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SUMMARY

A full potential steady flow solver (SFLOW) developed explicitly for use with an inviscid
unsteady aerodynamic analysis (LINFLO) is described herein. The steady solver uses the non-
conservative form of the nonlinear potential flow equations together with an implicit, least-squares,
finite-difference approximation to solve for the steady flow field. The difference equations were
developed on a composite mesh which consists of a C—grid embedded in a rectilinear (H-grid) cascade
mesh. The composite mesh is capable of resolving blade-to-blade and far-field phenomena on the
H-grid, while accurately resolving local phenomena on the C—grid. The resulting system of algebraic

equations is arranged in matrix form using a sparse matrix package and solved by Newton’s method.

Steady and unsteady results are presented for two cascade configurations: a high-speed
compressor and a turbine with high exit Mach number.

INTRODUCTION

The need for accurate and numerically efficient techniques for predicting the aeroelastic and
aeroacoustic response behavior of turbomachinery blading has resulted in the development of inviscid
unsteady aerodynamic linearization procedures (see Atassi & Akai, 1980; Whitehead, 1982; Verdon &
Caspar, 1982, 1984; Hall & Clark, 1991; and Caruthers and Dalton, 1991). In general these tech-
niques address the unsteady response of an isolated, two-dimensional cascade. They include the
effects of realistic design features such as blade geometry, mean blade loading, and operation at
transonic Mach numbers. The unsteady fluctuations are regarded as small-amplitude harmonic (in
time) disturbances superimposed on a fully nonuniform mean or steady flow. The steady flow is
.determined as a solution of the nonlinear inviscid equations, while the unsteady filow is governed by
linear equations with variable coefficients that depend on the underlying steady flow. Thus, in order

: to predict the unsteady response, it is first necessary to determine the steady flow field.

Recently, several investigators have used Newton’s method to obtain solutions to the equations
of fluid dynamics. Giles (1985) and Hall & Crawley (1989) used the Euler equations to solve for the
transonic flow through a two-dimensional cascade of airfoils. Bender & Khosla (1988) and Bailey &
Beam (1991) both used this technique to obtained solutions of the two-dimensional inviscid and
viscous equations associated with flow over an isolated airfoil.




This paper describes the application of Newton’s method to the solution of the nonlinear, steady
potential equation describing the flow through a two-dimensional cascade of airfoils. The resulting
computer algorithm is called SFLOW. Newton’s method was selected for two reasons: First, the
solution of the nonlinear velocity potential equation is obtained from a series of linear equations that
are similar to those obtained for the linearized unsteady problem. Thus, the numerical algorithm
developed for the solution of the linearized unsteady equation can be used in the solution of the
nonlinear steady equation. Second, this method has the potential for obtaining a converged solution
very quickly.

The first section of the paper describes the partial differential equation and boundary conditions
for the nonlinear steady velocity potential. Next, Newton’s method is applied and the resulting linear
differential equation and boundary conditions are related to those obtained for the linearized unsteady
flow. The last section describes the application of the SFLOW algorithm, together with the linearized
inviscid unsteady analysis (LINFLO) of Verdon and Caspar (1984, 1987), to the solution of the steady
and unsteady flows associated with a high-speed compressor cascade and the turbine cascade
designated as the fourth standard configuration by Bolcs & Fransson (1986).

GOVERNING EQUATIONS

The cascade geometry used in this mathematical model is shown in figure 1. It consists of an
isolated, infinite array of identical airfoils. The reference airfoil for the cascade defines the origin of a
Cartesian coordinate system with the £ axis oriented along the cascade axial direction, and the n axis
oriented along the tangential direction. The gap distance between blades is defined by the magnitude

of the gap vector G which is directed along the n axis. The inlet and exit flow angles are defined
by, Q.. respectively. The steady-state positions of the airfoil chord lines coincide with the line
segments 0 < € < cos @, n = & tan 6 + mG, where m is a blade index number and m = O denotes

the reference blade and where 0 is the cascade stagger angle. The blade and cascade physical
parameters have been normalized by the blade chord.

FIELD EQUATIONS

The equations that govern the steady, two-dimensional, adiabatic flow, with negligible body
forces, of an inviscid non-heat-conducting perfect gas are obtained from the conservation of mass,
momentum, and energy. It is also assumed that at some distance upstream (€ < €_,) and downstream
(€ > E,..) the flow is at most a small isentropic and irrotational perturbation to the steady uniform
flow. Because of these assumptions the flow is isentropic and irrotational throughout the domain, and
the velocity field can be defined in terms of a velocity potential function. The steady flow field can
now be defined by the conservation of mass equation,

V- (pvd) =0 (1

where p is the density and ® is the velocity potential. In addition to this mass conservation equation,
the following relationships between the mean flow variables can be obtained from the momentum
equation
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where A is the local speed of sound propagation and M__ is the inlet Mach number. Equations (1)
and (2) can be combined to determine a single nonconservative equation for the potential, that is,
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BOUNDARY CONDITIONS

In addition to the field equation (eq. (3)), the flow is subject to the following boundary
conditions in order to obtain a solution for the steady flow field. If we assume that the flow remains
attached to the blade surfaces, the velocity potential must satisfy the flow tangency condition
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where # is a unit normal vector to the airfoil surface, X is a position vector, and B,, refers to the mih
blade surface.

For the steady flows being considered here, the inlet and exit velocities are subsonic. The inlet
and exit boundary conditions require that three of the four uniform free-stream components (e.g., V.,
or Q,.,) be specified. The fourth is determined so that the global form of the mass conservation is
satisfied. In addition, conditions can be imposed at the blade edges (e.g., a zero load condition at a

sharp trailing edge (Kutta condition)). In this case, the flow at the trailing edge of the airfoil must
satisfy the following relationship:
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where S* is the arc distance along the upper (+) and lower (=) surface of the airfoil.

Since the airfoils in this cascade are assumed to be identical and since the inlet flow is uniform,
the following blade-to-blade periodicity condition can be applied: Along the upstream periodic
boundary

OEN + G) - BEN) = V., sin Q.G (6)




and along the downstream periodic boundary

®En + G) - PEN) = V.. sin Q.G ™

The locations of these periodic boundaries are arbitrary, however, in this model the upstream
periodic boundary is chosen so that it is parallel to the inlet velocity vector and intersects the airfoil at
the leading edge point. The downstream periodic boundary is arbitrarily chosen. Upon completion of
the steady flow calculation, the downstream stagnation streamline is determined since this will be
required for the unsteady analysis.

These boundary conditions allow the steady flow to be calculated in a region represented by a
single extended flow passage. This region is defined by the upstream and downstream periodic
boundaries, the upstream and downstream far-field boundaries, the upper surface of the reference
airfoil (m = 0), and the lower surface of the airfoil defined by m = 1.

NEWTON’S METHOD

The velocity potential may be rewritten as

¢X) = X + ¢X)
where @ is an approximation to the solution d, where ¢ = ® - O is a correction term, and where

Xisa position vector. After substituting equation (8) into (3) and performing the necessary algebra
we find that ‘
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where the material derivative operator is defined as
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and where
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Equation (9) can be written in the form

L(®)$ = N(D) (12)




where L is a linear differential operator, which depends on the steady velocity potential, P, and N is a
nonlinear differential operator that also depends on ®. The initial distribution for ® is some estimate

=
of the converged solution, e.g., o0 = V_.E. The solution to equation (9) then proceeds as follows:
At the ' Newton iteration equation (9) is solved for the correction ¢" using the estimate of the

converged solution . The (n+1)™ (i.e., @"*!) approximation to & becomes ®"*1 = ®" + ¢". This

process is continued until |$"| < g, where €, is some preselected convergence tolerance.

In addition to rewriting the field equation into a form that will facilitate the application of
Newton’s method, it is also necessary to convert the boundary conditions to this form. This is
accomplished by substituting equation (8) into the boundary conditions equations (5) to (8) and
performing the necessary algebra. The resulting expressions are

for flow tangency

for periodicity
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and for the Kutta condition
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The differential equation for the linearized unsteady potential is
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A detailed derivation of this equation is given by Verdon & Caspar (1982, 1984). The only difference
between the left hand sides of equations (9) and (16) is that the unsteady potential, ¢, is a complex
value. If the blade oscillation frequency, w, is set to zero in equation (17), the left hand sides of the
two expressions are identical. The advantage of using the forms for the field equation and boundary
conditions given by equation (9) and equations (13) to (15), respectively, is that the differencing
schemes and matrix inversion procedure used in the numerical algorithm for the linearized unsteady
potential flow can, with little modification, be used to determine the steady potential flow field.
However, since the steady problem is nonlinear, an iterative solution, such as that outlined above, is




needed. Once the steady flow has been determined, the linearized unsteady potential equation can be
solved for the unsteady velocity potential and ultimately for the unsteady pressures and global
unsteady air loads. ‘

The difference approximations to the linear operator in equation (9) are obtained using an
implicit, least-squares, interpolation procedure. This leads to a nine-point “centered” difference stencil
at field points within the solution domain and a nine-point one-sided difference stencil at blade surface
points. A detailed description of this differencing approximation can be found in Caspar & Verdon
(1981).

COMPOSITE CALCULATION MESH

Following Usab & Verdon (1989), the difference approximations are applied on a computational
mesh consisting of a sheared H type mesh, which will capture aerodynamic phenomena over the
extended blade-passage solution domain, and a local surface-fitted C—mesh, which will resolve high
gradient phenomena in the region of blunt leading edges. Details of this composite mesh construction
can be found in Usab & Verdon (1989), while details on the construction of the global and local
meshes can be found in Caspar & Verdon (1981). Only a brief outline of the composite mesh
procedure will be given here.

The composite mesh used in this model is constructed by overlaying the local surface fitted
mesh over the global cascade mesh (fig. 2). Points on the composite mesh can be identified as
cascade-mesh solution points, local-mesh solution points, cascade-mesh coupling points, and local-
mesh coupling points, depending on where they lie with respect to a user-defined overlap zone. The
overlap region is defined in terms of the local mesh by stepping in n cells from the outer boundary of
the local mesh. Composite mesh points are identified as cascade-mesh solution points if they lie
outside the interior boundary of the overlap zone, and cascade-mesh coupling points if they are needed
to complete the differencing stencil for cascade-mesh solution points lying within the overlap zone.
Local-mesh solution points are those which lie inside the outer boundary of the local mesh. While
local-mesh coupling points are those that lie on the outer boundary of the local mesh.

The inclusion of these coupling points into the system of discrete equations destroys the block
tridiagonal structure that exists when the H—grid and C—grid are considered separately. Although each
coupling equation involves points that are spatially close to the coupling point under consideration,
they are not necessarily neighbors in the composite equation system. Therefore, the final system of
equations contains a sparse coefficient matrix of large band width. Consequently, special storage and
inversion techniques are required to achieve an efficient solution. The sparse matrix solver used is
that developed by Eisenstat et al. (1977).

MODEL VERIFICATION

The mathematical model for the steady flow calculation was verified-using two cascade.
configurations. Composite-mesh steady flow solutions were determined for both cascades. In both
cases converged solutions were obtained in six or less iterations. Once the steady calculations were
obtained, the linearized unsteady aerodynamic model, LINFLO, developed by Verdon & Caspar (1982,
1984) was used to calculate the unsteady response of the cascade to a prescribed blade motion.



NACA 0006

The first geometry chosen was one studied by Usab & Verdon (1990). The blades are con-
structed by superposing the thickness distribution of a modified NACA four-digit series airfoil on a
circular-arc camber line. The cascade geometry has a solidity of unity (i.e., G = 1.0), and a stagger
angle, ©, of 45°. The inlet Mach number, M_,, was set at 0.7, and the inlet flow angle, Q_,, was 55°.
The steady flow is assumed to satisfy a Kutta condition at the trailing edge; therefore, only the inlet
Mach number and flow angle were specified.

The composite mesh used to calculate the steady flow through this cascade geometry is shown
in figure 2. It is made up of a global H-mesh consisting of 96 axial and 21 tangential lines. The
local C-mesh consists of 71 radial and 21 circumferential lines. The predicted blade surface Mach
number distribution for this mesh is shown in figure 3. Also shown is a prediction obtained from the
steady velocity potential model, CASPOF, developed by Caspar, Hobbs, & Davis (1980). It should be
noted that CASPOF also uses both a global H-mesh and a local C-mesh; however, the two meshes do

‘not overlap, and the governing equations are not solved simultaneously on both meshes as it is in the
present analysis. In the CASPOF prediction the H-mesh was used to obtain a global solution that then
provided the outer boundary condition for the C-mesh calculation. The exit Mach number, M,_,, and
flow angle, Q,, calculated by the present method were 0.447° and 40.3° respectively. Those ob-
tained from CASPOF were M, ., = 0.446° and Q,,, = 40.2°. Figure 3 also displays the agreement
between the two predictions. The small differences in the leading and trailing edge regions are attrib-
uted to the differences in the meshes and the solution techniques used in both models.

Having obtained a steady solution, an unsteady calculation was made to demonstrate the
coupling to the unsteady flow solver. The LINFLO code was used to calculate the unsteady blade
surface pressures resulting from a harmonic torsion mode oscillation of the blades. The reduced
frequency of the blade motion based on chord is unity, and the elastic axis is placed at midchord.
Motions at two interblade phase angles are considered such that one corresponds to a subresonant
motion, and the other to a superresonant motion. Figure 4 shows the real and imaginary components
of the predicted unsteady pressure as a function of blade chord for ¢ = 180° (subresonant motion) and
0 = 30° (superresonant motion). Also shown is the prediction from LINFLO using the steady results
obtained from CASPOF. As can be seen the two predictions agree quite well, the small differences in
the leading and trailing edge regions being attributed to the noted differences in the two steady
predictions.

TURBINE CASCADE

The second test case selected for the verification of the steady flow solver is a turbine cascade,
the fourth standard configuration reported by Bolcs and Fransson (1986). In the present study, the
airfoil geometry was modified so that the profile closed in a wedge-shaped trailing edge. This modifi-
cation was done in such a manner that the chord of the blade was not changed. The cascade geometry
consists of a set of airfoils that have a stagger angle, ©, of 56.6° and a blade spacing G of 0.76. Once
the steady flow solution is obtained, the unsteady aerodynamic response at the blade surface resulting
from a prescribed blade motion can be determined using the LINFLO code.

Bolcs & Fransson (1986) and He (1989) both report that, in order to match the experimentally
determined exit conditions, the effect of streamtube height variation needs to be included in the steady
flow calculations. He (1989) used a linear variation with an exit height to inlet height ratio of 1.1.
Since the steady flow model used is this report does not presently have this capability, the steady flow




calculations were performed by matching the experimentally determined exit Mach number (M, =
0.90). A comparison of the predicted blade surface Mach number distribution with the experimental
data for this exit condition is shown in figure 5. The inlet Mach number was determined to be 0.26,
the inlet flow angle, 45°, and the exit flow angle, 71.8°. The experimentally determined exit flow
angle was 71.0°. Figure 5 shows the agreement between the prediction and data to be quite good from
the leading edge to about 85 percent chord. The discrepancies over the last 15 percent of the blade is
probably related to the blade modification, and the constant streamtube height used in the calculation.

Unsteady response predictions for a translational motion with displacement amplitudes of
h, =0.0016 and hy = (0.0029 in the x and y directions, a reduced frequency based on a chord of 0.24,
and oscillation at an interblade phase angle, 6, of —90° is shown in figure 6. This figure shows the
magnitude and phase of the unsteady pressure on the suction and pressure surfaces of the reference
airfoil as a function of chordwise distance. There is reasonable agreement between the prediction and
experiment for the magnitude of the unsteady response on the suction surface. The pressure surface
comparison shows good agreement except in the leading-edge region. The comparison of the phase
information shows that the experimental trend on the pressure surface is well predicted while that on
the suction surface is not predicted in the trailing-edge region. The oscillations observed in the
predictions can be related to the blade surface definition.

Figure 7 shows a plot of the aerodynamic damping, E, versus interblade phase angle. The
calculated values of aerodynamic damping are in reasonable agreement with the measured values for
o = 0° and 180°, but wide discrepancies exist for 0 = £90°. These discrepancies are probably related
to the noted differences between the predicted and measured steady behavior in the trailing-edge
region of the blade.

CONCLUDING REMARKS

The steady potential analysis (SFLOW) described in this paper has resulted in two improve-
ments in the ability to calculate the steady potential field of a two-dimensional cascade. The first is
the implementation of a composite mesh solution procedure which allows detailed flow information to
be obtained in the vicinity of blunt leading edges. The second is the use of Newton’s method for the
solution of a nonlinear equation. This results in a numerical procedure that converges rapidly. The
coupling of this solver to an existing linearized unsteady solver results is a computationally efficient
model that can be used to study the aeroelastic and aeroacoustic behavior of advanced turbomachinery
configurations.

The steady portion of the model has been verified by comparison with other predictions for a
compressor cascade and with experimental data for a turbine cascade. The results have been used as
input data for the linearized unsteady analysis. In the case of compressor geometry, the steady
calculation agrees quite well with predictions made using another steady flow solver. The steady
predictions for the turbine geometry showed good agreement with the experimental results of Bolcs &
Fransson (1986) despite the fact that no stream tube height variation was assumed in the steady solver.
In general, the unsteady predictions for the turbine are in good agreement with the data for both the
magnitude and phase of the unsteady pressure response on the pressure surface of the airfoil.
However, although the suction surface predictions showed reasonable agreement for the magnitude of
the unsteady pressure, the predictions and measurements for the phase are in poor agreement. The
aerodynamic damping prediction were in agreement with the measurements for interblade phase angles
of £180°, but wide discrepancies exists for o = +90°.
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