseland equation to apply, the gas must be optically thick
for all values of wave numbef that contribute to the absorption-emission process. However,
there will alway§ be optically non-thick regions in the wings of vibration-rotation bands and this
prohibits using Rosseland limit as a proper limit for infrared radiation.

For vibration-rotation bands, even though the Rosseland equation is inapplicable, a large
path length limit does exist and is achieved when u, >> 1 for each band of importance. As
shown in [77, 89, 90], in this limit }i(u) = In(u), A'(u) = 1/u, such that their substitution

in Egs. (4.62) and (4.63) gives

qr(f) = e1 —e2
e / Flw(€) - g, / Fau(€) 6"’5'6,]

and

qr(€) = e1—e2
+A‘,{/o6 %m[ uo(€—£')]d£'+/: ‘Z‘;’ln[ (€ - e)]ds}

1 d¢'
- n[ / (dan/at’) 2 e'] (4.68)
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In order to obtain the divergence of the radiative heat flux and to compare the order of
magnitude of each term in the resulting equation, it seems convenient to work with Eq. (4.68).

Differentiation of Eq.. (4.68) is performed by using the Cauchy principle and there is obtained

dqr _ 1 dewe df 1 l dgp_ df' 4.69
d¢ _A"/o d£’€—£'+4uo"/o d¢' (£ —¢)?’ “

Since, for the gas models considered here, the quantity n = 5./n, will not be much higher

than of order one, in the limit of large u,, Eq. (4.69) reduces to

dqp _ ! n 4
AR 4, / (dewc/4¢) £ =5 (4.70)

which is purely an equilibrium result. The vanishing of nonequilibrium effects in this limit can
further be seen from the consideration of the source function. It should be recalled, from the
discussion of Sec. 4.2, that the NLTE effects come only through the source function. The source

function, as given by Eq. (4.50c), can be expressed in the following form

_ ew(é) n dqp
Jule) = T Aru,A, df “71)

A combination of Egs. (4.69) and (4.71) results in

1 !
sy =l Lyl [0 S &

4 \uwJ, d€ E—€
1 1 dgp de¢
+4Aou3/o d_ﬁ'(g—g')z} @7

From a comparison of the order of magnitude of each term in this equation, it is noted that in
the large u, limit the source function J,,(¢) becomes the Planck function e, (¢)/n, and according
to the Kirchhoff’s law the conditions of LTE prevail.

From a physical point of view, it should be noted that the large u, limit is achieved by either

going to higher pressures or to larger path lengths. In case of high pressures, the energy levels are
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populated mainly by collisions (a collision dominated process) and consequently the conditions
of LTE prevail. On the other hand, when the large u, limit is achieved as a result of large path
length, then LTE is assured by the conditions for optically thick radiation (photon continuum).

4.5.4 Gray Gas Formulation

Under the assumption of LTE, a combination of Egs. (4.52) and (4.59) results in (for black

bounding surfaces and gray gas approximation)
ar(r) = F(r) + r{ / " TA(t) exp [=b(r — 1)}dt
_ / " T exp [—b(t — 'r)]dt} @.73)
where
F(r)= chl4 exp (—br) — aTZ;i exp [-b(mo — 7))

and b = 3/2 and ' = bo. Differentiation of Eq. (4.73) twice by using the Leibnitz formula
results in

2 2 4
d’qp _ &F | ,dT

dr?  dr? dr
T
+ rb2{ / T*(t) exp [—b(r — t)]dt
o
To
- / T*(t) exp [—b(t — 'r)]dt} 4.74)
T

Eliminating the integrals between Eqs. (4.73) and (4.74), one obtains

Equation (4.75) is the general differential equation for radiative flux for gray gas ap-
proximation. For the specific relation of F(r) as defined in Eq. (4.73), there is obtained

d’F/dr? 4+ b*F(r) = 0. Consequently, Eq. (4.75) reduces to

— — —qr = 30— (476)
T T
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This is an appropriate relation for radiative flux for gray gas analyses of the present physical

problem.




Figure 4.1 Physical model for radiative interaction
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Figure 4.2 Plane radiating layer between parallel boundaries
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5. RADIATIVE INTERACTION IN GASES
WITH VIBRATIONAL NONEQUILIBRIUM

In this section, basic features of infrared radiative heat transfer in nongray nonisothermal
gases are investigated. A general band absorptance model analysis is presented for diatomic
and polyatomic gases. This model, at least in an approximate manner, accounts for the line
structure behavior of the band and takes into consideration radiation in the wing regions. Other
approximate band models were considered in [77]. The particular gases selected are CO, CO,,
H,0, and CH4 mainly because the required spectroscopic information for these gases is easily
available. The effect of nonequilibrium is investigated for diatomic gases in general and for CO
in particular. It is further pointed out that for CO, fundamental bands, at room temperature, the
assumption of LTE is valid even down to a pressure of 1/100 atmosphere. Under the assumption
of LTE, radiative contribution from the combination and overtone bands of CO, and CO is
investigated. It was indicated in [71] that if band centers of two adjacent bands are separated
by more than about 100 Be cm™! then these bands can be treated as independent bands and any

overlapping in the large path length limit can be neglected.

5.1 Infrared Radiation Transfer in Gases with Internal Heat Source

The physical model and the coordinate system are as shown in Figs. 4.1 and 5.1 except
that the plate surfaces are assumed to be black and to have the same uniform temperature T;.
There is a uniform heat source (or sink) per unit volume @ within the gas. The model as stated
here, would at first appear to be quite unrealistic, but it serves a very useful purpose in the
investigation of the basic features of infrared radiative heat transfer. This is analogous to the

problem of slug flow convection in a parallel plate channel.
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5.1.1 General Formulation

From the conservation of energy, there is obtained

dqR

hut: 21 1

T Q (.1
where qp is the total radiative flux over all wave numbers and is given by Eq. (4.65). From

symmetry of the problem, it follows that gg = 0 at y = L/2, and Eq. (5.1) may be integrated

to yield

qR = %(2% ~1) ¢.2)

For the ith vibration-rotation band, a combination of Eqgs. (4.61), (4.62), (5.1), and (5.2) yields

%11(25 -1)=
£ -
+ g / [Ao.-u,,,- [P (€)] - (n.-)% Al(D)de'
1 -
) g/e [A°‘"°" [Fre:(¢)] - (m)%_ Ai(11)de (5.3)

where

A1) = & Juate - €)], 20 = &[Sunte - ¢

The integro-differential equation expressed in this form is valid for gases with only one

fundamental band, i.e., to diatomic molecules. By defining a dimensionless quantity

| _ew(l) —ew  ew(f) —ew
M) = QLA = QrACIP oD

Eq. (5.3) may be expressed as

1
£ — 2 =€
+ g / [#:(¢) — 0.25(n)) Al(J)de’
1
-3 /e [#:(€") — 0.25(m)) AL(1T)de’ 5.5)
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The quantity ¢({) represents the temperature profile within the gas. The parameters in this
equation are, the dimensionless pathlength u,, the nonequilibrium parameter (n = n./5,) and
the line structure parameter § which enters through the empirical correlation for the total band
absorptance A(u).
For the conditions where the assumption of LTE is justified, a combination of Egs. (4.61),
(4.64), (4.65), and (5.2) results in a linearized form of integro-differential equation for gases
with n-vibration rotation bands as

n ¢ )
§— % = g-z (Hiuoi/H) [/o ¢* (¢')Ai(I)d¢'

=1

1
- [ #@aan] 56)
£
where the following definitions were employed
deyi
H; = Aoi(i) (5.7a)
dT'

n

- dewi
H=) Hi=) Adi (W)T (5.7b)

i=1 1=1

¢*=(T-T)/(QL/H) (5.7¢)

The quantity ¢* represents the temperature profile for linearized radiation under the assumption
of LTE.

Note fhat, for a multiband system, a combination of Eqgs. (4.61), (4.65), and (5.2) would
have resulted in a nonlinear integral equation. However, consistent with the assumption of a
temperature independent absorption coefficient, the problem was linearized through the use of
Eq. (4.64). Further, it should be noted that for a single band gas if ¢* is available then ¢ can

be obtained from the relation

d=¢"+ i(n) (5.8)
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By making use of the correlation for the total band absorptance as given by the Eq. (4.43),
numerical solutions of Egs. (5.5), and (5.6) were obtained. Spectroscopic information of
Tables A1 and A2 was used, and for the relaxation time of CO fundamental band, Eq. (4.8)
was employed. The solutions were obtained by the method of undetermined parameters. A
polynomial solution for ¢ was assumed, and the constants were evaluated by satisfying the
integral equation at equally spaced locations. Both quadratic and quartic solutions were utilized,
with the two solutions yielding virtually identical results. Simpson as well as Romberg techniques

of numerical integration were employed. The results are presented and discussed in Sec. 5.3.

5.1.2 Large § Solution

For gases where detailed spectroscopic information about the line structure behavior of
individual bands is not available, radiative effects can be investigated in the limit of large
B. This limit is approached when spectral lines are sufficiently pressure broadened such that
the total band absorptance is no longer a function of pressure. The line structure function in
Eq. (4.43) for this case becomes f(f) = 2.94, and B now ceases to be a parameter in the
integro-differential equations, Eqgs. (5.5) and (5.6). It should be noted that for the conditions
where the assumption of large § is valid, the assumption of LTE is also justified except for small
values of u,;. Formulations in this limit are especially useful in determining the contributions

from combinations and overtone bands.

The spectroscopic information required for this limit is the rotational constant, the band width
parameter, and the integrated band intensity. For important molecules, rotational constants and
band intensities are available in the literature [70, 91]). The band width parameter A, can be
evaluated by the method presented in Appendix A. Large £ solutions were obtained for CO,

CO,, H70, and CHy4, and these are discussed along with the general band absorptance results
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in Sec. 5.3.

5.1.3 Optically Thin Limit

As discussed in [18], an exact formulation of the nongray problem is possible in the optically
thin limit. For the physical model considered here, the divergence of radiative flux for this limit

is obtained from Eq. (4.55) as
d
-+ q)dL; = 40 [k (T, T1)T§ — £p(T)T] (5.9)
Combining this with Egs. (4.33) and (5.1), there is obtained
T3 Q@
ko (T)TH - ,c,,(T,)T1 = ZE(I + 1) (5.10)

It should be noted that Eq. (5.9) is a completely general equation and is applicable to gases
with multiple bands. From the discussion of Sec. 4.4, Eq. (5.10) can also be regarded as a
general equation. However, the presence of the nonequilibrium parameter 5 in these equations
should restrict their applicability to gases with fundamental bands only. Since, in the optically
thin limit, only fundamental and pure rotation bands contribute significantly to radiation, and

since rotational energy is assumed to be described by the kinetic temperature, Eq. (5.10) can

be treated as a general equation for the nonequilibrium conditions. In applying Eq. (5.10) to

multiband gases, the nonequilibrium parameter  must be summed over all bands. Alternately,
by making use of Eq. (4.33b), a rigorous formulation in the optically thin limit can be presented
for multiband gases.

Employing Eq. (4.32), and by noting that for fundamental and pure rotation bands S(T') ~

1/T, Eq. (5.10) can be expressed as

ewi(T) — ewi(T1)
Q/PSi(T)

=¢; = i(l + i) (5.11)

where the result ¢ = 1/4 was obtained in [77] for this limit under the assumption of LTE.
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Equation (5.11) could also be obtained by first allowing the spectral coefficient to be
temperature dependent, and then going to the limit of small temperature differences. This would
not be the case, however, if one employs Eq. (5.10) and then assumes that the Planck mean
absorption coefficient is independent of temperature. In other words the correct formulation for
small temperature differences corresponds to assuming that the spectral coefficient, and not the
Planck mean, is independent of temperature.
The optically thin limit can also be obtained by taking the limit of the integro-differential
equation, Eq. (5.5), as the dimensionless path length u, becomes very small. Altemnately, this

amounts to combining Eqs. (4.66) and (5.1) to obtain

1

ewi(T) — ewi(T1) _ +qm (5.12)

1
Q/PSi(T) 3

The differences between Eqgs. (5.11) and (5.12) are due to the fact that Eq. (5.11) was
obtained from an exact formulation while exponential kernal substitutions were made in obtaining
Eq. (5.12). The exponential kernal approximation, as given by Eq. (4.58), produces the greatest
error for optically thin conditions.

Further discussion about formulating the radiative problems in the optically thin limit is
given in [18, 77].

5.1.4 Large Path Length Limit

From the discussion of subsection 4.5.1, it should be recalled that in the large path length
limit the assumption of LTE is justified. Since in this limit A(u;) = In (u;), and A'(v;) = 1/u;,

then there is obtained from Eq. (5.6)

1Y 4
6—5—/0 ¢(§)£—_z; (5.13)
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Aside from the obvious simplification in form in going from Eq. (5.6) to Eq. (5.13), there

are other more striking consequences associated with Eq. (5.13). For example, of the three
correlation quantities A,;, C, and B?, only A,; remains in Eq. (5.13) through the definition of
#*(¢) as given by Eq. (5.7). The dependence upon this single correlation quantity in the large
path length limit has also been illustrated by Edwards et al. [35] in dealing with laminar flow

between parallel plates.

The absence of the line structure quantity B? is obvious, since the line structure of the band
plays no role when radiative transfer occurs solely in the wings of the band. Since the individual
band intensities correspond to AoiCZ, the absence of CZ illustrates that the radiative transfer
process is independent of the band intensities in the large path length limit. This is physically
reasonable, since the central portion of the band does not contribute to radiative transfer in this
limit. |

A further simplication associated with Eq. (5.13) is that the temperature profile within the

gas is independent of pressure. This is not the case with the general formulation, Eq. (5.6), for

which pressure appears both in the dimensionless band path length u,; and in the line structure

parameter ;. This invariance with pressure can also be found from the results of Edwards et

al. [35].

The solution of Eq. (5.13) was obtained by Cess and Tiwari [89] as

80 = VA= (5.14)

It should be noted that this temperature profile yields the result that the gas temperature at the
surface is equal to the surface temperature, and this absence of a temperature slip is characteristic
of optically thick radiation. This, of course, is due to the fact that optically thick radiation is

occurring in certain spectral regions. As previously discussed, optically nonthick radiation exists
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in other spectral regions, with the result that Eq. (5.14) differs substantially from the temperature

profile which would be predicted using a Rosseland type (or diffusion) equation [77].
The dimensionless centerline temperature follows from Eq. (5.14) to be

Tc - Tl
QL/H

=1 0159 (5.15)
2r

5.2 Energy Transfer by Conduction and Radiation

The sole purpose of this subsection is to investigate the effects of including thermal
conduction as another mode of energy transfer in the physical system already considered in
Sec. 5.1. The physical model is still somewhat unrealistic, but the results will be of qualitative
use in assessing the relative importance of thermal radiation and molecular conduction as energy
transport mechanisms for other real physical systems to be treated in Sec. 6.

For the sake of brevity, band absorptance model solutions are obtained only for CO, and the
radiative contribution of the overtone band is investigated in the limit of large u,. Furthermore,
for the CO fundamental band, effects of vibrational nonequilibrium are studies in the presence of
molecular conduction. Limiting solutions of governing integro-differential equations are obtained
in general, and values of interaction parameters in the optically thin and large u, limits are

evaluated for different gases.

5.2.1 General Formulation

The physical model for the present problem is taken to be the same as considered in Sec. 5.1.

Here, in addition to uniform heat generation within the gas, thermal conduction is also included.

From conservation of energy, Eq. (2.10), the temperature profile within the gas is described

by

T dqp
d_g/z_d_y+Q_0 (5.16)
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Upon integrating this equation once, and by noting that d7/dy = 0 and gg = 0 at y = L/2,

there results

dT
qr = k-@ +(y—-L/2)Q (5.17)

In this case, the appropriate equation for the radiative heat flux is Eq. (4.65). For linearized

radiation a combination of Eqs. (4.64) and (4.65) yields, for the ith band

3 dewi ¢ ! 51 '
= —Ao,'u,,;' —_— T -T A,’ INd
anl6) = o (ge) {[ [0€) -m)Aarye
1
- /£ [T() - Tx]AZ(H)dﬁ'}
3 ¢ dqr\ 5 1 ! dqr\ 5 '
—g’l{ [ (G- | (d—E,)A,-(n)ds} 5.18)
where A!(I) and A}(II) are as defined in Eq. (5.3).
Upon letting

0 = (T -T)/(QL?*/k) (5.19)

and employing definitions of Eqs. (5.7a) and (5.7b), then for a multiband system, Eqgs. (5.16)

through (5.18) combine to yield the integro differential equation

n . 13 _ 1 _
+§§Zﬂwa[ | o) i - /e 0(4’)A2(u)d£']

1=1
3% ¢ LAY / ! d*¢ Al !
3 2_: mi [ /o (1 + gz,—z)A;(I )¢ ~ /e (1 + d—éﬁ) AL(I1)d¢ ] (5.20)

Since the presence of conduction implies continuity of temperatures at the boundaries, the

boundary condition for this equation is

6(0)

I
=]

(5.21)
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For the conditions where the assumption of LTE is justified, the second term on the right hand
side of Eq. (5.20) drops out. Furthermore, note that for negligible radiation transfer, Eq. (5.20)

yields the temperature profile

0=-(¢-¢?) (522)

I\le-

Following the identical procedures discussed in Sec. 5.1, numerical solutions of Eq. (5.20)

have been obtained for CO and results are presented in Sec. 5.3.

5.2.2 Optically Thin Limit

In the present notation, the optically thin limit corresponds to u,; << 1 for each band of

importance. Noting that A’(u;) = 1 for u,; << 1, Eq. (5.20) reduces to

do l
—f + E — 5=
+ ——Z:H [ [ e[ o(c')dc']

3 ° 6 dQO '] ! d20 !
‘§.Z_j"'[/., <1+d£_")d§_/5 (l+d£”)d£] ¢

Differentiating this once, and upon letting

_PI2S ;
—— 2 AaCh (de‘” ) (5.242)
i=1 '4)
and
. 3
W= N/(l + 4—11.') (5.24b)

the optically thin form of the energy equation becomes

d?0

aaz 3N = -1 (5.25)

with boundary conditions

8(0) =0, 6'(1/2) = 0
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Note that in Eq. (5.24b), the summation over the nonequilibrium parameter was not taken simply
because NLTE effects are investigated only for the fundamental band of CO. Equation (5.25)

possesses an elementary solution, and the centerline temperature is found to be

QL2/1c1=3_N{1_ [1+exp(2 V3N) } 20

It readily follows that the dimensionless parameter N (or N) characterizes the relative

importance of radiation versus conduction within the gas. For particular values of P and L, it

is actually the dimensional gas property

Z AoiC? (de‘"') (5.27)

which denotes the relative importance of radiation to conduction. This quantity was evaluated
for a number of gases and is illustrated in Fig. 5.2. For CO, CO,, H,0, and CHy4, Eq. (5.27)
was evaluated using the correlation quantities given in Table Al. For NoO and NHj3, the band

intensities, A,;C>.

~» were taken from Table A2. Thermal conductivity values were obtained from

Tsederberg [92] and information given in Appendix B. It was noted that inclusion of weaker
overtone and combination bands of these gases did not make any significant change in the values
of the quantity N/PL?. It should be emphasized that this quantity ‘characterizes the radiation-
conduction interaction only in the optically thin limit, and that the nonequilibrium interaction
in this limit comes throuéh the definition of N. For th.e range of pressure and temperature

considered here, the difference between N and V should be quite small for all gases except CO.

5.2.3 Large Path Length Limit

As noted earlier, in the large u,; limit, the assumption of LTE is justified, and with

Al(ui) = 1/u; for each band of importance, Eq. (5.20) reduces to

do _ 1 N de'
2o (=) -] w0y
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where Eq. (5.21) is again the appropriate boundary condition, and

HL ( dew.)
_HL A, (5.29)
= Z .

The dimensionless parameter M constitutes the radiation-conduction interaction parameter
for the large path length limit, and the dimensional gas property M/ L is illustrated in Fig. 5.3.
For each molecule, the number of bands included in evaluating Eq. (5.29) are listed in Table
A2. Contributions from weaker bands were seen to be significant at higher temperatures, and
therefore, they were included in evaluating the quantity M/L. For CO, CO,, H;0, and CHg,
this quantity was evaluated by using the values for A,; as given in Table Al. For'weaker bands
of CO,, Hy0, and CHy, and for all bands of N,O and NH3, Eq. (A.10) for A,; was employed.

A comparison of Figs. 5.2 and 5.3 shows a considerable difference in the radiation-
conduction interaction for the optically thin limits as opposed to the large path length limit.
For example, in the optically thin limit CO; possesses a large radiation interaction relative to the
other gases, while the reverse is true in the large path length limit. On the other hand, just the
opposite trend is observed for H,O. Since the thermal conductivities of the various gases do not
differ appreciably, this behavior is due to differences in the radiative transfer for the optically

thin and large path length limits, and a discussion to this effect has been given in [89].

Equation (5.28) does not appear to possess a closed form solution. A numerical solution
has thus been obtained, and the results for dimensionless centerline temperature are presented

in Sec. 5.3.

5.3 Results and Discussion

The results are presented first for the case of infrared radiation heat transfer in gases with

internal heat source, and this is followed by the results for combined conduction, uniform heat
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generation, and radiative interaction. For the sake of brevity, most of the results are expressed

in terms of the centeline temperature.

5.3.1 Radiation Transfer in Gases with Internal Heat Source

Numerical solutions of Eq. (5.5) are illustrated in Figs. 5.4 and 5.5 for 8 = 0.1, and 8 = oo,
and for a range of the nonequilibrium parameter n = 7, /r),... Because of the limitation noted
earlier, these results are only applicable to diatomic gases. Also shown are results for the large
u, limit, Eq. (5.15), and for the optically thin limit, Eq. (5.12). Optically thin results are shown
only for the case of LTE. It should be noted that a lower centerline temperature implies a greater

ability of the gas to transfer energy.

For conditions where the assumption of LTE is justified, all modes of energiés are described
by a single equilibrium temperature (referred here as kinetic temperature). In the presence
of vibrational nonequilibrium, however, there would be a continuous exchange of energies
between the vibrational and the kinetic modes. As a consequence, there would be attained
a new temperature which would be higher than the temperature corresponding to the conditions
of LTE. This behavior is evident from the results of Figs. 5.4 and 5.5. As would be expected
the nonéquilibrium effects are significant in the regions of small path lengths, and for the values
of the parameter 5 higher than unity. For large values of u,, the assumption of LTE is seen

to be justified.

For CO fundamental, the vibrational noneqilibium parameter 7 is illustrated in Fig. 5.6.
Values of 5, and n, were obtained from Egs. (4.8) and (4.27) respectively. It is seen that at
a pressure of one atmosphere and a temperature of 500K, the nonequilibrium parameter has a
value of about eight, indicating that for these conditions the assumption of LTE will prove to
be highly in error. It was pointed out by Hooker and Millikan [49] that at a pressure of one

atmosphere, the spontaneous radiation process should dominate the vibrational relaxation process




72
for temperatures lower than 600K. At a temperature of 1000K, the assumption of LTE will be
justified for pressure higher than 1/10th of an atmosphere.

Information on relaxation time for the fundamental bands of CO, is obtained from the
discussion and results presented in [62, 64]. According to these references, at room temperature,
both the bending mode (vibration of wave number 667 cm™!) and the asymmetric mode (wave
number 2349 cm™1) have a value of P, of 7 atm-u sec. At a mean translational temperature
of 500K, the values are 2.9 and 3.6 atm-u sec, and at 1000K they are 0.93 and 1.4 atm-u sec,
respectively. Employing the values of 5, from Table A2 for bending and asymmetric modes
the quantity P(n./n,), at room temperature, is found to be (3.26 x 10~ 5) and (3.21 x 1073)
atm, respectively. Consequently, for CO, at room tcmpei‘ature, the assumption of LTE will be
justified at least (.iown to a pressure of 107> atm, and at higher temperatures, the assumption will
be justified even to much lower pressures.

Information on relaxation time for N,O is available in [62]). Nitrous oxide has very similar
physical properties to carbon dioxide and, therefore, the above conclusions should also apply
to N,O.

For CO fundamental, LTE and NLTE band absorptance results are illustrated in Figs. 5.7
through 5.9 for temperature of 500K, 1000K, and 2000K, and for a range of pressures. In
evaluation of these results, spectroscopic information of Tien and Lowder [33] was employed.
Since the abscissa variable is the pressure path length, PL, then the separate influence of pressure
upon the LTE centerline temperature curves is due solely to the alteration of the line structure
of the bands as a consequence of pressure broadening. As the pressure is increased, the discrete
line structure is eliminated and pressure ceases to be a parameter in the high pressure limit.

From a comparison of LTE and NLTE results in Figs. 5.7 through 5.9, one arrives at the
conclusions mentioned earlier, i.e., at a temperature of 500K, the assumption of LTE is not

justified up to a pressure of about 8 to 10 atmosphere. However, at a temperature of 2000K, the
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assumption of LTE will be valid for pressures higher than 1/100th of an atmosphere.

Under the assumption of LTE, for CO, CO,, H,0, and CHy, general band absorptance and
large B results, as obtained from the numerical solutions of Eq. (5.6), are shown in Figs. 5.10
through 5.13 for different temperatures and for a pressure of one atmosphere. These results
were obtained by considering the contributions from the three bands of CO,, five bands of H,0,
and two bands of CHy, and spectroscopic information of Table A1 was employed. For the CO
fundamental band, spectroscopic information of Tien and Lowder [33] was used. General band
absorptance results for these gases at various pressures were reported, along with results in the
large path length limit, by Cess and Tiwari [89].

It is seen from Figs. 5.10 through 5.13 that large 8 and band absorptance results approach
to be the same in both optically thin and large path length limits, and that maximum differences
occur for the intermediate values of path lengths. The reasons for this can be given on the
physical grounds. In the optically thin limit results become independent of pressure because the
radiative transfer process in this limit depends solely upon the area under x,/P versus wave
. number curve. In the large path length limit the total band absorptance reduces to the logarithmic
asymptote A = In u, and is thus independent of S. It has been further explained in [77] that the
line structure of bands has maximum influence only for the intermediate values of path lengths.
It should be noted that for gases like CO, and H;O, large § solutions, for the most part, are
very good approximations to the general band model results. However, this is not so for gases
like CO and CH4. Further, for CO, differences between the two results seem to disappear at
higher temperatures. This is because the quantity B?(T) is proportional to the square root of
temperature, and at higher temperatures this results in a larger value for 8.

A comparison of the relative ability of the various gases to transmit radiant energy is shown
in Fig. 5.14 for a temperature of 1000K and a pressure of one atmosphere. From previous

discussions, for these conditions, the assumption of LTE would be justified. As discussed in
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[89] CO,, having the largest Planck mean coefficient, is the best transmitter of radiant energy in

the optically thin limit, although just the opposite is true for the large path length limit.

Radiative contributions from overtone and combination bands of CO and CO, were inves-
tigated and results are illustrated in Figs. 5.15 and 5.16. For CO, band absorptance results were
obtained by using the information of Table A1. Employing spectroscopic information of Tables
Al and A2, large g solutions were obtained for CO,. For the three weaker bands of CO,,
the band width parameter A, was calculated by using the relation given in Appendix A, i.e.,
Eq. (A.10).

Figures 5.15 and 5.16 indicate that contributions from overtone and combination bands
are significant only for large path lengths and at higher temperatures. This is because at a
particular pressure, if the path length is increased there becomes available more molecules to
participate in the transfer process and at higher temperatures a significant number of molecules

make transitions to higher energy levels.

From the results presented in this section it may be concluded that in the large path length
limit the assumption of LTE is justified and that nonequilibrium has the largest effect in the
optically thin limit. At a pressure of one atmosphere, the assumption of LTE for CO is not valid
for temperatures below 600K, while for gases like CO; and N,O, the assumption is justified at
room temperatures. Large S results represent good approximation to general band absorptance
results for CO, and H,O, and ﬁt moderate temperatures, contributions from weaker combination

and overtone bands can usually be neglected.

5.3.2 Energy Transfer by Conduction and Radiation

The variations in radiation-conduction interaction parameters for optically thin and large
path length conductions are illustrated in Figs. 5.2 and 5.3, respectively. General results for the

centerline temperature as a function of the interaction parameter are shown for the optically thin
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radiation in Fig. 5.17 and for the large path length interaction in Fig. 5.18. Dimensionless
centerline temperatures for CO as obtained from the numerical solution of Eq. (5.20), are
illustrated in Figs. 5.19 through 5.21 for wall temperatures of 500K and 1,000K, and for a
range of pressures. Since the centerline temperature for pure conduction follows from Eq. (6.7)
to be (T, — T1)/(QL?/k) = 0.125, then Figs. 5.17 through 5.21 serve to illustrate the influence
of radiative ;ransfer upon the temperature profile within the gas.

Figure 5.17 illustrates the influence of nonequilibrium in the optically thin limit. It is seen
that for a fixed value of the interaction parameter N, the radiative contribution decreases as the
nonequilibrium parameter (3 = 7./7,) increases. This is consistent with the discussion given in
Sec. 5.1 that the presence of nonequilibrium will result in a higher centerline temperature. This
behavior is also observed from the results of Figs. 5.19 and 5.20. Once again, it is concluded
that for CO at one atmospheric pressure the assumption of LTE is not justified for a temperature
of 500K; however, at 1,000K the assumption is valid even for a pressure of 0.01 atmosphere.

Also shown in Figs. 5.19 and 5.20 are the large path length limit (large u,; limit) results,
as obtained from Fig. 5.18 together with the M/L values from Fig. 5.3. It can be seen that
the large path length limit is essentially a limiting solution for large pressures. As would be
expected, the importance of radiation becomes more pronounced as the pressure, or the plate
spacing, or both are increased.

The radiative contribution from the 1st overtone band of CO was investigated in the
presence of molecular conduction, and results obtained in the large u, limit indicate a significant
contribution only at a higher temperature and for a larger plate separation (Fig. 5.21).

For this problem, under the assumption of LTE, band absorptance and limiting solutions
were also obtained for CO,, H,0, and CH4 by Cess and Tiwari [90). The band absorptance
results were based on the Tien and Lowder correlation, Eq. (4.43). From a comparison of

the entire results it was concluded that the large path length limit constitutes an upper bound
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upon the influence of radiative transfer on the temperature profile within the gas. This same
conclusion applies to the optically thin limit since self-absorption is neglected. This fact that
both limiting solutions constitute upper bounds on the radiative interaction can be employed to

estimate whether or not, for a given gas, the interaction of radiation may be of importance.
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Figure 5.1 Physical model for radiation transfer in gases with internal heat source
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Figure 5.17 Results for conduction-radiation interaction in the optically thin limit
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Figure 5.18 Results for conduction-radiation interaction for the large path length limit
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6. HEAT TRANSFER TO LAMINAR FLOW OF RADIATING GASES IN DUCTS

The methods developed in the previous sections will now be applied to the more realistic
problem of combined conduction convection and radiation for laminar flow between two parallel
plates and within a circular tube. Analyses will be restricted to the conditions where the
assumption of LTE is justified. Gray as well as nongray treatments are presented and the
effects of surface emittance upon radiative transfer are also investigated for this problem. For
the parallel plate geometry nongray results for CO and CO; have been obtained by employing
various band model correlations for comparative purposes.

Radiative interactions in duct flows have been investigated extensively during the past two
decades with certain inherent simplifying assumptions. Some important works are summarized
in [32-40] and details are available in cited references. Certain specific studies related to the
present problem are available in [93-114]. The main objective here is to provide gray as well
as nongray formulations in a systematic manner, discuss relevant solution procedures, present

results for some specific cases, and suggest certain areas for further research.

6.1 Heat Transfer in Laminar Flow of Absorbing-Emitting Gases between Parallel Plates

The physical model consists of laminar flow between two infinite parallel gray plates, each
of which has the same emissivity e. The boundary condition along each of the plate surfaces is
taken to be that of a uniform heat flux, and thus the temperature of the plates, T}, varies in the
axial direction (Fig. 6.1). Only fully developed flow and heat transfer are considered. Attention
will additionally be restricted to small temperature differences, such that constant properties and
linearized radiation may be assumed.

6.1.1 Basic Formulation

Since the wall temperature varies in the axial direction, there will exist radiative transfer

between wall elements located at different axial positions, and in general this would preclude
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the possibility of achieving fully developed heat transfer. For linearized radiation, however, it is
easily shown that fully developed heat transfer can be obtained, with the subsequent result that
there will be no net radiative transfer between wall elements.

Within the confines of the foregoing assumptions, the energy equation for the present problem

can be obtained from Eq. (2.10) as

orT o’T 1 Oqr

vza = aay2 b pCp ay (61)

where the parabolic velocity profile is described by Eq. (3.11) which for the present case is

expressed as

vz = 6vm [(v/L) — (u/L)’] (62)

where the mean velocity v, = u,, is given by Eq. (3.1). For a uniform wall heat flux and fully
developed heat transfer 07 /0z is a constant and is given by Eq. (3.21). Consequently, Eq. (6.1)

can be written in dimensionless form as

d?0 1d
2y 2P " QR
12(¢ - &%) = T T (6.3a)
where € is defined by Eq. (4.61) and
0p = (T —T1)/(quwl/k) (6.3b)

Upon integrating this equation once, and by noting that df,/dé = 0 and gp = 0 at { = 1/2,

one finds

DBy _o3e2 —93) 4 1= &
i 2(3¢ 2§)+1_qw (6.4)

The expression for the total radiative flux for gray surfaces and a single band gas was

developed by Tiwari and Cess [94], which can easily be extended to include multi-band gases,
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and for the present problem there is obtained
2 3L b [ w0 - [ p(e) A
2k i=1 I W/ ' ¢ ’ '

m=0

_A [gu,,.-«' e14 m)] )ae'} (65)

Note that for black plates, this coincides with the expression for the total radiative heat flux,
under the assumption of LTE, as given by Eq. (5.20).

The temperature profile within the gas, 8,(¢), is thus defined by the combination of Eqs. (6.4)
and (6.5). The boundary condition for the resulting equation follows to be 8,(0) = 0. For flow
problems, the quantity of primary interest is the bulk temperature of the gas, which is defined
by Eq. (3.9). Employing Eq. (6.2) and the dimensionless quantities defined earlier, the bulk

temperature can be expressed in a dimensionless form as

0. — T, — T
LA (IwL/k

1
=6 [ o(e)- )t 66)

which is equivalent to Eq. (3.35).

The heat transfer g,, is given by the expression, g, = h(T1 — T3), where h, is the equivalent
heat transfer coefficient watts/m?>-k. As mentioned in Sec. 3, the heat transfer results are
expressed usually in terms of the Nusselt number Nu defined in terms of the hydraulic diameter
Dy,. For the present geometry Dy, = 2L. Eliminating the effective heat transfer coefficient &, from
the expressions for ¢,, and Nu, a relation between the Nusselt number and the bulk temperature

is obtained as

2Lqy -2

= ET-Ty) O ©7

Nu

Equation (6.7) is essentially the same as Eq. (3.37).
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By employing the techniques similar to that discussed in Sec. 5 and described in detail in
[109-114], numerical solutions yielding results for 6, have been obtained for several illustrative
cases, and these are discussed in Sec. 6.4. It should be pointed out here that the number of terms
(m values) required in Eq. (6.5), for proper convergence, increases as values of wall emittance
decreases. For example, with € = 0.5 it was necessary to consider only three terms, while with ¢
= 0.1 a minimum of ten terms were required. The numerical procedure is described here briefly.

The numerical solutions of combined form of Eqgs. (6.4) and (6.5) are obtained by the method

of undetermined parameters. For this case, a polynomial solution for 6,(¢) is assumed as
05(6) = ao + a1€ + a2t + a3€® + agf? (6.8)
After employing the conditions 6,(0) = 0, 6;(1/2) = 0, and 6,(1) = 6,(0), Eq. (6.8) becomes

0p(8) = a1(€ —26% + €*) + az(€2 — 26 + ¢) (6.9)

The constants a; and a, are obtained by satisfying the governing integro-differential equation at

two locations £ = 0 and ¢ = 1/4. A combination of Egs. (6.6) and (6.9) results in

1
Opp = %(17a1 + 3a,) (6.10)

Thus, with a; and a; known, the bulk temperature (or the Nusselt number) is obtained from
Eq. (6.10). The procedure for evaluating the constants a; and a; is described in detail in [109,

114].

6.1.2 Limiting Solutions

For negligible radiation, there will be obtained from Eq. (6.3a)
b =26 — ¢ — ¢ (6.11)
and substitution of this in Eq. (6.6) will yield

Oyp = —17/70 (612
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This is analogous to the result given in Eq. (3.36).
As discussed before, in the optically thin limit (i.e. the limit of small u,;) A'(u) = 1, and

from a combination of Egs. (6.4) and (6.5), there is obtained in this limit
)

2 3
it —2(3¢° —2¢° +1)

3L g [ e
= ‘EZHiuoi{[ Bp(¢')d¢ —/f 6p(¢ )dﬁ} (6.13)

1=1
After differentiating once, this equation can be expressed in the following form

d20,

e —~3NG,(¢) = 12(¢ - &) (6.14)

with boundary conditions
6,(0) =0, 0;,(1/2) =0
The optically thin interaction parameter N in this equation is the same as defined by Eq. (5.24a).
It should be noted here that, under optically thin conditions the effect of surface emittance upon
the radiative transfer vanishes. Explanation to this effect has been given in [94].
Equation (6.14) possesses an elementary solution, and the result expressed in terms of the

bulk temperature is found to be

o __ L ] 576 1 - exp (-V3N)
"7 BN | V3N |14 exp (—VAN)

This result is illustrated in Fig. 6.2. Again, note that the parameter N characterizes the relative

} ~21.6N2 + 72N — 288} (6.15)

importance of radiation versus-conduction, for the present problem, in the optically thin limit.
The large path length limit is obtained by replacing A'(u) by 1/u in Egq. (6.5), and the

corresponding energy equation becomes

% -2(3¢% -26%) +1
L d¢’ - m
=E§H‘{/ HEF =g+ L0

o 1 1 )
x/o 0’(6)[£’+£+m—£'—£+1+m]d£} (©.16)
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n

where quantity (L/k) Y H; = M, as defined by Eq. (5.29). Note that, written in this form,
1=1

Eq. (6.16) can also be applied to investigate the effects of nongray wall emittance. This, however,

will be treated in Sec. 6.2 while dealing with the problem of flow through specific circular tubes.

Numerical solution of Eq. (6.16) has been obtained by following the procedure described
for the general case, and 6y, results are given in Fig. 6.3 as a function of interaction parameter

M. For a particular physical system, the value of M can be obtained from Fig. 5.3.

6.1.3 Gray Gas Approximation

The gray gas assumption is probably the greatest approximation for the real gas. This
assumption replaces the wave-number dependent absorption coefficient by a wave-number
averaged quantity. For lack of a more rational choice, this average coefficient will be taken

to be K,p(Tl).

Employing Eq. (4.32) and using the information of Table A2, the Planck mean absorption
coefficient was calculated for a number of gases and is illustrated in Fig. 6.4. Values of «, for

higher temperatures than those given in Fig. 6.4, can be obtained from Refs. 18 and 33.

In this section, for convenience, attention will be directed only to black bounding surfaces.
Replacing ., by £, in Eq. (4.59), integrating over the wave number, and utilizing the linearized

expression

T — TE =4THT - Ty)

there is obtained for the present problem

qr = GUKPTE{/D’I [T(z) — Th] exp [—gnp(y - z)] dz

- /,, " 1) - T exp [-gn,,(z - y)] dz} 6.17)
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Upon differentiating this equation twice, the integrals repeat themselves and may be eliminated,

and the resulting equation can be expressed as

where
37'3 _ kkp
== e— M = M 0 = 6.1
m N ’ N 40_Tl3 ) T, Kpl ( 8b)

Equation (6.18a) is, in fact, simply one form of the well-known differential approximation [16,

18] and is analogous to Eq. (4.75). The boundary conditions for this equation are found to be

ar(1/2)=0 5 3qn(0) = ~(dar/dE)ges (6.18¢c)

The simultaneous solution of Egs. (6.4) and (6.18) is straightforward, and the final result for

the dimensionless bulk temperature is expressed as (see Appendix C)

Onp = C1[24 — 12M1 + M3 + (M — 120, — 24) ™M1
129 17Ty 17

i/ S 6.1
5 M T 0MZ T M0 ©.19)

where

o 48 — 31, M} + 367,
1T ME|3n,(1— e M) 2My(1 + e M)

M? =372 G + %)
The governing parameters for this equation are IV, and 7,. Note that N characterizes the relative
importance of radiation versus conduction for gray gas. The results of this equation are illustrated
in Fig. 6.5. For a particular physical system, values of 7, and N can be obtained from Eq. (6.18b)

by utilizing the result for x, as given in Fig. 6.4.
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For optically thin conditions (7, — 0), Mf — 7, and Eq. (6.19) reduces to

Osp

L{ 576 [1 —exp (—\/'71')]

Ly |1+ exp (—ym)
— 2473 4+ 24y, — 288} (6.20)

and from the definition of 5, it is seen that in this limit the governing parameter is N /72. For
small values of v;, by expanding the exponential exp (—/71) in series, it can be shown that the

transparent limit (7, = 0) corresponds to the result with no radiation, Eq. (6.12), see Appendix C.

Under optically thick conditions, since 7, >> 1, then M; >> 1, and Eq. (6.19) reduces to

~17/70

b = T (43) 6.21)

and it is seen that this limit is characterized by the parameter N.

From a comparison of Egs. (6.5) and (6.19) it is noted that, while the band absorptance
model formulation involves three basic parameters, band intensity S(T), band width A,, and line
structure 3, the gray gas formulation is governed only by two parameters N, and 7,. The line
structure parameter § has no significance in a gray gas analysis. From Eq. (6.13) it may be
seen that the optically thin limit of the band model involves the single parameter N/u2, which
is analogous to the gray gas parameter N /72. On the other hand, the large u, limit parameter
A, is not analogous to the gray gas counterpart N. This again illustrates that the large u, limit

for a vibration-rotation band differs from the conventional optically thick limit.

6.1.4 Results and Discussion

Bulk temperature results are presented in terms of the dimensional quantities L and P. For
CO, CO,, H;0, and CHy, the band absorptance results obtained by using the Tien and Lowder
correlation are illustrated in Figs. 6.6 through 6.11. The limiting value of 6,p = —0.243,

Eq. (6.12), corresponds to negligible radiation, and effect of radiation increases with increasing
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plate spacing. As would be expected radiative transfer is more pronounced for higher pressures
and wall temperatures.

Figures 6.3 and 6.6 illustrate the effects of variable wall emittance upon radiative transfer.
Shown in Fig. 6.6 are the band absorptance results for CO, at P = 1 atm and T; = 500 K.
Radiative contribution is seen to become smaller for lower wall emittances. This is because
a lower surface emittance corresponds to a reduction in the energy transfer capability between
the gas and the surface.

For the sake of convenience and brevity, the results are presented only for the case of
black bounding surfaces in Figs. 6.7 through 6.11. Also shown in these figures are the limiting.
solutions for large u,. As in Sec. 5.2, the large u, solutions for individuals gases are obtained
from the results of Fig. 6.3 together with the M/L values from Fig. 5.3. It is again seen that for
a given wall temperature, the large u, limit caﬁ be obtained either by going to large values of
L or to high pressures. Furthermore, these results indicate that at a particular wall temperature,
the large u, limit for CO, is achieved at a relatively lower pressure than for other gases. As a
matter of fact, for most practical purposes involving CO,, at room temperature, the result at one
atmosphere can be regarded as a result for the large u, limit.

A comparison of the band absorptance results for the four gases is shown in Fig. 6.11 for
a pressure of one atmosphere and a wall temperature of 1000 K. The relative order of the four
curves, for small values of L, is characteristic of the interaction parameter for optically thin
radiation (see Fig. 5.2). As the value of L is increased the results approach to the solution
obtained for the large u, limit, and the relative order of the curves become as indicated by the
large u, interaction parameter of Fig.5.3.

For CO,, H20, and CH4, a comparison of various solutions are illustrated in Figs. 6.12
through 6.14 for a wall temperature of 500 K and a pressure of one atmosphere. The gray

solutions were obtained from a combination of the results of Figs. 6.4 and 6.5, and the optically
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thin solutions were obtained from the results of Fig. 6.2 together with the N values from Fig. 5.2.
For CO, it is seen from Fig. 6.12 that, when radiation is of importance, the radiative transfer
process very nearly corresponds to the large path length limit. Conversely, this indicates that
when the radiation is optically thin, it is in turn negligible relative to conduction, such that the
optically thin limit does not constitute a useful limiting solution for the conditions illustrated
in Fig. 6.12. For H,O and CH,4, however, a greater departure from the large path length
limit is noticed (Figs. 6.13 and 6.14), and optically thin limit is seen to be the appropriate
limiting solution for small values of L. Furthermore, when radiation is of importance (i.e.,
at relatively larger value of L), the optically thin limit greatly overestimates the influence of
radiation, indicating that for these conditions the actual radiative process is not optically thin.
Note that the gray gas solution also overestimates the importance of radiation. As explained
in [77], the reason for this is that the optical thickness of the gas based upon the Planck mean
coefficient can be several orders of magnitude less than that based upon the maximum absorption
coefficient within the vibration-rotation band. Correspondingly, the gray gas assumption may
predict optically thin radiation under conditions for which the real process is not optically thin.
Gray, optically thin as well as large u, solutions can be obtained with considerable math-
ematical simplifications. Since these results overestimate the influence of radiation, they can
be utilized to estimate whether or not, for a given gas, the interaction of radiation is going to

be of importance.

Bulk temperature results for CO (fundamental band) and CO; (154, 4.3y, and 2.7y bands) as
obtained by employing the various correlations for band absorptance, are illustrated in Figs. 6.15
through 6.18. Results for CO are illustrated in Figs. 6.15 and 6.16 for wall temperatures of
500 K and 1,000 K, respectively. It is evident from these figures that, except for the results of
Tien and Lowder correlation, results of other correlations differ from each other by less than 6%

for all pressures and path lengths. For P = 0.1 and 1 atm, results differ by not more than 3%.
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The largest difference of about 6% occurs for P = 10.0 atm and T; = 1,000 K. From a close
observation of all results presented in Figs. 6.15 and 6.16, it may be concluded that, for low
to moderate pressures (say up to 5 atm), any one of the correlations (No. 2, 3, 5, or 6) could
be employed in radiative transfer analyses. At high pressures, however, use of correlations 5
or 7 is recommended.

From Ref. 101 and the results presented in Figs. 6.7, it is noted that for CO the limit of
large u, is approached at P = 10 atm for T; = 500 K and at 100 atm for T; = 1,000 K. This
trend is also evident, in general, from the results of Figs. 6.15 and 6.16. The results of Tien and
Lowder correlation, however, follow this trend more closely than any other result. As such, use
of Tien and Lowder correlation is justified for radiative transfer analyses involving gases like
CO (i.e., diatomic gases with single fundamental band having uniform distribution of spectral

lines) at moderate and high pressures.

For CO3, results of different correlations are illustrated in Figs. 6.17 and 6.18 for P = 0.01,
0.1, 1 and 10 atm, and for T; = 500 K and 1,000 K, respectively. From the results presented
in Fig. 6.8, it may be noted that for CO, .the limit of large u, (LLU) is approached at 2 atm
for T; = 300 K, at about 4 atm for T; = 500 K, and at about 10 atm for T; = 1,000 K. Thus,
results for 10 atm in Figs. 6.17 and 6.18 essentially are LLU results. For clarity, results of P =

1 and 10 atm are not plotted on the same graph.

As was the case with CO, the results of all correlations (except Tien and Lowder) almost are
identical for CO; also for P = 0.01 and 0.1 atm. This, however, would be expected because the
low pressure (small ) situation corresponds to the case of square-root limit and most correlations
are developed to satisfy this limit. It was pointed out earlier and in [34, 37] that the square-root
limit is not satisfied by the Tien and Lowder correlation. At low pressures, therefore, use of the
Tien and Lowder correlation certainly is not justified. Other results of CO, (shown in Figs. 6.17

and 6.18) follow the same general trend as for CO in Figs. 6.15 and 6.16. The maximum
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difference between the results of different correlations is about 6% for P =1 atm and T; = 1,000
K. For the most part, results of correlations 3, 5, 6, and 7 are identical for P = 10 atm. This again
would be expected because for CO,, the LLU is approached at relatively lower pressures and
most correlations are developed to satisfy the logarithmic limit. For gases like CO,, therefore,
use of any one of the correlations 2, 3, 5 and 6 is recommended at low and moderate pressures,
and of 3, 5, 6, and 7 at high pressures. Use of the correlations 2, 3, 6, and 7, in a particular

radiative transfer analysis, provides a greater mathematical flexibility and simplicity.
6.2 Radiative Interaction in Laminar Flow through a Circular Tube

This section is concerned with the heat transfer to absorbing-emitting gases in laminar flow
through a circular-tube. With the single exception of a circular geometry, this problem is exactly
the same as treated in the previous chapter. As before, fully developed laminar flow and heat
transfer have been assumed, and the boundary condition at the tube wall has been taken to be
that of a uniform surface heat flux (see Figs. 3.6 and 6.19).

In addition to the consideration of gray wall emittance, effects of nongray wall emittance
upon radiative exchange have also been investigated. Specific results have been obtained for
the flow of CO; through stainless steel tubes of various compositions. Furthermore, based on
the gray gas analysis for black bounding surfaces, a correlation between the parallel plate and

the tube results has been established.

6.2.1 Governing Equations

For this problem, the energy equation, Eq. (2.10), can be expressed as

T _ad ( aT) 110 | 622)

%3z = rar\'or) " peror

where the velocity profile is given by Eq. (3.14) and is expressed here as

vz = 2um [1 - (r/ro)2] ( (6.23)
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The mean velocity v, = umax/2, and umax is defined by Eq. (3.15). Noting again that for
a uniform wall heat flux and fully developed heat transfer, 3T /0z is given by Eq. (3.41), a

combination of Eqs. (6.22) and (6.23) yields

3y _ d (,dOr _ 1d
where
r-Tw  ,_r _u
o = —F == (6.24b)

Upon integrating this equation, and noting that dfr/df = 0 and qg = 0 at ¢ = 0, there is

obtained

Br | o3 _ge_ IR 6.25
Ere-u=1 (625)

and the boundary condition for this is given as 6r(1) = 0.

For a circular geometry, the spectral radiative heat flux is given by the expression [98, 100,

115-119]

!’/2 r '
R = i/ {/ [ew (') — €w(Tw)] Kuae™ =50y’
T Jo rsiny
'—/ ° [ew(r") — €w(Tw) Nwae’gﬁf("")dr’
+/ ) [ew(f") - ew(Tw)] ,gwae-;b—;“’;(r+r'—2rsin -y)drl
rsiny

+ [Bw(Tw) - ew(Tw)]% cos ¥y [e—:—;“.';(r+ro-2r sin -y)dr:

— &) Ly (6.26)

where constants a and b have values of unity and 5/4 respectively, and the expression for the

radiosity is found to be

Bu(Ty) = {eew(Tw)+4?a(l—e) / " /M kwew(r')

9 [e_cb_;"';('°+',_2r° siny) e—c"—:."#(ro—f')] dr'd7}/DEN (6.27a)
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where

DEN = {1 - —(1 - e)/ COs 7 exp [ 2bn“’; (1- sin'y)l d7} (6.27b)

In order to be able to apply the technique developed in [94] for combining Egs. (4.52),
(6.26), and (6.27), it would be necessary to obtain an exact solution for the integral appearing in
Eq. (6.27b). However, this innocent looking integral does not appear to possess a closed form

solution and therefore it has been approximated by an exponential as

/2 o
/ COS 7y exp [— (-I——ﬂ> X] dy ~ Cyexp (—C2X)

cos Yy

where C, and C, are constants and X = 2b x,, r,. Evaluation of the constants in the limit when
X approaches zero gives, C) = 1, and C; = (w/2) — 1. With these values for the constants, the
exponential will be expected to be a good approximation of the integral only for small values of
X. However, from a comparison of the numerical solution of the integral with the exponential
result using C; = 1, and C2 = 1/2, an excellent agreement between the two solutions has been
found for all values of X. Using this approximation, and by noting that 4a/7b ~ 1, and following

the identical procedure outlined in [94], Eq. (6.27) can now be expressed as

x/2
ro8iNn Yy
> _ym B ro+ 1 —2r,siny
X ";(1 €) nw{exp [ bnw( o3 +mr,,)]
ro—r '
+ exp | —bk, + mr, dr'dy (6.28)
cosy

Following the procedures adopted in the previous sections, Egs. (6.25)-(6.28) are combined

and there is obtained the final form of the energy equation as
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4"°ZHu,,. / { /:, 0T(c')/i:- g‘;"g(é—z')]de'

sin ¥y

1
- /8 0T(5')A’["“°' ¢ —e)]dc ¥ or(e)A'["“‘" (€+¢ —2£sm7)]dc
Esiny
+ Z 1—¢) m+1 cos'y/ / Or {)[BRAKT]df dy' } A (6.29)
m=0 sin v’
where
[BRAKT] = A [bu,,.- ( 1+¢ c'oszf sin y
+ 1+¢ - 2,sin7' + m)] s [buoi(l + ¢ —2¢siny + 1 —{' )]
Cos vy . Cos 7y COS'Y

. 1—¢ 1+4¢ —2siney . 1-¢ 1-¢
-—Ai-[buo;( { 1H& —2siny +m)] —A:-[buo,-( ¢, 1=6 +m)]
cosy cos 7y cosy  cosy
This equation along with the boundary condition 67(1) = 0 defines the temperature within the

gas.

The bulk temperature for this problem is defined by Eq. (3.44) and is expressed here as

1 2x To 4 To 7‘2
= > / / v T(rdpdr) = = / T(l ~ —)rdr (6.302)
UmTTy Jo o To Jo ro

By employing the dimensionless quantities defined earlier, this can be expressed as

1
Our = (T~ Tu)(goral ) = 4 [ 02(¢ — €)dt (6.30b)

For negligible radiation, Eq. (6.29) yields the temperature profile
2_ 14
br =€ — Z(E +3)
and the bulk temperature is found to be

Oy = —11/24 (6.31)




113

In the large path length limit, Eq. (6.29) reduces to

d@T

3
e

4ro /2 1 , d{l d{' ]
= Tk ZH / {°°S7/¢sin70T(€)[£—£’ T e -2y

/ S -1
+Z(1 5')m+1c087/ / [(14—{ 2§sm7+ 14+ ¢ —2siny +m)

— sin 7’ cosy cos '
— 2si —¢ 1€ 14¢ —2siny -
+<1+§ s1n7+1 £ m) _( §+ +¢ 'sm'7+m)
oS Y cos ' cOS Y cos Y
_ (1 £ + 1 fl + m) ]d{'d‘y’}d’)’ (6.32)
cosy = cosy

In the form presented, Egs. (6.29) and (6.32) can be utilized to investigate the effects of
nongray wall emittance upon radiation.

Employing the Haselgrove technique for numerical integration of multidimensional integrals,
and following the procedure described in previous sections, numerical solutions of Egs. (6.29)
and (6.32) can be obtained and results expressed in terms of the bulk temperature.

6.2.2 Gray Medium Approximation

As in Sec. 6.1, assumption of gray gas means replacing the wave number dependent
absorption coefficient by a wave number averaged quantity «,(T'). Note that inherent in this
approximation is the fact that «, is independent of temperature, which actually is not realistic
and a discussion to this effect has been given in [77].

The expression involving the total radiative heat flux can be obtained from the differential

approximation [16, 18], and for this problem one finds from Eq. (4.75)

d[1d 9, dT?
dr Fdr(””‘)] 37p0r = 37 g 33
For linearized radiation
4
dT _43 T dT

dr v dr
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and Eq. (6.33) may now be expressed as

d 9 dor
where
_32N , N= n (6.34b)
72 0 ’ 40T3 v pro )

Equation (6.34) is analogous to Eq. (6.18) for the parallel plate geometry. For a black tube, the

boundary conditions for Eq. (6.34) are found to be

="z ) 0)=0 (6.34c)

Joa() = - = [ teon)]

From a combination of Eqs. (6.25) and (6.34), there is obtained

d? d
S dng qR — (M3€ + 1)qr = 1290 (26 — €°) (6.35)
where
9,
M22 - 4 To + 72

First Eq. (6.35) is solved for qg, and then from Eq. (6.25) the solution is obtained for 67,
and finally from Eq. (6.30b) the result for the bulk temperature is obtained as (see Ref. 113
and Appendix D)

Obr = C2[ M2 (8 — M3)I,(Ma) — 161;(M;)]

11 7, 8 12 11

2AMI 3ME 24 (6.36)

where

' T [ 37, M2 — 247, — 32 ]

C
2= .ﬂl2 2M, 1, (Mg) + 3T011(M2)

and I, and I; represent the modified Bessel functions of the first kind.

For optically thin conditions (7, — 0), M2 — 7,, and Eq. (6.36) reduces to
1) 256 | I1(y/ 8 o
Oy = 7_3{ [ i 72)] — 22 4 1672 — 128} (6.37)
2

vz L(vn)| 3
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Employing the series expansion of the modified Bessel functions for small values of the argument
v2, Eq. (6.37) can be written in an alternate form and by letting v2 — 0 in that form there is
obtained the result in the transparent limit 6,7 = —11/24.

The optically thick limit of Eq. (6.36) is obtained by letting 7, — oo in the asymptotic series
of the modified Bessel functions for large values of M;. Consequently, one obtains

~11/24

= m (6.38)

Ovr

As in Sec. 6.1, it is also evident from the above equations that, optically thin and optically
thick limits are characterized by the parameters N/72, and N respectively. The gray results are
illustrated in Fig. 6.20. Note that in this figure, both 6,7 and 7, are expressed in terms of the

diameter of the tube, and the solutions, as obtained by Eq. (6.36), are shown by the solid lines.

6.2.3 Results and Discussion

For the case of gray wall emittance, a general solution (6,7 versus M) of Eq. (6.32) was
obtained and the results are illustrated in Fig. 6.21 by the solid lines. For a particular physical
system the value of M can be obtained from Fig. 5.3 simply by replacing L with either the
radius r, or with the diameter of the tube.

As discussed in Sec. 6.1, the influence of radiation decreases with a decrease in the value
of the wall emittance. This decrease in radiative effect is seen to be higher for the parallel plate
geometry than for the tube. The reason for this is based on the fact that the reflection of radiant
energy from the bounding surfaces plays a greater role at lower values of wall emittance, and
under identical conditions the number of reflections resulting from a circular geometry will be
relatively higher than those from the parallel plates.

The assumption of a gray wall emittance is analogous to replacing x,, by x,. This, as

discussed before, is not a very realistic assumption. In general, the wall emittance varies with
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the wave number and with the surface temperature. However, its variation with the temperature
is not as serious as with the wave number. As an example consider polished steel [18], for
which between the wave lengths of 0.5 to 9.3 microns, the wall emittance varies from a value
of 0.45 to 0.07; whereas, for a range of temperatures between 100-500°F, the average value of

the wall emittance varies only from 0.07 to 0.1.

The matter of considering nongray wall emittance becomes crucial in the analyses involving
real gas models. This is because at wave numbers, where for a particular gas the important
vibration-rotation bands are located, if the values of surface emittance are relatively higher, then
the results obtained on the assumption of gray wall emittance will greatly underestimate the
influence of radiation. On the other hand, at those wave numbers where wall emittance is higher
but there are no absorption-emission bands located, the analyses based on gray wall emittance
will overestimate the influence of radiation.

In Fig. 6.22, the spectral distribution of surface emittance for stainless steel of various
composition is shown. Using ¢; values from this figure, numerical solutions of Eq. (6.32) were
obtained for CO, at temperatures of 300, 500 and 1000 K, and the bulk temperature results are
illustrated in Figs. 6.23 and 6.24 along with the result for the black tube. One again, it can
be seen from Figs. 6.23 and 6.24 that the importance of radiation becomes more pronounced at
higher temperatures and for larger tube diameters. Consider, for example, the result for stainless
steel tube of type 304 having a diameter of 2.5 cm, the radiative contribution is found to be
only about 5.5% at the room temperature, while it is 9.7% at 500 K and 37.4% at 1000 K.
These results are very close to the results for gray wall emittance with ¢,, = 0.1 (Figs. 5.3 and
6.21). For the same conditions, if the tube surface is considered to be black, then the radiative

contributions are found to be 8.4%, 15.8%, and 49.5%, respectively.

The nongray analysis in this section was directed to the specific case of gas CO, with

three important vibration-rotation bands contributing significantly in the radiative process. The
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solutions were obtained only in the large path length limit simply because for CO, at room
temperature the large path length limit is achieved at a pressure of one atmosphere, and because
it is relatively easier to obtain numerical solutions in this limit. For other gases, under the
assumption of gray wall emittance, solutions in this limit can be obtained through a combination
of results presented in Figs. 5.3 and 6.21. For specific problems involving real gases other
than CO,, the general band absorptance results can be obtained from a numerical solution of

Eq. (6.29).

6.3 Correlation Between Parallel Plate and Circular Tube Results

In the present case involving flow through a circular tube, it is not always an easy affair to
obtain the numerical solution of the governing equation, Eq. (6.29). Even the simplified form
of this equation, in the large path length limit, requires a considerable amount of numerical

computation before actual results are obtained.

As an alternate approach it was found that, for black bounding surfaces and for surfaces
with higher wall emittance, a correlation, established from the consideration of gray results,
serves a very useful purpose in extending all nongray results for the parallel plate geometry to
the present case of flow through a circular tube. A discussion pertaining to such a correlation

is presented in this section.

Consider flow of a gray gas through black bounding surfaces and let 7, = xpD denote the
gray gas optical thickness for the circular tube. Note the difference between this definition of 7,

and that given by Eq. (6.34). In order to be consistent with the present definition, let

Osr = /2 = (Tp — T1)/(quwD/k) (6.39)

The notations for the case of parallel plate geometry are taken to be the same as defined in

Sec. 6.1.3.




118

From the gray results presented earlier, it follows that, in the transparent limit
Opp = —17/70 , Opr = —11/48

while in the optically thick limit, 6,p is given by Eq. (6.21), and O can be obtained from
Eq. (6.38) by replacing the constant 11/24 by 11/48. In both limits the following relation

between ,p and Oyr is found to exist
Opr = 0.943 O,p (6.40)

The reason that this applies to both 7, = 0 and 7, >> 1 is because in either case energy transport
within the gas is a diffusion process. For 7, = 0, this process is solely conduction, while for
T, >> 1 it is combined conduction and optically thick radiation.

It now remains to extend Eq. (6.40) to include all values of 7,. From a comparison of
gray results (Figs. 6.5 and 6.20), it was found that the circular tube solution could be closely

approximated by the expression
O (70) = 0.943 0y p(270/3) (6.41)

In other words, the circular tube is equivalent to a parallel plate geometry having an optical
thickness which is two-thirds that of the tube. The tube results obtained by using this correlation
are illustrated in Fig. 6.20 by the broken lines.

For infrared radiation in nongray gases, the spectral thickness can cover a large range of
values for one given system. Correspondingly, the obvious utility of Eq. (6.41) for all values
of optical thickness suggests that this same procedure should apply to nongray gases. As an
example, to extend the parallel plate results shown in Figs. 6.7 through 6.11 to the circular
tube geometry, the ordinate would be replaced by ©;7/0.943, while in the abscissa L would

be replaced by 2D/3. For Fig. 6.3, this amounts to redefining M for a cylindrical geometry as

M = 2HD/3k.
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Using the correlation of Eq. (6.41) and the parallel plate results of Fig. 6.3, solutions for the

circular tube were obtained and are illustrated in Fig. 6.21 by the dashed curves. It is noticed that
for a gray wall emittance higher than 0.5, there is no difference between the actual tube result and
the result obtained by using the correlation. For values of ¢,, below 0.5, however, the correlation
does not seem to be satisfactory. The reason for this could be that the present correlation
is established on the basis of results obtained for black bounding surfaces. Furthermore, as
discussed in Sec. 6.2.3, in the case of a circular tube the possibilities of multiple reflections are
higher than those for the parallel plate geometry.

In conclusion it should be emphasized that the correlation given by Eq. (6.41) can be utilized,

along with the nongray solutions of the parallel plate geometry, to obtain qualitative results for

most physical systems involving circular tubes.
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Figure 6.1 Physical model for flow of radiating gases between parallel
plates with constant wall heat flux
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Figure 6.3 Bulk temperature results for the large path length limit
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Figure 6.6 Bulk temperature results for CO, (three bands) with T; = 500 K and P = 1 atm
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7. CONCLUDING REMARKS

Radiative interactions in molecular gases were investigated under different physical and
flow conditions. It was found that at a pressure of one atmosphere, the assumption of local
thermodynamic equilibrium (LTE) for a gas such as CO is not valid for temperature below 600K,
while for gases like CO, and N,O, the assumption is justified at room temperature. The LTE
results indicate that the gas such as CO; is a very poor transmitter of radiant energy, relative
to other absorbing-emitting gases, in the large path length limit, although just the opposite
is true under optically thin conditions. Large S results represent a good approximation to
general band absorptance results for CO, and H,O. It was noted that at moderate temperatures,
radiative contributions from weaker combination and overtone bands can usually be neglected.
For CO,, at room temperature, it was found that the large path length (large u,) limit is achieved
approximately at the atmospheric pressure. The effect of radiation was seen to become smaller for
lower wall emittance. Gray, optically thin, as well as large u, results overestimate the influence
of radiation, and this fact can be utilized to see whether or not, for given gas, the interaction of
radiation is going to be of importance. The accuracy of various correlations for the total band
absorptance was examined and specific recommendations were made for their use. The entire
procedure developed in this study can be easily adopted to investigate radiative interactions in
complex problems involving molecular radiating species. Some recent applications are presented

in Appendices E and F.
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APPENDIX A

INFORMATION ON WIDE-BAND MODEL CORRELATIONS

Some relevant information on the wide-band model correlations proposed by Edwards et
al. [35, 82, 83] and by Tien and Lowder [33] are provided in this appendix.

After considering various models for the band absorption of vibration-rotation bands, Ed-
wards and Menard proposed the use of an exponential wide band model [82, 83]. Three functional
forms for the total band absorptance were suggested and these are, the linear, the square root
and the logarithmic, corresponding to the small, the medium, and the large path length regions
respectively. The three regions are characterized by three correlation constants, and in the no-
tations of Edwards et al. [35, 82, 83] these are the band intensity constant C,, the line width
constant Cp, and the constant for the band width Cs. At sufficiently large pressures, rotational
lines are pressure broadened and the line width constant C; ceases to be a parameter. Further,
at sufficiently large path lengths, the central portion of the band becomes opaque and radiation
transfer within the gas takes place solely in the wing regions of the band. This is characterized
by the band width parameter C;. For important bands of CO, CO,, H,0, and CH4, values of cor-
relation constants C;, C;, and C3, were computed by Edwards et al. from reported experimental
data and are available in [33, 35, 83].

Using the detailed information on the three regions of the exponential wide band model and
by adopting an approach based on a set of mathematical properties of the total band absorptance,

a continuous correlation was introduced by Tien and Lowder [33]

A=A, ln{uf t)[ +2f(t)] } (A.la)

where

u = C2Py; t=[C2/(4C:C3))P. = B?P. (A.1b)
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f(t) = 2.94[1 — exp (—2.60t)] . (A.1c)

Note that Eq. (A.1) is exactly same as Eq. (4.43). Quantities u, t, B2, and P, are all
dimensionless. The band width parameter A, = Cj3, and is a function of temperature only.

The correlation quantity C? is proportional to (C;/Cj3). It can be shown [33] that
A,C2 =5(T) . (A2)

The quantity ¢ is the line structure parameter, and P, is the equivalent (effective) broadening

pressure and is given by the relation
P = (P +bPa)/Po)" , Po=1atm , (A3)

where P, is the partial pressure of the absorbing gas, Py the partial pressure of the broadening
gas, and b the self-broadening power of the A-molecule with respect to the B-molecule (N3 in
all cases here). The pressure parameter n, which is always less than or equal to unity, accounts
for the partial overlapping of bands with different lower states [35]. The quantities b and n are
estimated experimentally by using various gas compositions.

By using the information on C;, C,, and C3, quantities A,, C2, and B? were evaluated
and expressed in the units employed here. These are given in the Table Al. The procedure for
converting the correlation constants Cy, Cy, and C3 from the data of Edwards et al. [35, 82,
83] into the relations and units of quantities A,, CZ, and B? is discussed here briefly. As noted

earlier, A, = Cj3, and C? is proportional to (C;/C3) such that
S(T) = A,C? = Ci[(p/ P) x 10*] (A.4)

where P, p, and S(T') have units of atm, gm/cm?, and cm~2/atm, respectively. The factor 10*

enters into the relation of Eq. (A.4) because the unit for C; involves meter instead of centimeter.
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The correlation constant C» represents the square-root coefficient and is proportional to (2A4,C, B)

such that the quantity [10%(p/ P)C?] has the units of atm™! — cm™.

For perfect (ideal) gases,
P = pRT = p(R/M)T (A5)

where R is the universal gas constant (= 1545.33 ft-lbv/lb mole-R) and M is the molecular
weight of the gas. Thus, R = R/M has the units of ft-Ib/lbm-R, and one may express
R = R/M = (1545.33/M), (ft—1bf/lbm — R)

= (1545.33/M)(9/5), (ft— lbf/lbm — K)

atm (12 x 2.54)° [ cm?®
= (1545.33/M)(9/5) (14.6959 < 144) [ 453.6 (gm )]

Consequently, Eq. (A.S) is expressed as

P/p = 82.055(T/M) | (A.6)

where units of P, p, and T are atm, gm/cm?, and K, respectively. Thus, a combination of

Eqgs. (A.4) and (A.6) results in
S(T) = 121.869(M/T)C,, atm™ — em™2 (A.7)

where values of C; for different gases are as listed in [33, 35, 82, 83]. It should be noted that

the reference temperature T, is taken to be 100 K in the cited references.

The correlation quantity B?(w, T) represents the mean line-width to spacing ratio at one

atmospheric pressure and is given by relation
B? = n(y1/d) = C2/(4C1Cs) (A.8)

Since B? is a nondimensional quantity, its value can be determined exactly from the tabulated

values of C;, Cy and Cj.

o
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For gases, where detail band information is not available, the radiative transfer capability
can be determined in the limit of large path length. As pointed out earlier, in this limit, radiation
is governed solely by the band width parameter A,. By comparing various molecular models
(rigid rotator, arbitrary, and non-rigid rotator) as suggested by Edwards and Menard [82], and

after personal communications with Dr. D. K. Edwards, it was decided to adopt the following

1/2
et )[()e

1/2 ‘
A, =0.9T17? (§> (2—’3@2‘;) (A.10)
4 he

two relations for A,:

where B, is the equivalent rotational constant, ¢ is the speed of light, A is the Planck constant,
and k is the Boltzmann constant. The two relations given by Egs. (A.9) and (A.10) are identical
except that in Eq. (A.9) the coefficient will be 0.707 instead of 0.9 as it is in Eq. (A.10). Edwards
suggests that the relation given by Eq. (A.10) will give a better agreement between the simple
theory and the experimental data. The information on rotational constants for selected molecules
is provided in Table A3.

It should be noted that in Eqs. (A.9) and (A.10), B,, ¢, h and k are constants and do not

depend on the temperature. Thus, Eq. (A.10) may be expressed as:

Ao(T) = CONST (T)"/* (A.l1a)
where
1/2
CONST = 0.9 I? G) (2’;56) (A.11b)

By evaluating Eq. (A.11a) at a reference temperature T,.;, the value of AO(T,,,,) can be

determined and, therefore, Eq. (A.11a) may be expressed alternately as:

Ao(T) = Ao(Tres) (T/Tres)? (A.12)




Equation (A.12) is a convenient form to compare its results with experimental values.

By noting that [2(3) = [['(3/4))? and substituting values for ¢, h, and k, Eq. (A.11) can

be expressed as:

Ao(T) = 1.59313(B,T)"/* (A.13)

where A, and B, have units of cm™! and T is in degrees Kelvin. For a particular gas, Ao(Tyes)
can be obtained from Eq. (A.13) and then Eq. (A.12) can be used to determine A,(T’) at other
temperatures. For example, for CO the rotational constant is 1.931 cm™! and at a reference
temperat{ue of 300 K, Ao,(Tres = 300K) = 38.344 cm™!. This compares very well with the
experimental value of 38.1 given in Refs. 33 and 35 and presented in Table A.1. Similarly,
for the 4.3u band of CO,, the equivalent rpiaﬁonal constant is 0.3906 cm~! and, therefore,
Ao(Tyes = 300K) = 17.246 cm™!; the experimental value of 19.9 cm™ given in Table A.1 for

this band is slightly higher.

Spectral Information for OH

For the fundamental band of OH, the following information is obtained from Ref. 74:

Band center,w, = 3570 cm™!

Band strength at ST P, S(T,) = cm™%atm™!

Also, from Ref. 91 the information on equilibrium rotational constant of OH is obtained as:

At 517355 cm™!

X?11; — 18.871 cm™!
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Thus, it is suggested to use a value for the equilibrium rotational constant for OH as B, = 18

cm~!. Using this, a value of A,(T}e; = 300K) is found as
Ao(Tyef = 300) = 1.59313(B.T,;)"/* = 117.0707 (A14)
Considering the value of A,(Tyes) = 117 cm™, the relation for A,(T) for OH is given as:
A,(T) = 117(T/300)"/? (A.15)

By knowing w,, S(T,), and Ao(T), other required spectral information for OH can be evaluated.
The pressure parameters for OH not available in the literature.

Spectral Information on NO and N,O

Spectral information for NO and N,O obtained by various sources are listed Table A.4. The

band width parameters for these molecules are calculated by the following procedure.

For NO, the information on equilibrium constant is obtained by Herzberg 1950 [91], Table

39, page 558 as

A’Z* — 1.9952 (high vibrational level)

X2I1; — 1.7046 (low vibrational level)

According to Herzberg, one could use the value of the lowest vibrational level and this does
not cause any serious problem. Consequently, a value of B, = 1.7046 is selected for NO, and

the value of A,(Ty.s) is found to be

1/2

Ao(Tyes = 300K) = 1.59313(B,Tyes)'* = 36.027 (A.16)

This value of A, at T,y = 300 K agrees with the value given by Edwards [35]. By adopting

the value of A,(T,s) = 36 cm™., the relation for A,(T) for NO is given as:

Ao(T) = 36(T/300)"/2 (A.17)
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Other information for NO are available in [35] and, therefore, it is possible to calculate B? and
B (or t) by using the relations presented in this appendix.

For N0, the value of the equilibrium rotational constant, as obtained from Herzberg and

listed in Table A3, is B, = 0.4182 and this is taken to be the same for all bands. Thus, the

value of A,(T,.s) for N2O is found to be
Ao(Tes = 300K) = 1.59313(B.T,e)"/? = 17.844 (A.18)
The relation for A,(T), therefore, is expressed as
Ao(T) = 17.844(T/300)"/? (A.19)

The pressure parameters for NoO are not available in the literature.

The values of A,(T) for NO and N,O are tabulated in Table A4 along with other spectral

information. Some relevant information on NO are also available in [35].
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1. Correlation quantities are based on the results of Ref. 35. The intensity of the band marked

with * was taken from the Ref. 33.

2. Notations: K;(T) = (T/300)/%, K(T) = (300/T)*?,
61 = [#3(T)/Kx(T)] x 1072, & = $3(T)/[2(T)K1(T)]
h = 6.625x 1027 erg-sec, C = 2.998x 10! cm/sec,

k = 1.380x 10716, erg/K, hc/k = 1.44 cm -K

3. Temperature range: 300 K < T < Tpax. For CO, Tyax = 1800 K.
For CO3, Trmax = 1400 K. For HyO, Tpax = 1100 K. For CHy, Thax = 830 K.

4. For CO, w = 2143 cm™! and

$1(T) = [15.15 + o.zz(T/T,,)3/2] [1 — exp (—hCw/kT)), T, = 100K
5. For CO3, wy = 1351 cm™!, wy = 667 cm™!, w3 = 2396 cm™!

$2(T) = {1 — exp [(—hc/k)(w1 + ws)]} x

{{1 - exp (=hCuwr [ET))[1 — exp (~hCuws/kT)]} ", $3(T) = 1+

0.053(T/100)*/?

6. For H,0, w; = 3652 cm™, wy = 1595 cm™!, w3 = 3756 cm™!
¢, 0203(T) = {1 — exp [=hC(viw) + vows + v3ws)/kT]}x
{{1 — exp (=hCuw1 /KT)][1 — exp (~hCuwa/KT)][1 — exp(—hCuws/kT)]}
$:(T) = exp [—17.6(T/100)_1/2]
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Note on Table A2

1. Information provided in Table A2 are based on data available in Refs. 33 and 35 and in

cited references.

2. The integrated intensities re evaluated at T, = 273 except those marked with * where T,

= 300 K.

3. The lifetime of vibrational states for the fundamental bands was calculated by using Eq. (4.27).

4. Intensities of the bands listed in parentheses are small and at moderate temperatures their

contributions are generally ignored. However, in the large path length limit contribution from

a. 2.06p band: S(T) = 0.272 (300/T)¢s
b. 2.0p band: S(T) = 1.01 (300/T)¢s

|
|
these bands become important. The intensities of three weaker CO, bands are given as:
|
c. 196y band: S(T) = 0.426 (300/T)¢s

where w; = 1388 cm™!, w; = 667 cm™!, w3 = 2349 cm™! and

¢4 = {1 — exp [(—hC/kT)(4w2 + ws)]} x

{11 — exp (~hCun/KT)'[1  exp (~hCun/kT)]}

¢5 = {1 — exp [(—hC/kT)(w1 + 2wz + w3)]} X

{11 - exp (~hCur ET)][1 - exp (~hCun/KT)[1 — exp(~hCus/KT))}
¢6 = {1 — exp [(—hC/kT)(2w1 + ws)]} x

{11~ exp (~hCur /KT)P[1 — exp (~hCun/kT)]} .
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APPENDIX B

THERMODYNAMIC AND TRANSPORT PROPERTIES OF SELECTED SPECIES

It is important to consider the variation of thermodynamic and transport properties of various
species with temperature and pressure. Quite often, the variation in properties with the pressure
is not as crucial as with the temperature. The information on variation of different properties
is provided here.

The information on variation of the thermal conductivity with temperature is obtained from
Ref. 92 and this is expresses as:

A= 2o(T/T,)" (B.1)
where
T = Temperature, K
Ao = thermal conductivity at T, = 273 K, k cal/m-hrK
n = constant as given in Table B1

Note that in the main text the notation of k is used for the thermal conductivity. In order to be

consistent with the units used in the present work, Eq. (B.1) is expressed as:

104,
"~ (36)(23.889)

For Eq. (B.2) the value of ), is obtained from Table B.1; the units for ), are shown in the table.

(T/213)", erg/sec-cm-K (B.2)

For example, thermal conductivities of CO and CO, are expresses as:
CO: X =(11.627865289 x 200)(T/273)"8

= 2325.570579* ((TW/273.0)**0.8) (B.3)

COz: A= (11.627865289 x 128)(T/273)"%

= 1488.365171* ((TW/273.0)**1.23) (B.4)




175

Thus, for Eq. (B.2), the tabulated values for ), should be used without dividing by the factor 10%.
Thermal conductivities of other species can be calculated in a similar manner. For species
not listed in the Table B.1, values should be obtained from Ref. 92 or other sources mentioned
in Ref. 111. For higher temperatures, values referred in Ref. 111 should be used. Some of the

values used in the present study are listed in Table B.2.

The relations for the constant-pressure specific heat for different ideal gases are available in

the literature and these are given in Table B.3 for CO, OH, CO,, and H;0.




Table B.1 Constants for Calculation of Thermal Conductivity
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Ao - 104 Maximum
Molecule kcal/m-hr-°C n Temperature, °C
co 200 0.80 1,000
CO, 128 1.23 1,000
CH,4 264 1.33 600
H,0 130 1.48 1,000
NH;3 181 1.53 1,000
N,O 130 1.23 1,000




Table B.2 Thermal Conductivity of Selected Species*,
erg/(cm-sec-K)

Temp., K Molecule
OH CO CO, H,O

300 (4879.71) 2507.82 1671.43 1738.04
(2674.22) (1820.47) (2925.31)

500 (6993.13) 3773.77 3133.02 3703.67
(3938.09) (3339.63) (4980.15)

1,000 (11504.56) 6570.51 7349.02 10325.76
(6888.51) (6716.93) 11588.26)
2,000 (20276.33) 11439.93 17238.37 28803.582
(11730.56) (11822.63) (26302.73)

*Values in parenthesis are from a source mentioned in Ref. 111,




Table B.3 Constant-pressure specific heat for selected ideal gases
(from a source mentioned in Ref. 111)
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Gas G, = kJ/kmole-K, 6 = T (Kelvin)/100
co Cp = 69.145 — 0.70463 %75 — 200.77 §=%5 + 176.76 =075
OH Cp = 81.546 — 59.350 6925 + 17.329 6°7° — 4.266 0

- CO2 Cp = 3.7357 4 30.529 %5 — 4.1034 6 + 0.024198 62
H,0 Cp = 143.05 — 183.54 6925 + 82.751 6%° — 3.6989 ¢
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APPENDIX C
GRAY SOLUTION FOR PARALLEL PLATE GEOMETRY

The governing equations for steady, constant properties, fully developed laminar flow of gray

radiating gases are given by Eqgs. (4.75) and (6.4), and these are repeated here for convenience,

dé

i —2(3¢* - 2¢%) + 1 = qr/qu (C.1)
d2q R 9 dr
@z T gR=g (€2)

For linearized radiation, 74 = 4T3T — 3T? such that dT*/dr = 4T3dT/dr, and Eq. (C.2) is
expressed as

d%qp 9 dé
dgz 1 T2qR = NGw g (C3)

which is exactly the same equation as Eq. (6.18).

A combination of Egs. (C.1) and (C.3) results in

d?
T~ Mo = ngu(66 - 46 - 1) (€4)

where M) is same as defined in Eq. (6.19). By obtaining the complimentary and particular

solutions, the general solution of Eq. (C.4) is expressed as
qr = Aexp (Mi£) + Bexp (—Mi)
~ (M9w/M7) [M3 (6€% — 463 — 1) + 12M, (1 - 2¢) + 24] (C.5)

A substitution of Eq. (C.5) into Eq. (C.1) gives

d 1
F —[Aexp (Mi€) 4+ Bexp (—M;¢))
M Va3 (L g2 2
* (Ml2 1)46 (Mf 1)6£ it %)
T 24
N (_15 _ 1) ! (C6)




An integration of this equation results in

o) = [Miexp (M:6) - 3 exp (—Mla)]

7 24m
n o _y_2m c7
+(M12 M;)“C €7

Note that for 4; = 0 this reduces to the case of convection heat transfer between parallel plates

with constant wall heat flux.
By using the boundary condition gg(1/2) = 0 and §'(1/2) = 0, the relation between

coefficients A and B is found from Egs. (C.5) and (C.6) as
Aexp (M1/2) + Bexp(—M;/[2) = 24v1quw/M; (C.8)
By using the boundary condition (dggr/d¢)¢_o = (37,/2)qr(0), there is obtained from Eq. (C.5)

A(My/1, — 3/2) — B(Mi/7, + 3/2)

= (371qw/M7) (M3 /2 — 6M; — 12 - 8M; /7,) (C9)
By using the condition §(0) = 0, one obtains from Eq. (C.7)
C = (1/quMi)(B - A) (C10)

Equations (C.8)-(C.10) provide three equations to evaluate three constants A, B and C.

Upon substituting the relation for §(¢) into Eq. (6.6) and performing the integrations, there

is obtained the result for bulk temperature as

0, = (6A/quM) (M1 — 2)exp (My) + My + 2]
— (6B/quwM?)[(M; + 2) exp (—M1) + My — 2

+C — 1271 /M} — 1517, /TOME — 17/70 (C.11)

-3
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By evaluating the constants A, B and C from Egs. (C.8)-(C.10), Eq. (C.11) provides the

solutions given by Eq. (6.19).

In the optically thin limit (i.e., in the limit 7, — 0), My = /3, and the expression for

C1 becomes

G =2/{"11 +exp(-v)]} (C.12)

Consequently, the gray solution for this limit is obtained as given by Eq. (6.20).

For small values of v;, the exponential term exp (—,/71) is expressed as

N T G A
exp (Vi) =1-m"+ 5 =S5~ + 50~ 155+ 7o
77/2 9/2
_ N

4
i 1
5020 T 40320 362880 | " (C.13)

Thus,

2 9
1—exp(-vm) _m"” i N w1 ey
1+ exp (—/71) 2 24 240 40320  (70)(41472)

+... (C.14)

A substitution of Eq. (C.14) into Eq. (6.20) gives the relation for small values of v, as

Oy = ——— 4+ L4 C.15
b="70 5000 T (€15

For 47 = 0, we obtain the result for the transparent limit (i.e., the case of no radiative interaction)

as 6, = —17/10.

Under optically thick conditions, 7, >> 1 and, therefore, M; >> 1, and Eq. (6.19) becomes
0y = —17/70 + (17/70){4/[N (3 + 4/N)]} (C.16)

This equation is rearranged to give the results of Eq. (6.21). -
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APPENDIX D

GRAY SOLUTION FOR CIRCULAR TUBE GEOMETRY

The governing equation for steady, constant properties, fully developed laminar flow of gray
radiating gases within a black circular tube is given by Eq. (6.35) for linearized radiation. The

solution of Eq. (6.35) is found to be

qr(§) = AL(Ma€) + BK (M)

+ (12qw/M3) (M3E® + 8E — 2M€) (D.1)

where I} and K represent the modified Bessel functions of first and second kind. For finite

solution as £ — 0, B must be taken to be zero and Eq. (D.1) becomes
qr(€) = AL(Ma€) + (v290/M3) (MFE* + 8¢ — 2M7€) (D2)

The constant A in Eq. (D.2) is evaluated by taking the derivative of this equation and invoking

the boundary condition given by Eq. (6.34c) as

A= [ 3ro M3 — 247, — 32 ] (72qw) (D.3)
2Ma1,(Mz) + 37,1y (M2) | \ M}

A combination of Egs. (6.25) and (D.2) results in

%g’ = (A/quw)h(M€)

+ (12/Mz) (M3€* + 86 —2M}¢) + 26 - € (D.4)
Equation (D.4) is integrated once to obtain

0(¢) = (A/quMa2)Io(M28) + (v2/M3) (MEE 14 — 48 — MEEY)

+e-¢ja-C (D.5)




183
By using the boundary condition §(1) = 0, one finds

Cs = (A/quM2)Io(Ma) + (12M3) (4 — 3M7/4) +3/4 (D.6)

Consequently, the temperature distribution within the tube is obtained from a combination of

Egs. (D.5) and (D.6) as

0(0 = (A/QwML’)[Io(MZf) - Io(MZ)]
+ (12/4M3) (M3€* + 1667 — aMZE? + 3MF — 16)

+€8 - ¢4/ -3/4 (D.7)

The expression for the bulk temperature is obtained by substituting Eq. (D.7) into Eq. (6.30b).

The solution is as given by Eq. (6.36).

In the optically thin limit 7, — 0 and M? — ~;. Consequently, the constant C, defined

in Eq. (6.36) becomes

Cy = —16/ [7;/21,,(\/53)] (D.8)

and Eq. (6.36) reduces to the result provided by Eq. (6.37).

For small values of v;, the modified Bessel functions are expressed as

I(vA2) = 14 72/4 + 72 /64 + 73 /2304 + ... (D.9a)
L(v2) =12 12+ 92116 + 43121384 + 117 18432 + . .. (D.9b)
Thus,
1
L{vm) _ 7212 = 312116 + 4312196 — 1193/ /6144 + ... (D.10)

L(v%)
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Upon substituting Eq. (D.10) into Eq. (6.37), there is obtained for v = 0, 6, = —11/24. This
represents the result for the case of no radiative interaction.

In the optically thick limit 7, >> 1 and M; >> 1. Asymptotic expansions of modified

Bessel functions for large values of M, are

L(My) = M2 /(2n Mp)'/2[1 + 1/8M; + 9/128M3 + .. ] (D.11a)

L(M;) = M2 /(2n My) /2 [1 — 3/8M; — 15/128M2 + .. ] (D.11b)

Upon substituting this equation in Eq. (6.36), it is noted that C, times the bracketed term on
the RHS approaches zero as M, — co. Consequently, only the last three terms on the RHS of

Eq. (6.36) remain valid for 7, >> 1, ie,,

0y = 1172 /24M? — 8y, /3M; — 11/24 (D.12)

By using the definitions of y3, M2 and N, Eq. (D.12) is expressed as Eq. (6.38).
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RADIATIVE INTERACTIONS IN NONEQUILIBRIUM FLOWS

S. N. Tiwari’ and R. Chandrasekhar?
Old Dominion University, Norfolk, VA 23529-0247

ABSTRACT

The influence of vibrational and chemical nonequilibrium upon infrared radiative energy
transfer in nonisothermal gases is investigated. Essential information is provided on rate
equations, relaxation times, transfer equations, band absorption, and radiative flux equations. The
methodology developed is applied to three specific cases. These are, absorbing-emitting species
between isothermal parallel plates, radiating gases in the Earth’s atmosphere, and supersonic
flow of premixed hydrogen and air in an expanding nozzle. The results obtained for different
cases reveal that the extent of radiative interactions is reduced significantly under nonequilibrium
conditions. The method developed can be easily extended to investigate radiative interactions

in complex nonequilibrium flows.

NOMENCLATURE

A total band absorptance
A, band width parameter
B, blackbody intensity, e, /7
¢ speed of light
E total internal energy, also upwelling radiance
L, total vibrational energy
iy fi mass fraction of jth species
H atmospheric heating rate
1, intensity of radiation
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Ju source function

k thermal conductivity, also Boltzman constant

L Plate spacing

P pressure

Q heat source or sink per unit volume

qRr radiative flux

qnv spectral radiative flux, also qp,

S integrated band intensity
temperature

Ty vibrational temperature

Th wall temperature

Uo dimensionaless path length, SPL/A,

y physical coordinate

z dummy variable for y

7} line structure parameter

¥ specific heat ratio, Cp/C,

n nonequilibrium parameter, 7./,

Ne collisional relaxation time

Nr radiative life time

4, characteristic vibrational temperarture

Ky absorption coefficient, also «,,

€ dimensionaless coordinate, y/L

¢ dummy variable for ¢

p density

w wave number

) solid angle




INTRODUCTION

In order to understand and investigate radiative interactions in nonequilibrium flows, one
should be quite familiar with basic transfer processes (mass, momentum, and energy) in
gaseous systems. It is also essential to have fundamental knowledge of different numerical
and computational procedures. For a basic understanding of these subject areas one should refer
to [1-6].

The main objective of this study is to investigate radiative interactions in gaseous systems
under nonequilibrium conditions. Attention has been directed specifically towards infrared active
diatomic and polyatomic gases, wherein the absorption and emission of thermal radiation occurs
as a result of vibration-rotation bands. In order to present a systematic study, it is necessary
to assume a suitable model for vibration-rotation bands, and to obtain relevant spectroscopic
information for the gases under consideration. The assumption of local thermodynamic equilib-
rium (LTE) will have to be justified, and any influence of nonequilibrium (non-LTE or NLTE)
needs to be investigated.

Basic governing equations and essential information on molecular radiative interactions are
provided in [7-10]. Radiative properties for important molecular species are available in [10-14].
In this study, basic equations of fluid mechanics and heat transfer are presented and radiative
transport models are provided for molecular radiative interactions. The extent of radiative

interactions are investigated under incompressible and compressible flow conditions.

BASIC THEORETICAL FORMULATION

The essential equations for conservation of mass momentum and energy are expresses as

(1, 2]

dp/0t+V - (pu) =0 1




Du _ a Ou;  Ou, 2. Ouy
Py =Pl VPt g [(a_ + az,-) - §5vﬂ‘a—zk] @

pcp(DT/Dt) = Q3¢ +V - (kVT) = V - g + BT(Dp/Dt) + & 3)

where () represents the heat generated (or lost) per unit volume by external agencies, 3 is
the coefficient of thermal expansion of the fluid, and other quantities are defined in the cited
references. It should be noted that derivations of Eqgs. (1)-(3) assume the conditions of continuum
and existence of local thermodynamic equilibrium.

For the case of two-dimensional laminar flow in channels, the energy equation given by

Eq. (3) reduces to [8]

oT oT oT d aT dP
(G v o) = 5 () TG

ou\?
+p (G_y) —div qp C))

The energy equation given in this form can be applied to radiatively induced nonequilibrium
situation by replacing the divergence of the radiative flux by its nonequilibrium counterpart.
At the same time it must be assumed that the departure in population distribution over excited
states from the Boltzmann dis;uibution will not significantly change the internal energy, and the
transport properties from their equilibrium values [3]. As discussed in [4], this assumption is
justified under the conditions where vibrational characteristic temperature hv/k is greater than
or is of the order of vibrational temperature. Consequently, the temperature appearing in Eq. (4)
may be regarded as the kinetic temperature in basic studies.

In obtaining Eq. (4), it has been assumed that the conduction heat transfer in the x direction
is negligible compared with the net conduction in the y direction. This represents the physical

condition of a large value of the Peclet number. By an analogous reasoning, the radiative heat
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transfer in the x direction can be neglected in comparison to that transferred in the y direction.
If, in addition, it is assumed that the Eckert number of the flow is small, then Eq. (4) reduces to

aT aT oT o*r 1 Jqr
U— 4+ v—=a

ot ' or dy dy?  pC, Oy

&)

In the preceding equation o = k/pC, represents the thermal diffusivity of the fluid and it has
been assumed that the fluid properties are constant locally.

Following the nomenclature of the kinetic theory of gases, Egs. (1)-(3), in general, are
referred to as the Navier-Stokes equations. For computational conveniences, it is quite often de-
sirable to express these equations in a compact vector form. For two-dimensional nonequilibrium

flows, the governing equations are expressed as [6, 15-19]

ou OJOF 4G
‘a—t+-a;+a—y'+H=0 6)

where vectors, U, F, G and H are expressed as

- -

p
pu
pu
U=
PEy,
pE
L pf; ]
[ pu ]
pu2 +p+ T2z
puv + Try
F =
pukLy,
(pE + p)u + T2z + Tzy¥ + Gez + qR2
of;
| pufj—pD=52 ]




va

pUY + Ty

pv’ +p+ Tyy

pvEy;

(PE + p)v + Tzyv + Tyyv + gcy + Ry

. af;
-pva _pD ay J

"0 -

— &

| — ;]

The total energy E appearing in vectors U, F and G is defined as

P u?40? & i
E=-=4— +;hjfj+j§:lijv,- Q)
]: =

p
and other quantities are defined in the cited references. Equation (6) is a very useful equation to
study the effect of radiative interactions in compressible thermochemical nonequilibrium flows.

In order to close the system of conservation equations, it is essential to establish relations
between the thermodynamic variables p, p, T, e, and h and relate these to transport properties
p and k. Since the local thermodynamic state is fixed by any two independent state variables,

one may express the equations of state for a simple as

p = ple, p) (8a)

T =T(ep) (8b)




For a perfect gas, the following thermodynamic relations are applicable:
p=pRT,e =cyT,h=c,T (9a)
cw=RI(vy—1),¢p = YR/(y = 1), 7= cp/cw (9b)

where R is the gas constant, c, is the specific heat at constant volume, c, is the specific heat
at constant pressure, and « is the ratio of specific heats. Thus, for a perfect gas, Eq. (8) may

be expressed as

p=(y—1)pe (10a)

T=(y-1)e/R (10b)

The transport properties are related to the thermodynamic variables through use of the kinetic

theory of gases. The variation in viscosity is given by the Sutherland’s formula
p=a T3/2/(T+Cz) (11)

where ¢; and c; are specific constants for a given gas. The thermal conductivity k usually
is determined through use of the Prandtl number defined by Pr = ¢, p/k. This is possible
because for most gases the ratio c,/Pr is essentially constant. However, one should be very
careful in using appropriate thermodynamic and transport properties under highly nonequilibrium

conditions.
RADIATIVE TRANSPORT MODELS

An appropriate model for radiative transport is essential in applying the energy equation
to any problem involving participating mediums. This section provides essential information
on rate equations and equations for relaxation times, the equation of radiative transfer, band
absorption and correlations, and radiative flux equations. Complete information on these topics

is available in [20-25] and in the cited references.




Physical Model and Coordinate System

For many engineering and astrophysical applications, the radiative transport equations are
formulated for one-dimensional planar system. For this study, the physical model consists of an
absorbing-emitting gas bounded by two infinite parallel plates (Fig. 1). The plate surfaces are
assumed to emit and reflect in a diffuse manner.

Diatomic and polyatomic gases are considered at sufficiently low temperatures such that the
electronic, ionization, and dissociation effects can be neglected. For nonequilibrium analyses, the
gas model is considered to be that of a rigid rotator and harmonic oscillator. It is assumed that the
translational energy is governed by the Boltzmann law and a local kinetic temperature, referred
to simply as the temperature, is defined. Rotational modes requiring only a few collisions to
attain equilibrium are assumed to be in equilibrium at the kinetic temperature. Consequently, the
governing equations given by Egs. (4)-(6) aré applicable to the case of radiation participating
mediums.

Rate Equations and Equations for Relaxation Times

The rate of change of vibrational energy of a system of oscillators can be expressed as

[o] 4x
) - / / &dﬂdu (12)
coll 0 0 ds

where [, represents the specific radiation intensity. The vibrational energy of a system of

(20, 25]

dE, _(dE,
dt dt

oscillators undergoing a collisional relaxation process is given by the Bethe-Teller relation

dE, E!—E,
at e 3

where E represents the equilibrium value of vibrational energy, and 5. having the dimensions
of time is called the vibrational relaxation time. In general, the relaxation time is referred to

as the average time required to transfer energy from one mode to another by collision. It is
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inversely proportional to the collisional frequency. A simple derivation of Eq. (13) is given in
[3, 4]. Since no assumption about the size of the difference E — E, was made in its derivation,
Eq. (13) should be valid for large departure from the equilibrium. However, the assumption of
simple harmonic oscillators restricts its applicability to small departures.

In order to be able to use Eq. (13) an explicit relation for 5, = 5.(T, P) is required. This

is provided by the Landau-Teller relation
ne = K1P Vexp (KgT‘m) (14)

where K; and K, are positive constants and depend on the physical properties of the molecule.
It should be noted that the vibrational relaxation time increases with decreasing pressure and
temperature. Generally, the product of pressure and relaxation time is plotted against the
temperature on a logarithmic scale. Such a plot is known as Landau-Teller plot and for two

level transitions it is a straight line for a wide range of temperatures.

Information on collisional relaxation times is available in the literature for some molecular
gases, and these are referred to in [20-22, 25]. For diatomic gases, an empirical relation is given

by Millikan and White [26, 27]
Py = exp [A (T-1/3 - 0.015p1/4) - 18.42] (15)

where A is a constant and is related to the molecular constants of the colliding species and p
is the reduced mass of the colliding pairs. Values of A and p are given in the references, and
for CO colliding with CO these are A = 175, and u = 14. The collisional relaxation time for

CO, is given by the relation [28]

Pre = exp (AT‘1/3 - B) x 106 » (16)
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where A = 36.5 and B =— 3.9. The collisional relaxation time for methane is given by Richards

and Sigafoos as [29]

P = exp (—5.4 + 40T‘1/3) x 10~ a7

In all expressions for 7., P is the total pressure in afmosphere, n. is in seconds, and T
represents the temperature in degrees Kelvin. Although these relations show a strong dependency
of 5. on pressure, in reality it has a larger temperature variation. This is because collisional
frequencies are higher at higher temperatures and consequently it takes relatively less time to
deactivate the excited states. Further discussions on collisional relaxation times for different
colliding pairs are provided by Tiwari and Manian in [22].

For a multicomponent system, Eq. (13) is expressed as

dE, E—E,
dt B Nei

R;0,;
E* = 1Vvs .
Y exp(04i/T — 1)’

The equivalent relaxation time 7.; of a mixture of gases (: = 1, 7) is given by the linear mixture

evi = hau./k

rule [30]

Nes  Meil Mei2 Teid Nesj

L_h o S S (19)

where the local vibrational relaxation time 7.;; of a molecular collision pair (¢, ) is given by

[26, 27]

Preiy = exp [0.001161/* 03f° (T71/° — 0.015/* ) - 18.42

pis = (pii)(p5)/ (pii + 45)

Note that Eqgs. (15)-(17) are special cases of Eq. (20).
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The Equation of Radiative Transfer
The equation of radiative transfer is derived for a simple harmonic oscillator on the
assumption that rotational and vibrational levels are populated according to the Boltzmann
distribution. The rotational energy is characterized by the equilibrium temperature whereas
the vibrational energy is described by the nonequilibrium temperature T,,. A complete derivation

of the transfer equation is available in [7, 20, 22, 25], and one form this equation is given as

dI E o Ev &
— = ( B,,E’f - I.,) =k <B,,E—Z - K—;Iu) (21)

This is the form of nonequilibrium transfer equation obtained by Goody [7]. It is seen
that the quantity B,(«}/«,)(E,/E;) is the source function S(T,T,). Another form of the

no'nequilibrium transfer equation is derived by Tiwari and Manian in [22].

Under steady-state conditions, for each fundamental band, a combination of Eqgs. (12), (13)

and (21) yields

(E,,/E,‘,‘)[(E,‘,‘/nc)+ / 40 / n,,B,,du] = (B /o) + / a0 / ko1, dv 22)

where integration is taken over the frequency range of an individual band and over the solid

angle from zero to 4x. Defining a time constant 7, as

nw=E,/ [/ dQ/n.,B,,du} (23)

and combining Eqgs. (21) and (22), there is obtained

dl, .
“ = s(d = 1)) (242)
where
Jv = By[(nr + 1 X)/ (0 + 1)) (24b)

= (/dﬂ/n,,] du) (/ dQ/rc,,B du) (24c)
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It can be shown [11] that 5, = 1/A(1,0) is the radiative lifetime of the vibrational states, where
A(1,0) is the Einstein coefficient for spontaneous emission from the first vibration level.

By employing Egs. (12) and (24), the source function J, can be expressed in an alternate

form as [25]

J, = mi”nc{n, +nc[<ﬁ+ / dn / rc.,J,,dV) /( / dQ / n,,B,,du)]} (25a)

h=— / (dgpry/dy)dv (25b)

where

It should be noted here that J, like B, is a slowly varying function of v and for narrow bands
it can be assumed as being independent of v. The value for B, and J, are, therefore, taken to
be the values evaluated at the band center. Further, by noting that both B, and J, are isotropic,

Eq. (25) is expressed as

1 —
Jv. = By, + E(WC/Wr)H (26a)

H=h/ (Zw/nydu> (26b)

For isotropic radiation, the blackbody intensity of radiation B, is related to the Planck function

where

ey, by ep = 7B,.

In the limit of very low pressure, the collisional relaxation time 7, is large and in Eq. (24b)
7, can be neglected by comparison. The source function then becomes J, = B, X. In the limit
of high pressure, on the other hand, the collisional relaxation time approaches zero and the source
function, Eq. (24b), becomes the Planck function. This is the situation of LTE usually assumed
in most radiation transfer analyses. The degree of nonequilibrium effects is characterized by the
order of magnitude of the parameter (7./7,) in the transfer equation. Significant deviations from

the LTE results will start when this ratio is unity or higher.
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By following the procedure described in [25], an expression for 5, is obtained from Eq. (23)

as
nt = 87r(uo/c)2/(n,,/n)du = 87rcw§(P/n)/(fcw/P)dw 27)

where n is the number density of molecules, and w, = (v,/¢) is the wave number corresponding
to v,. Applying the perfect gas law P = nkT, and by using appropriate units for ¢ and k,

Eq. (27) is expressed in an alternate form as
771 = (87w?) (4.08 x 1071) T, 5(T) (28)

where S(7T,) having the units of cm™2 — atm™! is the integrated band intensity, T, is a reference
temperature, and 7, has the units of seconds. For fundamental bands of some important

molecules, values of 5, were calculated and these are provided in [25].
Band Absorption and Correlations

The study of radiative transmission in nonhomgeneous gaseous systems requires a detailed
knowledge of the absorption, emission, and scattering characteristics of the specific species under
investigation. In absorbing and emitting mediums, an accurate model for the spectral absorption
coefficient is of vital importance in the correct formulation of the radiative flux equations. A
systematic representation of the absorption by a gas, in the infrared, requires the identification of
the major infrared bands and evaluation of the line parameters (line intensity, line half-width, and
spacing between the lines) of these bands. The line parameters depend upon the temperature,
pressure and concentration of the absorbing molecules and, in general, these quantities vary
continuously along a nonhomogeneous path in the medium. In recent years, considerable efforts
have been expended in obtaining the line parameters and absorption coefficients of important

atomic and molecular species [31-33].
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Several gray and nongray models are available in the literature to represent the absorption-

emission characteristics of a molecular band. Complete discussions on these models, and
expressions for transmittance and integrated absorptance are provided in [11-14, 25].

Radiative Flux Equations

Following the procedure described in [8], for the physical model illustrated in Fig. 1, an

integration of the transfer equation, Eq. (24a), gives

qRw = 2B1wE3(Tw) - 2B?,wE3(Tow - Tw)

+ 2 [/rw Jo(t) Ey(1 — t)dt — /rw Jo(t)Ea(t — Tw)dt] (29a)
where
Tw =Kol 3, Tow = KoL (29b)
Ju(t) = ew—(t) —nH(t), 1 =0c/M (29¢)
: T (dgpw/dy)dw
7oy - —9VaR(Y) _ o
1) = sy = — 2PsD) (25d)

In this equation 7, is the optical path length and ¢ is a dummy variable for 7,,. The quantities By,
and B,, represent the surface radiosities, and E,(t) are the exponential integral functions. In
writing the expression for the source function J,, use was made of the relation e, = 7 B,,.
Further, it has been assumed that the spectral absorption coefficient x, is independent of
temperature, i.€., restriction is made to moderately small temperature differences within the

gas. The total radiative flux is given by the expression

qr = / qRwdw (30)
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In general, for nongray gases, Eq. (29a) does not possess a correct optically thick limit.
However, a correct large path length limit does exist and it is discussed in [25]. A correct

optically thin limit of Eq. (29a) exists and is given by [8]

QRw(Tw) = Blw(l - 2710) - BZw(l - 2Tow + 2Tw)

+27r[ / Y Ju(t)dt - / - Jw(t)dt] G1)

Differentiating Eq. (31) with respect to 7, and neglecting terms of 0(,,,), one finds an expression

for the divergence of radiative flux as

[ o] d [ o]
—divgp (y) = — / ?igw dw = 2/ Kw|Biw + Baw — 21 Jy(y)]dw. (32)

By noting the assumption on J,(y) as being independent of wave number, and using the

definitions of Planck mean and modified Planck mean absorption coefficients as given in [8,

25], Eq. (32) is written in an alternate form as

d
1+ n)gyﬁ = 2B1km(T, T1) + 2Bakm(T, T3) — 45,(T)o T () (33)

The expressions for surface radiosities corresponding to the optically thin limit are available
in [8].

The obvious simplification of NLTE effect in Eq. (33) should be noted. As such, all
optically thin analyses based on the assumption of LTE can be modified to include the effect
of NLTE simply by multiplying the divergence of th.e radiative flux by a constant involving the
nonequilibrium parameter n = 7n./7;.

An often employed approximation in radiative transfer problems involves replacing the expo-

nential integral E,(¢) by an exponential function. The procedure for obtaining this approximation
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and its validity is discussed in [8]. For the present situation, the exponential integrals Ea(t),

and F3(t) are approximated by

Ey(t) ~ Z—exp (—gt) (34a)
E;(t) = /Eg(t)dt lexp (—-Z—t) (34b)

Employing these approximations and following the procedure discussed in [25] for black

bounding surfaces, a combination of Egs. (29a) and (30) results in

qr(é) = e1 —e2

t 2af [* P12 e )]
_llgwgmf @-wﬂf}

ol (@) o)«

-f; (&)rfe-ol«]

where

F1u(€) = ew(§) — e1w; F2(€) = ew(f) — ews

-~

B~ N

S

u
E=p= ==
and A'(u) denotes the derivative of the dimensionless band absorptance A(u) with respect to u.
Because of the restrictions of two level transitions inherent in the nonequilibrium transfer
equation, the radiative flux equations given by Eqs. (29) and (35) are applicable to gases with

only one fundamental band contributing to the radiative process. These equations, therefore,

are useful in describing radiative transfer only in diatomic gases where contributions from the
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overtone bands are not important. For gases with more than one fundamental band, where each

band independently contributes to the radiative process, Eq. (35) is written in the form

qr(é) = e1— ez

3 < ¢
+§;Aoiuoi{‘/o F,A [ uvi(£ 6)déjl

- /{ ' Fa Al [§uoi(é' - e)]dc'}
_gim{/: Z{z [ uoi(é — é)]
o))

where n denotes the number of fundamental bands.

For the situations where assumptions of LTE are valid, the last two terms on the right
hand side of Eq. (36) vanish and then there remains no restriction of taking summation over
fundamental bands only. However, for the conditions (low pressure and moderate temperature)
where NLTE effects are important, fundamental bands are of main importance to the radiative
process. Contributions from the combination and overtone bands become significant only at
higher temperature and pressure where conditions of LTE usually prevail. As such, Eq. (36)
could be regarded as a general expression for the radiative flux in nongray gases. Various

limiting forms of Eqgs. (35) and (36) are provided in [25].

RADIATIVE INTERACTION IS GASES WITH VIBRATIONAL NONEQUILIBRIUM

The influence of vibrational nonequilibruim upon infrared energy transfer in gases has been
investigated in [12, 21, 25]). Certain essential formulation and a few illustrative results of the
study are presented here to demonstrate the effect of NLTE in molecular gases. Two cases of

the physical model illustrated in Fig. 1 are considered. In the first case radiation is the sole
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mode of enc.rgy transfer within the gas, and in the second case both molecular conduction and
radiation are considered.

For the physical model in which radiation is the only mode of energy transfer, there is a
uniform heat source (or sink) per unit volume ) within the gas. The plate surfaces are assumed
to be black and to have the same uniform temperature T;. For this model, the conservation of

energy, Eq. (5), provides
dgr/dy = Q | 37)

From the symmetry of the problem it follows that gp(L/2) = 0, and Eq. (37) is integrated to
yield
y

e

A combination of Egs. (35) and (38) provides the applicable form of the energy equation as

e=1/2=Gud | [ 16(€) ~njtue] ¥ [uale - )] ¢
~ [ 166 = njtun) & [Buole - )] ¢ )

where

#(€) = [ew (T) — ew (T1)]/(QL/A,)

The quantity ¢(¢) in Eq. (39) represents the temperature profile within the gas in terms of
the Planck function. The parameters in this equation are the dimensionless path length u,,
the nonequilibrium parameter 7, and the line structure parameter 8 which enters through the
correlation for the dimensionless band absorption A(u). By letting ¢*(£) denote the value of

#(¢) for the case of LTE, it is noted that

¢(&) = ¢°(£) + 0.25 n/u, (40)
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Thus, if the value of ¢*(¢) is available from LTE analyses, then the value of ¢(¢) can be

obtained from Eq. (40).

For the case where molecular conduction is included and there is a uniform heat source

within the gas, the energy equation, Eq. (5), is expressed as

2
kd ig dqr

E_-d—y_-FQ:O (41a)

An integration of this equation provides

gr = k(dT/dy) + (y — L/2)Q (41b)

In line with the assumption of small temperature differences, Planck’s function may be linearized

as

ew.(T) — ew.(T1) = (dew /dT) g, (T — Th) (42)
Now, a combination of Egs. (35), (41), and (42) provides the energy equation for this case as
2103 25{ [ oo
-/ " o(e) A [3uote - )] e }
- %n{ / ‘ (1 + dzo/dg")/i' [gua(£ - E')]df’
- /s l (1 + d20/d§'2)/i' [gu (€ - 5)] d{’} @)

where

0= (T —T1)/(QL?/k); M = (LAo/k)(dew,/dT),

The limiting forms of Eq. (43) for u, << 1 and u, >> 1 are provided in [25].
Equations (39) and (43) represent the energy equation for a gas with a single vibration-
rotation band. Analogous expressions can be developed for a multi-band gas and gas mixtures,

and these are provided in [25]. Following the procedure discussed in [25], numerical solutions
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of Eqgs. (39) and (43) have been obtained (along with the limiting solutions for u, << 1 and
u, >> 1) by employing the bands absorptance correlation of Tien and Lowder [11]. Selected
results are presented here to demonstrate the effects of NLTE on radiative energy transfer.

For the case in which conduction is neglected, numerical solutions of Eq. (39) are illustrated
in Fig. 2 for f = oo and for a range of the nonequilibrium parameter = 5./5,. As would
be expected the NLTE effects are significant in the regions of small path lengths and for 7
values higher than unity [12, 21]. For large path lengths, the assumption of LTE is seen to be
justified. It should be noted that the NLTE results yield higher centerline temperature than the
corresponding LTE results. This is a consequence of NLTE reducing the capability of the gas
to transmit radiative energy [12, 25].

Specific results are illustrated in Fig. 3 for carbon monoxide with T; = 500 K. It is seen that
NLTE can exert a considerable influence upon the radiative transfer process at low pressures.
This is because the value of 5 varies inversely with pressure. Similar results presented in [12,
25] for T; = 1,000K and 2,000K show that NLTE influence is very small at higher temperatures.
This is a consequence of the strong temperature dependence of 7, such that the value of 5 at
1,000K is approximately two orders of magnitude less than the value for 500K [25].

For the case in which molecular conduction is included, numerical solutions of Eq. (43)
are illustrated in Fig. 4 for carbon monoxide with T; = 500K. Recall that NLTE effects are
more pronounced under small path length conditions. With reference to Fig. 4, however, this
corresponds to the case for which conduction is the predominant mode of energy transfer. Thus, \

for a given pressure, the NLTE influence upon total energy transfer within the gas will vanish

for either small or large values of L. The former corresponds to negligible radiative transfer,

while the latter denotes the large path length limit. Further discussions of results obtained for

this physical problem are provided in {12, 21, 25].




INFLUENCE OF VIBRATIONAL NONEQUILIBRIUM
ON UPWELLING ATMOSPHERIC RADIANCE

In the evaluation of atmospheric radiance, the assumption usually is made that the atmosphere
is the LTE. This assumption is justified for most atmospheric constituents at relatively low
altitudes. There are situations, however, where this assumption breaks down and conditions of
NLTE prevail. Curtis and Goody [7] have concluded that for CO, molecules the assumption
of LTE is justified at altitudes below 75 km, but not at higher altitudes. As noted earlier, the
CO molecules are in the state of nonequilibrium even at moderate values of temperature and
pressure. Recently, Mlynczak [34] has presented a study on nonlocal thermodynamic equilibrium
process in ozone with special implications for the energy budget of the mesosphere and lower
thermosphere. A literature survey on NLTE processes was provided and results were presented

to assess the magnitude of atmospheric heating due to NLTE processes involving ozone.

The purpose of this study is to analyze the NLTE effects of CO and CH4 molecules on the
upwelling atmospheric radiation. This information is useful in developing data reduction schemes
for the measurement of concentrations of these species in the atmosphere and in assessing the
energy budget of the atmosphere.

The expression for the heating rate at any altitude 2 in the atmosphere is obtained from the

combination of Egs. (25) and (26) as [22]
—H = B,7,/[2(1 + 97/4)] (44)
where 7 represents the average transmittance and is defined as

T = (1/5)/b dnwm(z,oo)dw (45)

Thus, to calculate the NLTE heating rate in the spectral range of a particular band, it is essential

to have information on 7., 7,, and 7,,. An appropriate absorption model is needed to calculate
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7. In this study, line-by-line as well as quasi-random band models are used to calculate 7,,.
The line parameters needed for these models were obtained from [31-33].

Once the heating rate has been calculated at different altitudes, the source function J,, is

evaluated from Eq. (29¢). The expression for thermal radiation emerging from a plane parallel

atmosphere under nonequilibrium conditions is obtained by modifying Eq. (29a) as [14, 22]

E(w) = () B(w, T)r(w,0)

h
+/o J(w, T (2))[dr(w, 2)/dz]d=z (46)

In Eq. (46), the first term on the right-hand side represents the thermal radiation emitted by
the surface with a surface emittance e(w) and B(w,T,) is the Planck function evaluated at the
surface temperature T,. The second term on the right-hand side represents the thermal emission
of the atmosphere.

The upwelling radiation is calculated by dividing the nonhomogeneous atmosphere into
a number of homogeneous sublayers. Each sublayer is considered to have constant species,
temperature and pressure. If the gas molecules absorbs in a specified spectral region Aw, then

the total upwelling radiance is given by

Aw

The numerical procedures and computer codes for calculation of the heating rates and NLTE
upwelling radiance are provided in [22].

The values of collisional relaxation time 7., NLTE parameter n = 5./7,, heating rate, and
upwelling radiance were calculated for CO, CO,, and CHj for standard atmospheric conditions.
Within the specific spectral range of interest, the influence of surface emissivity, interfering
molecules, and reflected components of radiation was accounted for in certain calculations.

Extensive results are provided in [22] and a few selected results are presented here.
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For the CO fundamental band, the values of 7, and n are shown in Fig. 5 for different
altitudes. Since the case of LTE is obtained only for << 1, it is evident that the source
function and Planck function will have a considerable difference for the 4.6 CO band under
atmospheric conditions.

The heating rates are calculated directly by employing Eq. (44) and an appropriate model
for 7,. The results obtained for the 15¢ CO, band from 50 to 120 km are compared with the
results of Curtis and Goody [7] in Fig. 6. Curtis and Goody applied the method of successive
approximation to solve an integral formulation in which the convergence depends on the first
approximation selected. The calculation of the heating rate by using Eq. (44) is more accurate
and straightforward. The slight difference in the two sets of results in Fig. 6 is because an
improved value for the radiative life time was used in the present calculation.

The upwelling radiance at the top of -10 km is shown in Fig. 7 for different CO concentrations.
First calculations were carried out for both LTE and NLTE by assuming only CO molecules in
the atmosphere. In other words, contributions of the interfering molecules within the spectral
range of the CO fundamental band were not considered. It should be noted that the NLTE will
tend to reduce the net upwelling radiance. Figure 7 indicates that for the case with no interfering
molecules the NLTE effect reduces the upwelling radiance by about six percent for 1 ppmv CO
concentrations. For lower concentrations, the effect is even less. This is because as the CO
concentrations increases, the average transmittance decreases due to more radiation absorption.
This results in higher differences between the Planck and source functions which, in turn, result
in larger NLTE effects. The results with H;O as an interfering gas is also shown in Fig. 7.
The upwelling radiance is less than that of pure CO due to increased absorption by the H,O
molecules. The inclusion of H,O, however, does not tend to increase or decrease the effects of
NLTE. This is because H;O molecules were not considered in the calculation of the atmospheric

heating rate. The heating rate was calculated only for CO molecules.
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The atmospheric heating rates were also calculated including the interfering molecules. For
this case, the upwelling radiance results are shown in Fig. 8. It is seen that the interfering
molecules tend to decrease the NLTE effects. This is because inclusion of interfering molecules
reduces the value of the average transmittance. This, in turn, reduces the atmospheric heating
rate. It is noted from Eq. (29¢c) that the lower the value of the heating rate, the lower is the
difference between the Planck and source functions. This results in lower NLTE effects with
increasing number of interfering molecules. Figure 8 shows that only H,O has the maximum
NLTE effect. The reduction in LTE effect due to CO, and N2O molecules, as interfering gases,
is very small as compared to the HO molecules. This is because H;O has many more lines in
the 4.6p spectral region of CO than other interfering molecules.
Upwelling radiance calculations were made in the spectral range of 3.3x CH4 band to
investigate if any NLTE effect existed for this molecule under normal atmospheric conditions.
From the results and discussion presented in [22], it was noted that the conditions of LTE is

justified for CHy up to an altitude of 60 km.

CHEMICALLY REACTING AND RADIATING SUPERSONIC FLOWS

The basic procedure developed and tested in the previous sections are now applied to
investigate the NLTE effects in compressible flows. This was the primary motivation of the
present study. The two—dimepsional elliptic Navier-Stokes equations, Eq. (6), are used to study
thermochemical nonequilibrium and radiative interactions in supersonic flows. The specific
problem considered is the supersonic flow of premixed hydrogen and air in an expanding
nozzle (Fig. 9). A somewhat similar problem was investigated by Gokcen and Park under
the assumption of LTE [35], and relevant literatures in the field were cited. The reacting flow
consists of seven species, one of which is the inert N, molecule. The thermal state of the

gas is modeled with one translational-rotational temperature (referred to here as translational
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temperature) and five vibrational temperatures. A systematic study of this problem is presented
in [36] where relevant information on auxiliary equations and numerical procedures is provided.
In essence, this problem involves three competing nonequilibrium processes, thermal, chemical,
and radiative.

The radiative flux equations given by Eqs. (29—(33) are appropriate equations to investigate
the NLTE effects in chemically reacting supersonic flows. For preliminary study, however, a
simplified form of the optically thin formulation, as given by Eq. (33), may be used, and this

is expressed as [21, 25]
(1 4+ 0.757n)dqr/dE = 3A,u,lew. (€) — €1w.] (48)

Equations (33) and (48) indicate that the effect of NLTE can be investigated by multiplying the
LTE divergence of radiative flux by a constant (1+0.757). For specific flow conditions the value
of 7 = n./n, must be calculated for all participating species by using the linear mixture rule
such as that given by Eq. (19).

The inflow conditions considered for the present physical problem are analogous to the
exit conditions of a scramjet combustor. These are, P,, = 0.8046 atm, T, = 1,890 K,
and M, = 1.4. This problem was studied under equilibrium and nonequilibrium conditions
by other investigators cited in [36]. In this study, a seven step finite rate chemistry model
for hydrogen air combustion is employed and results are obtained for conditions of chemical
nonequilibrium (CNE) and combined thermal and chemical (thermochemical) nonequilibrium
(TCNE). The radiation participating species considered are H,O and OH. The gray gas model is
considered for the LTE case, and the optically thin formulation, Eq. (48), is used for the NLTE
case. The nozzle wall is considered to be noncatalytic, black and adiabatic. Since the physical
problem is symmetric, results were obtained only for the upper half of the geometry. The results

corresponding to the centerline are referred to as grid j = 1 results. The results for the top
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boundary are designated as j = j max results. The results in the middle of the centerline and
top boundary are denoted as j = jmid results. Extensive results for various cases are provided
in [36]. Here, selected results are presented for chemical and thermochemical nonequilibrium

conditions with and without LTE and NLTE radiative interactions.

The variations in translational temperature (i.e., translational-rotational temperature) along
the nozzle are illustrated in Figs. 10 and 11. The results for the centerline temperature are
shown in Fig. 10 for different nonequilibrium models. It is noted that the reaction rates are
fairly fast and the chemical potential energy is converted into thermal energy within a short
distance from the inlet. The CNE results (solid line) are seen to be significantly higher than the
TCNE results. This is because a part of the chemical energy is used to excite the vibrational
modes and the vibrational energy relaxes slowly to the equilibrium value. The results for LTE
radiative interaction (TCNE+LTE) lie between CNE and TCNE results. This is mainly due to
the radiative cooling effect. It was shown in [36] that the concentration of H;O and OH changes
only slightly after X/Lx = 0.2. The optically thin NLTE results (TCNE + NLTE) are seen to be
close to the CNE results. This is a characteristic of the optically thin radiation where the gas
directly exchanges energy with the boundary. In the present case of the adiabatic wall, the wall
temperature increases in the direction of the flow. At any x-location, therefore, the net radiative
flux between the centerline and wall directly influences the centerline temperature. The results for
the general case of NLTE radiative interaction should be lower than the (TCNE + LTE) results.
The results for ; = jmid and j = 7 max are shown in Fig. 11 for different cases along with the
centerline results. It is clearly seen that the wall temperature increases in the flow direction. The
mid-point results are higher than the centerline results, but they follow the same general trend.

The normalized radiative flux results for different models are illustrated in Figs. 12 and
13. Figure 12 shows the profiles of the streamwise radiative flux qp, for different y-locations

(b =1, 5 = jmid, and j = jmax). It is seen that the net qp, decreases with increasing z
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for all models. This is due to canc_ellation of fluxes in the positive and negative x-directions.
The maximum rate of ¢p, is predicted by the (CNE + LTE) model at the mid-point location
(7 = jmid). The results of other models at this location follow the trend of temperature variation
exhibited in Fig. 11. The results for other locations follow a similar trend. The profiles of normal
radiative flux are illustrated in Fig. 13 for different models at the three y-locations. These results
also show a trend similar to the qp, results. The extent of net g, decreases in the flow direction
because of cancellation of fluxes in the positive and negative y-directions. Since the walls are
assumed to be adiabatic, no energy can be transferred outside the wall. As a result, the wall

temperature increases in the flow direction.

CONCLUDING REMARKS

Analytical and numerical procedures have been developed to treat a physical problem where
different nonequilibrium processes occur simultaneously. The nonequilibrium processes consid-
ered are thermal, chemical, and radiative. The inﬂuencev of thermal (vibrational) nonequilibrium
upon infrared radiative energy transfer was investigated by considering a radiating gas between
two parallel plates. The influence of vibrational and nonlocal thermodynamic equilibrium upon
the net upwelling infrared atmospheric radiation was investigated by evaluating the upwelling
radiances in the spectral ranges of different participating species. The combined effect of the
three competing nonequilibrium processes was investigated by considering the flow of chemically
reacting and radiating gases in a diverging nozzle. The results demonstrate that nonequilibrium
phenomena, in general, tend to reduce the ability of a gas to transfer the radiative energy. The
procedure developed can be applied to investigate radiative interactions in challenging multidi-

mensional nonequilibrium problems using sophisticated spectral models for radiation absorption.
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THERMOCHEMICAL NONEQUILIBRIUM AND RADIATIVE INTERACTIONS
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Abstract

The two-dimensional, elliptic Navier-Stokes equa-
tions are used to investigate supersonic flows with
nonequilibrium chemistry and thermodynamics, cou-
pled with radiation, for hydrogen-air systems. The
chemistry source term in the species equation is treated
implicitly to alleviate the stiffness associated with fast
reactions. The explicit, unsplit MacCormack finite-
difference scheme is used to advance the governing
equations in time, until convergence is achieved. The
specific problem considered is the premixed, expanding
flow in a supersonic nozzle. The reacting flow consists
of seven species, one of which is the inert Ny mole-
cule. The thermal state of the gas is modeled with one
translational-rotational temperature and five vibrational
temperatures. The harmonic oscillator model is used in
the formulation for vibrational relaxation. The tangent
slab approximation is used in the radiative flux formu-
lation. A pseudo-gray model is used to represent the
absorption-emission characteristics of the participating
species. Results obtained for specific conditions indi-
cate the presence of nonequilibrium in the expansion
region. This reduces the radiative interactions and can
have a significant influence on the flowfield.

Nomenclature
A band absorptance, m~!
A, band width parameter, m~
C; concentrationof the j** species, kg—mole/m?
Cp constant pressure specific heat, J/kg — K
C. correlation parameter, (N/m2) ™ m=1
¢ speed of light
E total internal energy
Ev total vibrational energy
e, Planck's function
fi mass fraction of j** species
H total enthalpy, J/kg
h static enthalpy, J/kg
h Planck's constant
k  thermal conductivity
ky backward rate constant
k; forward rate constant
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Boltzmann's constant

pressure , N/m?

partial pressure of j*® species

total radiative flux

gas constant

integrated band intensity, (N/m?) -2
translational — rotational temperature, K
Ty vibrational temperature, K

u, v velocily inz — and y — directions, m/s

w;  production rateof j** species, kg/m® — s
z,y physical coordinates

¥ ratio of specific heats

By  characteristic vibrational temperature

kp  Planck mean absorption coef ficient

A second coef ficient of viscosity , wavelength
p  dynamic viscosity , kg/m — s '

Hsr reducedmolecular massof colliding pair(s,r)
£,m computational coordinates

n. vibrational relaration time

n, radiative lifetime for vibrational states
p  density

o  Stefan — Bollzmann constant

T shear stress
¢
w

NG e oo

equivalence ratio

wave number, m™!

Introduction

In recent years there has been a renewed inter-
est in the development of a hypersonic transatmo-
spheric aerospace vehicle capable of flying at sub-
orbital speeds. A hydrogen-fueled supersonic combus-
tion ramjet (scramjet) engine is a strong candidate for
propelling such a vehicle. For a better understanding
of the complex flowfield in different regions of the en-
gine, both experimental and computational techniques
are employed. Several computer programs have been
developed [1-4] and applied to gain more insight into
the problem involving the flow in the various sections
of the scramjet module.

The flowfield in the scramjet combustor con-
sists of a high enthalpy gaseous mixture characterized
by very short residence times (order 1.0 msec) and
wide temperature and pressure variations (900-3000
K and 1.0-5.0 atmospheres, respectively). This could
lead to thermochemical nonequilibrium. In order for
molecules to dissociate, they must be excited in all
three energy states (rotational, translational and vibra-
tional). After dissociation, the translational and ro-
tational temperatures relax towards equilibrium faster




than the vibrational temperature. This makes the
study of vibrational nonequilibrium an important is-
sue. Several theoretical and computational studies on
the nonequilibrium flow of air have been carried out
[5-13]. Vibrational relaxation effects are important in
mixtures of combusting gases [14-16) and in lasers
(17-20]). In recent years, thermochemical nonequi-
librium effects in atmospheric re-entry flows have re-
ceived considerable attention [21-25].

The combustion of hydrogen and air in the scram-
jet combustor results in gases such as water vapor and
hydroxyl radicals. It is known that the presence of
water vapor gives rise to rapid relaxation rates {14,
15, 26, 27]). However, the vibrational relaxation ef-
fects of hydrogen-air combustion have been investi-
gated only recently [28, 29]. Furthermore, water vapor
is an absorbing-emitting gas. Existence of such gases
makes it necessary to include the effect of radiation
heat transfer. Coupled radiative transfer with chem-
ical nonequilibrium has been studied earlier [30-35].
The effect of radiatively induced vibrational nonequi-
librium (non-local thermodynamic equilibrium, or non-
LTE) upon radiative energy transfer in hot gases, has
also been investigated [36-39).

The objectives of the present study are to inves-
tigate vibrational, chemical and radiative nonequilib-
rium effects in a hydrogen-fueled supersonic combus-
tor. The harmonic oscillator model [40, 41] is used
in the formulation for vibrational relaxation. The ther-
mal state of the gas is modeled using one translational-
rotational temperature and five vibrational tempera-
tures. The radiative interactions are investigated in both
streamwise and transverse directions. The tangent slab
approximation is used in the radiative flux formulation.
An optically thin assumption is made in the non-LTE
model.

The flowfield in the combustor is represented by
the Navier-Stokes equations and by the appropriate
species continuity equations [2, 3]. Incorporation of
the finite-rate chemistry models into the fluid dynamic
equations can create a set of stiff differential equations.
Stiffness is due to a disparity in the time scales of the
governing equations. In the time accurate solution, af-
ter the fast transients have decayed and the solutions
are changing slowly, taking a larger time step is more
efficient. But explicit methods still require small time
steps to maintain stability. One way around this prob-
lem is to use a fully implicit method. However, this
requires the inversion of a block multi-diagonal system
of algebraic equations, which is also computationally
expensive. The use of a semi-implicit technique [33],
provides an alternative to the above problems. This
method treats the source term (which is the cause of
the stiffness) implicitly, and solves the remaining terms
explicitly.

Basic Governing Equations

The physical model for analyzing the flowfield in

a supersonic combustor is described by the Navier-
Stokes and species continuity equations. For two-
dimensional flows, these equations are expressed in
physical coordinates as [2, 3]
ou oF oG
'6—t+az+E+H—0 (6))
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The viscous stress tensors in the F and G terms
are given as,

Gu v du
Trz = -/\(5;‘4' 5;) - 2[15; (2a)
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where A = —2u . The quantities q., and q., in the

F and G terms are the components of the conduction
heat flux and are expressed as

T ar
Qez = _ka_z v Gy = -k% &)

The molecular viscosity p is evaluated from the
Sutherland’s formula. The total internal energy E in

Eq. (2) is given by

24,2
E=_£+u+v
P 2

+ D hifi+ D fiEvi @)
j=1

j=t

Specific relations are needed for the chemistry and ra-
diative flux terms. These are discussed in the following
sections.

Chemistry and Thermodynamic Models

Chemical reaction rate expressions are usually de-
termined by summing the contributions from each rel-
evant reaction path to obtain the total rate of change
of each species. Each path is governed by a law of
mass action expression in which the rate constants can
be determined from a temperature dependent Arrhenius
expression. The reaction mechanism is expressed in a
general form as

ns k!

' i
E :7ijCi Pyl
j=1 b

where ns = number of species and nr = number of
reactions. The chemistry source terms w; in Eq. (1)
are obtained, on a mass basis, by multiplying the molar
changes and corresponding molecular weight as

na
S 4iCi L i=Lar (5
ji=1

nr ns '
W = M;C; = M; ) (7;;' ‘721)['°!* Il cw-
=1 m=1

ns "
—ky [ CH™), G = 1,ns
m=1
©)

The reaction rate constants k;; and ky; appearing
in Egs. (5) and (6) are determined from an Arrhenius
rate expression as

ky, = A,-Tbezp(-—%) ©)

where

b, = X @®

1 An _ _
()" n(58) o

The coefficients A ,band E appearing in Eq. (7)
are given in Table 1. The term An in Eq. (9) denotes
the difference in the number of moles of reactants
and products. In order to account for the effect of
vibrational relaxation on the chemical reaction rates,
the temperature T in Egs. (7)—(9) is expressed as

(40]
T = \/Tlraru.—rot.TV (10)

The Gibbs energy term in Eq. (9) is calculated
from the relation

ke, =

ns ns
AGRr, = D %% — 3 %6 » § = Linr (11)
J=1 j=1

where
% = A,-(T-InT)+£;iT2+%-T3
(12)
DJ' EJ’ 5 . .
+o3 T+ 591"+ Fj +GT

The gas constant for the mixture is evaluated by
a mass-weighted summation over all species as

E = ) fiR 13)
ji=1

P = pRT (14)

Vibrational Model

A simplified thermodynamic model for the mix-
ture of gases is necessary. Each species contains trans-
lational and rotational energy states in thermodynamic
equilibrium and the vibrational energy is described by
a hanmonic oscillator, which is not in equilibrium [40,
41]. A Landau-Teller model is used to determine the
effect of vibrational relaxation on the energy produc-
tion. Furthermore, ionization effects are ignored. It
should be noted that monoatomic species like O and H
are not vibrationally excited.

The vibrational source terms in Eq. (1) are ex-
pressed as

6 = _EL__E_‘L (15)

Nei




where

- _ Rievi
Evi = ezp(6yi/T) — 1 (16)
and 7
cw;
0, = — 17
| s a7

In Eq. (15), the equivalent relaxation time 75 of
a mixture of gases (i = 1, j) is given by the linear
mixture rule [14, 15]

L ﬁ—+—fz—+—f3—+ ....-1-—"'L (18)
Nei Neil Nei2  7ei3 Neij
where the local vibrational relaxation time 75y of a
molecular collision pair (i, j) is given by an empirical
correlation [42}

Nej = plexp[0.00116p]] *63/3(T 1/

(19)
—0.015p;/*) - 18.42]
where Hii-phis
ii-Hjj
ij = —= (20
His Mii + pjj

and values of #,; for N3, O, and H,O are obtained
from [43] and for H, and OH from [44] and [45],
respectively.

Radiation Transfer Model

Evaluation of the energy equation presented in Eq.
(1) requires an appropriate expression for the radiative
flux term, qgr . Therefore, a suitable radiative transport
model is needed. Various models are available in the
literature to represent the absorption-emission charac-
teristics of the molecular species [33). The equations of
radiative transport are expressed generally in integro-
differential forms. The integration involves both the
frequency spectrum and physical coordinates. In many
realistic three-dimensional physical problems, the com-
plexity of the radiative transport equations can be re-
duced by introduction of the tangent-slab approxima-
tion. This approximation treats the gas layer as a one-
dimensional slab in evaluation of the radiative flux (Fig.
1a).

Detailed derivations of radiative flux equations for
gray as well as nongray radiation have been carried
out previously [33). For a multiband gaseous system,
the nongray radiative flux in the normal direction is
expressed as

A; [——;(y— 2)]‘12 + 21

The information on the band absorptance ﬂi and other
quantities is available in the cited references.

For a gray medium, the spectral absorption coeffi-
cient x,, is independent of the wave number, and an
expression for the radiative flux is obtained as [33, 46]

y
w) = et g{/[e(z) — ey)e” 5 xdz

/[e(z) - ez]e :cdz}

22)
It is computationally more efficient to use Eq. (22)
in the general energy equation than Eq. (21). This is
because by differentiating Eq. (22) twice (using the
Leibnitz formula) the integrals are eliminated and the
following inhomogenous ordinary differential equation
is obtained :

1 d%r(y) 9 _ 3de(y)
IC2 dy2 - 4‘1R(y) - K dy

(23)

The solution of Eq. (23) requires two boundary con-
ditions which are given for non-black diffuse surfaces
as [46)

1 1 1 [dqgr _
(53 oo - 55 [0]_ =0 a0
1 1 dqr _
(; - 5) [qﬂ(y)]y:L 3K [ y=L - 0 (24b)

For black surfaces ¢; = e2 =1 and Eqs. (24) reduce
to simpler forms.

An appropriate model for a gray gas absorption
coefficient is required in Eqs. (22) — (24). This is
represented by the Planck mean absorption coefficient,
which is expressed for a multi-band system as {33, 46]

= 0T4(y) E ew,(T)Si(T) (25)

It should be noted that «p is a function of the tem-
perature and the partial pressures P; of the species.

Relevant information on relaxation processes,
nonequilibrium transfer equations and radiative flux
equations is provided in [47]. The basic equations de-
veloped can be used to investigate radiative interactions
of gray as well as nongray gases under nonequilibrium
conditions. In this study, however, the nonequlibrium
radiative interactions are considered only in the opti-
cally thin conditions. A brief discussion of applicable
equations is provided here.




The nonequilibrium radiative transfer equation for
two level transitions between vibrational states may be
written as [36-39]

di,

T = ro(Jo—L) (26)

where J,, is the nonequilibrium source function

w w 17'. + nc ’
v o 40 ) R do

~ (fdQ [k, B, dw)

It should be noted that absorption is an equilibrium
process, whereas the nonequilibrium influence comes
only through the emission process (source function).

The time constant 5, in Eq. (27) is the radiative
lifetime of vibrational states, and this is expressed as
[36]

@n

1 - gew? (5) S (28)
Nr n
where S represents the integrated band intensity of a
vibration-rotation band.

The influence of nonequilibrium radiation is most
apparent in the optically thin limit, wherein the diver-
gence of the radiative flux can be derived as [36]

dqr 3nc\ _
75'(”37)7) = 3A.uofen(E) - er(6)] (29)

where A, is the band width parameter and u, is
the nondimensional path length, and these are defined
in the cited references. It can be seen from Eq. (29)
that the contribution of the non-LTE (non-local thermo-
dynamic equilibrium) is obtained simply by adding a
correction involving the nonequilibrium parameter ¢
to the divergence of the radiative flux.

Method of Solution
The governing equations are transformed from the
physical domain (x , y) to a computational domain (£ ,
n), using an algebraic grid generation technique similar
to the one used by Smith and Weigel [48]. In the
computational domain, Eq. (1) is expressed as

o0 oF oG

—t=+—=+ H=0 30

5 T 5 + B + (30
where . N

U=UJ, F= Fy,~Gz,

G = Gz¢ - Fye , H=HJ 3D

J = zeyy — YTy

Once the temporal discretization has been per-
formed, the resulting system is spatially differenced

using the explicit, unsplit MacCormack predictor-
corrector scheme [33]. This results in a spatially and
temporally discrete, simultaneous system of equations
at each grid point. Each simultaneous system is solved,
subject to initial and boundary conditions, by using the
Householder technique {33]. At the supersonic inflow
boundary, all flow quantities are specified as freestream
conditions. At the supersonic outflow boundary, non-
reflective boundary conditions are used, i.e. all flow
quantities are extrapolated from interior grid points.
Qnly the upper half of the flow domain is computed,
as the flow is assumed to be symmetric about the cen-
terline of a two-dimensional nozzle. The upper bound-
ary is treated as a solid wall. This implies a non-slip
boundary condition (i.e. zero velocities). The wall
temperature, species mass fractions and pressure are
extrapolated from interior grid points, by assuming an
adiabatic, black and non-catalytic wall as well as the
boundary layer assumption on the pressure gradient,
respectively. Symmetry boundary conditions are im-
posed at the lower boundary, viz. centerline. Ini-
tial conditions are obtained by specifying freestream
conditions throughout the flowfield. The resulting set
of equations is marched in time, until convergence is
achieved. The details of the radiative flux formulation
and method of solution are available in [33].

Results and Discussion

Based on the theory and computational procedures
described previously, an algorithm has been developed
to solve the two-dimensional Navier-Stokes equations
for supersonic chemically reacting and radiating flows
undergoing vibrational relaxation. The extent of radia-
tive transfer in supersonic flows undergoing thermo-
chemical nonequilibrium, has been investigated. For
the temperature range considered in this study, the im-
portant radiating species are OH and H,O. The gray gas
formulations are based on the Planck mean absorption
coefficient which accounts for the detailed information
on different molecular bands. The radiative fluxes have
been computed -using this ‘pseudo-gray’ formulation.
The justification for using this model is provided in
[33].

The specific problem considered is the supersonic
flow of premixed hydrogen and air (stoichiometric
equivalence ratio ¢ = 0.3) in an expanding nozzle (Fig.
1b). The physical dimension considered for obtaining
results is Ly =2 m. The flow is igaited by the high en-
thalpy of the flowfield. The inlet conditions which are
representative of scramjet combustor exit conditions,
are P,, = 0.8046 atm, To, = 1890 K and M,, =
1.4. This same flow has been computed by other CFD
research groups [2, 28, 29].

The first step was to assume chemical nonequilib-
rium (CNE) in all cases. As a preliminary study, a one-
dimensional flow was computed using 101 grid points.




Figure 2 shows the results for the temperature and pres-
sure variations along x. The temperatures exhibit re-
laxation along the nozzle (Fig. 2a). The vibrational
temperature Ty (shown for only one species H,O that
exhibits strongest nonequilibrium effect) deviates sig-
nificantly from the translational-rotational temperature
T. This shows that thermochemical nonequilibrium
(TCNE) is still present in the nozzle, and reduces the
translational temperature. The pressure profiles (Fig.
2b) do not show any effect of thermal nonequilibrium.

Based on the above understanding of thermo-
chemical nonequilibrium in supersonic hydrogen-air
flames, the radiative interactions were examined for
two-dimensional flow. A 101 x 31 grid was used for
this part of the study. The results were plotted after
every four grid points. Three y locations were consid-
ered, viz. j = 1, j = jmid, and j = jmax-1, correspond-
ing to the centerline, midway between centerline and
wall, and wall boundary layer, respectively. The local
thermodynamic equlibrium (LTE) and non-LTE results
were obtained by using a value of 0.0 and 5.0 respec-
tively, for the nonequilibrium parameter in Eq. (29).

Figure 3 shows the profiles of the normalized
streamwise radiative flux qgy along the three y loca-
tions. It can be seen that the gg, flux at the j = jmid
location is higher than at the other two locations. This
is because of the heat release due to chemical reac-
tion. The radiative flux in the wall boundary layer (j =
jmax-1) is lower than at the other two locations. This
is due to the adiabatic wall boundary condition, which
precludes any heat transfer outside the wall. An im-
portant effect of thermal nonequilibrium is to reduce
the radiative interactions. The qrx reduces towards
the nozzle exit due to cancellation of fluxes in positive
and negative directions.

Figure 4 shows the variations of the normal radia-
tive flux qg, along x, at three y locations. It can be
seen that the qr, flux increases in the positive y direc-
tion, reaching a maximum in the wall boundary layer.
This is because of the optically thin assumption, which
means that there is negligible loss of radiative flux from
the wall to neighbouring gas molecules. Also, thermal
nonequilibrium reduces the radiative interactions, with
the non-LTE fluxes being less than the LTE fluxes. The

gry profiles exhibit a peak near the nozzle inlet, be-
cause of sudden increase in radiating species due to
chemical reaction.

Figure 5 shows the temperature profiles along the
centerline (j = 1) of the nozzle. It can be seen that
vibrational nonequilibrium reduces the transiational-
rotational temperature. The radiative interactions serve
to negate this thermal nonequilibrium effect, with the
non-LTE case having more influence than the LTE case.
This is because the non-LTE qg, flux is higher than
the LTE qg, flux (Fig. 3). Figure 6 shows the temper-
ature profiles varying along x, for the three y locations.

It can be seen that the temperature at the j = jmid lo-
cation, is higher than at the other two locations. This
is because of the heat release due to chemical reaction.
The temperature in the wall boundary layer (j = jmax-
1), is lower than the centerline temperature. This is be-
cause of the adiabatic wall boundary condition, which
prevents heat transfer outside the wall. Consequently,
the wall temperature rises towards the nozzle exit.

Figures 7 and 8 show pressure profiles along the
x direction. A reduction of pressure due to vibrational
nonequilibrium, is observed. This is analogous to the
thickening of the boundary layer on a flat plate (i.e.
lowering of the pressure) in the presence of thermal
nonequilibrium. A trend similar to the temperature
profiles (Figs. 5 and 6) can be seen in this case,

Figures 9 and 10 show variations of the vibrational
temperature, at the centerline and at three y locations,
respectively. An interesting effect of radiative interac-
tions is to reduce the vibrational temperature, thereby
negating the thermal nonequilibrium. A similar obser-
vation has been made in [49]. This is also in tune with
the observations made in Figs. 5 and 6. The reduc-
tion in vibrational temperature is due to the qr, flux
which reduces the total energy.

Figure 11 shows profiles of water mass fraction
at three y locations. They follow a pattern similar to
the temperature and pressure profiles (Figs. 5-8). The
peak water production is found to occur at x / Ly
= 0.05. Thus, it can be seen that the nonequilibrium
parameter in Eq. (29) serves to illustrate the relative
importance of vibrational relaxation (collision process)
over radiative nonequilibrium (emission process). The
non-LTE process is emission dominated. On the other
hand, the LTE process is collision dominated.

Conclusions

The two-dimensional spatially elliptic Navier-
Stokes equations have been used to obtain solutions for
supersonic flows undergoing thermochemical nonequi-
librium alongwith radiative interactions. The specific
problem considered is the premixed flow in a super-
sonic expanding nozzle. The inlet conditions used
in the present study correspond to typical combustor
exit conditions of a scramjet engine. Three differ-
ent nonequilibrium processes were observed, namely
chemical, thermal and radiative. It is seen that thermal
nonequilibrium is present in the expansion region of the
nozzle and lowers the temperature, pressure, species
mass fractions as well as the radiative fluxes. The ef-
fect of radiative interactions is to reduce the extent of
thermal nonequilibrium due to additional mode of en-
ergy transfer.
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Table 1. Hydrogen-Air Combustion Mechanism (7 species, 7 reactions)
No.  Reaction A b Te

] H3+ O3 = OH +OH 1.70E4+13 0.0 24233
2 H+0,—-0H+O0 1.42E414 00 8254
3 OH+ Ha— H,O+ H J.16E4+07 138 1525
4 O+H; —~OH +H 207E+14 00 8920
8 OH + OH — H,040 5.60E+13 00 3523
6 HAOH+M —H,0+M 221E+22 -20 0

1 H+H+M —-H+ M 0.63E+17 -10 0
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