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ABSTRACT

This study examines the computed torque control problem for a robot arm with

flexible, geared, joint drive systems which are typical in many industrial robots!

The standard computed torque algorithm is not directly applicable to this class of

manipulators because of the dynamics introduced by the joint drive system. The

proposed approach to computed torque control combines a computed torque

algorithm with torque controllers at each joint. Three such control schemes are

proposed. The first scheme utilizes the joint torque control system currently

implemented on the robot arm and a novel form of the computed torque algorithm.

The other two employ the standard computed torque algorithm and a novel model

following torque control system based on model following techniques. Standard

tasks and performance indices are used to evaluate the performance of the

controllers. Both numerical simulations and experiments are used in the evaluation.

The study shows that all three proposed systems lead to improved tracking

performance over a conventional PD controller.
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Chapter 1: Introduction

A typical robotic manipulator consists of several links connected in series by

revolute or prismatic joints. Due to their geometry, most robot manipulators are

complex, nonlinear dynamical systems. Strong coupling exists between the

dynamics of the robot joints, and it is most significant during high speed motions

and periods of high acceleration. Gravity also plays a significant role in the robot

dynamics by imposing configuration dependent disturbance loads. In addition, the

dynamics of the robot can change dramatically with payload variations.

Motion control in most industrial robot arms is performed by simple Proportional-

Derivative (PD) or Proportional-Integral-Derivative (PED) compensators that control

each joint individually. Gravity compensation is accomplished, in many cases, by

the addition of a constant torque command to the PD or PID control signal. These

simple controllers are often tuned for a specific range of payloads, speeds, or

configurations and may perform well for point to point tasks in which the

connecting path is not critical. However, for applications in which^payloads,

speeds, and configurations vary in a wide range, or when precise trajectory

following is essential, these simple control laws may not perform adequately.

Accurate trajectory following is a demanding task which often requires a more

sophisticated control algorithm. Consequently, this area has been the focus of

research efforts for many years. Most advanced control schemes for precise

tracking incorporate some form of the inverse arm dynamics into the robot control

system. The parameters of the dynamical equations may be based on analytical



models of the arm or may be identified on-line through appropriate estimation

schemes.

A promising approach to robot arm control is the "computed torque controller"

which utilizes a complete dynamical model of the rigid link manipulator to compute

the torques commanded to the joint motors given the desired trajectory. The drive

system dynamical parameters, particularly the motor and gear inertias and the gear

ratio, are typically incorporated into the model by assuming that the drive system

components can also be treated as rigid bodies. Since the controller does not

account for any non-rigid body dynamics, its performance is generally degraded by

their presence.

A geared joint drive system can be a significant source of unmodeled dynamics

which may result from flexibility, backlash, and friction. Consequently, the most

successful applications of computed torque controllers have been with direct drive

robot arms in which the drive system dynamics are easily modelled. Most

industrial robots, however, do not use direct drives due to their higher payload-to-

weight ratio requirements. These requirements can only be provided by geared

joint drive systems. Computed torque control in this class of robot arms has been

less successful.

The objective of this thesis is to investigate the successful implementation of

computed torque control on a robot arm with flexible, geared, joint drive systems

which are typical in many industrial robot arms. Improved performance of the

computed torque schemes is targeted by introducing a joint torque servo loop.



Three alternative control schemes are proposed. Their performance is evaluated

through simulation using a set of standard tasks and appropriate performance

criteria. The most promising controller is then implemented and evaluated on an

actual 7 degree-of-freedom robot manipulator.

This thesis is structured as follows. In Chapter 2, the standard computed torque

controller is presented, several previous studies are reviewed, and the proposed

approach is outlined. Chapter 3 describes the robot arm considered in this study

and presents the analysis and synthesis of the proposed control algorithms. In

Chapter 4, the performance evaluation procedures and the results obtained from the

simulation tests are discussed. Chapter 5 presents the implementation of the most

promising controller and the experimental results obtained from performance tests

using the actual robot arm. Chapter 6 provides the conclusions of this study and

proposes directions for further research.



Chapter 2: Computed Torque Control

The robot control problem is presented in this chapter. The rigid body dynamical

equations of motion for a robot manipulator and the associated computed torque

control equations are reviewed. The complexities associated with computed torque

control are illustrated, and an overview of previous work in non-linear robot control

is given. Finally, the proposed approach to implement computed torque control

schemes in industrial robots is outlined.

2.1 Background

A robot manipulator is typically modeled as a series of rigid links, connected by

prismatic or revolute joints. If a geared transmission is present between each

driving motor and the corresponding link, its components are also modeled as rigid

bodies. The corresponding dynamical equations of motion for such a manipulator

can be written in the following form:

Ta = M(0a) ©a + Q(©a, ©a) (2.1)

where Ta is the vector of torques applied to the links, 0a is the vector of joint

angles, M(0a) is the matrix of link inertia terms, and Q(0a, 0a) is the vector of

Coriolis, centrifugal, gravity, and friction torques. Although revolute joints are

assumed in this work, the above equation also holds for prismatic joints. Several



methods to obtain the rigid link robot dynamics have been developed [Uicker,

1965; Armstrong, 1979; Luh, 1980a; Paul, 1981].

Equation (2.1) represents a set of nonlinear, coupled, differential equations for the

joint motions. The end-point trajectory following problem consists of finding the

necessary torque commands for the joint motors, Tc(t), such that the end-effector of

the robot follows a prescribed path in Cartesian coordinates, Xd(t). However, the

intrinsic non-linearities and cross-coupling of joint motions present significant

difficulties to this control problem, which has been the focus of much research in

the last twenty years.

There exist two general approaches to compute the torque commands for trajectory

following which differ in the error signal of the control algorithm. The first method

computes the torque commands based on the position error expressed in Cartesian

coordinates [Luh, 1980b; Tarn, 1990]. The second and most common method is to

first compute a joint-space trajectory, ©d(0, using the desired Cartesian-space

trajectory, Xd(t), and then compute the appropriate torque commands to minimize

the joint position errors [Craig, 1986].

2.1.1 The Fundamental Computed Torque Algorithm

A multitude of non-linear control laws which compute torque commands based on

joint positional errors have been developed for robot manipulators [Craig, 1986,

1987; Asada, 1986; Fu, 1987; Slotine, 1987]. The principle objective of many of



these control laws is to linearize and decouple the dynamical equations of motion so

that each joint can be considered independently using linear control theory. This

concept is utilized by several "computed torque controllers" [Paul, 1972; Craig,

1986; Tourassis, 1985] in which the joint torques are typically evaluated from:

(2.2)

where Tc is the vector of torque commands, 0a is the vector of actual joint angles,

©d is the vector of desired joint angles, M (©a) is the estimated matrix of inertia

terms, K<j is a matrix of joint angular velocity gains, Kp is a matrix of joint angle

gains, and Q (0a, ©a) is the estimated vector of Coriolis, centrifugal, gravity, and

friction torques.

The computed torque controller given by Eq. (2.2) is similar to the robot dynamical

equations of motion, Eq. (2.1). The error terms added to the desired acceleration

command, ©d, have been introduced in order to compensate for the joint angle and
A

angular velocity errors. Under the assumption of a perfect model, i.e. M = M and
A j.

Q= Q', and using Tc = Ta, Eq. (2.2) may be substituted into Eq. (2.1) to yield:

e + Kd e + Kp e = 0 (2.3)

where: e = (0d -

4. A A
' For notational convenience, the dependence of the terms M, M, Q, and Q on the

joint angles and angular velocities will be omitted when possible.



If the matrices K<j and Kp are diagonal, Eq. (2.3) represents a set of linear,

decoupled error equations. In this ideal case, the errors converge to zero if all gains

are positive. Furthermore, the error dynamics may be shaped by appropriately

selecting these gains. However, Eq. (2.3) cannot be realized in practice due to two

principal reasons: the lack of accurate parameter estimates, and the presence of

unmodeled dynamics, which are discussed below. Sweet and Good [1985] discuss

several additional difficulties which may arise in robot motion control.

2.1.2 Complexities in Computed Torque Control

Inaccurate Parameter Estimates

The parameters of the robot dynamical model are estimated either analytically or

experimentally. Given the complexity of the system, both approaches may result in

inaccurate parameter values. For example, the viscous and Coulomb friction

coefficients may change with temperature or configuration and their estimates are,
A A

therefore, inaccurate. Typically the estimates M and Q are not equal to the terms M

and Q of the actual robot arm, and therefore, the error equation becomes:

e + K<j e + Kp e = M~ ( M - M ) 0a + M~ (Q-Q) (2.4)

In this case, the joint error dynamics remain non-linear and coupled. The extent of

non-linearity and coupling depends on the deviation of the model from the actual



dynamics. Equation (2.4) indicates that the tracking error dynamics will deviate

from those described by Eq. (2.3).

Unmodeled Dynamics

Degraded performance of the computed torque controller may also arise from

unmodeled dynamics in the robot arm. For example, in deriving the error dynamics

given by Eq. (2.3), it is assumed that the motor output torque accurately tracks the

commanded torque. This assumption is reasonable for those robot arms which

incorporate a servo loop to control the current in the motor windings, as in Khosla

[1989]. In the absence of such a current loop, controlling the motor output torque

may be a difficult task. Furthermore, even if the motor torque accurately tracks the

commanded torque, other unmodeled dynamics, such as the flexibility of the drive

system, may effect the torque applied to the link itself.

The deviation of the applied torque, Ta, from the commanded torque, Tc, due to the

unmodeled dynamics may be represented as:

Ta = Gt Tc (2.5)

where Gt is a diagonal matrix of time domain differential operators. In this case,
A A

even under the assumption of perfect M and Q estimates, the error equation

becomes:

e + Kd e + Kp e = (M"1 G^ M -1) 0a + M"1 (G^1 -1) Q (2.6)



In this case, neither Kp nor K<j can compensate for the matrix GT, and clearly, the

dynamics of the individual joints are coupled.

2.2 Related Research

The most successful applications of computed torque control have been with direct

drive robot arms which incorporate motor current servo loops. Direct drive

systems may be accurately modeled and controlled due to several distinct

characteristics. First, since the motor rotor is directly coupled to the corresponding

link, direct drive arms are free of backlash and much of the friction which

accompanies geared drive systems. Furthermore, by utilizing a high-gain, motor-

current servo loop, the back emf effects in the motor are compensated.

Consequently, the drive system appears as a simple gain between the motor current

command and the output torque [Sweet, 1985].

Direct drive arms have been constructed for research purposes at Carnegie Mellon

University [Kanade, 1984; Schmitz, 1985], MIT [An, 1988a,b], and Yale

University [Buhler, 1990; Levin, 1989]. Computed torque schemes have been

implemented on each of these arms and have shown superior performance with

respect to conventional PD and PID controllers [Whitcomb, 1991; An, 1988b;

Khosla, 1989].



Using direct drive arms, several researchers have investigated the effects of

incomplete dynamical models and inaccurate parameter estimates on the

performance of computed torque controllers. Whitcomb [1991] investigated arm

performance in the presence of known and unknown payloads. He found that the

root mean square of the tracking error (£2-norm of tracking error) degraded by

approximately 50% when the payload inertia was not included in the model.

Khosla [1988] excluded the Coriolis and centrifugal terms from the dynamical

equations and utilized only the diagonal inertia matrix terms in the computed torque

controller. His results indicated that neglecting the Coriolis and centrifugal terms

introduces significant trajectory tracking errors even at low joint velocities of

approximately 1 rad/sec. Deterioration in performance was also shown when the

inertia matrix was simplified to include only diagonal terms. Asada [1983] studied

the system performance as the inertia, damping, and gravity terms were removed

from the computed torque controller, to finally yield a simple PD controller. His

results showed a continuous decline in performance as each of these terms was

omitted. These and other experiments have shown that the inertia, Coriolis,

centrifugal, gravity, and friction terms may all have significant contributions to the

robot arm dynamics given by Eq. (2.1). Furthermore, the impact of any single

term depends on the robot arm design and the task it is performing.

Although precise control of the torque applied to each joint allows computed torque

controllers to be successfully implemented on direct drive arms, most industrial

robots utilize geared drive systems which complicate their dynamics. Gear

backlash and flexibility are usually not modeled in the robot dynamical equations,

but may have significant effects in the arm dynamics. In particular, highly

10



undesirable drive system dynamics result from the flexibility in harmonic drives,

which have become popular transmission systems for robot arms due to their

compactness and high gear ratios. The flexible element of the harmonic drive, the

flexspline, leads to underdamped, low frequency oscillations of the drive system

[Karlen 1990]. The drive system dynamics degrade the performance of the

computed torque controller and have been the principle reason that most

applications of computed torque controllers on industrial robot arms have not lead

to improved performance.

Leahy [1989] found this to be the case when he implemented a computed torque

scheme on a PUMA-600 industrial robot arm. His experiments showed that the

actuator plays a significant role in the dynamics of the entire manipulator. He also

concluded that even though tracking performance is degraded by the drive system

dynamics, the robustness of the computed torque controller is enhanced by the high

gear ratio. However, he found the overall performance of the computed torque

controller to be unacceptable.

Several researchers have investigated control schemes for trajectory following with

robot arms which contain flexible joints. Spong [1987] showed that feedback

linearization based on inverse plant dynamics, an algorithm similar to the computed

torque controller, can be used to control such a manipulator. However, in this

case, the joint acceleration and jerk must be available for feedback to ensure

robustness with respect to modeling uncertainties. DeLuca [1988] utilized non-

linear feedback to achieve both joint decoupling and linearization. However, his

method required full state feedback, i.e., it utilized both the motor and joint

11



positions and velocities. Ghorbel [1989] presented an adaptive algorithm for

control of flexible joint manipulators which eliminates the need for jerk and

acceleration feedback, but still required the full measurement of the motor and joint

positions and velocities.

In an effort to reduce the dynamical effects of the drive system, several researchers

and at least one robot manufacturer [Karlen, 1990] have implemented joint torque

control through direct feedback of the torque measured between the transmission

and the link. Luh [1983] was the first to implement a joint torque controller on two

joints of the Stanford Arm and achieved a 95% reduction in effective frictional

torques of the joints. A similar torque loop was implemented on a PUMA 500 Arm

by Pfeffer [1989]. His results also showed significant reductions (97%) in

effective frictional torque and substantial improvement in fine motion control. For

robot arms with harmonic drives, the torque loop is necessary to limit the low

frequency oscillations of the open loop drive system, as previously discussed.

2.3 Proposed Approach to Computed Torque

Previous research in computed torque control has shown that: i) Computed torque

algorithms have the potential to provide superior performance over conventional PD

or PID controllers, although their performance is directly related to the accuracy and

completeness of the robot dynamical model; ii) Direct drive robot arms can be

accurately described by the rigid body model of Eq. (2.1) and, therefore, are

amenable to computed torque control; iii) Geared drive systems, common to

12



industrial robots, introduce complex dynamics, in particular, flexibility in the robot

joints. Most industrial robots do not use direct drives since they require high

payload-to-weight ratios offered only by geared drive systems. Consequently,

there has been little success in implementing computed torque controllers on this

class of manipulators.

This thesis examines the problem of computed torque control for geared, flexible

joint manipulators with joint torque servo loops. Three novel motion control

systems are proposed, each consisting of two parts: i) a computed torque

algorithm which provides the torque commands to all joints based on a desired

joint-space trajectory and a dynamical model of the arm; ii) a torque control system

at each joint which regulates the actual torque output of the drive system. The first

control scheme utilizes the joint torque controller currently implemented on the

robot arm considered and a novel form of the computed torque algorithm. The two

others utilizes the standard computed torque algorithm and a novel model following

torque control system based on model following techniques.

It should be emphasized that the present work investigates the computed torque

control problem for a seven degree of freedom (7-DOF) robot arm, both

theoretically and experimentally. Much of the previous work on computed torque

controllers, as well as other non-linear control schemes, has been limited to 3-DOF

robot arms. Since most industrial robots are 5, 6, or 7-DOF manipulators, this

work offers significant insights on the application of these controllers in practical

robot systems.

13



Chapter 3: Control System Analysis and
Synthesis

The robot arm considered in this study and the existing PD motion control system

are briefly described in this chapter. The open loop joint drive system is analyzed to

illustrate the undesirable dynamics which result from its flexibility, thus

necessitating the introduction of a torque control system. Subsequently, the

analysis and design of the three proposed motion control systems are presented.

Each of the proposed motion control schemes consists of two levels: a computed

torque algorithm which provides the torque commands to all joints, and a local

torque control system at each joint which regulates the actual torque output of the

drive system. The first scheme utilizes the existing torque control loop and a novel

computed torque algorithm. The other two schemes utilize the standard computed

torque algorithm. Eq (2.2), and a novel torque control system which is based on

model following techniques. Two versions of the model following controller are

presented, one continuous and the other discrete.

3.1 RRC 1607HP Robot Manipulator

The robot arm considered in this study is the Robotics Research Corporation (RRC)

1607HP Dexterous Manipulator, shown in Fig. 3.1, and described in detail in

Karlen [1990]. It is a 7-DOF manipulator with revolute joints. The drive system of

each joint, shown in Fig. 3.2, consists of a DC motor connected to the wave

14
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Figure 3.1: RRC 1607HP dexterous manipulator
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Figure 3.2: Joint drive system
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generator of a harmonic drive. The flexspline of the harmonic drive is connected to

the link structure through an overload protection device and torque transducer. The

latter allows measurement of the torque applied to the link at a point just prior to the

support bearings. Joint position and velocity measurements are provided by a

resolver, mounted directly to the joint housing. It is emphasized that the resolver

provides the joint, and not the motor, angle and angular velocity information. The

dynamics of the joint drive system are analyzed in detail in the next section.

The existing control system of each joint, Fig. 3.3, functions as a PD motion

controller and contains three analog servo loops: a motor current loop, a torque

loop, and a joint velocity loop. A single joint position loop provides the velocity

commands to all joints at discrete time periods, he, according to the equation:

coc = Kp(0d-0a) (3.1)

where coc is the vector of commanded joint angular velocities, and Kp is a diagonal

matrix of proportional gains. The velocity commands are introduced to the analog

hardware through a Digital-to-Analog convenor (DAC) and a zero-order-hold

(ZOH). It is noted that the original control system of the RRC arm has been

modified as described in Miller [1991] so that the parameters Kp and he can be

specified by the user.

The velocity loop operates on the joint velocity errors and provides torque

commands to the torque loop. The objective of the torque loop is to minimize the

oscillations in the drive system which result from the compliance of the harmonic

16
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drive (see Section 3.2) and to provide the appropriate current commands to the

current loop. The current loop regulates the current in the motor windings and

results in a closed loop system with a flat frequency response over a high

bandwidth. Since the motor torque is proportional to the motor current, the

motor/current loop combination may be modeled as a simple gain between the input

current command and the motor output torque (see Section 2.3). This gain is equal

to the motor torque constant.

The modular architecture of this control system allows the use of external position,

velocity, or torque command inputs. For the computed torque controllers, only

torque inputs are required, thus the position and velocity loops are not used with

these controllers. The PD motion control system is used only for comparison

purposes.

3.2 Dynamics of the Joint Drive System

Figure 3.4 shows a schematic representation of the single joint drive system. The

block diagram for this system is shown in Fig. 3.5. Tm is the electro-magnetic

torque, motor torque, applied to the motor rotor. Jm and Bm are the inertia and

damping of the motor rotor, respectively. The harmonic drive is modeled as a pair

of gears with ratio, N, coupled to a flexible element with spring constant, Kf, and

' Up to 1KHz as per discussion with Paul Eismann of Robotics Research

Corporation.
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material damping, Bf. Bj represents the damping at the link side of the flexible

element. The motor and link damping terms, Bm and BI, result from the viscous

damping of the support bearings. Ji is the effective inertia at the link side of the

flexible element. It represents the inertia of that portion of the robot arm which

moves with the joint. Therefore, it includes the inertia of all the links between the

joint under consideration and the end effector. Ji is equivalent to the corresponding

diagonal element of the inertia matrix, M, of Eq. (2.1), when the motor rotor and

transmission inertias are not considered.

If the backlash in the transmission is negligible, the drive system has two degrees of

freedom which can be selected as the joint angle, 61, and the gear angle, 0g, or

equivalently, the motor angle, ©m, (see Fig. 3.4). The equations of motion of the

joint drive system are:

Jl ©i = Kf(0 g -0i ) + Bf(0 g -©i) - Bi©g (3.2)

= - |-f (8g - 01) - ff (0g - ©l) - Bm ©m + Tm (3.3)

The gear angle and the motor angle are related by the gear ratio, N, i.e.:

©m = N 0g (3.4)

Equation (3.3) can be written in terms of the joint angle and the gear angle only,

using Eq. (3.4) to obtain:
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N J m © g = - - Bf(8g-ei) - B m N 0 g + NTm

(3.5)

Taking the Laplace transform of Eqs. (3.2) and (3.5), and assuming zero initial

conditions, the equations of motion can be written in matrix form as :

' 2 2 2
N Jms + (N Bm+Bf)j + Kf - Kf

- Kf Jl* + (Bi+Bf)5 + Kf. .e, o

This system is solved for ©g and ©i to obtain:

N (B)+Bf)5

+K f)

and

(3.6)

- (Bfj +Kf)

(3.7)

N (Bf j + Kf)

- (Bfj +Kf)

(3.8)

The torque transmitted through the harmonic drive is measured in the torque

transducer with strain gauges. This sensed torque, Ts, is equal to the sum of the

torque applied to the link and the friction losses of the link support bearings. It is

given by:
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Ts = (Bfs +Kf ) (0g -eO (3.9)

Using Eqs. (3.7) - (3.9), the transfer function between the motor torque, Tm, and

the sensed torque, Ts» is obtained from:

_ N s (J]5 + Bi) (Bf5 + Kf)

N2Jm A(N2Bm+Bf)5+Kf } { JiA(Bi+Bf)5+Kf } - (Bp +Kf)
2

(3.10)

Equation (3.10) is critical in this study since it represents the dynamics of the joint

drive system to be controlled by the joint torque controllers.

The zeros of the open loop transfer function given by Eq. (3.10) are located at 0,

-Kf/Bf, and -Bi/Jj. Since the spring constant, Kft is much greater than the material

damping of the flexible element [Chen 1990], the zero at -Kf/Bf will be far from the

imaginary axis. Furthermore, since J] varies with payload and configuration, the

location of the zero given by -Bi/Ji may also vary significantly at different operating

conditions. For example, the ratio -Bi/Jj for joint 1 of the robot arm under

consideration varies from -0.06 to -0.6. These variations can be even more

significant if different payloads are carried by the end effector.

One pole of the open loop drive system, Eq. (3.10), is located at the origin and,

therefore, will be cancelled by the corresponding zero, resulting in a third order

transfer function. The characteristic equation of this reduced transfer function can

be written as:
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1 2 r •> ~
N ( (Bj + Bf)j + Kf j (lms + Bm) + BIS (Bfs + Kf)

(3.11)

Figure 3.6 shows a representative root locus of the drive system poles for varying

Jj. If J] increases, one pole approaches the origin while the other two poles

approach the roots of (see Eq. (3.11)):

Jm 52 4- (N2 Bm + Bf) 5 + Kf = 0 (3.12)

Since the material damping, Bf, and the motor damping, Bm, are typically small,

these roots are complex and located close to the imaginary axis. Typical values for

joint 1 of the robot arm under consideration are -12 ± j 154.

Based on the observations of the pole and zero locations, it is apparent that for those

joints with relatively high inertia, Jj, the time response will show oscillations due to

the lightly damped pair of complex poles. Figure 3.7 shows the simulated step

response of the drive system for joint 1 of the robot arm. The underdamped

oscillations shown in this figure are typical for this type of drive system. Since they

are unacceptable in most practical robots, an appropriate controller must be used to

improve these dynamics. For this purpose, a joint torque servo, or torque loop, is

presently used in the RRC arm and is discussed in the next section. An alternative

approach to torque control based on model following techniques is also presented in

that section.
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3.3 Joint Torque Control

3.3.1 RRC Joint Torque Control

The existing RRC control system uses the torque servo loop shown in Fig. 3.8 to

improve the dynamics of the joint drive system. Ts is the torque measured by the

torque transducer located just after the harmonic drive. TC is the torque commanded

to the torque loop. Based on the torque error, Tc -Ts, the torque compensator of the

actual system provides a current command signal to the current loop, as described in

Section 3.1. For this model, the dynamics of both the motor and current loop are

lumped into the torque compensator transfer function, and therefore, the output of

the torque compensator is the motor torque, Tm. As mentioned in Section 3.1, the

bandwidth of the motor/current loop combination is significantly higher than the

bandwidth of the torque loop, and therefore, it can be modelled as a simple gain,

equal to the torque constant of the motor.

The RRC torque controller is similar to the one described in Luh [1983], and it

incorporates a phase lead compensator to add damping to the open loop drive

system. The general form of the lead compensator is:

where: TI > T2
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If the time constants TI and T2 are chosen properly, the lead compensator will

increase both the phase margin of the closed loop system and its damping. Figure

3.9 shows the simulated step response of the RRC torque loop for joint 1. A

comparison between Figs. 3.7 and 3.9 indicates that the RRC torque loop

significantly improves the drive system dynamics.

Since the dynamics of the drive system and, therefore, the dynamics of the torque

loop depend on the effective link inertia, which in rum changes with configuration,

it is of interest to examine the robustness of the RRC torque loop for various link

inertias. The Routh-Hurwitz stability criterion was used for this purpose and it was

found that the closed loop system is stable for all values of effective link inertia, Jj.

To obtain indications on robust performance, simulations were performed with

several possible inertia values. Figure 3.10 shows the simulated step response of

the RRC torque loop for joint 1 under maximum, minimum, and median values of

J\. It clearly illustrates that the performance of the torque loop is highly dependent

on the effective link inertia, and therefore, on configuration. Similar results are

indicated by Fig. 3.11 which shows the simulated step response of the torque loop

for joint 7. Since the effective link inertia of this joint does not change with

configuration, the joint responses with no payload, the maximum rated payload,

and a median payload are shown. This figure illustrates that large differences in

performance may be observed in the outermost joints when a payload is present.

The actual values of the RRC arm parameters are proprietary.
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Due to the variation in its dynamics, the RRC torque loop may not be used with the

standard computed torque algorithm, Eq. (2.2), for the reasons discussed in Section

2.1.2. A modified computed torque algorithm is proposed in Section 3.4.1 in order

to compensate for the effects of the configuration changes on the performance of the

RRC torque loop.

3.3.2 Proposed Model Following Torque Loop

The standard computed torque algorithm, Eq. (2.2), was developed under the

assumption that the actual torque applied to the link is equal to the commanded

torque. Equation (2.6) illustrated the complexities which result when this is not the

case. Both the open loop drive system and RRC torque loop were shown to have

varying dynamics so that the applied torque does not track the commanded torque.

In this section, a model following torque control system is proposed to more

accurately track the desired torque command. Such a torque loop would allow

direct implementation of the standard computed torque algorithm. The design and

analysis of the continuous and discrete time controllers are presented.

In this work, the model following controllers are designed such that they can be

added directly to the existing RRC torque loop, as shown in Fig. 3.12. This

approach is taken in order to prevent any modification of the existing hardware.

Nonetheless, the analysis is general in nature so that the controller could be

designed and applied directly to the open loop joint drive system described in

Section 3.2.
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The continuous model following controller is considered to have fixed gains, since

the hardware implementation of variable analog gains can be extremely complex.

Therefore, the robustness of this torque control system with respect to varying plant

parameters is critical. On the other hand, the discrete model following controller is

easily implemented in software in a gain scheduling technique where the controller

parameters are periodically updated based on the configuration of the robot arm.

The objective of the model following controller is to regulate the output of the

torque loop such that it follows the output of a given model, if both are excited by

the same input. This objective is accomplished by attempting to place the poles and

zeros of the closed loop system at the exact locations of the poles and zeros of the

model. Under several conditions given in Astrom [1989], perfect model following

can be achieved with the general linear control law:

/?TC = 7Td - STS (3.14)

where R, S, and T are polynomials in the Laplace (s) operator for continuous

systems or the z operator for discrete systems.

The controller is comprised of a feedback compensator given by -5/7? and a forward

path compensator given by T/R. Block diagrams for the continuous and discrete

systems are shown in Figs. 3.13 and 3.14. The design process, given in Astrom

[1989], is identical for both cases. A brief review of this technique is outlined

below.
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The dynamics of the plant to be controlled are represented by:

f

Consider a model of the form:

(3.16)
m '•»'

For causality,

- degflm > d e g A - d e g f l (3.17)

Furthermore, an observer polynomial, given by by A0, may be required. Its degree

is given by [Astrom, 1989]:

deg/i0 > 2deg /4 -deg / l m -deg5 - l (3.18)

Combining Eqs. (3.14) through (3.16) and considering the observer polynomial

gives:

B T An Bm ,* JQ\
A R + B S A 0 A t

The polynomial fi is represented by the product:
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B = B+ B (3.20)

where 5 contains the unstable or marginally stable zeros. The stable plant zeros

can now be cancelled by specifying R as:

R = RbB+ (3.21)

In this case, the polynomial 7 is given by:

T = ^m (3.22)
B

from which it is evident that A0 Bm contains the factor B . The design process then

reduces to solving the following Diophantine equation:

A /?b + B' S = A0 Am (3.23)

to obtain Rb and S.

From Eq. (3.14), the model following controller for the torque loop is then given

by:

= Td - Is (3.24)
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3.3.2.1 Continuous Case

The design of a continuous model following controller is considered first As

previously mentioned, the controller gains are considered to be constant in this case.

In order to design a robust control system, the minimum value of the link inertia is

considered in the plant model. This approach was found to yield a most robust

system to variations in inertia and damping.

Considering the block diagram of Fig. 3.8 and Eq. (3.13), the transfer function of

the existing RRC torque control loop is given from:

3 2
B(s) £3 s + Bj, s. + B i s + BQ
~A(s) ~ 4 3 2

A 4 s + A 2 s + A2 S + A\ s + AQ

where: £3 =

B2 = NKc{T](A]Kf+BiBf)+AiBf}

B\ = NKc(TiBiKf+AiKf+BiBf)

B0 =

2
A* = N T2AiJm

A3 = N2(T2{AiBm+(Bi+Bf)Jm}+AiJm)+T2AiBf+NKcTiAiBf

A2 = N2(T2{Bm(Bi+Bf)-»-JmKf}+AiBm+(Bi+Bf)Jm)+

T2(AiKf+BiBf)+NKcTiAiBf+AiBf+
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~I

Ai = N2{T2KfBm+(Bi+Bf)Bm+KfJm

NKc(TiBiKf+AiKf+BiBf)

AQ = N2KfBm+BiKf+NKcBiKf

The values of all parameters in the above set of equations are known but proprietary

(see Sections 3.2 and 3.3.1).

Bm(s)The torque loop model, . , (, is selected to be a second order system such that
Am(S)

the natural frequency and damping of the torque loop may be tuned conveniently.

The model is given by:

.£s _ ^m-^) _ '-'mil _ —11 /o *)£\
r ~ A (s) ~ 2 ~ 2 2 \J-*-v)
^ m Am 2S + A m \ s + AmQ

which sarisfies the causality condition given by Eq. (3.17). Furthermore, the order

of the observer polynomial is given by Eq. (3.18) to be greater than or equal to 2.

Thus, the following observer polynomial is selected:

2 2 2 2
A0(s) = s + A 0 \ s + AOO = s +2 as + a = (5 + a) (3.27)

Since the observer dynamics should be faster than the dynamics of the model

[Astrom, 1990], the observer poles, -a, are chosen to be equal to -2cOn.

Equation (3.25) represents a minimum phase system for TI > 0, and therefore, all

zeros of the plant can be cancelled, i.e. 5 = 1 . The degrees of #5 and S are found
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from the Diophatine equation, Eq. (3.23), to be equal to 1 and 3, respectively.

Equations (3.21) through (3.23) are then used to solve for R(s), T(s), and S(s):

(3.28)

where: /?3

R2 = RbcB2

R\ = RbcB\

RQ = RbcBo

and:

(3.29)

where:

T\

TQ = 5mO ^oO

5(5) = S i s + S o (3.30)

where: ST,

52

5i

5o
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Given the values of the parameters of the RRC torque loop and having specified the

natural frequency, o>n, and damping ratio, £> of the model, the polynomials, R, S,

and T, are obtained for each joint. The choice for e^ and £ should be such that the

dynamics of the continuous elements of the arm are not excited. Since the RRC

torque loop is already tuned to avoid excitation of these dynamics, its bandwidth

serves as the basis for selecting the natural frequency and damping for the model

following torque loop. Figures 3.15 and 3.16 show the Bode magnitude plots for

the RRC torque loops at joints 1 and 7. Their bandwidths range between 300 to

500 rad/sec. Based on this observation, the natural frequency and damping ratio for

the model following torque loops at each joint are chosen to be 400 rad/sec and 1.0,

respectively.

Robustness Analysis

It is emphasized that the parameters of the model following controller are

determined using the minimum effective link inertia for each joint. However, as

previously mentioned, the effective link inertia, Ji, changes with configuration, and

the link damping, B], may be difficult to determine. Thus, the issue of robustness

is of great concern for the model following torque loop. To examine robust

stability, the small gain theorem is used [Morari, 1989; Dailey, 1990] which, for

single-input/single-output systems, is equivalent to the Nyquist stability criterion.

Following the standard robustness analysis technique, the parameter uncertainty is

represented by a transfer function, A, and the transfer function of the remaining
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Figure 3.16: Bode magnitude plot of the RRC torque loop for joint 7
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closed loop system is represented by M. Figure 3.17 shows the transformed torque

loop. The link inertia and damping terms are represented by:

Jlnom +

Blnom + AB, (3.31)

where J]nom and Binom are the nominal values of link inertia and damping that were

used to design the model following controller. AJj and ABj are the deviations from

these nominal values. The transfer functions, A and M, are then given by:

A = . ~ . ; -*AB i J ) (3.32)
( Ji + AJ! ) 5~ + ( BI + ABj ) 5

M = ̂  . (3.33)

where: NM = N~ R (T25 + 1) (Bp + Kf) (Jm5 + Bm5)

DM = N2 R (T2* + 1) (Jm* + Bm5) (Ji5 + BIS) +

N KC R (TiJ + 1) (B{S + Kf) (!+ BIS) +

R (T25 + 1) (Bfj + Kf) (]\s + Bj5)
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The small gain theorem states that the closed loop system shown in Fig. 3.17 is

stable if:

I A(jco) M(jco) I < 1 V co e R+ (3.34)

or equivalently,

I A(jco) | < -j—-—r V co e R+ (3.35)
I M(jco) I

Based on Eq. (3.35), robust stability can be examined by plotting the magnitudes of

the functions, A(jco) and , versus CO and verifying that the magnitude of A is
M(jco)

always less than the magnitude of rr.

It is desirable for the model following torque loop to remain stable for all reasonable

uncertainties in link inertia and damping. Since the minimum effective link inertia

was used in the design of the model following controller, the term, AJj, should

always be positive. From Eq. (3.32), it follows that the maximum possible

absolute value of the uncertainty, I A(jco) I, is 1, regardless of the uncertainty in

damping. Thus, the model following torque loop will remain stable for all possible

inertia and damping uncertainties if:

1 < 1 V co e R+ (3.36)
|M(jco)|
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Figures 3.18 and 3.19 are plots of -j - r for joints 1 and 7, respectively, with

0)n = 400 rad/sec and ^ = 1.0. The plots indicate that these joints remain stable for

all possible inertia and damping uncertainties. Similar results are obtained for the

remaining joints.

To examine robust performance, simulations are again used under several possible

values of inertia. Figures 3.20 and 3.21 show the simulated step responses of the

model following torque loop for joints 1 and 7 under the same inertia variations

considered in Figs. 3.10 and 3.1 1. These figures indicate that the dynamics of the

model following torque loop change less drastically with configuration compared to

the RRC torque loop.

3.3.2.2 Discrete Case

Unlike the continuous model following controller, the discrete version allows the

on-line computation of the model following compensators, R, S, and T, based on

the configuration of the robot. In this manner, the changing link inertias can be

accounted for by updating /?, 5, and T. The on line tuning of these parameters can

be considered as a gain scheduling technique in which the scheduling "variable" is

the robot configuration. The controller design follows the same steps as described

for the continuous case.
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A discrete time representation of Eq. (3.25) is obtained by using the bilinear

transformation given by Astrom [1989]:

2 z - 1

where hT is the sampling period. For small sampling periods, this transformation

provides a good approximation of the ZOH equivalent of the plant. Substituting

Eq. (3.37) into Eq. (3.25) gives:

4 3 2
8(2} _ $4 z + $1 z + 32 z + ^1 z +
y4(z) " 4 3 2

z + AT, z + #2 * + A\ z +

2 3 4
where: $4 = 8fl3ht+4B2ht +25ihT +fioht

3 4
+45ohT

4

3 4
+4fi0h-:

2 3 4

2 3 4
+2/1 ihT

2 4
+6/lohT

3 4
+4/lohT

2 3 4
+/loht
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Since deg A(s) - deg B(s) = 1, the bilinear transformation yields a zero at -1. In this

case, the polynomial, B , is given by:

B' = (z+1) (3.39)

For the discrete time model, the ZOH equivalent of the continuous time model with

£ = 1.0 is chosen. An additional zero at -1 is necessary for the model to satisfy Eq.

(3.22). The model is then given by:

Bm(2) _ 0.5 (;+l

where: 'Bm\ = 1.0 - e (1.0 + conht)

- 1.0)

= -2.

= e

The observer is also chosen as the ZOH equivalent of the continuous time observer

and is given by:

A0(/) = z"-

-oh-t
where: Ami = -2.0 e

48



The observer parameter, a, is chosen to be twice the natural frequency of the model.

The model natural frequency and damping ratio are selected by assuming a sampling

rate of 1000 Hz and executing several simulations with different model parameters.

The best combination of parameters was selected from these simulations to be CDn =

300rad/sec and £ = 1.0.

Eqs. (3.30) through (3.32) are used to solve fortf(z), 7(z), and S(z) as:

3 2
R(z) = ^ 3 2 + ^ 2 2 + ^ 7 + ^0 (3.42)

where: ^ =

$2 = * id

and: *ld =

€4 = ^oO^mO- AQ\ ̂ mO - A<ti Ami + -^mO + -^ol

D4

T(r) = T3 z
3 +T2 z

2 + T! z + TO (3.43)

where: 13

TO
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S(z) = 532 +S2Z 2 + Siz + SQ (3.44)

where: 53 = : - C3

c,

and: €3 = ^oO-^mO - ^ol -^mO - ^oO-^l +.*mO + ^ol

C2 =

Co

03

Eb

DI

DO

The coefficients of the #, 5, and 7 polynomials given by the above equations can

be determined given the parameters of the RRC torque loop.

Figures 3.22 and 3.23 show the simulated step responses of the discrete model

following torque loop at joints 1 and 7 under the previously considered link inertia

variations. It is evident from the figures that the discrete model following torque

loop performs very well in simulation for the various link inertias. It is emphasized
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that this controller is easily implemented in software and, therefore, can compensate

for the variations in link inertia. On line-compensation requires periodically

computing Ji given the robot configuration and then calculating R(z), T(z), and 5(z)

using Eqs. (3.42) through (3.44). This adjustment is not possible with the fixed

gain RRC torque loop or the fixed gain continuous model following torque loop.

3.4 Computed Torque Control

Two approaches to torque control were presented in the Section 3.3: the RRC

torque loop and a novel model following torque controller (both continuous and

discrete). This section presents the computed torque algorithms to be used with

these two types of torque loops. The proposed "Equivalent Computed Torque"

algorithm is used with the existing RRC torque loop. The standard computed

torque algorithm given by Eq. (2.2) is used with the proposed model following

torque loops.

3.4.1 Proposed Equivalent Computed Torque Algorithm

A novel form of the computed torque algorithm is proposed which can be used

directly with the existing RRC joint torque loops. It is based on the concept of

"Equivalent Inertia and Damping", described below, and therefore, is referred to as

the "Equivalent Computed Torque" (ECT) algorithm. It is noted that the standard

computed torque algorithm is not appropriate for use with the RRC torque loop
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computed torque algorithm is not appropriate for use with the RRC torque loop

since variations in the dynamics of the torque loop result in the non-linear, coupled

dynamical equations given in Section 2.1.2 (seeEq. (2.6)).

The proposed algorithm is based on heuristics in which the instantaneous torque

command required to produce a desired joint motion is approximated by the steady
$

state torque value required to produce a desired steady state motion. The torque

commands are determined by summing of three torque values: i) the steady state

torque command, TCa, required to produce the desired acceleration when no

damping losses are present; ii) the steady state torque command, Icdamp, required

to compensate for the damping losses; iii) the steady state torque command Tcdist.

required to compensate for disturbance torques which result from the gravity

loading and the motions of the other joints. The first two components are evaluated

by introducing the concepts of equivalent inertia and damping.

Equivalent Inertia and Damping

The "Equivalent Inertia" and "Equivalent Damping" are defined as:

Definition 1: Equivalent inertia is the steady state value of the

commanded torque required to drive the link at a constant unit

angular acceleration when no damping losses are considered.
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Definition 2: Equivalent damping is the steady state value of

commanded torque required to drive the link at a constant unit

angular velocity.

According to these definitions, the equivalent inertia and damping can be found by

examining the RRC torque loop transfer function given by:

(3-45)

where G is given by Eq. (3.10) and Gc is given by Eq. (3.13).

For the single joint model considered here, the link is driven by the output of the

torque loop, and the link dynamics are given by:

TS J) S + Bl 5

Substituting for G and Gc in Eq. (3.45), multiplying Eqs. (3.45) and (3.46), and

inverting yields:
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£ N2(B f j + Kf)(T2f + 1) + N2(J|A Bu)(T2J + 1) . 2
0 ~ N K c ( T i 5 + l ) (Bf j + Kf)

 JmJ +

(B fj + Kf)(T2J + 1) + NKc(Tis + l)(BfJ + Kf) 2
N K

N2(Bf5 + Kf)(T2J + 1) + N
N K c ( T i 5 + l)(Bfj + Kf)

(Bf5 + Kf)(T2J -H) •»• NKc(Ti^ + l)(Bfj -f Kf)
N K C ( T ] 5 +

(3.47)

For TI > 0, Eq. (3.47) represents a stable system, and therefore, the steady state

value of the torque required to drive the link at a constant unit acceleration with no

damping losses can be found by setting the last two terms equal to zero and

applying the final value theorem for a unit step in angular acceleration. The

corresponding torque command is given by:

+ N K c ) J i _ , ,
N K ~ mecl

The two right hand side terms of Eq. (3.48) may be thought of as the motor

equivalent inertia and link equivalent inertia, respectively.

Similarly, the equivalent damping may be found from Eq. (3.47) by applying the

final value theorem for a unit step in angular velocity:
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Considering a single joint moving at an angular velocity, 6ia, Eq. (3.49) implies

that the steady state torque command:

Tcdamp = Bgq 6ia (3.50)

will compensate for the damping losses and, thus, maintain this angular velocity.

Similarly, Eq. (3.48) implies that the steady state torque command given by:

tea = Jeq ©Id (3.51)

will yield a steady state angular acceleration, Bid, if no damping losses occur.

Assuming that the instantaneous torque requirements are approximately equal to the

steady state torque requirements, the sum of the two torque commands given by

Eqs. (3.50) and (3.51) is considered to be the torque command required to obtain

the desired angular acceleration, 0id, at the angular velocity, 6ia. It is noted that

this is a heuristic, the validity of which is tested in Sections 4 and 5.

This single joint case is generalized to include all joints in the next section. The

complete Equivalent Computed Torque Algorithm is subsequently developed by

including a third term to account for the disturbance torques.
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Equivalent Computed Torque Algorithm

The sum, 1^ + Tcdamp> for all joints may be formed by considering that the terms,

Jj, are given by the diagonal elements of M (see Section 3.2). Using Eqs. (3.48)

and (3.49), T^ + Tcdam can be written as:

= [diag [1 ^ K^] diag M + diag [Jme

diag [Beq] 6a (3.52)

where diag indicates a diagonal matrix. If the position and velocity feedback terms

of Eq. (2.2) are added to Eq. (3.52) and the estimates of the inertia and damping

terms are used, the following form of the computed torque equation is obtained:

Tc = [diag [* N KC
K°] diag [™ 1 + diag tf™^] *

{ 0d + Kd (0d - 0a) + Kp (0d - 6a) } + diag (B^) 6a

(3.53)

Equation (3.53) should include a third term, TC{jiSt, which accounts for the

disturbance torques that result from the off diagonal link accelerations and the

Coriolis, centrifugal, and gravity torques. The steady state torque command, ToUst,

required to cancel these disturbance effects can be found by considering the block

diagram of Fig. 3.24. When a disturbance torque, Tdislt is present, the net torque

applied to the link, Tapp. is equal to the sum of the disturbance and the sensed

torques. This sum can be found by reducing the block diagram to obtain:
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3 „ 2
_ j?3 •? + BI s + B \ s + fln

^app - - ^dist + 4 3 2 TC
/ ^ 4 5 + ^ 3 5 + A2 S + A i s + AQ

3 2
B-j s + fi6 s + 85 s + £4 _
4 3 2 Tdist

+ A2 S + AI s + AQ

(3.54)

2
where: B-j = N T2JmBf

B6 = N2(T2(JmKf^BmBf)+JmBf)

55 = N2(T2BmKf+JmKf+BmBf)

B4 = N2BmKf

and the other terms are given by Eq. (3.25).

To cancel the effects of the disturbance torque such that Iapp = 0, the steady state

value of the commanded torque can be found Eq. (3.54), using the final value

theorem:

Mist

This scale factor, —J^-JT—- , is used to compute the torque commands that are

necessary to reject the disturbances from the off diagonal inertia elements and the

Coriolis, centrifugal, and gravity disturbances. Equation (3.55) may be written in

vector form to include all joints. Utilizing the estimated dynamical parameters of
A A
M and Q gives:
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Tccnst = N K

(3.56)

Adding Tcdist to Eq. (3.53) gives the Equivalent Computed Torque equation:

diag[
1 NK

diag [Bineq] 0a (3.57)

It is noted that only the link, and not the motor rotor or transmission, inertia and
A A

damping parameters are included in the M and Q terms.

The control scheme that utilizes Eq. (3.57) will be refered to as the Equivalent

Computed Torque (ECT) controller. It is similar in form to the standard computed

torque controller of Eq. (2.2), with the addition of the motor equivalent inertia and

damping terms, and the scaling of the rigid link manipulator dynamics by the
i • j- H + N Kcldiagonal matrix, diag — J^-JT — ̂  .

Implementation

The complete ECT robot controller is implemented as shown in the block diagram

of Fig. 3.25. It consists of two pans: the ECT algorithm and the RRC torque loop.

The torque commands are computed from Eq. (3.57) at finite time intervals. The

update rate depends directly on the computational requirements of the rigid body
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dynamics which are calculated using a recursive Newton-Euler formulation, as

described in Craig [1986]. The RRC torque loop is built from analog hardware,

and therefore, is a continuous time controller. The torque commands are given to

the RRC torque loop through a DAC and a ZOH.

In order to compute the torque commands, the desired joint position, velocity, and

acceleration must be given. If the path to be traversed is known a priori, a

polynomial curve is typically fit to each joint trajectory. From this curve, the joint

accelerations and velocities may be found by differentiation. However, for certain

applications, particularly in teleoperation, the path is not known a priori. In this

case, either the desired acceleration and velocity terms are set to zero, or they are

approximated by finite difference schemes. In this study, the desired velocity and

acceleration terms are found from the position commands using a backwards

difference scheme, i.e.:

n-1
i— (3.58)

i" - ®d" hf '"' 0.59)

where n is the time index and he is the command update period.

The diagonal gain matrices, Kp and K<j, are determined from:

Kp = kp I (3.60)

62



Kp = k<j I (3.61)

where kp and k<j are scalars and I is the identity matrix. Using this formulation, the

ECT controller is completely specified by three parameters: the proportional gain,

kp, the derivative gain, kj, and the command update period, he.

3.4.2 Computed Torque with Model Following Torque Loop

The computed torque controller to be used with the model following torque loops is

given by Eq. (2.2). It is emphasized that only the link, and not the motor rotor or
A A

transmission, inertia and damping parameters are included in the M and Q terms.

In the case of the continuous model following torque loop, the two-level robot

controller is implemented in the same manner as the ECT controller (see Fig. 3.25).

However, at each joint the model following controllers are added to the existing

RRC torque loops. The two sets of parameters, kp, k^, hc, and con, £, a,

completely specify the dynamics of the computed torque algorithm and the

continuous model following torque loops, respectively.

In the case of the discrete model following torque loop, the two-level robot

controller is implemented as shown in the block diagram of Fig. 3.26. It consists

of the computed torque controller, Eq. (2.2) and the discrete model following

torque loops, Eq. (3.23). In this case, both the computed torque controller and the

torque loops are discrete time controllers. Furthermore, the parameters of/?, S, and
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T are updated on-line at a specified rate. This study assumes that the torque

commands and the parameters of the discrete model following torque loop are

updated at the same time interval. This approach is chosen since the torque loop

parameters depend on the terms of the inertia matrix which are, in turn, updated as

• pan of the torque command calculation. It is emphasized that the sampling rate of

the torque loop must be much higher than the update rate of the torque loop

parameters. The two sets of parameters, kp, ly, hc, and con, £, c, and hT

completely specify the dynamics of the computed torque algorithm and the discrete

model following torque loops, respectively.
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Chapter 4: Performance Evaluation of the
Proposed Controllers Using
Simulation

In this chapter, the three controllers presented in Chapter 3 are evaluated using

simulation. The PD controller currently implemented on the RRC arm is utilized as

the basis for comparison. The simulation package employed and the performance

evaluation procedures are discussed. The results of the numerical simulations for

several test cases are presented. Important factors studied in these tests include: i)

the update rate of the joint angle and torque commands; ii) the presence of a known

payload; iii) the use of inaccurate payload inertia parameters; iv) the exclusion of

the desired acceleration and velocity terms from the computed torque algorithm.

4.1 Robot Arm Simulation Software

Simulations are used to evaluate the various control algorithms before implementing

them on the actual hardware. The appropriate range of controller gains for

satisfactory system performance is also determined from these simulation results.

A flowchart of the simulation software is shown in Fig. 4.1. A modified version of

the RDS (Robot Dynamic Simulation) package [Chen, 1990] forms the core of the

simulation software . It provides the dynamical equations of the robot arm and the

appropriate numerical integration routines. Two additional programs are added to

the RDS package. The first program computes the desired joint trajectories (see
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Section 4.2.1) and provides them to the RDS software. The second program

computes the performance measures based on the actual joint angle trajectories

returned from the RDS software.

RDS is an efficient simulation package for the analysis of open-chain manipulators

with revolute joints that are driven by motors through speed reduction mechanisms.

It utilizes the Macsyma symbolic manipulation program to generate the dynamic

equations of motion of the robot manipulator. A highly efficient Adams-Bashford-

Moulton integration routine from the Samsan numerical methods library performs

the integration of the system of first order differential equations, which are

generated by the symbolic manipulation program.

The various control algorithms under study are incorporated into the software

through separate control subroutines. These subroutines are called, at a user

defined rate, to compute the motor torque commands, given the dynamical state of

the robot arm. Any controller states, such as the torque compensator states, which

are to be integrated require their derivatives to be computed in the control subroutine

and, subsequently, passed to the Adams-Bashford-Moulton integration routine.

Detailed information on the RDS package may be found in Chen [1990].

4.2 Performance Tests

In evaluating the performance of a robot manipulator, the task should be carefully

chosen to fully exercise the capabilities of the arm in a variety of configurations.
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Furthermore, appropriate performance measures should be selected to accurately

reflect the characteristics being evaluated. Currently, two standards have been

proposed for evaluation of robot performance: ANSI/RIA R. 15.05 and ISO/9283.

The ANSI standard [1990] considers only the point-to-point and static

characteristics of robot manipulators. The ISO standard [1990] provides tests for

evaluating both static and dynamical robot performance. The ISO standard is used

as the basis for the performance evaluation in this work.

4.2.1 Test Path

The ISO/9283 standard defines two paths for evaluating tracking performance; one

is circular and the other square. Both paths lie in the diagonal plane of a cube, the

edges of which are parallel to the base coordinate system (see Fig. 4.2). This cube

is located within the portion of the manipulator workspace that has the greatest

anticipated use. Furthermore, it occupies the maximum allowable volume.

In the current study, both tracking performance and cornering overshoot are

evaluated. For tracking performance, the circular ISO path is chosen in order to

avoid discontinuities in the desired velocity and acceleration terms of the computed

torque equations. Such discontinuities result in large (theoretically infinite) torque

commands, and therefore, should be avoided when evaluating tracking

performance. The controller performance in the presence of velocity and

acceleration discontinuities is considered by performing a cornering task and

examining the resulting overshoot. To realize this task, one corner of the square
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path specified in ISO/9283 is used. A single path that allows for the evaluation of

both tracking performance and cornering overshoot is chosen and is shown in

Fig.4.2. The robot end-effector starts at the indicated point and performs the

cornering task first. It then proceeds to track the circular path. The commanded

orientation of the end-effector remains parallel to the base coordinate system for the

entire path. For all test cases, the circle was centered at the point (0.0, -0.2,1.2) m

in the base coordinate system and had a radius of 0.5 m. The speed along the

trajectory was selected to be 0.25 m/s. These parameters were found by trial and

error in order to maximize both the radius of and the velocity around the circle,

while remaining within joint position and velocity limits, respectively.

The test path is specified in Cartesian coordinates by a series of discrete points.

Each point is computed given the radius of the circle, the speed along the trajectory

(scalar speed), and the command update rate. Figure 4.3 shows the time history of

the path projected along each axis of the base Cartesian coordinate system. The

corresponding joint angles, Fig. 4.4, are found using a recursive, pseudoinverse

Jacobian, inverse kinematics algorithm [Asada, 1986].

4.2.2 Performance Measures

Each section of the test path, cornering and circular, is comprised of a sequence of

points. For the cornering section, the commanded path is comprised of / points,

(xci, ycj, Zcj), i = 1, 2,... /, expressed with respect to the base coordinate system.
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To quantify the Cornering Overshoot (CO), the following equation is proposed by

the ISO standard:

/ f L
J 2

CO = max
l 1 [ (xci - xj)2 + (yci - yi)

2 + (zci - Zj)2 ] J (4.1)
1 =2

where (xj, yj, Zj), i = 1,2,... /, are the Cartesian coordinates of the actual path and

2 is the index corresponding to the corner point (see Fig. 4.2). Therefore, the

cornering overshoot is the maximum deviation from the commanded path after the

robot has passed the comer point of the task.

The circular section is comprised of m commanded points, (xcj, ycj, zc:),

j = 1,2,... m, expressed with respect to the base coordinate system. This section

is executed n times. Path accuracy is defined from:

Path
Accuracy

f 1-'m r - 2 - 2 - 2i2!
= max [ L(xc j - Xj)

z + (ycj - yj)^ + (zcj - Zjr J
j=l

(4.2)

where (xj, yj, Zj), j = 1, 2, ... m, are the mean values of the j point coordinates

for the n repetitions of the path, i.e.:

H
k=l k=l k=l
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and (Xjk, yjk, Zjk) is the j point of the actual path during the k repetition. Thus,

path accuracy is the maximum deviation of the commanded path from the "mean"

actual path.

Equation (4.2) defines path accuracy through the £00-norm (i.e. the maximum) of

the translational error. Another common norm used to quantify performance is the

£2-norm, which is defined from:

1
m \ 2

— / ( • * . *- \^ A- (M • . v -~\ 4- (y • . ~7-Y
m ^ ^xcj V + (ycj VJ; + (2cj z}> (4.4)

Although this measure is not proposed by the ISO standard, it will be adopted in

this work, since it represents the root mean square translational error along the

entire trajectory.

To completely define the end-effector position, both translational and orientational

information is required. One method of representing the orientation of a given

frame with respect to a reference frame is to use an "equivalent angle-axis" [Craig,

1986]. This representation describes the axis of rotation, K, about which the

reference frame must be rotated by an angle, a, to become parallel to the frame

under consideration (see Fig. 4.5). In this study, the measure of orientation error is

the magnitude of the rotation angle, a, between the actual end-effector orientation
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Figure 4.5: Equivalent angle-axis representation
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and the commanded orientation.^ This quantity gives an indication of the error in

orientation without regard to the direction of rotation.

Measures of orientation error which are analogous to the translation error measures

can now be defined. The L^ orientation error is given by:

m
= max { I s j U (4.5)

where a, j = 1, 2,... m, is the mean value of the angle of rotation corresponding toj

the j point for the n repetitions, i.e.:

(4.6)

otjk is the angle of rotation corresponding to the j point during the k repetition.

Furthermore, the LI orientation error is given by:

m
j_
m (4.7)

t This measure was also suggested by J. J. Craig during a private conversation on
January 17, 1991.
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4.3 Test Cases and Simulation Results

Four controllers are evaluated through simulation: the PD controller currently

implemented on the RRC arm, the Equivalent Computed Torque controller (ECT),

the Computed Torque controller with Continuous Model Following torque loop

(CTCMF), and the Computed Torque controller with Discrete Model Following

torque loop (CTDMF). All parameters of the robot arm are assumed to be known

in the simulations. Several test cases are considered to examine the effects of: i)

the update rate of the joint angle and torque commands; ii) the presence of a known

payload; iii) the use of inaccurate payload inertia parameters; iv) the exclusion of

the desired acceleration and velocity terms from the computed torque algorithm.

4.3.1 Baseline Test Case

Table 4.1 presents the controller parameters for the baseline test case. The

command update rate, T-, was selected to be 40 Hz for all controllers since this is

the maximum rate that may be used with the actual robot hardware. This limit is

due to the time period required to compute the inverse robot dynamics. For the

computed torque controllers, kd was chosen to correspond to a damping ratio of

0.707 in Eq. (2.3), and kp was chosen through simulations by increasing its value

until substantial improvement in performance could no longer be realized. For the

PD controller, kp was chosen from tests on the actual robot arm to be the highest

gain for which the arm remained stable in all test cases. It is emphasized that kp has

significantly different physical interpretation between the PD and the computed
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Table 4.1: Controller parameters for the baseline test case

Payload

kp

kd (sec'1)

hc (sec)

(on (rad/sec)

C
a (rad/sec)

hT(sec)

PD

none

6 (sec'1)

NA

0.025

NA

NA

NA

NA

ECT

none

200 (sec'2)

20

0.025

NA

NA

NA

NA

CTCMF

none

200 (sec'2)

20

0.025

400

1

800

NA

CTDMF

none

200 (sec'2)

20

0.025

300

1

600

0.001

Translaiional
Error

(mm)

-80

- 60

Orients tional
Error

40 .3
(radxlO )

- 20

L2(T) L2(0) CO

Figure 4.6: Baseline Test Case Results
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torque controllers (see Sections 2.1.1 and 3.1). This fact is shown by the different

units of kp corresponding to these two cases. The model following controller

parameters are chosen under the guidelines discussed in Section 3.3.

Figure 4.6 shows the values of the performance measures obtained from the

baseline test simulation. The ECT controller has the best performance in all

categories, while the CTCMF controller has the next best. The CTDMF controller

performs well in terms of translational error and cornering overshoot, but performs

poorly in terms of orientational error. With this one exception, all computed torque

controllers show improved performance over the PD controller. Improvement

ranges between 10% and 90%.

To further study the poor performance of the CTDMF controller with respect to

orientation, the actual time histories of the joint angles are shown in Fig. 4.7. The

figure shows that all joints perform well with the exception of the last two, namely

joints 6 and 7. Although the errors at these joints do not contribute substantially to

the translational error, due to their short link lengths, they contribute greatly to the

orientational error.

The poor performance of joints 6 and 7 can be attributed to the fact that, at these

joints, the discrete model following controller is not robust with respect to

disturbance torques, T^t (see Fig. 3.18). It is noted that these disturbances result

from the coupling of joint motions and the gravity loading (see Section 3.4.1).

Figure 4.8 shows the output, Ts, of the discrete model following torque loops at

joints 1,6, and 7 for a unit step in disturbance torque, Tdist. The figure indicates
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Figure 4.8: Response of discrete model following torque loop
to step in disturbance torque
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that the discrete model following controller of joint 1 is very robust with respect to

the disturbance input since Ts quickly converges to zero. However, joints 6 and 7

show a significant steady state output torque. This result indicates that the discrete

model following controllers of these joints are not able to accurately regulate the

output torque in the presence of the inevitable disturbances, and therefore, the

performance of the CTDMF controller is degraded (see also Section 2.1.2).

4.3.2 Effects of Update Rate

The second test case considers the effect of the joint angle and torque command

update rate, v—, on performance. Since the commanded path is specified as a

sequence of discrete points, the closeness of this sequence to the actual path is

highly dependent on the rate at which the points are provided to the controller.

Furthermore, since the velocity and acceleration commands for the computed torque

controller are approximated from the position commands through a backwards

difference scheme, the command update rate may have significant effects on the

accuracy of these approximations.

The command update rate for this test case was increased to 100 Hz. AH other

controller parameters are identical to those used in the baseline test case. Figure 4.9

displays the results obtained from the simulations in this test case. The relative

performance of each of the controllers is similar to the baseline test case, with the

ECT and CTCMF controllers showing the best performance. Although, the

performance of the PD and CTDMF controllers remain at approximately the same
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levels, the performance of the ECT and CTCMF controllers improves as the rate is

increased from 40 to 100 Hz.

Figure 4.10 compares the performance of the ECT controller for the 40 and 100 Hz

cases. Improvement is seen in all performance measures and ranges between 60%

and 90%. The improved performance results from the fact that: i) The desired

velocity and acceleration commands are more accurately approximated by the

backwards difference scheme in the 100 Hz case; ii) The torque commands are

updated more frequently in this case, thus better reflecting the true torque

requirements of the arm.

Figure 4.11 compares the performance of the CTCMF controller for the 40 and 100

Hz cases. This controller shows improved performance only in the translational

and cornering overshoot measures. Improved performance is due to the same

factors discussed above. As seen with the CTDMF controller, joints 6 and 7 have

the poorest tracking performance, indicating that the continuous model following

controller is also not robust with respect to disturbance torques.

4.3.3 Effects of Payload and Inaccurate Payload Inertia Parameters

The ability to incorporate the payload inertia into the controller equations is a

distinct advantage of the computed torque controllers over the fixed gain PD

controller. This test case examines the effect of the payload on performance.
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Furthermore, since uncertainty in the parameter values of the dynamical model may

have a significant impact on the performance of the computed torque controllers, the

effect of using inaccurate payload parameters is also examined. To this end, the

inertial properties of the payload are under- and over-estimated by 25%. The

payload considered is a 1.2 m long hollow steel beam with rectangular cross-

section, 51 x 76 mm outside, and wall thickness of 6.5 mm. Its mass is 12.2 kg

and the corresponding inertia matrix, with respect to the end effector coordinate

system, is given by:

I =
1.5 0 .0 O . O n
0.0 0.12 0.0
0.0 0.0 1 . 5 J

kgm2

These values correspond to approximately half of the payload capacity of the RRC

arm. All controller parameters in this test are equal to those used in the baseline test

case.

Figure 4.12 displays the simulation results obtained when the exact payload values

are used in the computed torque equations. The ECT controller shows the best

performance for all measures. Furthermore, the CTDMF controller performs

equally well in terms of translational error and cornering overshoot. It is also noted

that the CTDMF controller shows better performance than the CTCMF controller in

all categories.

It is of interest to examine the performance of each controller separately. Figure

4.13 shows the performance measures obtained for the PD controller with and

without the payload. It indicates that the performance of the PD controller
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decreases with the addition of the payload. This is primarily due to increased

gravity loading of the robot arm. It is noted that higher values of the proportional

gains, which correspond to a stable system when no payload was present, resulted

in severe oscillations in the joint positions when the payload was added. Since the

payload parameters are not utilized in the PD controller, the under- and over-

estimated payload tests have no meaning for this controller.

Figure 4.14 shows the performance measures obtained for the ECT controller in the

following cases: i) no payload; ii) known payload; iii) under-estimated payload

inertia characteristics by 25%; iv) over-estimated payload inertia characteristics by

25%. The performance of the ECT controller remains approximately unchanged, as

expected. The figure also shows degradation in performance when inaccurate

payload estimates are used.

Figure 4.15 shows the performance measures obtained for the CTCMF controller

under the same conditions. The performance of the system degrades significantly

with the addition of the payload, particularly in terms of the orientational error. The

poor performance is due to the fact that the parameters of the continuous model

following torque loop are fixed. It is also noted that the controller is designed

based on the inertia characteristics of the unloaded arm. However, the link inertias

change significantly with the addition of the payload, and therefore, the model

following controller parameters are not the appropriate ones for the loaded case.

Figure 4.16 shows the performance measures obtained for the CTDMF controller

under the four payload conditions. The performance improves slightly with the
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addition of the payload, even if the payload is over or under-estimated. This

improvement is due to the enhanced robustness of the torque loops at the last joints

when a payload is present. Figure 4.17 shows the output, Ts, of the discrete model

following torque loop for a unit step in disturbance torque, Tjist, at joints 6 and 7

when the payload is present. A comparison with Fig. 4.15 shows that the torque

loop is much more robust with respect to the disturbance torque in this case.

4.3.4 Effects of Eliminating the Desired Acceleration and Velocity

Terms from the Computed Torque Equations

The last test case is used to examine the effect of excluding the desired acceleration

and velocity terms from the computed torque equations. This case is of interest

since these terms are approximated by a backwards difference scheme. This

approach was considered for the reasons discussed in Section 3.4.1. All controller

parameters are equal to those used in the baseline test case.

Figures 4.18, 4.19, and 4.20 show the performance measures corresponding to the

ECT, CTCMF, and CTDMF controllers for this test case. Small changes in

translational and orientational performance are observed when the desired

acceleration terms are excluded. However, there is a significant effect in

translational performance when the desired velocity terms are eliminated. The

cornering overshoot also increases as the two terms are eliminated.
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The fact that the desired acceleration terms have no significant effect on the

performance suggests that either these terms are small for the given trajectory or that

they are not well approximated by the backwards difference scheme at this sampling

rate. Figure 4.21 compares the contributions of the desired acceleration and

velocity terms as they appear in the computed torque equations (Eq. (2.2) and Eq.

(3.57)), i.e. ©d versus kp ©4. The values correspond to joint 1 over the circular

section of the test path. The figure indicates that the desired velocity term is much

more significant than the acceleration term for this joint.
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Chapter 5: Experimental Performance
Evaluation of the ECT Controller

The simulation tests of Chapter 4 showed that the ECT controller had the best

overall performance with respect to all performance measures. Furthermore, this
** __ -

controller is easily implemented with the existing hardware. Therefore, the ECT

controller is experimentally studied using the actual robot system. The existing PD

controller is again used as the basis for comparison. The experimental set-up and

the results obtained are presented in this chapter. The experimental and simulation

results are also compared.

5.1 Experimental Set-up

The experimental set-up is shown in Fig. 5.1 and consists of the RRC 1607HP

mechanical and electrical hardware and an Intel Multibus I bucket equipped with an

Intel 386/387 microprocessor board. The control testing software is downloaded to

this board from a Micro-VAX computer. In the case of the ECT controller, the

desired joint angles, angular velocities, and angular accelerations are updated at

each command cycle. The actual joint angles and angular velocities are measured

by the resolvers and are convened to digital signals by an ADC board in the

Multibus I bucket. These values are used by the control software that implements

the ECT algorithm to compute the torque commands. The torque commands are

subsequently passed to the analog torque loop through the DACs of the RRC

hardware. A similar procedure is followed for the PD controller. In this case,
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however, only the desired joint angles are updated. The PD controller subsequently

computes the velocity commands for the analog velocity loop (see Section 3.1).

The architecture of the testing software is shown in Fig. 5.2. Prior to the execution

of any tests, the arm must be brought to a reference, or home, position. This

procedure is necessary since the resolver counts are measured with respect to this

known position. The user specifies which measurements are to be saved in the

memory of the microprocessor board for further processing. Joint angles, angular

velocities, or the end-effector position may be selected The end-effector position is

computed from the actual joint angle measurements using the robot forward

kinematics algorithm. The user must select the controller to be tested and specify

the appropriate parameters.

After the user inputs have been properly completed, the test is executed. The points

along the standard path, shown in Fig. 4.2, are computed first. The arm then

moves from its current position to the starting position, where it remains for 5

seconds for all transients to settle. The path is executed by updating the desired

joint positions at the specified time interval. The torque or velocity commands are

calculated from these desired positions, as described above. The actual data used to

compute these commands are saved in the memory of the microprocessor board.

After the test has been completed, the performance measures are evaluated from

these data and displayed. The raw data may also be transferred to the Micro-VAX

computer for further processing.
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Several important safety features are incorporated into the software. In order to

avoid physical damage to the robot arm, position, velocity, and torque limits are

specified for each joint. The control algorithm checks both the commanded and

actual values against these limits before issuing the commands to the joint

controllers. If a commanded or actual value is out of range, the arm is immediately

disabled and an appropriate message is displayed.

5.2 Test Cases and Experimental Results

Those test cases which are examined in the simulation tests are also studied

experimentally, with the exception of the update rate case. It is noted that the

update rate could not be increased beyond 40 Hz due to hardware limitations. In

the experimental tests, the £2 and L^ performance measures are computed using 5

repetitions of the circular section, as specified by the ISO standard (see Section

4.2.2).

5.2.1 Baseline Test Case

The controller parameters for the baseline test case are identical to those given in

Table 4.1. Figure 5.3 shows the experimental results obtained for this case. As

expected, the performance of the ECT controller is superior (40% to 80%) to that of

the PD controller in terms of the translational and cornering overshoot measures.

The PD controller, however, shows better performance in terms of the orientation
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error. The joint angle trajectories for the ECT controller are shown in Fig. 5.4.

Joints 6 and 7 do not perform well in this case, which contributes to the poor

performance in orientation. This result is most likely due to the inaccurate model

used. It is noted that friction dominates the dynamics of the last joints since their

inertia values are small. No effort was made in this work to verify the frictional

model used in the computation of the torque commands, and its fidelity is therefore

unknown. This explanation is further supported by the results of the payload test

case, described next.

5.2.2 Effects of Payload

The inenial properties of the payload are identical to those given in Section 4.3.3.

All controller parameters are kept at the same values used in the baseline test case.

However, for this test, the desired acceleration commands were excluded from the

equivalent computed torque algorithm. This change was necessary since, in this

case, the desired acceleration terms resulted in torque commands which exceeded

the limits set in the testing software.

Figure 5.5 shows the experimental results obtained from the payload test. The

performance of the ECT controller is superior (15% to 85%) to the performance of

the PD controller, with respect to all measures. Figures 5.6 and 5.7 show the

experimental performance measures of the PD and ECT controllers, respectively,

both with and without the payload. As expected, the performance of the PD

controller decreases with the addition of the payload . This result is primarily due
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to the increased gravity loads. However, the ECT controller is not effected in terms

of the translational error, and it improves substantially in terms of the orientation

error. The improved performance in orientation is due to the change in the relative

importance of the inertia versus the frictional terms for the last two joints. In this

case, the inertia terms for these joints have increased significantly, thus dominating

the dynamical behavior.

5.2.3 Effects of Eliminating the Desired Acceleration and Velocity

Terms from the Computed Torque Equations

The last experimental test case examines the effect of excluding the desired

acceleration and velocity terms from the computed torque equations. Figure 5.8

shows the results of this test case. As expected, the desired acceleration term has

very little effect on the translational and orientational performance. However,

setting the desired velocity term equal to zero results in a dramatic performance

deterioration in terms of the translational measures. The cornering overshoot also

increases as the desired acceleration and velocity terms are removed. These results

are identical to those obtained from the simulation tests. They indicate that the

velocity terms are both significant and well approximated by the backwards

difference scheme in the circular section of the path, while the acceleration terms are

less significant.
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5.3 Experimental Versus Simulation Results

The fidelity of the simulation package is of particular interest in controller synthesis

studies. The simulation and experimental results were compared to validate the

simulation tests.

Figures 5.9 and 5.10 compare the simulation and experimental results obtained

from the baseline test case using the PD and ECT controllers, respectively. Figure

5.9 shows good agreement for the PD controller. However, in the case of the ECT

controller, the orientational measures are significantly different. This disagreement

results from the inaccuracy of the friction model, as discussed in Section 5.2.1.

Since the PD controller does not rely on knowledge of the plant, the fidelity of the

PD simulations is not as greatly effected by model inaccuracies.

Figures 5.11 and 5.12 compare the simulation and experimental results obtained

from the payload test case using the PD and ECT controllers, respectively. Good

agreement is again observed between the PD controller results. However, the

results corresponding to the ECT controller show significant differences, especially

in terms of orientation error. The fact that the agreement has not improved with the

addition of the payload indicates that other causes, in addition to the friction model,

are responsible for this divergence. Another possible source of error is the use of

inaccurate estimates for the RRC torque loop parameters, particularly the torque

compensator gain, Kc (see Fig. 3.8). This gain is tuned by hand for each

individual RRC arm, and therefore, the actual value for the arm is different from the
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nominal one quoted by RRC. Variations in KC significantly impact the ECT

controller, as shown by Eqs. (3.47), (3.48), and (3.62).
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Chapter 6: Conclusions and Directions for
Further Research

This study examined the implementation of computed torque controllers on a robot

arm with flexible, geared, joint drive systems that are typical in many industrial

robot arms. The standard computed torque algorithm is not directly applicable to

this class of manipulators due to the flexibility of the joint drive system. The

proposed approach combined a global computed torque algorithm with local torque

controllers at each joint. The former provides the torque commands for all joints,

while the latter regulates the actual torque output of the joint drive system.

Three novel control schemes were proposed. The first utilized the joint torque

controllers currently implemented on the RRC robot arm and a novel form of the

computed torque algorithm (ECT controller). The other two utilized the standard

computed torque algorithm combined with novel joint torque controllers based on

model following principles. Both continuous (CTCMF controller) and discrete

(CTDMF controller) model following torque loops were developed.

The study showed that the proposed approach leads to improved, tracking

performance over a conventional PD controller. The ECT controller showed the

best overall performance in the simulation tests. Furthermore, both model

following controllers showed promising results. The ECT controller was

implemented in the actual robot arm and, in experiments, also showed superior

performance over the existing PD control scheme.
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One of the greatest advantages of the computed torque schemes is their ability to

incorporate the payload inertial properties into the control algorithm. The

performance of the PD controller deteriorated when a payload was added to the end

of the arm. Furthermore, the PD gains had to be tuned in order to maintain

stability. The ECT and CTDMF controllers had excellent performance in the

presence of the payload. Although inaccurate model parameters were shown to

affect the performance of the proposed control schemes, they all exhibited robust

stability in the presence of payload uncertainty. Furthermore, the ECT controller

performed well in the experimental tests, despite the fact that an inaccurate friction

model was used.

Increasing the joint angle and torque command update rate was shown to improve

the performance of all computed torque controllers. This improvement is attributed

to the increased accuracy of the backwards difference approximations for the

desired acceleration and velocity commands. Furthermore, at higher update rates,

the torque commands more accurately reflect the true torques required to track the

desired trajectory.

There are several natural extensions to this work. These include: i) further

development of the model following torque loops and implementation on the actual

robot arm; ii) identification of the robot arm parameters; iii) extension of the

proposed schemes to indirect self-tuning regulators.

The simulation results showed that the model following torque loops of the last

joints were not robust with respect to disturbances when the arm was unloaded. A
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different reference model may be used to enhance the robustness of these

controllers. Several suggestions are made in Astrom [1989] for the placement of

the model poles and zeros so that the system is robustness with respect to

disturbances. Once a more suitable model is developed, implementation on the

actual robot hardware and experimental evaluation should be performed.

Implementation of the discrete model following controllers appears to be the next

natural step since it can be accomplished with the current hardware. However, a

dedicated microprocessor board will be required to provide for the calculations of

the model following controllers at the required rate (at least 1000 Hz).

The friction model for the arm was found to be inaccurate in the tests of the ECT

controller. Furthermore, the parameters of the RRC torque loop may also be

inaccurate. Better estimates of these parameters would result in further

improvement of the ECT controller. Identification could be performed off-line

through a series of well designed tests. An alternative course would be to identify

these parameters on-line through an appropriate estimation scheme [Neuman, 1985;

Canudas de Wit, 1991].

All three proposed controllers may be used in indirect adaptive control schemes

which would include appropriate on-line estimation algorithms. This approach

should result in improved performance since the parameters of the robot arm would

be directly identified.
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