~

 NASA-CR-199, 925

NASA-CR-189925
19920010819

A DARAIIET AT CORTTHM FOF. MULTI-LEVEL
LOGIC SYNTHESIS USING THE TRANSDUCTION METHOD

BY
CHIENG-FAI LIM
B.S., University of Illinois, 1990

2ol

LIBRARY COF

ocT 9

LANGLEY RESEARCH CENTER

THE LIBRARY NASA
518 HANMPTON, VIRGINIA

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

L

Q/O

UTTL:

AUTH:
CORP:

SAP:
CIO:

MAJS:

ABA:
APS:

DISPLAY 92N20061/2
9IMN20061+f ISSUE 11 PAGE 1855 CATEGORY 61
RPT#: NASA-CR-189925 NAS 1.26:189925 CXNTE: NAGI-613 91/00/00 80 PAGES
UNCLASSIFIED DOCOMENT
A parallel algorithm for multi-level logic synthesis using the
transduction aethed TISP: M.S. Thesis
A/LTM, CHIXNG-FAT
I1linois Univ., Urbana~Charpaign. CSS: (Coordinated Science Lab.)
Avail: CASI HC AQS/MF AQ1
UNITED STATES
/*ALGORTTHYS/*COMPUTER SYSTEMS PERFORMANCE/*MEMORY (COMPUTERS) /*
MULTIPROCESSTNG (COMPUTERS) /*OPTIMIZATION/*PARALIFL. PROCESSING (COMPUTERS)

: / BALAXCING/ COMPUTER AIDED DESIGN/ DYNAMIC 10ADS/ LOGIC CIRCUTTS/

PARTITIONS (MATHEMATICS)/ SUBSTITUTES/ TRANSFERRING

Author

The Transduction Method has been shown to be a powerful tool in the
optimization of rmltilevel networks. Many tools such as the SYION
synthesis system (X90), (C189), (1M90) have been developed based cn this
method. A parallel implementation is presented of SYLON-XTRANS (X¥89) on
an eight processor Fncore “ultirax shared menory rultiprocessor. It
minimizes maltilevel networks consisting of simple gates through parallel
pruning, gate substitution, gate merging, genecralized gate substituticn,
and gate inpat reduction. This implementation, called Parallel

ENTER: YORE

A PARALLEL ALGORITHM FOF. MULTI-LEVEL
LOGIC SYNTHESIS USING THE TRANSDUCTION METHOD

BY
CHIENG-FAI LIM
B.S., University of Illinois, 1990

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1991

Urbana, Illinois

NIA-2.006§ #

iii

ABSTRACT

The Transduction Method has been shown to be a powerful tool in the optimization of
multi-level networks. Many tools such as the _SYLON synthesis system [X90], [CM89],
[LM90] have been developed based on this method. In this paper, we present a parallel
implementation of SYLON-XTRANS [XM89] on an eight-processor Encore Multimax
shared-memory multiprocessor. It minimizes mulii-level hetworks consistings of
simple gates through parallel pruning, gate substitution, gate merging, generalized gate
substitution, and gate input reduction. This fimplcrnentation, called Parallel
TRANSduction (PTRANS), also uses partitioning to break large circuits up and
performs inter- and intra-partition dynamic load balancing. With this, we are able to
achieve good speedups and high processor efficienciss without sacrificing the resulting

circuit quality.

iv

ACKNOWLEDGEMENTS

I am most grateful for the constant advice andfsupport of my advisor, Professor

Prithviraj Banerjee, who has made the completion of ,'this thesis possible.

I would like to thank Professor Saburo Muroga and his students who have shared
their valuable experiences with me. I would also like to thank the students and staff
members of the Center for Reliable and High-Performance Computing who have been a
great souice of help. Specifically, I am thankful for Kaushik De for his ideas and

assistance.

Finally, I would like to thank my fellow graduate students for making my stay in

this country a precious experience.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTIONcocivnsiinnsnsresissessisissesessessesssssssesessssssssserassesass

1.1. Motivation for Parallel CAD AlgOrithmsccccceeecercrsncccinsarcsanesncrssancnns

1.2. Two-level and Multi-level Logic Synthesiscceeciinnninennninniniiienns

1.3. Related Work on Parallel Logic Synthesiscccccoennimnnicnniiiecscncesuencsesnne

1.3.1. Parallel ESPRESSOccoconrriiiinininineninnninsissesessscsssssssssnens

1.3.2. Parallel Kernel EXITACHON ..cc.ceveerervrinreercreessaesseessesseersssssosssessssssossssses

1.3.3. Parallel Tautology Checking vttt sttt smesames s saanes

1.4. Thesis Outline

...

2.1. Terminology and NOtAtiONSccceeeriircssnnrenrioneaeesesessessassessaesaessossersesesne

2.2. Maximum Set of Permissible FUNCHONS «.ve.ee.oeeeeeeeee oo

2.3. Compatible Set of Permissible FUNCHONSi...ccoceverreereesecereaereeseersesensseesns

2.4. Pruning

2.5. Gate Substitution

2.6. Gate Merging
2.7. Generalized Gate Substitution

2.8. Gate Input Reduction

...

...

0 0000000000000000000006000000000000000¢ $0000000000000000000000000as0asccotsssscsss

..

..

..

11

15

17

20

21

24

26

29

29

3.2. Binary Decision DIiagramscccceeeiissessessessessnsrensintesiesnssnesssssessossossssaes

3.3. Partitioning AIZOTIthIMccciiiiireninieeninntiietnessecetns s sssaeseneens

3.4. Program Model eeeseeeeeeeeseee e en et R SRR eSS RR

3.5. Discussion of Number of Partitions eeeeesseesatsnerarasesatosttnssetesaresesane

3.6. Parallel Evaluation of Functions and CSPFs 0F Gatescccceeevreeeierrnvnenees

3.7. Paralle]l PTUNINGccoccicciccnirnnesansssnssnnesssssnssaisssnssstssstssssesasssssssssssssessssesansss

3.8. Paralle]l Gate SUDSHUION .icccccicricivneieeieseerrrecessssssssssssssessesssessesssessssessenses

3.9. Parallel Gate MEIrZINgcccorvsmreeseesonsansssssonons eeeseseessaesssssenessraesane reonssesssees

3.10. Parallel Generalized Gate Substitution/Gate Input Reduction

3.11. Ordering of Search-Spaces ..

CHAPTER 4. EXPERIMENTAL RESULTSccocooectntminennnnnnninseneessesssrasessesenes

4.1. Overview of Experimentscceeee eressesrennens enresresrensses e sses s saas st st et esnans

4.2. Circuit Degradation with Number of Processorseceverirerreseevssssessssonens

4.3. Efficiency of Intra-Partition Load Balancing
4.4. Efficiency of Inter-Partition Load Balan;:ing
4.5. Comparison among MIS 2.1, SYLON-XTRANS, and PTRANS

CHAPTER 5. CONCLUSIONS

REFERENCES

..

...

..............

..

..

vi

30
37
38
41
42
46
48
51
54
57
59
59
60
61
63
66
70

72

CHAPTER 1. '

INTRODUCTION

1.1. Motivation for Parallel CAD Algorithms

Computer Aided Design (CAD) algorithms alw-ays face the conflict between the
need to produce superior quality results and the need to shoﬁen the long processing
time they require. Many problems in VLSI CAD are NP-complete [GJ79], hence
determining the optimum solutions to these problems can take extraordinary amounts of
CPU time. Hence, heuristics are used to reduce their complexities so that the results can

be delivered within a reasonable amount of time.

To reduce the runtimes of CAD tools, a simple way is to execute them on faster
uniprocessor machines. However, this is no longer feasible as we are approaching an
upper bound on the speed of the processors that can be made with current technology.

This problem has led to more attention being focused on parallel machines.

With today’s increasing availability and perforrnance of parallel machines, a new
direction has been created for parallel processing of C AD algorithms. Many of the CAD
applications have a high degree of inherent parallelism. There is a bright future in the
integration of new parallel programming paradigms, parallel architectures, and CAD

algorithms so as to provide users with a shorter turnaround time.

1.2. Two-level and Multi-level Logic Synthesis

Automation of logic synthesis tools is becoming increasingly important as the
number of logic gates in VLSI chips gets larger. In the past, many studies were devoted
to realizing combinational logic functions with 2-level networks using PLA’s. Many

efficient algorithms such as ESPRESSO [B84] and PMIN [C87] have been developed.

Unfortunately, many combinational logic functions can be more efficiently realized
with multi-level networks in terms of compactness, cost, and speed. Many tools have
also been developed for multi-level logic synthesis. SOCRATES [GBGH86] and MIS
[BRSW87] are among them. In the early 70’s, the Transduction Method was developed
at University of Illinois. This involves the concept of permissible functions, which is
also regarded frequently as observability don’t-cares. Based on this method, SYLON-
XTRANS [X90], SYLON-DREAM [CM89], and SYLON-REDUCE [LM90] have been
developed. They have shown that the Transduction Method is a powerful tool in the

optimization of multi-level circuits.

1.3. Related Work on Parallel Logic Synthesis

With increasing accessibility of parallel machines, there have been many studies
on parallel CAD algorithms. This section review; some of Such work including
Galivanche’s parallel ESPRESSO [G86], Zipfel’s pgxrallel kernel extractor [Z91] and

Hatchel’s parallel tautology checking [HMJ88].

1.3.1. Parallel ESPRESSO

In ESPRESSO, there are three main procedures called Complement, Expand, and
Reduce. The section describes their parallelization i)rocesses described by Galivanche

[G86].

To compute the complement of a given function, tﬁc Complement procedure
recursively decomposes it into two sub-functions along a splitting variable until a single
term is reached. In the parallel version, a new proczss is created at each level of the
recursion so that the two sub-functions can be handled simultaneously. This creation of
processes stops when the number of processes created equals the number of processors

available.

The Expand procedure generates a limited set of prime cubes of a given function.
The set of cubes under consideration are maintained in a list. Each cube is expanded
with the objective of covering other cubes iﬁ the lis:. In the parallel algorithm, cubes
are expanded in parallel. However, duplicated cubes can be created. To minimize this
redundant work, periodic checks are made to halt dunlicated work. The procedure also

terminates with a final clean-up phase to remove the auplicated cubes.

The third procedure, Reduce, tries to obtain a minimal number of cubes covering a
given function so that any further reduction would change the function. Although most
of the cubes can be reduced simultaneously, a process could be reducing a cube Ci
thinking that it is covered by another cube Cj without knowing that Cj is also being

currently reduced by another process. The solution tc this problem is to assume that all

other cubes currently being reduced do not exist. Although this gives correct outputs, it

affects the quality of the final results.

Galivanche achieved linear speedup in completion time with slight degradations in

the resulting qualities of the generated PLA’s with these algorithms.

1.3.2. Parallel Kernel Extraction

Zipfel [Z91] has implemented a parallel version of the kernel extraction procedure

used in MIS during algebraic factorization [BRSW87].

First, the kernel-cube matrix is built in parallel. This is also executed in parallel
with the formation of the Boolean representation of a node since they are independent.
After building the kernel-cube matrix, the next phase performs the actual extraction. In
parallel, each process creates its own local partition cf the kernel-cube matrix and uses
it to perform any extraction from the globall network. These partitions are generated in

parallel as well.

With its own partition of the kernel-cube matrix, a process then proceeds to look
for kernel intersections that are éxtractable. If the value of a kernel intersection is
greater than zero, a new node is then created and exclusively substituted into the
Boolean network. When a process has exhausted its partition, it waits until all of the
other processes have exhausted theirs before repeating the Kernel-cube matrix-building
algorithm again. With this parallel algorithm, Zipfel was able to obtain slight

improvements in the minimality of the circuits tested. However, the low speedups he

achieved showed that MIS is very difficult to parallel'ize.

1.3.3. Parallel Tautology Checking

Hatchel’s parallel tautology checking algorithm [HIMS88] uses the parallelism of a
serial divide-and-conquer algorithm. The serial algorithm recursively divides the
function into smaller partitions until the function to be checked is sufficiently small. In
the parallel version, a process is created for each sub-function if a partition is found to
be complicated enough. Each process waits for all of its children (if any) to report back
before terminating. With this tree-structured corhputation, good speedup ha§ been

achieved.

1.4. Thesis Outline

This thesis describes a parallel implementation of the Transduction Method of
multi-level logic synthesis on a shared-memory machine, the Encore Multimax
computer. The implementation, called PTRANS (Parallel TRANSduction), is based on

SYLON-XTRANS [X90], [XM89].

Scalability has been a problem in the parallelization process. In order to maintain
high processor utilization when the number of processors increases, the circuit to be
minimized has to be large. Unfortunately, the amount of physical memory available

places an upper bound on the size of the circuit to be minimized.

To solve this problem, large circuits have tc be partitioned. The partitioning
algorithm tries to retain the don’t-cares within a partition. Clearly, the minimization of
the partitions can be performed in parallel. Howevcr._l although two partitions may be of
the same size in terms of the number of gates and connections, the time required to
minimize each of them could be different due to differences in their functional

complexities.

This thesis describes how the partitions can be minimized simultaneously with
both inter- and intra-partition parallelism being handled by dynamic load balancing.
The organization of this report is as follows. In Chapter 2, the basic concepts of the
Transduction Method is given. It also provides some background information on the
permissible: functions and the transformation and reduction procedures found in
SYLON-XTRANS. The parallelization of these procedures and the implementation of
dynamic load balancing is presented in Chapter 3. In Chapter 4, some experimental

results achieved with PTRANS are reported, followed by a conclusion in Chapter 5.

CHAPTER 2.

REVIEW OF THE TRANSDUCTION METHOD

SYLON-XTRANS is an extension to the original Transduction Method in [MK89]
so that it can minimize multi-level circuits consisting of AND, OR, NAND and NOT
gates in addition to NOR gates. It contains four main procedures, namely, pruning, gate
substitution, gate merging, and combined generalized gate substitution/gate input
reduction. Each of these procedures is basically an iterative improvement algorithm that
keeps transforming and reducing a circuit until no further improvement can be made.
The transformations can be applied to a circuit in any order. However, formal proofs of
the transformations are omitted in this thesis for simplicity. They can be found in
[XM89] and [X90]. For the ease of translating into binary decision diagrams (BDDs)
which are actually implemented in PTRANS, the transformations are explained using

the vector notation.

2.1. Terminology and Notations

In this thesis, we will consider only cycle-free multi-level circuits consisting of
AND, OR, NAND, NOR and NOT gates. Let n be the number of primary inputs, m be
the number of primary outputs, and g be the number of gates in a multi-level circuit.
Let X = {xl, Xoy wens xn} be the set of input variables and Z = {zl; Zyy weur zm} be the

set of output variables of the circuit. In addition, let V = {vl,v2, - vg] be the set of

gates in the circuit, and C = {cij} be the set of connections where cij connects the

output of gate v; to an input of gate vj.

A circuit can be viewed as a graph consisting of gates arranged in levels. The level
of a gate in a circuit can be defined either from tﬁe primary inputs or the primary
outputs. Formally, the level of a gate with respect to the primary inputs is defined as :

1) 0 if the gate is a primary input, or

2) 1 + the maximum level among its immediate predecessors.

The level of a gate with respect to the primary outputs is similarly defined as :

1) 0 if the gate is a primary output, or

2) 1 + the maximum level among its immediate successors.

The levelizing procedure for a circuit can be found in [PBP89]. An example of a

circuit whereby the gates are arranged according to their levels is shown in Figure 2.1.

i

L

R
.

Levels

Figure 2.1. An example of a levelized circuit.

A gate v; is an immediate predecessor of Y; if there exists a connection i
Conversely, vj is an immediate successor of Vi if cij exists. Let IP(vi) and IS (Vi) be the
set of all immediate predecessors and immediate successors of the gate v, respectively.
When there is a sequence of gates Viepr Vi o Vi such that Vi bal € IS(vkb) forall b
=1, 2, ... t-1, then v, is a successor of v ;. Similarly defined, v, ; is a predecessor of
Vi Let P(vi) and S(vi) denote the set of pmdcces;ors and successors of the gate \

respectively. The gate \Z is said to have a reconvergent fanout (or is reconvergent) if

there exist two distinct gates Vier Vi € IS(vi) such that S(vkl) N S(sz) Q.

A function realized at a gate is the set of values output by the gate in a circuit for
all combinations of the input variables. This is also very frequently referred to as the
function at the gate for short. The function at a gaie 2 f(vi), can be expressed as a
vector of Boolean values. For example, if n = 3 and v is an AND gate with X1 X9 and
X3 as its input, where Xy = (01010101), x2'= (0011'0011), and Xg = (00001111), then
f(v;) = (00000001). Also, if G is a Boolean vector, iet G be the dth value in G. I
does not matter if the first value is the leftmost or rightmost bit of a vector as long as
this remains consistent. The value of d can range frorz 1 to 2™ inclusive. This is a more
conveniént way of representing the truth table. In the Transduction Method, connections
are often treated as gates. Hence, the function at a ga:e is also extended to cover that of

a connection, which is defined by f(cij) = f(vi).

The function at a gate v; can sometimes be expressed not only in terms of the
input variables but also as the function at some otter gate Vi in the circuit. This is

denoted by f(vi I vk) and is called the function at A with respect to Vi In this case, the

10

gate vy is treated just as it is an input variable ignoring the functions at its input

connections.

Very frequently, the function at a gate can be changed without affecting the
function at the primary outputs. A permissible function at a gate is a function which
the output of a gate can be for this purpose. For exar-ple, in Figure 2.2, forn =3, x; =
(01010101), x, = (00110011), X3 = (00001111), f(v4) = (11101110) and z; = f(v,) =
(10111011). However, if f(vl) is changed to (01101110), zy is still unchanged. Hence,

(01101110) is a permissible function of vy

The vector (01100110) is another permissible function of vy To represent these
two permissible functions collectively, a don’t-care value **' is used. This is used to
mean either a ’0’ or ’1’ value. Hence, (0110*%110) represents both (01101110) and
(01100110). A collection of permissible functions is known as a set of permissible
functions (SPF), of which two special forms are the maximum set of permissible
functions and compatible set of permissible functions. These are explained in greater

details in Sections 2.2 and 2.3.

Figure 2.2. An example of a pernﬁgsible function.

11

2.2. Maximum Set of Permissible Functions

As -the name suggests, the maximqm set of permissible functions (MSPF) of a
gate in a circuit is the set that contains all possible permissible functions of the gate.
[MK89] shows how the MSPFs for gates and connections in a multi-level circuit
containing only NOR gates are calculated. [X90] extends this to OR, AND, NAND and

NOT gates.

In [X90], the methods of calculating MSPF’s are described using the on-set/off-set
notation since it uses the sum-of-products (SOP) form to represent Boolean and
permissible functions. However, PTRANS uses tinary decision diagrams (BDDs)
[B86]. As it is convenient to translate bit vectors intc BDDs, the methods of calculating
MSPFs and CSPFs are shown in this thesis using tne vector notation instead. This is
similar to that used in [MF89]. Section 4.2 shows how the vector notation can be

translated into BDD representation.

Before formally describing the methods of computing MSPFs, an example is given
here. From Figure 2.2, we have X = (01010101), f(vl) = (11101110), and f(v2) =
(10111011). Since the output z) = f(vz) must remain constant, MSPF(VZ) = f(v2) =
(10111011). Let the first bits of the vectors to be the leftmost bits. Considering these

bits, Xy = 0 and f(v2) = 1. Since \3 is a NAND-gate, and Xq is 0, f(vz) is always 1

regardless of the value of f(vl). Hence, the first bit of the MSPF of vy is *. Similarly,

the rest of MSPF bits of v, can be computed, ind this vector is found to be

(*1*0*1*0).

12

The ways of computing the MSPFs of gates ard of connections are different. To
show how the MSPF of a connection cij is computed, consider a portion of a circuit

which contains cij as shown in Figure 2.3.

Suppose the functions at all of the connections cxj for 1 £ x <k and at vj are
known. Let the MSPF of vj be MSPF(vj) and suppese that it is known too. If vj is a
NOR gate, the dth bit of the vector MSPF(c), MSPF(d)(cij), is then given by :

msPFD(c,) = F@ o p MsPF D) E2.1)

'f(cxj)’ U being

where the operator #NOR is defined in Table 2.1 and F = U <x<k x#i

the normal Boolean OR operator. Similarly, for the cases in which vj_is an OR, AND,
or NAND gate, MSPF(d)(cij) is given by equations E2.2, E2.3 and E2.4 respectively.
The vector G in E2.3 and E2.4 is Ni< x<k.x ¢if(cxj)’ where N is the Boolean AND

operator and the operators #OR’ # AND and #N AND ¢ given in Tables 2.2, 2.3 and

2.4 respectively. The -’ sign in these tables means that those situations will never be

encountered.
MsPF(d)(cij) = F(@ #oR mspr{ d)(vj) (E2.2)
mspPF(d)(cl.j) =@y, Msprl d)(vj) (E2.3)
MSPF{ d)(cij) = ¢@ #anp MSPFC)y) " (E2.4)

A simple gate

Figure 2.3. Calculating the MSPF of a connection.

{ . .

13

A special case arisels when vj is a NOT gate. MSPF(d)(cij) is then computed
simply by E2.5 where ~ is the COMPLEMENT opertor.

msPF(Pyc,) = ~mspF(vy E2.5)

The evaluation of the MSPF of a gate is sligﬁtly more complicated. Consider a
gate v; as shown in Figure 2.4 and having Cq» S - Cik connected to its output
terminal.

If the gate v, is not a reconvergent gate, its MSPF is given by E2.6 where *N1 =

1n* = 1 and *n0 = 0N* = 0 in addition to the normal properties of M on the domain

{0,1}.
Table 2.1 Table 2.2
(d) (d)
#NOR MSPF #OR MSPE
0fj1]|* 0j1]*
ol1fol*] alolo]1
ﬂ## FO | 1.4 -1 *
“Table 2.3 Table 2.4
(d) ’ d
#NAND |_MSPE #AND mspp(@
' 0| 1] * 0|1
@ [(0]-f*1* (@ |0 *1-
G 1 110 * G 11011
Tables 2.1 through 2.4.
Definitions of #NOR’ #OR’ #N AND’ and # AND"

A simple gate
C.
il
V)

Cik
Figure 2.4. Calculating the MSPF of a gate.

14

MSPF(d)(vl.) =, SxSkMSPF(d)(cix) (E2.6)

However, if v, is reconvergent, it is then treated as an input variable and all the

primary outputs are evaluated with respect to \'ri . Using Shannon’s Expansion, the

function at every output zj can then be expressed as :

12;1%) = fo)rP; O AL
where Pj and Qj are some functions expressed in terms of the primary inputs only.
MSPF(d)j(vi), which is the MSPF of] due to zj, can then be computed using the
following algorithm :

1t £v)D = 1 and Q(d)j = 0 then MSPF(d)j(vi) =1

else if £(v)D = 0 and Q(d)j = 1 then MSPF(d)j(vi) =1

else if £(v)® = 1 and P(d)j = 0 then MSPF(d)j(vi) =0

else if £(v,) = 0 and P(d)j =1 then MSPF(d)j{vi) =0

else MSPF(d)j(vi) =%,

The final value for MSPFD(v,) is then the intersection of MSPF(d)j(vi) for 1< j

<m.

To explain the correctness of this algorithm, suppose f(d)(vi) =1 and Q(d)j = 0.
Hence, f(d)(zj vy) = p(d)j, which could be either 1 or 0. Therefore, MSPF(d)j(vi) must

be 1 so as to allow P(d)j to propagate to f(d)(zj I vi), This argument is similar for the

other three cases.

Knowing how the MSPF of a connection and gate can be calculated, the MSPFs of

all the gates and connections can then be calculated by first setting the MSPF of each

15

primary output to be the same as the function at the output gate and then compute the

rest of the MSPFs from the outputs towards the primary inputs.

2.3. Compatible Set of Permissible Functions

As the MSPF of a gate contains the largest set of permissible functions associated
with it, this set also contains the largest observability don’t-care set [SB90] for the gate.
The observability don’t-care set of a gate is the set of input values with which the
gate’s output is not observable through the primary oatputs. However, as seen from the
previous section, the computation of MSPF could be time-consuming, especially when
a circuit has many reconvergent gates. In addition, the MSPFs of all the gates and
connections in a circuit have to be recomputed each time the circuit is transformed and
reduced. Therefore, to reduce the amount of processing time required, compatible sets

of permissible functions (CSPF) for gates and connections are more frequently used.

A compatible set of permissible functions. is a subset of the MSPF and is
computed based on some ordering of the connections in a circuit. Although the don’t-
care set associated with a CSPF is often smaller than that with the MSPF, the quality of
the resulting circuit minimized based on CSPF usually does not suffer too badly and the
processing time required is dramatically reduced.

CSPFs are computed similar to MSPFs. Referring to Figure 2.3 again, the CSPF
for the connection S is given by :

csPF@(c,) = @ o CsPH vy (E2.7)

cspr(d)(cij) =P @Dy, . csPF D % (E2.8)

: 16

d),. _ ro(d) d)

cSPE((e;) =6 tynp CSPF (v) (E2.9)
d), _ ro(d) d)

cspF()(cij) = ¢@ 4y np CSPF P (E2.10)

depending on whether vj is a NOR, OR, AND or NAND gate respectively. F’ and G’
are slightly different from F and G in equations E2.1 through E2.4 and are given in
equations E2.11 and E2.12.

F =, fle,) (E2.11)

G = nx<i,x¢if(cxj) (E2.12)

As can be seen, F’ and G’ depend on how tke connections are ordered. For a

connection ordered with a smaller ’i’ value, the size of its don’t-care set associated with
its CSPF is smaller. [MK89] uses some heuristics to order the' connections in a circuit
and they are listed here.

1) Connections that are connected to input variables are given smaller i’
values. This is because such connectiors are often difficult to remove. In
addition, the removal of the other types of connections may cause some
gates in the circuit to be removed also aﬁd result in a better overall gain.

2) Connections connected to gates with larger fanouts are given smaller '1’
values than connections connected to gates with smaller fanouts. This

increases the chance of removing a gate when all of its output connections

are removed.

The computation of the CSPF of a gate is performed exactly as the case of
computing the MSPF of a non-reconvergent gate. Fornally,

csPF @) =

1exaiCSPF e , | (E2.13)

17

The CSPF of an output gate is the same as its output function. Again, similar to

MSPFs, CSPFs are computed from the primary outputs towards to the primary inputs.
|

The use of E2.13 to compute the CSPFs of every gate is one of the major time-
saving factor in using CSPF rather than MSPF as a circuit r;eeds not be evaluated again
to obtain the output functions with respect to a reconvergent gate. In addition, as CSPFs
are based on a partial ordering of the connections, they need not be recomputed again

each time the circuit is transformed.

After calculating the CSPFs or MSPFs of the gates and connections in a circuit,
transformations can be applied to reduce their number. Such procedures are explained

in the following sections.

2.4. Pruning

The pruning procedure removes redundant connections in a circuit. Pruning can
either be based on MSPF or CSPF. In order to detec: redundant circuits, the MSPFs or
CSPFs of all the connections have to be computed. The rules of deciding whether a
connection is redundant is as follows :

) If the gate v; is a NOR or OR gate and SPF(d)(cij) =Qor*forall 1 <d <

2", cij is redundant.

2) Ifv;is an AND or NAND gate and sprd)(cij) ~lor*forall1<d<2"

¢;; is redundant.

i
3) If Vj is a NOT gate and SPF(d)(cij) =*forall 1 <d <2t Cij is redundant.

18

To see why this is true, consider a connection cij connected to an AND gate as
shown in Figure 2.5. If SPF(d)(cij) =lor*foralll <d< 2“, then cij is actually not
needed to turn off the output of vj for all combinations of the input variables and still

maintains the primary outputs of the circuit. Hence, cij is redundant and can be

removed. This similarly explains the cases for the other gate types of vj.

The procedure for performing pruning based an MSPFs is given in Procedure

24.1.

Procedure 2.4.1 - Pruning based on MSPFs.
1) Calculate the output function at every gate.
2) Levelize the circuit with respect to the primary outputs.
3) For every level of gates starting from the one nearest to the primary
outputs,
For every gate within a level,
3.1) Compute the MSPF of the gate.
3.2) Compute the MSPF of each of the gate’s input
connections.

3.3) If a connection is redundant, remove it and possibly the

C.:
1 . -
D

Figure 2.5. An example of a connection cij to an AND gate.

19

gates attached to it. Repeat from step 1 until no further

improvement can be made.

If CSPFs are used instead of MSPFs in the pruning procedure, Step 3.3 in
Procedure 2.4.1 can be modified so that it does not répeat from Step 1. This is given in

Procedure 2.4.2.

Procedure 2.4.2 - Pruning based on CSPFs.
1) Calculate the output function at every gate.
2) Levelize the circuit with respect to the primary outputs.
3) For every level of gates starting from “he one nearest from the primary
outputs,
For every gate within a level
3.1) Compute the CSPF of the gate
3.2) Compute the CSPF of each of the gates input
connections.
3.3) If a connection is redundant, remove it.
4) Repeat from Step 1 until no further improvement can be

made.

However, the circuit obtained from Procedure 2.4.2 may not always be free of
redundant connections. This is because a CSPF does not contain the full don’t-care set
associated with a connection or a gate. To obtain an irredundant circuit, Procedure

2.4.1 can always be performed after Procedure 2.4.2. This is faster than using Procedure

20

2.4.1 alone to obtain an irredundant circuit [X90].

2.5. Gate Substitution

In gate substitution, a gate in a circuit is selectzd and the other existing gates are
each checked to determine if the latter can replace the former without changing the

functions at the primary outputs. This is illustrated in Figure 2.6.

To determine if a gate vj can replace another gate A either the MSPF or CSPF of
v; can be used. However, CSPF is used in our implementation of the Transduction
Method (PTRANS) as the use of MSPF is too .time-consuming. In fact, CSPF is used
for all of the other transformations described later. The condition for vj to be able to

replace v; is f(d)(vj) € CSPF(d)(vi) for all 1 € d < 2™, The correctness of this condition

follows straight from the definition of the CSPF of v If f(vj) is an element of

Gate
substitution]

AR

Figure 2.6. An example of gate substitution.

21

CSPF(vi), the functions at the output connections of v; can be changed to the function
at vj without changing the primary outputs. Hence, each of them can be connected to

the output of Y; instead of v;, and v, can be removed from the circuit.

The procedure for performing gate substitution is given in Procedure 2.5.1.

Procedure 2.5.1 - Gate Substitution.

1) Calculate the CSPFs of all the gates and connections.

2) For every gate Vi

For every other gate vj which is not a successor of Vi

if f(d)(vj) € CSPF(d)(vi) forall1£d < 2n, replace each output
connection of \ with the output from vj and remove vj (with
the possibility of some other gates in the circuit) from the
circuit.

3) Repeat from Step 2 until no further substitution can be performed.

4) Repeat from Step 1 until no further subst'tution can be performed.

In Procedure 2.5.1, Vj must not be a successor of v This is to prevent a loop from

being formed during the substitution.

2.6. Gate Merging

The gate merging procedure is slightly more complicated than gate substitution as
described earlier. The basic idea of this procedure is 1o select two gates and determines

if a third gate can be synthesized with inputs connec:ing to existing gates in the circuit

22

1

other than the two above-mentioned gates so that thic third gate can replace them. This

results in the saving of a gate and is shown in Figure 2.7.

To perform gate merging, the connectable condition for gates is used. A gate \ is
said to be connectable to another gate vj if the following conditions apply :

1) If Y; is a NOR gate and there does not exist a value for d between 1 and 2"
such CSPF(d)(vj) =1and {9 = 1.

2) If vj is a OR gate and there does not exist a value for d between 1 and 2"
such CSPF((v;) = 0 and Dy = 1.

3) If vj is a AND gate and there does not exist a value for d between 1 and
2" such CSPF (v = 1 and D = .

4) If vj is a NOR gate and there does not exist a value for d between 1 and 2"

such CSPF(d)(vj) =0 and f(d)(vi) =0.

Gate

————
merging new v

Figure 2.7. An example of gatz merging.

23

The case of vj being an inverter is not listed in any of the conditions as it can be

treated as a single-input NAND or NOR gate. In addition to the connectable condition,

the intersection operator, N, on the three-value domaif. of {0,1,*} is used and is defined

in Table 2.5. This operator is symmetric.

The gate merging procedure is given in Procedure 2.6.1. Again, CSPF is used.

Procedure 2.6.1 - Gate merging.

D

2)

3)

4)

5)

Calculate the CSPFs of all the gates.

Pick two gates vy and vy such that their CSPFs are intersectable, i.e. the
>-’ sign in Table 3.1 does not arise.

Synthesize another gate V3 with CSPF equals to CSPF(vl) N CSPF(VZ).
Let \& be a NOR gate.

Search the circuit to obtain the‘set of gates which are connectable to Vs
These gates cannot be successors of vy and A If the set of gates obtained
is empty, try 2 being either an OR, AND or NAND gate. If the set is still
empty, repeat from Step 2 to try some other pairs of gates.

Find the minimal set of connectable gates by going through Steps 5.1 to

5.2.

(=D
[(=2 (=]
'
¥ O] ¥

[=]
—

Table 2.5. Definition of the operator N.

24

5.1) For each gate v in the set, remove it and test if the resulting
f(v3) is still a member of CSPF(v3).
5.2) Ifitis, remove Vi from thc»tset.
6) Connect the connectable gates to v3.'. Let \Z takes over the output
connections of vq and Vo Delete vy and \Z3 and possibly some other gates
from the circuit.

7) Repeat from step 1 until no further improvements can be made.

Although Step 7 in Procedure 2.6.1 can repeat. from Step 2 instead of Step 1 as
CSPF is used, it is found that only very few pairs of gates can be merged in each
iteration of Steps 1 through 6. Hence, it generally sa\'és much more time to repeat from
Step 1 after a merge than to continue searching in a highly unsuccessfully search-space

by starting at Step 2.

2.7. Generalized Gate Substitution

As its name suggests, generalized gate substitution is a more general form of gate
substitution. In gate substitﬁtion, a gate is checked to see if all of its output connections
can be replaced by the output of another gate in the circuit. In generalized gate
substitution, each of the gate’s output connection is checked if it can be replaced by the
output of some other gate instead. Hence, a gate may be substituted by more than one
gate. An illustration of this procedure is shown in Figure 2.8 in which C3g4 and C35 Can
be (supposedly) replaced by N and ¢ 45 respectively. The crossed-out connections and

the gate v4 can then be removed from the circuit, resulting in one less gate for the

25

circuit.
Due to the similarity between generalized gate substitution and gate substitution,

the procedure for this transformation is obtained by modifying Procedure 2.5.1 slightly.

Procedure 2.7.1 - Generalized Gate Substitution.
1) Calculate the CSPFs of all the gates and:é:onnections.
2) For every gate 2
For every connection .,
For every other gate vj which. is not a successor of Vis

” t(d)(vj)' e CSPF(d)(Ci'k) forall 1 < d <2 replace Cotc

Generalized gate
substitution

Figure 2.8. An example of generalized gate substitution.
|

26

with a new connection c:ik if there isn’t any connection cjk
originally. Remove cﬂé with some other gates in the
circuit if any.

3) If all of the output connections of v; are aot substituted, undo Step 2.

4) Repeat from Step 2 until no further improvement can be performed.

5) Repeat from Step 1 until no further improvement can be performed.

In this procedure, a gate cannot be partially substituted as this does not result in a

better circuit size. Step 3 prevents this from occurring:

2.8. Gate Input Reduction

Finally, the fourth transformation available in SYLON-XTRANS is gate input
reduction. In this transformation, a new gate vj is synthesized to replace a target gate v;
such that the number of inputs of vj is less than that of Vi After a successful gate input

reduction transformation, the total number of connections in the circuit is reduced.

To perform this transformation, a more stringent form of the connectable
condition, namely, the effectively connectable condiﬁon is needed. A gate vj is said to
be effectively connectable to v; if one of the following four conditions is true.

1) If v; is NOR gate, there must be somz value of d between 1 and 2"

inclusive such that CSPF®(v;) = 0 and t(d)(vj) =1.

2) If v; is OR gate, there must be some value of d between 1 and N

inclusive such that CSPF(d)(vi) =1 and f(d)(vj) =1

3) If A is AND gate, there must be some value of d between 1 and 2"

27

inclusive such that CSPE®(v)) = 0 and #Dvy) =0.
4) If vi is NAND gate, there must be some value of d between 1 and 2"

inclusive such that CSPF(d)(vi) =1and f(d)(vj) =0.

With the effectively connectable condition, the procedure for gate input reduction

is as follows :

Procedure 2.8.1 - Gate Input Reduction.
1) Calculate the CSPFs of all the gates in tke circuit.
2) For each gate Vi
2.1) Synthesize a new OR gate v which has the same CSPF and
function as 2
2.2) Search for the set of gates in the circuit which are effectively
connectable to v. These gates must not be successors of Vi
2.3) Minimize the number of gates in the set obtained from Step
2.2 by the following :
2.3.1) For each gate Vi in the set, remove it and test if
the resulting f(v) is still a member of CSPF(v).
2.3.2) Ifitis, remove Vi from the set.
2.4) If the size of the set is less than the number of inputs of Vi
add a new connection fron. each of the gates in the reduced
set to the input of v and use it to replace v;- Otherwise, try

synthesizing v as a NOR, AND or NAND gate instead of

28

NOR.
3) Repeat from Step 2 until there is no further improvement.

4) Repeat from Step 1 until there is no further improvement.

Very frequently, it is found that th(; law of diminishing returns. applies to
Procedures 2.7.1 and 2.8.1. The number of reductior}s to the circuit that can be made
decreases rather rapidly after these proccdlires are applied for a constant number (once
or twice) of times. Hence, the two procedures are combined into one single procedure
which is then applied once or twice to a circuit. This combined procedure goes through
the circuit and for each gate, it tries to perform ge';ieralizcd gate substitution on that
gate. If this is unsuccessful, gate input reduction is.then applied (if applicable) to it.
The procedures given from Sections 2.4 through 2.8 form the basic tools for the

optimization of a multi-level circuit in SYLON-XTRANS.

29
CHAPTER 3. -

PARALLEL IMPLEMENTATION OF SYLON-XTRANS

3.1. General Overview

In the parallelization of SYLON-XTRANS, many problems have to be dealt with.
This section describes the problems and their solutions that have led to the present
implementation of PTRANS on an Encore 510 Mulumax, which is an eight-processor

shared-memory multiprocessor.

The first problem concemns the size of the input circuit. After several experiments,
the synchronization overheads incurred in PTRANS viere found to grow slower than the
actual time spent in minimizing the circuit. Hence. the input circuit has to be large
enough so that the overheads can be sufficiently masked for achieving good speedups
and high efficiencies. However, it is impossible for FTRANS to minimize any arbitrary

large circuits as this is bounded by the computer’s memory limitation.

To solve this problem, binary decision diagrams (BDDs) are used to represent
functions and permissible functions instead of the more traditional SOP form as used in
SYLON-XTRANS. BDDs are generally more compact than the SOP representation
[B86]. In éddition to using BDDs, the file system is also used as a temporary storage.
Although the Encore Multimax computer has virtual memory, the amount of swap-
space available on our system is limited. Hence, PTRANS has to manage the

temporary disk storage explicitly. It selectively stores and retrieves BDDs generated

aE AR - - A Il - e

30

during program execution to and from the disk.

Unfortunately, some 6f the circuits (ég. the ISCAS benchmarks) are still too big to
be minimized as a whole. Such circuits are parﬁﬁoned into smaller circuits before
minimization and can be merged afterwards. The paritions can either be minimized in
parallel consecutively, or in parallel simultaneously. PTRANS performs the necessary
intra- and inter-partition load balancing automatically. These modes of parallelism are

illustrated in Figure 3.1.

In this chapter, the details of the implementation of PTRANS is given. In Section
3.2, the methods of manipulating BDDs to handle psrmissible functions are described.
Section 3.3 briefly summarizes the partitioning algorithm used to partition large
circuits. In Section 3.4, the program model is given followed by descriptions of how
the functions and permissible functions of gates in a circuit can be evaluated in parallel.
Finally, Sections 3.5 through 3.11 explains fhe paraliel implementation of the various

transformations.

3.2. Binary Decision Diagrams

The use of BDbs to represent Boolean functions was formally introduced in [A78]
and [B86]. As permissible functions contain a third don’t-care value (*) in addition to
the {0,1} binary values‘in ordinary Boolean functions, the original BDD structure has
to be modified to represent this additional value [MF89]. Furthermore, PTRANS uses

some additional BDD operators which are also described in this section.

31

ircui into 4 partitions
Circuit broken 1:1}0 p O Processor 1
Partition 3 -
” o’ s PR - - .
Rt O Processor 2
. \ Partition 2 :
Partition 4 %,

- O Processor 3

Mode 1 : Inter-partition parallelism

’

Part. 4
Part. 1 Part. 2 Part. 3

é Processor 1 é Processor 2 é) Processor 3

Mode 2 : Intra-partition parallelism

Processor 1 Processor 2 Processor 3

Figure 3.1. The three modes of parallelism in PTRANS.

The way in which the don’t-care value is represented in a BDD is as follows.
Suppose the bit vector (0*110*1*) is to be represented and it corresponds to the truth
table shown in Table 3.1. Its BDD equivalent is then given in Figure 3.2. As can be

seen, the only modification needed is to have another terminal node in the BDD that

32
represents the don’t-care value. i

As can be deduced from Figure 3.2, the size of a BDD is dependent on the
ordering of the variables, i.e. the levels at which the input variables appear in the BDD.
Some ordering heuristics have been presented m the literature [MWBV88] and
[FFK88]. PTRANS uses a heuristic ordering based (:)n the frequency with which each
primary input is connected to a gate. The justiﬁcation is that a primary input that is
connected to more gates probably affects more functions, and hence is given a higher

priority in the variable ordering. Thus, it is placed nearer to the roots of the BDDs.

x, [OJoJoJoJuJ1J1]1
23 [0foft]1]ojof1]1
xg [of1fo]1]o]rfof1
Vect. [O[*[1]1]o[*]1]*

Table 3.1. Truth table for the vectbr (0*110%1%),

Figure 3.2. The BDD for the truth tzble in Table 4.1.

' 33

In PTRANS, there are four new procedures for manipulating fhcse BDDs. They
are listed as follows :
1) Test if a function is a member of anothe;| function.
2) Test if a function intersects with another function.
3) Test for the connectability condition.

4) Test for the effectively connectablility condition.

These are given in Procedures 3.2.1, 3.2.2, 3.2.3 and 3.2.4 respectively. The
relevant fields in the data structure used for the BDDs are basically the same as those
described in [B86]. Procedures 3.2.3 and 3.2.4' for testing the connectable and
effectively connectable conditions follow straight from their definitions in Sections 2.6

and 2.8 respectively.

Procedure 3.2.1 (BDD1,BDD2) - Tests if BDD1 is a member of BDD2.

/* Input : BDD1 and BDD2.

Output : Returns 1 if BDD1 € BDD2, 0 otherwise. */

1) If BDD2.val = *, return(1). |

2) If BDD2.val # * and BDD1.val # BDD2.val, return(0).

3) Recursively call on the subtrees of BDD1 and BDD2 to check if the

subtrees of BDD1 is a member of their c(:rresponding subtrees of BDD2.

Procedure 3.2.1 is a straight forward implementation of checking if every bit in the
vector represented by BDDI1 is a subset of the :orresponding bit in the vector

represented by BDD2 by traversing both BDDs. When the subset condition fails for a

4

;N N - S e

34
pair of bit values in the two vectors, the procedure reiurns a 0 immediately.

Procedure 3.2.2 (BDD1,BDD?2) - Tests if two E}DDS intersect.

/* Input : BDD1 and BDD2.

Output : Returns 1 if BDD1 n BDD2 # &, 0 otherwise. */

1) If BDD1.val = BDD2.val # *, return(1).

2) If BDD1.val =1 and BDD2.val = 0 or vi>ce-vcrsa, return(0).

3) Recursively call on the subtrees of BDD1 and BDD2 to determine if they

intersect.

Similar to Procedure 3.2.1, Procedure 3.2.2 traverses both BDDs to ensure that the
corresponding bits in the vectors represented by BUD1 and BDD2 are intersectable.
This intersectable condition is violated only when a bit in the first vector is 1 and the
corresponding bit in the second vector is 0 or vice-versa. At this point, the procedure

stops and returns a 0.

Procedure 3.2.3 (f,SPF,Gate_type) - Tests connectability.

/* Tests if a gate with function f is connectaole to another gate v with CSPF
called SPF. Gate_type is the type of gate v is. It can be NOR, OR, AND or
NAND.

Input : a function f, a CSPF called SPF and a gate type.

Output : Returns 1 if the connectable condition is true and 0 otherwise. */

1) If SPF.val' = *, return(1).

2) If Gate_type = NOR

3)

4)

5)

35

if SPF.val = 1 and f.val = 1, return(0); else if SPF.val # *, return(l);
If Gatc_fype =0OR '

if SPF.val =0 and f.val = 1, rctum{()); else if SPF.val # *, return(1).
If Gate_type = AND

if SPF.val = 1 and f.val = 0, return(0); else if SPF.val # *, return(1).
If Gate_type = NAND

if SPF.val =0 and f.val =0, retum(O); else if SPF.val # *, return(1).

Recursively call on the subtrees of f and SPF to check for effectively

connectability. |

At each recursion of Procedure 3.2.3, if a pair of terminal values is reached, the

procedure checks if the connectable condition defined in Section 2.6 is violated

depending on the type of gate v is. Once a violation is detected, the recursion aborts

and the procedure returns a 0. Otherwise, the procedure recursively checks other pairs

of terminal values il'l the two BDDs, f and SPF.

Procedure 3.2.4 (f,SPF,Gate_type,flag) - Tests effectively connectability.

/* Tests if a gate with function f is effectively connectable to another gate v with

CSPF SPF. Gate_type is the type of gate v 1s It can be NOR, OR, AND or

NAND. ’flag’ is an external Boolean variable.

Input : a function f, a CSPF called SPF, a gate type, and an external variable flag.

Output : Returns 1 if the effectively connectable condition is true and 0 otherwise.

*/

%

1)

2)

3)

4)

5)

6)

7)

36

If SPF.val = *, return(1).
If Gate_type = NOR :
if SPF.val = 1 and f.val = 1, return{0); else if SPF.val = 0 and f.val =
1, set flag to be true. Otherwise, if SPF.val # *, return(1).
If Gate_type = OR g
if SPF.val = 0 and f.val = 1, return(0); else if SPF.val = 1 and f.val =
1, set flag to be true. Otherwise, if SPF.val # *, return(1).
If Gate_type = AND '
if SPF.val =1 and f.val = 0, retum(O); else if SPF.val =0 and f.val =
0, set flag to be true. Otherwise, if ;SPF.val # * return(l).
If Gate_type = NAND
if SPF.val = 0 and f.val = 0, return{0); else if SPF.val = 0 and f.val =
1, set flag to be true. Otherwise, if SPF.val # *, return(l).
Recursively call on the subtrees of f and SPF to check for effectively
connectability.
The effectively condition is only true if both the procedure returns 1 and

flag has been set to true.

Procedure 3.2.4 is very similar to Procedure 3.2.3 except that a Boolean flag is

used to record if f is effective with respect to the function SPF, i.e. if f has helped in

the setting of any bit of SPF to its value based on the type of gate v is. The remaining

conditional statements in the procedure checks for the connectable condition which is

already shown in Procedure 3.2.3. Thus, when the procedure returns both a 1 and the

- 37

flag has been set, both the effective and connectable conditions are satisfied.

33. Partitioning Algorithm

In this section, the partitioning algorithm used for breaking up large circuits is

briefly described. More details can be found in [DB91].

The partitioning algorithm comprises of seed-clustering and group-migration algo-
rithms. Each execution of the algorithm breaks a circuit into two partitions. The seed-
clustering algorithm starts by locating two seeds for two partitions chosen such that
they are maximally away from all boundary gates like primary inputs and primary out-

puts in the circuit. They are also as far away as possibie from each other.

After the two seeds are located, they are separated into two growing partitions.
The other gates not yet considered are placed on a free-list. Considering one partition at
a time, a gate is then picked from the list such that the gain obtained by putting it into

the partition is maximum. The cost function for calculating the gain will be described

later.

When the free-list becomes empty, Kernighan-Lia’s algorithm [KIL70] is then used
to swap pairs of gates between the partitions. The pairs of gates are selected such that

swapping them result in more gain in the overall qual:ities of the partitions.

The cost function used to measure the amount cf gain of a gate with respect to a
partition is an estimate of the size of the don’t-care set associated with the gate. This

can be found by choosing random vectors to simulate :he circuit the gate is in. From

38

the frequency of 0’s and 1’s appearing in each cornection, the don’t-care set can be

estimated. More details of this can be found in [DB91].

With this partitioning algorithm, large circuits can be partitioned and optimized in

parallel. The details of this parallel implementation is given in the following sections.

34. Program Model

As mentibned earlier, large circuits have to be partitioned before they can be

minimized. At the implementation level, no distinction is made between a partition of a
)

circuit and a whole circuit. PTRANS can be fed with as many partitions as possible

simultaneously under the constraint caused by the amount of memory available. There

is no relation between the number of input partitions and the number of processors

PTRANS uses.

PTRANS uses a multiple master-slave model. This is very similar to the normal
master-slave program model, whereby the master disributes computations to the slave
processes and is also in charge of synchronizing thern. The results of the computations
are then passed back to the master. The only differences between the model PTRANS
uses and the normal master-slave model are that multiple masters are present in
PTRANS, and each slave does not always belong tc: the same master. In PTRANS,
each master or slave is actually a process in the system. A processor is assumed to be
always allocated to a process by the operating system. The number of prbcesse's can

vary from one to the number of processors available on the system.

39
4

At any instant of time, only one master is associated with a partition. This master
is responsible for the whole minimization process of the partition. During the
minimization of its partition, the master will never,be used for the minimization of
other partitions. As for the slaves, they stay in a shaxjed slave pool. Whenever a master
reaches a point during its execution where it can distribute its load to other processes, it
will enter exclusively into the slave pool and try to get as many slaves as possible from
the pool. It then distributes the load to those slaves When these slaves have finished
their computations, they return to the slave pool awaiting for future masters. Whenever
a partition has been minimized, the corresponding master becomes a slave and it too

enters the slave pool.

In order to efficiently utilize the processors, each master cannot own slaves
throughout the whole minimization process of a pa{tition as this will deny .the other
masters of slaves. In PTRANS, there are several cntry and exit points. Entry points are
locations where slaves can join a master in the minimization of a partition. Similarly,
exit points are locations where slaves can leave a master and return to the slave pool.
After a slave has been sought for help by a mastér, it will enter at an entry point
determined by the master, perform the computations in parallel with the master and
other slaves, exit at the next exit point and return to tte slave pool. Between every pair
of entry and exit points is a well-defined piece of job_{' such as gate substitution etc. An
illustration of this master-slave relation is shown in Figure 3.3. Using this slave pool,
the load can be distributed to idle processors. This forms the basis of the load

balancing between the processors in PTRANS.

40

“: termination of task and returning of slave to pool
Process 1 Process2 Process3 Process 4
(master) (slave) (slave) (master)

T, L]
Time >< >i7|§:)z|

J 0 >< >< ' Job 3
E%\ Lo
Eb3 >< ><

v v R Y
Distribution of work to slaves

Figure 3.3. A sample timing diagram of two masters and two slaves.

Beside using the master-slave model, PTRANS also use a semi-distributed
memory model. Every process has some semi-private memory locations pre-allocated to
it. This is to avoid the contention in allocating memory for frequently used data
structures such as BDDs since allocating shared-memory is a sequential bottleneck.
This set of memory locations is classified as private memory because only the owning

process can allocate memory out of its set. However, it is semi-private as data

structures allocated from a set can be read and de-allocated by other processes.

With this basic model, PTRANS is able to minimize multiple partitioﬁs
simultaneously. Let p be the number of partitions and P be the number of processors.
Initially, there are min(p,P) masters. This number will reduce gradually. If P is greater

than p, there will be P-p initial slaves also. Each mas-er is allocated a list consisting of

41

p/P partitions. Since P does not generally divide P, some rhasters may have one
partition more than the other masters. These partittons can be minimized in parallel
without any dependency between them. Whenever a master has processed all of its
allocated partitions, it performs a scan of the other masters’ lists of partitions and looks
for the first uncomputed partition. It then removes this partition from the list and
minimizes it. If the master cannot find such a partition, it checks if it is the last master
among all of the P processes. If so, this master will send a termination message to each
of the other P-1 slaves and all of the P processes will then exit, thus terminating the
whole program. Otherwise, this master will chénge its status to a slave and enters the

slave pool.

In addition to this high level inter-partition pacallelism, PTRANS is also able to
apply the Transduction Methods on a partition in parallel. This are described in the

coming sections.

3.5. Discussion of Number of Partitions

An obvious way of extracting significant spezdup out of the logic synthesis
application is to generate a large number of partitions and synthesizing each partition
independently. The results of the individual pz}ﬁﬁons are then mc;rged back.
Unfortunately, such an approach has the problem that with increasing number of
partitions, the quality of the overall circuit degrades. This is because each synthesis
procedure of a partition only synthesizes within the partition by treating it as an

independent block. It does not take any global information into consideration during

42

minimization. A good partitioning algorithm that can guarantee minimum degradation

in the circuit quality is desirable. Examples of existing partitioning algorithm are

BEAT-NP [CHNS88], COROLLA [DBK90], and that of Banerjee [DB91].

In the interest of better quality, one should thererore choose a minimum number of
partitions. Then, one is forced to resort to intra-partition parallelism which is much
harder to exploit. One may not get good speedup within a partition. There is clearly a
tradeoff between result quality and runtime determined by an optimal number of
partitions. Such a theory needs to be developed but is outside the scope of this thesis.

!

3.6. Parallel Evaluation of Functions and CSPFs of Gates

To exploit intra-partition parallelism, the parallel evaluation of functions and
CSPFs of gates is discussed in this section. The evaluation of MSPFs is slightly

different from that of CSPFs and is deferred to the next section.

The parallel evaluation of the output functions of gates is similar to the parallel
methods of logic simulation [SB88] and circuit partit.on approaches to fault simulation
[PBP91]. From the definition of a level in a circuit n Section 2.1, it can be seen that
gates within the same level with respect to the primary inputs can have their functions
evaluated in parallel. Similarly, the CSPFs of gates \hz;wing the same level number with

respect to the primary outputs can be computed in arallel too. This is illustrated in

Figures 3.4(a) and (b).

43

[P SR

" sate A
) gate B
) gate C
Gates D and E are evaluated in Earallcl.
Figure 3.4(a). An example of paraHel evaluation.
!
"""""" : Synchronization
Process 1 (master) Prccess 2 (slave)
Action Input | Output Action Input | Output
Queue) Quewe } | gge_t_xg p_ugu_e_
I ARy ol
Evaluates A (B} Evaluates C
Finishes C]
Finishes A Generates E {E}
Obtains B
Evaluates B
Finishes B
Generates I:__ A _{I_-:,P_} il
Re-distributes | (E} i (D}
Output '
Quewes | ___ oo]
I
Time

Figure 3.4(b). A sample timing diagrara for Figure 3.4(a).
To traverse the circuit so that gates in the same level can have their functions
evaluated in parallel, every process (both master arg;i slaves) working on the circuit
needs an input and an output queue. Initially, the primary inputs of the circuit are

evenly distributed among the input queues of these processes. There is a counter

44

associated with each gate which is initialized to zero. Whenever a process takes a gate v
from its input queue and eValuates its function, it increments the counters in each of the
immediate successors of v. If the counter in a gate equals to the number of its input
connections (signifying th:at all its inputs have beern. processed and hence the output
function of the gate should be evaluated), this coun:ér is reset to zero and the gate is
enqueued into the output queue of the process. Afterla process has processed all of its
input queue, it examines the input queues of the -5thcr processes, picks the longest
queue, removes half of its contents, puts those into its own input queue and continues
processing the queue. When all of the input queues have been emptied, a level of gates
have been processed. The master of the circuit thén concatenates all of the output
queues into a single queue and distributes the gates in this queue evenly among the
inp}lt queues. After this, all processes involved in th’s circuit will continue processing

their input queues as described earlier.

Whenever the master finds that all of the output fqueues are empty after a level has
been processed, the functions at all of the gates in the circuit have been evaluated. The

slaves will then return to the slave pool.

The evaluation of CSPFs is similarly computed, 2xcept that the circuit is levelized

with respect to the primary outputs and traversed backwards.

For small circuits, the CSPFs can be stored in the main memory after they are
evaluated. However, for more complicated circuits, there is insufficient memory to hold

all of these permissible functions simultaneously. To avoid this problem, some of the

‘ 45

CSPFs are transferred to the disk. In order to mini;;nizc the number éf disk accesses
when evaluating such functions, the permissible function of a gate is not stored into the
disk immediately after it is evaluated. In fact, it will be held in the main memory until
the CSPFs of all of the input connections of the gate ‘have been computed. After this, it

is packed into a contiguous format and sent to the disk.

As for the functions of the gates, they generaly require much less memory for
storage than CSPFs. This is because the functions & the connections are the same as
that of the gate they are connected to, whereas their CSPFs are different from that of

the gate. Hence, such functions are not stored in the disk.

Another slight difference between the evaluaticn of functions and CSPFs is the
granularity in which these two are performed. For n_';)rmal functions, the evaluation of
the whole circuit is treated as a single task. Thus, the master will only enter the slave
pool at the beginning of this task to look for slaves. On the other hand, the evaluation
of CSPFs is more time-consuming as the BDDs needzd to represent these functions are
generally larger. Additional processing is also needed to pack these BDDs for disk
storage. Hence, the evaluation of permissible funct'ions is broken up into a smaller
grainsize. This grainsize is set at the levels of tie circuit. At this grainsize, the

evaluation of the gates at the same level is treated as = task and the master is allowed to

enter the slave pool to obtain slaves for each level of (€ circuit.

It should be noted that the above approach is one way of exploiting the parallelism

in the evaluation of functions and CSPFs. Another way would be to partition the input

[.

46

space on different processors and letting each processor to perform function and CSPF
evaluations on its input vectors. For example, with two processors, Processor 1 might
be processing the first d/2 bits of the vectors whilé‘ Processor 2 is in charge of the
remaining bits. Although this is conceptually sizjhple to parallelize in the SOP
representation, the difficulty comes when using BDDs. With the splitting of the input
space, multiple BDDs are needed to represent a single function. The amount of
sub&ee-shaﬁng in these BDDs will thus be smaller as compared to that in a single BDD
representing the same function if input space had not been splitted. This would

increase the amount of memory needed by the BDDs.

3.7. Parallel Pruning

The pruning procedure can be broken down int-ﬁ two parts. The first part consists
of identifying the redundant connections and the seccnd performs the actual removal of

the redundant connections.

Pruning based on CSPF is slightly different from pruning based on MSPF. This is
because the removal of a redundant connection does not invalidate the CSPFs of other
gates and connections whereas this is not true with MSPF. Therefore, for pruning based
on CSPF, the CSPFs of all the gates and connections can be first generated before
performing any redundancy removal. As the CSPFs are generated, the connection wires
are checked to see if the wires can be pruned. If so, Such connections are marked. The

generation and checking of the CSPFs can be performed in parallel as described in the

previous section. This is illustrated in Figure 3.5.

N ..

-

47

gate A

gate B

gate C

Connections ¢ Cp C3 ,and Cy are checked for redundancy simultaneously.
¢, and c, are g'ound to be redundant and are marked in parallel
but are removed sequentially

Figure 3.5. An example of parailel pruning.

After all of the connections have been checked for redundancy, the master process

then goes through the marked connections and remcve them sequentially. This is not

3t
K

performed in parallel as the time taken to adjust a few pointers during the removal of a
)

redundant connection is negligible as compared to the time needed to detect its

existence. In addition, the number of redundant connections is usually very small as

compared to the total number of connections in the circuit.

As for pruning based on MSPF, both the computation of MSPFs and the removal
of redundant connections have to combined into a single phase to avoid redundant
work. This is because after a connection is found to be redundant and pruned, the
MSPFs of all other connections and gates are invalicgated and have to be recomputed.
The grainsize of the computation of the MSPFs is set to the level of a circuit and is
similar to the case with CSPFs. Each process con;putes the MSPF of a gate or a

connection as described in Section 2.2 and checks for redundancy of a connection after

48

its MSPF is computed. If a connection is found to be redundant, it is recorded in a
shared variable readable by every process working, on the same circuit. During the
computation of the MSPFs, every process checks this variable periodically to determine
if a redundant connection has been detected. When this is set to true, the slaves will
then return to the slave pool whereas the master process will perform the removal of the
redundant connection. After this, it restarts the compu ation of the functions and MSPFs

of the circuit. This cycle is repeated until no further redundant connection can be found.

As with CSPF, there is insufficient memory to .tore the MSPF of every gate and
connection. However, MSPFs are not stored in the disk since they are not needed for
any other transformation. The MSPF of a gate or connection is deleted once it has been
used by all of the relevant immediate predecessor gates or input connections. In the
pruning procedure of PTRANS, pruning with CSPF is first executed before pruning
with MSPF. This combination yields an ii'redunda;.t circuit in a shorter time then

pruning with MSPF alone. S

3.8. Parallel .Gate Substitution

The main idea of gate substitution is to search ti:e given circuit for a pair of gates
such that one gate (the candidate gate) can replace l‘che other (the replaced gate). As
there are possibly many pairs of gates satisfying the gate substitution condition at a
time, the gates are ordered and searched so that the re';)laced/candidatc gate is as near to
the primary outputs/inputs as possible. This is to minimize the occurrence of a pair of

candidate and replaced gates such that the candidate éate is a successor of the replaced

49

gate. In this case, it is impossible to perform the sub}stitution since the resulting circuit

will not be loop-free. N

To search for such pairs of gates in parallel, the gates of the circuit are arranged in
two shared queues. The first queue, Q1, contains the gates traversed in a breadth-first-
search from the primary outputs to the primary inpurS. The second queue, Q2, contains

the same gates arranged in reversed order, i.e. from primary inputs to primary outputs.

This is illustrated in Figures 3.6(a) and (b).

*

To search for a pair of gates for subsﬁmﬁon, a process first exclusively dequeues a
gate v from Q1. It then scans the gates in Q2 from hefad to tail and stops when it finds a
gate which ca;n substitute for gate v. Next, the proécss records this pair of gates and
informs the other processes working on the same circuit to stop their search by setting a

shared flag that is peﬁodically monitored by them.

[y

When a process finds that the flag has been set, it will return to the slave pool if it
is a slave. Otherwise, if it is the master, it waits until all of its slave processes have
returned to the pool and then performs the substitution. It then goes into the slave pool
again to get more slaves and continues searchirg for other pairs of gates for

substitution.

In order to provide a better load balancing, a mester will also try to obtain slaves
from the slave pool during the search if it has not yet obtained P-1 slaves, where P is
the number of processors PTRANS is executing on. ‘To do this, each time the master

has exclusively dequeued a gate from Ql, it will emer the slave pool to look for idle

50

e - - -2

Q1 ‘
===->gateC ™ gate D gate E] gate F
Process 1 dequeues gate A
from Q1 and searches
for substitiite candidate
from Q2 -
@__ _ﬁ>
Process 2 dequeues gate B
from Q1 and searches "
for substitute candidate
from Q2

Figure 3.6(a). Searching for substitutes in parallel.

Process 1 (slave) Process 2 (master); Process 3 (slave)
Obtains A X Obtains B
from Q1 from Q1 Obtains C
and gets i from Q1
Process 3 hes £
Searches for as slave Searches for Searc': es tor
candidate candidate candidate
from Q2 from Q2 from Q2
X Finds
)(Halt)(Halit candidate
Retumsto | pocerooco |«] Returns
slave pool | glavestoretum | Master performs slave pool
Y] substitution v
' Time

Figure 3.6(b). A sample timing diagrara for Figure 3.6(a).

processors. These new slaves will then help in the search by entering the substitution

procedure and each exclusively dequeues a gate fror:ﬁ Q1. Every slave is blind to the

presence of other slaves.

When Q1 becomes empty, this marks the eid of an iteration in the gate

substitution procedure. All slaves will return to the sl<ve pool. If some substitution has

' 51

been performed before Q1 becomes empty, the macter will set the queues up for the
next iteration and initiate the re-evaluation of the functions and permissible functions of

the circuit . If not, it will proceed to the next transformation procedure.

3.9. Parallel Gate Merging

Gate merging can either use CSPFs or MSPFs. However, in PTRANS, CSPFs are

used since the computation of MSPFs is a time-consuming process.

Although CSPFs allow multiple pairs of gates 10 be merged before re-evaluating,
this approach is not used since the number of possit;le merges with each evaluation of
the CSPFs is very small (usually less than 3). Hence, instead of wasting processing time
to look for another pair of gates to be merged after a pair has been found, it is more
worthwhile to recompute the CSPFs of the gates an. connections and start the search

over again.

To look for a pair of gates to merge, gates nearest to the primary outputs are
examined first. This is because in gate merging, a thiid gate needs to be synthesized to
replace a pair of gates. However, the immediate pr:decessors of this gate cannot be
successors of the gates to be replaced so as to maix:mtain a loop-free circuit. As gates
nearest to the primary outputs have fewer successois, this ordering creates a higher

probability of being able to synthesize the third gate.

f‘
The data structure to iterate the search space ior gate merging involves only a

single shared queue which contains all of the gates in the circuit traversed in a breadth-

k 52

ﬁrSt-search starting from the primary outputs. This:‘ queue comes with a ’fetch-and-
advance’ operator. This operator is a variant of t'ﬁe fetch-and-add primitive and it
atomically returns a copy of a pointer pointing to a gate in the queue and advances the
pointer to the next node in the queue. This pointer criginally points to the head of the

queue.. The queue being operated on by this operator remains intact.

The main loop of the gate merging procedure requires every process to ’fetch-
and-advance’ for a gate from the single queue. Let v be the gate which is returned by
the fetch-and-advance operator. After obtaining v, a I:I:roccss then scans the same queue
from the its head to tail to look for a gate other thangav whose CSPF intersects with the
CSPF of v. This is illustrated in Figure 3.7(a) and {b). Let F be the intersection of
these two CSPFs. After this, it tries to synthesize a third gate, y, to substitute the pair of
gates. To synthesize y, the process again scans the ga'tes in the queue, picks those gates
that are connectable to v and adds them to the immediate predecessor set of y. After
this, it checks if the resulting function at y is a member of F. If so, this process then
minimizes the set of connectable gates obtained and informs all of the other processes
working on the same circuit to stop by means of sletting a shared flag that is being
constantly polled. The stopped slaves then return to ;the slave pool and the xﬁerging is
performed by the master after every slave has returned. Follqwing the merge, the master
re-initiates the gate merging procedure for the netwerk until no further merge can be

¥

found.

Gate merging usually takes much longer time as compared with the other

transformations. Thus, the grainsize of this procedure has to be small enough to ensure

+

1
bi">gateA > gate B gate C gateD [~~~
Process 1 tests to g / 5
merge gates AandE Process 2 tests to
merge gates D and F

T

gate E

Gates E and F are fetch-and-advanced by Processes 1 and 2

Figure 3.7(a). Parallel searching in gate merging.

Process 1 (slave) Proc

Obtains E

Searches fo
candidate
mergable
with E
from Q1
Finds
candidate

Returns to
slave pool

ess 2 (master) Process 3 (slave)
Obtains F i\'
and gets T~ Obtains G
Process 3
as slave Searches fcr Searches for
candidate candidate
mergable mergable
with F with G
from Q1 from Q1
Halt e ___Ijait_"___j(
Master waits for Retums to
slaves to return Master perferms slave pool
y merge \J
Time

Figure 3.7(b). A sample timing diagrar. for Figure 3.7(a).

53

a good load balance. If this is not so, the following scenario might occur. Suppose there

are 2 processes (on 2 processors) minimizing 2 partitions of a circuit simultaneously. At

time t = 10, Process 1 may be working on Partition 1, when Process 2 looks for a slave

for gate merging. Process 2 cannot find any slaves and has to work alone. At time t =

12, Process 1 becomes idle after having minimizing ts partition. As gate merging may

take a long time, Process 2 does not finish until t = 20. Hence, a processor is idle from t

54

= 12 to t = 20 and this is highly inefficient.

After several experiments, the following procedure to choose the grainsize was
adopted. The program is written such that every tirx:;e after the master has ’fetch-and-
advanced’ for a gate, it enters the slave pool to loog'. for more slaves unless it already
owns P-1 slaves. Each of these additional slaves th:n proceed straight to ’fetch-and-
advance’ for their gates. This is transparent to the other processes already working on

the partition. At this granularity, the processors are more efficiently utilized.

3.10. Parallel Generalized Gate Substitution/Gate [nput Reduction

Generalized gate substitution and gate input redaction generally do not reduce the
size of circuit as much as the previous transformat%ons in relation to the amount of
processing time they take. Therefore, these procedures are combined into a single
procedure and is applied to the circuit only a constant number of times while the former

transformations iterate until no further improvement.can be made to the circuit.

In the combined procedure, a gate is first examined to see if it can be generally-
substituted by other gates. If not, gate input reduction is then applied. In gate input
reduction, a new gate is synthesized for an existing ;ate such that this new gate has a
smaller number of inputs than the original gate. This new gate can either be a NOR,

OR, AND or NAND gate. NOT gates are equivalex;i to single-input NAND or NOR

gates.

55

To perform parallel generalized gate substitutio:f'_r;/gatc input reduction, two queues
are used. In the first queue, Q1, gates are arranged in a breadth-first-traversal order from
the primary inputs towards the primary outputs a§ usual. On the other hand, the
contents of the second queue is different. This queue contains four transformation
events for each gate in the circuit. In each event, there is a label field and a gate field.
These four label fields for a gate are marked AND, OR, NOR, NAND respectively. The

use of this field will be obvious later. The gate field contains a pointer to the

corresponding gate.

The second queue, Q2, is divided into two se:tions. In the first section, all the
events marked 'AND?’ are linked consecutively and the events for the gates nearer to the
primary outputs are placed nearer to head of the queue. In the second section, the other
remaining events are linked up such that the events for the same gate are grouped
consecutively and the sequencing of the group of events for each gate is same as the
sequencing of the gates in the first section. An examﬁi:é of this arrangement is shown in

Figure 3.8.

In an iteration of the transformation, each process exclusively dequeues an event
from the second queue. The master process will also ‘ook for more slaves in the pool at
this time unless it already owns P-1 slaves. Thc?sc new slaves will immediately
exclusively dequeues an event each. If the event is marked ’AND’, the ‘process first
tries to perform generalized gate substitution on the gate in the event. The candidate
gates for the substitution is obtained by scanning the gates in the first queue in the order

in which they are enqueued. If a successful substitution is found, the other processes

1
9“'>‘gatcA gate B gateC fF—-—-->
Q2 _|AND AND AND | _ A
Head gate A gate B gate C : Section 1
]
)
]
!
NAND| |NOR OR: | !
gate A gate A gate A
oR | |[Nor | |NanD Section 2
gaie B gate B gate B
< NAND NOR OR
Tail gate C gate C gate C v

Figure 3.8. An example of the queues in gerzralized gate substitution

and gate input reduction.

56

will be halted and the slaves will return to the slave pool. The master then performs the

transformation and gets more slaves which will continue to dequeue events from the

second queue.

On the other hand, if the substitution is not successful, the process tries to perform

gate input reduction on the gate in the dequeued evént. Similarly, all other processes

will be halted if a reduction is found to be successful. Again, the physical reduction is

done by the master, which first ensures that all of its slaves have returned to the pool.

During the reduction, the type of the gate to be syrthesized is the same as the label

field in the event. For example, if the event is marked *AND?’, the synthesized gate will

be an AND gate. After the transformation, slaves will be again employed to consume

57

the events in the second queue until it is empty.

For the other events which are marked NOR, OR, and NAND, the process in
charge of such an event only tries to perform ga‘;j'g: input reduction. Therefore, the
arrangement of the events by first having a section of ’AND’ events ensures that
generalized gate substitution is tqstcd before gate input reduction is considered for a

gate.

During the physical transformation of a circuit, some gates may be deleted and
some of the events become invalidatgd. Deleted ga;es at this stage are only marked
"deleted’. Whenever a process extracts an event with a deleted gate, it will ignore that
event and continues with the next one. The end of t%*le procedure is reached when the
event queue becomes empty. At this point, the master cleans the circuit up by freeing

those gates marked ’deleted’.

3.11. Ordering of Search-Spaces

The arrangement of the gates in the qugues described in the wvarious
transformations is performed so as to avoid huge differences in the search-spaces when
the program is executed on the same set of data with different number of processes. It
tries to force the processes to look at the gates in a specified order so that the resulting

qualities of the circuit will not differ significantly.

However, a process may sometimes be faster that others due to variances in

system load. This sometimes results in super-linear speedups and slightly different

W 58

circuit qualities as the sequence of gates being transformed varies from one execution

to another.

To avoid this problem, priorities can be assigned’ to order the gates in these queues
which impose a stricter ordering in the examination of the search-space. However, this
is not implemented in PTRANS as the ordering employed in PTRANS are after all
heuristics that do not guarantee optimum results. Herce, some degree of randomness in
iterating the search-space could even be beneficial when circuit quality is concerned
although this could give super-linear speedups. This is evident in the non-degrading

circuit qualities over different number processors «s will be presented in the next

chapter.

59

CHAPTER 4.

’
1

EXPERIMENTAL RESULTS

‘l

i

4.1. Overview of Experiments

In this chapter, the experimental results from PTRANS is presented. The initial
networks are obtained by using MIS 2.1 [BRSW87‘] to map the MCNC and ISCAS
benchmarks into simple gates. The ISCAS benchmarks are partitioned into smaller

circuits. These circuits and partitions are subjected to the following sequence of

transformations, the order of which can be changed with ease.

1) Pruning with CSPF.

2) Gate substitution.

3) Pruning with CSPF.

4) Pruning with MSPF.

5) Generalized gate substitution/gate input r;:duction.

6) Gate merging.

Very frequently, the initial networks produced by MIS 2.1 are found to have only
very few redundant connections. Consequently, pruring with MSPF is not used after
Step 1. However, after gate substitution is performed.-l it is usual to find more redundant
connections. Thus, pruning with botﬁ CSPF and MSFF are applied in Steps 3 and 4 to
remove all redundant connections. Gate merging is aoplied last as it takes the longest

time for execution and thus saves more time when applied to circuits after being

60

minimized by the other transformations.

[

4.2, Circuit Degradation with Number of Processors

In this section, the relation between the final circuit quality and the number of
processors used is investigated. The results are tabulated in Table 4.1 where g refers to

gate count and ¢ refers to number of connections.

When a circuit has to be broken down to mﬁltiple partitions, each partition is
minimized one after another. The qualities obtained by minimizing the partitions
simultaneously is identical to those obtained by consecutive minimization.

On the whole, the circuit qualities do not dcigradc with increasing number of

processors. In fact, some of them even show better circuit qualities. These slight

variances in qualities are due to the fact that when cifferent number of processors are

Circuit No. of Initial 1 processor | 2 processors | 4 processors | 8 processors
Partitions (g) | (gfo) (g/©) (g/c) (g/c)
fS1m 1 131/270 81/157 817157 81/157 81/157
S5xpl 1 1297279 79/153 79/153 78/151 75/147
9sym 1 205/470 173/360 173/362 180/379 187/394
bw 1 205/481 145/289 146/231 150/298 149/300
sao2 1 129/310 991213 99/2.3 109/231 111/235
vg2 1 158/391 73/163 73/1€2 73/162 73/162
rd73 1 135/325 115/243 115/243 115/241 110/235
duke2 1 485/1224 3521736 344/715 3437718 3527737
alupla 1 114/223 103/205 103/205 103/205 103/205
misex1 1 69/154 51/102 51/102 50/100 51/101
misex2 1 87/233 82/178 82/178 87/178 82/178
misex3c 1 493/1231 363/776 360/770 355/755 356/766
C432 2 198/411 166/345 166/345 166/345 166/345
C499 2 526/942 493/892 493/892 4937892 493/892
C880 4 342/688 313/362 313/352 313/362 313/362
C1355 4 492/1018 507/1022 507/1G22 507/1022 507/1022
C1908 4 599/1220 448/914 449/914 448/914 453/940

Table 4.1. Circuit quality versus the number of processors used.

—

61

used, different number of gates are tested for the possibility of transformation at the
same time. As the timings of multiple processes are indeterminate, this may result in
ol
&

i
different sequences of gates being transformed which affects the final quality of the

circuit.

4.3. Efficiency of Intra-Partition Load Balancing

After studying the effects of multiple processors on the circuit quality, this section
reports on the efficiency of the implementation of PTRANS for a single circuit or

partition, which is based on the speedups obtained and load balance of the processes.

The speedups in Table 4.2 is computed using the longest processing time taken
among the processes rather than user time as the disk used as a temporary storage is a

sequential bottleneck. This can be avoided by using multiple disks.

1 processor .
Circuit Time 1 processor | 2 processors | 4 processors | 8 processors
(sec)

f51m 217 1.0 1.8 3.2 34
5xpl 182 1.0 1.9 29 44
9sym 5408 1.0 2.8 4.1 8.3
bw 793 1.0 22 2.8 3.7
sao2 1556 1.0 1.9 3.6 35
vg2 1603 1.0 1.6 . 2.8 46
rd73 967 1.0 2.1 i 3.0 55
duke2 19650 1.0 2.5 ' 42 73
alupla 6560 1.0 1.9 36 6.5
misexl 115 1.0 1.8 3.2 4.8
misex2 264 1.0 1.7 3.1 37
misex3c 72834 1.0 2.5 3.7 49

Table 4.2. Speedups for circuits using intra-partition
parallelism on one partition.

62

Table 4.2 shows cases of super-linear speedups for some circuits like 9sym and
duke2 as the number of processors used varies. This is again due to the varying

4
H

sequence of gates being transformed.

On the other hand, PTRANS produces consistent final qualities for the circuit
alupla when minimized by 1, 2, 4 and 8 processors as shown in Table 4.1. It is very
likely that the sequences of gates being transformed ax.'e tﬁe same throughout these runs.
The speedups obtained for minimizing this circ_:uit; are graphed in Figure 4.1. The

deviation from the ideal linear speedup is small.

As the sequence of gates being transformed varies from one execution to another,
the speedups shown in Table 4.2 is not sufficient tc’!show the efficiency of PTRANS. ‘
Table 4.3 shows the actual load balance when 8 processes are used. The values are
obtained by measuring the processing time of each of the process in each run, and the
longest of which is scaled to 100 time uﬁits. The rest of the processing times are

expressed as a percentage of this time. As shown in "Table 4.3, the processes’ loads fall

Speedup
A

L7

2 4 6 8
Number of processc-s

Figure 4.1. Speedup obtained for minimizing the circuit alupla.

§

63

Proc. | Proc. | Proc. | Proc. | Proc. | Proc. | Proc. | Proc.
1's 2’s 3’s 4’s 5’s 6’s Ts 8's
load load load load load load load load
(%) (%) (%) (%) (%) (%) (%) (%)
fS1m 1000 | 93.7 | 71.7 84.1 65.1 65.1 60.3 60.3

Sxpl 1000 | 97.6 | 878 87.8 80.5 80.5 80.5 75.6
9sym 1000 | 91.2 | 886 | 873 84.) 86.7 81.0 80.6
bw 1000 | 59.0 | 71.0 | 82.0 | 63.1 475 | 475 50.2
sao2 100.0 | 91.8 824 824 8219 78.4 844 85.0
vg2 100.0 | 92.8 87.5 87.5 8338 83.2 | 829 85.8
rd73 1000 | 96.0 | 960 | 960 | 910 | 842 | 836 81.9
duke2 1000 | 99.9 | 9%4.1 88.3 83.5 87.1 843 86.5
alupla 100.0 { 90.7 | 93.7 87.1 875 84.0 87.1 82.2
misex1 100.0 | 91.7 87.7 83.3 83.3 750 | 66.7 62.5
misex2 | 100.0 | 68.1 65.3 65.3 722 | 59.7 59.7 62.5
misex3c | 100.0 | 96.5 | 946 | 956 | 95.. 940 | 94.1 94.5

Table 4.3. Load balance for circuits using intra-partition
parallelism on one partition on 3 processors.

Circuit

above 80% of the largest load in most cases, which izjhplies that the efficiency is greater

than 0.8 most of the time.

4.4. Efficiency of Inter-Partition Load Balancing 3

In Section 4.3, the efficiency of PTRANS in minimizing a single partition or
circuit is examined. As large circuits needs to be broken into multiple partitions before

it can be minimized, this section investigates the¢ efficiency of PTRANS when

minimizing these partitions simultaneously.

i

¢

By Amdahl’s Law, the efficiency of any rarallel programs decreases with
increasing number of processors. When multiple partitions are minimized
simultaneously, the average number of processors per partition is smaller than when a

single partition is minimized by the same number of processors. Hence, a higher

efficiency is expected.

H
[}
|
i

No. of 1 processor 1 3 4 8
chult partitions :'sl;nc‘; processor | processors | processors | processors
C432 2 4911 1.0 20 34 59
C499 2 5231 1.0 1.9 3.7 7.5
C880 4 1535 1.0 2.0 38 7.0
C1355 4 33517 1.0 29 39 74
C1908 4 6219 1.0 2.0 3.8 5.3

Table 4.4. Speedup for multiple partitions of circuits minimized simultaneously

with combination of inter- and intra-partition parallelism.

64

From Table 4.1, the final qualities of the ISCAS circuits except CI908 remains

consistent. Hence, it is also very probable that the scquences of transformations during

the minimization of these circuits are the same throughout the runs from 1 to 8

processors. The speedups obtained for such circuits are shown in Table 4.4. These

speedups are much nearer to linear than those shown in Table 4.2, suggesting the high

efficiencies achieved. This efficiency is also expressed in terms of the load balance

between the processes in Table 4.5.

In Table 4.5, again, the processing time of each process is expressed as a

percentage of the longest processing time in each rur. As can be seen, the load of each

Proc. | Proc. | Proc. | Proc. | Proc. | Proc. | Proc. | Proc.
__ 1's 2's 3's 4’s 5’s 6’s 7s 8's
Circuit load load load load load load load load
(%) (%) (%) (%) (%) (%) (%) (%)
C432 100.0 | 98.9 81.3 80.7 | 77.1 80.7 81.1 73.9
C499 100.0 | 99.0 | 94.3 99.0 | 984 96.1 98.8 96.4
C880 100.0 | 94.0 98.6 96.2 96.2 97.7 95.8 98.6
C1355 | 1000 | 924 | 976 | 953 922,) 95.8 942 | 91.2
C1908 | 1000 | 95.5 | 96.8 976 | 952 95.0 | 95.8 94.9

Table 4.5. Load balance for 8 processors running on multiple partitions of the

circuits simultaneously with combination of inter-
and intra-partition paralleiism.

65

process is greater than 90% of the most heavy load for every circuit except for C432.
Even for C432, the largest load imbalance is a mere 26%. This shows the effectiveness

of the dynamic load balancing strategy used.

Finally, a comparison is made to investigate the differences between using inter-
partition load balancing and not using it. To do this, every partition of each circuit is
minimized one after another using 8 processors. 'fhe longest processing time each
partition takes is recorded and is shown in Columns 3 through 6 of Table 4.6. Column
7 shows the lsum of these times for each partition. Hence, if the partitions of each
circuit are minimized in parallel c.onsccutively, the tc".al time needed for each circuit is
limited by the longest processing time for each partition of the circuit and this value is
reflected in Column 7. In Column 8, the longest processing times taken when all of the

partitions of a circuit are minimized concurrently are recorded.

From the table, it is important to note that there is a large disparity between the
times in Column 3 through 6 for a circuit. For example, this varies from 24 seconds to

3375 seconds for C1355.

” Col.1 { Col.2 | Col.3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8
No. of | Longest | Longest | Longest | Longest | Sum of | Minimi-
Circuit partit- | time for | time for | time for | time for | all pa- zed to-
ions Part. 1 Part. 2 Part. 3 Part. 4 | rtitions gether
(sec) (sec) (sec) (sec) {(sec) (sec)
C432 2 345 568 - - 913 827
C499 2 526 285 - - 811 701
C880 4 32 55 69 . 90 246 218
C1355 4 661 563 24 3375 4623 4537
C1908 4 1013 386 34 34 1467 1178

Table 4.6. Efficiency of using inter-paftition parallelism.

66

With inter-partition load balancing, there is a significant difference between the

L]
time needed to minimize the partitions simultaneously and consecutively. This shows
that the inter-partition load balancing further enhances the overall efficiency achieved

by intra-partition load balancing alone.

4.5. Comparison among MIS 2.1, SYLON-XTRANS, and PTRANS

In this section, comparisons are made among MIS 2.1 [BRSW87], SYLON-
XTRANS 1.1 [X90], and PTRANS (our implemertation) on the Encore Multimax
computer. PTRANS is executed on a single processor. The qualities of the final circuits
are measured in terms of the number of simple gates and connections (g/c). MIS 2.1 is
executed on both partitioned and non-partitioned circuits using the Boolean script. The
algebraic script is also used so as to demonstrate thq effectiveness of don’t-care based
minimization in the Boolean script. In this script,‘ the circuits are simplified using
don’t-cares and disjoint support filtering so that the ﬁ}lal qualities can be compared with
that of PTRANS as it is basically a don’t-care bas:d minimization program. In the
following comparison tables, a ’-’ sign means either the corresponding program runs
out of memory, could not finish within 30 hours, or unable to handle the number of

inputs in the circuit.

Between XTRANS and PTRANS, the circuits produced by PTRANS are usually
slightly bigger than those by XTRANS as shownt_ in Table 4.7. This is because
XTRANS 1.1 recognizes XOR and XNOR gates, which are presently not accepted by

PTRANS. The timings of XTRANS is also faster than PTRANS by a factor of about 2

67

Non-partitioned Partitioned
Circgit | Mtial f MIS21 [MIS2.1 [No.of ' MIS2.1 srrans | prrans
Algebr-
aic Boolean partitions Boolean
(g/c) (gfc) | _(gfc) . (g/c) (g/c) (g/c)
fSim | 1312270 || 107233 | 110/225 1 110/25 | 70/128 | 81/157
5xpl 129/279 || 103/224 | 92/185 1 ' 92/185 62/112 79/153
9sym | 205/470 || 163/376 | 175/408 1 175/408 | 162/346 | 174/363
bw 205/481 || 142312 | 123/250 1 123/250 | 1442262 | 1447288
sa02 129/310 || 1257270 | 1007211 1 1001211 | 99/195 99/213
vg2 158/391 || 71/147 | 66M141 1 66/141 82/158 73/162
rd73 135/325 || 96/213 | 67/134 1 67/134 79/156 | 110/236
duke2 | 48571224 || 285/627 | 282/627 1 282/627 | 327/654 | 348/730
alupla | 114223 [109230 | 1347265 1 © 1340265 | 97/192 | 103/205
misex1 | 69/154 || 4599 | 47/88 1 47/88 46/84 51/102
misex2 | 877233 [7571162 | 787159 1 78/159 94/181 82/178
misex3c | 493/1231 (| 3930907 | 3117730 1 311/730 | 326/680 | 352/757
c432 | 198/411 - - 2 169/380 - 166/342
C499 | 526/942 || 511911 | 521/925 2 522/946 - 493/892
C880 | 342/688 || 361/703 - 4 373/707 - 313/632
C1355 | 492/1018 || 515015 | 519/523 4 543/959 - 507/1022
C1908 | 599/1220 [528/983 - 4 554/1011 - 448/914

Table 4.7. Comparison of circuit qualities among MIS 2.1,
XTRANS 1.1, and PTRANS.

to 3. However, as PTRANS uses the disk as a temporary storage, time is needed to

pack and unpack the BDDs as they are transferred to and from the disk. This has been

found at times to amount to greater than 50% of the total time taken by PTRANS.

Hence, the actual time used by PTRANS in performing the Transduction procedures is

much smaller than those shown in Table 4.8. Notz however that this feature was

incorporated into PTRANS to handle very large circuits which cannot be handled by

XTRANS 1.1.

An interesting point to note is the difference in ﬁme PTRANS and XTRANS take

for the circuit alupla. PTRANS is about 20 times fasier than XTRANS. This could be

due to the difference between the BDD- and the SOP- representations used by the two.

Non-partitioned Partitioned
| MIS 2.1 MIS 2.1 No. of MI3 2.1 | XTRANS | PTRANS
.. Algebraic | Boolean Boolean (1 proce-
Circuit g. . partitions . Time Ss0r)
Time Time Time Time
(sec) (sec) (sec) (sec) (sec) (sec)
f51m 37 77 -1 7 103 217
sxpl || 35 59 1 59 86 182
9sym 139 150 1 120 215 5408
bw 56 265 1 265 331 793
sao2 41 40 1 490 371 1556
vg2 28 165 1 165 626 1603
rd73 50 33 1 33 562 967
duke2 159 7897 1 7897 9801 19650
alupla 26 361 1 261 111420 6560
misex1 10 9 1 ¢ 33 115
misex2 15 65 1 (] 176 264
misex3c 379 7776 1 7H16 24065 72834
C432 - - 2 1284 - 4911
C499 86 9842 2 1769 - 5231
C880 79 - 4 380 - 1535
C1355 86 9343 4 559 - 33517
C1908 2599 - 4 3451 - 6219

Table 4.8. Comparison of timings among MIS 2.1, XTRANS 1.1,
and PTRANS on the Encore Multimax with a single processor.

A limitation of XTRANS 1.1 is that it only manages circuits with 32 inputs or
less. Hence, it is unable to minimize any of the ISCAS circuits. However, XTRANS 2.0

is currently being developed and will avoid this limitation.

The circuits used to compare between XTRA 5 and PTRANS are also used for
MIS 2.1 and PTRANS. The MCNC circuits can be minimized without partitioning. The

qualities produced by both MIS 2.1 and PTRANS for these circuits are comparable and

MIS 2.1 is faster than PTRANS.

However, MIS 2.1 is unable to handle larger circuits such as C432. Such circuits
"
are partitioned and both programs are executed on these partitions. As Table 4.7 shows,

PTRANS produces better qualities than MIS 2.1 consistently. In fact, some of these

69

final circuits are even smaller than those produced b MIS 2.1 running on the original

circuits as a whole. ”

Although PTRANS is usually slower than MIS 2.1, the advantage with using
PTRANS is that it is parallelizable as can be seen from the results in the previous
sections. On the other hand, [Z91] has already sh~?wn that MIS is very difficult to
parallelize. Hence, when multiple processors are employed, PTRANS is able to both

execute faster and produces better quality circuits than MIS 2.1.

70

CHAPTER 5.
f:
CONCLUSIONS®

In this thesis, a parallel algorithm implementing the Transduction Method has been
proposed and implemented. In Chapter 1, an introduction to the problem of multi-level
logic synthesis is given. Chapter 2 shows the methods of computing the MSPFs and
CSPFs of simple gates. The basics of SYLON-XTRANS is also summarized. It
contains four main transformation procedures, name.y, pruning, gate substitution, gate
merging and generalized gate substitution/gate input reduction. More detailed

information on these procedures can be found in [X90].

The parallelization of XTRANS is described in Chapter 3. The major problem
PTRANS faces is the need for large input circuits to achieve high processor utilization.
This is limited by the amount of memory availiable ;)n our computer system. To solve
this, large circuits have to be partitioned into smaller components. PTRANS also needs
to manage the disk as a temporary storage. Wher. multiple partitions are present,
PTRANS is able to minimize them simultaneously, or con'secutively. The consecutive
minimization of partitions is also performed in parall‘el. These intra- and inter-partition
parallelisms are achieved through the multiple muster-slave program model used.
Furthermore, PTRANS also uses BDDs instead of tte SOP representation. BDDs are

generally more compact the the latter in representing F.oolean functions.

71

With both types of parallelism, the results prodr:ced by PTRANS are presented in
Chapter 4. Considering the efficiency of the imp:lementation of PTRANS, it has
achieved good speedups and high processor utilizz:tion, even when not using inter-
partition dynamic load balancing. Of course, when nter-partition parallelism is used,
the efficiency achieved is even higher. As compar:d with XTRANS, PTRANS has
comparable performance. However, when executing on a single processor, it is slower

than MIS 2.1 due to differences in algorithm complexities. On the other hand, PTRANS

is parallelizable and produces better quality circuits than MIS 2.1.

On the whole, the PTRANS implementation has been very successfully. Future
work includes porting it to the Chare Kernel Programming Language, which is also
developed at University of Illinois. This language is machine-independent, and will

allow PTRANS to execute on most of today’s paralle machines with little or no source

changes.

[A78]

[B84]

[B86]

[DBK90]

[BRSW87]

[C87]

[CHNS88]

[CM89]

[DBO91]

[FFK88]

72

REFERENCES

S.B. Akcrs, "Binary Decision Diagrams," IEEE TC, 1978, pp. 509-516.
R. K. Brayton, et al, "ESPRESSO-iI: A New Logic Minimizer for
Programmable Logic Arrays," CICC, Jane 1984, pp. 370-376.

R. Bryant, "Graph-Based Algoﬂthms for Boolean Functions
Manipulation," IEEE TC, Aug., 1986, pp. 677-691.

S. Dey, F. Berglez, and G. Kedem, "Zorolla Based Circuit Partitioning
and Resynthesis,” 27th DAC, 1990, pp. 607-612.

R. K. Brayton, R. Rudell, A. S. Vincentelli, and A. R. Wang, "MIS: A
Multiple-level Logic Optimization System,” ICCAD, Nov., 1987, pp.
1062-1081.

K. C. Chen, "Program PMIN for PLA Minimization," M.S. thesis, Dept.
of Computer Science, Univ. of Ill., U_rﬁana, 1987.

H. Cho, G. Hachtel, M. Nash, and L. Setiono, "BEAT-NP: A Tool for
Partitioning Boolean Networks," ICCAD, 1988, pp. 10-13.

K.C. Chen, and S. Muroga, "SYLON-DREAM : A Multi-level Network
Synthesizer," ICCAD, 1989, pp. 552-555.

K. De, and P. Banerjee, "Logic Partitioning and Resynthesis for
Testability," ITC, 1991.

M. Fujita, H. Fujisawa, and N. Kawat», "Evaluation .and Improvements

of Boolean Comparison Method Based on Binary Decision Diagrams,"

[G86]

[GBGHS6]

[GI79]

[HMJ88]

[KL70]

[LMO90]

[MF89]

[MK89]

73

ICCAD, Nov., 1988, pp. 2-5.

R. Galivanche, "A Parallel Logic Minimization Algorithm for PLA
Synthesis," M.S. thesis," Univ. of Iowz, 1986.

D. Gregory, K. Bartlett, A. de Geus, and G. Hachtel, "SOCRATES: A
System for Automatically Synthesizing and Optimizing Combinational
Logic," 23rd DAC, 1986, pp. 79-85.

M. R. Garey, and D. S. Johnson, "Computers and Intractability: A Guide
to the Theory of NP-Completeness," San Fransico, CA, W. H. Freeman
& Co., 1979. -

G. Hatchel, C. Morrison, aﬁd R. Jacoby, "EXPRESSO_MLT:
ESPRESSO for Multi-level Logic Minimization using Tautology
Checking," ICCAD Tutorial, 1988.

B. W. Kemighan, and S. Lin, "An Zfficient Heuristic Procedure for
Partitioning Graphs,” Bell System Technical Journal, vol. 49, 1970, pp.
291-307.

J. C. Limqueco, and S. Muroga, "SYLON-REDUCE : A MOS Network
Optimization Algorithm using Permissible Functions," ICCD, 1990.

Y. Matsunaga, and M. Fujita, "Multi-level Optimization using Binary
Decision Diagrams," ICCAD, 1989, pp 556-559.

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, "The
Transduction Method - Design of Logi? Networks Based on Permissible

Functions,"” IEEE TC, Oct., 1989, pp. 1404-1424.

[MWBVS88] S. Malik, A. R. Wang, R. K. Brayton, and A. S. Vincentelli, "Logic

[PBP89]

[PBPI1]

[SB38]

[SB90]

[XM89]

[X90]

[Z91]

74

Verification using Binary Decision Diagrams in a Logic Synthesis
Environment," ICCAD, Nov., 1988, pp. 6-9.

S. Patil, P. Banerjee, and C. D. Po'ychronopoulos, "Efficient Circuit
Partitioning Algorithms for Parallel Logic Simulation," 26th DAC, 1989,
pp. 361-370.

S. Patil, P. Banerjee, and J. H. Paiel, "Parallel Test Generation for
Sequential Circuits on General-Purpcse Multiprocessors,” 28th DAC,
1991. ,

L. Soule, and T. Blank, "Parallel Logic Simulation on General Purpose
Machines," 25th DAC, 88, pp. 166-171.

H. Savoj, and R. K. Brayton, "The Use of Observability and External
Don’t Cares for the Simplification of Multi-level Networks," 27th DAC,
1990, pp. 297-301.

X. Q. Xiang, and S. Muroga, "SYLON-XTRANS : A Multilevel Logic
Network Synthesizer," IWLS, NCMC, May 1989.

X. Q. Xiang, "Multi-Level Logic Network Synthesis System, SYLON-
XTRANS and Read-Only Memory Miﬂirnization Procedure, MINROM,"
Ph. D. thesis, Dept. of Computer Science, Univ. of 1ll., Urbana, 1990.

G. Zipfel, "Parallel Algorithm for Algebraic Factorization with
Application to Multi-Level Logic Synthesis,” M.S. thesis, Univ. of IIl.,

Urbana, 1991.

