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While conventional computers must b'e programmed in a logical fashion by

a person who thoroughly understands the task to be performed, the motivation

behind neural networks is to develop machines which can train themselves to

perform tasks, using available information about desired system behavior and

learning from experience.

Goals of the project conducted under the this contract were threefold:

1) to evaluate various neural net methods and generate computer software

to implement those deemed most promising on an IBM-compatible

personal computer equipped with MATLAB;

2) to evaluate methods described in the current professional literature

for system control using neural nets and to choose those most

applicable to control of flexible structures;

3) to apply the control strategies chosen in 2) to a computer simulation of

a test article, the Control Structures Interaction (CSI) Suitcase

Demonstrator, which is a portable system consisting of a small

flexible beam driven by a torque motor and mounted on springs tuned to

the first flexible mode of the beam.

The first two goals have been accomplished, and work on the third is

on-going. Results of each will be discussed below.

A standard neural net is composed of neurons such as that shown in Figure

1. The neuron forms a weighted sum of its inputs, which then has applied to

it an activation function F to produce the system output. That is, if Xj are the

neuron inputs and Wj are the corresponding weights

Z j X 1 w j ( 1 )
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and

OUT = F(NET). (2)
» *

The activation function can be a simple threshold, a linear function such as

OUT = k NET, (3)

or a nonlinear function, such as the logistic, or sigmoid, function

OUT = 1 / ( ! + e~NET ) = F(NET). (4)

These neurons are arranged in layers, as shown in Figure 2. A layer is

defined as a set of weights followed by associated computation. Since the

input layer serves only to distribute weights and performs no computation, it

is not counted as a layer; thus the neural net shown in Figure 2 is a two-layer

neural net. It is not necessary that activation functions for all layers be the

same, although it is usual for all neurons in a single layer to have the same

activation function. It is. necessary that neural nets have at least one

nonlinear layer, as it can be shown that a neural net with only linear

activation functions produces no computational benefit over a single linear

layer system. This type of neural net can perform only problems in which

patterns are linearly separable; a simple two-input exclusive-or function

violates this constraint, and as the number of system inputs increases, the

chance of a given function of n variables being linearly separable (by an

n-dimentional hyperplane) becomes vanishingly small. The goal of neural net

training algorithms is to systematically change the weights of the network

until an optimum value is reached. Optimality depends of the particular

problem being addressed and how the "goodness" function for the system is

chosen.

Using many references, the currently available methods for training neural

nets were examined and evaluated for ease of implementation, reliability,

computer requirements, and applicability to control systems. Some methods



were rejected because of the vast numbers of neurons required to work

practical problems (e.g., Bidirectional Associative Memories); some, for

example Boltzmann machines, because of the very large amount of computer

time required to train the nets; and some, like Hopfield nets, for the extreme

difficulty of implementation (in order to utilize a Hopfield net, a Lyapunov

function must be generated for system "goodness" and appropriate weight

adjustments based on that Lyapunov function must be determined—a

procedure requiring vast "mathematical expertise and ingenuity" [ 1 ]). While

there is currently no optimum method for neural nets, after careful

evaluation, back-propagation was chosen as the most practical choice for

implementation. Difficulties with back-propagation include possible

network paralysis if neurons saturate, the possibility of reaching a local

rather than a global error minimum, and long training times. However, the

method is very easy to implement algorithmically, and is used in the majority

of the controls applications appearing in the current literature. Methods have

been proposed to fix difficulties with back-propagation, but each has its own

associated problems (for example, Cauchy training eliminates the problem of

convergence to local minima, but.has a greater instance of network paralysis

than systems using back-propagation, and a training time one hundred times

that of the already lengthy back-propagation training). Thus back-propagation

was chosen as the neural net training method to be implemented.

The steps used in training a neural net using back-propagation are as

follows:

1) Select one training pair, consisting of an input vector and a target

output vector, from the pattern set. Apply the input portion to the

input of the neural net.

2) Calculate the network'output.



3) Calculate the error between the actual system output and the desired

value.

4) Adjust the weights so that error is decreased.

5) Repeat steps 1-4 for all available patterns until error for the entire

training set is acceptably low.

Steps 1 and 2 constitute a forward pass through the networK and describe

the operation of the trained neural net as well. Steps 3 and 4 are a reverse

pass, as error is propagated backward through the neural net beginning at the

output and working back to the input layer. [ I ] Weights are adjusted in the

following way. The weight change for the weight to neuron q in the kth layer

from neuron p in the previous (jth) layer is given by

AWpq,k = ^ dq,k OUTp,j (5)

where u is a training rate between 0 and 1 , and OUTpj is the output value

from neuron p in layer j, which serves as an input to neuron q in layer k. The

definition of d varies depending on whether the layer being considered is an

output layer or an interior (hidden) layer, and will be given presently. The

new value for the weight (at time step n+ I ) is then given by

These two equations are the same regardless of whether or not the layer is

hidden. The difference comes in the definition of d. If k is an output layer,

dq k, the d for neuron q in layer k, is given by

dq fk-(Targetq-OUTqjk)F(NETqfk) (7)

where Targetq is the desired output for neuron q, OUTq k is the actual output,

and



F(NETq,k) = d F(NET)

d NET

evaluated at

NET = NETq)k (9)

where NETq k is the NET value for neuron q. If j is a hidden layer, the d for

neuron p in that layer is given by

3PJ ' <VqJ< ̂  F(NEV ' (10)

where k is the layer subsequent to j. Thus all d's and weight changes are

calculated first for the output layer, then for the hidden layer connecting to

the output layer, and so forth until the reverse pass has been completed. It

can be shown that these weight changes are proportional to the partial

derivative of the system error function with respect to each weight. This

approximates a gradient descent on the error surface, and therefore assures

that the system, if not saturated, will eventually settle on weights that

correspond to an error minimum. [5]

Using MATLAB, software was generated implementing a bacK-propagation

trained neural net on.an IBM compatible personal computer. For a given

problem, number of layers and number of neurons must be "empirically

determined," [2] so neural nets of several sizes and configurations were

compared. Some authors have hypothesized that fewer neurons may be used

for a given problem if those neurons are arranged in more layers [1]. In the

initial trials conducted (using randomly chosen test data), no network was

found which failed to converge eventually, so no evidence was obtained to

support or disprove this hypothesis. However, empirical evidence does

suggest that given that both will eventually converge to a solution, a neural

net with fewer layers will converge more quickly; i.e., with fewer passes



through the training set (epochs). The error measure used in all simulations

was Total Sum Square Error, given by the equation

Ip 2! (Target i j p-Actual i )p)2 ( 1 1 )

where Targetj p is the desired output of neuron i in the output layer for

training pattern p, and Actualj p is the actual output. This is summed over all

the output neurons (i) and all training pattern in a single epoch (p). Figure 3,

showing the error measure versus number of training epochs for a two-layer

neural net (with one nonlinear hidden layer and a linear output layer) and a

three-layer net (with two nonlinear hidden layers and a linear output layer),

showing faster convergence for the two-layer network, is typical of the

results generated.

In the second phase of the project, recent publications in the professional

literature regarding applications of neural nets to control problems were

examined and compared. Methods currently available can be divided into

roughly three categories:

a) methods in which the neural net generates a controller for an unknown

system without human intervention [2].

b) methods in which a neural net is trained to emulate a currently

existing controller, whether human or computerized (such as [3]);

c) methods in which nets generate some state or function which is then

used in a standard controller design (for example, [4] in which the

neural net is used to generate estimates of unknown nonlinear system

parameters., which are then used in a standard adaptive controller);

Methods of each of the three types were tested under the current contract.

Of the three types, the first is by far the most sophisticated, as it assumes



no mathematical knowledge of the system to be controlled, and does not.

require a human to be abje to control the system or to generate a controller

which successfully does so. This would mean that nonlinear systems which

could be modeled poorly, if at all, theoretically could still be successfully

controlled by a trained neural net.

The first method to be discussed is that of [2], which theoretically

generates a controller without human guidance. First, a neural net must be

trained to emulate the system to be controlled, which may be poorly modeled

and may contain noniinearities. After the emulator has been trained and

weights fixed, it is used to back-propagate error to the emulator input, to

give an estimate of controller error. These estimates are then be used to

train the controller. This method as reported in [2] requires that all system

states be directly measurable at the output. As this is not the case with

most realistic systems, this method may fail to converge to an acceptible

solution for many practical problems.

The trained emulator is used to train the controller as follows:

1) A time trajectory for system behavior is generated, with the untrained

controller generating essentially random inputs to the emulator.

2) The final emulator output is compared to the desired output.

3) The error is propagated back through the emulator to generate an

equivalent controller error, which is used to train the controller. That

is, the emulator generates at its input a du which is used in training

the controller rather than (udesjre(j - uactuaj), which is not available.

This proportionate input error generation is the reason that the

emulator is necessary to the process.

4) The process is continued, propagating back through each time step of

the trajectory until the controller has been trained for.all time steps

8 •



(i.e., a back-propagation through time).

5) Steps I -4 are repeated for many trajectories.

The neural net chosen for use had one hidden nonlinear layer containing

175 neurons and a linear output layer of 10 neurons (to scale the outputs).

The activation function used for the nonlinear layer is the hyperbolic tangent

function , chosen because its odd symmetry about zero allows both excitatory

and inhibitory outputs from a single neuron. One problem in implementing the

method was difficulty in obtaining accurate training data for the CSI .

Demonstrator; this was done using a MATLAB simulation of the system

developed by John Sharkee of Marshall Space Flight Center.

Another difficulty encountered was ill-conditioning of the data. Although

it was mentioned nowhere in the literature, it was discovered that if inputs

to the neural net vary by several orders of magnitude, as is the case of the

Demonstrator, the nonlinear neuron layer soon saturates, so that training of

that layer comes to a virtual standstill. This causes the nonlinear layer to

send the same input to the linear layer regardless of the system input,

causing the linear weights to grow without bound as they try to adjust to give

varying outputs a constant input. This causes the error measure to grow

without bound. This problem was solved by scaling the trajectories of very

large system states to bring them down to the order of magnitude of the

others and prevent layer saturation.

After emulator training was completed, most of the simulation on this

method was done by Chris Tharpe, the research assistant funded by the

project. When it was considered that the emulator was adequately, although

imperfectly, trained, a multiple time stage controller was developed.

Although several training methods were attempted, the error back-propagated

-though a few timesteps consistently rendered error values too small to affect



weights significantly; the net consequently failed to train to an adequate

controller. To overcome this difficulty, a single time stage version of the

method was utilized, in which the controller net was penalized, not if the

control failed to drive the state to zero (which could not realistically be

expected in a single time step of .01 seconds), but if the control generated by

the neural net caused the error between actual and desired state values to

increase rather than decrease. This net is currently training, but is, after

many epochs of training, still highly unstable, as is shown in Figure 4

The next method chosen was to train a neural net to emulate a currently

existing controller for the C5I Demonstrator, in order to compare the

properties of the standard, with a neural net generated, controller. The

controller chosen for the neural net to emulate was the anticipatory fuzzy

logic controller designed under the NASA Summer Faculty Fellowship program

in 1991. This controller was chosen because of its superior performance

under all tested operating conditions, including random perturbations of state

matrices and addition of measurement noise. A brief description of the

anticipatory fuzzy logic controller is given below; further details may be

found in [6].

Fuzzy systems operate by testing variables with IF-THEN rules, which

produce appropriate responses. Each rule is then weighted by a "Degree of

Fulfillment" of the rule invoked; this is a number between 0 and 1, and may be

thought of as a probability that a given number is considered to be included in

a particular set. A wide variety of shapes is possible for fulfillment

functions, triangles and trapezoids being the most popular.!?] Fulfillment

functions for this study were of the form

fu2zy(x,m,s,p)=exp(-(lx-ml/s)p) • (12)

10 -



where m,s,and p are user-chosen parameters and x is the value to be tested.

This function was chosen because of its flexibility; by changing "m," "s," and

"p" whole families of different functions can be obtained. The system

operates by testing rules of the type

"If error is big and velocity Is small, then u should be negative and big."

The degree of fulfillment for such a rule is the minimum of the degrees of

fulfillment of the antecedent clauses; i.e.,

DOF = min.[DOFerror b|g, DOFveloc1ty sma],l (13)

The total output of the control system is a weighted sum of the responses to

all "n" rules

u = (i = 12nw i (DOF i)B i
d)/( j=,2nw i (DOF|)) (14)

where DOFj is the degree of fulfilment of rule "1," Bj01 is the "defuzzified"

output response to rule "1," and Wj is a weight indicating the relative

importance of rule "i."[8]

The rules for the initial (standard fuzzy) system were of two types

Set A: If LOS error is positive-big, then u is negative-big.

(7 rules, one for each category of LOS error)

Set B: If LOS error is near-zero and velocity is positive-big,

then u is negative-big.

(7 rules, one for each category of angular velocity)

The rules in set A approximate a proportional control scheme; set B

approximates derivative control, but is only effective when LOS error is



small. This strategy is to drive the system to the desired output as quickly

as possible, and only apply damping when the system response Is close to the

desired value. This system was demonstrated in [6] to perform adequately

under a variety of conditions, including system mis-modeling and addition of

measurement noise.

A new control strategy, called anticipatory fuzzy control, was developed

under this program. This differs from traditional fuzzy control in that once

fuzzy rules have been used to generate a control (as in equation (14)), a

predictive routine built into the controller is called to anticipate the effect

of the proposed control on the system output. If using the current control

value will result in system behavior which is in some way unacceptable,

additional rules are called. This method may be used to nest as many sets of

rules as the designer desires. Advantages of this approach compared to

standard fuzzy controllers are

1. Nesting rules allows use of only as many rules as are necessary to

achieve desired system performance, resulting in savings in computer

run time.

2. By predicting system performance, controls which would result in

unstable or unacceptable system performance can be eliminated.

Standard predictive fuzzy control, which uses only predictive rules, requires

more calls to the predictive routine than this scheme, and fails to take

advantage of all system knowledge.[9] The simplest type of anticipatory

system control has a single additional rule of the form

"If the current value of the control (uc) will cause the difference

between the current and anticipated values of velocity to be 'big,'

then u = uc(1 -J3«bigt)," . (15)



where 0 is a user-chosen parameter between 0 and 1, and "bigt" is the

fulfillment function for, the anticipated difference in velocity values (which

is proportional to the predicted acceleration of the system.) A B value of.7

was chosen for its smooth response and small settling time. Higher values of

J3 result in smoother responses with slightly more overshoot; lower values

resemble the nonanticipatory response. In every case, the anticipatory fuzzy

system.results in smoother system response than the traditional fuzzy

control. When plant parameters were perturbed (representing a mis-modeled

system), the system exhibited a larger overshoot, but still settled to 0 within

3 seconds. In contrast, a standard linear quadratic regulator had considerably

less overshoot, but failed to drive the system to 0 within 5 seconds. The

anticipatory fuzzy system tolerated added state noise much better than the

LQR, in which the noise caused a wide excursion from the desired LOS error

value of 0.

A typical plot of the control generated by the fuzzy system and that

generated by the neural net emulator is shown in Figure 5.a. The neural net

used was expanded to a hidden layer of 175 neurons after a smaller net failed

to train. The training level shown in the figure represents hundreds of epochs,

each consisting of 500 time steps, and each beginning with randomly chosen

initial conditions. Although the two responses are similar, their effect on

the sytem is different, as may be seen in Figure 5.b. It can be seen that while

the fuzzy system controls the CSI demonstrator adequately, for this

particular initial condition the neural net exhibits even better behavior.

However, for some initial conditions, the neural net controller exhibited very

poor response; the difficulty here is the impossibility of including in the

training set every possible situation the controller will encounter. In order

to counter this difficulty, a fixed training set was not used for this neural

13 -



net; instead, for each epoch of 5 seconds, a random initial condition (within

the constraints of. possibility for the physical system) was chosen, a fuzzy

control was generated for the system for each timestep, and this data was

used to train the net. Thus, the net trained on thousands of situations, but

never saw the same training data twice. This improved the response of the

neural net over one trained on a fixed set, but it was still not possible to look

at every possibility. More work needs to be done on this method to

investigate robustness to noise and state model perturbations.

The method which seems to show the most promise is that in wnich a

neural net emulator is imbedded in the fuzzy logic controller. The final

method considered required training a neural net as an observer for the

system, which was assumed to be imperfectly modeled. The observer output

was used in the design of an existing type of controller. While this method is

more assured of successful convergence than the first, it is a somewhat less

powerful technique, as a form for the system model must be assumed and the

form of the controller determined by a designer, rather than allowing the

neural net to both identify the system and optimize the controller.

The neural net emulator in this case was used in the implementation of an

anticipatory fuzzy logic controller. A flaw in the previous method of

generating anticipatory fuzzy logic control was that a mathematical

simulation of the system to be controlled was required to perform the

prediction necessary to the controller; this eliminated one of the primary

benefits of fuzzy logic control: that a complete mathematical description of

the system to be controlled is not required. This fiaw was removed when the

mathematical simulation was replaced by a neural net which had been trained

to predict the behaviour of the system. Even when the neural net emulator

was imperfectly trained, the flexibility of the fuzzy logic method allowed the



system to not only produce a control which adequately drove the LOS error of

the C5I Suitcase demonstrator to zero quickly, but also demonstrated good

noise rejection and robustness properties. This is illustrated by Figure 6.a,

which shows the response of the fuzzy-neural system, Figure 6.b, which

shows the response of the fuzzy-neural system with noise added to the

measurements, and Figure 6.c, which shows the response of the system when

randomly chosen parameters in the state matrices were altered by + or - 50%.

When a well trained neural net was used in the controller, response was

essentially indistinguishable from that of the original anticipatory fuzzy

system, with perfect prediction. Additional training was performed to test

the capability of the neural net to retrain on-line in recognition of perturbed

state parameters.

An additional benefit of the fuzzy-neural hybrid is the ability of the neural

net to retrain on-line if its predictions cease to match actual system

behavior. Figure 6.c. showed the response of the fuzzy-neural system to large

system perturbations. Figure 7.a. shows the best response of the fuzzy system

with no weight changes, etc. (i.e., the fuzzy system is as before, but contains

a perfect mathematical model of the perturbed system for prediction). Note

that the two responses have essentially the same form, but the perfect

system has a shorter settling time. Figure 7.b. shows the response of the

neuro-fuzzy system after the neural net has been allowed to retrain on-line

(i.e., to adapt to the perturbed state matrices). Note that this is essentially

identical to the perfect predictor system response. Of course, after it

becomes clear that the system is not as originally perceived, rule weights,

etc.;may be adjusted (empirically, or using computer directed search

techniques) to achieve better performance; for example, Figure 8 shows the

response of the adapted neuro-fuzzy system with p-.5 and spread factors for



the fuzzy functions doubled.

The oniy problems encountered in performance of the work described above

have all been concerned with hardware and software difficulties, which have

greatly reduced the amount of computer time which could be devoted to the

lengthy training necessary for neural nets. It is recommended that if neural

methods are to be applied in any practical situations, a dedicated computer be

employed for the training of the nets, and that a version of MATLAB later than

the 3.5.j version used in this work be obtained (the version purchased has a

flaw which randomly causes the program to be terminated prematurely—this

is a very serious deficiency in applications such as this (where long

continuous run times are required), and the makers of MATLAB are working to

correct it).

The conclusion of this study is that, while control by neural nets alone

(i.e., allowing the net to design a controller with no human intervention) has

yielded less than optimal results, the neural net trained to emulate the

existing fuzzy logic controller does produce acceptible system responses for

the initial conditions examined. In addition, a neural net was found to be very

successful in performing the emulation step necessary for the anticipatory

fuzzy controller for the CSI Suitcase Demonstrator. The fuzzy-neural hybrid,

which exhibits good robustness and noise rejection properties, shows promise

as a controller for practical flexible systems, and should be further

evaluated.
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