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ABSTRACT

The present study investigates compressibility effects on turbulence by direct numerical

simulation of homogeneous shear flow. A primary observation is that the growth of the

turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks pro-

vided by compressible dissipation and the pressure-dilatation, along with reduced Reynolds

shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are

proposed for these dilatational terms and verified by direct comparison with the simulations.

The differences between the incompressible and compressible fields are brought out by the

examination of spectra, statistical moments, and structure of the rate of strain tensor.

*Researchwas supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605while the authors werein residence at the Institute for Computer Applications in Science
and Engineering(ICASE), NASA LangleyResearch Center, Hampton, VA23665.
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1 Introduction

Homogeneous turbulent flow has long been viewed as a simple model of turbulence which

is sufficiently realistic to have fundamental physical features that persist in more complex

flows. For example, hairpin vortices which have been observed in boundary layer experiments

and simulations of channel flow, have been identified through direct numerical simulation

(DNS) of homogeneous shear flow by Rogers and Moin (1987). Similarly, the longitudinal

streaks observed in wall boundary layers have been shown by the simulations of Lee, Kim

and Moin (1990) to exist in homogeneous shear flow when the shear rate is high enough

to be comparable to those encountered near the wall in boundary layers. Rogallo (1981),
who was the first to perform DNS of this flow, showed by direct comparison with physical

experiments that the simulated flow statistics were in good agreement with experimental

data.

In the past several years, there has been a strong activity in the area of compressible

turbulent simulations. The first fundamental study of compressible isotropic turbulence

was conducted by Passot and Pouquet (1987) who demonstrated the presence of shocks

in the flow. Their results motivated the study by Erlebacher et al. (1990) to classify the

different possible regimes in isotropic turbulence attainable from arbitrary initial conditions.

They quantified the conditions for the presence or absence of shocks. Other results on

decaying isotropic turbulence can be found in Sarkar et al. (1989), Lee, Lele and Moin

(1990), and Zang, Dahlburg, and Dahlburg (1992). Results on forced isotropic turbulence

are also available (Kida and Orszag 1990). Simulations have now moved on to the next

level of complexity, namely, homogeneous turbulence subjected to a linear mean velocity

field. For example, Coleman and Mansour (1991) have considered turbulence subjected to

homogeneous compression.

Homogeneous shear turbulence has a production term which continuously feeds energy

into the system, which then cascades down to the smaller scales. This flow exhibits some of

the properties of incompressible turbulent shear flows, with the added presence of acoustic

waves, density fluctuations, and dilatational velocity fields. Direct numerical simulations of

such flows can provide complete statistics not available from physical experiments. Com-

pressibility effects on the flow can be obtained from the simulations, and perhaps more

importantly, mechanisms responsible for these effects can be identified, and turbulence mod-

els for compressibility-related phenomena can be devised. The compressible problem was

considered by Feiereisen et al. (1982) who performed relatively low resolution 64a simula-

tions and concluded that compressibility effects are small. Recently Blaisdell, Mansour and

Reynolds (1990) have also considered compressible shear flow, and identified eddy shocklets



in the flow for high enough turbulence Reynolds and Mach number.

Research on the small-scale properties of homogeneous turbulence is primarily focussed

on understanding the intermittency of high dissipation regions. It has been numerically

established that the rate of strain tensor has a preferred shape in regions of strong dissipation

(Ashurst et al. 1987b). Furthermore, the vorticity tends to align with the intermediate

eigenvalue (whose most probable sign is positive). While this alignment property of the

vorticity is a consequence of a simplification of the Euler equations (Vieillefosse 1984), the

shape of the tensor is still unexplained. Alignment of other vectors have been considered by

Ashurst et al. (1987a).

In this paper, we use databases from the DNS of homogeneous compressible turbulence to

clarify the sources of reduced growth of kinetic energy with increased levels of compressibility.

This is then used to propose a new decomposition of pressure into incompressible and com-

pressible components. In turn, this leads to an improved model for the pressure-dilatation

term. Finally, we analyze the rate of strain tensor after decomposition into solenoidal and

irrotational components. Differences between the two tensors are brought out through the

use of one-dimensional probability functions.

2 Governing Equations

The compressible Navier-Stokes equations are written in a frame of reference moving with

the mean flow _1. This transformation, which was introduced by Rogallo (1981) for in-

compressible homogeneous shear, removes the explicit dependence on _1(x2) in the exact

equations for the fluctuating velocity, thus allowing periodic boundary conditions in the x2

* and the lab frame x_ isdirection. The relation between the moving frame xl

X 1 -- Xl -- S]_X 2 , X2 "-- 372 _ X3 _-- X 3

Here S denotes the constant shear rate fil,2. In the transformed frame x*, the compressible

Navier-Stokes equations take the form

asp+ - =0 (1)

I I _--- TI .Ot(puJ)+ (puju_),j -p,_+ ,_,_- Spu2%_

+ St(pu2'ui'),_ + Stp,_6i2 - Str'i_,_ (2)

Otp -t-uj'p,j . _/pu}j = Stu2'p,1 Jr 7Stpu_, 1 -t-

+ 2StT,,+StT I] (a)
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p = pRT (4)

where • = rijOui/Oxj is the dissipation function, vii the viscous stress, ui _ the fluctuating

velocity, p the instantaneous density, p the pressure, T the temperature, R the gas constant.

The molecular viscosity _, and thermal conductivity a are taken to be constant. In terms

like u_5 in the above system, the comma denotes a derivative with respect to the transformed

coordinates x*.
A Fourier collocation method is used for the spatial discretization of the governing equa-

tions. A third order; low storage Runge-Kutta scheme is used for advancing the solution in

time. The nonlinear terms are dealiased by discarding modes lying in the highest third of

the wave number range resolved by the grid. This procedure fully dealiases the quadratic

and not the cubic non'linearities in the Navier-Stokes equations.

3 Statistical Moments and Spectra

We have performed simulations for a variety of initial conditions and obtained turbulent

fields with Taylor microscale Reynolds numbers Re_ up to 45 and turbulent Mach numbers

/_t , while M, = q/-_M_upto0.7. Note that Re_=q)_/uwhereq= _and_=q wi,

where E is the mean speed of sound. All the simulations have been performed with 7 = 1.4,

and Prandtl number Pr = 0.7. The computational domain is a cube with side 2r. The

results discussed here were obtained with a uniform 1283 mesh overlaying the computational

domain.

In the case of homogeneous shear flow, the mean velocity fii varies linearly in space and

remains invariant in time. The mean density _ is uniform initially and does not evolve in

time. However, due to the mean viscous dissipation, the mean pressure _ and temperature

T increase in time.

3.1 Effect of Compressibility on Kinetic Energy

Figs. 2-5 show results from two selected cases which have identical initial data for the velocity

and thermodynamic variables. The initial data is incompressible, that is, the density is

constant and the divergence V.u = 0. The initial pressure is calculated from the Poisson

equation appropriate for incompressible flows, and the temperature is obtained from the

ideal gas equation of state. The variable parameters for the problem are the shear rate S,

viscosity _u, and the speed of sound _. The two cases have identical values for S and/_, but

different values for the speed of sound _ leading to different initial Mach numbers M_,0. Table

1 lists the initial parameters for these cases. The simulation of Case 1 ran up to St = 18



when Mt = 0.46 and Rex = 43, while Case 2 was continued up to St = 21 when M_ = 0.67

and Rex = 41.

The Favre-averaged kinetic energy K is defined by K = p_"i"ui_r/2-_.Note that the overbar

over a variable denotes a conventional Reynolds average, while the overtilde denotes a Favre

average. A single superscript ! represents fluctuations with respect to the Reynolds average,

while a double superscript _ signifies fluctuations with respect to the Favre average. The

evolution of the kinetic energy K as a function of non-dimensional time St is shown in Fig. 1.

Physical experiments and DNS of the incompressible case indicate that K, after an initial

transient, evolves as K0 exp(ASt). The feature of exponential growth is carried over to the

compressible case, as evidenced by the approximately linear regime in the plot of ln(K/Ko)

in Fig. 2 for St > 7. Although the picture of exponential growth survives, the growth rate of

K shows a significant decline with a decrease in the speed of sound. Figure 3 shows that the

growth rate A = d(ln K/Ko)/d(St) decreases by about 30% when M_ increases from 0.2 to

0.4. We note that the reduction of kinetic energy growth rate with increasing compressibility

is a consistent trend in all our simulations.

In order to understand the phenomenon of reduced growth rate of kinetic energy, we

consider the equation governing the kinetic energy of turbulence in homogeneous shear which
is

d (-_K) = p--T'--_ - -Pet+ p'd-'--7 (5)

where 7_ -- co _t._ uwiwi the: solenoidal dissipation rate, cc --_,_'1_2 is the production, €8 = - _ t

(4/3)_d _2the compressible dissipation rate and p_d_ the pressure-dilatation. The last two

terms represent the explicit influence of the non-solenoidal nature of the fluctuating velocity

field in the kinetic energy budget.

If the notion of exponential growth in homogeneous shear flow is correct _,A should asymp-

tote to a constant. The relative importance of the various terms on the rhs of (5) can be

gauged by their contribution to A. We, therefore, normalize (5) by -riSK. The terms on the

rhs of (5) are plotted in Fig. 4 after being thus normalized. AccOrding to Figs. 4a-4b,the

dilatational terms are negative and reduce h. By St = 20, the combined contribution of

the dilatational terms is approximately 20% of A, implying that they need to be considered

in turbulence modeling. The normalized production, T'/SK, is plotted in Fig. 4c. The

normalized production in Case 2 begins to deviate from that in Case 1 around St = 5, and

eventua!ly asymptotes to a value noticeably smaller than in Case 1. Thus, the production is

reduced due to compressibility. The normalized dissipation in Fig. 4d also shows a decrease

in Case 2 relative to Case 1, but to a smaller degree than the production. The reduction in

growth rate of K in Case 2 relative to Case 1 seems to be primarily due to the dilatational

terms during the early phase of the evolution and, for the later phase (St > 8), is related to



a decreased level of production.

3.2 Measures of Compressibility

Apart from the differences in the evolution of turbulence statistics in the case of compressible

flow relative to incompressible flow, a question that arises is how compressible is the turbu-

lence? The turbulent Mach number Mt = _/_ and the normalized rms density P_ms/'_are

measures of departure from incompressibility, since both these quantities are zero for strictly

incompressible flow. Mt shows a monotone increase in Fig. 5a reaching a maximum of 0.6,

which•is larger than the upper bound of Mt in free shear layers and wall boundary layers

encountered in aerodynamic practice. Figure 5b shows that, after starting from zero density

fluctuations, both simulations develop significant rms density levels at St = 18, and most of

the increase in rms density occurs rapidly within St < 3 for Case 2 (with the higher initial

Mr). The velocity field is no longer solenoidal in compressible flow, that is, d = V.u _ 0. For
homogeneous flow, the Helmholtz decomposition gives a unique decomposition of the veloc-

ity field into incompressible and compressible components by u = u I + u c, where V. ut = 0

and V × u C = 0. The departure of the velocity field from solenoidality is another measure

of compressibility, and can be represented by the ratio of dilatational variance to enstrophy

Xd = d /w_w_or by the fraction of kinetic energy which is dilatational XK --_ Kc/K. The for-

mer quantity Xd is more general, because the Helmholtz decomposition required for obtaining

Kc is unique only for homogeneous flows. Figure 6 shows that after an initial transient, Xd

increases monotonically for Case 1, but levels off at about 8% for Case 2. The quantity XK

(not plotted here) is comparable to Xd, leveling off at approximately 6% for Case 2. Since

the mean shear leads to anisotropy of the Reynolds stress tensor, the dilatational fraction

of each Reynolds stress component is obtained. Except for the transverse component I '_2_2,

the dilatational contribution to the Reynolds stress tensor was a few percent, comparable to
the magnitude of XK. The ratio of _c,^ c,, ,_,_2 _2 /_2'_2 is substantially larger, as shown in Fig. 7.

Since the dilatational component i_ a relatively poor mixer of scalar compared to the vortical

component, the large ratio of o_2C'o_2Cr/o/_,.2'° ' implies that mixing is preferentially decreased by
compressibility in the direction of shear.

3.3 Compressible and Solenoidal Spectra

The Fourier component of the velocity is decomposed into components perpendicular and

parallel to the wave number vector from which the solenoidal spectrum E,(k) and com-

pressible spectrum E_(k) are calculated. Figure 8 compares the solenoidal and compressible

spectra at St=15 (when Mt = 0.55) for Case 2. The compressible energy is small relative to



the incompressible energy for all modes. The compressible spectrum is flatter at low wave

numbers (/c < 16) relative to the incompressible spectrum. The two spectra have similar

slopes in the intermediate wave number range. The solenoidal spectrum is compared in Fig. 9

between an incompressible run (Mr = 0) and a compressible run at St = 17. The compress-

ible run has an initial Mt of 0.4 and the initial velocity and pressure fields are the same as in

the incompressible run. LFrom Fig. 9, it appears that the shape of the solenoidal spectrurri is

not altered by compressibility, even though the compressible fluctuations are non-negligible

at this time- P_ms/-fi= 0.12 and Xk = Kc/K = 0.05. However, the pressure spectrum in

Fig. 10 shows significant differences between these two cases. In the compressible case, the

pressure spectrum seems to be relatively flatter than in the incompressible case.

4 Modeling the Dilatational Terms

We showed in Fig. 4 that the compressible dissipation _c and the pressure-dilatation p_d---7

contribute significantly to the kinetic energy budget and therefore require modeling. In

Sarkar et al. (1991), we proposed a model for the compressible dissipation cc = alcsM_ based

on an asymptotic analysis and DNS of isotropic turbulence. In the present simulations, after

starting from a variety of initial conditions, _ __ 0.5_sMt2, suggesting that al = 0.5.

Our direct numerical simulations of isotropic turbulence and homogeneous shear flow

provided a data base for the pressure-dilatation and suggested a theoretical approach towards

modeling it. The evolution of the pressure-dilatation ptd_ for Case 1 is depicted by the solid

curve in Fig. 11. $From numerical experiments, it was found that the nominal time period

of the oscillations in p_d_ decreased approximately linearly with the speed of sound. This

suggested that one could isolate the oscillatory part of p_d"---i by decomposing the fluctuating

pressure p_ into the sum of an incompressible part p,r_ and a compressible part pC_. The

incompressible pressure p_ satisfies

v2p --= - - j (6)

while the remainder pet is the compressible pressure. The rhs of (6) collects all terms that

depend on _ in the equation obtained by taking the divergence of the momentum equation.

In the simulations, since pt is available from the compressible Navier-Stokes solution and

pI_ is evaluated from (6), we obtain pC_ as the difference pt _ pI _. Since p_ = p I_ + pC_ we

have p_d_ = pI'dt + pC'dq The oscillations are substantial only for pC'd_ (dotted curve in

Fig. 11), and furthermore, the peaks and valleys in the evolution of pe'd_ seem to be much

more symmetric around the origin than those in p_d' (solid curve in Fig. 11). The component

pI'd_ (dash-dotted curve in Fig. 11) does not have strong temporal oscillations, and shows



a systematic decrease with time. In order to gauge the relative importance of the two

components pC,d' and pI,d' of the pressure-dilatation in the evolution of the turbulent kinetic

energy, we calculate the time integrals of these components. The integrated contribution of

pX'd' is about an order of magnitude larger than that of pC'dr in Case 2. Examination of

other DNS cases indicates that, in general, pC,d' has a negligible contribution to the turbulent

kinetic energy evolution relative to pI'd'. Therefore. it seems that only the component pI'd'
of the pressure-dilatation requires modeling in shear flows.

In order to model pI'd', we consider the Poisson equation (6) for the incompressible
S I

pressure. After splitting the pressure into a rapid part pn' and a slow part p , we obtain the

following exact expressions for the rapid pressure-dilatation and slow pressure-dilatation:

pn'd' = f _E_idk (7)

pS'd7= -_ kmk_kd . .__,,̂ ,k2 (zuludu m -- iu_d*_tm) dk (8)

Here €* denotes the complex conjugate of the Fourier transform € and End represents the

spectrum of the Reynolds stress tensor ' 'u_uj. Using scaling arguments (see Sarkar (1991) for

details) to simplify (7)-(8) we find that pn'd' depends on the production 7) while pS'd' depends

on the dissipation €8. Finally, we propose the following model for the pressure-dilatation:

8 2
p'd' = a2"fi_t_,jb_jq2Mt + aa'ficsM2t+ -_-fi_t_,_x(Mt )q (9)

where blj . ,,. ,,1_2 5ij/3 is the anisotropy tensor, Mt _/_ the turbulent Mach= 'tti'uj/q --

number, and _ the solenoidal dissipation. To obtain the functional dependence x(Mt) in

the last term of Eq. (9), one would require data from a flow with mean homogeneous com-

pression. In this paper, we validate and calibrate the first two terms in the model for p'd'.
In homogeneous shear, the model becomes

p'd' = -a2p-p-_Mt + a3-_e_M_ (10)

where 7) = -Su"u"l2. Because the production 7) = 0 in decaying isotropic turbulence, the

variation of the incompressible pressure-dilatation with €, can be verified using DNS of

isotropic turbulence. The ratio pI'd'/(-_,M_) is shown as a function of non-dimensional

time in Fig. 12. The decaying isotropic turbulence simulations, D1,D2 and D3 start with

Mt,o of 0.6,0.5, and 0.4 respectively, p_'d'/(-_€,M_) reaches an equilibrium value by a time

of 0.25, substantiating the validity of the second term in (9). Based on the DNS value of

the equilibrium ratio, the model coefficient a3 in (9) is taken to be 0.2, The remaining part

of the model for the pressure-dilatation is calibrated against simulations of homogeneous



shear flow. Fig. i3 shows results from three cases $1,$2 and $3 with Mt,o of 0.2,0.3, and

0.4 respectively. Cases $2 and $3 have shear S=15, while Case $1 has S=20. After St = 5,

the ratio (p1'd' - 0.2-ficsMt2)/(-fiPMt)evolves in a similar fashion for the three cases and

exhibits a slight decrease with time. In the period 5 < St < 15, the three cases $1-$3

encompass a range of turbulent Mach numbers of 0.21 < Mt < 0.65. The results of Fig. 13

suggest that, with a coefficient a2 = 0.15, the proposed model (9) is able to parametrize the
pressure-dilatation for 0.2 < Mt < 0.6.

5 Structure of the Rate of Strain Tensor

In this section, we study several properties of the rate of strain tensor Sij to help identify

characteristics of the flow which are solely the result of compressibility effects, and how

these characteristics differ from corresponding properties in an incompressible turbulent flow.

Because the flow is anisotropic, it is useful to consider characteristics of the flow both with

respect to the laboratory frame of reference, and with respect to a frame of reference attached

to, and rotating with an individual fluid element. Global orientation properties of Sij are

established by studying the principal directions of Sij in the laboratory frame of reference.

(In isotropic turbulence, this diagnostic does not provide useful information.) On the other

hand, local properties can be characterized by considering the relative orientation of vectors

such as velocity, vorticity or scalar gradients, with respect to the principal directions of Sij.

We consider the rate of strain tensor, decomposed according to

S_j = S .c. S t.. 1,_ + ,_ + _ u_,_6ij (11)

where S/j and S_j are respectively constructed from the solenoidal and compressible (irrota-

tional) velocities u I and u c. Both S{j and S_j are deviatoric. The properties of these tensors

are expressed in terms of invariant quantities, i.e. eigenvalues and eigenvectors. Because S_j

is symmetric, its eigenvalues Ai, i = 1, 2, 3 are real, and its eigenvectors are in the directions

of maximal or minimal extension (depending on the signs of the Ai) of the tensor. These

directions are given by the tensor's three eigenvectors. For future reference, the eigenvalues

are ordered from smallest to largest:

A1 < A2 < _3. (12)

The first three invariants of the tensor Sij, defined as the coefficients of the polynomial

characteristic equation, are related to small scale phenomena, and can be expressed in terms

of the eigenvalues. These relationships are:

I = -(AI+A2+A3)

8



II = _1_2 + _1_3 + ,_2A3

III= -/_1 _2 _3

If the tensor is deviatoric, I = 0, -II = SijSji which for incompressible flow is proportional

to the dissipation, and in isotropic flow, III is proportional to the third moment of the

velocity gradient probability distribution function (pdf).

We present results from one simulation with S = 15, and/_ = 1/150, M,0 = 0.3, Rm = 20

and incompressible initial data. The simulated flow is analyzed at St = 1, 3, 5, 7, 9, which

are all sufficiently resolved. More details of this analysis can be found in Erlebacher, Sarkar

and Hussaini (1991). Note that all the pdf's that follow are unconditioned and unweighted.

Sampling for the pdf's (probability density function) is done on a grid resolution of 48 x96 x96

although the simulation was performed on a 963 mesh. This provides over 400,000 sample

points.

The pdf of I I c 6'_2/)_1 areA2/A1 and shown in Figs. 14 and 15. Both plots show that

after an initial transient, the eigenvalue ratios have single peaks. These are located at -

0.25 for the solenoidal ratio, and at approximately -0.375 for the irrotational ratio. As a

consequence, the rate of strain tensors S/j and S_, respectively, have preferred strains in the

A2/A1 withratios (-4 : 1 : 3) and (-8 : 3 : 5) along the principal axes. Conditioning of I x

respect to _, sharpens the peak for higher values of dissipation. Further processing of the

irrotational ratio distribution is underway. A check of the pdf of the irrotational ratio was

also performed from a 1283 database (Case 2) with 800,000 sample points, and its shape

is qualitatively similar with the peak at -0.375. Note that the pdf of the irrotational ratio

is more broadband than that of the solenoidal ratio. However, the location of the peak is

well defined, and constant in time. This equilibrium structure of (-4 : 1 : 3) for Sij is

observed in incompressible flow, first by Ashurst, Kerstein, Kerr & Gibson (1987). They
_I2 x Iconsidered the statistics of (2) /(S_jS_j) conditioned on the dissipation and found that the

preferred ratio was most dominant in regions of high dissipation. In a later work, Chen et

al. (1990) displayed scattergrams of II versus III based on incompressible mixing layer

DNS data, which clearly demonstrated that III is proportional to (-II) 3/2 in the regions of

highest dissipation. This is in fact a statement about the preferred shape of the S/j principal

ellipsoid. Our results indicate that compressibility does not substantially affect this preferred

structure of the solenoidal S/j.

The distribution of _ and _ show some distinctive differences, as illustrated in Figs.

16-17. Both figures show negative skewness of the distributions, and a flattening in time,

although the effect is much more severe for A_. On both plots, the most probable value

for the eigenvalue shifts towards more negative values. In the irrotational case, the effect

is extremely strong. However, the most probable ratio of ,_ to A1C(see Fig. 15) remains

9



invariant in time. Figure 17 also indicates that the amount of change in the distribution of

A_ decreases with time, but there is no strong evidence that the shape of the pdf is evolving
towards a steady state.

Information on structural differences in the flow as they relate to preferred directions of

straining for both the solenoidal and dilatational components of the flow are presented next.

After the eigenvectors of the rate of strain tensors are normalized to unity, we compute the

angle 0_jbetween eigenvector f_ and the unit vector in the coordinate direction xj. The pdf's

of Icos0i§[ and Icos0_l are then computed. The cosine of 0 is chosen instead of 0 so that

the probability density function based on a Gaussian distribution for the velocity derivatives

is flat. In Figs. 18-19, we respectively plot the pdf of Icos01Ziland Icos01_l, (i = 1,2,3) at
St = 9 to illustrate that the solenoidal and irrotational rate of strain tensors have different

preferential alignments in the laboratory frame of reference. Note that R_ = 33 at this time.

The direction of maximum compression of S_ (f[) tends to be at approximately 45° to both

the x and y axes, with no preferred orientation with respect to z. The alignment of faI is also

in the 45° direction, while f_ has no unambiguous preferred direction. The irrotational rate

of strain tensor exhibits markedly different properties. Most of the distributions of cos 0ij

have two strong peaks, thus indicating two preferred directions of alignment. For example,

f_ is most often aligned along one of the thr(c, coordinate axes. This is true of the other

two principal directions, but to a lesser degree. Interestingly enough, all three pdf's of f_

exhibit a valley in the neighborhood of 45°. Statistics based on the database of Case 2 (at a

higher shear and higher Reynolds number than the results plotted in the preceding figures)

show that the pdf's of [cos 0_i[ and [cos 0_[ are sharper. In particular, the tendency for f_ to

align is strongest in a direction at 30° to the x axis and not 45°. Finally, we notice that all

the pdf's of [cos 0ij[ tend towards a steady distribution with increasing St. The distribution

of [cos0_[reachesan equilibriatedstageat a muchearlierstage than does [cos 0_[.

6 Conclusions

We have performed DNS of homogeneous shear using a 128a grid to ascertain the influence of

compressibility on turbulence statistics and structure. The primary result is the stabilizing

effect of compressibility on the growth of kinetic energy. We find that the reduction in

growth rate is due to the pressure-dilatation and compressible dissipation acting as sinks for

the kinetic energy, and due to the reduced level of the Reynolds shear stress. After starting

with zero density fluctuations, the simulations develop significant density fluctuations and

moderate levels of energy in the dilatational component. The dilatational velocity component

is strongly anisotropic, and consequently its contribution to the transverse rms velocity is

10



much larger than to the other rms turbulent velocities. AlthOugh, the turbulent Mach number

and rms density fluctuations are significantly large, the shape of the energy spectrum is

practically unaffected by compressibility. However, the pressure spectrum is much flatter for

the compressible case relative to the incompressible case. The eigenvalues and eigenvectors

of both the solenoidal and irrotational rate of strain tensors were examined for preferred

structure. In principal axes, the solenoidal rate of strain tensor has a preferred shape of (-

4:1:3) in accord with previous results available for incompressible flow. The irrotational rate

of strain tensor has a different preferred shape. The pressure-dilatation correlation needs to

be modeled for compressible flow. We consider a form of the pressure equation obtained by

taking the divergence of the momentum equation, deduce a formal solution for the pressure-

dilatation, and then simplify to obtain a model for the pressure-dilatation. The model seems

to compare well with DNS data in isotropic turbulence and homogeneous shear turbulence.
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Case S v M_,o Rx,o p' d_
1 20 1/150 0.2 14 0 0
2 20 1/150 0.4 14 0 0

Table 1: Parameters for the DNS cases of homogeneous shear flow
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Fig. 1. Schematic of homogeneous shear flow.
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Fig. 4a. Cont,ribution of pressure-dila[ation to [he grow[h rat.e of K.
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Fig, 4b. Conbibution of compressible dissipation to the grow[h rate of K.
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Fig. 4d. Contribution of solenoidal dissipation to the budget of K.
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Fig. 7. Compressible fraction of transverse Reynolds stress.
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Fig. 8. Energy specLra at S_--15 for Case 2.
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Fig. 9. Solenoidal velocity spectra for compressible and incompressible runs.
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