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I. INTRODUCTION

The basic objective of this research has been to improve our understanding of the

physical and chemical processes which produce the observed atomic comae of comets and

extended hydrogen atmospheres of the outer planet-satellite systems. The strategy

employed is divided into three steps: (1) acquire relevant observational data through

collaborative efforts with others, (2) construct physically meaningful models for the

extended atmospheres, and (3) analyze the relevant observational data with the models to

extract physically meaningful information.

Much progress has been made in the third and final year of this project All

objectives of the three-year plan for modeling analysis of cometary atmospheres have been

very successfully accomplished These efforts have provided some fundamental advances

in understanding the physics of the cometary H coma as well as some very interesting and

useful results. One paper has already been published and two more are in preparation that

describe various aspects of the H coma of Comet P/Halley. This research is summarized in

Section n. For the research on the planet-satellite extended atmospheres, a new and very

important mechanism for shaping its spatial morphology was discovered in the second

project year and hence has dramatically altered the original three-year plan. The discovery

provides a new basis for understanding the H distribution in the Saturn system produced

by a Titan source in the light of new and recently reduced Voyager data (Shemansky and

Hall, 1991). For the Neptune system, the new mechanism is operative, but an H torus

produced by Triton would appear at present to be dominated by neutral-neutral collisions

which will likely render the new mechanism ineffective. Research for the Saturn and

Neptune systems is summarized in Section ffl and provides a new and exciting physical

base for study 6nd interpretation of these complex circumplanetary H distributions and their

very important relationship to the planetary magnetospheres. A paper describing the new

mechanism and its impact on the hydrogen torus of Titan and Triton is in preparation.

II. THE HYDROGEN COMA OF COMET P/HALLEY

1. Overview

The three-year plan for our research for the comae of comet P/Halley is summarized

in Table 1. The first objective is to model the Pioneer Venus Orbiter ultraviolet spectro-
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meter (PVOUVS) Lyman-a image of the comet acquired on February 2-6,1986 by A. I. F.

Stewart This image, an initial and demanding two-dimensional test of the validity of our

comet coma model, is only a small portion of the complete PVOUVS data set for comet

P/Halley which involves a large number of radial scan profiles (i.e., one-dimensional data,

not image data) that has been made available to AER through a collaborative effort with

A. I. F. Stewart. The complete observational data set is summarized in Table 2 and

includes, in addition to hydrogen observations, measurements for atomic oxygen and

carbon as well as OH. Only the Lyman-a scan profiles for hydrogen were analyzed in this

project In addition, H-a emission data for the hydrogen coma of comet P/Halley obtained

from ground-based observations by the University of Wisconsin Space Physics Group

have also been successfully analyzed in the third project year in a collaborative effort

undertaken with F. Scherb and F. L. Roesler. The two complementary data sets for the

hydrogen coma were used to determine the water production rate of comet P/Halley near

perihelion and thus filled a valuable gap in its overall heliocentric dependence of this

production rate.

c

2. Analysis of the PVOUVS Lyman-a Image

The analysis of the PVOUVS Lyman-a image of the hydrogen coma of comet

P/Halley was undertaken in the first project year, improved in the second project year and

finally completed in the third project year and published (Smyth et al. 1991) in Science

where a color version of the PVOUVS Lyman-a image was selected for the cover illustra-

tion. This paper, which is included in the appendix, shows that the fully time-dependent

three-dimensional Monte Carlo particle trajectory model (MCPTM) of Combi and Smyth

(1988 a,b) provides an accurate description of the complex physics of the coma and is able

to very accurately model the PVOUVS Lyman-a image. This agreement is most gratifying

in that it both verifies the underlying physics and documents the advantage and value of

using a physically-based model.

3. Analysis of the PVOUVS Lyman-a Scan Profiles

The analysis of the Lyman-a scan profiles in Table 2 was initiated in the second

project year and has been completed in the third project year. The MCPTM was used to fit

the one-dimensional profiles and extract a water production rate on days indicated in Table



2. This research was presented at the 1991 fall AAS meeting of the Division for Planetary

Sciences (Marconi and Smyth, 1991) and is currently being included in a paper in prepara-

tion (Smyth, Marconi, and Stewart 1992). These results are summarized below.

The output of the MCPTM is a two-dimensional brightness distribution of the solar

Lyman a scattered by the coma hydrogen in the skyplane of the PVOUVS. The PVOUVS

data for Lyman a from Halley's coma, however, consists of brightness profiles along

narrow swaths of Halley's coma (see Stewart 1987 for a description of the data). As a

result, the output from the model is convolved with the PVOUVS slit function and a model

brightness profile along the swath is generated. The convolved model profile is then

overlayed on the observed profile and shifted vertically until the profiles overlap in some

optimal sense. In the overlaying process, the first few points around the peak are ignored

due to multiple scattering of Lyman-cc by an optically thick H column which is not currently

fully treated in the MCPTM An example of this procedure is illustrated in Figure 1. The

average of the brightest data obtained on February 25,1986 is compared to the model

brightness along the swath calculated for that date. The generally excellent match is typical

of the agreement between the data and model throughout the entire data set The

discrepancy between model and the data near the maximum of the profile is due to the

multiple scattering of Lyman-a from the optically thick H column. The wings of the profile

beyond about 10^ km are somewhat limited in their ability to be compared due to large

scatter in the data.

This procedure is repeated for selected observations between late December and

early March. The many observations of the Lyman a are divided into sets (each set

corresponding to one day of observations), and the data contaminated for example by light

from other sources such as Venus or have the nucleus far from the center of the swath are

discarded. From the remaining, the brightest data are selected since they cut closest to the

nucleus and thus represent the best approximation to the instantaneous production rate.

The data selected on a particular day are then averaged to improve statistics and compared

to the model profile for that day. The results as summarized in Table 3 provide one

production rate estimate per day for days when PVOUVS observed Halley's coma in

Lyman-a.

Figure 2 is a comparison of the H20 production rate vs day of the year given in

Table 3 and those obtained by other observers. Perihelion is on day 40. The solid circles



represent a plot of the result of MCPTM modeling of the PVOUVS Lyman-a brightness

measurements of Halley's hydrogen coma between late December 1985 to early March
1986. The other symbols represent H2O production rates derived from other types of

measurements for the period between early November 1985 to late April 1986. These do

not exhaust all the measurements of comet Halley's production rates obtained in the

relevant time interval, except possibly near perihelion. However, they are sufficient to
illustrate how our results stand in reference to other determinations of H20 production.

As is clear from Figure 2, toward late December 1985 and early January 1986, our

production rates compare well with the production rates derived from IUE measurements of

OH by Combi (1991) who also used the MCPTM approach and with those of Magee-Sauer

et al. (1988) determination from O(^D) measurements. Beyond January 4 there is a gap in

the PVOUVS data lasting to January 31. Continuous acquisition of high quality data

resumed on about February 7. The MCPTM production rate rises from about 1.4 x 10-̂ 0

s~l to the peak of 1.9 x 10^0 on February 10. The production rate remains high, varying

about 1.5 x 10^0 s'*, until March 1 after which it falls with an apparent intent to join

continuously with the IUE derived production rates of March 9 and beyond.

For the period between February 7 and March 7, there are a few H20 production

rate determinations from McCoy et al. (1991) rocket observation of Lyman a and Fink and

Di Sana's (1990) O (*D) observations. Within their estimated errors of about 50%, these

determinations are quite consistent with the MCPTM results. Finally, there is also an

extensive set of 18 cm OH radio observations for this time interval recently converted to
H20 production rates by Bockelee-Morvan et al. (1990). These are in poor agreement with

the MCPTM results during this time. The interpretation of OH radio data, however, are

complicated by a number of difficulties with the most insidious being the quenching of OH

excited states. This is most severe at high production rates. Indeed Figure 2 shows that

the agreement between MCPTM and the radio derived rates is only poor very near

perihelion where the highest production rates occur.

Figure 3 compares our production rates with those determined by Stewart (1987)

from the same data set Although the two analyses lead to similar production rates at early

times, there are notable differences after January 31,1986. Our results are higher before

and at perihelion. After perihelion both sets of derived rates oscillate with the oscillations

in our rates appearing more pronounced. Finally, following March 1,1986 our rates



display a rapid decrease while those of Stewart (1987) remains relatively flat Both sets of

rates are consistent with respect to other data except possibly in early March 1986 where

Stewart's rates appear to be discontinuous relative to the other data starting after March 9.

The differences in the production rates derived from the same data set are not surprising in

view of the differences in the methods of conversion of brightness to production rates. For

example, the solar Lyman a intensity used here is based on the most recent SME intens-

ities, whereas the Stewart production rates were obtained using an older set of SME

intensities. The differences between sets are between 10 and 20%.

4. Analysis of the Wisconsin H-a Observations

Observations for H-a emissions (6562.82 A) from the coma of comet Halley were

acquired in November and December of 1985 and in January, April and May of 1986

(Magee-Sauer 1988). Observations suitable for analysis were obtained in the preperihelion

period (Le. prior to February 9,1986) and are summarized in Table 4 along with the

observational and comet parameters. In Table 4, the H-a intensity values listed have been

recently re-calibrated using H-a scans of a calibrated region of NGC 7000 (Scherb 1981).

The NGC 7000 scans were taken at the same air masses as the comet scans when possible,

and atmospheric transmission corrections were applied to scans taken at other air masses.

Observations of alphaCMi (Breger 1976) were used to correct for variations of instrumental

sensitivity at the different wavelengths used in the comet observations. AlphaCMi was also

used to map the variation of sensitivity over the FOV at each wavelength. The projected

area of the McMath telescope, which was designed for solar observations, was reduced at

declinations north of zero degrees. The effective area was measured as a function of

declination, and all observations were corrected for this characteristic.

All scans of the H-a line in Table 4 were taken with the center of the FOV 5'

sunward of the comet head to avoid contamination from the (0,7,0) H2O+ emission line at

6562.8 A (Lew 1976). Several scans were added together for each night in December

1985 to obtain an adequate signal to noise ratio. The scans were fitted with models based

on Gaussian functions. Inputs to the fitting program were the scan data, the instrumental

resolution profile, the number of Gaussians required to fit the spectral features, and initial

estimates of the Gaussian parameters and the background level. The program varied the

adjustable parameters until the Gaussians convolved with the instrumental profile produced



the best least-squares fit to the data. In the analysis of the H-cc scans, the cometary H-a

emission line profile was approximated by a single Gaussian. The non-Gaussian

instrumental profile was approximated by a least-squares fit of two Gaussians to scans of
laboratory spectral lamps or the terrestrial airglow [OI]6300 emission line. The H-a

intensity values determined in this manner for the selected observations in December 1985

and January 1986 are summarized in Table 4.

The general approach to simulating the comet H coma is the Monte Carlo Particle

Trajectory Model (MCPTM) which is described in detail by Combi and Smyth (1988 a,b).

Whereas the modeling in the foregoing section was concerned with the computation of Lyman-
a brightnesses (1215.67 A), here it is the H-a brightness (6562.82 A, air wave-length) of the

coma which is of interest The H-a brightness of an optically thin column is proportional to

the product of the g-factor for the emission of the H-a radiation at 6562.82 A and the column

density. The g-factor in turn depends on the transition probabilities associated with all the
levels of H which are able to contribute to the emission of H-a radiation and the corresponding

intensities of the solar radiation which excite these H atom levels and lead to H-a emission by

the process of de-excitation. The principal source of pumping the H atom to emit H-a photons

is solar Lyman-p at 1025.72 A. The H-a emission is not only due to the principal contribution

from the 3p to 2s transition where the 3s state is populated from the Is state by absorption of
solar Lyman-p photons, but also because of several secondary contributions. These secondary

contributions occur because of an additional contribution to the 3p state produced from the 2s
state by absorption of solar H-a photons and because of additional H-a photons emitted in the

3p to 2s, 3s to 2p, and 3d to 2p transitions, where the 3p, 3s, and 3d states are populated by

cascade from higher-level quantum states that are excited by the absorption of extreme

ultraviolet solar radiation. The new g-factor at 1 AU including all of these transitions has

recently been calculated by Shemansky (1991) and is given by the solid line in Figure 4 where
the solar flux for the principal Lyman-^P contribution is 3 x 10^ photons cm'2 sec~l, the same

as used for the conventional g-factor given by the dashed-line calculation in Figure 4. The new

g-factor is somewhat larger at 1 AU than the conventional g-factor and moreover has an

additional local maximum due to a solar feature at 1025.77 A consisting mainly of fine
structure lines from the OI3P-3DO multiplet that has been included with the Lyman-p profile.

This new velocity dependent g-factor is used in all modeling of the cometary H-a data in this

paper.



The wavelength dependence of the g-factor discussed above is derived from data taken by

OSO 8 during quiet sun conditions on August 19,1976 and May 18,1977 (Lemaire et al. 1978).

We will assume following Donnelly and Pope (1973) that at 1AU the total Lyman-p flux in the

H Lemaire profile is 3.5 x 10^ photons cm'2 s~l while the corresponding Lyman-cc profile is

3.1 x 10* * photons cm'2 s'1. In order to compute the proper g-factor on another date, the
Lyman-p flux is required on the days of observation which for the H-oc data of interest here lie

between early December 1985 and mid January 1986. The variation with solar cycle of the

Lyman-p line shape is not known nor is the total flux. For the purposes of this investigation, it

has been assumed that while the profile does not change in shape the total flux scales with the

Lyman-a flux which is measured by SME and corrected for the comet location (Stewart 1991).

Hence, if we designate the velocity dependent g-factor at a heliocentric distance of 1 AU and at

the reference time t0 as g (v, t0), the g-factor at time t is

g (v,t) = g (v,

where F (t) is the line-integrated Lyman alpha flux at time t and at 1 AU and Rn is the

hydrogen atom heliocentric distance in AU units at time L For H-a observations of

interest here, F(t) is given in Table 5 and R^ is given in Table 4.

The MCPTM model was used to simulate H-a observations on those dates between

December 5 and January 12 for which H-a measurements are listed in Table 4. When

more than one H-a measurement was obtained per day, an average brightness value was

used for model comparison. A sky plane H-a brightness distribution was generated by

MCPTM for each of these days. The aperture response function was then applied on that

part of the model sky plane brightnesses which corresponded to the location of the

aperture. The new convolved sky plane brightness of the aperture was then converted to an

integrated intensity of H-a emission over the aperture and compared to the measured value.

Agreement of the model and measured H-a brightness values then determined the final

H2O production rates which are summarized in Table 5.

An example of the MCPTM model calculated image of the H-a brightness on the

sky plane of the Earth is illustrated in Figure 5 for the January 4,1986 observation. The



round circle corresponds to the location and size of the aperture on January 4 The

brightness contours are quite circular about the location of Halley if one visually averages

over the statistical variations. Over most of the field of view of the model calculation (i.e.,
2 x 106 km by 2 x 106 km) the brightness of the H-a emission is of the order of 2 -10

Rayleigh. The brightness in Figure 5 corresponds to an H20 production rate of 6.3 x

10^9/s (see Table 5) and yields the same intensity in the aperture as measured after

convolving the model brightness with the instrumental response function.

In Figure 6, the model-simulated H-a line profile (i.e., g-factor weighted velocity

distribution along the line of sight) is shown for the brightness distribution as seen through

the aperture in Figure 5 for the observation on January 4,1986. The comet-earth velocity

has not been included since it only corresponds to a shift in origin. Positive velocities

reflect motion away from the earth. The distribution is nearly symmetrical about a velocity

of zero as one might expect in the case of a nearly spherically symmetric coma and with the

center of the aperture located here only 2.66 x 10^ km from the comet nucleus. The line

profile has a velocity dispersion of ~ 7 - 9 km/s which is about the velocity of most of H

formed from the photodissociation of OH (~ 8 km/s). The convolution of the model line

profile in Figure 6 with the spectral (10 km s~l FWHM) instrumental profile (see the insert

in Figure 7) is shown in Figure 7 to compare favorably with the observed line profile.

Figure 8 is a comparison between the H2O production rates in Table 2 determined

by the MCPTM analysis based on the H-a data and the H2O production rates determined

from other observations of Halley. The set of comparison rates is not exhaustive, but is
sufficient to place rates derived here in perspective. The H-a data basically fills in the

heliocentric dependence of the H20 production rate from January 4 to January 13,1986

when an outburst on the last day appears to have occurred. The only overlap of the H-a

and Lyman-a data occurs on January 4,1986 (i.e., day 4) where the H20 production rate

determined by the H-a data is 36% larger. This small difference may be caused by our

inability to specify more accurately the relative g-factors for the H-a and Lyman-a

emissions. The higher H-a emission may also be caused by its measurement being

confined to a small region near the nucleus (see Figure 5) where it samples with more
sensitivity the instantaneous increase in the H20 production rate. In comparison, the

Lyman-a emission samples a spatial region about the nucleus of several xlO? km in width

(see Figure 1) and hence captures a much longer time-averaged H20 production rate that

should be lower than the instantaneous production rate on January 4,1986. The various



observations in Figure 8 are compared in more detail in the paper (Smyth, Marconi, Scherb

and Roesler 1992) in preparation.

III. THE HYDROGEN DISTRIBUTION IN THE SATURN AND NEPTUNE SYSTEM

1. Overview

The spatial distribution of hydrogen in the circumplanetary environment of Saturn and

Neptune are of particular interest in understanding the nature of the gas sources (i.e., satellites,

planet, rings) and the way this material interacts with and determines the properties of the

planetary magnetospheres. For the Saturn system, Voyager UVS measurements have provided
H Lyman-cc emission data, and a number of theoretical studies have been undertaken to

understand the spatial distribution of neutral species and ion species. These are discussed below.
For the Neptune system, there was no Voyager UVS detection of Lyman-cc emission from H

atoms in the magnetosphere, but studies for the Triton atmosphere (Strobel et al 1990; Summers
and Strobel 1991) indicate that there should be a substantial global escape rate of H, H2 and N

from the satellite at energies suitable for formation of tori about the planet Such gas tori should

influence the plasma properties of the magnetosphere of Neptune (Zhang et al. 1991) and likely
produce a collisionally thick torus of H (Cheng 1990) that emits Lyman-a radiation. This

emission brightness, however, must be below the upper limit set by the Voyager UVS measure-

ments (Broadfoot et al 1989; Shemansky 1990) which is hampered by the large LISM

background.

Pre-Voyager three-dimensional models and analysis of available data for the H

torus of Titan (Smyth 1981) showed that the hydrogen gas escaping from the satellite will

form a torus completely surrounding Saturn with an enhancement in the density near the
satellite. The initial interpretation of a limited amount of Voyager UVS Lyman-a data

(Broadfoot et al. 1981; Sandel et al. 1982) supported this picture, suggesting a cylinder of

hydrogen about the planet centered about the equatorial plan where the region inside 8

planetary radii was void of atomic hydrogen. Post-Voyager modeling (Ip 1985; Hilton

1987; Hilton and Hunten 1988) embraced this description in their simulations, and in the

case of the latter two papers also considered a source of hydrogen from the planet as had

been proposed earlier by Shemansky and Smith (1982). One-box, steady-state models

studies (Eviatar and Podalak 1983; Richardson et al. 1986; Richardson and Eviatar 1987;



Eviatar and Richardson 1990) for gas tori and plasma tori to explore the overlap and

consistency of the abundance of neutral and ion species have also been pursued, as have

studies to explore the type of neutral tori generated by sputtering of neutrals from the inner

satellites and rings (Johnson et al. 1989). The last two one-box model studies have been

motivated by new information from a thorough and recent analysis of all Voyager UVS

data for hydrogen in the Saturn system by Shemansky and Hall (1991) which indicates that

the earlier picture of a cylindrical torus void of H atoms inside 8 planetary radii is incorrect

The distribution of atomic hydrogen in the magnetosphere of Saturn is shown by

Shemansky and Hall (1991) to be nonuniformly distributed in local time with (1) a pre-

ponderance of emission on the dusk side, (2) a density increasing radially inward to the top

of the Saturn atmosphere, and (3) a density distribution having no cylindrically symmetric

signature at Titan's orbit. This is in sharp contract to the initial analysis of a limited portion

of the Voyager data noted above. A statistically significant peak in emission at 20 planetary

radii in the antisolar region has been interpreted as strongly suggesting Titan as a partial

source of atomic hydrogen in the system. This signature is, however, not what has been

expected up to now upon theoretical grounds and suggest that a yet undiscovered

mechanisms must be operative. The distinct asymmetry in the angular distribution of

hydrogen about the planet with a maximum aligned approximately with the dusk terminator

and a minimum in the predawn region again suggest an undiscovered mechanism other than

sunlit hemisphere loss of hydrogen by the spinning planet which has been suggested by

Shemansky and Hall (1991) as a possible mechanism for producing the asymmetric

distribution. A new mechanism is discussed below.

2. A New Mechanism for the Saturn-Titan System

A nearly symmetric hydrogen torus about Saturn has been simulated in a variety of

model studies as noted above. This symmetry was shown by Smyth (1981) to be

produced naturally for H atoms that escape the gravitational field of Titan and then have

insufficient energy to escape the 1/r gravitational potential of the planet, but have a lifetime

sufficiently long so that they are able to make a number of angular orbits about the planet

relative to the satellite location.
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The addition of the accelerating force of solar radiation pressure will, however,

eliminate this circumplanetary symmetry if the atom lifetime is sufficiently long. The

effects of a constant perturbation force of solar radiation acceleration on a r 1 planetary

gravitational potential have been studied using the planetary equations for the perturbed

Keplerian motion problem and are well known. The geocorona problem for H atoms in

near Earth orbit was first considered by Chamberlain (1979,1980) in this manner (where

the sun did not move in inertia! space). This perturbation problem, including the constant

angular motion of the Sun about the Earth, was then later shown to have an explicit analytic

solution (Mignard and He*non 1984; Deprit 1984). The basic time evolution of H-atom

orbits about the planet are summarized by Chamberlain (1979) in three main effects: (1)

high inclined orbits with eccentricities £ 0.4 are forced toward the ecliptic plane, (2) the

perigees of direct orbits drift rapidly toward stable positions roughly westward (i.e. to the

dusk side of the planet, (3) and orbits in or near such a stable point rapidly lower their

perigees and end in collision with the atmosphere of the planet This behavior can readily

be verified by numerically integrating the equation of motion. Orbits with a larger semi-

major axis will tend to collide with the planet earlier since the perturbation force of solar

radiation acceleration pressure relative to gravity is greater at larger distances from the

planet This behavior will therefore selectively remove orbits at larger distance from the

planet and will make the density on the dusk side of the planet larger than the dawn side, in

agreement with the hydrogen distribution determined form the Voyager data by Shemansky

and Hall (1991).

This evolutionary behavior for H atom orbits is, however, altered when the
perturbation effects of the dominant J2 non-spherical component of the gravitational field of

Saturn (or Neptune) is considered. As is well known, the J2 non-spherical component

causes the line of perigees to process about the planet and thereby limits the amount of time

that radiation acceleration can act (at the otherwise stable positions westward of the planet

for direct orbits) to lower the orbital eccentricity. The general result is that these two

different precession periods interfere with each other and act so that the eccentricity

oscillates in time and may or may not be sufficiently large to allow the hydrogen atom to

collide with the planet in the first or second approach to the otherwise favored westward

position. This means that the H-atom collision rate for an ensemble of orbits generated by

atoms escaping Titan (or Triton) will be time dependent Atom collisions with the planet

would then tend to occur primarily in waves separated by a time interval determined by the

two separate processing periods. The impact of this orbit evolution on the spatial

11



morphology of the hydrogen in the circumplanetary environment will therefore depend

critically upon the relative value of the lifetime of the H atoms and the different H-atom

planetary collision times.

The planetary equations for the perturbed Keplerian motion problem including both
the solar radiation acceleration and the J2 non-spherical gravity term were developed in the

third project year and are summarized in Appendix B. These coupled equations have no

known analytic solution and must be solved numerically. A numerical code to solve these

equations for a set of initial conditions for the orbital elements has been developed and

tested. The numerical solution has been used to investigage the relative importance of these

H-atom planetary-colliding orbits in shaping the spatial morphology of hydrogen about

Saturn. The essential results of the initial phase of this study are summarized below for the

Titan-Saturn and Triton-Neptune systems and are discussed in more detail in the paper

(Smyth and Marconi 1992) in preparation.

3. Implications for the Hydrogen Torus of Titan and Triton

Relevant time scales characterizing an ensemble of H atoms escaping from Titan or

Triton and moving in bound orbits in the circumplanetary space of Saturn or Neptune are

summarized in Table 6. For both Titan and Triton, the shortest time scale of a typical H

atom is its Kepler orbital period about the planet with all other time scales being on average

considerably larger. This insures the existence of a hydrogen distribution about the planet,

but other time scales will influence the spatial character of this distribution. The relative

values of these time scales, however, produce a situation for the hydrogen distribution in

the Titan-Saturn system that is distinctly different than in the Triton-Neptune system as

discussed below.

For the Titan-Saturn system, it should be noted that the H-atom lifetime, elastic H-

H collision time, and radiative acceleration time have similar values even though (1) the H-

atom lifetime in the planetary magnetosphere (Richardson and Sittler 1990) and solar wind

environment and (2) the H-H atom elastic collision time in a very non-uniform gas

distribution (Shemansky and Hall 1991) are both highly spatially variable. This means that

H-H atom collisions are not in general important and that the residence time of H-atoms

will be determined by the (1) H-atom magnetospheric/solar wind lifetime and (2) the

12



removal of H-atoms by collision with the planet which will be moderated by the interfer-
ence of the J2 precession which has a time scale ~ 3 times longer. Numerical computations

verify this behavior and show that for a mean value of the solar Lyman-a flux, about 28%

of the H atoms in the ensemble of orbits created by escape from Titan will collide with

Saturn before they are removed from their orbits by charge-exchange and electron-impact
loss processes. This means that radiation pressure and the J2 gravitational term-not only

play a role in the residence time of H-atoms in the planetary environment but also greatly

modify the spatial distribution of the atoms in space and should enhance the density of

hydrogen on the dusk side of the dawn-dusk line due to the significant number of atoms

that collide with the planet Detailed model calculations which are to be proposed for future

research work should verify this behavior and provide a quantative basis for study and
interpretation of the new Voyager H Lyman-a data of Shemansky and Hall (1991).

For the Triton-Neptune system, the lifetime of H-atoms because of magnetospheric

and solar wind loss processes is at least an order of magnitude larger than in the Saturn

system and is furthermore significantly longer than all of the other Neptune time scales

except perhaps the planet orbital period. Because of this fact, a larger steady state density

of H-atoms can accumulate about Neptune, and the H-H elastic collision time becomes less

than all time scales except the typical Kepler orbital period of the H atoms. A collisional

torus will thus be formed, and the spatial distribution of the H-atoms about the planet will

be significantly influenced by the steady-state velocity distribution that evolves. Since,

however, there are still of order ten Kepler periods per collision on the average, the velocity

distribution will not be determined by local conditions and local variables (i.e., density,

average velocity and temperature), although they can be defined locally, cannot be locally
related. Since the time scales for radiation acceleration and the J2 gravitational term are

significantly longer than the H-H collision time, the effects of these forces will not directly

affect the orbital evolution of an individual atom orbit between collisions, but may perhaps

have an overall effect on the envelope of these orbits in the circumplanetary space. The

nature of the steady-state velocity distribution and the possible effects of the perturbation

forces on the spatial envelope of the H-atom spatial distribution are new and exciting

studies that are to be proposed for future research work.

13
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Table 1

COMETARY ATMOSPHERES: THREE-YEAR PLAN FOR MODELING ANALYSIS

P/Halley

H Coma

First Year

PVOUVS
Lyman-a
Image
Data

Second Year Third Year

PVOUVS Lyman-a data scan

Wisconsin Hct line profile data

O.C.OH, Comae • PVOUVS O.C.OH
scan data

• Wisconsin 0(6300A)
line profile data
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Table 2

COMET P/HALLEY OBSERVATIONS FROM THE PIONEER VENUS ORBITER

1985

1986

Date of
Observation

28 December
29 December
30 December
31 December

1 January
2 January
3 January
4 January
5 January
6 January
7 January
30 January
31 January
1 February
2 February*
3 February*
4 February*
5 February*
6 February*
7 February
8 February
9 Februaryf
10 February
11 February
12 February
13 February
14 February
15 February*
16 February
17 February
18 February
19 February
20 February
21 February
22 February
23 February
24 February
25 February
26 February
27 February
28 February
1 March
2 March
3 March
4 March
5 March
6 March
7 March

Total Daily
Observing
Time fhr}

15
15
16
16

13
20
16
15
14
14
7
3
16
11
18
19
19
19
19
15
11.
16
11
16
16
19
15
20
16
16
18
12
19
20
16
19
19
21
14
19
22
18
19
21
21
15
20
2

Observing Time oer Species Chr)

H

8
7
6
5

9
4
4
4
4
7
3
3
10
5
18
19
13
17
17
9
7
8
8
9
9
12
10
20
10
9
11
9
12
13
13
13
13
14
6
11
14
12
11
13
13
8
12
-

0

7
8
1
3
_

15
4
3
10

-
4

-
2
2
-
-
1
-

-
1
2
2
1
1
1
6
5
-
4
3
2
1
2
2
1
2
2
3
3
2
3
2
3
2
3
2
3
1

_c_

-
9
-

4
1
8

-
-
7
-

-
2
2

-
-
2
-

-
1
2
2
2
2
6
1

--
2
2
2
2
2
2
1
2
2
2
3
3
2
2
2
3
2
2
2
1

OH

-
-
8

-
-
,8
-
-
-
-
2
2
-
-
1
-
-
1
- •
2

'
1
-
-
-

.
-
2
3
-
2
2
1
2
2
2
2
3
3
2
3
3
3
3
3
-

OTHER
_

-
-
-

-
-
-
*

-
-
-
-
-
-
-
-
2
2
2
3
-
2
-
3
-
-
-
-
-
-
-
-
1
1
-
-

• -
-
-
-
-
-
-
-
-
-
-
-

*Image data acquired on these days for hydrogen

fPerihelion
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Table 3

H2O Production Rate for Comet Halley Determined from the Lyman-a Observations

Heliocentric Distance H20 Production Rate
Date (AU) (1029 molecules s'1)

1985 Dec. 28 1.06 2.83
29 1.59 2.91
30 1.56 . 3.67
31 1.53 3.34

1986 Jan. 1 1.49 3.25
2 1.46 4.13
3 1.43 4.30
4 1.39 4.62
5 1.36 4.64
6 1.32 4.45

Feb. 1 1.10 11.00
3 .80 7.90
4 .59 14.20
8 .59 14.30
9 .59 . 17.10

10 .59 17.20
11 .59 16.80
12 .59 15.10
13 .59 17.20
14 .60 18.80
15 .60 17.10
16 .61 16.60
17 .61 15.30
18 .62 12.70
19 .63 13.30
20 .63 14.40
21 .64 12.60
22 .65 14.80
23 .66 13.60
24 .67 13.60
25 .68 14.60
26 .69 * 14.80
27 .70 15.00
28 .71 16.40

March 1 .73 14.50
2 .74 13.50
3 .75 12.70
4 .76 11.00
5 .78 9.40
6 .79 9.36
7 .81 8.70
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Table 4

Selected H-ot Observations

Date

13 Dec 85

14 Dec 85

15 Dec 85

16 Dec 85

4 Jan 86

7 Jan 86

8 Jan 86

9 Jan 86

12 Jan 86

13 Jan 86

Start
Time
(UT)

0546

0324

0353

0456

0212
0222

0204
0213
0222

0223

0155

0109
0221

0212
0222

Total Scan
Time
(minutes)

13.8

35.1

30.3

12.1

7.7
7.7

7.6
7.5
7.5

7.5

11.9

10.0
8.3

7.3
5.6

zt
(deg)

65

40

46

62

60
62

62
64
66

66

63

58
72

72
74

Rhf
(AU)

1.295

1.279

1.267

1.248

0.959
0.959

0.918
0.918
0.918

0.898

0.888

0.839
0.839

0.828
0.828

At
(AU)

0.793

0.803

0.823

0.844

1.222
1.222

1.272
1.272
1.272

1.294

1.311

1.361
1.362

1.372
1.372

H-ct Intensity
(Rayleighs)

1.6 ±0.2

1.5 ±0.2

1.2 ±0.15

1.1 ±0.14

4.1 ±0.5
4.2 ± 0.5

5.7 ±0.7
5.2 ±0.7
5.2 ± 0.7

7.6 ± 1.0

7.9 ± 1.0

6.4 ± 0.8
5.1+0.6

13.7 ± 1.5
12.5 ± 1.5

Notestt

2 scans added

5 scans added

5 scans added

2 scans added

single scan
it ii

ii n

ii n

n ii

it ii

n n

ii n

it n

it it

it tt

t z is the zenith angle, Rh is the heliocentric distance of Comet Halley, A is the geocentric distance of
Comet Halley.

tt For data where multiple scans are used, time and zenith angle given are average values.
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Table 5

H2O Production Rate for Comet P/Halley Determined from the H-a Observations

Date of Lyman-a Fluxt at 1 AU HiO Production Rate

Observation (1011 ph/cm2/s) (1029s'1)

1985 Dec. 13 2.68 4.3 ± .5

14 2.66 4.1 ± .5

15 2.65 3.2 ± .4

16 2.62 2.8 ± .3

1986 Jan. 4 2.66 6.3 ± .8

7 2.64 8.3 ±.9

8 2.58 11 ±1.4

9 2.55 11.6 ±1.5

12 2.48 7.8 ± .9

13 2.46 17.5 ± 2

t Absolute error ± 15%; relative error 1 to 1.5% per year ± 5% (Rottman, 1992)
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FIGURE CAPTIONS

Figure 1 Comparison of the Lyman-a Intensity Distribution Along the Scan

for February 25,1986. The brightness is in kilorayleighs, and the distance along the
scan is in 10^ km. The data is represented by the + symbol and the model fit is given by

the solid line.

Figure 2 H20 Production Rates for Comet Halley. The production rates in units

of 10̂ 9 molecules/s is shown as a function of the day of the year from November 1985 to

May 1986 for a variety of measurements. The symbols refer to the following:

A IUE

Combi (1991)

D Magee-Sauer K., Scherb K., Roesler F.L., and Harlander J. Comet Halley
and H20 Production Rates, Icarus 84, 154-165 (1990).

x Bockelee-Morvan D., Crovisier J., and Gerard E. Retrieving the coma gas

expansion velocity in P/Halley, Wilson (1987 VII) and several other comets from
18-cm OH line shapes. Astron. Astrophys. 238, 382-400 (1990).

+ Weaver H.A., Mumma M. J., and Larson HP. Infrared Investigation of water in

comet P/Halley Astron. Astrophys. 187,411-418 (1987).

0 McCoy R.P., Meier R.R., Keller H.V., Opal C.B., Carruthers G.R., The
Hydrogen Coma of Comet P/Halley Observed in Lyman a using Sounding

Rockets, submitted to Astronomy and Astrophys. 1991.

* Fink U. and DiSanti A. The Production Rate and Spatial Distribution of H20 For

Comet P/Halley Ap. J. 364:687-698 (1990).

MCPTM
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Figure 3 H20 Production Rate for Comet Halley. The solid dots represent the

MCPTM Lyman-a results in Table 3, and the open dots are the earlier values of Stewart

(1987).

Figure 4 G-factor for H-a Emission by Hydrogen Atoms Excited by Solar

Radiation.. The g-factor is shown as a function of heliocentric radial velocity of the H

atom where negative velocity reflects motion towards the sun. The dotted line is the

conventionally employed g-factor whereas the solid line is the g-factor which takes into

account the contribution of a number of different solar excited states of H (see text for

discussion).

Figure 5 Model Calculated Brightness of the H-a Emission for Comet

P/Halley. H-a brightness contours in Rayleighs as generated by the MCPTM on the sky

plane are shown for the observation of January 4,1986. The circle indicates the location
and size of the observing aperture on the sky plane. An H20 production rate of 6.3 x 10̂ 9

molecules s" 1 is required to match the measured brightness in the aperture. The sun is to

the left.

Figure 6 Model Calculated H-a Line Profile. The model line profile for the

observation of January 4,1986 as seen from the Earth through the aperture illustrated in

Figure 5 is shown as a function of Doppler velocity. The relative motion between the Earth

and comet is not included. Positive velocities represent motion away from the Earth.

Figure 7 Comparison of Observed and Calculated H-a Line Profile. The

observed line profile for January 4,1986 is given by the solid line. The observed cometary
H-a emission is the smaller feature centered at zero velocity. The larger feature centered at

about -32 km s" 1 is the H-a geocorona emission. The instrumental profile is given in the

insert as a function of velocity and has a full width at half maximum of about 10 km s~l-

The corresponding model line profile (i.e., the profile in Figure 6 convolved with the

instrumental profile) is given by the dashed line. A uniform background of 0.15 Ray-

leighs/(km/s) has been added to the convolved model profile to adjust it to the background

level of the observation.

Figure 8 Comparison of Various H20 Production Rates for Comet

P/Halley. The H20 production rates determined from the H-a observations are given in

units of 10̂ 9 molecules s~l and are compared as a function of the day of the year (i.e.,
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0=Jan 1,1986) with rates determined from various other Halley observations identified

below. The day of perihelion is shown by the dotted line.

n H20 production rates determined from data for 6300 emission from atomic oxygen

by Magee-Sauer et al. (1990).

* H20 production rates determined from data for Lyman-a emission from atomic

hydrogen by Smyth, Marconi and Stewart (1992).

A H20 production rates determined from IUE data for OH emission by Combi

(1991).

• H20 production rates determined from MCPTM analysis of H-cc observations

(Table 5).
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Appendix A

Analyses of the Pioneer-Venus Lyman-a Image of the

Hydrogen Coma of Comet P/Halley
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Analysis of the Pioneer-Venus Lyman-cx Image of the
Hydrogen Coma of Comet P/Halley
WILLIAM H. SMYTH,* MICHAEL R. COMBI, A. I. F. STEWART

Comet Halley passed within 0.27 astronomical unit of Venus on 4 February 1986, 5
days before perihelion. This provided a unique opportunity to observe the comet's
coma with the ultraviolet spectrometer orbiting the planet aboard the Pioneer Venus
Orbiter spacecraft when the coma was otherwise obscured from Earth's view by the
sun's glare. More than 9000 data points acquired systematically over the 5-day period
from 2 to 6 February were combined to construct an excellent Lyman-a image of the
hydrogen coma. The Lyman-a image was successfully reproduced with a comprehen-
sive physical model, thereby verifying and documenting the underlying chemical
kinetics and dynamics of the hydrogen coma.

WATER MOLECULES, THE DOMI-
nant volatile constituent subli-
mated from the surfaces of com-

ets by solar heating, undergo multistep
photodissociative reactions that liberate fast
H atoms (1-3). For an active comet such as
Halley, a collision-dominated zone develops
around the nucleus. Within this zone, the
fast atoms are thermalized or partly thermal-
ized before escaping into the outer collision-
free region where they form an enormous H
coma, tens of millions of kilometers across.
The shape of this coma depends on the
interplay between the velocity distribution
of the atoms, solar gravity, the antisolar
acceleration produced by radiation pressure
on the atoms, and (at large distance) the
lifetime of the H atoms in the solar-wind
environment. A satisfactory explanation of
the detailed shape of the H coma of comet
Kohoutek (4) was not achieved until a mod-
el incorporating a physical, unparameterized
description of the collision zone was devel-
oped (5-7). Halley's H coma, which was
imaged three times in 1216 A ultraviolet
(Lyman-a) light during its 1986 apparition,
provides a second comet with a higher gas
production rate and a much larger perihe-
lion distance to test the physical picture
noted above. We have analyzed the first of
these images, obtained from the Pioneer
Venus Orbiter Ultraviolet Spectrometer
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(PVOUVS) (8) a few days before perihe-
lion, and have verified that the detailed
physics and photochemistry incorporated in
the model provide an excellent match to the
image. The PVOUVS image was obtained
during a period when the comet's conjunc-
tion with the sun rendered measurements
from Earth extremely difficult. The other
two images were obtained from sounding
rockets some weeks after perihelion (9).

Observations of solar resonance-excited
species in the comae of comet P/Halley by
PVOUVS were obtained daily from 28 De-
cember 1985 through 7 March 1986, except
for the period 7 to 30 January 1986 when
Venus's superior conjunction interrupted
the downlink to Earth. A description of the
spacecraft and observing procedures and a
presentation of the one-dimensional intensi-
ty scan data for the H, O, and C comae were
reported by Stewart (JO). The observing
geometry over the 5-day period from 2 to 6
February, which provided this excellent out-
of-the-plane Lyman-a image of the asym-
metric hydrogen coma for PVOUVS but

Fig. 1. Observing geometry
of the Pioneer Venus Orbit-
er for comet P/Halley near
perihelion. The relative po-
sitions to the sun of Earth,
Venus, the comet, and the
spacecraft on their orbits are
shown. On 4 February
1986, the observational
midpoint of the Lyman-a
image data, the phase angle
of the comet was 108°. The
close-up of the Orbiter illus-
trates its spin-stabilized plat-
form on which the ultravio-
let spectrometer is located.

not for Earth, is illustrated in Fig. 1. Also
shown in Fig. 1 is a simplified diagram of
the spin-stabilized Pioneer Venus Orbiter
showing that the optical axis of the ultravi-
olet spectrometer is fixed at about 60° from
the spin axis and hence traces out a cone in
the sky plane with each rotation of the
spacecraft (approximately once every 13.5
s). The spacecraft spin axis, and hence the
spectrometer field-of-view scan line across
the sky, was held fixed for the 5-day imaging
period. The comet's motion in the sky then
carried its coma across this scan line, thereby
mapping a two-dimensional region about
the comet. Each scan line is composed of up
to 128 samples along the portion of the
complete cone sampling the coma and cor-
responds to a swath 1.4° wide through the
coma. Typically 50 to 100 separate scan
lines were added to improve the signal-to-
noise ratio of each sample (or data point)
along the scan.

Three possible sources contribute to the
measured Lyman-a intensity at each data
point: the comet, the Venus H corona, and
the interplanetary background. The contri-
bution from the Venus corona is negligible
because observations of the comet were not
made when the orbiter was near periapsis.
The spatially dependent interplanetary back-
ground originates from the resonance scat-
tering of solar Lyman-a photons by inter-
stellar H atoms streaming through the solar
system. The background contribution to
each of the data points, which we deter-
mined using the interstellar hydrogen model
of Ajello (71), was subtracted. We then
constructed the cometary Lyman-a intensity
image by spatially sorting the corrected data
points (12). The resulting contour plot of
the image is shown in Fig. 2. Superimposed
over the contour map are dots marking the
location of the over 9000 data points.

We analyzed the Lyman-a image using
an updated version (7) of the fully time-
dependent three-dimensional Monte Carlo
particle trajectory model (MCPTM) of
Combi and Smyth (5, 6). This model has
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Fig. 2. Pioneer Venus Orbiter ultraviolet spec-
trometer image of comet Halky. A contour plot
of the hydrogen Lyman-a emission from comet
Halley, as seen by the PVOUVS during the
period 2 to 6 February 1986, is shown with the
contour levels in kilorayleighs of 0.2, 0.5, 1, 2, 5,
10, and 20. The tick marks on the circumscribed
box are separated by 10 x 106 km. The map was
constructed from over 9000 spin-scan data points,
the locations of which are denoted by dots.

already been used successfully for analyzing
PVOUVS observations of comets P/Giaco-
bini-Zinner (13) and the published rocket
observations (4) of comet Kohoutek (6).
Whereas other earlier models used a param-
eterized atom velocity distribution to repro-
duce the shape of the H coma (4), this
model predicts this distribution (and hence
the coma shape) through its explicit descrip-
tion of the photolysis of water and the
collision zone. Our treatment also allows for
the effects of multiple scattering of Lyman-a
photons in the inner coma, by means of a
plane-parallel radiative transfer calculation
(14). The Lyman-a flux for the sun in the
model was taken from observations by the
Solar Mesosphere Explorer corrected for
solar rotation to the comet's heliocentric
longitude. The time-dependent and spheri-
cally symmetric inner coma description used
for the model was taken from a set of
coupled dusty gas-dynamic and MCPTM
calculations (7), which self-consistently ex-
plained most aspects of the heliocentric dis-
tance dependence of the outflow speed of
the coma as inferred from widely varied sets
of observations of the comet. In this inner
coma description, the water production rate
has been assumed to be 80% of the total gas
production rate to account for species other
than water (15).

In the H coma MCPTM, the remaining
adjustable parameter is the H lifetime. This
lifetime in the interplanetary environment is
determined by three processes: charge ex-
change with solar-wind protons (by far the
most important), photoionization by solar

ultraviolet photons, and electron impact
ionization by solar-wind electrons (13).
There was no continuous monitoring of the
solar-wind conditions in the space sur-
rounding comet Halley except for the brief
time before and after the spacecraft flybys.
To compensate for this factor, we have
collected much of the solar-wind data taken
by the ISEE-3 (International Sun-Earth Ex-
plorer) and IMP-8 (Interplanetary Monitor-
ing Platform) satellites (16) during this pe-
riod and find an average lifetime for H
atoms during the month of January of 2 x
106 s at 1 astronomical unit (AU).

The first model calculation of the two-
dimensional Lyman-a image in Fig. 2 repro-
duced the innermost coma very well, but in
portions of the outer coma below about 0.2
kR the modeled intensity fell below the
observed level. This could be caused by (i)
an underestimation of the H lifetime in the
model, (ii) a radical increase in select por-
tions of the actual time-dependent gas pro-
duction rate not included in the model, or
(iii) an underestimation of the Lyman-a
background correction in the data.

Increasing the H lifetime even to an un-
realistically large value of 3 x 106 s or more
(reduced to 1 AU) increased the amount of
H in the model at large distances from the
nucleus and improved the fit to the image
out to the 0.1- to 0.2-kR level. Beyond this
distance, however, in the model the Ly-
man-a intensity again fell below the ob-
served brightness. Of course, increasing the
gas production rate during the period about
2 to 4 weeks before 4 February could repro-
duce the image at large cometocentric dis-
tances. However, the type of time variability
required was severely at odds with the sig-
nificant amount of excellent data used to
determine the dependence of the gas pro-
duction rate on the heliocentric distance (7).
The effects of short-term variations in the
water production rate are readily seen in the
inner coma (10), but at the greater distances
involved here they are strongly averaged by
the wide dispersion of "ages" of atoms ob-
served along a given line of sight. Only
long-term changes are relevant.

A detailed examination of the radial pro-
file of the image data in Fig. 2 (already
corrected for the assumed interplanetary
background), however, revealed that the
inferred comet signal became independent
of distance from the nucleus at large dis-
tances, a nonphysical result. This indicated
that the background brightness initially
assumed had to be larger by about 0.069
kR (that is, about 20%). With this larger
interplanetary background, the new comet
image can be well understood, even down
to the 0.05-kR level. Furthermore, the
image now makes physical sense (indepen-

Fig. 3. The MCPTM analysis of the PVOUVS
Lyman-a image. The isophote contours from
PVOUVS observation (solid line), where an ad-
ditional uniform background of 0.0692 kR has
been subtracted, are compared with the best
MCPTM result (dashed lines) which implies val-
ues of 2 x 106 s for the H lifetime (reduced to 1
AU) and 1.55 x 1030 s~' for the water produc-
tion rate during the period 2 to 6 February when
the data were taken. The rick marks on the
circumscribed box are separated by 10 x 106 km.
Comparable models for the beginning and end of
the 5-day period showed that the projected view
of the comet did not change significantly and that
the midpoint-rime model was appropriate. The
comet was essentially viewed from directly below
its orbit plane, and the main temporal change,
which was die rotation of the comet-sun line in
the sky, had already been removed by the map
sorting procedure.

dent of the model) and agrees with the
model using the H lifetime of 2 x 106 s at
1 AU. The corrected Lyman-a image and
its comparison with the MCPTM calcula-
tion are shown in Fig. 3.

The larger Lyman-a background in the
comet image raises some interesting ques-
tions for other PVOUVS measurements,
which are also directed toward improving
the interstellar H model of Ajello (11) used
here as an initial background correction.
This model derived a best fit to a data set
acquired over a period of 10 weeks, assum-
ing that the interstellar H was uniformly
illuminated by solar Lyman-a radiation
throughout. One idea that is being pursued
to understand this 20% increase is that the
solar output at the Lyman-a wavelength has
a longitudinal variability large enough so
that the interstellar H and cometary H,
which are at different heliocentric longi-
tudes, may actually be subject to significant-
ly different intensities for solar resonance
scattering. Further work is required to eval-
uate the merit of this and other ideas.

The best fit of the model to the PVOUVS
image in Fig. 3 implies a water production
rate of 1.55 x 1030 s~ * during the midpoint
of the observation. This production rate is
—30% higher than that published in the first
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Fig. 4. Velocity distribution function for H atoms
leaving the inner coma of comet Halley. The
dashed line shows the distribution of velocities of
H atoms as initially produced by photodissocia-
tion. The solid line shows the actual distribution
function for atoms leaving the inner coma after
partial collisional thermalization. Thermalization
reduces the 20 km/s region and populates the
region of low speeds (0 to 4 km/s), which initially
contains no atoms.
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analysis of these data (70), which was based
only on the inner region of the coma and did
not take into account the optical thickness of
the inner coma to solar Lyman-a radiation.
The MCPTM analysis of the entire extended
image shows that the model (corrected for
the optical thickness that occurs only in the
inner coma) self-consistently reproduces the
two-dimensional shape and gradient of the
whole observable inner and outer coma.
This result implies that the entire PVOUVS
Lyman-a data set should be reevaluated,
because all of the production rates deter-
mined from the Lyman-a data are likely to
be systematically too low, at least where the
derived production rates are large. The
agreement of the model and data in Fig. 3 is
most gratifying in that it both verifies and
documents the advantage and value of using
the physical model. Together with the anal-
ysis of comet Kohoutek (6), this analysis
represents the second major and successful
application of the full H MCPTM for a
comet for which the gas production rate is
sufficiently large that significant collisional
thermalization occurs in the inner coma.
Figure 4 shows the distribution in phase
space of the velocities of H atoms leaving
the inner coma as they are initially produced
by photodissociation and after they are par-
tially collisionally thermalized. The MCPTM
naturally produces the correct number of
low-speed H atoms that are required to ex-
plain the shape of the coma. This obviates the
need for using a parameterized velocity dis-
tribution in the model (4).
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COVER This image of the enormous hydrogen coma surrounding Comet Halley
was obtained by the Pioneer Venus Orbiter over a 5-day period in early February
1986. The image was constructed from over 9000 data points that were obtained as
the spin axis of the rotating spacecraft was held fixed and the comet drifted across the
instrument field of view. The false-color image, embellished by white constant-
brightness contours, shows the Lyman-a brightness distribution at 1216 angstroms.
The spacecraft is now headed toward a fiery death in the upper atmosphere of Venus
in the fall of 1992. See page 1008. [Image processing by A. I. F. Stewart and M. R.
Combi]
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Appendix B. Planetary Equations for the Outer Planet-Satellite Systems

For an H atom, the planetary oblateness and the solar radiation pressure acceleration

provide small perturbations to the normal force experienced from the spherically symmetric

r 1 gravitational potential of the planet This means that the orbital elements of the H atoms

that describe its orbit about the planet change slowly from their initial values. The orbital

trajectory of an atom may be solved straightforwardly by solving Newton's equations of

motion for these three forces. However, another approach, which is more computationally

efficient, is to solve the planetary equations for the slowly varying orbital elements where

the two perturbing forces are only included to first order. This latter approach is discussed

below.

The classical description of the location of an object on its orbit in three dimensions

is specified by the six orbital elements of the object and their time dependence (see, for

example, Roy 1965). The six orbital elements for perturbed Keplerian motion for planetary

bound orbits are

a = semimajor axis (in units of the planetary radii R)

e = eccentricity

i = inclination of the orbital plane to the equator plane

£2 = right ascension of the ascending node

& = argument of perigee

M = mean anomaly = n (t - T)

where t is the time, T is the time of periapsis passage and n is the mean angular velocity

given by
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where fi = GMj^ is the product of the gravitational constant times the mass of the planet.

The planetary equations for the period-averaged orbital elements \a,e,i,£2,6>,A/), which

determined their long-time evolution, when the two perturbation forces have been included

to first order, have been derived and are given as follows:
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In addition we have that

and

cos0 = -sin ycos(Af + «„).

In the above equations, X is the mean angular motion of the planet around the sun, f is the solar
radiation pressure acceleration experienced by H atoms at the planet, fy *s the standard

gravitational oblateness parameter for the planet, y is the obliguity of the planet and ao is an angle

which allows the initial position of the sun to be specified in the sky plane of the planet.
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