Fluid Mechanics Experiments in Oscillatory Flow
Volume II—Tabulated Data

J. Seume, G. Friedman, and T.W. Simon

University of Minnesota
Minneapolis, Minnesota

March 1992

Prepared for
Lewis Research Center
Under Grant NAG3—598
Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, \(\text{Re}_{\max} \), \(\text{Re}_w \), and \(\text{AR} \), embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow.

Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented.

The following is presented in two volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).
ACKNOWLEDGEMENTS

The following work was sponsored by the Lewis Research Center of NASA under grant NASA/NAG3-598. The authors thank the grant monitors, James Dudenhoefer and Roy Tew for their guidance.

Consultation on instrumentation and 3D graphics was provided by Robert Hain, the comparison of data to steady-flow correlations in this report was done by Terry Johnson and much of the document preparation was with the aid of Phillip Tuma and Amy Johnson.
CONTENTS Volume I

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

NOMENCLATURE

LIST OF FIGURES

LIST OF TABLES

1. INTRODUCTION

1.1. Motivation

1.2. Background

1.3. Review of Oscillating Flow Research
 1.3.1. Laminar
 1.3.2. Transitional
 1.3.3. Turbulent

2. EXPERIMENTAL SETUP AND PROCEDURE

2.1. Apparatus and Operating Range
 2.1.1. Dimensionless Operating Range
 2.1.2. Dimensional Operating Range
 2.1.3. Apparatus

2.2. Instrumentation
 2.2.1. Single-wire Probe
 2.2.2. Cross-wire Probe

2.3. Calibration

2.4. Data Acquisition

2.5. Data Processing
 2.5.1. Probe Position
 2.5.2. Pressure Gradient Effect on Couette Flow Model
 2.5.3. Variation of Ambient Conditions
3. RESULTS

3.1. Qualification Tests
 3.1.1. Variation in Flywheel Position. 29
 3.1.2. Convergence of Velocity Measurements in Oscillating flow. 30
 3.1.4. Repeatability of Transition Crank Position. 36
 3.1.5. Steady-flow Results. 38

3.2. Exploration of Transition Mechanisms.
 3.2.1. High-amplitude Cases. 42
 3.2.2. Medium-amplitude Cases. 49
 3.2.3. Low-amplitude Cases. 56
 3.2.4. Similarity. 56
 3.2.5. Convective Triggering of Transition. 59
 3.2.6. Non-convective Triggering of Transition. 63
 3.2.7. The Effects of Convectively and Non-convectively Triggered Transition. 64
 3.2.8. Return to Laminar Flow. 72

3.3. SPRE Test Results with a Smooth (Nozzle) Entry.
 3.3.1. Transition Mechanisms. 73
 3.3.2. Results at s/d = 0.33 (Boundary Condition). 74
 3.3.3. Results at s/d = 16. 84
 3.3.4. Results at s/d = 30. 93
 3.3.5. Results at s/d = 44. 100
 3.3.6. Comparison of Profiles to Computational Data. 106
 3.3.7. Modelling with Steady, Fully-Developed Flow Correlations 110

3.4. Test Results with a Flush-square Entry. 126

4. CONCLUSIONS

5. REFERENCES

APPENDICES
 A. Measurement Stations 140
 B. Uncertainty Documentation 142
CONTENTS VOLUME II

ABSTRACT

ACKNOWLEDGEMENTS

CONTENTS

NOMENCLATURE

LIST OF FIGURES

1. DATA LISTINGS

<table>
<thead>
<tr>
<th>List</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Wire Data</td>
<td>1</td>
</tr>
<tr>
<td>Cross-wire Data</td>
<td>48</td>
</tr>
<tr>
<td>Processed Data</td>
<td>101</td>
</tr>
</tbody>
</table>

2. PROGRAM LISTINGS

127
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Units</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_R = \frac{2x_{m,\max}}{1}$</td>
<td></td>
<td>Relative amplitude of fluid displacement</td>
</tr>
<tr>
<td>A^+</td>
<td></td>
<td>Empirical effective sublayer thickness for Van Driest model</td>
</tr>
<tr>
<td>$c_f = \frac{2u^*}{u_m^2}$</td>
<td></td>
<td>Skin-friction coefficient</td>
</tr>
<tr>
<td>D</td>
<td>m</td>
<td>Piston diameter</td>
</tr>
<tr>
<td>d</td>
<td>m</td>
<td>Duct inner diameter</td>
</tr>
<tr>
<td>f</td>
<td>sec$^{-1}$</td>
<td>Frequency</td>
</tr>
<tr>
<td>k_T</td>
<td></td>
<td>Correction factor for tangential cooling of hot-wire sensor</td>
</tr>
<tr>
<td>l</td>
<td>m</td>
<td>Duct length</td>
</tr>
<tr>
<td>P</td>
<td>bar</td>
<td>Fluid static pressure</td>
</tr>
<tr>
<td>p^+</td>
<td></td>
<td>Pressure gradient parameter</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>bar</td>
<td>Average pressure</td>
</tr>
<tr>
<td>r</td>
<td>m</td>
<td>Cross-stream coordinate, measured from the duct centerline</td>
</tr>
<tr>
<td>R</td>
<td>m</td>
<td>Pipe inner radius</td>
</tr>
<tr>
<td>$Re_d = \frac{u_m d}{n}$</td>
<td></td>
<td>Reynolds number for steady flow, based on the duct diameter and the bulk-mean velocity</td>
</tr>
<tr>
<td>$Re_{\text{max}} = \frac{u_{m,\max} d}{v}$</td>
<td></td>
<td>Reynolds number based on the duct diameter and the amplitude of the bulk-mean velocity</td>
</tr>
<tr>
<td>$Re_\omega = \frac{\omega d^2}{4v_o}$</td>
<td></td>
<td>Kinetic Reynolds number, or Valensi number</td>
</tr>
<tr>
<td>$Re_\delta = u_{m,\max} \delta/v$</td>
<td></td>
<td>Reynolds number based on Stokes layer thickness</td>
</tr>
<tr>
<td>$Re_{\delta_2} = \delta_2 u_m \sqrt{\nu}$</td>
<td></td>
<td>Momentum thickness Reynolds number</td>
</tr>
<tr>
<td>Symbol</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>s</td>
<td>m</td>
<td>Streamwise distance measured from open end of duct, or the stroke of the piston</td>
</tr>
<tr>
<td>Str = (\frac{\omega d}{u_{m,max}} = \frac{4V_a}{Re_{max}})</td>
<td></td>
<td>Strouhal Number</td>
</tr>
<tr>
<td>t</td>
<td>sec</td>
<td>Time</td>
</tr>
<tr>
<td>T</td>
<td>°C</td>
<td>Fluid temperature</td>
</tr>
<tr>
<td>u</td>
<td>m/sec</td>
<td>Instantaneous velocity</td>
</tr>
<tr>
<td>(\bar{u})</td>
<td>m/sec</td>
<td>Streamwise component of ensemble-averaged velocity</td>
</tr>
<tr>
<td>(u' = \sqrt{\frac{u'^2}{u'^2}})</td>
<td>m/sec</td>
<td>Streamwise component of rms-velocity fluctuation</td>
</tr>
<tr>
<td>(u_{eff})</td>
<td>m/sec</td>
<td>Effective cooling velocity</td>
</tr>
<tr>
<td>(u_{\infty})</td>
<td>m/sec</td>
<td>Freestream velocity</td>
</tr>
<tr>
<td>(u_m)</td>
<td>m/sec</td>
<td>Bulk-mean velocity</td>
</tr>
<tr>
<td>(u_{m,max})</td>
<td>m/sec</td>
<td>Amplitude of the bulk-mean velocity</td>
</tr>
<tr>
<td>(u_n)</td>
<td>m/sec</td>
<td>Velocity component normal to sensor</td>
</tr>
<tr>
<td>(u_T)</td>
<td>m/sec</td>
<td>Velocity component tangential to sensor</td>
</tr>
<tr>
<td>(u_* = \sqrt{\frac{\tau_w}{\rho}})</td>
<td>m/sec</td>
<td>Friction velocity</td>
</tr>
<tr>
<td>(u^+ = \frac{u}{u_*})</td>
<td></td>
<td>Nondimensional velocity, in wall coordinates</td>
</tr>
<tr>
<td>(\bar{v})</td>
<td>m/sec</td>
<td>Radial component of ensemble-averaged velocity</td>
</tr>
<tr>
<td>(v')</td>
<td>m/sec</td>
<td>Radial component of rms-velocity fluctuation</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
<td>Transducer voltage</td>
</tr>
<tr>
<td>(V_a = \frac{\omega d^2}{4v})</td>
<td></td>
<td>Valensi number</td>
</tr>
<tr>
<td>(-u'v')</td>
<td>m²/sec²</td>
<td>Reynolds shear stress</td>
</tr>
<tr>
<td>x</td>
<td>m</td>
<td>Streamwise distance, measured from drive end of duct</td>
</tr>
<tr>
<td>Symbol</td>
<td>Units</td>
<td>Explanation</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>x_m</td>
<td>m</td>
<td>Amplitude of displacement of bulk fluid</td>
</tr>
<tr>
<td>y</td>
<td>m</td>
<td>Cross-stream coordinate, measured from the duct wall</td>
</tr>
<tr>
<td>$y^+ = \frac{yu_*}{n}$</td>
<td></td>
<td>Distance normal to the wall in inner coordinates</td>
</tr>
</tbody>
</table>

Greek

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = \sqrt{v/a}$</td>
<td>Womersely parameter</td>
</tr>
<tr>
<td>$\delta = (2v/\omega)^{1/2}$</td>
<td>Stokes-layer thickness</td>
</tr>
<tr>
<td>δ_2</td>
<td>Momentum thickness</td>
</tr>
<tr>
<td>θ</td>
<td>Crank angle within the cycle</td>
</tr>
<tr>
<td>κ</td>
<td>Karman constant</td>
</tr>
<tr>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>ν_0</td>
<td>Kinematic viscosity at the reference state</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>τ</td>
<td>Shear stress</td>
</tr>
<tr>
<td>$\psi = \bar{u}'v'/u_*v'$</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>$\omega = 2\pi f$</td>
<td>Angular frequency</td>
</tr>
</tbody>
</table>

Superscripts

<table>
<thead>
<tr>
<th>Superscript</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Wall coordinate</td>
</tr>
<tr>
<td>*</td>
<td>Normalized quantity, except where used in friction velocity, u_*</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Average over cross-section of duct</td>
</tr>
<tr>
<td>max</td>
<td>Maximum during one cycle</td>
</tr>
<tr>
<td>o</td>
<td>Reference state</td>
</tr>
<tr>
<td>w</td>
<td>At the wall</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ensemble-averaged velocity at s/d = 0.33.</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Streamwise velocity fluctuation at s/d = 0.33.</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 0.33.</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Ensemble-averaged velocity at s/d = 16.</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Streamwise velocity fluctuation at s/d = 16.</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 16.</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Ensemble-averaged velocity at s/d = 30.</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Streamwise velocity fluctuation at s/d = 30</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Streamwise velocity fluctuation at s/d = 30</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Centerline view.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 30.</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>Ensemble-averaged velocity at s/d = 44.</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>Streamwise velocity fluctuation at s/d = 44</td>
<td>46</td>
</tr>
<tr>
<td>13</td>
<td>Streamwise turbulence intensity, u'/u, at s/d = 44.</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>Streamwise velocity fluctuation at s/d = 0.033 (smoothed).</td>
<td>59</td>
</tr>
<tr>
<td>15</td>
<td>Radial velocity fluctuation at s/d = 0.33 (smoothed).</td>
<td>60</td>
</tr>
<tr>
<td>16</td>
<td>Reynolds shear stress at s/d = 0.33 (not smoothed).</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>Streamwise velocity fluctuation at s/d = 44 (smoothed).</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>Radial velocity fluctuation at s/d = 44 (smoothed).</td>
<td>73</td>
</tr>
<tr>
<td>19</td>
<td>Reynolds shear stress at s/d = 44 (not smoothed).</td>
<td>74</td>
</tr>
<tr>
<td>20</td>
<td>Streamwise velocity fluctuation at s/d = 30 (smoothed).</td>
<td>85</td>
</tr>
<tr>
<td>21</td>
<td>Radial velocity fluctuation at s/d = 30 (smoothed).</td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td>Reynolds shear stress at s/d = 30 (not smoothed).</td>
<td>87</td>
</tr>
<tr>
<td>23</td>
<td>Streamwise velocity fluctuation at s/d = 44 (smoothed).</td>
<td>98</td>
</tr>
<tr>
<td>24</td>
<td>Radial velocity fluctuation at s/d = 44 (smoothed).</td>
<td>99</td>
</tr>
<tr>
<td>25</td>
<td>Reynolds shear stress at s/d = 44 (not smoothed).</td>
<td>100</td>
</tr>
</tbody>
</table>
I. SINGLE-WIRE DATA

SPRE Operating Point
Nozzle Inlet Geometry
(θ, \bar{u}) (θ, u') (θ, u_m)

<table>
<thead>
<tr>
<th>axial station</th>
<th>s/d</th>
<th>T ($^\circ$C)</th>
<th>P (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>25.68</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>25.29</td>
<td>0.991</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>25.22</td>
<td>0.989</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>24.06</td>
<td>0.990</td>
<td></td>
</tr>
</tbody>
</table>

Note that the data are tabulated at every 4 degrees of crank position except within ±10 degrees of transition, for which the resolution is every 2 degrees.

II. SUPPLEMENTAL FIGURES

In order to supplement the three-dimensional figures which appear in the main body of the thesis, additional figures generated from the single-wire data have been included after the tabulated data for each of the four axial stations. At each station, plots are provided of the ensemble-averaged velocity, the streamwise rms-velocity fluctuation, and the turbulence intensity.
<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{u}</th>
<th>u'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.0458</td>
<td>0.0077</td>
<td>0.0388</td>
<td>0.0105</td>
<td>0.0340</td>
<td>0.0127</td>
</tr>
<tr>
<td>8</td>
<td>0.0536</td>
<td>0.0065</td>
<td>0.0476</td>
<td>0.0088</td>
<td>0.0453</td>
<td>0.0111</td>
</tr>
<tr>
<td>12</td>
<td>0.0652</td>
<td>0.0077</td>
<td>0.0616</td>
<td>0.0076</td>
<td>0.0650</td>
<td>0.0118</td>
</tr>
<tr>
<td>14</td>
<td>0.0748</td>
<td>0.0094</td>
<td>0.0723</td>
<td>0.0096</td>
<td>0.0826</td>
<td>0.0134</td>
</tr>
<tr>
<td>16</td>
<td>0.0845</td>
<td>0.0088</td>
<td>0.0849</td>
<td>0.0105</td>
<td>0.1017</td>
<td>0.0167</td>
</tr>
<tr>
<td>18</td>
<td>0.0933</td>
<td>0.0106</td>
<td>0.0962</td>
<td>0.0131</td>
<td>0.1175</td>
<td>0.0184</td>
</tr>
<tr>
<td>20</td>
<td>0.1035</td>
<td>0.0139</td>
<td>0.1070</td>
<td>0.0158</td>
<td>0.1329</td>
<td>0.0235</td>
</tr>
<tr>
<td>22</td>
<td>0.1077</td>
<td>0.0160</td>
<td>0.1163</td>
<td>0.0193</td>
<td>0.1468</td>
<td>0.0291</td>
</tr>
<tr>
<td>24</td>
<td>0.1144</td>
<td>0.0168</td>
<td>0.1274</td>
<td>0.0266</td>
<td>0.1598</td>
<td>0.0329</td>
</tr>
<tr>
<td>26</td>
<td>0.1246</td>
<td>0.0211</td>
<td>0.1434</td>
<td>0.0335</td>
<td>0.1827</td>
<td>0.0432</td>
</tr>
<tr>
<td>28</td>
<td>0.1484</td>
<td>0.0363</td>
<td>0.1609</td>
<td>0.0372</td>
<td>0.2173</td>
<td>0.0638</td>
</tr>
<tr>
<td>30</td>
<td>0.1796</td>
<td>0.0418</td>
<td>0.1851</td>
<td>0.0477</td>
<td>0.2544</td>
<td>0.0779</td>
</tr>
<tr>
<td>32</td>
<td>0.1953</td>
<td>0.0427</td>
<td>0.2128</td>
<td>0.0625</td>
<td>0.2956</td>
<td>0.0933</td>
</tr>
<tr>
<td>36</td>
<td>0.2452</td>
<td>0.1041</td>
<td>0.2647</td>
<td>0.0916</td>
<td>0.3649</td>
<td>0.1351</td>
</tr>
<tr>
<td>40</td>
<td>0.2511</td>
<td>0.0812</td>
<td>0.3002</td>
<td>0.1158</td>
<td>0.4179</td>
<td>0.1507</td>
</tr>
<tr>
<td>44</td>
<td>0.3145</td>
<td>0.1099</td>
<td>0.3697</td>
<td>0.1427</td>
<td>0.5204</td>
<td>0.1875</td>
</tr>
<tr>
<td>48</td>
<td>0.3433</td>
<td>0.1005</td>
<td>0.4349</td>
<td>0.1446</td>
<td>0.5855</td>
<td>0.1761</td>
</tr>
<tr>
<td>52</td>
<td>0.3843</td>
<td>0.1313</td>
<td>0.4700</td>
<td>0.1557</td>
<td>0.6621</td>
<td>0.2103</td>
</tr>
<tr>
<td>56</td>
<td>0.3980</td>
<td>0.1170</td>
<td>0.4965</td>
<td>0.1578</td>
<td>0.6913</td>
<td>0.1970</td>
</tr>
<tr>
<td>60</td>
<td>0.4376</td>
<td>0.1060</td>
<td>0.5391</td>
<td>0.1576</td>
<td>0.7335</td>
<td>0.1828</td>
</tr>
<tr>
<td>64</td>
<td>0.5004</td>
<td>0.1279</td>
<td>0.5925</td>
<td>0.1630</td>
<td>0.7968</td>
<td>0.1878</td>
</tr>
<tr>
<td>68</td>
<td>0.5330</td>
<td>0.1542</td>
<td>0.6199</td>
<td>0.1534</td>
<td>0.8054</td>
<td>0.1835</td>
</tr>
<tr>
<td>72</td>
<td>0.5970</td>
<td>0.1516</td>
<td>0.6479</td>
<td>0.1390</td>
<td>0.8459</td>
<td>0.1813</td>
</tr>
<tr>
<td>76</td>
<td>0.5981</td>
<td>0.1098</td>
<td>0.6719</td>
<td>0.1192</td>
<td>0.8752</td>
<td>0.1673</td>
</tr>
<tr>
<td>80</td>
<td>0.5987</td>
<td>0.1004</td>
<td>0.6840</td>
<td>0.0851</td>
<td>0.8909</td>
<td>0.1351</td>
</tr>
<tr>
<td>84</td>
<td>0.6010</td>
<td>0.0676</td>
<td>0.6830</td>
<td>0.0577</td>
<td>0.8761</td>
<td>0.0769</td>
</tr>
<tr>
<td>88</td>
<td>0.5789</td>
<td>0.0416</td>
<td>0.6649</td>
<td>0.0307</td>
<td>0.8491</td>
<td>0.0479</td>
</tr>
<tr>
<td>92</td>
<td>0.5501</td>
<td>0.0252</td>
<td>0.6564</td>
<td>0.0160</td>
<td>0.8316</td>
<td>0.0286</td>
</tr>
<tr>
<td>96</td>
<td>0.5372</td>
<td>0.0241</td>
<td>0.6560</td>
<td>0.0059</td>
<td>0.8207</td>
<td>0.0178</td>
</tr>
<tr>
<td>100</td>
<td>0.5175</td>
<td>0.0095</td>
<td>0.6560</td>
<td>0.0035</td>
<td>0.8018</td>
<td>0.0078</td>
</tr>
<tr>
<td>104</td>
<td>0.5040</td>
<td>0.0065</td>
<td>0.6017</td>
<td>0.0164</td>
<td>0.7732</td>
<td>0.0103</td>
</tr>
<tr>
<td>108</td>
<td>0.4790</td>
<td>0.0033</td>
<td>0.5804</td>
<td>0.0048</td>
<td>0.7430</td>
<td>0.0054</td>
</tr>
<tr>
<td>112</td>
<td>0.4412</td>
<td>0.0077</td>
<td>0.5312</td>
<td>0.0065</td>
<td>0.7190</td>
<td>0.0057</td>
</tr>
<tr>
<td>116</td>
<td>0.4060</td>
<td>0.0070</td>
<td>0.5023</td>
<td>0.0085</td>
<td>0.6766</td>
<td>0.0015</td>
</tr>
<tr>
<td>120</td>
<td>0.3866</td>
<td>0.0020</td>
<td>0.4498</td>
<td>0.0074</td>
<td>0.6561</td>
<td>0.0007</td>
</tr>
<tr>
<td>124</td>
<td>0.3511</td>
<td>0.0080</td>
<td>0.4071</td>
<td>0.0078</td>
<td>0.5895</td>
<td>0.0111</td>
</tr>
<tr>
<td>128</td>
<td>0.3164</td>
<td>0.0080</td>
<td>0.3740</td>
<td>0.0091</td>
<td>0.5238</td>
<td>0.0084</td>
</tr>
<tr>
<td>132</td>
<td>0.2714</td>
<td>0.0054</td>
<td>0.3304</td>
<td>0.0036</td>
<td>0.4596</td>
<td>0.0137</td>
</tr>
<tr>
<td>136</td>
<td>0.2340</td>
<td>0.0016</td>
<td>0.2686</td>
<td>0.0039</td>
<td>0.3870</td>
<td>0.0023</td>
</tr>
<tr>
<td>140</td>
<td>0.1921</td>
<td>0.0020</td>
<td>0.2214</td>
<td>0.0040</td>
<td>0.3010</td>
<td>0.0095</td>
</tr>
<tr>
<td>144</td>
<td>0.1540</td>
<td>0.0000</td>
<td>0.1730</td>
<td>0.0031</td>
<td>0.2254</td>
<td>0.0047</td>
</tr>
<tr>
<td>148</td>
<td>0.1216</td>
<td>0.0026</td>
<td>0.1291</td>
<td>0.0028</td>
<td>0.1709</td>
<td>0.0045</td>
</tr>
<tr>
<td>152</td>
<td>0.0938</td>
<td>0.0036</td>
<td>0.0965</td>
<td>0.0052</td>
<td>0.1205</td>
<td>0.0013</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>r/R = 0.994</td>
<td>r/R = 0.993</td>
<td>r/R = 0.990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>156</td>
<td>0.0679</td>
<td>0.0026</td>
<td>0.0649</td>
<td>0.0026</td>
<td>0.0700</td>
<td>0.0030</td>
</tr>
<tr>
<td>160</td>
<td>0.0455</td>
<td>0.0000</td>
<td>0.0422</td>
<td>0.0026</td>
<td>0.0346</td>
<td>0.0024</td>
</tr>
<tr>
<td>164</td>
<td>0.0276</td>
<td>0.0016</td>
<td>0.0217</td>
<td>0.0005</td>
<td>0.0130</td>
<td>0.0003</td>
</tr>
<tr>
<td>168</td>
<td>0.0183</td>
<td>0.0023</td>
<td>0.0104</td>
<td>0.0009</td>
<td>0.0042</td>
<td>0.0013</td>
</tr>
<tr>
<td>172</td>
<td>0.0133</td>
<td>0.0009</td>
<td>0.0066</td>
<td>0.0001</td>
<td>0.0014</td>
<td>0.0001</td>
</tr>
<tr>
<td>176</td>
<td>0.0211</td>
<td>0.0015</td>
<td>0.0121</td>
<td>0.0012</td>
<td>0.0064</td>
<td>0.0008</td>
</tr>
<tr>
<td>180</td>
<td>0.0283</td>
<td>0.0009</td>
<td>0.0217</td>
<td>0.0005</td>
<td>0.0130</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>r/R = 0.988</th>
<th>r/R = 0.984</th>
<th>r/R = 0.981</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>u (m/sec)</td>
</tr>
<tr>
<td>4</td>
<td>0.0320</td>
<td>0.0149</td>
<td>0.0423</td>
</tr>
<tr>
<td>8</td>
<td>0.0442</td>
<td>0.0139</td>
<td>0.0641</td>
</tr>
<tr>
<td>12</td>
<td>0.0699</td>
<td>0.0158</td>
<td>0.1057</td>
</tr>
<tr>
<td>14</td>
<td>0.0925</td>
<td>0.0158</td>
<td>0.1433</td>
</tr>
<tr>
<td>16</td>
<td>0.1143</td>
<td>0.0211</td>
<td>0.1775</td>
</tr>
<tr>
<td>18</td>
<td>0.1346</td>
<td>0.0250</td>
<td>0.2107</td>
</tr>
<tr>
<td>20</td>
<td>0.1549</td>
<td>0.0284</td>
<td>0.2447</td>
</tr>
<tr>
<td>22</td>
<td>0.1718</td>
<td>0.0404</td>
<td>0.2773</td>
</tr>
<tr>
<td>24</td>
<td>0.1904</td>
<td>0.0476</td>
<td>0.3059</td>
</tr>
<tr>
<td>26</td>
<td>0.2183</td>
<td>0.0607</td>
<td>0.3507</td>
</tr>
<tr>
<td>28</td>
<td>0.2626</td>
<td>0.0816</td>
<td>0.4157</td>
</tr>
<tr>
<td>30</td>
<td>0.3105</td>
<td>0.1006</td>
<td>0.4871</td>
</tr>
<tr>
<td>32</td>
<td>0.3669</td>
<td>0.1215</td>
<td>0.5607</td>
</tr>
<tr>
<td>36</td>
<td>0.4529</td>
<td>0.1551</td>
<td>0.6597</td>
</tr>
<tr>
<td>40</td>
<td>0.4926</td>
<td>0.1721</td>
<td>0.7329</td>
</tr>
<tr>
<td>44</td>
<td>0.5893</td>
<td>0.2028</td>
<td>0.8490</td>
</tr>
<tr>
<td>48</td>
<td>0.6906</td>
<td>0.1961</td>
<td>0.9355</td>
</tr>
<tr>
<td>52</td>
<td>0.7504</td>
<td>0.2018</td>
<td>1.0011</td>
</tr>
<tr>
<td>56</td>
<td>0.7903</td>
<td>0.2004</td>
<td>1.0701</td>
</tr>
<tr>
<td>60</td>
<td>0.8531</td>
<td>0.1911</td>
<td>1.1350</td>
</tr>
<tr>
<td>64</td>
<td>0.9001</td>
<td>0.1821</td>
<td>1.2098</td>
</tr>
<tr>
<td>68</td>
<td>0.9391</td>
<td>0.2012</td>
<td>1.2400</td>
</tr>
<tr>
<td>72</td>
<td>0.9622</td>
<td>0.1989</td>
<td>1.2986</td>
</tr>
<tr>
<td>76</td>
<td>1.0067</td>
<td>0.1776</td>
<td>1.3676</td>
</tr>
<tr>
<td>80</td>
<td>1.0368</td>
<td>0.1600</td>
<td>1.3817</td>
</tr>
<tr>
<td>84</td>
<td>1.0199</td>
<td>0.0873</td>
<td>1.3620</td>
</tr>
<tr>
<td>88</td>
<td>0.9927</td>
<td>0.0615</td>
<td>1.3229</td>
</tr>
<tr>
<td>92</td>
<td>0.9730</td>
<td>0.0378</td>
<td>1.2925</td>
</tr>
<tr>
<td>θ</td>
<td>(\ddot{u})</td>
<td>(u')</td>
<td>(\ddot{u})</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>96</td>
<td>0.9601</td>
<td>0.0229</td>
<td>1.2794</td>
</tr>
<tr>
<td>100</td>
<td>0.9357</td>
<td>0.0125</td>
<td>1.2428</td>
</tr>
<tr>
<td>104</td>
<td>0.9166</td>
<td>0.0078</td>
<td>1.2028</td>
</tr>
<tr>
<td>108</td>
<td>0.8806</td>
<td>0.0122</td>
<td>1.1767</td>
</tr>
<tr>
<td>112</td>
<td>0.8400</td>
<td>0.0085</td>
<td>1.1259</td>
</tr>
<tr>
<td>116</td>
<td>0.7902</td>
<td>0.0063</td>
<td>1.0622</td>
</tr>
<tr>
<td>120</td>
<td>0.7458</td>
<td>0.0025</td>
<td>1.0082</td>
</tr>
<tr>
<td>124</td>
<td>0.6878</td>
<td>0.0073</td>
<td>0.9448</td>
</tr>
<tr>
<td>128</td>
<td>0.6530</td>
<td>0.0091</td>
<td>0.8687</td>
</tr>
<tr>
<td>132</td>
<td>0.5859</td>
<td>0.0033</td>
<td>0.7954</td>
</tr>
<tr>
<td>136</td>
<td>0.4854</td>
<td>0.0128</td>
<td>0.7038</td>
</tr>
<tr>
<td>140</td>
<td>0.3785</td>
<td>0.0063</td>
<td>0.6179</td>
</tr>
<tr>
<td>144</td>
<td>0.2846</td>
<td>0.0030</td>
<td>0.4717</td>
</tr>
<tr>
<td>148</td>
<td>0.2061</td>
<td>0.0099</td>
<td>0.3441</td>
</tr>
<tr>
<td>152</td>
<td>0.1395</td>
<td>0.0040</td>
<td>0.2305</td>
</tr>
<tr>
<td>156</td>
<td>0.0604</td>
<td>0.0033</td>
<td>0.1317</td>
</tr>
<tr>
<td>160</td>
<td>0.0327</td>
<td>0.0030</td>
<td>0.0506</td>
</tr>
<tr>
<td>164</td>
<td>0.0082</td>
<td>0.0013</td>
<td>0.0088</td>
</tr>
<tr>
<td>168</td>
<td>0.0016</td>
<td>0.0006</td>
<td>0.0001</td>
</tr>
<tr>
<td>172</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0022</td>
</tr>
<tr>
<td>176</td>
<td>0.0019</td>
<td>0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td>180</td>
<td>0.0084</td>
<td>0.0015</td>
<td>0.0086</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{u})</th>
<th>(u')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.1161</td>
<td>0.0534</td>
<td>0.1716</td>
<td>0.0830</td>
<td>0.2940</td>
<td>0.1353</td>
</tr>
<tr>
<td>6</td>
<td>0.1604</td>
<td>0.0609</td>
<td>0.2774</td>
<td>0.0644</td>
<td>0.4938</td>
<td>0.1285</td>
</tr>
<tr>
<td>12</td>
<td>0.2834</td>
<td>0.0629</td>
<td>0.4196</td>
<td>0.0592</td>
<td>0.6983</td>
<td>0.0880</td>
</tr>
<tr>
<td>14</td>
<td>0.3701</td>
<td>0.0630</td>
<td>0.5275</td>
<td>0.0876</td>
<td>0.7980</td>
<td>0.0841</td>
</tr>
<tr>
<td>16</td>
<td>0.4424</td>
<td>0.0741</td>
<td>0.6188</td>
<td>0.0755</td>
<td>0.9118</td>
<td>0.0878</td>
</tr>
<tr>
<td>18</td>
<td>0.5157</td>
<td>0.0816</td>
<td>0.6855</td>
<td>0.0791</td>
<td>1.0048</td>
<td>0.1022</td>
</tr>
<tr>
<td>20</td>
<td>0.5816</td>
<td>0.0922</td>
<td>0.7391</td>
<td>0.0796</td>
<td>1.1009</td>
<td>0.1251</td>
</tr>
<tr>
<td>22</td>
<td>0.6325</td>
<td>0.0922</td>
<td>0.7879</td>
<td>0.0996</td>
<td>1.1694</td>
<td>0.1413</td>
</tr>
<tr>
<td>24</td>
<td>0.6682</td>
<td>0.1049</td>
<td>0.8437</td>
<td>0.1223</td>
<td>1.2577</td>
<td>0.1680</td>
</tr>
<tr>
<td>26</td>
<td>0.7241</td>
<td>0.1235</td>
<td>0.9155</td>
<td>0.1531</td>
<td>1.3614</td>
<td>0.1993</td>
</tr>
<tr>
<td>28</td>
<td>0.8040</td>
<td>0.1588</td>
<td>1.0036</td>
<td>0.1894</td>
<td>1.4671</td>
<td>0.2347</td>
</tr>
<tr>
<td>30</td>
<td>0.8890</td>
<td>0.1785</td>
<td>1.1121</td>
<td>0.2284</td>
<td>1.5998</td>
<td>0.2684</td>
</tr>
<tr>
<td>32</td>
<td>0.9858</td>
<td>0.2257</td>
<td>1.2272</td>
<td>0.2704</td>
<td>1.7320</td>
<td>0.3013</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>r/R = 0.974</th>
<th>r/R = 0.968</th>
<th>r/R = 0.948</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>(\ddot{u})</td>
<td>(u')</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.1161</td>
<td>0.0534</td>
</tr>
<tr>
<td>6</td>
<td>0.1604</td>
<td>0.0609</td>
</tr>
<tr>
<td>12</td>
<td>0.2834</td>
<td>0.0629</td>
</tr>
<tr>
<td>14</td>
<td>0.3701</td>
<td>0.0630</td>
</tr>
<tr>
<td>16</td>
<td>0.4424</td>
<td>0.0741</td>
</tr>
<tr>
<td>18</td>
<td>0.5157</td>
<td>0.0816</td>
</tr>
<tr>
<td>20</td>
<td>0.5816</td>
<td>0.0922</td>
</tr>
<tr>
<td>22</td>
<td>0.6325</td>
<td>0.0922</td>
</tr>
<tr>
<td>24</td>
<td>0.6682</td>
<td>0.1049</td>
</tr>
<tr>
<td>26</td>
<td>0.7241</td>
<td>0.1235</td>
</tr>
<tr>
<td>28</td>
<td>0.8040</td>
<td>0.1588</td>
</tr>
<tr>
<td>30</td>
<td>0.8890</td>
<td>0.1785</td>
</tr>
<tr>
<td>32</td>
<td>0.9858</td>
<td>0.2257</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>36</td>
<td>1.1154</td>
<td>0.2655</td>
</tr>
<tr>
<td>40</td>
<td>1.2384</td>
<td>0.3272</td>
</tr>
<tr>
<td>44</td>
<td>1.3854</td>
<td>0.3739</td>
</tr>
<tr>
<td>48</td>
<td>1.5686</td>
<td>0.4197</td>
</tr>
<tr>
<td>52</td>
<td>1.6829</td>
<td>0.4248</td>
</tr>
<tr>
<td>56</td>
<td>1.7636</td>
<td>0.4207</td>
</tr>
<tr>
<td>60</td>
<td>1.8286</td>
<td>0.4076</td>
</tr>
<tr>
<td>64</td>
<td>1.9466</td>
<td>0.4041</td>
</tr>
<tr>
<td>68</td>
<td>2.0000</td>
<td>0.4324</td>
</tr>
<tr>
<td>72</td>
<td>2.1032</td>
<td>0.4275</td>
</tr>
<tr>
<td>76</td>
<td>2.1631</td>
<td>0.3764</td>
</tr>
<tr>
<td>80</td>
<td>2.2167</td>
<td>0.3059</td>
</tr>
<tr>
<td>84</td>
<td>2.1763</td>
<td>0.1811</td>
</tr>
<tr>
<td>88</td>
<td>2.1166</td>
<td>0.1144</td>
</tr>
<tr>
<td>92</td>
<td>2.0741</td>
<td>0.0684</td>
</tr>
<tr>
<td>96</td>
<td>2.0519</td>
<td>0.0380</td>
</tr>
<tr>
<td>100</td>
<td>2.0180</td>
<td>0.0186</td>
</tr>
<tr>
<td>104</td>
<td>1.9424</td>
<td>0.0135</td>
</tr>
<tr>
<td>108</td>
<td>1.8980</td>
<td>0.0088</td>
</tr>
<tr>
<td>112</td>
<td>1.8170</td>
<td>0.0116</td>
</tr>
<tr>
<td>116</td>
<td>1.7318</td>
<td>0.0114</td>
</tr>
<tr>
<td>120</td>
<td>1.6515</td>
<td>0.0026</td>
</tr>
<tr>
<td>124</td>
<td>1.5635</td>
<td>0.0070</td>
</tr>
<tr>
<td>128</td>
<td>1.4546</td>
<td>0.0116</td>
</tr>
<tr>
<td>132</td>
<td>1.3361</td>
<td>0.0149</td>
</tr>
<tr>
<td>136</td>
<td>1.2183</td>
<td>0.0092</td>
</tr>
<tr>
<td>140</td>
<td>1.0667</td>
<td>0.0124</td>
</tr>
<tr>
<td>144</td>
<td>0.9028</td>
<td>0.0081</td>
</tr>
<tr>
<td>148</td>
<td>0.7579</td>
<td>0.0116</td>
</tr>
<tr>
<td>152</td>
<td>0.6464</td>
<td>0.0020</td>
</tr>
<tr>
<td>156</td>
<td>0.4054</td>
<td>0.0120</td>
</tr>
<tr>
<td>160</td>
<td>0.1983</td>
<td>0.0074</td>
</tr>
<tr>
<td>164</td>
<td>0.0553</td>
<td>0.0030</td>
</tr>
<tr>
<td>168</td>
<td>0.0022</td>
<td>0.0010</td>
</tr>
<tr>
<td>172</td>
<td>0.0053</td>
<td>0.0007</td>
</tr>
<tr>
<td>176</td>
<td>0.0001</td>
<td>0.0000</td>
</tr>
<tr>
<td>180</td>
<td>0.0277</td>
<td>0.0019</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>4</td>
<td>0.3266</td>
<td>0.1696</td>
</tr>
<tr>
<td>8</td>
<td>0.5746</td>
<td>0.1386</td>
</tr>
<tr>
<td>12</td>
<td>0.8030</td>
<td>0.1016</td>
</tr>
<tr>
<td>14</td>
<td>0.9426</td>
<td>0.1024</td>
</tr>
<tr>
<td>16</td>
<td>1.0669</td>
<td>0.0987</td>
</tr>
<tr>
<td>18</td>
<td>1.1857</td>
<td>0.1200</td>
</tr>
<tr>
<td>20</td>
<td>1.2993</td>
<td>0.1349</td>
</tr>
<tr>
<td>22</td>
<td>1.4153</td>
<td>0.1519</td>
</tr>
<tr>
<td>24</td>
<td>1.5184</td>
<td>0.1724</td>
</tr>
<tr>
<td>26</td>
<td>1.6256</td>
<td>0.2134</td>
</tr>
<tr>
<td>28</td>
<td>1.7611</td>
<td>0.2472</td>
</tr>
<tr>
<td>30</td>
<td>1.9085</td>
<td>0.2647</td>
</tr>
<tr>
<td>32</td>
<td>2.0432</td>
<td>0.2823</td>
</tr>
<tr>
<td>36</td>
<td>2.3248</td>
<td>0.3322</td>
</tr>
<tr>
<td>40</td>
<td>2.5423</td>
<td>0.3548</td>
</tr>
<tr>
<td>44</td>
<td>2.7610</td>
<td>0.3824</td>
</tr>
<tr>
<td>48</td>
<td>3.0323</td>
<td>0.3695</td>
</tr>
<tr>
<td>52</td>
<td>3.3003</td>
<td>0.3491</td>
</tr>
<tr>
<td>56</td>
<td>3.4609</td>
<td>0.3552</td>
</tr>
<tr>
<td>60</td>
<td>3.6057</td>
<td>0.3740</td>
</tr>
<tr>
<td>64</td>
<td>3.8199</td>
<td>0.3617</td>
</tr>
<tr>
<td>68</td>
<td>3.9793</td>
<td>0.3285</td>
</tr>
<tr>
<td>72</td>
<td>4.1334</td>
<td>0.3130</td>
</tr>
<tr>
<td>76</td>
<td>4.2055</td>
<td>0.2983</td>
</tr>
<tr>
<td>80</td>
<td>4.3326</td>
<td>0.2363</td>
</tr>
<tr>
<td>84</td>
<td>4.3651</td>
<td>0.1706</td>
</tr>
<tr>
<td>88</td>
<td>4.3221</td>
<td>0.1282</td>
</tr>
<tr>
<td>92</td>
<td>4.2636</td>
<td>0.0809</td>
</tr>
<tr>
<td>96</td>
<td>4.2407</td>
<td>0.0414</td>
</tr>
<tr>
<td>100</td>
<td>4.2050</td>
<td>0.0271</td>
</tr>
<tr>
<td>104</td>
<td>4.1098</td>
<td>0.0125</td>
</tr>
<tr>
<td>108</td>
<td>4.0408</td>
<td>0.0156</td>
</tr>
<tr>
<td>112</td>
<td>3.9584</td>
<td>0.0033</td>
</tr>
<tr>
<td>116</td>
<td>3.8013</td>
<td>0.0171</td>
</tr>
<tr>
<td>120</td>
<td>3.6538</td>
<td>0.0179</td>
</tr>
<tr>
<td>124</td>
<td>3.5311</td>
<td>0.0000</td>
</tr>
<tr>
<td>128</td>
<td>3.3465</td>
<td>0.0207</td>
</tr>
<tr>
<td>132</td>
<td>3.1395</td>
<td>0.0173</td>
</tr>
<tr>
<td>136</td>
<td>2.9443</td>
<td>0.0099</td>
</tr>
<tr>
<td>140</td>
<td>2.6872</td>
<td>0.0244</td>
</tr>
<tr>
<td>144</td>
<td>2.4137</td>
<td>0.0132</td>
</tr>
<tr>
<td>148</td>
<td>2.1102</td>
<td>0.0105</td>
</tr>
<tr>
<td>152</td>
<td>1.8340</td>
<td>0.0189</td>
</tr>
<tr>
<td>θ</td>
<td>\ddot{u}</td>
<td>u'</td>
</tr>
<tr>
<td>----</td>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>156</td>
<td>1.5473</td>
<td>0.0100</td>
</tr>
<tr>
<td>160</td>
<td>1.2105</td>
<td>0.0094</td>
</tr>
<tr>
<td>164</td>
<td>0.8560</td>
<td>0.0061</td>
</tr>
<tr>
<td>168</td>
<td>0.5059</td>
<td>0.0100</td>
</tr>
<tr>
<td>172</td>
<td>0.1423</td>
<td>0.0048</td>
</tr>
<tr>
<td>176</td>
<td>0.0031</td>
<td>0.0008</td>
</tr>
<tr>
<td>180</td>
<td>0.0228</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$r/R = 0.928$</th>
<th>$r/R = 0.861$</th>
<th>$r/R = 0.728$</th>
</tr>
</thead>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{u}</th>
<th>u'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.0536</td>
<td>0.0773</td>
<td>0.0360</td>
<td>0.0568</td>
<td>0.0199</td>
<td>0.0387</td>
</tr>
<tr>
<td>8</td>
<td>0.3680</td>
<td>0.1685</td>
<td>0.2841</td>
<td>0.1526</td>
<td>0.2486</td>
<td>0.1416</td>
</tr>
<tr>
<td>12</td>
<td>0.8018</td>
<td>0.1317</td>
<td>0.7402</td>
<td>0.1255</td>
<td>0.6919</td>
<td>0.1225</td>
</tr>
<tr>
<td>14</td>
<td>1.0091</td>
<td>0.1256</td>
<td>0.9506</td>
<td>0.1249</td>
<td>0.8937</td>
<td>0.1031</td>
</tr>
<tr>
<td>16</td>
<td>1.2106</td>
<td>0.1319</td>
<td>1.1448</td>
<td>0.1212</td>
<td>1.1083</td>
<td>0.1165</td>
</tr>
<tr>
<td>18</td>
<td>1.4118</td>
<td>0.1296</td>
<td>1.3646</td>
<td>0.1337</td>
<td>1.3288</td>
<td>0.1394</td>
</tr>
<tr>
<td>20</td>
<td>1.5987</td>
<td>0.1307</td>
<td>1.5587</td>
<td>0.1342</td>
<td>1.5526</td>
<td>0.1432</td>
</tr>
<tr>
<td>22</td>
<td>1.7724</td>
<td>0.1376</td>
<td>1.7315</td>
<td>0.1339</td>
<td>1.7434</td>
<td>0.1352</td>
</tr>
<tr>
<td>24</td>
<td>1.9308</td>
<td>0.1363</td>
<td>1.9090</td>
<td>0.1348</td>
<td>1.9112</td>
<td>0.1382</td>
</tr>
<tr>
<td>26</td>
<td>2.0906</td>
<td>0.1272</td>
<td>2.0599</td>
<td>0.1388</td>
<td>2.0640</td>
<td>0.1400</td>
</tr>
<tr>
<td>28</td>
<td>2.2451</td>
<td>0.1311</td>
<td>2.2385</td>
<td>0.1387</td>
<td>2.2378</td>
<td>0.1461</td>
</tr>
<tr>
<td>30</td>
<td>2.4241</td>
<td>0.1295</td>
<td>2.4150</td>
<td>0.1164</td>
<td>2.4201</td>
<td>0.1424</td>
</tr>
<tr>
<td>32</td>
<td>2.5848</td>
<td>0.1180</td>
<td>2.5801</td>
<td>0.1210</td>
<td>2.5780</td>
<td>0.1347</td>
</tr>
<tr>
<td>36</td>
<td>2.8912</td>
<td>0.1164</td>
<td>2.8758</td>
<td>0.1239</td>
<td>2.8775</td>
<td>0.1310</td>
</tr>
<tr>
<td>40</td>
<td>3.1227</td>
<td>0.1086</td>
<td>3.0961</td>
<td>0.1212</td>
<td>3.0999</td>
<td>0.1165</td>
</tr>
<tr>
<td>44</td>
<td>3.3684</td>
<td>0.1032</td>
<td>3.3487</td>
<td>0.1098</td>
<td>3.3514</td>
<td>0.1199</td>
</tr>
<tr>
<td>48</td>
<td>3.6343</td>
<td>0.0892</td>
<td>3.5965</td>
<td>0.0922</td>
<td>3.5977</td>
<td>0.0944</td>
</tr>
<tr>
<td>52</td>
<td>3.8378</td>
<td>0.0903</td>
<td>3.7947</td>
<td>0.0865</td>
<td>3.7998</td>
<td>0.0930</td>
</tr>
<tr>
<td>56</td>
<td>4.0079</td>
<td>0.0706</td>
<td>3.9623</td>
<td>0.0719</td>
<td>3.9623</td>
<td>0.0874</td>
</tr>
<tr>
<td>60</td>
<td>4.1622</td>
<td>0.0658</td>
<td>4.1259</td>
<td>0.0697</td>
<td>4.1176</td>
<td>0.0667</td>
</tr>
<tr>
<td>64</td>
<td>4.3672</td>
<td>0.0580</td>
<td>4.3343</td>
<td>0.0607</td>
<td>4.3144</td>
<td>0.0662</td>
</tr>
<tr>
<td>68</td>
<td>4.4824</td>
<td>0.0432</td>
<td>4.4454</td>
<td>0.0527</td>
<td>4.4337</td>
<td>0.0472</td>
</tr>
<tr>
<td>72</td>
<td>4.5884</td>
<td>0.0246</td>
<td>4.5372</td>
<td>0.0240</td>
<td>4.5348</td>
<td>0.0337</td>
</tr>
<tr>
<td>76</td>
<td>4.6681</td>
<td>0.0207</td>
<td>4.6246</td>
<td>0.0208</td>
<td>4.6137</td>
<td>0.0304</td>
</tr>
<tr>
<td>80</td>
<td>4.7408</td>
<td>0.0207</td>
<td>4.6954</td>
<td>0.0124</td>
<td>4.6823</td>
<td>0.0175</td>
</tr>
<tr>
<td>84</td>
<td>4.7817</td>
<td>0.0208</td>
<td>4.7342</td>
<td>0.0148</td>
<td>4.7182</td>
<td>0.0131</td>
</tr>
<tr>
<td>88</td>
<td>4.7830</td>
<td>0.0205</td>
<td>4.7340</td>
<td>0.0136</td>
<td>4.7183</td>
<td>0.0129</td>
</tr>
<tr>
<td>92</td>
<td>4.7917</td>
<td>0.0157</td>
<td>4.7393</td>
<td>0.0100</td>
<td>4.7226</td>
<td>0.0172</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>(\dot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\dot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\dot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>96</td>
<td>4.7951</td>
<td>0.0116</td>
<td>4.7413</td>
<td>0.0131</td>
<td>4.7267</td>
<td>0.0196</td>
</tr>
<tr>
<td>100</td>
<td>4.7581</td>
<td>0.0067</td>
<td>4.7094</td>
<td>0.0194</td>
<td>4.7114</td>
<td>0.0119</td>
</tr>
<tr>
<td>104</td>
<td>4.7155</td>
<td>0.0032</td>
<td>4.6562</td>
<td>0.0037</td>
<td>4.6533</td>
<td>0.0171</td>
</tr>
<tr>
<td>108</td>
<td>4.6379</td>
<td>0.0215</td>
<td>4.6053</td>
<td>0.0187</td>
<td>4.5631</td>
<td>0.0189</td>
</tr>
<tr>
<td>112</td>
<td>4.5643</td>
<td>0.0185</td>
<td>4.5281</td>
<td>0.0151</td>
<td>4.5033</td>
<td>0.0182</td>
</tr>
<tr>
<td>116</td>
<td>4.4332</td>
<td>0.0000</td>
<td>4.3768</td>
<td>0.0053</td>
<td>4.3927</td>
<td>0.0040</td>
</tr>
<tr>
<td>120</td>
<td>4.2783</td>
<td>0.0091</td>
<td>4.2358</td>
<td>0.0237</td>
<td>4.2283</td>
<td>0.0172</td>
</tr>
<tr>
<td>124</td>
<td>4.1266</td>
<td>0.0109</td>
<td>4.0826</td>
<td>0.0185</td>
<td>4.0781</td>
<td>0.0155</td>
</tr>
<tr>
<td>128</td>
<td>3.9740</td>
<td>0.0029</td>
<td>3.9238</td>
<td>0.0106</td>
<td>3.9364</td>
<td>0.0041</td>
</tr>
<tr>
<td>132</td>
<td>3.7916</td>
<td>0.0033</td>
<td>3.7440</td>
<td>0.0107</td>
<td>3.7535</td>
<td>0.0091</td>
</tr>
<tr>
<td>136</td>
<td>3.5788</td>
<td>0.0092</td>
<td>3.5383</td>
<td>0.0157</td>
<td>3.5339</td>
<td>0.0167</td>
</tr>
<tr>
<td>140</td>
<td>3.3559</td>
<td>0.0217</td>
<td>3.3228</td>
<td>0.0207</td>
<td>3.3021</td>
<td>0.0233</td>
</tr>
<tr>
<td>144</td>
<td>3.0817</td>
<td>0.0174</td>
<td>3.0532</td>
<td>0.0182</td>
<td>3.0333</td>
<td>0.0172</td>
</tr>
<tr>
<td>148</td>
<td>2.8046</td>
<td>0.0086</td>
<td>2.7733</td>
<td>0.0151</td>
<td>2.7696</td>
<td>0.0131</td>
</tr>
<tr>
<td>152</td>
<td>2.5438</td>
<td>0.0000</td>
<td>2.5056</td>
<td>0.0000</td>
<td>2.5167</td>
<td>0.0028</td>
</tr>
<tr>
<td>156</td>
<td>2.2304</td>
<td>0.0164</td>
<td>2.2211</td>
<td>0.0196</td>
<td>2.1986</td>
<td>0.0121</td>
</tr>
<tr>
<td>160</td>
<td>1.8978</td>
<td>0.0050</td>
<td>1.8746</td>
<td>0.0117</td>
<td>1.8753</td>
<td>0.0045</td>
</tr>
<tr>
<td>164</td>
<td>1.5613</td>
<td>0.0021</td>
<td>1.5343</td>
<td>0.0000</td>
<td>1.5418</td>
<td>0.0038</td>
</tr>
<tr>
<td>168</td>
<td>1.2106</td>
<td>0.0058</td>
<td>1.1973</td>
<td>0.0089</td>
<td>1.1952</td>
<td>0.0067</td>
</tr>
<tr>
<td>172</td>
<td>0.8641</td>
<td>0.0053</td>
<td>0.8620</td>
<td>0.0094</td>
<td>0.8552</td>
<td>0.0080</td>
</tr>
<tr>
<td>176</td>
<td>0.4648</td>
<td>0.0087</td>
<td>0.4546</td>
<td>0.0081</td>
<td>0.4560</td>
<td>0.0073</td>
</tr>
<tr>
<td>180</td>
<td>0.0341</td>
<td>0.0036</td>
<td>0.0354</td>
<td>0.0030</td>
<td>0.0362</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0205</td>
<td>0.0365</td>
<td>0.0241</td>
<td>0.0486</td>
<td>0.0241</td>
<td>0.0486</td>
</tr>
<tr>
<td>8</td>
<td>0.2157</td>
<td>0.1299</td>
<td>0.2084</td>
<td>0.1402</td>
<td>0.2084</td>
<td>0.1402</td>
</tr>
<tr>
<td>12</td>
<td>0.6604</td>
<td>0.1171</td>
<td>0.6475</td>
<td>0.1280</td>
<td>0.6475</td>
<td>0.1280</td>
</tr>
<tr>
<td>14</td>
<td>0.8715</td>
<td>0.1041</td>
<td>0.8665</td>
<td>0.1103</td>
<td>0.8665</td>
<td>0.1103</td>
</tr>
<tr>
<td>16</td>
<td>1.0866</td>
<td>0.1120</td>
<td>1.0795</td>
<td>0.1173</td>
<td>1.0795</td>
<td>0.1173</td>
</tr>
<tr>
<td>18</td>
<td>1.3080</td>
<td>0.1286</td>
<td>1.3149</td>
<td>0.1249</td>
<td>1.3149</td>
<td>0.1249</td>
</tr>
<tr>
<td>20</td>
<td>1.5347</td>
<td>0.1388</td>
<td>1.5472</td>
<td>0.1336</td>
<td>1.5472</td>
<td>0.1336</td>
</tr>
<tr>
<td>22</td>
<td>1.7324</td>
<td>0.1372</td>
<td>1.7456</td>
<td>0.1431</td>
<td>1.7456</td>
<td>0.1431</td>
</tr>
<tr>
<td>24</td>
<td>1.9053</td>
<td>0.1491</td>
<td>1.9121</td>
<td>0.1418</td>
<td>1.9121</td>
<td>0.1418</td>
</tr>
<tr>
<td>26</td>
<td>2.0707</td>
<td>0.1399</td>
<td>2.0792</td>
<td>0.1377</td>
<td>2.0792</td>
<td>0.1377</td>
</tr>
<tr>
<td>28</td>
<td>2.2340</td>
<td>0.1530</td>
<td>2.2517</td>
<td>0.1468</td>
<td>2.2517</td>
<td>0.1468</td>
</tr>
<tr>
<td>30</td>
<td>2.4150</td>
<td>0.1435</td>
<td>2.4257</td>
<td>0.1474</td>
<td>2.4257</td>
<td>0.1474</td>
</tr>
<tr>
<td>32</td>
<td>2.5871</td>
<td>0.1345</td>
<td>2.5843</td>
<td>0.1290</td>
<td>2.5843</td>
<td>0.1290</td>
</tr>
<tr>
<td>36</td>
<td>2.8926</td>
<td>0.1234</td>
<td>2.8915</td>
<td>0.1221</td>
<td>2.8915</td>
<td>0.1221</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\bar{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.1142</td>
<td>0.1231</td>
<td>3.1064</td>
<td>0.1201</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.3570</td>
<td>0.1179</td>
<td>3.3511</td>
<td>0.1178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.5990</td>
<td>0.1116</td>
<td>3.6026</td>
<td>0.1034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.8103</td>
<td>0.0989</td>
<td>3.8128</td>
<td>0.0970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.9553</td>
<td>0.0886</td>
<td>3.9673</td>
<td>0.0873</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.1152</td>
<td>0.0754</td>
<td>4.1305</td>
<td>0.0802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.3148</td>
<td>0.0662</td>
<td>4.3202</td>
<td>0.0659</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.4303</td>
<td>0.0483</td>
<td>4.4401</td>
<td>0.0605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.5268</td>
<td>0.0379</td>
<td>4.5225</td>
<td>0.0372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.6109</td>
<td>0.0292</td>
<td>4.6138</td>
<td>0.0213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.6819</td>
<td>0.0173</td>
<td>4.6817</td>
<td>0.0184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.7153</td>
<td>0.0085</td>
<td>4.7248</td>
<td>0.0198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.7150</td>
<td>0.0072</td>
<td>4.7225</td>
<td>0.0190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>4.7192</td>
<td>0.0140</td>
<td>4.7309</td>
<td>0.0209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>4.7260</td>
<td>0.0192</td>
<td>4.7356</td>
<td>0.0209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4.7120</td>
<td>0.0088</td>
<td>4.7083</td>
<td>0.0125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>4.6635</td>
<td>0.0176</td>
<td>4.6398</td>
<td>0.0175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>4.5630</td>
<td>0.0188</td>
<td>4.5897</td>
<td>0.0052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>4.5045</td>
<td>0.0167</td>
<td>4.5097</td>
<td>0.0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>4.3923</td>
<td>0.0000</td>
<td>4.3613</td>
<td>0.0171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>4.2272</td>
<td>0.0169</td>
<td>4.2501</td>
<td>0.0279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>4.0766</td>
<td>0.0144</td>
<td>4.0772</td>
<td>0.0155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>3.9361</td>
<td>0.0000</td>
<td>3.9130</td>
<td>0.0210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>3.7530</td>
<td>0.0083</td>
<td>3.7358</td>
<td>0.0181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>3.5336</td>
<td>0.0163</td>
<td>3.5381</td>
<td>0.0197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>3.3027</td>
<td>0.0220</td>
<td>3.3222</td>
<td>0.0192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>3.0339</td>
<td>0.0163</td>
<td>3.0489</td>
<td>0.0079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>2.7693</td>
<td>0.0130</td>
<td>2.7782</td>
<td>0.0198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>2.5164</td>
<td>0.0000</td>
<td>2.4935</td>
<td>0.0101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>2.1977</td>
<td>0.0108</td>
<td>2.2200</td>
<td>0.0062</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>1.8747</td>
<td>0.0026</td>
<td>1.8731</td>
<td>0.0090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>1.5412</td>
<td>0.0042</td>
<td>1.5266</td>
<td>0.0083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>1.1943</td>
<td>0.0061</td>
<td>1.1944</td>
<td>0.0025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>0.8541</td>
<td>0.0073</td>
<td>0.8655</td>
<td>0.0017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.4552</td>
<td>0.0068</td>
<td>0.4636</td>
<td>0.0090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.0371</td>
<td>0.0027</td>
<td>0.0371</td>
<td>0.0030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(u_m) (m/sec)</td>
<td>θ (deg.)</td>
<td>(u_m) (m/sec)</td>
<td>θ (deg.)</td>
<td>(u_m) (m/sec)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0740</td>
<td>90</td>
<td>4.8078</td>
<td>178</td>
<td>0.1559</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1416</td>
<td>92</td>
<td>4.7992</td>
<td>180</td>
<td>0.0472</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2622</td>
<td>94</td>
<td>4.7978</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.4277</td>
<td>96</td>
<td>4.7884</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6108</td>
<td>98</td>
<td>4.7725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7978</td>
<td>100</td>
<td>4.7660</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.1653</td>
<td>102</td>
<td>4.7172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.3450</td>
<td>104</td>
<td>4.6798</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.5180</td>
<td>106</td>
<td>4.6412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.6693</td>
<td>108</td>
<td>4.5997</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.8101</td>
<td>110</td>
<td>4.5330</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.9557</td>
<td>112</td>
<td>4.4992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.1193</td>
<td>114</td>
<td>4.4107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.3029</td>
<td>116</td>
<td>4.3390</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.4641</td>
<td>118</td>
<td>4.2768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.6323</td>
<td>120</td>
<td>4.1657</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.7818</td>
<td>122</td>
<td>4.1142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.9018</td>
<td>124</td>
<td>4.0183</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3.0013</td>
<td>126</td>
<td>3.9408</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.1438</td>
<td>128</td>
<td>3.8419</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.2800</td>
<td>130</td>
<td>3.7323</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.5312</td>
<td>132</td>
<td>3.6355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.5846</td>
<td>134</td>
<td>3.5312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.7027</td>
<td>136</td>
<td>3.4095</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.7859</td>
<td>138</td>
<td>3.3132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.8752</td>
<td>140</td>
<td>3.1635</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.9519</td>
<td>142</td>
<td>3.0286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.9519</td>
<td>144</td>
<td>2.8760</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4.0422</td>
<td>146</td>
<td>2.7438</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.1301</td>
<td>148</td>
<td>2.5885</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.2519</td>
<td>150</td>
<td>2.4567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.3690</td>
<td>152</td>
<td>2.3195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.4419</td>
<td>154</td>
<td>2.1730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.5087</td>
<td>156</td>
<td>2.0135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.6048</td>
<td>158</td>
<td>1.8552</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.6516</td>
<td>160</td>
<td>1.6741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.6792</td>
<td>162</td>
<td>1.5017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.7371</td>
<td>164</td>
<td>1.3370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.7829</td>
<td>166</td>
<td>1.1752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.8121</td>
<td>168</td>
<td>1.0047</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.8371</td>
<td>170</td>
<td>0.8403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.8478</td>
<td>172</td>
<td>0.6877</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.8395</td>
<td>174</td>
<td>0.5349</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.8248</td>
<td>176</td>
<td>0.3457</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Ensemble-averaged velocity at s/d = 0.33
Figure 2: Streamwise velocity fluctuation at $s/d = 0.33$
Figure 3: Streamwise turbulence intensity, u'/\bar{u}, at $s/d = 0.33$
<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\bar{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\bar{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\bar{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0499</td>
<td>0.0091</td>
<td>0.0392</td>
<td>0.0119</td>
<td>0.0644</td>
<td>0.0282</td>
</tr>
<tr>
<td>8</td>
<td>0.0573</td>
<td>0.0087</td>
<td>0.0495</td>
<td>0.0100</td>
<td>0.0974</td>
<td>0.0301</td>
</tr>
<tr>
<td>12</td>
<td>0.0727</td>
<td>0.0080</td>
<td>0.0690</td>
<td>0.0112</td>
<td>0.1587</td>
<td>0.0320</td>
</tr>
<tr>
<td>16</td>
<td>0.0973</td>
<td>0.0072</td>
<td>0.0999</td>
<td>0.0100</td>
<td>0.2471</td>
<td>0.0328</td>
</tr>
<tr>
<td>20</td>
<td>0.1131</td>
<td>0.0098</td>
<td>0.1280</td>
<td>0.0131</td>
<td>0.3371</td>
<td>0.0380</td>
</tr>
<tr>
<td>24</td>
<td>0.1350</td>
<td>0.0298</td>
<td>0.1624</td>
<td>0.0561</td>
<td>0.4368</td>
<td>0.1359</td>
</tr>
<tr>
<td>28</td>
<td>0.2114</td>
<td>0.0510</td>
<td>0.2794</td>
<td>0.0806</td>
<td>0.6894</td>
<td>0.1521</td>
</tr>
<tr>
<td>32</td>
<td>0.2655</td>
<td>0.0707</td>
<td>0.3674</td>
<td>0.1130</td>
<td>0.8406</td>
<td>0.1750</td>
</tr>
<tr>
<td>36</td>
<td>0.2394</td>
<td>0.0413</td>
<td>0.3264</td>
<td>0.0671</td>
<td>0.7925</td>
<td>0.1097</td>
</tr>
<tr>
<td>40</td>
<td>0.2293</td>
<td>0.0224</td>
<td>0.3019</td>
<td>0.0383</td>
<td>0.7531</td>
<td>0.0607</td>
</tr>
<tr>
<td>44</td>
<td>0.2425</td>
<td>0.0162</td>
<td>0.3263</td>
<td>0.0286</td>
<td>0.7823</td>
<td>0.0461</td>
</tr>
<tr>
<td>48</td>
<td>0.2605</td>
<td>0.0181</td>
<td>0.3537</td>
<td>0.0261</td>
<td>0.8329</td>
<td>0.0465</td>
</tr>
<tr>
<td>52</td>
<td>0.2655</td>
<td>0.0197</td>
<td>0.3611</td>
<td>0.0272</td>
<td>0.8460</td>
<td>0.0480</td>
</tr>
<tr>
<td>56</td>
<td>0.2662</td>
<td>0.0194</td>
<td>0.3627</td>
<td>0.0252</td>
<td>0.8515</td>
<td>0.0472</td>
</tr>
<tr>
<td>60</td>
<td>0.2694</td>
<td>0.0210</td>
<td>0.3659</td>
<td>0.0251</td>
<td>0.8547</td>
<td>0.0479</td>
</tr>
<tr>
<td>64</td>
<td>0.2760</td>
<td>0.0226</td>
<td>0.3745</td>
<td>0.0271</td>
<td>0.8672</td>
<td>0.0493</td>
</tr>
<tr>
<td>68</td>
<td>0.2877</td>
<td>0.0271</td>
<td>0.3910</td>
<td>0.0354</td>
<td>0.8930</td>
<td>0.0614</td>
</tr>
<tr>
<td>72</td>
<td>0.3030</td>
<td>0.0366</td>
<td>0.4123</td>
<td>0.0562</td>
<td>0.9260</td>
<td>0.0939</td>
</tr>
<tr>
<td>76</td>
<td>0.3237</td>
<td>0.0588</td>
<td>0.4514</td>
<td>0.0950</td>
<td>0.9688</td>
<td>0.1438</td>
</tr>
<tr>
<td>80</td>
<td>0.3506</td>
<td>0.1015</td>
<td>0.4897</td>
<td>0.1306</td>
<td>1.0288</td>
<td>0.2312</td>
</tr>
<tr>
<td>84</td>
<td>0.3903</td>
<td>0.1464</td>
<td>0.5284</td>
<td>0.1946</td>
<td>1.1187</td>
<td>0.3508</td>
</tr>
<tr>
<td>88</td>
<td>0.4289</td>
<td>0.1799</td>
<td>0.5820</td>
<td>0.2273</td>
<td>1.2125</td>
<td>0.4251</td>
</tr>
<tr>
<td>92</td>
<td>0.4617</td>
<td>0.2317</td>
<td>0.6453</td>
<td>0.2757</td>
<td>1.3152</td>
<td>0.5137</td>
</tr>
<tr>
<td>96</td>
<td>0.5640</td>
<td>0.2439</td>
<td>0.7760</td>
<td>0.3438</td>
<td>1.4974</td>
<td>0.5860</td>
</tr>
<tr>
<td>100</td>
<td>0.6581</td>
<td>0.3043</td>
<td>0.8577</td>
<td>0.3539</td>
<td>1.6698</td>
<td>0.6266</td>
</tr>
<tr>
<td>104</td>
<td>0.6855</td>
<td>0.2908</td>
<td>0.8772</td>
<td>0.3576</td>
<td>1.7056</td>
<td>0.6200</td>
</tr>
<tr>
<td>108</td>
<td>0.6994</td>
<td>0.2917</td>
<td>0.9276</td>
<td>0.3893</td>
<td>1.7444</td>
<td>0.6151</td>
</tr>
<tr>
<td>112</td>
<td>0.6983</td>
<td>0.3068</td>
<td>0.9031</td>
<td>0.3658</td>
<td>1.8339</td>
<td>0.6365</td>
</tr>
<tr>
<td>116</td>
<td>0.6762</td>
<td>0.2712</td>
<td>0.9327</td>
<td>0.3724</td>
<td>1.7243</td>
<td>0.6100</td>
</tr>
<tr>
<td>120</td>
<td>0.6553</td>
<td>0.3134</td>
<td>0.8509</td>
<td>0.3702</td>
<td>1.6074</td>
<td>0.5988</td>
</tr>
<tr>
<td>124</td>
<td>0.5226</td>
<td>0.2693</td>
<td>0.7245</td>
<td>0.3182</td>
<td>1.4033</td>
<td>0.5402</td>
</tr>
<tr>
<td>128</td>
<td>0.3883</td>
<td>0.1664</td>
<td>0.5261</td>
<td>0.2304</td>
<td>1.0754</td>
<td>0.3322</td>
</tr>
<tr>
<td>132</td>
<td>0.2905</td>
<td>0.1119</td>
<td>0.3969</td>
<td>0.1545</td>
<td>0.8844</td>
<td>0.2284</td>
</tr>
<tr>
<td>136</td>
<td>0.2348</td>
<td>0.0489</td>
<td>0.3159</td>
<td>0.0829</td>
<td>0.7572</td>
<td>0.1671</td>
</tr>
<tr>
<td>140</td>
<td>0.1918</td>
<td>0.0335</td>
<td>0.2461</td>
<td>0.0571</td>
<td>0.6437</td>
<td>0.1164</td>
</tr>
<tr>
<td>144</td>
<td>0.1596</td>
<td>0.0261</td>
<td>0.1963</td>
<td>0.0401</td>
<td>0.5362</td>
<td>0.1057</td>
</tr>
<tr>
<td>148</td>
<td>0.1391</td>
<td>0.0211</td>
<td>0.1626</td>
<td>0.0300</td>
<td>0.4469</td>
<td>0.0911</td>
</tr>
<tr>
<td>152</td>
<td>0.1215</td>
<td>0.0162</td>
<td>0.1386</td>
<td>0.0226</td>
<td>0.3789</td>
<td>0.0688</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRE

s/d = 16

r/R = 0.995

r/R = 0.992

r/R = 0.983
<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>r/R = 0.995</th>
<th>r/R = 0.992</th>
<th>r/R = 0.983</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u' (m/sec)</td>
<td>u' (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>156</td>
<td>0.0251</td>
<td>0.0025</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>0.0178</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>0.0177</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>0.0229</td>
<td>0.0029</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>0.0320</td>
<td>0.0045</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>0.0387</td>
<td>0.0049</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>0.0463</td>
<td>0.0063</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>r/R = 0.959</th>
<th>r/R = 0.939</th>
<th>r/R = 0.872</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>u' (m/sec)</td>
<td>u' (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>4</td>
<td>0.2712</td>
<td>0.1173</td>
<td>0.3455</td>
</tr>
<tr>
<td>8</td>
<td>0.4204</td>
<td>0.1100</td>
<td>0.5951</td>
</tr>
<tr>
<td>12</td>
<td>0.6245</td>
<td>0.0839</td>
<td>0.8039</td>
</tr>
<tr>
<td>16</td>
<td>0.8123</td>
<td>0.0716</td>
<td>1.0510</td>
</tr>
<tr>
<td>20</td>
<td>0.9821</td>
<td>0.0675</td>
<td>1.2756</td>
</tr>
<tr>
<td>24</td>
<td>1.1899</td>
<td>0.2423</td>
<td>1.5357</td>
</tr>
<tr>
<td>28</td>
<td>1.6245</td>
<td>0.2550</td>
<td>2.0798</td>
</tr>
<tr>
<td>32</td>
<td>1.8034</td>
<td>0.2973</td>
<td>2.1906</td>
</tr>
<tr>
<td>36</td>
<td>1.7522</td>
<td>0.1943</td>
<td>2.2501</td>
</tr>
<tr>
<td>40</td>
<td>1.7236</td>
<td>0.1329</td>
<td>2.2749</td>
</tr>
<tr>
<td>44</td>
<td>1.7790</td>
<td>0.1141</td>
<td>2.3620</td>
</tr>
<tr>
<td>48</td>
<td>1.8756</td>
<td>0.1109</td>
<td>2.4760</td>
</tr>
<tr>
<td>52</td>
<td>1.9279</td>
<td>0.1105</td>
<td>2.5506</td>
</tr>
<tr>
<td>54</td>
<td>1.9458</td>
<td>0.1114</td>
<td>2.5754</td>
</tr>
<tr>
<td>56</td>
<td>1.9567</td>
<td>0.1066</td>
<td>2.6053</td>
</tr>
<tr>
<td>58</td>
<td>1.9840</td>
<td>0.1185</td>
<td>2.6365</td>
</tr>
<tr>
<td>60</td>
<td>2.0253</td>
<td>0.1534</td>
<td>2.7007</td>
</tr>
<tr>
<td>62</td>
<td>2.0782</td>
<td>0.2377</td>
<td>2.8200</td>
</tr>
<tr>
<td>64</td>
<td>2.1664</td>
<td>0.3377</td>
<td>2.9307</td>
</tr>
<tr>
<td>66</td>
<td>2.2941</td>
<td>0.4636</td>
<td>3.0790</td>
</tr>
<tr>
<td>68</td>
<td>2.4729</td>
<td>0.5986</td>
<td>3.1904</td>
</tr>
<tr>
<td>70</td>
<td>2.5574</td>
<td>0.6174</td>
<td>3.3052</td>
</tr>
<tr>
<td>72</td>
<td>2.6912</td>
<td>0.6982</td>
<td>3.4395</td>
</tr>
<tr>
<td>76</td>
<td>2.9505</td>
<td>0.7765</td>
<td>3.5936</td>
</tr>
<tr>
<td>80</td>
<td>3.1147</td>
<td>0.7300</td>
<td>3.7722</td>
</tr>
<tr>
<td>84</td>
<td>3.1687</td>
<td>0.7535</td>
<td>3.8012</td>
</tr>
<tr>
<td>88</td>
<td>3.2034</td>
<td>0.7945</td>
<td>3.8137</td>
</tr>
<tr>
<td>92</td>
<td>3.2329</td>
<td>0.7436</td>
<td>3.9123</td>
</tr>
</tbody>
</table>
\(r/R = 0.959 \)

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\dot{u}) m/sec</th>
<th>(u') m/sec</th>
<th>(\ddot{u}) m/sec</th>
<th>(u'') m/sec</th>
<th>(\dddot{u}) m/sec</th>
<th>(u''') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>3.2303</td>
<td>0.7264</td>
<td>3.8506</td>
<td>0.7579</td>
<td>4.6250</td>
<td>0.6642</td>
</tr>
<tr>
<td>100</td>
<td>3.1196</td>
<td>0.7759</td>
<td>3.6977</td>
<td>0.7479</td>
<td>4.6618</td>
<td>0.6683</td>
</tr>
<tr>
<td>104</td>
<td>2.7603</td>
<td>0.6706</td>
<td>3.4730</td>
<td>0.6850</td>
<td>4.6415</td>
<td>0.6343</td>
</tr>
<tr>
<td>108</td>
<td>2.3775</td>
<td>0.5449</td>
<td>3.1118</td>
<td>0.5649</td>
<td>4.4928</td>
<td>0.5705</td>
</tr>
<tr>
<td>112</td>
<td>2.0545</td>
<td>0.4237</td>
<td>2.7702</td>
<td>0.4636</td>
<td>4.2916</td>
<td>0.5018</td>
</tr>
<tr>
<td>116</td>
<td>1.8296</td>
<td>0.2960</td>
<td>2.5221</td>
<td>0.3778</td>
<td>4.0751</td>
<td>0.4266</td>
</tr>
<tr>
<td>120</td>
<td>1.6246</td>
<td>0.2295</td>
<td>2.2985</td>
<td>0.3056</td>
<td>3.8111</td>
<td>0.3749</td>
</tr>
<tr>
<td>124</td>
<td>1.4503</td>
<td>0.1929</td>
<td>2.0852</td>
<td>0.2577</td>
<td>3.5616</td>
<td>0.3009</td>
</tr>
<tr>
<td>128</td>
<td>1.3206</td>
<td>0.1604</td>
<td>1.9146</td>
<td>0.2037</td>
<td>3.3640</td>
<td>0.2250</td>
</tr>
<tr>
<td>132</td>
<td>1.2210</td>
<td>0.1217</td>
<td>1.7815</td>
<td>0.1516</td>
<td>3.1915</td>
<td>0.1532</td>
</tr>
<tr>
<td>136</td>
<td>1.0912</td>
<td>0.0828</td>
<td>1.6190</td>
<td>0.1060</td>
<td>2.9934</td>
<td>0.1072</td>
</tr>
<tr>
<td>140</td>
<td>0.9487</td>
<td>0.0591</td>
<td>1.4425</td>
<td>0.0758</td>
<td>2.7773</td>
<td>0.0888</td>
</tr>
<tr>
<td>144</td>
<td>0.8158</td>
<td>0.0419</td>
<td>1.2759</td>
<td>0.0598</td>
<td>2.5430</td>
<td>0.0693</td>
</tr>
<tr>
<td>148</td>
<td>0.6797</td>
<td>0.0330</td>
<td>1.0929</td>
<td>0.0468</td>
<td>2.2817</td>
<td>0.0606</td>
</tr>
<tr>
<td>152</td>
<td>0.4918</td>
<td>0.0426</td>
<td>0.8939</td>
<td>0.0438</td>
<td>1.9845</td>
<td>0.0537</td>
</tr>
<tr>
<td>156</td>
<td>0.2399</td>
<td>0.0363</td>
<td>0.6558</td>
<td>0.0369</td>
<td>1.6377</td>
<td>0.0497</td>
</tr>
<tr>
<td>160</td>
<td>0.0451</td>
<td>0.0178</td>
<td>0.3037</td>
<td>0.0498</td>
<td>1.2701</td>
<td>0.0532</td>
</tr>
<tr>
<td>164</td>
<td>0.0019</td>
<td>0.0018</td>
<td>0.0464</td>
<td>0.0243</td>
<td>0.8948</td>
<td>0.0545</td>
</tr>
<tr>
<td>168</td>
<td>0.0012</td>
<td>0.0017</td>
<td>0.0015</td>
<td>0.0015</td>
<td>0.5346</td>
<td>0.0796</td>
</tr>
<tr>
<td>172</td>
<td>0.0365</td>
<td>0.0194</td>
<td>0.0095</td>
<td>0.0114</td>
<td>0.1501</td>
<td>0.0561</td>
</tr>
<tr>
<td>176</td>
<td>0.1415</td>
<td>0.0389</td>
<td>0.1273</td>
<td>0.0476</td>
<td>0.0035</td>
<td>0.0094</td>
</tr>
<tr>
<td>180</td>
<td>0.3169</td>
<td>0.0708</td>
<td>0.3423</td>
<td>0.0843</td>
<td>0.0901</td>
<td>0.0788</td>
</tr>
</tbody>
</table>

\(r/R = 0.939 \)

\(r/R = 0.872 \)

\(r/R = 0.739 \)

\(r/R = 0.606 \)

\(r/R = 0.472 \)

SPRE

s/d = 16
<table>
<thead>
<tr>
<th>θ deg.</th>
<th>\ddot{u} m/sec</th>
<th>$\dot{u'}$ m/sec</th>
<th>\ddot{u} m/sec</th>
<th>$\dot{u'}$ m/sec</th>
<th>\ddot{u} m/sec</th>
<th>$\dot{u'}$ m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>4.4564</td>
<td>0.0877</td>
<td>4.5282</td>
<td>0.0728</td>
<td>4.5145</td>
<td>0.0945</td>
</tr>
<tr>
<td>56</td>
<td>4.5460</td>
<td>0.0970</td>
<td>4.6201</td>
<td>0.0777</td>
<td>4.6072</td>
<td>0.0923</td>
</tr>
<tr>
<td>58</td>
<td>4.6441</td>
<td>0.1328</td>
<td>4.7118</td>
<td>0.1019</td>
<td>4.6940</td>
<td>0.1135</td>
</tr>
<tr>
<td>60</td>
<td>4.7242</td>
<td>0.1744</td>
<td>4.8097</td>
<td>0.1256</td>
<td>4.7953</td>
<td>0.1258</td>
</tr>
<tr>
<td>62</td>
<td>4.8175</td>
<td>0.2135</td>
<td>4.9174</td>
<td>0.1448</td>
<td>4.9115</td>
<td>0.1457</td>
</tr>
<tr>
<td>64</td>
<td>4.8871</td>
<td>0.2730</td>
<td>4.9926</td>
<td>0.2011</td>
<td>5.0080</td>
<td>0.1627</td>
</tr>
<tr>
<td>66</td>
<td>4.9709</td>
<td>0.3124</td>
<td>5.0740</td>
<td>0.2234</td>
<td>5.1085</td>
<td>0.1861</td>
</tr>
<tr>
<td>68</td>
<td>4.9945</td>
<td>0.3369</td>
<td>5.1361</td>
<td>0.2507</td>
<td>5.1514</td>
<td>0.2099</td>
</tr>
<tr>
<td>70</td>
<td>5.0282</td>
<td>0.3888</td>
<td>5.1715</td>
<td>0.2626</td>
<td>5.1933</td>
<td>0.2215</td>
</tr>
<tr>
<td>72</td>
<td>5.0606</td>
<td>0.4027</td>
<td>5.2006</td>
<td>0.2612</td>
<td>5.2199</td>
<td>0.2290</td>
</tr>
<tr>
<td>76</td>
<td>5.0799</td>
<td>0.4130</td>
<td>5.2639</td>
<td>0.2873</td>
<td>5.3034</td>
<td>0.2395</td>
</tr>
<tr>
<td>80</td>
<td>5.1701</td>
<td>0.4340</td>
<td>5.3242</td>
<td>0.3142</td>
<td>5.3655</td>
<td>0.2616</td>
</tr>
<tr>
<td>84</td>
<td>5.2281</td>
<td>0.4285</td>
<td>5.3820</td>
<td>0.3112</td>
<td>5.4701</td>
<td>0.2372</td>
</tr>
<tr>
<td>88</td>
<td>5.1939</td>
<td>0.4465</td>
<td>5.4097</td>
<td>0.3050</td>
<td>5.4590</td>
<td>0.2634</td>
</tr>
<tr>
<td>92</td>
<td>5.2265</td>
<td>0.4273</td>
<td>5.3949</td>
<td>0.3425</td>
<td>5.4834</td>
<td>0.2467</td>
</tr>
<tr>
<td>96</td>
<td>5.1845</td>
<td>0.4616</td>
<td>5.4570</td>
<td>0.3007</td>
<td>5.5353</td>
<td>0.2253</td>
</tr>
<tr>
<td>100</td>
<td>5.2515</td>
<td>0.4279</td>
<td>5.4757</td>
<td>0.2504</td>
<td>5.5468</td>
<td>0.1804</td>
</tr>
<tr>
<td>104</td>
<td>5.2698</td>
<td>0.3668</td>
<td>5.4608</td>
<td>0.1933</td>
<td>5.5070</td>
<td>0.1367</td>
</tr>
<tr>
<td>108</td>
<td>5.2460</td>
<td>0.3281</td>
<td>5.4278</td>
<td>0.1535</td>
<td>5.4607</td>
<td>0.0789</td>
</tr>
<tr>
<td>112</td>
<td>5.2041</td>
<td>0.2501</td>
<td>5.3889</td>
<td>0.0883</td>
<td>5.3945</td>
<td>0.0475</td>
</tr>
<tr>
<td>116</td>
<td>5.1239</td>
<td>0.1712</td>
<td>5.3437</td>
<td>0.0527</td>
<td>5.3344</td>
<td>0.0488</td>
</tr>
<tr>
<td>120</td>
<td>4.9686</td>
<td>0.1252</td>
<td>5.2029</td>
<td>0.0366</td>
<td>5.1900</td>
<td>0.0369</td>
</tr>
<tr>
<td>124</td>
<td>4.7608</td>
<td>0.0848</td>
<td>5.0021</td>
<td>0.0217</td>
<td>4.9856</td>
<td>0.0264</td>
</tr>
<tr>
<td>128</td>
<td>4.5829</td>
<td>0.0648</td>
<td>4.8185</td>
<td>0.0298</td>
<td>4.8060</td>
<td>0.0309</td>
</tr>
<tr>
<td>132</td>
<td>4.3841</td>
<td>0.0358</td>
<td>4.6262</td>
<td>0.0260</td>
<td>4.6182</td>
<td>0.0276</td>
</tr>
<tr>
<td>136</td>
<td>4.1427</td>
<td>0.0399</td>
<td>4.3969</td>
<td>0.0141</td>
<td>4.3651</td>
<td>0.0194</td>
</tr>
<tr>
<td>140</td>
<td>3.9065</td>
<td>0.0383</td>
<td>4.1325</td>
<td>0.0276</td>
<td>4.1333</td>
<td>0.0319</td>
</tr>
<tr>
<td>144</td>
<td>3.5968</td>
<td>0.0275</td>
<td>3.8456</td>
<td>0.0341</td>
<td>3.8473</td>
<td>0.0491</td>
</tr>
<tr>
<td>148</td>
<td>3.2763</td>
<td>0.0334</td>
<td>3.5179</td>
<td>0.0316</td>
<td>3.5153</td>
<td>0.0484</td>
</tr>
<tr>
<td>152</td>
<td>2.9292</td>
<td>0.0332</td>
<td>3.1947</td>
<td>0.0241</td>
<td>3.2047</td>
<td>0.0252</td>
</tr>
<tr>
<td>156</td>
<td>2.5410</td>
<td>0.0276</td>
<td>2.8543</td>
<td>0.0248</td>
<td>2.8647</td>
<td>0.0228</td>
</tr>
<tr>
<td>160</td>
<td>2.1576</td>
<td>0.0305</td>
<td>2.5041</td>
<td>0.0268</td>
<td>2.5195</td>
<td>0.0222</td>
</tr>
<tr>
<td>164</td>
<td>1.7451</td>
<td>0.0367</td>
<td>2.0838</td>
<td>0.0237</td>
<td>2.1327</td>
<td>0.0289</td>
</tr>
<tr>
<td>168</td>
<td>1.3208</td>
<td>0.0366</td>
<td>1.6599</td>
<td>0.0264</td>
<td>1.7171</td>
<td>0.0274</td>
</tr>
<tr>
<td>172</td>
<td>0.9026</td>
<td>0.0487</td>
<td>1.2445</td>
<td>0.0326</td>
<td>1.3328</td>
<td>0.0310</td>
</tr>
<tr>
<td>176</td>
<td>0.4449</td>
<td>0.0813</td>
<td>0.8120</td>
<td>0.0314</td>
<td>0.9081</td>
<td>0.0344</td>
</tr>
<tr>
<td>180</td>
<td>0.0329</td>
<td>0.0429</td>
<td>0.2748</td>
<td>0.0539</td>
<td>0.4105</td>
<td>0.0561</td>
</tr>
<tr>
<td>θ</td>
<td>0.0307</td>
<td>0.0502</td>
<td>0.0197</td>
<td>0.0362</td>
<td>0.0244</td>
<td>0.0490</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>4</td>
<td>0.3098</td>
<td>0.1530</td>
<td>0.2601</td>
<td>0.1361</td>
<td>0.2618</td>
<td>0.1471</td>
</tr>
<tr>
<td>8</td>
<td>0.7632</td>
<td>0.1158</td>
<td>0.7315</td>
<td>0.1042</td>
<td>0.7339</td>
<td>0.1175</td>
</tr>
<tr>
<td>12</td>
<td>1.1881</td>
<td>0.1107</td>
<td>1.1558</td>
<td>0.1020</td>
<td>1.1586</td>
<td>0.0995</td>
</tr>
<tr>
<td>16</td>
<td>1.6083</td>
<td>0.1012</td>
<td>1.5760</td>
<td>0.0923</td>
<td>1.5912</td>
<td>0.0943</td>
</tr>
<tr>
<td>20</td>
<td>2.3215</td>
<td>0.1289</td>
<td>2.3364</td>
<td>0.1734</td>
<td>2.3739</td>
<td>0.1811</td>
</tr>
<tr>
<td>24</td>
<td>3.3788</td>
<td>0.2122</td>
<td>3.2128</td>
<td>0.2379</td>
<td>3.1900</td>
<td>0.2268</td>
</tr>
<tr>
<td>28</td>
<td>4.0856</td>
<td>0.1455</td>
<td>3.9364</td>
<td>0.2420</td>
<td>3.6980</td>
<td>0.2901</td>
</tr>
<tr>
<td>32</td>
<td>4.3624</td>
<td>0.1639</td>
<td>4.2399</td>
<td>0.2398</td>
<td>3.9511</td>
<td>0.3327</td>
</tr>
<tr>
<td>36</td>
<td>4.4901</td>
<td>0.1447</td>
<td>4.3735</td>
<td>0.2277</td>
<td>4.0778</td>
<td>0.3288</td>
</tr>
<tr>
<td>40</td>
<td>4.5750</td>
<td>0.1452</td>
<td>4.4765</td>
<td>0.2303</td>
<td>4.2018</td>
<td>0.3257</td>
</tr>
<tr>
<td>44</td>
<td>4.6726</td>
<td>0.1539</td>
<td>4.5851</td>
<td>0.2130</td>
<td>4.3866</td>
<td>0.3350</td>
</tr>
<tr>
<td>48</td>
<td>4.7762</td>
<td>0.1522</td>
<td>4.6792</td>
<td>0.2556</td>
<td>4.4371</td>
<td>0.3542</td>
</tr>
<tr>
<td>52</td>
<td>4.8774</td>
<td>0.1760</td>
<td>4.8086</td>
<td>0.2448</td>
<td>4.5971</td>
<td>0.3527</td>
</tr>
<tr>
<td>56</td>
<td>5.0950</td>
<td>0.2083</td>
<td>4.9853</td>
<td>0.2689</td>
<td>4.7304</td>
<td>0.3672</td>
</tr>
<tr>
<td>60</td>
<td>5.3832</td>
<td>0.2348</td>
<td>5.2066</td>
<td>0.2626</td>
<td>4.8926</td>
<td>0.3918</td>
</tr>
<tr>
<td>64</td>
<td>5.5146</td>
<td>0.2277</td>
<td>5.3692</td>
<td>0.2415</td>
<td>5.0932</td>
<td>0.3736</td>
</tr>
<tr>
<td>68</td>
<td>5.5687</td>
<td>0.1820</td>
<td>5.5147</td>
<td>0.2310</td>
<td>5.3118</td>
<td>0.3963</td>
</tr>
<tr>
<td>72</td>
<td>5.6882</td>
<td>0.1591</td>
<td>5.5839</td>
<td>0.2010</td>
<td>5.3816</td>
<td>0.3688</td>
</tr>
<tr>
<td>76</td>
<td>5.7572</td>
<td>0.1259</td>
<td>5.6005</td>
<td>0.1440</td>
<td>5.3401</td>
<td>0.3290</td>
</tr>
<tr>
<td>80</td>
<td>5.8007</td>
<td>0.1000</td>
<td>5.4240</td>
<td>0.1623</td>
<td>5.2988</td>
<td>0.3291</td>
</tr>
<tr>
<td>84</td>
<td>5.8459</td>
<td>0.0864</td>
<td>5.3678</td>
<td>0.1256</td>
<td>5.2242</td>
<td>0.3244</td>
</tr>
<tr>
<td>88</td>
<td>5.9662</td>
<td>0.0864</td>
<td>5.2957</td>
<td>0.1087</td>
<td>5.1611</td>
<td>0.2849</td>
</tr>
<tr>
<td>92</td>
<td>5.1246</td>
<td>0.2277</td>
<td>5.4520</td>
<td>0.2776</td>
<td>5.3063</td>
<td>0.3950</td>
</tr>
<tr>
<td>96</td>
<td>5.5687</td>
<td>0.1820</td>
<td>5.5147</td>
<td>0.2310</td>
<td>5.3118</td>
<td>0.3963</td>
</tr>
<tr>
<td>100</td>
<td>5.5682</td>
<td>0.1591</td>
<td>5.5389</td>
<td>0.2010</td>
<td>5.3816</td>
<td>0.3688</td>
</tr>
<tr>
<td>104</td>
<td>5.5272</td>
<td>0.1149</td>
<td>5.5005</td>
<td>0.1440</td>
<td>5.3401</td>
<td>0.3290</td>
</tr>
<tr>
<td>108</td>
<td>5.4600</td>
<td>0.0829</td>
<td>5.4240</td>
<td>0.1623</td>
<td>5.2988</td>
<td>0.3291</td>
</tr>
<tr>
<td>112</td>
<td>5.4028</td>
<td>0.0614</td>
<td>5.3678</td>
<td>0.1256</td>
<td>5.2242</td>
<td>0.3244</td>
</tr>
<tr>
<td>116</td>
<td>5.3240</td>
<td>0.0676</td>
<td>5.2957</td>
<td>0.1087</td>
<td>5.1611</td>
<td>0.2849</td>
</tr>
<tr>
<td>120</td>
<td>5.1796</td>
<td>0.0665</td>
<td>5.1540</td>
<td>0.0967</td>
<td>5.0414</td>
<td>0.2825</td>
</tr>
<tr>
<td>124</td>
<td>4.9825</td>
<td>0.0468</td>
<td>4.9729</td>
<td>0.0891</td>
<td>4.8635</td>
<td>0.2502</td>
</tr>
<tr>
<td>128</td>
<td>4.8027</td>
<td>0.0478</td>
<td>4.7880</td>
<td>0.0693</td>
<td>4.7347</td>
<td>0.1963</td>
</tr>
<tr>
<td>132</td>
<td>4.6067</td>
<td>0.0417</td>
<td>4.6006</td>
<td>0.0591</td>
<td>4.5606</td>
<td>0.1720</td>
</tr>
<tr>
<td>136</td>
<td>4.3889</td>
<td>0.0242</td>
<td>4.3887</td>
<td>0.0499</td>
<td>4.3532</td>
<td>0.1614</td>
</tr>
<tr>
<td>140</td>
<td>4.1304</td>
<td>0.0434</td>
<td>4.1177</td>
<td>0.0685</td>
<td>4.0798</td>
<td>0.1743</td>
</tr>
<tr>
<td>144</td>
<td>3.8434</td>
<td>0.0700</td>
<td>3.8128</td>
<td>0.0997</td>
<td>3.7515</td>
<td>0.1674</td>
</tr>
<tr>
<td>148</td>
<td>3.5009</td>
<td>0.0843</td>
<td>3.4782</td>
<td>0.1174</td>
<td>3.4945</td>
<td>0.1204</td>
</tr>
<tr>
<td>152</td>
<td>3.2049</td>
<td>0.0313</td>
<td>3.1927</td>
<td>0.0491</td>
<td>3.2137</td>
<td>0.0892</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>156</td>
<td>2.8672</td>
<td>0.0217</td>
<td>2.8655</td>
<td>0.0271</td>
<td>2.9101</td>
<td>0.0433</td>
</tr>
<tr>
<td>160</td>
<td>2.5216</td>
<td>0.0197</td>
<td>2.5225</td>
<td>0.0238</td>
<td>2.5576</td>
<td>0.0399</td>
</tr>
<tr>
<td>164</td>
<td>2.1343</td>
<td>0.0293</td>
<td>2.1342</td>
<td>0.0313</td>
<td>2.1819</td>
<td>0.0447</td>
</tr>
<tr>
<td>168</td>
<td>1.7197</td>
<td>0.0274</td>
<td>1.7187</td>
<td>0.0289</td>
<td>1.7602</td>
<td>0.0402</td>
</tr>
<tr>
<td>172</td>
<td>1.3427</td>
<td>0.0323</td>
<td>1.3438</td>
<td>0.0343</td>
<td>1.3626</td>
<td>0.0413</td>
</tr>
<tr>
<td>176</td>
<td>0.9182</td>
<td>0.0363</td>
<td>0.9194</td>
<td>0.0399</td>
<td>0.9189</td>
<td>0.0694</td>
</tr>
<tr>
<td>180</td>
<td>0.4282</td>
<td>0.0617</td>
<td>0.4353</td>
<td>0.0761</td>
<td>0.4043</td>
<td>0.1078</td>
</tr>
<tr>
<td>θ</td>
<td>u_m</td>
<td>θ</td>
<td>u_m</td>
<td>θ</td>
<td>u_m</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>deg.</td>
<td>m/sec</td>
<td>deg.</td>
<td>m/sec</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0542</td>
<td>90</td>
<td>4.8057</td>
<td>178</td>
<td>0.3664</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.1313</td>
<td>92</td>
<td>4.8399</td>
<td>180</td>
<td>0.2327</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.2641</td>
<td>94</td>
<td>4.8355</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.4416</td>
<td>96</td>
<td>4.8221</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6280</td>
<td>98</td>
<td>4.8359</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.8126</td>
<td>100</td>
<td>4.8264</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9908</td>
<td>102</td>
<td>4.8016</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1783</td>
<td>104</td>
<td>4.7701</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3633</td>
<td>106</td>
<td>4.7267</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.5385</td>
<td>108</td>
<td>4.6585</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.7365</td>
<td>110</td>
<td>4.5971</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.9722</td>
<td>112</td>
<td>4.5422</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.1000</td>
<td>114</td>
<td>4.4911</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.2359</td>
<td>116</td>
<td>4.4274</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.3868</td>
<td>118</td>
<td>4.3448</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.5283</td>
<td>120</td>
<td>4.2560</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.6990</td>
<td>122</td>
<td>4.1484</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.8306</td>
<td>124</td>
<td>4.0545</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.9497</td>
<td>126</td>
<td>3.9647</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.0612</td>
<td>128</td>
<td>3.8813</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.1796</td>
<td>130</td>
<td>3.7915</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.3041</td>
<td>132</td>
<td>3.7088</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.4475</td>
<td>134</td>
<td>3.6141</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.5810</td>
<td>136</td>
<td>3.5036</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.7007</td>
<td>138</td>
<td>3.4002</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.8023</td>
<td>140</td>
<td>3.2785</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.8915</td>
<td>142</td>
<td>3.1577</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.9656</td>
<td>144</td>
<td>3.0246</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4.0454</td>
<td>146</td>
<td>2.8944</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.1311</td>
<td>148</td>
<td>2.7445</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.2324</td>
<td>150</td>
<td>2.6067</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.3206</td>
<td>152</td>
<td>2.4602</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.4063</td>
<td>154</td>
<td>2.2945</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.4569</td>
<td>156</td>
<td>2.1410</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.5111</td>
<td>158</td>
<td>1.9767</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.5628</td>
<td>160</td>
<td>1.8088</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.6023</td>
<td>162</td>
<td>1.6373</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.6466</td>
<td>164</td>
<td>1.4604</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.6947</td>
<td>166</td>
<td>1.2917</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.7405</td>
<td>168</td>
<td>1.1223</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.7683</td>
<td>170</td>
<td>0.9546</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.7924</td>
<td>172</td>
<td>0.7988</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.8083</td>
<td>174</td>
<td>0.6487</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.8099</td>
<td>176</td>
<td>0.5042</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 4: Ensemble-averaged velocity at s/d = 16
Figure 5: Streamwise velocity fluctuation at s/d = 16
Figure 6: Streamwise turbulence intensity, u' / \bar{u}, at $s/d = 16$

Note: The peaks appear lower than the actual data due to smoothing by the plotting package. The peak turbulence intensity is 1.02, at 158° for $r/R = 0.983$.

23
<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
<th>(\bar{u})</th>
<th>(u')</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0463</td>
<td>0.0107</td>
<td>0.0408</td>
<td>0.0120</td>
<td>0.0285</td>
<td>0.0159</td>
</tr>
<tr>
<td>8</td>
<td>0.0577</td>
<td>0.0097</td>
<td>0.0504</td>
<td>0.0102</td>
<td>0.0437</td>
<td>0.0175</td>
</tr>
<tr>
<td>12</td>
<td>0.0724</td>
<td>0.0093</td>
<td>0.0651</td>
<td>0.0094</td>
<td>0.0675</td>
<td>0.0169</td>
</tr>
<tr>
<td>16</td>
<td>0.0941</td>
<td>0.0093</td>
<td>0.0901</td>
<td>0.0108</td>
<td>0.1078</td>
<td>0.0209</td>
</tr>
<tr>
<td>20</td>
<td>0.1089</td>
<td>0.0084</td>
<td>0.1097</td>
<td>0.0113</td>
<td>0.1461</td>
<td>0.0210</td>
</tr>
<tr>
<td>24</td>
<td>0.1235</td>
<td>0.0115</td>
<td>0.1267</td>
<td>0.0120</td>
<td>0.1750</td>
<td>0.0202</td>
</tr>
<tr>
<td>28</td>
<td>0.1406</td>
<td>0.0107</td>
<td>0.1474</td>
<td>0.0138</td>
<td>0.2092</td>
<td>0.0230</td>
</tr>
<tr>
<td>32</td>
<td>0.1647</td>
<td>0.0102</td>
<td>0.1713</td>
<td>0.0108</td>
<td>0.2589</td>
<td>0.0272</td>
</tr>
<tr>
<td>36</td>
<td>0.1767</td>
<td>0.0099</td>
<td>0.1901</td>
<td>0.0144</td>
<td>0.3005</td>
<td>0.0292</td>
</tr>
<tr>
<td>40</td>
<td>0.1833</td>
<td>0.0123</td>
<td>0.1997</td>
<td>0.0153</td>
<td>0.3204</td>
<td>0.0281</td>
</tr>
<tr>
<td>44</td>
<td>0.1978</td>
<td>0.0130</td>
<td>0.2174</td>
<td>0.0176</td>
<td>0.3496</td>
<td>0.0299</td>
</tr>
<tr>
<td>48</td>
<td>0.2176</td>
<td>0.0152</td>
<td>0.2396</td>
<td>0.0155</td>
<td>0.3941</td>
<td>0.0349</td>
</tr>
<tr>
<td>52</td>
<td>0.2261</td>
<td>0.0143</td>
<td>0.2475</td>
<td>0.0156</td>
<td>0.4091</td>
<td>0.0352</td>
</tr>
<tr>
<td>56</td>
<td>0.2259</td>
<td>0.0146</td>
<td>0.2471</td>
<td>0.0167</td>
<td>0.4083</td>
<td>0.0359</td>
</tr>
<tr>
<td>60</td>
<td>0.2315</td>
<td>0.0140</td>
<td>0.2550</td>
<td>0.0184</td>
<td>0.4246</td>
<td>0.0353</td>
</tr>
<tr>
<td>64</td>
<td>0.2384</td>
<td>0.0117</td>
<td>0.2651</td>
<td>0.0199</td>
<td>0.4431</td>
<td>0.0366</td>
</tr>
<tr>
<td>68</td>
<td>0.2383</td>
<td>0.0119</td>
<td>0.2660</td>
<td>0.0189</td>
<td>0.4433</td>
<td>0.0359</td>
</tr>
<tr>
<td>72</td>
<td>0.2291</td>
<td>0.0136</td>
<td>0.2541</td>
<td>0.0183</td>
<td>0.4210</td>
<td>0.0344</td>
</tr>
<tr>
<td>76</td>
<td>0.2228</td>
<td>0.0147</td>
<td>0.2450</td>
<td>0.0153</td>
<td>0.4029</td>
<td>0.0333</td>
</tr>
<tr>
<td>80</td>
<td>0.2230</td>
<td>0.0142</td>
<td>0.2451</td>
<td>0.0149</td>
<td>0.4034</td>
<td>0.0329</td>
</tr>
<tr>
<td>82</td>
<td>0.2225</td>
<td>0.0146</td>
<td>0.2453</td>
<td>0.0155</td>
<td>0.4042</td>
<td>0.0356</td>
</tr>
<tr>
<td>84</td>
<td>0.2215</td>
<td>0.0183</td>
<td>0.2455</td>
<td>0.0204</td>
<td>0.4022</td>
<td>0.0434</td>
</tr>
<tr>
<td>86</td>
<td>0.2362</td>
<td>0.1098</td>
<td>0.2566</td>
<td>0.0758</td>
<td>0.4128</td>
<td>0.0658</td>
</tr>
<tr>
<td>88</td>
<td>0.3039</td>
<td>0.1963</td>
<td>0.3451</td>
<td>0.2280</td>
<td>0.5354</td>
<td>0.3280</td>
</tr>
<tr>
<td>90</td>
<td>0.4972</td>
<td>0.3205</td>
<td>0.5978</td>
<td>0.3680</td>
<td>0.8964</td>
<td>0.5527</td>
</tr>
<tr>
<td>92</td>
<td>0.6503</td>
<td>0.3081</td>
<td>0.7785</td>
<td>0.3741</td>
<td>1.2132</td>
<td>0.4997</td>
</tr>
<tr>
<td>94</td>
<td>0.6882</td>
<td>0.2566</td>
<td>0.7883</td>
<td>0.3193</td>
<td>1.2174</td>
<td>0.4676</td>
</tr>
<tr>
<td>96</td>
<td>0.6866</td>
<td>0.2631</td>
<td>0.7831</td>
<td>0.2882</td>
<td>1.1846</td>
<td>0.4251</td>
</tr>
<tr>
<td>100</td>
<td>0.6841</td>
<td>0.2637</td>
<td>0.7795</td>
<td>0.3118</td>
<td>1.1774</td>
<td>0.4438</td>
</tr>
<tr>
<td>104</td>
<td>0.6549</td>
<td>0.2551</td>
<td>0.7351</td>
<td>0.2953</td>
<td>1.1427</td>
<td>0.4476</td>
</tr>
<tr>
<td>108</td>
<td>0.6501</td>
<td>0.2707</td>
<td>0.7303</td>
<td>0.2901</td>
<td>1.1068</td>
<td>0.4286</td>
</tr>
<tr>
<td>112</td>
<td>0.6206</td>
<td>0.2555</td>
<td>0.7134</td>
<td>0.2820</td>
<td>1.0498</td>
<td>0.4259</td>
</tr>
<tr>
<td>116</td>
<td>0.5756</td>
<td>0.2461</td>
<td>0.6829</td>
<td>0.2937</td>
<td>1.0066</td>
<td>0.3804</td>
</tr>
<tr>
<td>120</td>
<td>0.5376</td>
<td>0.2205</td>
<td>0.6463</td>
<td>0.2797</td>
<td>0.9703</td>
<td>0.4093</td>
</tr>
<tr>
<td>124</td>
<td>0.5115</td>
<td>0.2297</td>
<td>0.5890</td>
<td>0.2709</td>
<td>0.9249</td>
<td>0.3718</td>
</tr>
<tr>
<td>128</td>
<td>0.4642</td>
<td>0.2118</td>
<td>0.5133</td>
<td>0.2292</td>
<td>0.8114</td>
<td>0.3486</td>
</tr>
<tr>
<td>132</td>
<td>0.4247</td>
<td>0.1978</td>
<td>0.4667</td>
<td>0.2248</td>
<td>0.7388</td>
<td>0.3314</td>
</tr>
<tr>
<td>136</td>
<td>0.3465</td>
<td>0.1742</td>
<td>0.3902</td>
<td>0.2091</td>
<td>0.6430</td>
<td>0.3125</td>
</tr>
<tr>
<td>140</td>
<td>0.2819</td>
<td>0.1503</td>
<td>0.3309</td>
<td>0.1993</td>
<td>0.5014</td>
<td>0.2972</td>
</tr>
<tr>
<td>144</td>
<td>0.2137</td>
<td>0.1332</td>
<td>0.2285</td>
<td>0.1526</td>
<td>0.3691</td>
<td>0.2701</td>
</tr>
<tr>
<td>148</td>
<td>0.1589</td>
<td>0.1067</td>
<td>0.1803</td>
<td>0.1469</td>
<td>0.2508</td>
<td>0.2302</td>
</tr>
<tr>
<td>152</td>
<td>0.1289</td>
<td>0.0895</td>
<td>0.1346</td>
<td>0.1136</td>
<td>0.2005</td>
<td>0.2088</td>
</tr>
</tbody>
</table>
\[
d R = 0.997 \\
\frac{\dot{u}'}{R} = 0.995 \\
\frac{\dot{u}'}{R} = 0.991
\]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>0.1143</td>
<td>0.0827</td>
<td>0.1098</td>
<td>0.0931</td>
<td>0.1533</td>
<td>0.1810</td>
</tr>
<tr>
<td>160</td>
<td>0.0905</td>
<td>0.0598</td>
<td>0.0868</td>
<td>0.0697</td>
<td>0.1076</td>
<td>0.1308</td>
</tr>
<tr>
<td>164</td>
<td>0.0694</td>
<td>0.0427</td>
<td>0.0608</td>
<td>0.0469</td>
<td>0.0692</td>
<td>0.0840</td>
</tr>
<tr>
<td>168</td>
<td>0.0498</td>
<td>0.0249</td>
<td>0.0437</td>
<td>0.0307</td>
<td>0.0356</td>
<td>0.0456</td>
</tr>
<tr>
<td>172</td>
<td>0.0370</td>
<td>0.0155</td>
<td>0.0269</td>
<td>0.0161</td>
<td>0.0158</td>
<td>0.0240</td>
</tr>
<tr>
<td>176</td>
<td>0.0316</td>
<td>0.0120</td>
<td>0.0208</td>
<td>0.0087</td>
<td>0.0069</td>
<td>0.0101</td>
</tr>
<tr>
<td>180</td>
<td>0.0316</td>
<td>0.0089</td>
<td>0.0228</td>
<td>0.0091</td>
<td>0.0081</td>
<td>0.0088</td>
</tr>
</tbody>
</table>

SPRE

s/d = 30

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\dot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0373</td>
<td>0.0301</td>
<td>0.0469</td>
<td>0.0385</td>
<td>0.0852</td>
<td>0.0658</td>
</tr>
<tr>
<td>8</td>
<td>0.0616</td>
<td>0.0285</td>
<td>0.0858</td>
<td>0.0445</td>
<td>0.1604</td>
<td>0.0744</td>
</tr>
<tr>
<td>12</td>
<td>0.1117</td>
<td>0.0296</td>
<td>0.1518</td>
<td>0.0422</td>
<td>0.2772</td>
<td>0.0730</td>
</tr>
<tr>
<td>16</td>
<td>0.1848</td>
<td>0.0358</td>
<td>0.2544</td>
<td>0.0547</td>
<td>0.4413</td>
<td>0.0861</td>
</tr>
<tr>
<td>20</td>
<td>0.2552</td>
<td>0.0367</td>
<td>0.3525</td>
<td>0.0488</td>
<td>0.5959</td>
<td>0.0703</td>
</tr>
<tr>
<td>24</td>
<td>0.3117</td>
<td>0.0384</td>
<td>0.4238</td>
<td>0.0568</td>
<td>0.6781</td>
<td>0.0526</td>
</tr>
<tr>
<td>28</td>
<td>0.3806</td>
<td>0.0451</td>
<td>0.5158</td>
<td>0.0579</td>
<td>0.7574</td>
<td>0.0548</td>
</tr>
<tr>
<td>32</td>
<td>0.4739</td>
<td>0.0501</td>
<td>0.6235</td>
<td>0.0478</td>
<td>0.8494</td>
<td>0.0565</td>
</tr>
<tr>
<td>36</td>
<td>0.5481</td>
<td>0.0517</td>
<td>0.6778</td>
<td>0.0353</td>
<td>0.9270</td>
<td>0.0579</td>
</tr>
<tr>
<td>40</td>
<td>0.5801</td>
<td>0.0446</td>
<td>0.7013</td>
<td>0.0404</td>
<td>0.9680</td>
<td>0.0584</td>
</tr>
<tr>
<td>44</td>
<td>0.6182</td>
<td>0.0400</td>
<td>0.7382</td>
<td>0.0449</td>
<td>1.0141</td>
<td>0.0606</td>
</tr>
<tr>
<td>48</td>
<td>0.6692</td>
<td>0.0361</td>
<td>0.7929</td>
<td>0.0429</td>
<td>1.0835</td>
<td>0.0608</td>
</tr>
<tr>
<td>52</td>
<td>0.6889</td>
<td>0.0370</td>
<td>0.8189</td>
<td>0.0439</td>
<td>1.1176</td>
<td>0.0627</td>
</tr>
<tr>
<td>56</td>
<td>0.6884</td>
<td>0.0366</td>
<td>0.8227</td>
<td>0.0441</td>
<td>1.1234</td>
<td>0.0589</td>
</tr>
<tr>
<td>60</td>
<td>0.7017</td>
<td>0.0381</td>
<td>0.8369</td>
<td>0.0437</td>
<td>1.1440</td>
<td>0.0624</td>
</tr>
<tr>
<td>64</td>
<td>0.7183</td>
<td>0.0386</td>
<td>0.8567</td>
<td>0.0463</td>
<td>1.1661</td>
<td>0.0618</td>
</tr>
<tr>
<td>68</td>
<td>0.7201</td>
<td>0.0376</td>
<td>0.8613</td>
<td>0.0473</td>
<td>1.1713</td>
<td>0.0612</td>
</tr>
<tr>
<td>72</td>
<td>0.6999</td>
<td>0.0363</td>
<td>0.8364</td>
<td>0.0445</td>
<td>1.1450</td>
<td>0.0599</td>
</tr>
<tr>
<td>76</td>
<td>0.6845</td>
<td>0.0339</td>
<td>0.8137</td>
<td>0.0416</td>
<td>1.1192</td>
<td>0.0573</td>
</tr>
<tr>
<td>80</td>
<td>0.6849</td>
<td>0.0334</td>
<td>0.8125</td>
<td>0.0416</td>
<td>1.1168</td>
<td>0.0556</td>
</tr>
<tr>
<td>82</td>
<td>0.6851</td>
<td>0.0354</td>
<td>0.8133</td>
<td>0.0445</td>
<td>1.1187</td>
<td>0.0598</td>
</tr>
<tr>
<td>84</td>
<td>0.7040</td>
<td>0.1422</td>
<td>0.8156</td>
<td>0.0597</td>
<td>1.1247</td>
<td>0.0934</td>
</tr>
<tr>
<td>86</td>
<td>0.6815</td>
<td>0.4617</td>
<td>1.0133</td>
<td>0.4917</td>
<td>1.4356</td>
<td>0.6394</td>
</tr>
<tr>
<td>88</td>
<td>1.2715</td>
<td>0.6818</td>
<td>1.4986</td>
<td>0.7660</td>
<td>1.9702</td>
<td>0.8691</td>
</tr>
<tr>
<td>90</td>
<td>1.6255</td>
<td>0.6443</td>
<td>1.8591</td>
<td>0.7161</td>
<td>2.3519</td>
<td>0.7936</td>
</tr>
<tr>
<td>92</td>
<td>1.6913</td>
<td>0.6071</td>
<td>1.9615</td>
<td>0.6624</td>
<td>2.4574</td>
<td>0.6771</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(u')</td>
<td>(u'')</td>
<td>(\theta)</td>
<td>(u')</td>
<td>(u'')</td>
<td>(\theta)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>94</td>
<td>1.6946</td>
<td>0.6074</td>
<td>96</td>
<td>1.6871</td>
<td>0.5502</td>
<td>98</td>
</tr>
<tr>
<td>100</td>
<td>1.6044</td>
<td>0.5642</td>
<td>102</td>
<td>1.5749</td>
<td>0.5591</td>
<td>104</td>
</tr>
<tr>
<td>106</td>
<td>1.4436</td>
<td>0.5522</td>
<td>108</td>
<td>1.3477</td>
<td>0.4865</td>
<td>112</td>
</tr>
<tr>
<td>116</td>
<td>1.2109</td>
<td>0.4660</td>
<td>120</td>
<td>1.2109</td>
<td>0.4660</td>
<td>132</td>
</tr>
<tr>
<td>136</td>
<td>0.9240</td>
<td>0.3925</td>
<td>140</td>
<td>0.7723</td>
<td>0.3924</td>
<td>144</td>
</tr>
<tr>
<td>148</td>
<td>0.4217</td>
<td>0.3586</td>
<td>152</td>
<td>0.3115</td>
<td>0.3009</td>
<td>156</td>
</tr>
<tr>
<td>160</td>
<td>0.1953</td>
<td>0.2150</td>
<td>164</td>
<td>0.1263</td>
<td>0.1614</td>
<td>168</td>
</tr>
<tr>
<td>172</td>
<td>0.0236</td>
<td>0.0460</td>
<td>176</td>
<td>0.0069</td>
<td>0.0191</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(u')</th>
<th>(u'')</th>
<th>(\theta)</th>
<th>(u')</th>
<th>(u'')</th>
<th>(\theta)</th>
<th>(u')</th>
<th>(u'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.1244</td>
<td>0.0790</td>
<td>8</td>
<td>0.2371</td>
<td>0.1021</td>
<td>12</td>
<td>0.4010</td>
<td>0.0961</td>
</tr>
<tr>
<td>16</td>
<td>0.6112</td>
<td>0.0680</td>
<td>20</td>
<td>0.7477</td>
<td>0.0666</td>
<td>24</td>
<td>0.8447</td>
<td>0.0721</td>
</tr>
<tr>
<td>28</td>
<td>0.9495</td>
<td>0.0649</td>
<td>32</td>
<td>1.0587</td>
<td>0.0623</td>
<td>36</td>
<td>1.1475</td>
<td>0.0688</td>
</tr>
<tr>
<td>40</td>
<td>1.1992</td>
<td>0.0742</td>
<td>44</td>
<td>1.2577</td>
<td>0.0778</td>
<td>50</td>
<td>1.7015</td>
<td>0.1104</td>
</tr>
</tbody>
</table>

s/d = 30
<table>
<thead>
<tr>
<th>θ deg.</th>
<th>r/R = 0.970</th>
<th>r/R = 0.950</th>
<th>r/R = 0.930</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>̇u m/sec</td>
<td>̇u m/sec</td>
<td>̇u m/sec</td>
</tr>
<tr>
<td>48</td>
<td>1.3438</td>
<td>1.9718</td>
<td>2.4561</td>
</tr>
<tr>
<td>52</td>
<td>1.3922</td>
<td>2.0501</td>
<td>2.5581</td>
</tr>
<tr>
<td>56</td>
<td>1.4033</td>
<td>2.0791</td>
<td>2.6032</td>
</tr>
<tr>
<td>60</td>
<td>1.4237</td>
<td>2.1183</td>
<td>2.6492</td>
</tr>
<tr>
<td>64</td>
<td>1.4489</td>
<td>2.1580</td>
<td>2.7047</td>
</tr>
<tr>
<td>68</td>
<td>1.4570</td>
<td>2.1672</td>
<td>2.7382</td>
</tr>
<tr>
<td>72</td>
<td>1.4283</td>
<td>2.1334</td>
<td>2.7073</td>
</tr>
<tr>
<td>76</td>
<td>1.3961</td>
<td>2.0979</td>
<td>2.6776</td>
</tr>
<tr>
<td>80</td>
<td>1.3911</td>
<td>2.0936</td>
<td>2.6813</td>
</tr>
<tr>
<td>82</td>
<td>1.3957</td>
<td>2.0961</td>
<td>2.6920</td>
</tr>
<tr>
<td>84</td>
<td>1.4481</td>
<td>2.1212</td>
<td>2.7545</td>
</tr>
<tr>
<td>86</td>
<td>1.7108</td>
<td>2.2022</td>
<td>2.8287</td>
</tr>
<tr>
<td>88</td>
<td>2.2563</td>
<td>2.9321</td>
<td>3.0642</td>
</tr>
<tr>
<td>90</td>
<td>2.6635</td>
<td>3.2867</td>
<td>3.2940</td>
</tr>
<tr>
<td>92</td>
<td>2.7510</td>
<td>3.4568</td>
<td>3.7206</td>
</tr>
<tr>
<td>94</td>
<td>2.8193</td>
<td>3.4468</td>
<td>3.8405</td>
</tr>
<tr>
<td>96</td>
<td>2.8312</td>
<td>3.4126</td>
<td>3.8389</td>
</tr>
<tr>
<td>100</td>
<td>2.8039</td>
<td>3.4824</td>
<td>3.8441</td>
</tr>
<tr>
<td>104</td>
<td>2.7562</td>
<td>3.4325</td>
<td>3.7617</td>
</tr>
<tr>
<td>108</td>
<td>2.6639</td>
<td>3.3806</td>
<td>3.6617</td>
</tr>
<tr>
<td>112</td>
<td>2.5983</td>
<td>3.2049</td>
<td>3.5856</td>
</tr>
<tr>
<td>116</td>
<td>2.5513</td>
<td>3.1253</td>
<td>3.4889</td>
</tr>
<tr>
<td>120</td>
<td>2.3965</td>
<td>3.0126</td>
<td>3.3386</td>
</tr>
<tr>
<td>124</td>
<td>2.2665</td>
<td>2.9013</td>
<td>3.1638</td>
</tr>
<tr>
<td>128</td>
<td>2.1682</td>
<td>2.7201</td>
<td>3.0381</td>
</tr>
<tr>
<td>132</td>
<td>1.9850</td>
<td>2.5835</td>
<td>2.8437</td>
</tr>
<tr>
<td>136</td>
<td>1.7621</td>
<td>2.3565</td>
<td>2.6191</td>
</tr>
<tr>
<td>140</td>
<td>1.5342</td>
<td>2.0324</td>
<td>2.3508</td>
</tr>
<tr>
<td>144</td>
<td>1.2015</td>
<td>1.6923</td>
<td>1.9875</td>
</tr>
<tr>
<td>148</td>
<td>1.0081</td>
<td>1.4102</td>
<td>1.6988</td>
</tr>
<tr>
<td>152</td>
<td>0.7894</td>
<td>1.1703</td>
<td>1.4102</td>
</tr>
<tr>
<td>156</td>
<td>0.7077</td>
<td>1.0212</td>
<td>1.2655</td>
</tr>
<tr>
<td>160</td>
<td>0.6147</td>
<td>0.9088</td>
<td>1.0895</td>
</tr>
<tr>
<td>164</td>
<td>0.4377</td>
<td>0.7367</td>
<td>0.8717</td>
</tr>
<tr>
<td>168</td>
<td>0.2616</td>
<td>0.4860</td>
<td>0.6221</td>
</tr>
<tr>
<td>172</td>
<td>0.1106</td>
<td>0.2615</td>
<td>0.3668</td>
</tr>
<tr>
<td>176</td>
<td>0.0268</td>
<td>0.0800</td>
<td>0.1451</td>
</tr>
<tr>
<td>180</td>
<td>0.0187</td>
<td>0.0358</td>
<td>0.0407</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>(u) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(u) (m/sec)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4</td>
<td>0.1897</td>
<td>0.1758</td>
<td>0.1271</td>
</tr>
<tr>
<td>8</td>
<td>0.5612</td>
<td>0.1980</td>
<td>0.4766</td>
</tr>
<tr>
<td>12</td>
<td>0.9225</td>
<td>0.1467</td>
<td>0.8797</td>
</tr>
<tr>
<td>16</td>
<td>1.2787</td>
<td>0.1312</td>
<td>1.2826</td>
</tr>
<tr>
<td>20</td>
<td>1.6237</td>
<td>0.1134</td>
<td>1.6631</td>
</tr>
<tr>
<td>24</td>
<td>1.8994</td>
<td>0.1110</td>
<td>1.9963</td>
</tr>
<tr>
<td>28</td>
<td>2.1925</td>
<td>0.0992</td>
<td>2.3145</td>
</tr>
<tr>
<td>32</td>
<td>2.4811</td>
<td>0.1054</td>
<td>2.6627</td>
</tr>
<tr>
<td>36</td>
<td>2.7599</td>
<td>0.1138</td>
<td>2.9949</td>
</tr>
<tr>
<td>40</td>
<td>2.9580</td>
<td>0.1309</td>
<td>3.2665</td>
</tr>
<tr>
<td>44</td>
<td>3.1574</td>
<td>0.1445</td>
<td>3.5312</td>
</tr>
<tr>
<td>48</td>
<td>3.3837</td>
<td>0.1595</td>
<td>3.8185</td>
</tr>
<tr>
<td>52</td>
<td>3.5440</td>
<td>0.1626</td>
<td>4.0665</td>
</tr>
<tr>
<td>56</td>
<td>3.6648</td>
<td>0.1599</td>
<td>4.2638</td>
</tr>
<tr>
<td>60</td>
<td>3.7640</td>
<td>0.1852</td>
<td>4.4548</td>
</tr>
<tr>
<td>64</td>
<td>3.8815</td>
<td>0.1883</td>
<td>4.6565</td>
</tr>
<tr>
<td>68</td>
<td>3.9599</td>
<td>0.1934</td>
<td>4.8231</td>
</tr>
<tr>
<td>72</td>
<td>3.9941</td>
<td>0.2028</td>
<td>4.9495</td>
</tr>
<tr>
<td>76</td>
<td>4.0167</td>
<td>0.2120</td>
<td>5.0540</td>
</tr>
<tr>
<td>80</td>
<td>4.0474</td>
<td>0.2348</td>
<td>5.1188</td>
</tr>
<tr>
<td>84</td>
<td>4.1659</td>
<td>0.4514</td>
<td>5.1571</td>
</tr>
<tr>
<td>88</td>
<td>4.2060</td>
<td>0.6791</td>
<td>5.0901</td>
</tr>
<tr>
<td>92</td>
<td>4.2555</td>
<td>0.5667</td>
<td>4.9669</td>
</tr>
<tr>
<td>96</td>
<td>4.2621</td>
<td>0.5185</td>
<td>4.7140</td>
</tr>
<tr>
<td>100</td>
<td>4.2915</td>
<td>0.5127</td>
<td>4.7246</td>
</tr>
<tr>
<td>104</td>
<td>4.2946</td>
<td>0.5104</td>
<td>4.7360</td>
</tr>
<tr>
<td>108</td>
<td>4.2471</td>
<td>0.5052</td>
<td>4.6694</td>
</tr>
<tr>
<td>112</td>
<td>4.1281</td>
<td>0.5151</td>
<td>4.5519</td>
</tr>
<tr>
<td>116</td>
<td>4.0263</td>
<td>0.5221</td>
<td>4.4635</td>
</tr>
<tr>
<td>120</td>
<td>3.9331</td>
<td>0.5159</td>
<td>4.3388</td>
</tr>
<tr>
<td>124</td>
<td>3.8360</td>
<td>0.5048</td>
<td>4.2186</td>
</tr>
<tr>
<td>128</td>
<td>3.6852</td>
<td>0.4614</td>
<td>4.0709</td>
</tr>
<tr>
<td>132</td>
<td>3.4594</td>
<td>0.4555</td>
<td>3.8938</td>
</tr>
<tr>
<td>136</td>
<td>3.3623</td>
<td>0.4358</td>
<td>3.7554</td>
</tr>
<tr>
<td>140</td>
<td>2.8697</td>
<td>0.4463</td>
<td>3.3432</td>
</tr>
<tr>
<td>144</td>
<td>2.5185</td>
<td>0.4571</td>
<td>3.0977</td>
</tr>
<tr>
<td>148</td>
<td>2.2551</td>
<td>0.4992</td>
<td>2.8749</td>
</tr>
<tr>
<td>152</td>
<td>1.9521</td>
<td>0.4861</td>
<td>2.5834</td>
</tr>
</tbody>
</table>
r/R = 0.863

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>1.7407</td>
<td>0.4982</td>
<td>2.2772</td>
<td>0.4245</td>
<td>2.5686</td>
<td>0.4031</td>
</tr>
<tr>
<td>160</td>
<td>1.5122</td>
<td>0.4608</td>
<td>1.8568</td>
<td>0.4098</td>
<td>2.2493</td>
<td>0.3629</td>
</tr>
<tr>
<td>164</td>
<td>1.2595</td>
<td>0.4256</td>
<td>1.5218</td>
<td>0.3567</td>
<td>1.8647</td>
<td>0.3313</td>
</tr>
<tr>
<td>168</td>
<td>0.9339</td>
<td>0.3594</td>
<td>1.1947</td>
<td>0.3620</td>
<td>1.4303</td>
<td>0.3310</td>
</tr>
<tr>
<td>172</td>
<td>0.6254</td>
<td>0.3205</td>
<td>0.8476</td>
<td>0.3237</td>
<td>1.0158</td>
<td>0.3207</td>
</tr>
<tr>
<td>176</td>
<td>0.3014</td>
<td>0.2606</td>
<td>0.4738</td>
<td>0.2886</td>
<td>0.6024</td>
<td>0.2804</td>
</tr>
<tr>
<td>180</td>
<td>0.0743</td>
<td>0.1096</td>
<td>0.1391</td>
<td>0.1576</td>
<td>0.1890</td>
<td>0.1798</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0971</td>
<td>0.1316</td>
<td>0.0732</td>
<td>0.1066</td>
<td>0.0687</td>
<td>0.1002</td>
</tr>
<tr>
<td>8</td>
<td>0.4091</td>
<td>0.2016</td>
<td>0.3531</td>
<td>0.1962</td>
<td>0.3376</td>
<td>0.1789</td>
</tr>
<tr>
<td>12</td>
<td>0.8217</td>
<td>0.1481</td>
<td>0.7710</td>
<td>0.1438</td>
<td>0.7600</td>
<td>0.1406</td>
</tr>
<tr>
<td>16</td>
<td>1.2122</td>
<td>0.1318</td>
<td>1.1743</td>
<td>0.1329</td>
<td>1.1562</td>
<td>0.1275</td>
</tr>
<tr>
<td>20</td>
<td>1.5890</td>
<td>0.1211</td>
<td>1.5518</td>
<td>0.1171</td>
<td>1.5440</td>
<td>0.1145</td>
</tr>
<tr>
<td>24</td>
<td>1.9259</td>
<td>0.1094</td>
<td>1.8953</td>
<td>0.1008</td>
<td>1.8825</td>
<td>0.0975</td>
</tr>
<tr>
<td>28</td>
<td>2.2617</td>
<td>0.1001</td>
<td>2.2262</td>
<td>0.0946</td>
<td>2.2219</td>
<td>0.0894</td>
</tr>
<tr>
<td>32</td>
<td>2.6275</td>
<td>0.0880</td>
<td>2.5827</td>
<td>0.0785</td>
<td>2.5886</td>
<td>0.0781</td>
</tr>
<tr>
<td>36</td>
<td>2.9802</td>
<td>0.0821</td>
<td>2.9439</td>
<td>0.0832</td>
<td>2.9378</td>
<td>0.0714</td>
</tr>
<tr>
<td>40</td>
<td>3.2799</td>
<td>0.0839</td>
<td>3.2453</td>
<td>0.0695</td>
<td>3.2476</td>
<td>0.0713</td>
</tr>
<tr>
<td>44</td>
<td>3.5592</td>
<td>0.0671</td>
<td>3.5282</td>
<td>0.0619</td>
<td>3.5302</td>
<td>0.0564</td>
</tr>
<tr>
<td>48</td>
<td>3.8774</td>
<td>0.0735</td>
<td>3.8452</td>
<td>0.0715</td>
<td>3.8505</td>
<td>0.0680</td>
</tr>
<tr>
<td>52</td>
<td>4.1476</td>
<td>0.0676</td>
<td>4.1218</td>
<td>0.0586</td>
<td>4.1266</td>
<td>0.0557</td>
</tr>
<tr>
<td>56</td>
<td>4.3834</td>
<td>0.0490</td>
<td>4.3662</td>
<td>0.0508</td>
<td>4.3699</td>
<td>0.0430</td>
</tr>
<tr>
<td>60</td>
<td>4.6030</td>
<td>0.0543</td>
<td>4.5780</td>
<td>0.0519</td>
<td>4.5938</td>
<td>0.0464</td>
</tr>
<tr>
<td>64</td>
<td>4.8273</td>
<td>0.0519</td>
<td>4.8073</td>
<td>0.0519</td>
<td>4.8239</td>
<td>0.0432</td>
</tr>
<tr>
<td>68</td>
<td>5.0343</td>
<td>0.0471</td>
<td>5.0181</td>
<td>0.0367</td>
<td>5.0317</td>
<td>0.0384</td>
</tr>
<tr>
<td>72</td>
<td>5.2086</td>
<td>0.0412</td>
<td>5.1995</td>
<td>0.0393</td>
<td>5.2076</td>
<td>0.0271</td>
</tr>
<tr>
<td>76</td>
<td>5.3488</td>
<td>0.0594</td>
<td>5.3285</td>
<td>0.0635</td>
<td>5.3346</td>
<td>0.0602</td>
</tr>
<tr>
<td>80</td>
<td>5.4358</td>
<td>0.1228</td>
<td>5.4203</td>
<td>0.1020</td>
<td>5.4381</td>
<td>0.0933</td>
</tr>
<tr>
<td>82</td>
<td>5.4636</td>
<td>0.1797</td>
<td>5.4855</td>
<td>0.1430</td>
<td>5.5006</td>
<td>0.1362</td>
</tr>
<tr>
<td>84</td>
<td>5.5027</td>
<td>0.2541</td>
<td>5.5259</td>
<td>0.2004</td>
<td>5.5880</td>
<td>0.1829</td>
</tr>
<tr>
<td>86</td>
<td>5.5492</td>
<td>0.3527</td>
<td>5.6553</td>
<td>0.2932</td>
<td>5.7475</td>
<td>0.2735</td>
</tr>
<tr>
<td>88</td>
<td>5.4658</td>
<td>0.4258</td>
<td>5.7252</td>
<td>0.3503</td>
<td>5.8348</td>
<td>0.3277</td>
</tr>
<tr>
<td>90</td>
<td>5.3750</td>
<td>0.4176</td>
<td>5.5189</td>
<td>0.3882</td>
<td>5.7121</td>
<td>0.3678</td>
</tr>
<tr>
<td>92</td>
<td>5.2904</td>
<td>0.3866</td>
<td>5.4458</td>
<td>0.3606</td>
<td>5.5736</td>
<td>0.3235</td>
</tr>
</tbody>
</table>
r/\(R = 0.463\)

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>5.2671</td>
<td>0.4079</td>
</tr>
<tr>
<td>96</td>
<td>5.3012</td>
<td>0.3708</td>
</tr>
<tr>
<td>100</td>
<td>5.2760</td>
<td>0.3766</td>
</tr>
<tr>
<td>104</td>
<td>5.1828</td>
<td>0.3875</td>
</tr>
<tr>
<td>108</td>
<td>5.0290</td>
<td>0.3864</td>
</tr>
<tr>
<td>112</td>
<td>4.9625</td>
<td>0.3895</td>
</tr>
<tr>
<td>116</td>
<td>4.8367</td>
<td>0.3923</td>
</tr>
<tr>
<td>120</td>
<td>4.7924</td>
<td>0.3407</td>
</tr>
<tr>
<td>124</td>
<td>4.6349</td>
<td>0.3370</td>
</tr>
<tr>
<td>128</td>
<td>4.4514</td>
<td>0.3171</td>
</tr>
<tr>
<td>132</td>
<td>4.3041</td>
<td>0.2808</td>
</tr>
<tr>
<td>136</td>
<td>4.0874</td>
<td>0.2718</td>
</tr>
<tr>
<td>140</td>
<td>3.9011</td>
<td>0.2420</td>
</tr>
<tr>
<td>144</td>
<td>3.6859</td>
<td>0.2470</td>
</tr>
<tr>
<td>148</td>
<td>3.3889</td>
<td>0.2934</td>
</tr>
<tr>
<td>152</td>
<td>3.1349</td>
<td>0.2861</td>
</tr>
<tr>
<td>156</td>
<td>2.8028</td>
<td>0.3192</td>
</tr>
<tr>
<td>160</td>
<td>2.4692</td>
<td>0.3168</td>
</tr>
<tr>
<td>164</td>
<td>2.0728</td>
<td>0.2965</td>
</tr>
<tr>
<td>168</td>
<td>1.6280</td>
<td>0.2919</td>
</tr>
<tr>
<td>172</td>
<td>1.1711</td>
<td>0.3228</td>
</tr>
<tr>
<td>176</td>
<td>0.7309</td>
<td>0.3033</td>
</tr>
<tr>
<td>180</td>
<td>0.2771</td>
<td>0.2263</td>
</tr>
</tbody>
</table>

r/\(R = 0.330\)

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>5.4283</td>
<td>0.3132</td>
</tr>
<tr>
<td>96</td>
<td>5.4024</td>
<td>0.3191</td>
</tr>
<tr>
<td>100</td>
<td>5.3812</td>
<td>0.3190</td>
</tr>
<tr>
<td>104</td>
<td>5.3070</td>
<td>0.3541</td>
</tr>
<tr>
<td>108</td>
<td>5.1944</td>
<td>0.3462</td>
</tr>
<tr>
<td>112</td>
<td>5.1068</td>
<td>0.3668</td>
</tr>
<tr>
<td>116</td>
<td>5.0279</td>
<td>0.3377</td>
</tr>
<tr>
<td>120</td>
<td>4.9264</td>
<td>0.3276</td>
</tr>
<tr>
<td>124</td>
<td>4.7958</td>
<td>0.2837</td>
</tr>
<tr>
<td>128</td>
<td>4.6152</td>
<td>0.2476</td>
</tr>
<tr>
<td>132</td>
<td>4.3995</td>
<td>0.2225</td>
</tr>
<tr>
<td>136</td>
<td>4.1884</td>
<td>0.2123</td>
</tr>
<tr>
<td>140</td>
<td>3.9631</td>
<td>0.1577</td>
</tr>
<tr>
<td>144</td>
<td>3.7222</td>
<td>0.2011</td>
</tr>
<tr>
<td>148</td>
<td>3.4945</td>
<td>0.1822</td>
</tr>
<tr>
<td>152</td>
<td>3.2133</td>
<td>0.2306</td>
</tr>
<tr>
<td>156</td>
<td>2.8927</td>
<td>0.2416</td>
</tr>
<tr>
<td>160</td>
<td>2.5394</td>
<td>0.2526</td>
</tr>
<tr>
<td>164</td>
<td>2.1477</td>
<td>0.2668</td>
</tr>
<tr>
<td>168</td>
<td>1.7119</td>
<td>0.2847</td>
</tr>
<tr>
<td>172</td>
<td>1.2445</td>
<td>0.2866</td>
</tr>
<tr>
<td>176</td>
<td>0.7913</td>
<td>0.2683</td>
</tr>
<tr>
<td>180</td>
<td>0.3059</td>
<td>0.2227</td>
</tr>
</tbody>
</table>

r/\(R = 0.197\)

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>5.5174</td>
<td>0.2973</td>
</tr>
<tr>
<td>96</td>
<td>5.4866</td>
<td>0.2845</td>
</tr>
<tr>
<td>100</td>
<td>5.4673</td>
<td>0.2997</td>
</tr>
<tr>
<td>104</td>
<td>5.3065</td>
<td>0.2682</td>
</tr>
<tr>
<td>108</td>
<td>5.2862</td>
<td>0.3070</td>
</tr>
<tr>
<td>112</td>
<td>5.1984</td>
<td>0.3145</td>
</tr>
<tr>
<td>116</td>
<td>5.1315</td>
<td>0.3147</td>
</tr>
<tr>
<td>120</td>
<td>5.0588</td>
<td>0.2925</td>
</tr>
<tr>
<td>124</td>
<td>4.8917</td>
<td>0.2465</td>
</tr>
<tr>
<td>128</td>
<td>4.6810</td>
<td>0.2168</td>
</tr>
<tr>
<td>132</td>
<td>4.4778</td>
<td>0.1800</td>
</tr>
<tr>
<td>136</td>
<td>4.2553</td>
<td>0.1516</td>
</tr>
<tr>
<td>140</td>
<td>3.9988</td>
<td>0.1468</td>
</tr>
<tr>
<td>144</td>
<td>3.7647</td>
<td>0.1594</td>
</tr>
<tr>
<td>148</td>
<td>3.5291</td>
<td>0.1844</td>
</tr>
<tr>
<td>152</td>
<td>3.2556</td>
<td>0.1904</td>
</tr>
<tr>
<td>156</td>
<td>2.9355</td>
<td>0.2186</td>
</tr>
<tr>
<td>160</td>
<td>2.5917</td>
<td>0.2230</td>
</tr>
<tr>
<td>164</td>
<td>2.1986</td>
<td>0.2524</td>
</tr>
<tr>
<td>168</td>
<td>1.7543</td>
<td>0.2438</td>
</tr>
<tr>
<td>172</td>
<td>1.2853</td>
<td>0.2922</td>
</tr>
<tr>
<td>176</td>
<td>0.8241</td>
<td>0.2693</td>
</tr>
<tr>
<td>180</td>
<td>0.3267</td>
<td>0.2293</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\ddot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0483</td>
<td>0.0823</td>
</tr>
<tr>
<td>8</td>
<td>0.2660</td>
<td>0.1821</td>
</tr>
<tr>
<td>12</td>
<td>0.7132</td>
<td>0.1397</td>
</tr>
<tr>
<td>16</td>
<td>1.1214</td>
<td>0.1212</td>
</tr>
<tr>
<td>20</td>
<td>1.5222</td>
<td>0.1050</td>
</tr>
<tr>
<td>24</td>
<td>1.8664</td>
<td>0.0920</td>
</tr>
<tr>
<td>28</td>
<td>2.2172</td>
<td>0.0854</td>
</tr>
<tr>
<td>32</td>
<td>2.5743</td>
<td>0.0757</td>
</tr>
<tr>
<td>36</td>
<td>2.9413</td>
<td>0.0733</td>
</tr>
<tr>
<td>40</td>
<td>3.2357</td>
<td>0.0684</td>
</tr>
<tr>
<td>44</td>
<td>3.5223</td>
<td>0.0591</td>
</tr>
</tbody>
</table>

s/d = 30
\[r/R = 0.004 \]

<table>
<thead>
<tr>
<th>(\theta) deg.</th>
<th>(\dot{u}) m/sec</th>
<th>(u') m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>3.8386</td>
<td>0.0697</td>
</tr>
<tr>
<td>52</td>
<td>4.1161</td>
<td>0.0579</td>
</tr>
<tr>
<td>56</td>
<td>4.3661</td>
<td>0.0433</td>
</tr>
<tr>
<td>60</td>
<td>4.5912</td>
<td>0.0469</td>
</tr>
<tr>
<td>64</td>
<td>4.8221</td>
<td>0.0421</td>
</tr>
<tr>
<td>68</td>
<td>5.0350</td>
<td>0.0436</td>
</tr>
<tr>
<td>72</td>
<td>5.2086</td>
<td>0.0380</td>
</tr>
<tr>
<td>76</td>
<td>5.3317</td>
<td>0.0587</td>
</tr>
<tr>
<td>78</td>
<td>5.3824</td>
<td>0.0699</td>
</tr>
<tr>
<td>80</td>
<td>5.4434</td>
<td>0.0999</td>
</tr>
<tr>
<td>82</td>
<td>5.5169</td>
<td>0.1243</td>
</tr>
<tr>
<td>84</td>
<td>5.6274</td>
<td>0.1967</td>
</tr>
<tr>
<td>86</td>
<td>5.8429</td>
<td>0.2721</td>
</tr>
<tr>
<td>88</td>
<td>5.9452</td>
<td>0.2875</td>
</tr>
<tr>
<td>90</td>
<td>5.7876</td>
<td>0.3223</td>
</tr>
<tr>
<td>92</td>
<td>5.6441</td>
<td>0.2749</td>
</tr>
<tr>
<td>94</td>
<td>5.5613</td>
<td>0.2563</td>
</tr>
<tr>
<td>96</td>
<td>5.5436</td>
<td>0.2658</td>
</tr>
<tr>
<td>100</td>
<td>5.4992</td>
<td>0.2680</td>
</tr>
<tr>
<td>104</td>
<td>5.4438</td>
<td>0.2642</td>
</tr>
<tr>
<td>108</td>
<td>5.3695</td>
<td>0.2581</td>
</tr>
<tr>
<td>112</td>
<td>5.2763</td>
<td>0.2748</td>
</tr>
<tr>
<td>116</td>
<td>5.2111</td>
<td>0.2605</td>
</tr>
<tr>
<td>120</td>
<td>5.0778</td>
<td>0.2645</td>
</tr>
<tr>
<td>124</td>
<td>4.9092</td>
<td>0.2337</td>
</tr>
<tr>
<td>128</td>
<td>4.6908</td>
<td>0.2052</td>
</tr>
<tr>
<td>132</td>
<td>4.4353</td>
<td>0.1698</td>
</tr>
<tr>
<td>136</td>
<td>4.1803</td>
<td>0.2067</td>
</tr>
<tr>
<td>140</td>
<td>3.9119</td>
<td>0.2114</td>
</tr>
<tr>
<td>144</td>
<td>3.6736</td>
<td>0.2293</td>
</tr>
<tr>
<td>148</td>
<td>3.3997</td>
<td>0.2214</td>
</tr>
<tr>
<td>152</td>
<td>3.0768</td>
<td>0.2488</td>
</tr>
<tr>
<td>156</td>
<td>2.7157</td>
<td>0.2850</td>
</tr>
<tr>
<td>160</td>
<td>2.4331</td>
<td>0.2750</td>
</tr>
<tr>
<td>164</td>
<td>2.0180</td>
<td>0.2819</td>
</tr>
<tr>
<td>168</td>
<td>1.5719</td>
<td>0.2865</td>
</tr>
<tr>
<td>172</td>
<td>1.1803</td>
<td>0.2927</td>
</tr>
<tr>
<td>176</td>
<td>0.7590</td>
<td>0.2601</td>
</tr>
<tr>
<td>180</td>
<td>0.2964</td>
<td>0.2264</td>
</tr>
</tbody>
</table>

31
SPRE
\[
\text{s/d} = 30
\]

<table>
<thead>
<tr>
<th>(\theta) (deg.)</th>
<th>(u_m) (m/sec)</th>
<th>(\theta) (deg.)</th>
<th>(u_m) (m/sec)</th>
<th>(\theta) (deg.)</th>
<th>(u_m) (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0650</td>
<td>90</td>
<td>4.5178</td>
<td>178</td>
<td>0.3045</td>
</tr>
<tr>
<td>4</td>
<td>0.1289</td>
<td>92</td>
<td>4.5232</td>
<td>180</td>
<td>0.1588</td>
</tr>
<tr>
<td>6</td>
<td>0.2573</td>
<td>94</td>
<td>4.5396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.4300</td>
<td>96</td>
<td>4.5506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.6140</td>
<td>98</td>
<td>4.5396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7884</td>
<td>100</td>
<td>4.5480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9614</td>
<td>102</td>
<td>4.5195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1425</td>
<td>104</td>
<td>4.4788</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3179</td>
<td>106</td>
<td>4.4218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.4791</td>
<td>108</td>
<td>4.3683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.6229</td>
<td>110</td>
<td>4.3209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.7654</td>
<td>112</td>
<td>4.2819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1.9026</td>
<td>114</td>
<td>4.2177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.0498</td>
<td>116</td>
<td>4.1812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.2011</td>
<td>118</td>
<td>4.1383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.3539</td>
<td>120</td>
<td>4.0805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.5058</td>
<td>122</td>
<td>4.0074</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.6461</td>
<td>124</td>
<td>3.9339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.7681</td>
<td>126</td>
<td>3.8431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.8776</td>
<td>128</td>
<td>3.7566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2.9878</td>
<td>130</td>
<td>3.6666</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.1017</td>
<td>132</td>
<td>3.5998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.2278</td>
<td>134</td>
<td>3.4890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.3548</td>
<td>136</td>
<td>3.3942</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.4646</td>
<td>138</td>
<td>3.2847</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.5617</td>
<td>140</td>
<td>3.1760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.6501</td>
<td>142</td>
<td>3.0565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.7302</td>
<td>144</td>
<td>2.9107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3.8031</td>
<td>146</td>
<td>2.7914</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.8860</td>
<td>148</td>
<td>2.6639</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>3.9661</td>
<td>150</td>
<td>2.5169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.0506</td>
<td>152</td>
<td>2.3798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.1306</td>
<td>154</td>
<td>2.2533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.1919</td>
<td>156</td>
<td>2.1192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.2457</td>
<td>158</td>
<td>1.9760</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.2915</td>
<td>160</td>
<td>1.8491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.3252</td>
<td>162</td>
<td>1.6835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.3718</td>
<td>164</td>
<td>1.5165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.4064</td>
<td>166</td>
<td>1.3386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.4411</td>
<td>168</td>
<td>1.1669</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.4743</td>
<td>170</td>
<td>0.9951</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.5037</td>
<td>172</td>
<td>0.8192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.5366</td>
<td>174</td>
<td>0.6515</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.5397</td>
<td>176</td>
<td>0.4711</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 7: Ensemble-averaged velocity at s/d = 30
Figure 8: Streamwise velocity fluctuation at s/d = 30
Centerline view
Figure 9: Streamwise velocity fluctuation at s/d = 30
Near-wall view
Figure 10: Streamwise turbulence intensity, u' / \bar{u}, at $s/d = 30$

Note: The peaks appear lower than the actual data due to smoothing by the plotting package. The peak turbulence intensity is 1.25, at 164° for $r/R = 0.986$.
<table>
<thead>
<tr>
<th>θ deg.</th>
<th>\bar{u} m/sec</th>
<th>u' m/sec</th>
<th>\bar{u} m/sec</th>
<th>u' m/sec</th>
<th>\bar{u} m/sec</th>
<th>u' m/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0679</td>
<td>0.0169</td>
<td>0.0394</td>
<td>0.0138</td>
<td>0.0181</td>
<td>0.0168</td>
</tr>
<tr>
<td>6</td>
<td>0.0885</td>
<td>0.0151</td>
<td>0.0598</td>
<td>0.0170</td>
<td>0.0410</td>
<td>0.0201</td>
</tr>
<tr>
<td>12</td>
<td>0.1145</td>
<td>0.0199</td>
<td>0.0935</td>
<td>0.0230</td>
<td>0.0848</td>
<td>0.0377</td>
</tr>
<tr>
<td>16</td>
<td>0.1376</td>
<td>0.0148</td>
<td>0.1130</td>
<td>0.0189</td>
<td>0.1150</td>
<td>0.0305</td>
</tr>
<tr>
<td>20</td>
<td>0.1429</td>
<td>0.0135</td>
<td>0.1223</td>
<td>0.0151</td>
<td>0.1232</td>
<td>0.0228</td>
</tr>
<tr>
<td>24</td>
<td>0.1522</td>
<td>0.0122</td>
<td>0.1308</td>
<td>0.0146</td>
<td>0.1389</td>
<td>0.0224</td>
</tr>
<tr>
<td>28</td>
<td>0.1633</td>
<td>0.0091</td>
<td>0.1450</td>
<td>0.0148</td>
<td>0.1604</td>
<td>0.0194</td>
</tr>
<tr>
<td>32</td>
<td>0.1749</td>
<td>0.0109</td>
<td>0.1647</td>
<td>0.0118</td>
<td>0.1901</td>
<td>0.0219</td>
</tr>
<tr>
<td>36</td>
<td>0.1875</td>
<td>0.0106</td>
<td>0.1750</td>
<td>0.0132</td>
<td>0.2098</td>
<td>0.0217</td>
</tr>
<tr>
<td>40</td>
<td>0.1899</td>
<td>0.0102</td>
<td>0.1797</td>
<td>0.0131</td>
<td>0.2172</td>
<td>0.0213</td>
</tr>
<tr>
<td>44</td>
<td>0.1968</td>
<td>0.0099</td>
<td>0.1898</td>
<td>0.0134</td>
<td>0.2318</td>
<td>0.0195</td>
</tr>
<tr>
<td>48</td>
<td>0.2150</td>
<td>0.0122</td>
<td>0.2106</td>
<td>0.0153</td>
<td>0.2637</td>
<td>0.0235</td>
</tr>
<tr>
<td>52</td>
<td>0.2199</td>
<td>0.0114</td>
<td>0.2178</td>
<td>0.0137</td>
<td>0.2747</td>
<td>0.0221</td>
</tr>
<tr>
<td>56</td>
<td>0.2194</td>
<td>0.0108</td>
<td>0.2156</td>
<td>0.0140</td>
<td>0.2697</td>
<td>0.0227</td>
</tr>
<tr>
<td>60</td>
<td>0.2229</td>
<td>0.0097</td>
<td>0.2211</td>
<td>0.0123</td>
<td>0.2809</td>
<td>0.0218</td>
</tr>
<tr>
<td>64</td>
<td>0.2305</td>
<td>0.0067</td>
<td>0.2301</td>
<td>0.0098</td>
<td>0.2999</td>
<td>0.0199</td>
</tr>
<tr>
<td>68</td>
<td>0.2315</td>
<td>0.0064</td>
<td>0.2312</td>
<td>0.0091</td>
<td>0.3011</td>
<td>0.0190</td>
</tr>
<tr>
<td>72</td>
<td>0.2255</td>
<td>0.0081</td>
<td>0.2235</td>
<td>0.0100</td>
<td>0.2840</td>
<td>0.0196</td>
</tr>
<tr>
<td>76</td>
<td>0.2247</td>
<td>0.0087</td>
<td>0.2214</td>
<td>0.0107</td>
<td>0.2783</td>
<td>0.0194</td>
</tr>
<tr>
<td>80</td>
<td>0.2252</td>
<td>0.0080</td>
<td>0.2243</td>
<td>0.0098</td>
<td>0.2847</td>
<td>0.0174</td>
</tr>
<tr>
<td>84</td>
<td>0.2215</td>
<td>0.0091</td>
<td>0.2164</td>
<td>0.0116</td>
<td>0.2694</td>
<td>0.0188</td>
</tr>
<tr>
<td>88</td>
<td>0.2060</td>
<td>0.0105</td>
<td>0.1994</td>
<td>0.0106</td>
<td>0.2449</td>
<td>0.0149</td>
</tr>
<tr>
<td>92</td>
<td>0.1986</td>
<td>0.0078</td>
<td>0.1910</td>
<td>0.0084</td>
<td>0.2327</td>
<td>0.0124</td>
</tr>
<tr>
<td>96</td>
<td>0.1953</td>
<td>0.0070</td>
<td>0.1869</td>
<td>0.0096</td>
<td>0.2268</td>
<td>0.0132</td>
</tr>
<tr>
<td>98</td>
<td>0.1924</td>
<td>0.0062</td>
<td>0.1825</td>
<td>0.0103</td>
<td>0.2211</td>
<td>0.0149</td>
</tr>
<tr>
<td>100</td>
<td>0.1887</td>
<td>0.0085</td>
<td>0.1766</td>
<td>0.0111</td>
<td>0.2126</td>
<td>0.0186</td>
</tr>
<tr>
<td>102</td>
<td>0.1913</td>
<td>0.0491</td>
<td>0.1826</td>
<td>0.0564</td>
<td>0.2112</td>
<td>0.0509</td>
</tr>
<tr>
<td>104</td>
<td>0.2424</td>
<td>0.1590</td>
<td>0.2549</td>
<td>0.1910</td>
<td>0.3006</td>
<td>0.2537</td>
</tr>
<tr>
<td>106</td>
<td>0.3962</td>
<td>0.2483</td>
<td>0.5145</td>
<td>0.3567</td>
<td>0.6439</td>
<td>0.4667</td>
</tr>
<tr>
<td>108</td>
<td>0.5324</td>
<td>0.2237</td>
<td>0.6467</td>
<td>0.2803</td>
<td>0.8915</td>
<td>0.4358</td>
</tr>
<tr>
<td>110</td>
<td>0.5551</td>
<td>0.1949</td>
<td>0.6454</td>
<td>0.2625</td>
<td>0.6907</td>
<td>0.3570</td>
</tr>
<tr>
<td>112</td>
<td>0.5107</td>
<td>0.1917</td>
<td>0.5990</td>
<td>0.2353</td>
<td>0.8210</td>
<td>0.3077</td>
</tr>
<tr>
<td>114</td>
<td>0.5041</td>
<td>0.1830</td>
<td>0.5345</td>
<td>0.2224</td>
<td>0.7854</td>
<td>0.3076</td>
</tr>
<tr>
<td>116</td>
<td>0.4791</td>
<td>0.1796</td>
<td>0.5499</td>
<td>0.2339</td>
<td>0.7430</td>
<td>0.2945</td>
</tr>
<tr>
<td>120</td>
<td>0.4520</td>
<td>0.1747</td>
<td>0.5205</td>
<td>0.2097</td>
<td>0.7248</td>
<td>0.3055</td>
</tr>
<tr>
<td>124</td>
<td>0.4275</td>
<td>0.1641</td>
<td>0.4888</td>
<td>0.2135</td>
<td>0.6820</td>
<td>0.2944</td>
</tr>
<tr>
<td>128</td>
<td>0.3805</td>
<td>0.1546</td>
<td>0.4320</td>
<td>0.1871</td>
<td>0.6063</td>
<td>0.2814</td>
</tr>
<tr>
<td>132</td>
<td>0.3639</td>
<td>0.1451</td>
<td>0.3944</td>
<td>0.1796</td>
<td>0.5307</td>
<td>0.2398</td>
</tr>
<tr>
<td>136</td>
<td>0.3162</td>
<td>0.1311</td>
<td>0.3397</td>
<td>0.1647</td>
<td>0.4722</td>
<td>0.2415</td>
</tr>
<tr>
<td>140</td>
<td>0.2832</td>
<td>0.1135</td>
<td>0.2922</td>
<td>0.1453</td>
<td>0.4088</td>
<td>0.2155</td>
</tr>
<tr>
<td>144</td>
<td>0.2388</td>
<td>0.0828</td>
<td>0.2479</td>
<td>0.1210</td>
<td>0.3345</td>
<td>0.1945</td>
</tr>
<tr>
<td>148</td>
<td>0.2010</td>
<td>0.0707</td>
<td>0.2067</td>
<td>0.1023</td>
<td>0.2408</td>
<td>0.1476</td>
</tr>
<tr>
<td>152</td>
<td>0.1675</td>
<td>0.0573</td>
<td>0.1611</td>
<td>0.0751</td>
<td>0.1847</td>
<td>0.1256</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>r/R = 0.999</td>
<td>r/R = 0.998</td>
<td>r/R = 0.995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>̅u (m/sec)</td>
<td>̅u' (m/sec)</td>
<td>̅u (m/sec)</td>
<td>̅u' (m/sec)</td>
<td>̅u (m/sec)</td>
<td>̅u' (m/sec)</td>
</tr>
<tr>
<td>156</td>
<td>0.1508</td>
<td>0.0517</td>
<td>0.1234</td>
<td>0.0626</td>
<td>0.1241</td>
<td>0.0885</td>
</tr>
<tr>
<td>160</td>
<td>0.1187</td>
<td>0.0351</td>
<td>0.0920</td>
<td>0.0403</td>
<td>0.0826</td>
<td>0.0630</td>
</tr>
<tr>
<td>164</td>
<td>0.0926</td>
<td>0.0241</td>
<td>0.0641</td>
<td>0.0279</td>
<td>0.0459</td>
<td>0.0353</td>
</tr>
<tr>
<td>168</td>
<td>0.0754</td>
<td>0.0183</td>
<td>0.0458</td>
<td>0.0166</td>
<td>0.0257</td>
<td>0.0205</td>
</tr>
<tr>
<td>172</td>
<td>0.0639</td>
<td>0.0105</td>
<td>0.0361</td>
<td>0.0078</td>
<td>0.0141</td>
<td>0.0101</td>
</tr>
<tr>
<td>176</td>
<td>0.0613</td>
<td>0.0070</td>
<td>0.0341</td>
<td>0.0050</td>
<td>0.0112</td>
<td>0.0052</td>
</tr>
<tr>
<td>180</td>
<td>0.0669</td>
<td>0.0080</td>
<td>0.0393</td>
<td>0.0064</td>
<td>0.0161</td>
<td>0.0061</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>r/R = 0.993</th>
<th>r/R = 0.990</th>
<th>r/R = 0.983</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>̅u (m/sec)</td>
<td>̅u' (m/sec)</td>
<td>̅u (m/sec)</td>
</tr>
<tr>
<td>4</td>
<td>0.0120</td>
<td>0.0170</td>
<td>0.0132</td>
</tr>
<tr>
<td>8</td>
<td>0.0372</td>
<td>0.0268</td>
<td>0.0401</td>
</tr>
<tr>
<td>12</td>
<td>0.0976</td>
<td>0.0508</td>
<td>0.1057</td>
</tr>
<tr>
<td>16</td>
<td>0.1435</td>
<td>0.0434</td>
<td>0.1635</td>
</tr>
<tr>
<td>20</td>
<td>0.1611</td>
<td>0.0354</td>
<td>0.1774</td>
</tr>
<tr>
<td>24</td>
<td>0.1797</td>
<td>0.0353</td>
<td>0.1999</td>
</tr>
<tr>
<td>28</td>
<td>0.2097</td>
<td>0.0352</td>
<td>0.2362</td>
</tr>
<tr>
<td>32</td>
<td>0.2575</td>
<td>0.0341</td>
<td>0.3016</td>
</tr>
<tr>
<td>36</td>
<td>0.2907</td>
<td>0.0362</td>
<td>0.3309</td>
</tr>
<tr>
<td>40</td>
<td>0.3022</td>
<td>0.0335</td>
<td>0.3466</td>
</tr>
<tr>
<td>44</td>
<td>0.3258</td>
<td>0.0331</td>
<td>0.3750</td>
</tr>
<tr>
<td>48</td>
<td>0.3697</td>
<td>0.0318</td>
<td>0.4249</td>
</tr>
<tr>
<td>52</td>
<td>0.3857</td>
<td>0.0317</td>
<td>0.4451</td>
</tr>
<tr>
<td>56</td>
<td>0.3817</td>
<td>0.0323</td>
<td>0.4405</td>
</tr>
<tr>
<td>60</td>
<td>0.3962</td>
<td>0.0323</td>
<td>0.4587</td>
</tr>
<tr>
<td>64</td>
<td>0.4215</td>
<td>0.0312</td>
<td>0.4950</td>
</tr>
<tr>
<td>68</td>
<td>0.4265</td>
<td>0.0308</td>
<td>0.4945</td>
</tr>
<tr>
<td>72</td>
<td>0.4012</td>
<td>0.0325</td>
<td>0.4687</td>
</tr>
<tr>
<td>76</td>
<td>0.3890</td>
<td>0.0303</td>
<td>0.4599</td>
</tr>
<tr>
<td>80</td>
<td>0.3976</td>
<td>0.0287</td>
<td>0.4722</td>
</tr>
<tr>
<td>84</td>
<td>0.3784</td>
<td>0.0252</td>
<td>0.4448</td>
</tr>
<tr>
<td>88</td>
<td>0.3487</td>
<td>0.0213</td>
<td>0.4092</td>
</tr>
<tr>
<td>92</td>
<td>0.3275</td>
<td>0.0221</td>
<td>0.3843</td>
</tr>
<tr>
<td>96</td>
<td>0.3155</td>
<td>0.0217</td>
<td>0.3690</td>
</tr>
<tr>
<td>98</td>
<td>0.3052</td>
<td>0.0216</td>
<td>0.3550</td>
</tr>
<tr>
<td>100</td>
<td>0.2945</td>
<td>0.0263</td>
<td>0.3416</td>
</tr>
<tr>
<td>102</td>
<td>0.2979</td>
<td>0.0887</td>
<td>0.3458</td>
</tr>
<tr>
<td>104</td>
<td>0.4547</td>
<td>0.4180</td>
<td>0.4528</td>
</tr>
<tr>
<td>θ deg.</td>
<td>u m/sec</td>
<td>u' m/sec</td>
<td>r/R = 0.993</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>106</td>
<td>0.8857</td>
<td>0.6026</td>
<td>0.9176</td>
</tr>
<tr>
<td>108</td>
<td>1.1421</td>
<td>0.5167</td>
<td>1.2336</td>
</tr>
<tr>
<td>110</td>
<td>1.1625</td>
<td>0.4379</td>
<td>1.1289</td>
</tr>
<tr>
<td>112</td>
<td>1.0661</td>
<td>0.3901</td>
<td>0.9290</td>
</tr>
<tr>
<td>114</td>
<td>0.9992</td>
<td>0.3930</td>
<td>0.8652</td>
</tr>
<tr>
<td>116</td>
<td>0.9804</td>
<td>0.3759</td>
<td>0.5878</td>
</tr>
<tr>
<td>120</td>
<td>0.9366</td>
<td>0.3624</td>
<td>0.4946</td>
</tr>
<tr>
<td>124</td>
<td>0.8601</td>
<td>0.3752</td>
<td>0.3784</td>
</tr>
<tr>
<td>128</td>
<td>0.7832</td>
<td>0.3364</td>
<td>0.2048</td>
</tr>
<tr>
<td>132</td>
<td>0.7115</td>
<td>0.3430</td>
<td>0.0558</td>
</tr>
<tr>
<td>136</td>
<td>0.6264</td>
<td>0.2907</td>
<td>0.0184</td>
</tr>
<tr>
<td>140</td>
<td>0.5450</td>
<td>0.2882</td>
<td>0.0046</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPRE</th>
<th>s/d = 44</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ deg.</td>
<td>u m/sec</td>
</tr>
<tr>
<td>4</td>
<td>0.0324</td>
</tr>
<tr>
<td>8</td>
<td>0.1675</td>
</tr>
<tr>
<td>12</td>
<td>0.4471</td>
</tr>
<tr>
<td>16</td>
<td>0.6054</td>
</tr>
<tr>
<td>20</td>
<td>0.6874</td>
</tr>
<tr>
<td>24</td>
<td>0.7557</td>
</tr>
<tr>
<td>28</td>
<td>0.8294</td>
</tr>
<tr>
<td>32</td>
<td>0.9292</td>
</tr>
<tr>
<td>36</td>
<td>0.9904</td>
</tr>
<tr>
<td>40</td>
<td>1.0278</td>
</tr>
<tr>
<td>44</td>
<td>1.0667</td>
</tr>
<tr>
<td>48</td>
<td>1.1458</td>
</tr>
<tr>
<td>52</td>
<td>1.1826</td>
</tr>
<tr>
<td>θ deg.</td>
<td>\bar{u} m/sec</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>56</td>
<td>1.1826</td>
</tr>
<tr>
<td>60</td>
<td>1.2025</td>
</tr>
<tr>
<td>64</td>
<td>1.2392</td>
</tr>
<tr>
<td>68</td>
<td>1.2522</td>
</tr>
<tr>
<td>72</td>
<td>1.2175</td>
</tr>
<tr>
<td>76</td>
<td>1.2023</td>
</tr>
<tr>
<td>80</td>
<td>1.2133</td>
</tr>
<tr>
<td>84</td>
<td>1.1858</td>
</tr>
<tr>
<td>88</td>
<td>1.1302</td>
</tr>
<tr>
<td>92</td>
<td>1.0866</td>
</tr>
<tr>
<td>96</td>
<td>1.0643</td>
</tr>
<tr>
<td>98</td>
<td>1.0461</td>
</tr>
<tr>
<td>100</td>
<td>1.0257</td>
</tr>
<tr>
<td>102</td>
<td>1.0161</td>
</tr>
<tr>
<td>104</td>
<td>1.2060</td>
</tr>
<tr>
<td>106</td>
<td>1.8435</td>
</tr>
<tr>
<td>108</td>
<td>2.4041</td>
</tr>
<tr>
<td>110</td>
<td>2.5028</td>
</tr>
<tr>
<td>112</td>
<td>2.4170</td>
</tr>
<tr>
<td>114</td>
<td>2.3022</td>
</tr>
<tr>
<td>116</td>
<td>2.2432</td>
</tr>
<tr>
<td>120</td>
<td>2.2070</td>
</tr>
<tr>
<td>124</td>
<td>2.0683</td>
</tr>
<tr>
<td>128</td>
<td>1.9162</td>
</tr>
<tr>
<td>132</td>
<td>1.7515</td>
</tr>
<tr>
<td>136</td>
<td>1.6410</td>
</tr>
<tr>
<td>140</td>
<td>1.4515</td>
</tr>
<tr>
<td>144</td>
<td>1.2762</td>
</tr>
<tr>
<td>148</td>
<td>1.1000</td>
</tr>
<tr>
<td>152</td>
<td>0.8741</td>
</tr>
<tr>
<td>156</td>
<td>0.6715</td>
</tr>
<tr>
<td>160</td>
<td>0.4760</td>
</tr>
<tr>
<td>164</td>
<td>0.2585</td>
</tr>
<tr>
<td>168</td>
<td>0.1268</td>
</tr>
<tr>
<td>172</td>
<td>0.0297</td>
</tr>
<tr>
<td>176</td>
<td>0.0062</td>
</tr>
<tr>
<td>180</td>
<td>0.0172</td>
</tr>
<tr>
<td>r/R = 0.737</td>
<td>r/R = 0.603</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\bar{u}) [m/sec]</td>
</tr>
<tr>
<td>deg.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0885</td>
</tr>
<tr>
<td>8</td>
<td>0.0534</td>
</tr>
<tr>
<td>12</td>
<td>1.0468</td>
</tr>
<tr>
<td>16</td>
<td>1.3727</td>
</tr>
<tr>
<td>20</td>
<td>1.7685</td>
</tr>
<tr>
<td>24</td>
<td>2.0970</td>
</tr>
<tr>
<td>28</td>
<td>2.4110</td>
</tr>
<tr>
<td>32</td>
<td>2.7576</td>
</tr>
<tr>
<td>36</td>
<td>3.0909</td>
</tr>
<tr>
<td>40</td>
<td>3.3628</td>
</tr>
<tr>
<td>44</td>
<td>3.6138</td>
</tr>
<tr>
<td>48</td>
<td>3.9276</td>
</tr>
<tr>
<td>52</td>
<td>4.2056</td>
</tr>
<tr>
<td>56</td>
<td>4.3954</td>
</tr>
<tr>
<td>60</td>
<td>4.5703</td>
</tr>
<tr>
<td>64</td>
<td>4.7825</td>
</tr>
<tr>
<td>68</td>
<td>4.9590</td>
</tr>
<tr>
<td>72</td>
<td>5.0682</td>
</tr>
<tr>
<td>76</td>
<td>5.1747</td>
</tr>
<tr>
<td>80</td>
<td>5.2762</td>
</tr>
<tr>
<td>84</td>
<td>5.3544</td>
</tr>
<tr>
<td>88</td>
<td>5.3583</td>
</tr>
<tr>
<td>92</td>
<td>5.3563</td>
</tr>
<tr>
<td>96</td>
<td>5.4148</td>
</tr>
<tr>
<td>100</td>
<td>5.4177</td>
</tr>
<tr>
<td>104</td>
<td>5.4058</td>
</tr>
<tr>
<td>108</td>
<td>5.3163</td>
</tr>
<tr>
<td>112</td>
<td>5.0815</td>
</tr>
<tr>
<td>116</td>
<td>4.7672</td>
</tr>
<tr>
<td>120</td>
<td>4.6493</td>
</tr>
<tr>
<td>124</td>
<td>4.6082</td>
</tr>
<tr>
<td>128</td>
<td>4.5306</td>
</tr>
<tr>
<td>132</td>
<td>4.4953</td>
</tr>
<tr>
<td>136</td>
<td>4.4253</td>
</tr>
<tr>
<td>140</td>
<td>4.3010</td>
</tr>
<tr>
<td>144</td>
<td>4.1668</td>
</tr>
<tr>
<td>148</td>
<td>3.9532</td>
</tr>
<tr>
<td>152</td>
<td>3.7664</td>
</tr>
<tr>
<td>(\theta) (deg)</td>
<td>(\ddot{u}) (m/sec)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>156</td>
<td>2.1837</td>
</tr>
<tr>
<td>160</td>
<td>1.8452</td>
</tr>
<tr>
<td>164</td>
<td>1.4908</td>
</tr>
<tr>
<td>168</td>
<td>1.1226</td>
</tr>
<tr>
<td>172</td>
<td>0.7508</td>
</tr>
<tr>
<td>176</td>
<td>0.3337</td>
</tr>
<tr>
<td>180</td>
<td>0.0510</td>
</tr>
</tbody>
</table>

SPRE

<table>
<thead>
<tr>
<th>(\theta) (deg)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0034</td>
<td>0.0073</td>
<td>0.0028</td>
<td>0.0034</td>
<td>0.0089</td>
<td>0.0039</td>
</tr>
<tr>
<td>8</td>
<td>0.0953</td>
<td>0.0923</td>
<td>0.1665</td>
<td>0.0943</td>
<td>0.0876</td>
<td>0.0472</td>
</tr>
<tr>
<td>12</td>
<td>0.3724</td>
<td>0.2215</td>
<td>0.6451</td>
<td>0.1395</td>
<td>0.6456</td>
<td>0.0839</td>
</tr>
<tr>
<td>16</td>
<td>1.1067</td>
<td>0.1526</td>
<td>1.1435</td>
<td>0.1744</td>
<td>1.1897</td>
<td>0.1062</td>
</tr>
<tr>
<td>20</td>
<td>1.6283</td>
<td>0.1190</td>
<td>1.6145</td>
<td>0.1437</td>
<td>1.6629</td>
<td>0.1404</td>
</tr>
<tr>
<td>24</td>
<td>2.0003</td>
<td>0.0981</td>
<td>1.9770</td>
<td>0.1236</td>
<td>2.0012</td>
<td>0.1364</td>
</tr>
<tr>
<td>28</td>
<td>2.3484</td>
<td>0.0887</td>
<td>2.3354</td>
<td>0.1065</td>
<td>2.3418</td>
<td>0.1082</td>
</tr>
<tr>
<td>32</td>
<td>2.7098</td>
<td>0.0783</td>
<td>2.7001</td>
<td>0.0890</td>
<td>2.7272</td>
<td>0.0909</td>
</tr>
<tr>
<td>36</td>
<td>3.0523</td>
<td>0.0651</td>
<td>3.0553</td>
<td>0.0776</td>
<td>3.0967</td>
<td>0.0761</td>
</tr>
<tr>
<td>40</td>
<td>3.3502</td>
<td>0.0585</td>
<td>3.5541</td>
<td>0.0636</td>
<td>3.3966</td>
<td>0.0645</td>
</tr>
<tr>
<td>44</td>
<td>3.6133</td>
<td>0.0504</td>
<td>3.6275</td>
<td>0.0534</td>
<td>3.6990</td>
<td>0.0614</td>
</tr>
<tr>
<td>48</td>
<td>3.9515</td>
<td>0.0478</td>
<td>3.9538</td>
<td>0.0520</td>
<td>4.0242</td>
<td>0.0610</td>
</tr>
<tr>
<td>52</td>
<td>4.2540</td>
<td>0.0508</td>
<td>4.2546</td>
<td>0.0425</td>
<td>4.3224</td>
<td>0.0528</td>
</tr>
<tr>
<td>56</td>
<td>4.4724</td>
<td>0.0450</td>
<td>4.4778</td>
<td>0.0504</td>
<td>4.5342</td>
<td>0.0497</td>
</tr>
<tr>
<td>60</td>
<td>4.6633</td>
<td>0.0494</td>
<td>4.6878</td>
<td>0.0479</td>
<td>4.7682</td>
<td>0.0399</td>
</tr>
<tr>
<td>64</td>
<td>4.9177</td>
<td>0.0543</td>
<td>4.9197</td>
<td>0.0463</td>
<td>5.0148</td>
<td>0.0474</td>
</tr>
<tr>
<td>68</td>
<td>5.1360</td>
<td>0.0543</td>
<td>5.1507</td>
<td>0.0549</td>
<td>5.2096</td>
<td>0.0450</td>
</tr>
<tr>
<td>72</td>
<td>5.2591</td>
<td>0.0518</td>
<td>5.2648</td>
<td>0.0378</td>
<td>5.3599</td>
<td>0.0532</td>
</tr>
<tr>
<td>76</td>
<td>5.3655</td>
<td>0.0352</td>
<td>5.4019</td>
<td>0.0423</td>
<td>5.5011</td>
<td>0.0280</td>
</tr>
<tr>
<td>80</td>
<td>5.5594</td>
<td>0.0377</td>
<td>5.5734</td>
<td>0.0289</td>
<td>5.6622</td>
<td>0.0357</td>
</tr>
<tr>
<td>84</td>
<td>5.6506</td>
<td>0.0407</td>
<td>5.6716</td>
<td>0.0453</td>
<td>5.7843</td>
<td>0.0540</td>
</tr>
<tr>
<td>88</td>
<td>5.7263</td>
<td>0.0464</td>
<td>5.7526</td>
<td>0.0322</td>
<td>5.8620</td>
<td>0.0280</td>
</tr>
<tr>
<td>92</td>
<td>5.7786</td>
<td>0.0245</td>
<td>5.7825</td>
<td>0.0303</td>
<td>5.8765</td>
<td>0.0195</td>
</tr>
<tr>
<td>96</td>
<td>5.8047</td>
<td>0.0783</td>
<td>5.8270</td>
<td>0.0841</td>
<td>5.8934</td>
<td>0.0572</td>
</tr>
<tr>
<td>98</td>
<td>5.8067</td>
<td>0.1119</td>
<td>5.8260</td>
<td>0.1126</td>
<td>5.9134</td>
<td>0.0812</td>
</tr>
<tr>
<td>100</td>
<td>5.7825</td>
<td>0.1649</td>
<td>5.8144</td>
<td>0.1439</td>
<td>5.9168</td>
<td>0.1237</td>
</tr>
<tr>
<td>102</td>
<td>5.7748</td>
<td>0.2305</td>
<td>5.8619</td>
<td>0.2219</td>
<td>5.9570</td>
<td>0.1907</td>
</tr>
<tr>
<td>104</td>
<td>5.8543</td>
<td>0.3252</td>
<td>5.9983</td>
<td>0.3054</td>
<td>6.1290</td>
<td>0.2986</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>106</td>
<td>5.8227</td>
<td>0.4172</td>
<td>6.0069</td>
<td>0.3782</td>
<td>6.2211</td>
<td>0.3483</td>
</tr>
<tr>
<td>108</td>
<td>5.5471</td>
<td>0.4213</td>
<td>5.6966</td>
<td>0.3846</td>
<td>5.6968</td>
<td>0.3501</td>
</tr>
<tr>
<td>110</td>
<td>5.3145</td>
<td>0.3324</td>
<td>5.4396</td>
<td>0.2910</td>
<td>5.5977</td>
<td>0.2781</td>
</tr>
<tr>
<td>112</td>
<td>5.1928</td>
<td>0.3056</td>
<td>5.3801</td>
<td>0.2650</td>
<td>5.4856</td>
<td>0.2534</td>
</tr>
<tr>
<td>114</td>
<td>5.1612</td>
<td>0.2868</td>
<td>5.2971</td>
<td>0.2533</td>
<td>5.4352</td>
<td>0.2268</td>
</tr>
<tr>
<td>116</td>
<td>5.0901</td>
<td>0.2914</td>
<td>5.2512</td>
<td>0.2570</td>
<td>5.3712</td>
<td>0.2329</td>
</tr>
<tr>
<td>120</td>
<td>4.9942</td>
<td>0.2883</td>
<td>5.1096</td>
<td>0.2557</td>
<td>5.2327</td>
<td>0.2397</td>
</tr>
<tr>
<td>124</td>
<td>4.8021</td>
<td>0.2780</td>
<td>4.9450</td>
<td>0.2556</td>
<td>5.0781</td>
<td>0.2203</td>
</tr>
<tr>
<td>128</td>
<td>4.5895</td>
<td>0.2770</td>
<td>4.7309</td>
<td>0.2542</td>
<td>4.8862</td>
<td>0.2298</td>
</tr>
<tr>
<td>132</td>
<td>4.3592</td>
<td>0.2813</td>
<td>4.5000</td>
<td>0.2511</td>
<td>4.6287</td>
<td>0.2287</td>
</tr>
<tr>
<td>136</td>
<td>4.1404</td>
<td>0.2840</td>
<td>4.2390</td>
<td>0.2449</td>
<td>4.3841</td>
<td>0.2194</td>
</tr>
<tr>
<td>140</td>
<td>3.8972</td>
<td>0.2685</td>
<td>3.9911</td>
<td>0.2422</td>
<td>4.1243</td>
<td>0.2161</td>
</tr>
<tr>
<td>144</td>
<td>3.5946</td>
<td>0.2557</td>
<td>3.6979</td>
<td>0.2297</td>
<td>3.8392</td>
<td>0.2089</td>
</tr>
<tr>
<td>148</td>
<td>3.2920</td>
<td>0.2573</td>
<td>3.3930</td>
<td>0.2227</td>
<td>3.5093</td>
<td>0.1918</td>
</tr>
<tr>
<td>152</td>
<td>2.9939</td>
<td>0.2229</td>
<td>3.0697</td>
<td>0.2078</td>
<td>3.1715</td>
<td>0.1985</td>
</tr>
<tr>
<td>156</td>
<td>2.6303</td>
<td>0.2503</td>
<td>2.7204</td>
<td>0.2081</td>
<td>2.8216</td>
<td>0.1973</td>
</tr>
<tr>
<td>160</td>
<td>2.2829</td>
<td>0.2263</td>
<td>2.3692</td>
<td>0.2045</td>
<td>2.4679</td>
<td>0.1802</td>
</tr>
<tr>
<td>164</td>
<td>1.9014</td>
<td>0.2133</td>
<td>1.9774</td>
<td>0.1912</td>
<td>2.0581</td>
<td>0.1638</td>
</tr>
<tr>
<td>168</td>
<td>1.4714</td>
<td>0.2067</td>
<td>1.5760</td>
<td>0.1790</td>
<td>1.6385</td>
<td>0.1681</td>
</tr>
<tr>
<td>172</td>
<td>1.0937</td>
<td>0.1917</td>
<td>1.1659</td>
<td>0.1772</td>
<td>1.2344</td>
<td>0.1665</td>
</tr>
<tr>
<td>176</td>
<td>0.6787</td>
<td>0.1980</td>
<td>0.7642</td>
<td>0.1687</td>
<td>0.8102</td>
<td>0.1605</td>
</tr>
<tr>
<td>180</td>
<td>0.1974</td>
<td>0.1482</td>
<td>0.2501</td>
<td>0.1542</td>
<td>0.2926</td>
<td>0.1555</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u_m (m/sec)</td>
<td>θ (deg.)</td>
<td>u_m (m/sec)</td>
<td>θ (deg.)</td>
<td>u_m (m/sec)</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.0610</td>
<td>90</td>
<td>4.6306</td>
<td>178</td>
<td>0.2130</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0669</td>
<td>92</td>
<td>4.6340</td>
<td>180</td>
<td>0.0916</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0858</td>
<td>94</td>
<td>4.6470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.2128</td>
<td>96</td>
<td>4.6503</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.4628</td>
<td>98</td>
<td>4.6403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.7362</td>
<td>100</td>
<td>4.6238</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.9702</td>
<td>102</td>
<td>4.6077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1.1908</td>
<td>104</td>
<td>4.5708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.3971</td>
<td>106</td>
<td>4.5633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.5783</td>
<td>108</td>
<td>4.5133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.7300</td>
<td>110</td>
<td>4.4450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.8725</td>
<td>112</td>
<td>4.3778</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2.0116</td>
<td>114</td>
<td>4.3304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.1483</td>
<td>116</td>
<td>4.2695</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.2953</td>
<td>118</td>
<td>4.2076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.4522</td>
<td>120</td>
<td>4.1425</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2.6036</td>
<td>122</td>
<td>4.0606</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.7346</td>
<td>124</td>
<td>3.9881</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2.8546</td>
<td>126</td>
<td>3.9148</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2.9616</td>
<td>128</td>
<td>3.8149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.0555</td>
<td>130</td>
<td>3.7078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>3.1771</td>
<td>132</td>
<td>3.6081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.3147</td>
<td>134</td>
<td>3.5120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>3.4423</td>
<td>136</td>
<td>3.4102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>3.5688</td>
<td>138</td>
<td>3.2966</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>3.6725</td>
<td>140</td>
<td>3.1850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>3.7560</td>
<td>142</td>
<td>3.0609</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>3.8309</td>
<td>144</td>
<td>2.9274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>3.8987</td>
<td>146</td>
<td>2.7944</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>3.9809</td>
<td>148</td>
<td>2.6590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.0741</td>
<td>150</td>
<td>2.5110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.1585</td>
<td>152</td>
<td>2.3685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.2451</td>
<td>154</td>
<td>2.2159</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.3104</td>
<td>156</td>
<td>2.0763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.3580</td>
<td>158</td>
<td>1.9201</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.3876</td>
<td>160</td>
<td>1.7551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.4212</td>
<td>162</td>
<td>1.5980</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.4655</td>
<td>164</td>
<td>1.4134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.5162</td>
<td>166</td>
<td>1.2270</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.5670</td>
<td>168</td>
<td>1.0551</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.6040</td>
<td>170</td>
<td>0.8909</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.6262</td>
<td>172</td>
<td>0.7215</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.6325</td>
<td>174</td>
<td>0.5478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.6324</td>
<td>176</td>
<td>0.3773</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 11: Ensemble-averaged velocity at s/d = 44
Figure 12: Streamwise velocity fluctuation at s/d = 44
Figure 13: Streamwise turbulence intensity, u'/\bar{u}, at $s/d = 44$

Note: The peaks appear lower than the actual data due to smoothing by the plotting package. The peak turbulence intensity is 1.30, at 164° for $r/R = 0.990$.
I. CROSS-WIRE DATA

SPRE Operating Point
Nozzle Inlet Geometry

\((\theta, \bar{u})\) \((\theta, u')\) \((\theta, \bar{v})\) \((\theta, v')\) \((\theta, \bar{u}\bar{v}')\)

<table>
<thead>
<tr>
<th>axial station s/d</th>
<th>T (°C)</th>
<th>P (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>28.24</td>
<td>0.983</td>
</tr>
<tr>
<td>16</td>
<td>27.20</td>
<td>0.986</td>
</tr>
<tr>
<td>30</td>
<td>27.45</td>
<td>0.992</td>
</tr>
<tr>
<td>44</td>
<td>28.22</td>
<td>0.989</td>
</tr>
</tbody>
</table>

Note that the data are tabulated at every 4 degrees of crank position except within ±10 degrees of transition, for which the resolution is every 2 degrees.

II. SUPPLEMENTAL FIGURES

In order to supplement the three-dimensional figures which appear in the main body of the thesis, additional figures generated from the cross-wire data have been included after the tabulated data for each of the four axial stations. At each station, smoothed plots are provided of the streamwise and radial rms-velocity components, in addition to unsmoothed plots of the Reynolds shear stress.
CROSS-WIRE DATA

SPRE

\[s/d = 0.33 \]

\[r/R = 0.800 \]

<table>
<thead>
<tr>
<th>(\theta) (deg.)</th>
<th>(\bar{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\bar{v}) (m/sec)</th>
<th>(v') (m/sec)</th>
<th>(-u'v') (m(^2)/sec(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4228</td>
<td>0.1442</td>
<td>-0.0037</td>
<td>0.0510</td>
<td>-0.0004</td>
</tr>
<tr>
<td>8</td>
<td>0.7592</td>
<td>0.1309</td>
<td>0.0295</td>
<td>0.0573</td>
<td>-0.0018</td>
</tr>
<tr>
<td>12</td>
<td>1.0543</td>
<td>0.1224</td>
<td>0.0476</td>
<td>0.0716</td>
<td>0.0020</td>
</tr>
<tr>
<td>14</td>
<td>1.2319</td>
<td>0.1234</td>
<td>0.0660</td>
<td>0.0591</td>
<td>0.0018</td>
</tr>
<tr>
<td>16</td>
<td>1.4369</td>
<td>0.1124</td>
<td>0.0754</td>
<td>0.0539</td>
<td>0.0000</td>
</tr>
<tr>
<td>18</td>
<td>1.6428</td>
<td>0.1044</td>
<td>0.0936</td>
<td>0.0653</td>
<td>0.0015</td>
</tr>
<tr>
<td>20</td>
<td>1.8385</td>
<td>0.1037</td>
<td>0.1082</td>
<td>0.0542</td>
<td>0.0009</td>
</tr>
<tr>
<td>22</td>
<td>2.0077</td>
<td>0.1299</td>
<td>0.1301</td>
<td>0.0813</td>
<td>0.0039</td>
</tr>
<tr>
<td>24</td>
<td>2.1336</td>
<td>0.1211</td>
<td>0.1404</td>
<td>0.0710</td>
<td>0.0029</td>
</tr>
<tr>
<td>26</td>
<td>2.2679</td>
<td>0.1385</td>
<td>0.1355</td>
<td>0.0891</td>
<td>0.0056</td>
</tr>
<tr>
<td>28</td>
<td>2.4336</td>
<td>0.1403</td>
<td>0.1627</td>
<td>0.0994</td>
<td>0.0057</td>
</tr>
<tr>
<td>30</td>
<td>2.6012</td>
<td>0.1561</td>
<td>0.1706</td>
<td>0.1159</td>
<td>0.0057</td>
</tr>
<tr>
<td>32</td>
<td>2.7859</td>
<td>0.1758</td>
<td>0.1716</td>
<td>0.1056</td>
<td>0.0089</td>
</tr>
<tr>
<td>36</td>
<td>3.1658</td>
<td>0.1686</td>
<td>0.1972</td>
<td>0.1414</td>
<td>0.0070</td>
</tr>
<tr>
<td>40</td>
<td>3.4388</td>
<td>0.2097</td>
<td>0.2112</td>
<td>0.1824</td>
<td>0.0169</td>
</tr>
<tr>
<td>44</td>
<td>3.6419</td>
<td>0.2239</td>
<td>0.2313</td>
<td>0.1953</td>
<td>0.0173</td>
</tr>
<tr>
<td>48</td>
<td>3.9453</td>
<td>0.2142</td>
<td>0.2472</td>
<td>0.1836</td>
<td>0.0085</td>
</tr>
<tr>
<td>52</td>
<td>4.2239</td>
<td>0.1738</td>
<td>0.2153</td>
<td>0.1892</td>
<td>0.0059</td>
</tr>
<tr>
<td>56</td>
<td>4.3971</td>
<td>0.1723</td>
<td>0.2403</td>
<td>0.1425</td>
<td>0.0076</td>
</tr>
<tr>
<td>60</td>
<td>4.5231</td>
<td>0.1764</td>
<td>0.2434</td>
<td>0.1584</td>
<td>0.0071</td>
</tr>
<tr>
<td>64</td>
<td>4.7320</td>
<td>0.1825</td>
<td>0.2496</td>
<td>0.1729</td>
<td>0.0204</td>
</tr>
<tr>
<td>68</td>
<td>4.8728</td>
<td>0.1861</td>
<td>0.2542</td>
<td>0.2051</td>
<td>0.0224</td>
</tr>
<tr>
<td>72</td>
<td>4.9824</td>
<td>0.1969</td>
<td>0.2824</td>
<td>0.1399</td>
<td>0.0096</td>
</tr>
<tr>
<td>76</td>
<td>5.0919</td>
<td>0.1369</td>
<td>0.3099</td>
<td>0.1414</td>
<td>0.0146</td>
</tr>
<tr>
<td>80</td>
<td>5.1970</td>
<td>0.1510</td>
<td>0.3071</td>
<td>0.1392</td>
<td>0.0160</td>
</tr>
<tr>
<td>84</td>
<td>5.2939</td>
<td>0.1026</td>
<td>0.3170</td>
<td>0.1155</td>
<td>0.0106</td>
</tr>
<tr>
<td>88</td>
<td>5.2917</td>
<td>0.0739</td>
<td>0.2946</td>
<td>0.0746</td>
<td>0.0044</td>
</tr>
<tr>
<td>92</td>
<td>5.3002</td>
<td>0.1313</td>
<td>0.3098</td>
<td>0.1397</td>
<td>0.0176</td>
</tr>
<tr>
<td>96</td>
<td>5.2889</td>
<td>0.0953</td>
<td>0.3048</td>
<td>0.0954</td>
<td>0.0086</td>
</tr>
<tr>
<td>100</td>
<td>5.2613</td>
<td>0.0634</td>
<td>0.3048</td>
<td>0.0666</td>
<td>0.0039</td>
</tr>
<tr>
<td>104</td>
<td>5.2201</td>
<td>0.1128</td>
<td>0.2949</td>
<td>0.1165</td>
<td>0.0129</td>
</tr>
<tr>
<td>108</td>
<td>5.1174</td>
<td>0.0987</td>
<td>0.3022</td>
<td>0.1037</td>
<td>0.0100</td>
</tr>
<tr>
<td>112</td>
<td>5.0316</td>
<td>0.1373</td>
<td>0.2963</td>
<td>0.1446</td>
<td>0.0195</td>
</tr>
<tr>
<td>116</td>
<td>4.9070</td>
<td>0.1231</td>
<td>0.2786</td>
<td>0.1256</td>
<td>0.0152</td>
</tr>
<tr>
<td>120</td>
<td>4.7480</td>
<td>0.1185</td>
<td>0.3032</td>
<td>0.1249</td>
<td>0.0146</td>
</tr>
<tr>
<td>124</td>
<td>4.5449</td>
<td>0.1097</td>
<td>0.2526</td>
<td>0.1118</td>
<td>0.0121</td>
</tr>
<tr>
<td>θ</td>
<td>u</td>
<td>u'</td>
<td>v</td>
<td>v'</td>
<td>-u'v'</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>128</td>
<td>4.3999</td>
<td>0.1006</td>
<td>0.2249</td>
<td>0.1050</td>
<td>0.0105</td>
</tr>
<tr>
<td>132</td>
<td>4.1969</td>
<td>0.0728</td>
<td>0.2592</td>
<td>0.0749</td>
<td>0.0047</td>
</tr>
<tr>
<td>136</td>
<td>3.9516</td>
<td>0.1116</td>
<td>0.2533</td>
<td>0.1179</td>
<td>0.0130</td>
</tr>
<tr>
<td>140</td>
<td>3.6870</td>
<td>0.0887</td>
<td>0.2196</td>
<td>0.0945</td>
<td>0.0083</td>
</tr>
<tr>
<td>144</td>
<td>3.4194</td>
<td>0.0704</td>
<td>0.2176</td>
<td>0.0728</td>
<td>0.0050</td>
</tr>
<tr>
<td>148</td>
<td>3.1314</td>
<td>0.0618</td>
<td>0.2043</td>
<td>0.0690</td>
<td>0.0041</td>
</tr>
<tr>
<td>152</td>
<td>2.7973</td>
<td>0.0831</td>
<td>0.2004</td>
<td>0.0886</td>
<td>0.0072</td>
</tr>
<tr>
<td>156</td>
<td>2.4577</td>
<td>0.0473</td>
<td>0.1785</td>
<td>0.0484</td>
<td>0.0022</td>
</tr>
<tr>
<td>160</td>
<td>2.1253</td>
<td>0.0461</td>
<td>0.1586</td>
<td>0.0470</td>
<td>0.0021</td>
</tr>
<tr>
<td>164</td>
<td>1.7501</td>
<td>0.0232</td>
<td>0.1476</td>
<td>0.0236</td>
<td>0.0004</td>
</tr>
<tr>
<td>168</td>
<td>1.3544</td>
<td>0.0451</td>
<td>0.1389</td>
<td>0.0477</td>
<td>0.0021</td>
</tr>
<tr>
<td>172</td>
<td>0.9781</td>
<td>0.0345</td>
<td>0.1214</td>
<td>0.0368</td>
<td>0.0012</td>
</tr>
<tr>
<td>176</td>
<td>0.5921</td>
<td>0.0295</td>
<td>0.0954</td>
<td>0.0301</td>
<td>0.0009</td>
</tr>
<tr>
<td>180</td>
<td>0.2999</td>
<td>0.0232</td>
<td>0.0361</td>
<td>0.0240</td>
<td>0.0006</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>̇u (m/sec)</td>
<td>u' (m/sec)</td>
<td>̇v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u'v' (m^2/sec^2)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.3664</td>
<td>0.1058</td>
<td>-0.0049</td>
<td>0.0500</td>
<td>-0.0011</td>
</tr>
<tr>
<td>6</td>
<td>0.7135</td>
<td>0.1282</td>
<td>0.0232</td>
<td>0.0676</td>
<td>-0.0002</td>
</tr>
<tr>
<td>12</td>
<td>1.0306</td>
<td>0.1337</td>
<td>0.0456</td>
<td>0.0724</td>
<td>-0.0009</td>
</tr>
<tr>
<td>14</td>
<td>1.2113</td>
<td>0.1191</td>
<td>0.0588</td>
<td>0.0694</td>
<td>-0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.4199</td>
<td>0.1096</td>
<td>0.0736</td>
<td>0.0607</td>
<td>-0.0013</td>
</tr>
<tr>
<td>18</td>
<td>1.6272</td>
<td>0.0877</td>
<td>0.0790</td>
<td>0.0598</td>
<td>-0.0001</td>
</tr>
<tr>
<td>20</td>
<td>1.8303</td>
<td>0.1073</td>
<td>0.0962</td>
<td>0.0733</td>
<td>0.0012</td>
</tr>
<tr>
<td>22</td>
<td>2.0003</td>
<td>0.1187</td>
<td>0.1177</td>
<td>0.0968</td>
<td>0.0029</td>
</tr>
<tr>
<td>24</td>
<td>2.1644</td>
<td>0.1338</td>
<td>0.1530</td>
<td>0.0911</td>
<td>0.0024</td>
</tr>
<tr>
<td>26</td>
<td>2.3055</td>
<td>0.1386</td>
<td>0.1360</td>
<td>0.1063</td>
<td>0.0039</td>
</tr>
<tr>
<td>28</td>
<td>2.4821</td>
<td>0.1385</td>
<td>0.1576</td>
<td>0.1181</td>
<td>0.0049</td>
</tr>
<tr>
<td>30</td>
<td>2.6330</td>
<td>0.1660</td>
<td>0.1761</td>
<td>0.1742</td>
<td>0.0155</td>
</tr>
<tr>
<td>32</td>
<td>2.8140</td>
<td>0.1590</td>
<td>0.1841</td>
<td>0.1544</td>
<td>0.0078</td>
</tr>
<tr>
<td>34</td>
<td>3.1767</td>
<td>0.1732</td>
<td>0.2194</td>
<td>0.1853</td>
<td>0.0134</td>
</tr>
<tr>
<td>36</td>
<td>3.4420</td>
<td>0.1616</td>
<td>0.2321</td>
<td>0.1970</td>
<td>0.0020</td>
</tr>
<tr>
<td>40</td>
<td>3.6626</td>
<td>0.1792</td>
<td>0.2125</td>
<td>0.2370</td>
<td>0.0109</td>
</tr>
<tr>
<td>48</td>
<td>3.9808</td>
<td>0.1829</td>
<td>0.2513</td>
<td>0.2599</td>
<td>0.0106</td>
</tr>
<tr>
<td>52</td>
<td>4.2332</td>
<td>0.1763</td>
<td>0.2617</td>
<td>0.2461</td>
<td>0.0106</td>
</tr>
<tr>
<td>56</td>
<td>4.3857</td>
<td>0.1564</td>
<td>0.2837</td>
<td>0.2238</td>
<td>0.0095</td>
</tr>
<tr>
<td>60</td>
<td>4.5485</td>
<td>0.1330</td>
<td>0.2641</td>
<td>0.2152</td>
<td>0.0127</td>
</tr>
<tr>
<td>64</td>
<td>4.7357</td>
<td>0.1910</td>
<td>0.2670</td>
<td>0.2274</td>
<td>0.0231</td>
</tr>
<tr>
<td>68</td>
<td>4.9162</td>
<td>0.1487</td>
<td>0.2844</td>
<td>0.1901</td>
<td>0.0150</td>
</tr>
<tr>
<td>72</td>
<td>5.0091</td>
<td>0.1193</td>
<td>0.2673</td>
<td>0.1696</td>
<td>0.0128</td>
</tr>
<tr>
<td>76</td>
<td>5.0969</td>
<td>0.0775</td>
<td>0.3031</td>
<td>0.1254</td>
<td>0.0059</td>
</tr>
<tr>
<td>80</td>
<td>5.2002</td>
<td>0.0469</td>
<td>0.3442</td>
<td>0.0815</td>
<td>0.0009</td>
</tr>
<tr>
<td>84</td>
<td>5.2828</td>
<td>0.1057</td>
<td>0.3296</td>
<td>0.1208</td>
<td>0.0105</td>
</tr>
<tr>
<td>88</td>
<td>5.2798</td>
<td>0.0716</td>
<td>0.3181</td>
<td>0.0784</td>
<td>0.0050</td>
</tr>
<tr>
<td>92</td>
<td>5.2775</td>
<td>0.0628</td>
<td>0.3175</td>
<td>0.0687</td>
<td>0.0039</td>
</tr>
<tr>
<td>96</td>
<td>5.2500</td>
<td>0.1074</td>
<td>0.3012</td>
<td>0.1141</td>
<td>0.0119</td>
</tr>
<tr>
<td>100</td>
<td>5.2424</td>
<td>0.0846</td>
<td>0.3103</td>
<td>0.0876</td>
<td>0.0073</td>
</tr>
<tr>
<td>104</td>
<td>5.1926</td>
<td>0.1193</td>
<td>0.3168</td>
<td>0.1235</td>
<td>0.0143</td>
</tr>
<tr>
<td>108</td>
<td>5.0849</td>
<td>0.1313</td>
<td>0.3046</td>
<td>0.1343</td>
<td>0.0173</td>
</tr>
<tr>
<td>112</td>
<td>4.9860</td>
<td>0.1141</td>
<td>0.2708</td>
<td>0.1169</td>
<td>0.0131</td>
</tr>
<tr>
<td>116</td>
<td>4.8816</td>
<td>0.0756</td>
<td>0.3060</td>
<td>0.0788</td>
<td>0.0056</td>
</tr>
<tr>
<td>120</td>
<td>4.7343</td>
<td>0.0743</td>
<td>0.2906</td>
<td>0.0772</td>
<td>0.0056</td>
</tr>
<tr>
<td>124</td>
<td>4.5563</td>
<td>0.0957</td>
<td>0.2685</td>
<td>0.0974</td>
<td>0.0092</td>
</tr>
<tr>
<td>128</td>
<td>4.4088</td>
<td>0.0346</td>
<td>0.2319</td>
<td>0.0341</td>
<td>0.0011</td>
</tr>
<tr>
<td>132</td>
<td>4.1696</td>
<td>0.0568</td>
<td>0.2538</td>
<td>0.0623</td>
<td>0.0034</td>
</tr>
<tr>
<td>136</td>
<td>3.9854</td>
<td>0.1157</td>
<td>0.2620</td>
<td>0.1224</td>
<td>0.0141</td>
</tr>
<tr>
<td>140</td>
<td>3.6878</td>
<td>0.0928</td>
<td>0.2196</td>
<td>0.0972</td>
<td>0.0090</td>
</tr>
<tr>
<td>144</td>
<td>3.4086</td>
<td>0.0670</td>
<td>0.2069</td>
<td>0.0699</td>
<td>0.0045</td>
</tr>
<tr>
<td>148</td>
<td>3.1444</td>
<td>0.0700</td>
<td>0.2075</td>
<td>0.0721</td>
<td>0.0048</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\ddot{u}'v'$ (m2/sec2)</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>152</td>
<td>2.8076</td>
<td>0.0660</td>
<td>0.1923</td>
<td>0.0716</td>
<td>0.0046</td>
</tr>
<tr>
<td>156</td>
<td>2.4864</td>
<td>0.0684</td>
<td>0.1760</td>
<td>0.0709</td>
<td>0.0047</td>
</tr>
<tr>
<td>160</td>
<td>2.1528</td>
<td>0.0452</td>
<td>0.1414</td>
<td>0.0487</td>
<td>0.0022</td>
</tr>
<tr>
<td>164</td>
<td>1.7881</td>
<td>0.0485</td>
<td>0.1391</td>
<td>0.0508</td>
<td>0.0024</td>
</tr>
<tr>
<td>168</td>
<td>1.4137</td>
<td>0.0461</td>
<td>0.1197</td>
<td>0.0487</td>
<td>0.0021</td>
</tr>
<tr>
<td>172</td>
<td>1.0693</td>
<td>0.0461</td>
<td>0.1015</td>
<td>0.0483</td>
<td>0.0022</td>
</tr>
<tr>
<td>176</td>
<td>0.6740</td>
<td>0.0433</td>
<td>0.0842</td>
<td>0.0462</td>
<td>0.0020</td>
</tr>
<tr>
<td>180</td>
<td>0.3251</td>
<td>0.0183</td>
<td>0.0396</td>
<td>0.0191</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

SPRE

$r/R = 0.600$

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>\ddot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\ddot{u}'v'$ (m2/sec2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3247</td>
<td>0.1047</td>
<td>0.0036</td>
<td>0.0552</td>
<td>-0.0011</td>
</tr>
<tr>
<td>8</td>
<td>0.6328</td>
<td>0.1357</td>
<td>0.0164</td>
<td>0.0622</td>
<td>-0.0016</td>
</tr>
<tr>
<td>12</td>
<td>0.9604</td>
<td>0.1196</td>
<td>0.0452</td>
<td>0.0771</td>
<td>-0.0003</td>
</tr>
<tr>
<td>14</td>
<td>1.1696</td>
<td>0.1264</td>
<td>0.0578</td>
<td>0.0743</td>
<td>-0.0017</td>
</tr>
<tr>
<td>16</td>
<td>1.3719</td>
<td>0.1234</td>
<td>0.0733</td>
<td>0.0808</td>
<td>0.0001</td>
</tr>
<tr>
<td>18</td>
<td>1.5950</td>
<td>0.1071</td>
<td>0.0856</td>
<td>0.0725</td>
<td>-0.0010</td>
</tr>
<tr>
<td>20</td>
<td>1.8077</td>
<td>0.1153</td>
<td>0.1157</td>
<td>0.1029</td>
<td>0.0022</td>
</tr>
<tr>
<td>22</td>
<td>1.9792</td>
<td>0.1172</td>
<td>0.1177</td>
<td>0.1146</td>
<td>0.0018</td>
</tr>
<tr>
<td>24</td>
<td>2.1155</td>
<td>0.1280</td>
<td>0.1421</td>
<td>0.1207</td>
<td>0.0001</td>
</tr>
<tr>
<td>26</td>
<td>2.3120</td>
<td>0.1361</td>
<td>0.1693</td>
<td>0.1488</td>
<td>0.0061</td>
</tr>
<tr>
<td>28</td>
<td>2.4598</td>
<td>0.1394</td>
<td>0.1735</td>
<td>0.1568</td>
<td>0.0058</td>
</tr>
<tr>
<td>30</td>
<td>2.6511</td>
<td>0.1614</td>
<td>0.1940</td>
<td>0.1955</td>
<td>0.0179</td>
</tr>
<tr>
<td>32</td>
<td>2.8592</td>
<td>0.1580</td>
<td>0.1854</td>
<td>0.2201</td>
<td>0.0077</td>
</tr>
<tr>
<td>36</td>
<td>3.2352</td>
<td>0.1646</td>
<td>0.2062</td>
<td>0.2200</td>
<td>0.0142</td>
</tr>
<tr>
<td>40</td>
<td>3.4552</td>
<td>0.1906</td>
<td>0.2383</td>
<td>0.2542</td>
<td>0.0155</td>
</tr>
<tr>
<td>44</td>
<td>3.7004</td>
<td>0.1828</td>
<td>0.2862</td>
<td>0.2898</td>
<td>0.0155</td>
</tr>
<tr>
<td>48</td>
<td>3.9645</td>
<td>0.1900</td>
<td>0.2803</td>
<td>0.3293</td>
<td>0.0245</td>
</tr>
<tr>
<td>52</td>
<td>4.2599</td>
<td>0.1238</td>
<td>0.2808</td>
<td>0.2867</td>
<td>0.0056</td>
</tr>
<tr>
<td>56</td>
<td>4.4090</td>
<td>0.1246</td>
<td>0.3097</td>
<td>0.2657</td>
<td>0.0071</td>
</tr>
<tr>
<td>60</td>
<td>4.5489</td>
<td>0.1259</td>
<td>0.2727</td>
<td>0.2558</td>
<td>0.0092</td>
</tr>
<tr>
<td>64</td>
<td>4.7591</td>
<td>0.1189</td>
<td>0.2574</td>
<td>0.2644</td>
<td>0.0144</td>
</tr>
<tr>
<td>68</td>
<td>4.9289</td>
<td>0.1272</td>
<td>0.2411</td>
<td>0.2222</td>
<td>0.0117</td>
</tr>
<tr>
<td>72</td>
<td>5.0243</td>
<td>0.1016</td>
<td>0.2785</td>
<td>0.1822</td>
<td>0.0085</td>
</tr>
<tr>
<td>76</td>
<td>5.1025</td>
<td>0.1065</td>
<td>0.2929</td>
<td>0.1606</td>
<td>0.0084</td>
</tr>
<tr>
<td>80</td>
<td>5.2054</td>
<td>0.0559</td>
<td>0.3193</td>
<td>0.0976</td>
<td>0.0021</td>
</tr>
<tr>
<td>84</td>
<td>5.2799</td>
<td>0.1010</td>
<td>0.3284</td>
<td>0.1151</td>
<td>0.0097</td>
</tr>
<tr>
<td>88</td>
<td>5.2733</td>
<td>0.0681</td>
<td>0.3215</td>
<td>0.0772</td>
<td>0.0045</td>
</tr>
</tbody>
</table>

$s/d = 0.33$
<table>
<thead>
<tr>
<th>θ</th>
<th>̇u</th>
<th>u'</th>
<th>̇v</th>
<th>v'</th>
<th>-u̇v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>92</td>
<td>5.2454</td>
<td>0.0622</td>
<td>0.3134</td>
<td>0.0668</td>
<td>0.0038</td>
</tr>
<tr>
<td>96</td>
<td>5.2403</td>
<td>0.0847</td>
<td>0.3212</td>
<td>0.0866</td>
<td>0.0071</td>
</tr>
<tr>
<td>100</td>
<td>5.2360</td>
<td>0.1144</td>
<td>0.3349</td>
<td>0.1196</td>
<td>0.0136</td>
</tr>
<tr>
<td>104</td>
<td>5.1743</td>
<td>0.1056</td>
<td>0.3301</td>
<td>0.1099</td>
<td>0.0113</td>
</tr>
<tr>
<td>108</td>
<td>5.0931</td>
<td>0.0861</td>
<td>0.3355</td>
<td>0.0868</td>
<td>0.0074</td>
</tr>
<tr>
<td>112</td>
<td>4.9929</td>
<td>0.0975</td>
<td>0.3098</td>
<td>0.0997</td>
<td>0.0094</td>
</tr>
<tr>
<td>116</td>
<td>4.8570</td>
<td>0.0998</td>
<td>0.3093</td>
<td>0.1049</td>
<td>0.0101</td>
</tr>
<tr>
<td>120</td>
<td>4.7171</td>
<td>0.0608</td>
<td>0.3012</td>
<td>0.0637</td>
<td>0.0038</td>
</tr>
<tr>
<td>124</td>
<td>4.5466</td>
<td>0.0768</td>
<td>0.2864</td>
<td>0.0785</td>
<td>0.0060</td>
</tr>
<tr>
<td>128</td>
<td>4.3906</td>
<td>0.0892</td>
<td>0.2402</td>
<td>0.0932</td>
<td>0.0083</td>
</tr>
<tr>
<td>132</td>
<td>4.1755</td>
<td>0.0856</td>
<td>0.2858</td>
<td>0.0878</td>
<td>0.0074</td>
</tr>
<tr>
<td>136</td>
<td>3.9325</td>
<td>0.0489</td>
<td>0.2534</td>
<td>0.0497</td>
<td>0.0024</td>
</tr>
<tr>
<td>140</td>
<td>3.6838</td>
<td>0.0810</td>
<td>0.2389</td>
<td>0.0830</td>
<td>0.0067</td>
</tr>
<tr>
<td>144</td>
<td>3.4045</td>
<td>0.0689</td>
<td>0.2253</td>
<td>0.0731</td>
<td>0.0049</td>
</tr>
<tr>
<td>148</td>
<td>3.1231</td>
<td>0.0787</td>
<td>0.2017</td>
<td>0.0794</td>
<td>0.0061</td>
</tr>
<tr>
<td>152</td>
<td>2.7993</td>
<td>0.0572</td>
<td>0.2005</td>
<td>0.0591</td>
<td>0.0034</td>
</tr>
<tr>
<td>156</td>
<td>2.4755</td>
<td>0.0552</td>
<td>0.1762</td>
<td>0.0529</td>
<td>0.0027</td>
</tr>
<tr>
<td>160</td>
<td>2.1530</td>
<td>0.0648</td>
<td>0.1570</td>
<td>0.0675</td>
<td>0.0044</td>
</tr>
<tr>
<td>164</td>
<td>1.7975</td>
<td>0.0368</td>
<td>0.1485</td>
<td>0.0382</td>
<td>0.0014</td>
</tr>
<tr>
<td>168</td>
<td>1.4301</td>
<td>0.0394</td>
<td>0.1197</td>
<td>0.0408</td>
<td>0.0016</td>
</tr>
<tr>
<td>172</td>
<td>1.0619</td>
<td>0.0387</td>
<td>0.1018</td>
<td>0.0410</td>
<td>0.0016</td>
</tr>
<tr>
<td>176</td>
<td>0.6959</td>
<td>0.0214</td>
<td>0.0721</td>
<td>0.0213</td>
<td>0.0004</td>
</tr>
<tr>
<td>180</td>
<td>0.3402</td>
<td>0.0215</td>
<td>0.0377</td>
<td>0.0224</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

SPRE

\[r/R = 0.467 \]

\[s/d = 0.33 \]

<table>
<thead>
<tr>
<th>θ</th>
<th>̇u</th>
<th>u'</th>
<th>̇v</th>
<th>v'</th>
<th>-u̇v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.3077</td>
<td>0.1003</td>
<td>-0.0018</td>
<td>0.0520</td>
<td>-0.0012</td>
</tr>
<tr>
<td>8</td>
<td>0.5992</td>
<td>0.1233</td>
<td>0.0275</td>
<td>0.0735</td>
<td>0.0001</td>
</tr>
<tr>
<td>12</td>
<td>0.9130</td>
<td>0.1111</td>
<td>0.0502</td>
<td>0.0765</td>
<td>-0.0011</td>
</tr>
<tr>
<td>14</td>
<td>1.1134</td>
<td>0.1174</td>
<td>0.0620</td>
<td>0.0764</td>
<td>-0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.3266</td>
<td>0.1192</td>
<td>0.0898</td>
<td>0.0867</td>
<td>0.0016</td>
</tr>
<tr>
<td>18</td>
<td>1.5445</td>
<td>0.1019</td>
<td>0.0884</td>
<td>0.0721</td>
<td>-0.0013</td>
</tr>
<tr>
<td>20</td>
<td>1.7668</td>
<td>0.1209</td>
<td>0.1102</td>
<td>0.0940</td>
<td>0.0018</td>
</tr>
<tr>
<td>22</td>
<td>1.9459</td>
<td>0.1239</td>
<td>0.1202</td>
<td>0.0929</td>
<td>-0.0014</td>
</tr>
<tr>
<td>24</td>
<td>2.1224</td>
<td>0.1452</td>
<td>0.1291</td>
<td>0.1156</td>
<td>-0.0009</td>
</tr>
<tr>
<td>26</td>
<td>2.2980</td>
<td>0.1469</td>
<td>0.1561</td>
<td>0.1475</td>
<td>0.0014</td>
</tr>
<tr>
<td>28</td>
<td>2.4670</td>
<td>0.1382</td>
<td>0.1779</td>
<td>0.1667</td>
<td>0.0048</td>
</tr>
<tr>
<td>30</td>
<td>2.6483</td>
<td>0.1636</td>
<td>0.1920</td>
<td>0.1778</td>
<td>0.0087</td>
</tr>
<tr>
<td>32</td>
<td>2.8451</td>
<td>0.1655</td>
<td>0.1974</td>
<td>0.2098</td>
<td>0.0092</td>
</tr>
<tr>
<td>θ deg</td>
<td>\ddot{u} m/sec</td>
<td>u' m/sec</td>
<td>\ddot{v} m/sec</td>
<td>v' m/sec</td>
<td>$-\ddot{u}'\ddot{v}'$ m2/sec2</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>36</td>
<td>3.2210</td>
<td>0.1626</td>
<td>0.2130</td>
<td>0.2619</td>
<td>0.0153</td>
</tr>
<tr>
<td>40</td>
<td>3.4582</td>
<td>0.1400</td>
<td>0.2215</td>
<td>0.2982</td>
<td>0.0078</td>
</tr>
<tr>
<td>44</td>
<td>3.7065</td>
<td>0.1582</td>
<td>0.3072</td>
<td>0.3052</td>
<td>0.0112</td>
</tr>
<tr>
<td>48</td>
<td>4.0185</td>
<td>0.1723</td>
<td>0.3064</td>
<td>0.2903</td>
<td>0.0102</td>
</tr>
<tr>
<td>52</td>
<td>4.2603</td>
<td>0.1622</td>
<td>0.3171</td>
<td>0.3344</td>
<td>0.0119</td>
</tr>
<tr>
<td>56</td>
<td>4.4426</td>
<td>0.1552</td>
<td>0.3230</td>
<td>0.3078</td>
<td>0.0175</td>
</tr>
<tr>
<td>60</td>
<td>4.5764</td>
<td>0.1230</td>
<td>0.2668</td>
<td>0.3289</td>
<td>0.0129</td>
</tr>
<tr>
<td>64</td>
<td>4.7881</td>
<td>0.1621</td>
<td>0.3165</td>
<td>0.3503</td>
<td>0.0327</td>
</tr>
<tr>
<td>68</td>
<td>4.9385</td>
<td>0.1181</td>
<td>0.3041</td>
<td>0.2548</td>
<td>0.0130</td>
</tr>
<tr>
<td>72</td>
<td>5.0391</td>
<td>0.1063</td>
<td>0.2746</td>
<td>0.1971</td>
<td>0.0048</td>
</tr>
<tr>
<td>76</td>
<td>5.1194</td>
<td>0.1077</td>
<td>0.3098</td>
<td>0.1835</td>
<td>0.0108</td>
</tr>
<tr>
<td>80</td>
<td>5.1940</td>
<td>0.1377</td>
<td>0.3236</td>
<td>0.1662</td>
<td>0.0183</td>
</tr>
<tr>
<td>84</td>
<td>5.2898</td>
<td>0.0780</td>
<td>0.3435</td>
<td>0.1056</td>
<td>0.0058</td>
</tr>
<tr>
<td>88</td>
<td>5.2962</td>
<td>0.0867</td>
<td>0.3494</td>
<td>0.0877</td>
<td>0.0065</td>
</tr>
<tr>
<td>92</td>
<td>5.2733</td>
<td>0.0679</td>
<td>0.3534</td>
<td>0.0716</td>
<td>0.0045</td>
</tr>
<tr>
<td>96</td>
<td>5.2376</td>
<td>0.0946</td>
<td>0.3301</td>
<td>0.0979</td>
<td>0.0091</td>
</tr>
<tr>
<td>100</td>
<td>5.2203</td>
<td>0.0588</td>
<td>0.3405</td>
<td>0.0620</td>
<td>0.0035</td>
</tr>
<tr>
<td>104</td>
<td>5.1854</td>
<td>0.1146</td>
<td>0.3419</td>
<td>0.1222</td>
<td>0.0136</td>
</tr>
<tr>
<td>108</td>
<td>5.0933</td>
<td>0.0951</td>
<td>0.3489</td>
<td>0.1012</td>
<td>0.0095</td>
</tr>
<tr>
<td>112</td>
<td>4.9914</td>
<td>0.0921</td>
<td>0.3297</td>
<td>0.0958</td>
<td>0.0087</td>
</tr>
<tr>
<td>116</td>
<td>4.8546</td>
<td>0.0327</td>
<td>0.3130</td>
<td>0.0337</td>
<td>0.0008</td>
</tr>
<tr>
<td>120</td>
<td>4.7185</td>
<td>0.0521</td>
<td>0.3294</td>
<td>0.0534</td>
<td>0.0027</td>
</tr>
<tr>
<td>124</td>
<td>4.5527</td>
<td>0.0893</td>
<td>0.3168</td>
<td>0.0935</td>
<td>0.0083</td>
</tr>
<tr>
<td>128</td>
<td>4.4054</td>
<td>0.0818</td>
<td>0.2813</td>
<td>0.0865</td>
<td>0.0070</td>
</tr>
<tr>
<td>132</td>
<td>4.1717</td>
<td>0.0633</td>
<td>0.3045</td>
<td>0.0595</td>
<td>0.0037</td>
</tr>
<tr>
<td>136</td>
<td>3.9359</td>
<td>0.1226</td>
<td>0.2787</td>
<td>0.1294</td>
<td>0.0158</td>
</tr>
<tr>
<td>140</td>
<td>3.6786</td>
<td>0.0583</td>
<td>0.2557</td>
<td>0.0604</td>
<td>0.0035</td>
</tr>
<tr>
<td>144</td>
<td>3.4224</td>
<td>0.1010</td>
<td>0.2630</td>
<td>0.1050</td>
<td>0.0105</td>
</tr>
<tr>
<td>148</td>
<td>3.1210</td>
<td>0.0586</td>
<td>0.2140</td>
<td>0.0635</td>
<td>0.0036</td>
</tr>
<tr>
<td>152</td>
<td>2.8110</td>
<td>0.0364</td>
<td>0.2289</td>
<td>0.1008</td>
<td>0.0097</td>
</tr>
<tr>
<td>156</td>
<td>2.4899</td>
<td>0.0292</td>
<td>0.1982</td>
<td>0.0312</td>
<td>0.0006</td>
</tr>
<tr>
<td>160</td>
<td>2.1554</td>
<td>0.0442</td>
<td>0.1741</td>
<td>0.0462</td>
<td>0.0020</td>
</tr>
<tr>
<td>164</td>
<td>1.7940</td>
<td>0.0699</td>
<td>0.1576</td>
<td>0.0748</td>
<td>0.0052</td>
</tr>
<tr>
<td>168</td>
<td>1.4339</td>
<td>0.0541</td>
<td>0.1309</td>
<td>0.0566</td>
<td>0.0030</td>
</tr>
<tr>
<td>172</td>
<td>1.0594</td>
<td>0.0244</td>
<td>0.1013</td>
<td>0.0249</td>
<td>0.0006</td>
</tr>
<tr>
<td>176</td>
<td>0.7006</td>
<td>0.0456</td>
<td>0.0748</td>
<td>0.0474</td>
<td>0.0021</td>
</tr>
<tr>
<td>180</td>
<td>0.3436</td>
<td>0.0185</td>
<td>0.0390</td>
<td>0.0185</td>
<td>0.0004</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>̅u (m/sec)</td>
<td>u' (m/sec)</td>
<td>̅v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u'v' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4</td>
<td>0.2765</td>
<td>0.0917</td>
<td>0.0106</td>
<td>0.0495</td>
<td>0.0003</td>
</tr>
<tr>
<td>8</td>
<td>0.5441</td>
<td>0.1181</td>
<td>0.0241</td>
<td>0.0652</td>
<td>0.0006</td>
</tr>
<tr>
<td>12</td>
<td>0.8879</td>
<td>0.1116</td>
<td>0.0552</td>
<td>0.0724</td>
<td>-0.0015</td>
</tr>
<tr>
<td>14</td>
<td>1.0798</td>
<td>0.1082</td>
<td>0.0724</td>
<td>0.0880</td>
<td>0.0020</td>
</tr>
<tr>
<td>16</td>
<td>1.2649</td>
<td>0.1122</td>
<td>0.0910</td>
<td>0.0772</td>
<td>-0.0006</td>
</tr>
<tr>
<td>18</td>
<td>1.5066</td>
<td>0.1055</td>
<td>0.0964</td>
<td>0.0716</td>
<td>-0.0018</td>
</tr>
<tr>
<td>20</td>
<td>1.7443</td>
<td>0.1197</td>
<td>0.1046</td>
<td>0.0998</td>
<td>0.0023</td>
</tr>
<tr>
<td>22</td>
<td>1.9078</td>
<td>0.1123</td>
<td>0.1194</td>
<td>0.1014</td>
<td>0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.1076</td>
<td>0.1366</td>
<td>0.1370</td>
<td>0.1370</td>
<td>-0.0001</td>
</tr>
<tr>
<td>26</td>
<td>2.2837</td>
<td>0.1514</td>
<td>0.1729</td>
<td>0.1667</td>
<td>0.0065</td>
</tr>
<tr>
<td>28</td>
<td>2.4455</td>
<td>0.1836</td>
<td>0.1946</td>
<td>0.2047</td>
<td>0.0134</td>
</tr>
<tr>
<td>30</td>
<td>2.6364</td>
<td>0.1511</td>
<td>0.1799</td>
<td>0.1980</td>
<td>0.0052</td>
</tr>
<tr>
<td>32</td>
<td>2.8121</td>
<td>0.1670</td>
<td>0.2002</td>
<td>0.2111</td>
<td>0.0010</td>
</tr>
<tr>
<td>34</td>
<td>3.2031</td>
<td>0.1723</td>
<td>0.2196</td>
<td>0.2630</td>
<td>0.0034</td>
</tr>
<tr>
<td>36</td>
<td>3.4561</td>
<td>0.1590</td>
<td>0.2212</td>
<td>0.2825</td>
<td>0.0058</td>
</tr>
<tr>
<td>40</td>
<td>3.7039</td>
<td>0.1710</td>
<td>0.2452</td>
<td>0.2973</td>
<td>0.0051</td>
</tr>
<tr>
<td>44</td>
<td>4.0023</td>
<td>0.1548</td>
<td>0.2659</td>
<td>0.3514</td>
<td>0.0043</td>
</tr>
<tr>
<td>48</td>
<td>4.2537</td>
<td>0.1353</td>
<td>-0.2960</td>
<td>0.3183</td>
<td>-0.0010</td>
</tr>
<tr>
<td>52</td>
<td>4.4219</td>
<td>0.1468</td>
<td>0.3265</td>
<td>0.3456</td>
<td>0.0136</td>
</tr>
<tr>
<td>56</td>
<td>4.5761</td>
<td>0.1266</td>
<td>0.3452</td>
<td>0.3380</td>
<td>0.0071</td>
</tr>
<tr>
<td>60</td>
<td>4.7592</td>
<td>0.1043</td>
<td>0.2448</td>
<td>0.3461</td>
<td>0.0026</td>
</tr>
<tr>
<td>64</td>
<td>4.9344</td>
<td>0.1148</td>
<td>0.2454</td>
<td>0.2656</td>
<td>0.0054</td>
</tr>
<tr>
<td>68</td>
<td>5.0235</td>
<td>0.1139</td>
<td>0.2724</td>
<td>0.2250</td>
<td>0.0122</td>
</tr>
<tr>
<td>72</td>
<td>5.0866</td>
<td>0.1018</td>
<td>0.2967</td>
<td>0.1809</td>
<td>0.0101</td>
</tr>
<tr>
<td>76</td>
<td>5.1816</td>
<td>0.0859</td>
<td>0.3311</td>
<td>0.1231</td>
<td>0.0071</td>
</tr>
<tr>
<td>80</td>
<td>5.2461</td>
<td>0.0657</td>
<td>0.3400</td>
<td>0.0835</td>
<td>0.0046</td>
</tr>
<tr>
<td>84</td>
<td>5.2542</td>
<td>0.0943</td>
<td>0.3444</td>
<td>0.1024</td>
<td>0.0094</td>
</tr>
<tr>
<td>88</td>
<td>5.2485</td>
<td>0.1339</td>
<td>0.3463</td>
<td>0.1413</td>
<td>0.0188</td>
</tr>
<tr>
<td>92</td>
<td>5.2397</td>
<td>0.0399</td>
<td>0.3396</td>
<td>0.0417</td>
<td>0.0017</td>
</tr>
<tr>
<td>96</td>
<td>5.2159</td>
<td>0.1483</td>
<td>0.3329</td>
<td>0.1559</td>
<td>0.0228</td>
</tr>
<tr>
<td>100</td>
<td>5.1651</td>
<td>0.1175</td>
<td>0.3584</td>
<td>0.1223</td>
<td>0.0142</td>
</tr>
<tr>
<td>104</td>
<td>5.0851</td>
<td>0.0913</td>
<td>0.3520</td>
<td>0.0956</td>
<td>0.0087</td>
</tr>
<tr>
<td>108</td>
<td>4.9681</td>
<td>0.0902</td>
<td>0.3509</td>
<td>0.0939</td>
<td>0.0083</td>
</tr>
<tr>
<td>112</td>
<td>4.8316</td>
<td>0.1136</td>
<td>0.3394</td>
<td>0.1185</td>
<td>0.0134</td>
</tr>
<tr>
<td>116</td>
<td>4.7105</td>
<td>0.0858</td>
<td>0.3297</td>
<td>0.0943</td>
<td>0.0080</td>
</tr>
<tr>
<td>120</td>
<td>4.5350</td>
<td>0.0930</td>
<td>0.3312</td>
<td>0.0984</td>
<td>0.0089</td>
</tr>
<tr>
<td>124</td>
<td>4.4106</td>
<td>0.0874</td>
<td>0.2623</td>
<td>0.0816</td>
<td>0.0080</td>
</tr>
<tr>
<td>128</td>
<td>4.1578</td>
<td>0.0475</td>
<td>0.3016</td>
<td>0.0489</td>
<td>0.0023</td>
</tr>
<tr>
<td>132</td>
<td>3.9079</td>
<td>0.0909</td>
<td>0.2683</td>
<td>0.0931</td>
<td>0.0082</td>
</tr>
<tr>
<td>136</td>
<td>3.6807</td>
<td>0.0714</td>
<td>0.2474</td>
<td>0.0716</td>
<td>0.0050</td>
</tr>
<tr>
<td>140</td>
<td>3.3966</td>
<td>0.0563</td>
<td>0.2417</td>
<td>0.0587</td>
<td>0.0033</td>
</tr>
<tr>
<td>144</td>
<td>3.1047</td>
<td>0.0627</td>
<td>0.2283</td>
<td>0.0648</td>
<td>0.0039</td>
</tr>
<tr>
<td>152</td>
<td>2.7924</td>
<td>0.0412</td>
<td>0.2179</td>
<td>0.0431</td>
<td>0.0017</td>
</tr>
<tr>
<td>θ</td>
<td>u</td>
<td>u'</td>
<td>v</td>
<td>v'</td>
<td>-u'v'</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>deg</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>156</td>
<td>2.4764</td>
<td>0.0353</td>
<td>0.1981</td>
<td>0.0367</td>
<td>0.0012</td>
</tr>
<tr>
<td>160</td>
<td>2.1530</td>
<td>0.0246</td>
<td>0.1623</td>
<td>0.0237</td>
<td>0.0005</td>
</tr>
<tr>
<td>164</td>
<td>1.7885</td>
<td>0.0499</td>
<td>0.1531</td>
<td>0.0527</td>
<td>0.0026</td>
</tr>
<tr>
<td>168</td>
<td>1.4209</td>
<td>0.0369</td>
<td>0.1188</td>
<td>0.0380</td>
<td>0.0013</td>
</tr>
<tr>
<td>172</td>
<td>1.0622</td>
<td>0.0436</td>
<td>0.1024</td>
<td>0.0457</td>
<td>0.0020</td>
</tr>
<tr>
<td>176</td>
<td>0.6963</td>
<td>0.0184</td>
<td>0.0705</td>
<td>0.0186</td>
<td>0.0003</td>
</tr>
<tr>
<td>180</td>
<td>0.3390</td>
<td>0.0177</td>
<td>0.0333</td>
<td>0.0181</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

SPRE

r/R = 0.200

<table>
<thead>
<tr>
<th>θ</th>
<th>u</th>
<th>u'</th>
<th>v</th>
<th>v'</th>
<th>-u'v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.2680</td>
<td>0.0819</td>
<td>0.0239</td>
<td>0.0517</td>
<td>0.0013</td>
</tr>
<tr>
<td>8</td>
<td>0.5104</td>
<td>0.1170</td>
<td>0.0326</td>
<td>0.0698</td>
<td>0.0029</td>
</tr>
<tr>
<td>12</td>
<td>0.8276</td>
<td>0.1070</td>
<td>0.0584</td>
<td>0.0719</td>
<td>0.0012</td>
</tr>
<tr>
<td>14</td>
<td>1.0172</td>
<td>0.1009</td>
<td>0.0570</td>
<td>0.0707</td>
<td>-0.0001</td>
</tr>
<tr>
<td>16</td>
<td>1.2379</td>
<td>0.1052</td>
<td>0.0929</td>
<td>0.1064</td>
<td>0.0042</td>
</tr>
<tr>
<td>18</td>
<td>1.4832</td>
<td>0.1082</td>
<td>0.1036</td>
<td>0.0944</td>
<td>0.0017</td>
</tr>
<tr>
<td>20</td>
<td>1.6854</td>
<td>0.1141</td>
<td>0.1082</td>
<td>0.0875</td>
<td>0.0008</td>
</tr>
<tr>
<td>22</td>
<td>1.9022</td>
<td>0.1199</td>
<td>0.1217</td>
<td>0.1123</td>
<td>0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.1114</td>
<td>0.1404</td>
<td>0.1246</td>
<td>0.1522</td>
<td>0.0000</td>
</tr>
<tr>
<td>26</td>
<td>2.2640</td>
<td>0.1750</td>
<td>0.1690</td>
<td>0.1858</td>
<td>0.0054</td>
</tr>
<tr>
<td>28</td>
<td>2.4391</td>
<td>0.1743</td>
<td>0.1794</td>
<td>0.2013</td>
<td>0.0081</td>
</tr>
<tr>
<td>30</td>
<td>2.5989</td>
<td>0.1865</td>
<td>0.2095</td>
<td>0.2315</td>
<td>0.0128</td>
</tr>
<tr>
<td>32</td>
<td>2.7805</td>
<td>0.1969</td>
<td>0.2058</td>
<td>0.2629</td>
<td>0.0104</td>
</tr>
<tr>
<td>36</td>
<td>3.2043</td>
<td>0.1662</td>
<td>0.2020</td>
<td>0.2893</td>
<td>0.0150</td>
</tr>
<tr>
<td>40</td>
<td>3.4770</td>
<td>0.1621</td>
<td>0.2499</td>
<td>0.3464</td>
<td>0.0038</td>
</tr>
<tr>
<td>44</td>
<td>3.7060</td>
<td>0.1558</td>
<td>0.2290</td>
<td>0.3558</td>
<td>0.0104</td>
</tr>
<tr>
<td>48</td>
<td>3.9969</td>
<td>0.1696</td>
<td>0.2845</td>
<td>0.3588</td>
<td>0.0108</td>
</tr>
<tr>
<td>52</td>
<td>4.2757</td>
<td>0.1491</td>
<td>0.3202</td>
<td>0.3576</td>
<td>0.0084</td>
</tr>
<tr>
<td>56</td>
<td>4.4136</td>
<td>0.1386</td>
<td>0.2454</td>
<td>0.3219</td>
<td>0.0023</td>
</tr>
<tr>
<td>60</td>
<td>4.5846</td>
<td>0.1172</td>
<td>0.2317</td>
<td>0.3103</td>
<td>0.0078</td>
</tr>
<tr>
<td>64</td>
<td>4.7613</td>
<td>0.1329</td>
<td>0.2139</td>
<td>0.3182</td>
<td>0.0164</td>
</tr>
<tr>
<td>68</td>
<td>4.9276</td>
<td>0.1133</td>
<td>0.2564</td>
<td>0.2924</td>
<td>0.0095</td>
</tr>
<tr>
<td>72</td>
<td>5.0105</td>
<td>0.1192</td>
<td>0.2538</td>
<td>0.2613</td>
<td>0.0142</td>
</tr>
<tr>
<td>76</td>
<td>5.0777</td>
<td>0.0543</td>
<td>0.2921</td>
<td>0.1591</td>
<td>0.0009</td>
</tr>
<tr>
<td>80</td>
<td>5.1797</td>
<td>0.1556</td>
<td>0.3236</td>
<td>0.1873</td>
<td>0.0259</td>
</tr>
<tr>
<td>84</td>
<td>5.2435</td>
<td>0.0804</td>
<td>0.3327</td>
<td>0.0973</td>
<td>0.0083</td>
</tr>
<tr>
<td>88</td>
<td>5.2331</td>
<td>0.1066</td>
<td>0.3237</td>
<td>0.1112</td>
<td>0.0114</td>
</tr>
<tr>
<td>92</td>
<td>5.2386</td>
<td>0.1216</td>
<td>0.3433</td>
<td>0.1263</td>
<td>0.0152</td>
</tr>
<tr>
<td>96</td>
<td>5.2107</td>
<td>0.1115</td>
<td>0.3168</td>
<td>0.1151</td>
<td>0.0127</td>
</tr>
<tr>
<td>100</td>
<td>5.2147</td>
<td>0.0769</td>
<td>0.3287</td>
<td>0.0802</td>
<td>0.0060</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(\tilde{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\tilde{v}) (m/sec)</td>
<td>(v') (m/sec)</td>
<td>(-\overline{u'v'}) (m²/sec²)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>104</td>
<td>5.1763</td>
<td>0.1182</td>
<td>0.3744</td>
<td>0.1231</td>
<td>0.0143</td>
</tr>
<tr>
<td>108</td>
<td>5.0511</td>
<td>0.0952</td>
<td>0.3239</td>
<td>0.0984</td>
<td>0.0093</td>
</tr>
<tr>
<td>112</td>
<td>4.9579</td>
<td>0.0600</td>
<td>0.3419</td>
<td>0.0590</td>
<td>0.0032</td>
</tr>
<tr>
<td>116</td>
<td>4.8284</td>
<td>0.0595</td>
<td>0.3376</td>
<td>0.0626</td>
<td>0.0036</td>
</tr>
<tr>
<td>120</td>
<td>4.7044</td>
<td>0.0704</td>
<td>0.3185</td>
<td>0.0735</td>
<td>0.0049</td>
</tr>
<tr>
<td>124</td>
<td>4.5092</td>
<td>0.0844</td>
<td>0.2968</td>
<td>0.0842</td>
<td>0.0067</td>
</tr>
<tr>
<td>128</td>
<td>4.3919</td>
<td>0.0810</td>
<td>0.2494</td>
<td>0.0833</td>
<td>0.0067</td>
</tr>
<tr>
<td>132</td>
<td>4.1503</td>
<td>0.0681</td>
<td>0.2926</td>
<td>0.0687</td>
<td>0.0045</td>
</tr>
<tr>
<td>136</td>
<td>3.9165</td>
<td>0.0709</td>
<td>0.2659</td>
<td>0.0759</td>
<td>0.0051</td>
</tr>
<tr>
<td>140</td>
<td>3.6631</td>
<td>0.0726</td>
<td>0.2254</td>
<td>0.0765</td>
<td>0.0055</td>
</tr>
<tr>
<td>144</td>
<td>3.3889</td>
<td>0.0626</td>
<td>0.2377</td>
<td>0.0660</td>
<td>0.0041</td>
</tr>
<tr>
<td>148</td>
<td>3.0958</td>
<td>0.0723</td>
<td>0.2069</td>
<td>0.0742</td>
<td>0.0052</td>
</tr>
<tr>
<td>152</td>
<td>2.7793</td>
<td>0.0708</td>
<td>0.1977</td>
<td>0.0733</td>
<td>0.0051</td>
</tr>
<tr>
<td>156</td>
<td>2.4644</td>
<td>0.0728</td>
<td>0.1863</td>
<td>0.0755</td>
<td>0.0054</td>
</tr>
<tr>
<td>160</td>
<td>2.1457</td>
<td>0.0629</td>
<td>0.1568</td>
<td>0.0655</td>
<td>0.0041</td>
</tr>
<tr>
<td>164</td>
<td>1.7800</td>
<td>0.0312</td>
<td>0.1478</td>
<td>0.0314</td>
<td>0.0009</td>
</tr>
<tr>
<td>168</td>
<td>1.4234</td>
<td>0.0272</td>
<td>0.1225</td>
<td>0.0276</td>
<td>0.0007</td>
</tr>
<tr>
<td>172</td>
<td>1.0645</td>
<td>0.0486</td>
<td>0.1069</td>
<td>0.0514</td>
<td>0.0025</td>
</tr>
<tr>
<td>176</td>
<td>0.6995</td>
<td>0.0348</td>
<td>0.0737</td>
<td>0.0359</td>
<td>0.0012</td>
</tr>
<tr>
<td>180</td>
<td>0.3433</td>
<td>0.0193</td>
<td>0.0338</td>
<td>0.0194</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

SPRE

\(s/d = 0.33 \)

\(r/R = 0.000 \)

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>(\tilde{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\tilde{v}) (m/sec)</th>
<th>(v') (m/sec)</th>
<th>(-\overline{u'v'}) (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.2841</td>
<td>0.0974</td>
<td>0.0335</td>
<td>0.0692</td>
<td>0.0043</td>
</tr>
<tr>
<td>8</td>
<td>0.5308</td>
<td>0.1203</td>
<td>0.0391</td>
<td>0.0798</td>
<td>0.0043</td>
</tr>
<tr>
<td>12</td>
<td>0.8414</td>
<td>0.1055</td>
<td>0.0658</td>
<td>0.0767</td>
<td>0.0037</td>
</tr>
<tr>
<td>14</td>
<td>1.0189</td>
<td>0.1084</td>
<td>0.0852</td>
<td>0.0864</td>
<td>0.0035</td>
</tr>
<tr>
<td>16</td>
<td>1.2365</td>
<td>0.0996</td>
<td>0.0919</td>
<td>0.0806</td>
<td>0.0040</td>
</tr>
<tr>
<td>18</td>
<td>1.4489</td>
<td>0.1105</td>
<td>0.1012</td>
<td>0.0770</td>
<td>0.0035</td>
</tr>
<tr>
<td>20</td>
<td>1.6766</td>
<td>0.1064</td>
<td>0.1022</td>
<td>0.0862</td>
<td>0.0035</td>
</tr>
<tr>
<td>22</td>
<td>1.8678</td>
<td>0.1090</td>
<td>0.1053</td>
<td>0.1025</td>
<td>0.0031</td>
</tr>
<tr>
<td>24</td>
<td>2.0961</td>
<td>0.1304</td>
<td>0.1251</td>
<td>0.1381</td>
<td>0.0004</td>
</tr>
<tr>
<td>26</td>
<td>2.2359</td>
<td>0.1449</td>
<td>0.1226</td>
<td>0.1762</td>
<td>0.0036</td>
</tr>
<tr>
<td>28</td>
<td>2.4317</td>
<td>0.1690</td>
<td>0.1519</td>
<td>0.1902</td>
<td>-0.0002</td>
</tr>
<tr>
<td>30</td>
<td>2.6295</td>
<td>0.1640</td>
<td>0.1938</td>
<td>0.2010</td>
<td>0.0009</td>
</tr>
<tr>
<td>32</td>
<td>2.7983</td>
<td>0.1758</td>
<td>0.2081</td>
<td>0.2459</td>
<td>0.0020</td>
</tr>
<tr>
<td>36</td>
<td>3.1809</td>
<td>0.1436</td>
<td>0.1836</td>
<td>0.2684</td>
<td>0.0023</td>
</tr>
<tr>
<td>40</td>
<td>3.4778</td>
<td>0.1585</td>
<td>0.1434</td>
<td>0.2874</td>
<td>0.0091</td>
</tr>
<tr>
<td>44</td>
<td>3.6992</td>
<td>0.1635</td>
<td>0.1214</td>
<td>0.3242</td>
<td>0.0065</td>
</tr>
</tbody>
</table>

57
<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>v (m/sec)</th>
<th>v' (m/sec)</th>
<th>-uν' (m^2/sec^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>3.9608</td>
<td>0.1503</td>
<td>0.2113</td>
<td>0.3488</td>
<td>-0.0012</td>
</tr>
<tr>
<td>52</td>
<td>4.2308</td>
<td>0.1265</td>
<td>0.2278</td>
<td>0.3350</td>
<td>0.0053</td>
</tr>
<tr>
<td>56</td>
<td>4.3925</td>
<td>0.1165</td>
<td>0.2230</td>
<td>0.3806</td>
<td>0.0051</td>
</tr>
<tr>
<td>60</td>
<td>4.5378</td>
<td>0.1372</td>
<td>0.2474</td>
<td>0.3732</td>
<td>0.0034</td>
</tr>
<tr>
<td>64</td>
<td>4.7321</td>
<td>0.1326</td>
<td>0.2243</td>
<td>0.3531</td>
<td>0.0166</td>
</tr>
<tr>
<td>68</td>
<td>4.9011</td>
<td>0.1260</td>
<td>0.2555</td>
<td>0.3105</td>
<td>0.0116</td>
</tr>
<tr>
<td>72</td>
<td>4.9761</td>
<td>0.1098</td>
<td>0.2505</td>
<td>0.2421</td>
<td>0.0055</td>
</tr>
<tr>
<td>76</td>
<td>5.0468</td>
<td>0.1116</td>
<td>0.2889</td>
<td>0.1859</td>
<td>0.0117</td>
</tr>
<tr>
<td>80</td>
<td>5.1526</td>
<td>0.1415</td>
<td>0.3305</td>
<td>0.1724</td>
<td>0.0214</td>
</tr>
<tr>
<td>84</td>
<td>5.2159</td>
<td>0.1005</td>
<td>0.3361</td>
<td>0.1144</td>
<td>0.0101</td>
</tr>
<tr>
<td>88</td>
<td>5.2065</td>
<td>0.0476</td>
<td>0.3263</td>
<td>0.0514</td>
<td>0.0021</td>
</tr>
<tr>
<td>92</td>
<td>5.2049</td>
<td>0.0795</td>
<td>0.3326</td>
<td>0.0850</td>
<td>0.0067</td>
</tr>
<tr>
<td>96</td>
<td>5.2008</td>
<td>0.1117</td>
<td>0.3295</td>
<td>0.1168</td>
<td>0.0130</td>
</tr>
<tr>
<td>100</td>
<td>5.1804</td>
<td>0.0834</td>
<td>0.3267</td>
<td>0.0855</td>
<td>0.0068</td>
</tr>
<tr>
<td>104</td>
<td>5.1319</td>
<td>0.1195</td>
<td>0.3558</td>
<td>0.1260</td>
<td>0.0148</td>
</tr>
<tr>
<td>108</td>
<td>5.0413</td>
<td>0.0761</td>
<td>0.3348</td>
<td>0.0796</td>
<td>0.0060</td>
</tr>
<tr>
<td>112</td>
<td>4.9076</td>
<td>0.0972</td>
<td>0.3144</td>
<td>0.1007</td>
<td>0.0096</td>
</tr>
<tr>
<td>116</td>
<td>4.8138</td>
<td>0.1060</td>
<td>0.3414</td>
<td>0.1127</td>
<td>0.0118</td>
</tr>
<tr>
<td>120</td>
<td>4.6694</td>
<td>0.0995</td>
<td>0.3037</td>
<td>0.1066</td>
<td>0.0104</td>
</tr>
<tr>
<td>124</td>
<td>4.4744</td>
<td>0.0939</td>
<td>0.2822</td>
<td>0.0980</td>
<td>0.0088</td>
</tr>
<tr>
<td>128</td>
<td>4.3596</td>
<td>0.0675</td>
<td>0.2348</td>
<td>0.0709</td>
<td>0.0048</td>
</tr>
<tr>
<td>132</td>
<td>4.1212</td>
<td>0.0949</td>
<td>0.2770</td>
<td>0.0985</td>
<td>0.0092</td>
</tr>
<tr>
<td>136</td>
<td>3.8993</td>
<td>0.0697</td>
<td>0.2623</td>
<td>0.0688</td>
<td>0.0046</td>
</tr>
<tr>
<td>140</td>
<td>3.6543</td>
<td>0.0839</td>
<td>0.2326</td>
<td>0.0876</td>
<td>0.0073</td>
</tr>
<tr>
<td>144</td>
<td>3.3636</td>
<td>0.0593</td>
<td>0.2246</td>
<td>0.0612</td>
<td>0.0036</td>
</tr>
<tr>
<td>148</td>
<td>3.0873</td>
<td>0.0500</td>
<td>0.2112</td>
<td>0.0551</td>
<td>0.0025</td>
</tr>
<tr>
<td>152</td>
<td>2.7623</td>
<td>0.0634</td>
<td>0.1914</td>
<td>0.0654</td>
<td>0.0040</td>
</tr>
<tr>
<td>156</td>
<td>2.4553</td>
<td>0.0926</td>
<td>0.1848</td>
<td>0.0982</td>
<td>0.0090</td>
</tr>
<tr>
<td>160</td>
<td>2.1314</td>
<td>0.0268</td>
<td>0.1512</td>
<td>0.0274</td>
<td>0.0007</td>
</tr>
<tr>
<td>164</td>
<td>1.7689</td>
<td>0.0514</td>
<td>0.1400</td>
<td>0.0526</td>
<td>0.0026</td>
</tr>
<tr>
<td>168</td>
<td>1.4200</td>
<td>0.0473</td>
<td>0.1219</td>
<td>0.0491</td>
<td>0.0023</td>
</tr>
<tr>
<td>172</td>
<td>1.0522</td>
<td>0.0233</td>
<td>0.0976</td>
<td>0.0231</td>
<td>0.0005</td>
</tr>
<tr>
<td>176</td>
<td>0.6964</td>
<td>0.0342</td>
<td>0.0703</td>
<td>0.0358</td>
<td>0.0012</td>
</tr>
<tr>
<td>180</td>
<td>0.3429</td>
<td>0.0196</td>
<td>0.0348</td>
<td>0.0198</td>
<td>0.0004</td>
</tr>
</tbody>
</table>
Figure 14: Streamwise velocity fluctuation at s/d = 0.33 (smoothed)
Figure 15: Radial velocity fluctuation at s/d = 0.33 (smoothed)
Figure 16: Reynolds shear stress at $s/d = 0.33$
(not smoothed)
CROSS-WIRE DATA

SPRE
\(s/d = 16 \)

\(r/R = 0.800 \)

<table>
<thead>
<tr>
<th>(\theta) (deg)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{v}) (m/sec)</th>
<th>(v') (m/sec)</th>
<th>(-\overline{u'v'}) (m(^2)/sec(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>0.4461</td>
<td>0.1531</td>
<td>-0.0060</td>
<td>0.0566</td>
<td>0.0010</td>
</tr>
<tr>
<td>6.2</td>
<td>0.6037</td>
<td>0.1336</td>
<td>0.0199</td>
<td>0.0735</td>
<td>-0.0004</td>
</tr>
<tr>
<td>12</td>
<td>1.1030</td>
<td>0.1234</td>
<td>0.0571</td>
<td>0.0703</td>
<td>0.0006</td>
</tr>
<tr>
<td>16</td>
<td>1.5007</td>
<td>0.1087</td>
<td>0.0841</td>
<td>0.0581</td>
<td>0.0010</td>
</tr>
<tr>
<td>20</td>
<td>1.9468</td>
<td>0.1019</td>
<td>0.1167</td>
<td>0.0631</td>
<td>0.0024</td>
</tr>
<tr>
<td>24</td>
<td>2.2698</td>
<td>0.0968</td>
<td>0.1360</td>
<td>0.0679</td>
<td>0.0035</td>
</tr>
<tr>
<td>28</td>
<td>2.5781</td>
<td>0.0911</td>
<td>0.1770</td>
<td>0.0623</td>
<td>0.0028</td>
</tr>
<tr>
<td>32</td>
<td>2.9333</td>
<td>0.1199</td>
<td>0.1995</td>
<td>0.0922</td>
<td>0.0067</td>
</tr>
<tr>
<td>36</td>
<td>3.3227</td>
<td>0.1164</td>
<td>0.2305</td>
<td>0.0816</td>
<td>0.0064</td>
</tr>
<tr>
<td>40</td>
<td>3.5714</td>
<td>0.1280</td>
<td>0.2396</td>
<td>0.1034</td>
<td>0.0089</td>
</tr>
<tr>
<td>44</td>
<td>3.8202</td>
<td>0.1411</td>
<td>0.2781</td>
<td>0.0829</td>
<td>0.0074</td>
</tr>
<tr>
<td>48</td>
<td>4.1732</td>
<td>0.1635</td>
<td>0.2782</td>
<td>0.1156</td>
<td>0.0067</td>
</tr>
<tr>
<td>52</td>
<td>4.4142</td>
<td>0.1395</td>
<td>0.3173</td>
<td>0.0534</td>
<td>0.0034</td>
</tr>
<tr>
<td>54</td>
<td>4.5013</td>
<td>0.1671</td>
<td>0.3336</td>
<td>0.0944</td>
<td>0.0096</td>
</tr>
<tr>
<td>56</td>
<td>4.5817</td>
<td>0.1898</td>
<td>0.3419</td>
<td>0.1083</td>
<td>0.0139</td>
</tr>
<tr>
<td>58</td>
<td>4.6959</td>
<td>0.2362</td>
<td>0.3528</td>
<td>0.1052</td>
<td>0.0124</td>
</tr>
<tr>
<td>60</td>
<td>4.7340</td>
<td>0.3192</td>
<td>0.3514</td>
<td>0.1118</td>
<td>0.0153</td>
</tr>
<tr>
<td>62</td>
<td>4.8223</td>
<td>0.3949</td>
<td>0.3431</td>
<td>0.1590</td>
<td>0.0369</td>
</tr>
<tr>
<td>64</td>
<td>4.9052</td>
<td>0.4097</td>
<td>0.3611</td>
<td>0.1708</td>
<td>0.0382</td>
</tr>
<tr>
<td>66</td>
<td>4.9671</td>
<td>0.4536</td>
<td>0.3851</td>
<td>0.2046</td>
<td>0.0291</td>
</tr>
<tr>
<td>68</td>
<td>5.0516</td>
<td>0.5151</td>
<td>0.3246</td>
<td>0.2530</td>
<td>0.0567</td>
</tr>
<tr>
<td>70</td>
<td>5.1392</td>
<td>0.5232</td>
<td>0.3634</td>
<td>0.2312</td>
<td>0.0421</td>
</tr>
<tr>
<td>72</td>
<td>5.1344</td>
<td>0.5465</td>
<td>0.3595</td>
<td>0.2293</td>
<td>0.0599</td>
</tr>
<tr>
<td>76</td>
<td>5.2278</td>
<td>0.5225</td>
<td>0.3398</td>
<td>0.2256</td>
<td>0.0460</td>
</tr>
<tr>
<td>80</td>
<td>5.3009</td>
<td>0.5411</td>
<td>0.3370</td>
<td>0.2999</td>
<td>0.0743</td>
</tr>
<tr>
<td>84</td>
<td>5.2597</td>
<td>0.5891</td>
<td>0.3349</td>
<td>0.2936</td>
<td>0.0638</td>
</tr>
<tr>
<td>88</td>
<td>5.2434</td>
<td>0.5874</td>
<td>0.3493</td>
<td>0.2908</td>
<td>0.0559</td>
</tr>
<tr>
<td>92</td>
<td>5.2642</td>
<td>0.6306</td>
<td>0.4193</td>
<td>0.3119</td>
<td>0.1043</td>
</tr>
<tr>
<td>96</td>
<td>5.2715</td>
<td>0.5666</td>
<td>0.3542</td>
<td>0.2667</td>
<td>0.0471</td>
</tr>
<tr>
<td>100</td>
<td>5.2955</td>
<td>0.5886</td>
<td>0.3632</td>
<td>0.2820</td>
<td>0.0786</td>
</tr>
<tr>
<td>104</td>
<td>5.3362</td>
<td>0.4626</td>
<td>0.3934</td>
<td>0.1723</td>
<td>0.0142</td>
</tr>
<tr>
<td>108</td>
<td>5.2548</td>
<td>0.4841</td>
<td>0.4154</td>
<td>0.1125</td>
<td>0.0118</td>
</tr>
<tr>
<td>112</td>
<td>5.1616</td>
<td>0.3411</td>
<td>0.4266</td>
<td>0.1247</td>
<td>0.0085</td>
</tr>
<tr>
<td>116</td>
<td>4.9727</td>
<td>0.2973</td>
<td>0.4407</td>
<td>0.0902</td>
<td>0.0128</td>
</tr>
<tr>
<td>120</td>
<td>4.7500</td>
<td>0.2439</td>
<td>0.4476</td>
<td>0.1140</td>
<td>0.0203</td>
</tr>
<tr>
<td>124</td>
<td>4.5686</td>
<td>0.1599</td>
<td>0.4494</td>
<td>0.1320</td>
<td>0.0166</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec2)</td>
<td>v' (m/sec)</td>
<td>$-\bar{u}\bar{v}'$ (m2/sec2)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>128</td>
<td>4.3586</td>
<td>0.1254</td>
<td>0.4086</td>
<td>0.0663</td>
<td>-0.0009</td>
</tr>
<tr>
<td>132</td>
<td>4.1215</td>
<td>0.1243</td>
<td>0.4347</td>
<td>0.1115</td>
<td>0.0107</td>
</tr>
<tr>
<td>136</td>
<td>3.9179</td>
<td>0.1056</td>
<td>0.4380</td>
<td>0.0820</td>
<td>0.0079</td>
</tr>
<tr>
<td>140</td>
<td>3.6605</td>
<td>0.1034</td>
<td>0.4228</td>
<td>0.0851</td>
<td>0.0088</td>
</tr>
<tr>
<td>144</td>
<td>3.3768</td>
<td>0.0920</td>
<td>0.3932</td>
<td>0.0922</td>
<td>0.0074</td>
</tr>
<tr>
<td>148</td>
<td>3.0425</td>
<td>0.0626</td>
<td>0.3779</td>
<td>0.0568</td>
<td>0.0028</td>
</tr>
<tr>
<td>152</td>
<td>2.7014</td>
<td>0.0435</td>
<td>0.3563</td>
<td>0.0389</td>
<td>0.0013</td>
</tr>
<tr>
<td>156</td>
<td>2.3705</td>
<td>0.0386</td>
<td>0.3277</td>
<td>0.0338</td>
<td>0.0010</td>
</tr>
<tr>
<td>160</td>
<td>2.0101</td>
<td>0.0624</td>
<td>0.3065</td>
<td>0.0644</td>
<td>0.0038</td>
</tr>
<tr>
<td>164</td>
<td>1.6036</td>
<td>0.0573</td>
<td>0.2730</td>
<td>0.0576</td>
<td>0.0031</td>
</tr>
<tr>
<td>168</td>
<td>1.2065</td>
<td>0.0452</td>
<td>0.2402</td>
<td>0.0423</td>
<td>0.0017</td>
</tr>
<tr>
<td>172</td>
<td>0.8648</td>
<td>0.0336</td>
<td>0.2008</td>
<td>0.0310</td>
<td>0.0008</td>
</tr>
<tr>
<td>176</td>
<td>0.5390</td>
<td>0.0362</td>
<td>0.1612</td>
<td>0.0345</td>
<td>0.0011</td>
</tr>
<tr>
<td>180</td>
<td>0.3578</td>
<td>0.0289</td>
<td>0.0410</td>
<td>0.0276</td>
<td>0.0007</td>
</tr>
</tbody>
</table>
SPRE

s/d = 16

$$r/R = 0.733$$

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\ddot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\ddot{u}\ddot{v}'$ (m2/sec2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3959</td>
<td>0.1283</td>
<td>-0.0041</td>
<td>0.0563</td>
<td>-0.0025</td>
</tr>
<tr>
<td>8</td>
<td>0.7566</td>
<td>0.1304</td>
<td>0.0217</td>
<td>0.0717</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>1.0760</td>
<td>0.1157</td>
<td>0.0432</td>
<td>0.0656</td>
<td>-0.0006</td>
</tr>
<tr>
<td>16</td>
<td>1.4949</td>
<td>0.1023</td>
<td>0.0901</td>
<td>0.0658</td>
<td>0.0004</td>
</tr>
<tr>
<td>20</td>
<td>1.9415</td>
<td>0.1146</td>
<td>0.1185</td>
<td>0.0858</td>
<td>0.0044</td>
</tr>
<tr>
<td>24</td>
<td>2.2792</td>
<td>0.1143</td>
<td>0.1475</td>
<td>0.0798</td>
<td>0.0033</td>
</tr>
<tr>
<td>28</td>
<td>2.6022</td>
<td>0.1089</td>
<td>0.1761</td>
<td>0.0870</td>
<td>0.0054</td>
</tr>
<tr>
<td>32</td>
<td>2.9995</td>
<td>0.0850</td>
<td>0.1976</td>
<td>0.0555</td>
<td>0.0019</td>
</tr>
<tr>
<td>36</td>
<td>3.3719</td>
<td>0.1112</td>
<td>0.2143</td>
<td>0.0923</td>
<td>0.0071</td>
</tr>
<tr>
<td>40</td>
<td>3.6741</td>
<td>0.1123</td>
<td>0.2460</td>
<td>0.0792</td>
<td>0.0049</td>
</tr>
<tr>
<td>44</td>
<td>3.9309</td>
<td>0.1057</td>
<td>0.2643</td>
<td>0.0763</td>
<td>0.0053</td>
</tr>
<tr>
<td>48</td>
<td>4.3261</td>
<td>0.1448</td>
<td>0.2489</td>
<td>0.1288</td>
<td>0.0139</td>
</tr>
<tr>
<td>52</td>
<td>4.5861</td>
<td>0.1121</td>
<td>0.3184</td>
<td>0.0866</td>
<td>0.0062</td>
</tr>
<tr>
<td>54</td>
<td>4.7064</td>
<td>0.1205</td>
<td>0.3323</td>
<td>0.0868</td>
<td>0.0066</td>
</tr>
<tr>
<td>56</td>
<td>4.8065</td>
<td>0.1855</td>
<td>0.3396</td>
<td>0.1369</td>
<td>0.0174</td>
</tr>
<tr>
<td>58</td>
<td>4.8828</td>
<td>0.1976</td>
<td>0.3443</td>
<td>0.1036</td>
<td>0.0110</td>
</tr>
<tr>
<td>60</td>
<td>4.9888</td>
<td>0.2962</td>
<td>0.3348</td>
<td>0.1631</td>
<td>0.0271</td>
</tr>
<tr>
<td>62</td>
<td>5.1037</td>
<td>0.3097</td>
<td>0.3751</td>
<td>0.1806</td>
<td>0.0317</td>
</tr>
<tr>
<td>64</td>
<td>5.1977</td>
<td>0.3501</td>
<td>0.3478</td>
<td>0.1888</td>
<td>0.0342</td>
</tr>
<tr>
<td>66</td>
<td>5.2748</td>
<td>0.3678</td>
<td>0.3749</td>
<td>0.2066</td>
<td>0.0231</td>
</tr>
<tr>
<td>68</td>
<td>5.2406</td>
<td>0.4041</td>
<td>0.3542</td>
<td>0.2247</td>
<td>0.0342</td>
</tr>
<tr>
<td>70</td>
<td>5.2651</td>
<td>0.4778</td>
<td>0.3629</td>
<td>0.2332</td>
<td>0.0577</td>
</tr>
<tr>
<td>72</td>
<td>5.2088</td>
<td>0.5003</td>
<td>0.3387</td>
<td>0.2055</td>
<td>0.0491</td>
</tr>
<tr>
<td>76</td>
<td>5.2243</td>
<td>0.5191</td>
<td>0.3378</td>
<td>0.2562</td>
<td>0.0584</td>
</tr>
<tr>
<td>80</td>
<td>5.4144</td>
<td>0.4708</td>
<td>0.3556</td>
<td>0.2745</td>
<td>0.0557</td>
</tr>
<tr>
<td>84</td>
<td>5.4859</td>
<td>0.4908</td>
<td>0.3739</td>
<td>0.2352</td>
<td>0.0378</td>
</tr>
<tr>
<td>88</td>
<td>5.4460</td>
<td>0.4994</td>
<td>0.3514</td>
<td>0.2629</td>
<td>0.0423</td>
</tr>
<tr>
<td>92</td>
<td>5.4537</td>
<td>0.5293</td>
<td>0.3849</td>
<td>0.2439</td>
<td>0.0360</td>
</tr>
<tr>
<td>96</td>
<td>5.5560</td>
<td>0.5096</td>
<td>0.4061</td>
<td>0.2545</td>
<td>0.0523</td>
</tr>
<tr>
<td>100</td>
<td>5.5789</td>
<td>0.4863</td>
<td>0.3848</td>
<td>0.2151</td>
<td>0.0390</td>
</tr>
<tr>
<td>104</td>
<td>5.6071</td>
<td>0.4080</td>
<td>0.3945</td>
<td>0.1376</td>
<td>0.0076</td>
</tr>
<tr>
<td>108</td>
<td>5.6085</td>
<td>0.2896</td>
<td>0.4071</td>
<td>0.1152</td>
<td>0.0005</td>
</tr>
<tr>
<td>112</td>
<td>5.5781</td>
<td>0.2202</td>
<td>0.3944</td>
<td>0.0800</td>
<td>0.0035</td>
</tr>
<tr>
<td>116</td>
<td>5.4739</td>
<td>0.1394</td>
<td>0.4249</td>
<td>0.0739</td>
<td>0.0007</td>
</tr>
<tr>
<td>120</td>
<td>5.3386</td>
<td>0.1402</td>
<td>0.4785</td>
<td>0.0953</td>
<td>0.0085</td>
</tr>
<tr>
<td>124</td>
<td>5.0791</td>
<td>0.1073</td>
<td>0.4222</td>
<td>0.0889</td>
<td>0.0071</td>
</tr>
<tr>
<td>128</td>
<td>4.8739</td>
<td>0.1324</td>
<td>0.4280</td>
<td>0.1256</td>
<td>0.0150</td>
</tr>
<tr>
<td>132</td>
<td>4.6500</td>
<td>0.0723</td>
<td>0.4170</td>
<td>0.0742</td>
<td>0.0047</td>
</tr>
<tr>
<td>136</td>
<td>4.4494</td>
<td>0.1110</td>
<td>0.3380</td>
<td>0.1129</td>
<td>0.0123</td>
</tr>
<tr>
<td>140</td>
<td>4.1362</td>
<td>0.0692</td>
<td>0.3517</td>
<td>0.0863</td>
<td>0.0041</td>
</tr>
<tr>
<td>144</td>
<td>3.6373</td>
<td>0.1176</td>
<td>0.3399</td>
<td>0.1194</td>
<td>0.0134</td>
</tr>
<tr>
<td>148</td>
<td>3.4866</td>
<td>0.0781</td>
<td>0.3376</td>
<td>0.0766</td>
<td>0.0056</td>
</tr>
<tr>
<td>θ</td>
<td>\ddot{u}</td>
<td>u'</td>
<td>\ddot{v}</td>
<td>v'</td>
<td>$-\ddot{u}\ddot{v}'$</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>152</td>
<td>3.1337</td>
<td>0.0601</td>
<td>0.3227</td>
<td>0.0606</td>
<td>0.0034</td>
</tr>
<tr>
<td>156</td>
<td>2.7725</td>
<td>0.0665</td>
<td>0.2946</td>
<td>0.0659</td>
<td>0.0041</td>
</tr>
<tr>
<td>160</td>
<td>2.4114</td>
<td>0.0701</td>
<td>0.2676</td>
<td>0.0720</td>
<td>0.0047</td>
</tr>
<tr>
<td>164</td>
<td>1.9758</td>
<td>0.0430</td>
<td>0.2533</td>
<td>0.0394</td>
<td>0.0015</td>
</tr>
<tr>
<td>168</td>
<td>1.5457</td>
<td>0.0289</td>
<td>0.2198</td>
<td>0.0305</td>
<td>0.0008</td>
</tr>
<tr>
<td>172</td>
<td>1.1652</td>
<td>0.0541</td>
<td>0.2110</td>
<td>0.0554</td>
<td>0.0029</td>
</tr>
<tr>
<td>176</td>
<td>0.7725</td>
<td>0.0366</td>
<td>0.1651</td>
<td>0.0361</td>
<td>0.0011</td>
</tr>
<tr>
<td>180</td>
<td>0.4245</td>
<td>0.0338</td>
<td>0.0346</td>
<td>0.0247</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

SPRE
$s/d = 16$

$r/R = 0.600$

<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{v}</th>
<th>v'</th>
<th>$-\ddot{u}\ddot{v}'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>4</td>
<td>0.3400</td>
<td>0.1171</td>
<td>-0.0036</td>
<td>0.0496</td>
<td>-0.0012</td>
</tr>
<tr>
<td>8</td>
<td>0.6646</td>
<td>0.1249</td>
<td>0.0194</td>
<td>0.0594</td>
<td>-0.0017</td>
</tr>
<tr>
<td>12</td>
<td>1.0010</td>
<td>0.1302</td>
<td>0.0536</td>
<td>0.0869</td>
<td>0.0004</td>
</tr>
<tr>
<td>16</td>
<td>1.4487</td>
<td>0.1179</td>
<td>0.0915</td>
<td>0.0746</td>
<td>-0.0002</td>
</tr>
<tr>
<td>20</td>
<td>1.8810</td>
<td>0.1041</td>
<td>0.1147</td>
<td>0.0826</td>
<td>-0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.2134</td>
<td>0.1046</td>
<td>0.1348</td>
<td>0.0792</td>
<td>0.0009</td>
</tr>
<tr>
<td>28</td>
<td>2.5658</td>
<td>0.0970</td>
<td>0.1677</td>
<td>0.0542</td>
<td>-0.0005</td>
</tr>
<tr>
<td>32</td>
<td>2.9756</td>
<td>0.0890</td>
<td>0.2065</td>
<td>0.0608</td>
<td>-0.0004</td>
</tr>
<tr>
<td>36</td>
<td>3.3651</td>
<td>0.1069</td>
<td>0.2126</td>
<td>0.0833</td>
<td>0.0033</td>
</tr>
<tr>
<td>40</td>
<td>3.6937</td>
<td>0.1330</td>
<td>0.2560</td>
<td>0.1111</td>
<td>0.0108</td>
</tr>
<tr>
<td>44</td>
<td>3.9772</td>
<td>0.0982</td>
<td>0.2723</td>
<td>0.0807</td>
<td>0.0040</td>
</tr>
<tr>
<td>48</td>
<td>4.3728</td>
<td>0.1219</td>
<td>0.2943</td>
<td>0.1234</td>
<td>0.0144</td>
</tr>
<tr>
<td>52</td>
<td>4.6290</td>
<td>0.1120</td>
<td>0.3089</td>
<td>0.0993</td>
<td>0.0091</td>
</tr>
<tr>
<td>54</td>
<td>4.7919</td>
<td>0.1232</td>
<td>0.3464</td>
<td>0.1157</td>
<td>0.0103</td>
</tr>
<tr>
<td>56</td>
<td>4.8915</td>
<td>0.1208</td>
<td>0.3311</td>
<td>0.0926</td>
<td>0.0060</td>
</tr>
<tr>
<td>58</td>
<td>5.0003</td>
<td>0.1331</td>
<td>0.3446</td>
<td>0.0998</td>
<td>0.0042</td>
</tr>
<tr>
<td>60</td>
<td>5.0568</td>
<td>0.2082</td>
<td>0.3500</td>
<td>0.1754</td>
<td>0.0186</td>
</tr>
<tr>
<td>62</td>
<td>5.1864</td>
<td>0.2008</td>
<td>0.3668</td>
<td>0.1688</td>
<td>0.0174</td>
</tr>
<tr>
<td>64</td>
<td>5.2344</td>
<td>0.2868</td>
<td>0.3655</td>
<td>0.1961</td>
<td>0.0232</td>
</tr>
<tr>
<td>66</td>
<td>5.3282</td>
<td>0.3234</td>
<td>0.3805</td>
<td>0.2483</td>
<td>0.0505</td>
</tr>
<tr>
<td>68</td>
<td>5.4059</td>
<td>0.2559</td>
<td>0.3693</td>
<td>0.1855</td>
<td>0.0175</td>
</tr>
<tr>
<td>70</td>
<td>5.4157</td>
<td>0.2882</td>
<td>0.3807</td>
<td>0.2125</td>
<td>0.0205</td>
</tr>
<tr>
<td>72</td>
<td>5.4212</td>
<td>0.3825</td>
<td>0.3678</td>
<td>0.2563</td>
<td>0.0512</td>
</tr>
<tr>
<td>76</td>
<td>5.4868</td>
<td>0.3850</td>
<td>0.3822</td>
<td>0.2088</td>
<td>0.0389</td>
</tr>
<tr>
<td>80</td>
<td>5.5916</td>
<td>0.3749</td>
<td>0.3998</td>
<td>0.2339</td>
<td>0.0352</td>
</tr>
<tr>
<td>θ</td>
<td>ū</td>
<td>u'</td>
<td>̇v</td>
<td>v'</td>
<td>-uv'</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>deg</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>84</td>
<td>5.6439</td>
<td>0.4117</td>
<td>0.3894</td>
<td>0.2156</td>
<td>0.0374</td>
</tr>
<tr>
<td>88</td>
<td>5.6832</td>
<td>0.3648</td>
<td>0.3911</td>
<td>0.2612</td>
<td>0.0480</td>
</tr>
<tr>
<td>92</td>
<td>5.6803</td>
<td>0.3998</td>
<td>0.3812</td>
<td>0.2433</td>
<td>0.0500</td>
</tr>
<tr>
<td>96</td>
<td>5.7514</td>
<td>0.3041</td>
<td>0.4095</td>
<td>0.1740</td>
<td>0.0067</td>
</tr>
<tr>
<td>100</td>
<td>5.7519</td>
<td>0.2929</td>
<td>0.3704</td>
<td>0.1548</td>
<td>0.0145</td>
</tr>
<tr>
<td>104</td>
<td>5.7867</td>
<td>0.2282</td>
<td>0.3991</td>
<td>0.1268</td>
<td>0.0037</td>
</tr>
<tr>
<td>108</td>
<td>5.7620</td>
<td>0.1755</td>
<td>0.3578</td>
<td>0.1341</td>
<td>0.0149</td>
</tr>
<tr>
<td>112</td>
<td>5.7745</td>
<td>0.1600</td>
<td>0.4162</td>
<td>0.1602</td>
<td>0.0235</td>
</tr>
<tr>
<td>116</td>
<td>5.6741</td>
<td>0.0990</td>
<td>0.3732</td>
<td>0.0984</td>
<td>0.0094</td>
</tr>
<tr>
<td>120</td>
<td>5.5116</td>
<td>0.1268</td>
<td>0.3575</td>
<td>0.1291</td>
<td>0.0159</td>
</tr>
<tr>
<td>124</td>
<td>5.3976</td>
<td>0.1307</td>
<td>0.4243</td>
<td>0.1384</td>
<td>0.0177</td>
</tr>
<tr>
<td>128</td>
<td>5.1322</td>
<td>0.1089</td>
<td>0.3580</td>
<td>0.1132</td>
<td>0.0118</td>
</tr>
<tr>
<td>132</td>
<td>4.9232</td>
<td>0.1176</td>
<td>0.3531</td>
<td>0.1254</td>
<td>0.0141</td>
</tr>
<tr>
<td>136</td>
<td>4.6792</td>
<td>0.1035</td>
<td>0.3493</td>
<td>0.1059</td>
<td>0.0108</td>
</tr>
<tr>
<td>140</td>
<td>4.4060</td>
<td>0.1118</td>
<td>0.3372</td>
<td>0.1191</td>
<td>0.0132</td>
</tr>
<tr>
<td>144</td>
<td>4.1160</td>
<td>0.0957</td>
<td>0.3005</td>
<td>0.1001</td>
<td>0.0094</td>
</tr>
<tr>
<td>148</td>
<td>3.7994</td>
<td>0.0377</td>
<td>0.2928</td>
<td>0.0390</td>
<td>0.0014</td>
</tr>
<tr>
<td>152</td>
<td>3.4428</td>
<td>0.0473</td>
<td>0.2507</td>
<td>0.0473</td>
<td>0.0021</td>
</tr>
<tr>
<td>156</td>
<td>3.1044</td>
<td>0.0683</td>
<td>0.2279</td>
<td>0.0717</td>
<td>0.0048</td>
</tr>
<tr>
<td>160</td>
<td>2.7371</td>
<td>0.0540</td>
<td>0.2195</td>
<td>0.0551</td>
<td>0.0029</td>
</tr>
<tr>
<td>164</td>
<td>2.3431</td>
<td>0.0878</td>
<td>0.2058</td>
<td>0.0925</td>
<td>0.0081</td>
</tr>
<tr>
<td>168</td>
<td>1.9013</td>
<td>0.0540</td>
<td>0.1665</td>
<td>0.0556</td>
<td>0.0029</td>
</tr>
<tr>
<td>172</td>
<td>1.4979</td>
<td>0.0537</td>
<td>0.1509</td>
<td>0.0561</td>
<td>0.0029</td>
</tr>
<tr>
<td>176</td>
<td>1.0748</td>
<td>0.0326</td>
<td>0.1280</td>
<td>0.0326</td>
<td>0.0010</td>
</tr>
<tr>
<td>180</td>
<td>0.6170</td>
<td>0.0308</td>
<td>0.0881</td>
<td>0.0288</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

SPRE

s/d = 16

\[r/R = 0.467 \]

<table>
<thead>
<tr>
<th>θ</th>
<th>ū</th>
<th>u'</th>
<th>̇v</th>
<th>v'</th>
<th>-uv'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.2885</td>
<td>0.0957</td>
<td>0.0072</td>
<td>0.0489</td>
<td>-0.0008</td>
</tr>
<tr>
<td>8</td>
<td>0.5994</td>
<td>0.1157</td>
<td>0.0338</td>
<td>0.0626</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>0.9171</td>
<td>0.1223</td>
<td>0.0569</td>
<td>0.0775</td>
<td>-0.0007</td>
</tr>
<tr>
<td>16</td>
<td>1.3598</td>
<td>0.1152</td>
<td>0.1032</td>
<td>0.0891</td>
<td>0.0014</td>
</tr>
<tr>
<td>20</td>
<td>1.8238</td>
<td>0.1177</td>
<td>0.1302</td>
<td>0.0893</td>
<td>0.0025</td>
</tr>
<tr>
<td>24</td>
<td>2.1564</td>
<td>0.1150</td>
<td>0.1470</td>
<td>0.0886</td>
<td>0.0033</td>
</tr>
<tr>
<td>28</td>
<td>2.4953</td>
<td>0.1001</td>
<td>0.1667</td>
<td>0.0765</td>
<td>0.0002</td>
</tr>
<tr>
<td>32</td>
<td>2.9165</td>
<td>0.1161</td>
<td>0.1948</td>
<td>0.0973</td>
<td>0.0050</td>
</tr>
<tr>
<td>36</td>
<td>3.3663</td>
<td>0.1207</td>
<td>0.2489</td>
<td>0.1232</td>
<td>0.0093</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\tilde{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\tilde{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\tilde{u}\tilde{v}'$ (m^2/sec^2)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>40</td>
<td>3.6422</td>
<td>0.1403</td>
<td>0.2516</td>
<td>0.1371</td>
<td>0.0153</td>
</tr>
<tr>
<td>44</td>
<td>3.9454</td>
<td>0.1039</td>
<td>0.2574</td>
<td>0.0857</td>
<td>0.0011</td>
</tr>
<tr>
<td>48</td>
<td>4.2960</td>
<td>0.1027</td>
<td>0.2976</td>
<td>0.1053</td>
<td>0.0094</td>
</tr>
<tr>
<td>52</td>
<td>4.6229</td>
<td>0.1026</td>
<td>0.3180</td>
<td>0.0929</td>
<td>0.0066</td>
</tr>
<tr>
<td>54</td>
<td>4.7390</td>
<td>0.0770</td>
<td>0.3285</td>
<td>0.0736</td>
<td>0.0019</td>
</tr>
<tr>
<td>56</td>
<td>4.8534</td>
<td>0.0981</td>
<td>0.3407</td>
<td>0.0982</td>
<td>0.0044</td>
</tr>
<tr>
<td>58</td>
<td>4.9455</td>
<td>0.1462</td>
<td>0.3216</td>
<td>0.1585</td>
<td>0.0133</td>
</tr>
<tr>
<td>60</td>
<td>5.0990</td>
<td>0.1772</td>
<td>0.3844</td>
<td>0.1667</td>
<td>0.0151</td>
</tr>
<tr>
<td>62</td>
<td>5.1822</td>
<td>0.1672</td>
<td>0.3863</td>
<td>0.1495</td>
<td>0.0067</td>
</tr>
<tr>
<td>64</td>
<td>5.2697</td>
<td>0.2324</td>
<td>0.3676</td>
<td>0.1824</td>
<td>0.0180</td>
</tr>
<tr>
<td>66</td>
<td>5.3522</td>
<td>0.2532</td>
<td>0.3829</td>
<td>0.2054</td>
<td>0.0241</td>
</tr>
<tr>
<td>68</td>
<td>5.4424</td>
<td>0.2411</td>
<td>0.3705</td>
<td>0.2310</td>
<td>0.0219</td>
</tr>
<tr>
<td>70</td>
<td>5.4779</td>
<td>0.2374</td>
<td>0.3850</td>
<td>0.1814</td>
<td>0.0082</td>
</tr>
<tr>
<td>72</td>
<td>5.5005</td>
<td>0.2533</td>
<td>0.3856</td>
<td>0.2211</td>
<td>0.0269</td>
</tr>
<tr>
<td>74</td>
<td>5.5313</td>
<td>0.2945</td>
<td>0.3516</td>
<td>0.2077</td>
<td>0.0270</td>
</tr>
<tr>
<td>76</td>
<td>5.6663</td>
<td>0.2809</td>
<td>0.4191</td>
<td>0.2047</td>
<td>0.0203</td>
</tr>
<tr>
<td>78</td>
<td>5.6917</td>
<td>0.3367</td>
<td>0.3728</td>
<td>0.2328</td>
<td>0.0367</td>
</tr>
<tr>
<td>80</td>
<td>5.7297</td>
<td>0.2844</td>
<td>0.3752</td>
<td>0.2056</td>
<td>0.0249</td>
</tr>
<tr>
<td>82</td>
<td>5.7733</td>
<td>0.2995</td>
<td>0.4075</td>
<td>0.2558</td>
<td>0.0396</td>
</tr>
<tr>
<td>84</td>
<td>5.8177</td>
<td>0.2320</td>
<td>0.4170</td>
<td>0.1552</td>
<td>0.0147</td>
</tr>
<tr>
<td>86</td>
<td>5.8076</td>
<td>0.2086</td>
<td>0.3768</td>
<td>0.1602</td>
<td>0.0190</td>
</tr>
<tr>
<td>88</td>
<td>5.8230</td>
<td>0.1642</td>
<td>0.4038</td>
<td>0.1662</td>
<td>0.0203</td>
</tr>
<tr>
<td>90</td>
<td>5.8025</td>
<td>0.1210</td>
<td>0.4168</td>
<td>0.1081</td>
<td>0.0106</td>
</tr>
<tr>
<td>92</td>
<td>5.7447</td>
<td>0.1433</td>
<td>0.4037</td>
<td>0.1449</td>
<td>0.0201</td>
</tr>
<tr>
<td>94</td>
<td>5.6198</td>
<td>0.0297</td>
<td>0.3886</td>
<td>0.0273</td>
<td>0.0003</td>
</tr>
<tr>
<td>96</td>
<td>5.4652</td>
<td>0.0963</td>
<td>0.3625</td>
<td>0.0965</td>
<td>0.0086</td>
</tr>
<tr>
<td>98</td>
<td>5.2933</td>
<td>0.0467</td>
<td>0.3903</td>
<td>0.0471</td>
<td>0.0017</td>
</tr>
<tr>
<td>100</td>
<td>5.1837</td>
<td>0.0757</td>
<td>0.4545</td>
<td>0.0768</td>
<td>0.0052</td>
</tr>
<tr>
<td>102</td>
<td>4.9049</td>
<td>0.1421</td>
<td>0.3785</td>
<td>0.1476</td>
<td>0.0207</td>
</tr>
<tr>
<td>104</td>
<td>4.6350</td>
<td>0.1102</td>
<td>0.3279</td>
<td>0.1133</td>
<td>0.0121</td>
</tr>
<tr>
<td>106</td>
<td>4.4015</td>
<td>0.1054</td>
<td>0.3368</td>
<td>0.1103</td>
<td>0.0115</td>
</tr>
<tr>
<td>108</td>
<td>4.1696</td>
<td>0.1079</td>
<td>0.2099</td>
<td>0.1113</td>
<td>0.0119</td>
</tr>
<tr>
<td>110</td>
<td>3.7784</td>
<td>0.1026</td>
<td>0.2675</td>
<td>0.1051</td>
<td>0.0106</td>
</tr>
<tr>
<td>112</td>
<td>3.4460</td>
<td>0.1026</td>
<td>0.2522</td>
<td>0.1039</td>
<td>0.0105</td>
</tr>
<tr>
<td>114</td>
<td>3.1197</td>
<td>0.0479</td>
<td>0.2055</td>
<td>0.0487</td>
<td>0.0022</td>
</tr>
<tr>
<td>116</td>
<td>2.7527</td>
<td>0.0665</td>
<td>0.2009</td>
<td>0.0689</td>
<td>0.0045</td>
</tr>
<tr>
<td>118</td>
<td>2.3657</td>
<td>0.0688</td>
<td>0.1702</td>
<td>0.0673</td>
<td>0.0043</td>
</tr>
<tr>
<td>120</td>
<td>1.9424</td>
<td>0.0593</td>
<td>0.1360</td>
<td>0.0638</td>
<td>0.0037</td>
</tr>
<tr>
<td>122</td>
<td>1.5651</td>
<td>0.0179</td>
<td>0.1150</td>
<td>0.0164</td>
<td>0.0002</td>
</tr>
<tr>
<td>124</td>
<td>1.1662</td>
<td>0.0386</td>
<td>0.0929</td>
<td>0.0404</td>
<td>0.0015</td>
</tr>
<tr>
<td>126</td>
<td>0.7099</td>
<td>0.0295</td>
<td>0.0612</td>
<td>0.0245</td>
<td>0.0006</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\ddot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{v}) (m/sec)</td>
<td>(v') (m/sec)</td>
<td>(-u'v') (m(^2)/sec(^2))</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>0.2750</td>
<td>0.0749</td>
<td>0.0082</td>
<td>0.0514</td>
<td>0.0000</td>
</tr>
<tr>
<td>8</td>
<td>0.5532</td>
<td>0.1104</td>
<td>0.0305</td>
<td>0.0647</td>
<td>0.0001</td>
</tr>
<tr>
<td>12</td>
<td>0.8841</td>
<td>0.1245</td>
<td>0.0522</td>
<td>0.0847</td>
<td>0.0008</td>
</tr>
<tr>
<td>16</td>
<td>1.3282</td>
<td>0.1140</td>
<td>0.0893</td>
<td>0.0843</td>
<td>0.0014</td>
</tr>
<tr>
<td>20</td>
<td>1.7686</td>
<td>0.1119</td>
<td>0.1225</td>
<td>0.0948</td>
<td>0.0025</td>
</tr>
<tr>
<td>24</td>
<td>2.1348</td>
<td>0.0989</td>
<td>0.1459</td>
<td>0.0738</td>
<td>-0.0004</td>
</tr>
<tr>
<td>28</td>
<td>2.4811</td>
<td>0.1038</td>
<td>0.1674</td>
<td>0.0960</td>
<td>0.0033</td>
</tr>
<tr>
<td>32</td>
<td>2.8873</td>
<td>0.0888</td>
<td>0.2021</td>
<td>0.0732</td>
<td>0.0007</td>
</tr>
<tr>
<td>36</td>
<td>3.3309</td>
<td>0.1192</td>
<td>0.2316</td>
<td>0.0979</td>
<td>0.0071</td>
</tr>
<tr>
<td>40</td>
<td>3.6259</td>
<td>0.0932</td>
<td>0.2355</td>
<td>0.0764</td>
<td>0.0030</td>
</tr>
<tr>
<td>44</td>
<td>3.9425</td>
<td>0.0897</td>
<td>0.2615</td>
<td>0.0799</td>
<td>0.0032</td>
</tr>
<tr>
<td>48</td>
<td>4.3287</td>
<td>0.0784</td>
<td>0.2786</td>
<td>0.0796</td>
<td>0.0055</td>
</tr>
<tr>
<td>52</td>
<td>4.6301</td>
<td>0.0978</td>
<td>0.3197</td>
<td>0.0923</td>
<td>0.0062</td>
</tr>
<tr>
<td>56</td>
<td>4.7453</td>
<td>0.0930</td>
<td>0.3278</td>
<td>0.0928</td>
<td>0.0043</td>
</tr>
<tr>
<td>60</td>
<td>4.8557</td>
<td>0.1103</td>
<td>0.3403</td>
<td>0.1130</td>
<td>0.0056</td>
</tr>
<tr>
<td>64</td>
<td>4.9339</td>
<td>0.1442</td>
<td>0.3333</td>
<td>0.1477</td>
<td>0.0094</td>
</tr>
<tr>
<td>68</td>
<td>5.0646</td>
<td>0.1653</td>
<td>0.3273</td>
<td>0.1608</td>
<td>0.0123</td>
</tr>
<tr>
<td>72</td>
<td>5.2050</td>
<td>0.1862</td>
<td>0.3843</td>
<td>0.2204</td>
<td>0.0233</td>
</tr>
<tr>
<td>76</td>
<td>5.3117</td>
<td>0.1798</td>
<td>0.3647</td>
<td>0.1886</td>
<td>0.0085</td>
</tr>
<tr>
<td>80</td>
<td>5.3953</td>
<td>0.1887</td>
<td>0.3491</td>
<td>0.2004</td>
<td>0.0111</td>
</tr>
<tr>
<td>84</td>
<td>5.4580</td>
<td>0.2062</td>
<td>0.3878</td>
<td>0.2018</td>
<td>0.0101</td>
</tr>
<tr>
<td>88</td>
<td>5.5044</td>
<td>0.1760</td>
<td>0.3942</td>
<td>0.2006</td>
<td>0.0078</td>
</tr>
<tr>
<td>92</td>
<td>5.5085</td>
<td>0.1950</td>
<td>0.3518</td>
<td>0.1783</td>
<td>0.0049</td>
</tr>
<tr>
<td>96</td>
<td>5.5685</td>
<td>0.2130</td>
<td>0.3626</td>
<td>0.2173</td>
<td>0.0061</td>
</tr>
<tr>
<td>100</td>
<td>5.6428</td>
<td>0.2533</td>
<td>0.3763</td>
<td>0.2336</td>
<td>0.0030</td>
</tr>
<tr>
<td>104</td>
<td>5.7693</td>
<td>0.2253</td>
<td>0.3886</td>
<td>0.2200</td>
<td>0.0163</td>
</tr>
<tr>
<td>108</td>
<td>5.7677</td>
<td>0.2515</td>
<td>0.3738</td>
<td>0.2142</td>
<td>0.0187</td>
</tr>
<tr>
<td>112</td>
<td>5.7785</td>
<td>0.2693</td>
<td>0.3636</td>
<td>0.2086</td>
<td>0.0316</td>
</tr>
<tr>
<td>116</td>
<td>5.8558</td>
<td>0.2114</td>
<td>0.3917</td>
<td>0.1597</td>
<td>0.0136</td>
</tr>
<tr>
<td>120</td>
<td>5.8652</td>
<td>0.1518</td>
<td>0.3908</td>
<td>0.1278</td>
<td>0.0080</td>
</tr>
<tr>
<td>124</td>
<td>5.8212</td>
<td>0.1086</td>
<td>0.3865</td>
<td>0.1003</td>
<td>0.0076</td>
</tr>
<tr>
<td>128</td>
<td>5.7888</td>
<td>0.1076</td>
<td>0.3819</td>
<td>0.1143</td>
<td>0.0103</td>
</tr>
<tr>
<td>132</td>
<td>5.7251</td>
<td>0.0812</td>
<td>0.3824</td>
<td>0.0789</td>
<td>0.0058</td>
</tr>
<tr>
<td>136</td>
<td>5.6333</td>
<td>0.0655</td>
<td>0.3566</td>
<td>0.0683</td>
<td>0.0043</td>
</tr>
<tr>
<td>140</td>
<td>5.4829</td>
<td>0.0520</td>
<td>0.3424</td>
<td>0.0551</td>
<td>0.0026</td>
</tr>
<tr>
<td>144</td>
<td>5.3653</td>
<td>0.1119</td>
<td>0.4304</td>
<td>0.1167</td>
<td>0.0128</td>
</tr>
<tr>
<td></td>
<td>5.1120</td>
<td>0.1015</td>
<td>0.3485</td>
<td>0.1075</td>
<td>0.0107</td>
</tr>
<tr>
<td>132</td>
<td>4.9100</td>
<td>0.0834</td>
<td>0.3385</td>
<td>0.0873</td>
<td>0.0072</td>
</tr>
<tr>
<td>136</td>
<td>4.6669</td>
<td>0.0896</td>
<td>0.3477</td>
<td>0.0906</td>
<td>0.0079</td>
</tr>
<tr>
<td>140</td>
<td>4.3914</td>
<td>0.0956</td>
<td>0.3142</td>
<td>0.0988</td>
<td>0.0093</td>
</tr>
<tr>
<td>144</td>
<td>4.1793</td>
<td>0.0961</td>
<td>0.2357</td>
<td>0.0981</td>
<td>0.0044</td>
</tr>
<tr>
<td>θ</td>
<td>\ddot{u}</td>
<td>u'</td>
<td>\ddot{v}</td>
<td>v'</td>
<td>$-\overline{u'v'}$</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>148</td>
<td>3.8075</td>
<td>0.1122</td>
<td>0.2753</td>
<td>0.1157</td>
<td>0.0128</td>
</tr>
<tr>
<td>152</td>
<td>3.4559</td>
<td>0.1035</td>
<td>0.2391</td>
<td>0.1076</td>
<td>0.0111</td>
</tr>
<tr>
<td>156</td>
<td>3.1281</td>
<td>0.0910</td>
<td>0.2075</td>
<td>0.0950</td>
<td>0.0085</td>
</tr>
<tr>
<td>160</td>
<td>2.7745</td>
<td>0.0512</td>
<td>0.1933</td>
<td>0.0520</td>
<td>0.0025</td>
</tr>
<tr>
<td>164</td>
<td>2.3627</td>
<td>0.0593</td>
<td>0.1544</td>
<td>0.0602</td>
<td>0.0035</td>
</tr>
<tr>
<td>168</td>
<td>1.9742</td>
<td>0.0354</td>
<td>0.1433</td>
<td>0.0372</td>
<td>0.0013</td>
</tr>
<tr>
<td>172</td>
<td>1.5846</td>
<td>0.0572</td>
<td>0.1146</td>
<td>0.0585</td>
<td>0.0033</td>
</tr>
<tr>
<td>176</td>
<td>1.1839</td>
<td>0.0505</td>
<td>0.0825</td>
<td>0.0520</td>
<td>0.0026</td>
</tr>
<tr>
<td>180</td>
<td>0.7397</td>
<td>0.0295</td>
<td>0.0525</td>
<td>0.0280</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 16$

$r/R = 0.200$

<table>
<thead>
<tr>
<th>θ</th>
<th>\ddot{u}</th>
<th>u'</th>
<th>\ddot{v}</th>
<th>v'</th>
<th>$-\overline{u'v'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m2/sec2</td>
</tr>
<tr>
<td>4</td>
<td>0.2581</td>
<td>0.0747</td>
<td>0.0135</td>
<td>0.0502</td>
<td>0.0012</td>
</tr>
<tr>
<td>8</td>
<td>0.5406</td>
<td>0.1208</td>
<td>0.0423</td>
<td>0.0796</td>
<td>0.0037</td>
</tr>
<tr>
<td>12</td>
<td>0.8655</td>
<td>0.1202</td>
<td>0.0585</td>
<td>0.0855</td>
<td>0.0027</td>
</tr>
<tr>
<td>16</td>
<td>1.3002</td>
<td>0.0964</td>
<td>0.1156</td>
<td>0.0841</td>
<td>0.0016</td>
</tr>
<tr>
<td>20</td>
<td>1.7517</td>
<td>0.1178</td>
<td>0.1306</td>
<td>0.0903</td>
<td>0.0036</td>
</tr>
<tr>
<td>24</td>
<td>2.0978</td>
<td>0.1142</td>
<td>0.1355</td>
<td>0.0889</td>
<td>0.0038</td>
</tr>
<tr>
<td>28</td>
<td>2.4436</td>
<td>0.1025</td>
<td>0.1646</td>
<td>0.0990</td>
<td>0.0039</td>
</tr>
<tr>
<td>32</td>
<td>2.8839</td>
<td>0.1040</td>
<td>0.1997</td>
<td>0.0807</td>
<td>0.0018</td>
</tr>
<tr>
<td>36</td>
<td>3.3141</td>
<td>0.1152</td>
<td>0.2245</td>
<td>0.1024</td>
<td>0.0074</td>
</tr>
<tr>
<td>40</td>
<td>3.6296</td>
<td>0.1025</td>
<td>0.2461</td>
<td>0.0925</td>
<td>0.0049</td>
</tr>
<tr>
<td>44</td>
<td>3.9391</td>
<td>0.0955</td>
<td>0.2702</td>
<td>0.0856</td>
<td>0.0043</td>
</tr>
<tr>
<td>48</td>
<td>4.3095</td>
<td>0.1089</td>
<td>0.2791</td>
<td>0.1111</td>
<td>0.0116</td>
</tr>
<tr>
<td>52</td>
<td>4.6123</td>
<td>0.1164</td>
<td>0.3193</td>
<td>0.1215</td>
<td>0.0121</td>
</tr>
<tr>
<td>56</td>
<td>4.7259</td>
<td>0.0939</td>
<td>0.3230</td>
<td>0.0891</td>
<td>0.0039</td>
</tr>
<tr>
<td>58</td>
<td>4.8315</td>
<td>0.1119</td>
<td>0.3143</td>
<td>0.1308</td>
<td>0.0072</td>
</tr>
<tr>
<td>60</td>
<td>4.9372</td>
<td>0.1316</td>
<td>0.3314</td>
<td>0.1386</td>
<td>0.0066</td>
</tr>
<tr>
<td>62</td>
<td>5.0475</td>
<td>0.1864</td>
<td>0.3403</td>
<td>0.1829</td>
<td>0.0138</td>
</tr>
<tr>
<td>64</td>
<td>5.1949</td>
<td>0.1613</td>
<td>0.3543</td>
<td>0.1851</td>
<td>0.0076</td>
</tr>
<tr>
<td>66</td>
<td>5.3256</td>
<td>0.1582</td>
<td>0.3627</td>
<td>0.1917</td>
<td>0.0092</td>
</tr>
<tr>
<td>68</td>
<td>5.4059</td>
<td>0.1674</td>
<td>0.3647</td>
<td>0.2020</td>
<td>0.0019</td>
</tr>
<tr>
<td>70</td>
<td>5.4983</td>
<td>0.2243</td>
<td>0.3909</td>
<td>0.2427</td>
<td>0.0288</td>
</tr>
<tr>
<td>72</td>
<td>5.5086</td>
<td>0.2057</td>
<td>0.3728</td>
<td>0.2289</td>
<td>0.0128</td>
</tr>
<tr>
<td>76</td>
<td>5.6063</td>
<td>0.2362</td>
<td>0.3818</td>
<td>0.2366</td>
<td>0.0132</td>
</tr>
<tr>
<td>80</td>
<td>5.6385</td>
<td>0.2452</td>
<td>0.3680</td>
<td>0.2232</td>
<td>0.0146</td>
</tr>
<tr>
<td>θ</td>
<td>̇u</td>
<td>u'</td>
<td>̇v</td>
<td>v'</td>
<td>-uv'</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>84</td>
<td>5.7790</td>
<td>0.1969</td>
<td>0.3778</td>
<td>0.2070</td>
<td>0.0051</td>
</tr>
<tr>
<td>88</td>
<td>5.8187</td>
<td>0.2362</td>
<td>0.3852</td>
<td>0.2380</td>
<td>0.0210</td>
</tr>
<tr>
<td>92</td>
<td>5.8154</td>
<td>0.2267</td>
<td>0.3881</td>
<td>0.1988</td>
<td>0.0180</td>
</tr>
<tr>
<td>96</td>
<td>5.8870</td>
<td>0.1753</td>
<td>0.3906</td>
<td>0.1705</td>
<td>0.0095</td>
</tr>
<tr>
<td>100</td>
<td>5.8774</td>
<td>0.1383</td>
<td>0.3974</td>
<td>0.1307</td>
<td>0.0107</td>
</tr>
<tr>
<td>104</td>
<td>5.8155</td>
<td>0.1169</td>
<td>0.3764</td>
<td>0.0954</td>
<td>0.0070</td>
</tr>
<tr>
<td>108</td>
<td>5.7804</td>
<td>0.1132</td>
<td>0.3832</td>
<td>0.1046</td>
<td>0.0099</td>
</tr>
<tr>
<td>112</td>
<td>5.7139</td>
<td>0.0797</td>
<td>0.3761</td>
<td>0.0744</td>
<td>0.0051</td>
</tr>
<tr>
<td>116</td>
<td>5.6317</td>
<td>0.1227</td>
<td>0.3763</td>
<td>0.1287</td>
<td>0.0157</td>
</tr>
<tr>
<td>120</td>
<td>5.4691</td>
<td>0.1057</td>
<td>0.3427</td>
<td>0.1098</td>
<td>0.0115</td>
</tr>
<tr>
<td>124</td>
<td>5.3524</td>
<td>0.0414</td>
<td>0.4009</td>
<td>0.0433</td>
<td>0.0017</td>
</tr>
<tr>
<td>128</td>
<td>5.1120</td>
<td>0.1236</td>
<td>0.3625</td>
<td>0.1296</td>
<td>0.0160</td>
</tr>
<tr>
<td>132</td>
<td>4.9026</td>
<td>0.0864</td>
<td>0.3379</td>
<td>0.0876</td>
<td>0.0073</td>
</tr>
<tr>
<td>136</td>
<td>4.6705</td>
<td>0.0864</td>
<td>0.3553</td>
<td>0.0897</td>
<td>0.0075</td>
</tr>
<tr>
<td>140</td>
<td>4.3925</td>
<td>0.1019</td>
<td>0.3091</td>
<td>0.1015</td>
<td>0.0099</td>
</tr>
<tr>
<td>144</td>
<td>4.1990</td>
<td>0.0586</td>
<td>0.1812</td>
<td>0.0600</td>
<td>0.0032</td>
</tr>
<tr>
<td>148</td>
<td>3.6077</td>
<td>0.0943</td>
<td>0.2630</td>
<td>0.0950</td>
<td>0.0087</td>
</tr>
<tr>
<td>152</td>
<td>3.4612</td>
<td>0.1000</td>
<td>0.2463</td>
<td>0.1038</td>
<td>0.0102</td>
</tr>
<tr>
<td>156</td>
<td>3.1358</td>
<td>0.0418</td>
<td>0.1892</td>
<td>0.0390</td>
<td>0.0013</td>
</tr>
<tr>
<td>160</td>
<td>2.7790</td>
<td>0.0644</td>
<td>0.1880</td>
<td>0.0671</td>
<td>0.0043</td>
</tr>
<tr>
<td>164</td>
<td>2.3738</td>
<td>0.0604</td>
<td>0.1529</td>
<td>0.0585</td>
<td>0.0033</td>
</tr>
<tr>
<td>168</td>
<td>1.9695</td>
<td>0.0552</td>
<td>0.1283</td>
<td>0.0556</td>
<td>0.0030</td>
</tr>
<tr>
<td>172</td>
<td>1.5864</td>
<td>0.0425</td>
<td>0.0955</td>
<td>0.0448</td>
<td>0.0019</td>
</tr>
<tr>
<td>176</td>
<td>1.1946</td>
<td>0.0374</td>
<td>0.0760</td>
<td>0.0379</td>
<td>0.0013</td>
</tr>
<tr>
<td>180</td>
<td>0.7614</td>
<td>0.0348</td>
<td>0.0494</td>
<td>0.0312</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

SPRE

\[s/d = 16 \]

\[r/R = 0.000 \]

<table>
<thead>
<tr>
<th>θ</th>
<th>̇u</th>
<th>u'</th>
<th>̇v</th>
<th>v'</th>
<th>-uv'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.2611</td>
<td>0.0887</td>
<td>0.0277</td>
<td>0.0521</td>
<td>0.0025</td>
</tr>
<tr>
<td>8</td>
<td>0.5208</td>
<td>0.1081</td>
<td>0.0416</td>
<td>0.0664</td>
<td>0.0025</td>
</tr>
<tr>
<td>12</td>
<td>0.8470</td>
<td>0.1097</td>
<td>0.0706</td>
<td>0.0831</td>
<td>0.0038</td>
</tr>
<tr>
<td>16</td>
<td>1.2799</td>
<td>0.1014</td>
<td>0.1028</td>
<td>0.0865</td>
<td>0.0036</td>
</tr>
<tr>
<td>20</td>
<td>1.7498</td>
<td>0.1158</td>
<td>0.1409</td>
<td>0.0916</td>
<td>0.0052</td>
</tr>
<tr>
<td>24</td>
<td>2.1023</td>
<td>0.1003</td>
<td>0.1562</td>
<td>0.0757</td>
<td>0.0022</td>
</tr>
<tr>
<td>28</td>
<td>2.4488</td>
<td>0.1018</td>
<td>0.1808</td>
<td>0.0866</td>
<td>0.0050</td>
</tr>
<tr>
<td>32</td>
<td>2.8850</td>
<td>0.1157</td>
<td>0.1895</td>
<td>0.1121</td>
<td>0.0079</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>ū (m/sec)</td>
<td>v' (m/sec)</td>
<td>-ūv' (m²/sec²)</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
</tr>
<tr>
<td>36</td>
<td>3.3075</td>
<td>0.1101</td>
<td>0.2178</td>
<td>0.1178</td>
<td>0.0089</td>
</tr>
<tr>
<td>40</td>
<td>3.6200</td>
<td>0.1003</td>
<td>0.2449</td>
<td>0.0932</td>
<td>0.0058</td>
</tr>
<tr>
<td>44</td>
<td>3.9137</td>
<td>0.1142</td>
<td>0.2504</td>
<td>0.1099</td>
<td>0.0072</td>
</tr>
<tr>
<td>48</td>
<td>4.2762</td>
<td>0.1248</td>
<td>0.2650</td>
<td>0.1250</td>
<td>0.0148</td>
</tr>
<tr>
<td>52</td>
<td>4.6005</td>
<td>0.1148</td>
<td>0.3105</td>
<td>0.1194</td>
<td>0.0114</td>
</tr>
<tr>
<td>54</td>
<td>4.7152</td>
<td>0.1180</td>
<td>0.3121</td>
<td>0.1096</td>
<td>0.0086</td>
</tr>
<tr>
<td>56</td>
<td>4.7907</td>
<td>0.1208</td>
<td>0.3154</td>
<td>0.1150</td>
<td>0.0055</td>
</tr>
<tr>
<td>58</td>
<td>4.9060</td>
<td>0.1245</td>
<td>0.3168</td>
<td>0.1433</td>
<td>0.0050</td>
</tr>
<tr>
<td>60</td>
<td>5.0734</td>
<td>0.1795</td>
<td>0.3312</td>
<td>0.1963</td>
<td>0.0170</td>
</tr>
<tr>
<td>62</td>
<td>5.1813</td>
<td>0.2284</td>
<td>0.3741</td>
<td>0.2287</td>
<td>0.0303</td>
</tr>
<tr>
<td>64</td>
<td>5.2912</td>
<td>0.1741</td>
<td>0.3539</td>
<td>0.2013</td>
<td>0.0073</td>
</tr>
<tr>
<td>66</td>
<td>5.3894</td>
<td>0.1662</td>
<td>0.3547</td>
<td>0.2152</td>
<td>0.0046</td>
</tr>
<tr>
<td>68</td>
<td>5.4489</td>
<td>0.2016</td>
<td>0.3923</td>
<td>0.2332</td>
<td>0.0091</td>
</tr>
<tr>
<td>70</td>
<td>5.4832</td>
<td>0.2074</td>
<td>0.3688</td>
<td>0.2707</td>
<td>0.0107</td>
</tr>
<tr>
<td>72</td>
<td>5.4942</td>
<td>0.2113</td>
<td>0.3759</td>
<td>0.2307</td>
<td>0.0078</td>
</tr>
<tr>
<td>76</td>
<td>5.5555</td>
<td>0.2243</td>
<td>0.3775</td>
<td>0.2408</td>
<td>0.0061</td>
</tr>
<tr>
<td>80</td>
<td>5.6830</td>
<td>0.2126</td>
<td>0.3980</td>
<td>0.2298</td>
<td>0.0088</td>
</tr>
<tr>
<td>84</td>
<td>5.7422</td>
<td>0.2166</td>
<td>0.4146</td>
<td>0.2160</td>
<td>-0.0038</td>
</tr>
<tr>
<td>88</td>
<td>5.7627</td>
<td>0.2334</td>
<td>0.4318</td>
<td>0.2205</td>
<td>0.0046</td>
</tr>
<tr>
<td>92</td>
<td>5.8317</td>
<td>0.1849</td>
<td>0.3903</td>
<td>0.1950</td>
<td>0.0130</td>
</tr>
<tr>
<td>96</td>
<td>5.8729</td>
<td>0.1585</td>
<td>0.3875</td>
<td>0.1445</td>
<td>0.0044</td>
</tr>
<tr>
<td>100</td>
<td>5.8610</td>
<td>0.1262</td>
<td>0.4005</td>
<td>0.1143</td>
<td>0.0063</td>
</tr>
<tr>
<td>104</td>
<td>5.8194</td>
<td>0.1509</td>
<td>0.3741</td>
<td>0.1520</td>
<td>0.0183</td>
</tr>
<tr>
<td>108</td>
<td>5.7719</td>
<td>0.0750</td>
<td>0.3763</td>
<td>0.0626</td>
<td>0.0028</td>
</tr>
<tr>
<td>112</td>
<td>5.6960</td>
<td>0.0825</td>
<td>0.3681</td>
<td>0.0747</td>
<td>0.0048</td>
</tr>
<tr>
<td>116</td>
<td>5.5912</td>
<td>0.1041</td>
<td>0.3593</td>
<td>0.1107</td>
<td>0.0112</td>
</tr>
<tr>
<td>120</td>
<td>5.4455</td>
<td>0.1081</td>
<td>0.3467</td>
<td>0.1159</td>
<td>0.0122</td>
</tr>
<tr>
<td>124</td>
<td>5.3169</td>
<td>0.0861</td>
<td>0.3918</td>
<td>0.0897</td>
<td>0.0076</td>
</tr>
<tr>
<td>128</td>
<td>5.0662</td>
<td>0.1097</td>
<td>0.3605</td>
<td>0.1127</td>
<td>0.0122</td>
</tr>
<tr>
<td>132</td>
<td>4.8643</td>
<td>0.1038</td>
<td>0.3094</td>
<td>0.1060</td>
<td>0.0108</td>
</tr>
<tr>
<td>136</td>
<td>4.6429</td>
<td>0.1065</td>
<td>0.3292</td>
<td>0.1080</td>
<td>0.0113</td>
</tr>
<tr>
<td>140</td>
<td>4.3832</td>
<td>0.1274</td>
<td>0.2879</td>
<td>0.1313</td>
<td>0.0165</td>
</tr>
<tr>
<td>144</td>
<td>4.1720</td>
<td>0.0822</td>
<td>0.1759</td>
<td>0.0853</td>
<td>0.0069</td>
</tr>
<tr>
<td>148</td>
<td>3.7840</td>
<td>0.0570</td>
<td>0.2451</td>
<td>0.0571</td>
<td>0.0032</td>
</tr>
<tr>
<td>152</td>
<td>3.4413</td>
<td>0.0575</td>
<td>0.2254</td>
<td>0.0573</td>
<td>0.0031</td>
</tr>
<tr>
<td>156</td>
<td>3.1240</td>
<td>0.0719</td>
<td>0.1812</td>
<td>0.0730</td>
<td>0.0052</td>
</tr>
<tr>
<td>160</td>
<td>2.7656</td>
<td>0.0194</td>
<td>0.1759</td>
<td>0.0242</td>
<td>0.0003</td>
</tr>
<tr>
<td>164</td>
<td>2.3757</td>
<td>0.0695</td>
<td>0.1344</td>
<td>0.0704</td>
<td>0.0048</td>
</tr>
<tr>
<td>168</td>
<td>1.9757</td>
<td>0.0307</td>
<td>0.1066</td>
<td>0.0311</td>
<td>0.0008</td>
</tr>
<tr>
<td>172</td>
<td>1.5881</td>
<td>0.0396</td>
<td>0.0829</td>
<td>0.0430</td>
<td>0.0015</td>
</tr>
<tr>
<td>176</td>
<td>1.1862</td>
<td>0.0477</td>
<td>0.0539</td>
<td>0.0318</td>
<td>0.0012</td>
</tr>
<tr>
<td>180</td>
<td>0.7476</td>
<td>0.0710</td>
<td>0.0216</td>
<td>0.0455</td>
<td>0.0022</td>
</tr>
</tbody>
</table>
Figure 17: Streamwise velocity fluctuation at s/d = 16 (smoothed)
Figure 18: Radial velocity fluctuation at $s/d = 16$ (smoothed)
Figure 19: Reynolds shear stress at s/d = 16 (not smoothed)
CROSS-WIRE DATA

SPRE \(s/d = 30 \)

\(r/R = 0.800 \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{v})</th>
<th>(v')</th>
<th>(-u'\ddot{v}')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>4</td>
<td>0.4472</td>
<td>0.1582</td>
<td>-0.0025</td>
<td>0.0535</td>
<td>-0.0011</td>
</tr>
<tr>
<td>8</td>
<td>0.7544</td>
<td>0.1270</td>
<td>0.0274</td>
<td>0.0669</td>
<td>-0.0005</td>
</tr>
<tr>
<td>12</td>
<td>1.0445</td>
<td>0.1160</td>
<td>0.0577</td>
<td>0.0645</td>
<td>0.0000</td>
</tr>
<tr>
<td>16</td>
<td>1.4388</td>
<td>0.0938</td>
<td>0.0931</td>
<td>0.0586</td>
<td>-0.0001</td>
</tr>
<tr>
<td>20</td>
<td>1.8399</td>
<td>0.0703</td>
<td>0.1188</td>
<td>0.0596</td>
<td>0.0009</td>
</tr>
<tr>
<td>24</td>
<td>2.1327</td>
<td>0.1036</td>
<td>0.1385</td>
<td>0.0616</td>
<td>0.0029</td>
</tr>
<tr>
<td>28</td>
<td>2.4290</td>
<td>0.0903</td>
<td>0.1701</td>
<td>0.0688</td>
<td>0.0027</td>
</tr>
<tr>
<td>32</td>
<td>2.8059</td>
<td>0.0980</td>
<td>0.1960</td>
<td>0.0640</td>
<td>0.0033</td>
</tr>
<tr>
<td>36</td>
<td>3.1315</td>
<td>0.1085</td>
<td>0.2165</td>
<td>0.0666</td>
<td>0.0046</td>
</tr>
<tr>
<td>40</td>
<td>3.3870</td>
<td>0.1258</td>
<td>0.2459</td>
<td>0.0810</td>
<td>0.0079</td>
</tr>
<tr>
<td>44</td>
<td>3.6244</td>
<td>0.1351</td>
<td>0.2737</td>
<td>0.0855</td>
<td>0.0083</td>
</tr>
<tr>
<td>48</td>
<td>3.9006</td>
<td>0.1346</td>
<td>0.2773</td>
<td>0.0763</td>
<td>0.0045</td>
</tr>
<tr>
<td>52</td>
<td>4.1960</td>
<td>0.1853</td>
<td>0.2861</td>
<td>0.1106</td>
<td>0.0108</td>
</tr>
<tr>
<td>56</td>
<td>4.3019</td>
<td>0.1799</td>
<td>0.3192</td>
<td>0.1227</td>
<td>0.0139</td>
</tr>
<tr>
<td>60</td>
<td>4.4351</td>
<td>0.2046</td>
<td>0.3273</td>
<td>0.1448</td>
<td>0.0216</td>
</tr>
<tr>
<td>64</td>
<td>4.6238</td>
<td>0.2201</td>
<td>0.3492</td>
<td>0.1487</td>
<td>0.0210</td>
</tr>
<tr>
<td>68</td>
<td>4.7714</td>
<td>0.1791</td>
<td>0.3776</td>
<td>0.0681</td>
<td>0.0034</td>
</tr>
<tr>
<td>72</td>
<td>4.8289</td>
<td>0.2047</td>
<td>0.3839</td>
<td>0.0906</td>
<td>0.0103</td>
</tr>
<tr>
<td>76</td>
<td>4.8715</td>
<td>0.2504</td>
<td>0.3936</td>
<td>0.1358</td>
<td>0.0228</td>
</tr>
<tr>
<td>78</td>
<td>4.9140</td>
<td>0.2240</td>
<td>0.3836</td>
<td>0.1153</td>
<td>0.0131</td>
</tr>
<tr>
<td>80</td>
<td>5.0142</td>
<td>0.3122</td>
<td>0.3897</td>
<td>0.1009</td>
<td>0.0107</td>
</tr>
<tr>
<td>82</td>
<td>5.0818</td>
<td>0.4065</td>
<td>0.3973</td>
<td>0.1581</td>
<td>0.0263</td>
</tr>
<tr>
<td>84</td>
<td>5.1231</td>
<td>0.4484</td>
<td>0.4279</td>
<td>0.1875</td>
<td>0.0367</td>
</tr>
<tr>
<td>86</td>
<td>4.9455</td>
<td>0.5751</td>
<td>0.3840</td>
<td>0.3075</td>
<td>0.0641</td>
</tr>
<tr>
<td>88</td>
<td>4.7351</td>
<td>0.6579</td>
<td>0.3104</td>
<td>0.4027</td>
<td>0.1484</td>
</tr>
<tr>
<td>90</td>
<td>4.6422</td>
<td>0.6116</td>
<td>0.2807</td>
<td>0.4068</td>
<td>0.1354</td>
</tr>
<tr>
<td>92</td>
<td>4.6666</td>
<td>0.5325</td>
<td>0.2957</td>
<td>0.3523</td>
<td>0.0930</td>
</tr>
<tr>
<td>94</td>
<td>4.7180</td>
<td>0.4917</td>
<td>0.3233</td>
<td>0.3044</td>
<td>0.0707</td>
</tr>
<tr>
<td>96</td>
<td>4.7995</td>
<td>0.4836</td>
<td>0.3631</td>
<td>0.3202</td>
<td>0.0937</td>
</tr>
<tr>
<td>100</td>
<td>4.7353</td>
<td>0.4552</td>
<td>0.3163</td>
<td>0.2706</td>
<td>0.0570</td>
</tr>
<tr>
<td>104</td>
<td>4.6891</td>
<td>0.4284</td>
<td>0.3210</td>
<td>0.2749</td>
<td>0.0595</td>
</tr>
<tr>
<td>108</td>
<td>4.5892</td>
<td>0.5144</td>
<td>0.3401</td>
<td>0.3204</td>
<td>0.0905</td>
</tr>
<tr>
<td>112</td>
<td>4.5499</td>
<td>0.4457</td>
<td>0.3238</td>
<td>0.2846</td>
<td>0.0610</td>
</tr>
<tr>
<td>116</td>
<td>4.4230</td>
<td>0.5059</td>
<td>0.3149</td>
<td>0.3024</td>
<td>0.0775</td>
</tr>
<tr>
<td>120</td>
<td>4.2926</td>
<td>0.5235</td>
<td>0.2835</td>
<td>0.3092</td>
<td>0.0912</td>
</tr>
<tr>
<td>124</td>
<td>4.1227</td>
<td>0.4207</td>
<td>0.2570</td>
<td>0.2898</td>
<td>0.0598</td>
</tr>
<tr>
<td>θ</td>
<td>(\ddot{u})</td>
<td>(u')</td>
<td>(\ddot{v})</td>
<td>(v')</td>
<td>(-u'v')</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>128</td>
<td>3.9200</td>
<td>0.4239</td>
<td>0.2444</td>
<td>0.2749</td>
<td>0.0460</td>
</tr>
<tr>
<td>132</td>
<td>3.6889</td>
<td>0.3998</td>
<td>0.2488</td>
<td>0.2404</td>
<td>0.0385</td>
</tr>
<tr>
<td>136</td>
<td>3.5521</td>
<td>0.4076</td>
<td>0.2630</td>
<td>0.2528</td>
<td>0.0394</td>
</tr>
<tr>
<td>140</td>
<td>3.3526</td>
<td>0.4202</td>
<td>0.2975</td>
<td>0.2298</td>
<td>0.0467</td>
</tr>
<tr>
<td>144</td>
<td>3.0497</td>
<td>0.4540</td>
<td>0.2254</td>
<td>0.2527</td>
<td>0.0624</td>
</tr>
<tr>
<td>148</td>
<td>2.7508</td>
<td>0.4011</td>
<td>0.2815</td>
<td>0.1981</td>
<td>0.0334</td>
</tr>
<tr>
<td>152</td>
<td>2.4668</td>
<td>0.4130</td>
<td>0.2304</td>
<td>0.2402</td>
<td>0.0458</td>
</tr>
<tr>
<td>156</td>
<td>2.1376</td>
<td>0.3857</td>
<td>0.1768</td>
<td>0.2169</td>
<td>0.0250</td>
</tr>
<tr>
<td>160</td>
<td>1.8145</td>
<td>0.4095</td>
<td>0.1697</td>
<td>0.2122</td>
<td>0.0348</td>
</tr>
<tr>
<td>164</td>
<td>1.5397</td>
<td>0.4012</td>
<td>0.1809</td>
<td>0.2064</td>
<td>0.0394</td>
</tr>
<tr>
<td>168</td>
<td>1.2162</td>
<td>0.3091</td>
<td>0.1131</td>
<td>0.1846</td>
<td>0.0208</td>
</tr>
<tr>
<td>172</td>
<td>0.9114</td>
<td>0.2678</td>
<td>0.0838</td>
<td>0.1390</td>
<td>0.0164</td>
</tr>
<tr>
<td>176</td>
<td>0.5792</td>
<td>0.2265</td>
<td>0.0709</td>
<td>0.1168</td>
<td>0.0139</td>
</tr>
<tr>
<td>180</td>
<td>0.3661</td>
<td>0.1253</td>
<td>0.0339</td>
<td>0.0697</td>
<td>0.0025</td>
</tr>
<tr>
<td>θ deg.</td>
<td>u' m/sec</td>
<td>u'' m/sec</td>
<td>v' m/sec</td>
<td>v'' m/sec</td>
<td>$-\bar{u}\bar{v}'$ m²/sec²</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.4109</td>
<td>0.1408</td>
<td>0.0047</td>
<td>0.0561</td>
<td>-0.0021</td>
</tr>
<tr>
<td>8</td>
<td>0.7039</td>
<td>0.1299</td>
<td>0.0242</td>
<td>0.0648</td>
<td>-0.0025</td>
</tr>
<tr>
<td>12</td>
<td>1.0161</td>
<td>0.1249</td>
<td>0.0620</td>
<td>0.0759</td>
<td>0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.4378</td>
<td>0.1165</td>
<td>0.0909</td>
<td>0.0737</td>
<td>0.0017</td>
</tr>
<tr>
<td>20</td>
<td>1.8398</td>
<td>0.1045</td>
<td>0.1286</td>
<td>0.0655</td>
<td>0.0007</td>
</tr>
<tr>
<td>24</td>
<td>2.1562</td>
<td>0.1076</td>
<td>0.1421</td>
<td>0.0736</td>
<td>0.0035</td>
</tr>
<tr>
<td>28</td>
<td>2.4580</td>
<td>0.0902</td>
<td>0.1694</td>
<td>0.0698</td>
<td>0.0028</td>
</tr>
<tr>
<td>32</td>
<td>2.8609</td>
<td>0.1289</td>
<td>0.2092</td>
<td>0.1047</td>
<td>0.0097</td>
</tr>
<tr>
<td>36</td>
<td>3.2070</td>
<td>0.1290</td>
<td>0.2233</td>
<td>0.1074</td>
<td>0.0107</td>
</tr>
<tr>
<td>40</td>
<td>3.4558</td>
<td>0.0905</td>
<td>0.2455</td>
<td>0.0680</td>
<td>0.0032</td>
</tr>
<tr>
<td>44</td>
<td>3.7183</td>
<td>0.0871</td>
<td>0.2666</td>
<td>0.0430</td>
<td>0.0018</td>
</tr>
<tr>
<td>48</td>
<td>4.0906</td>
<td>0.1407</td>
<td>0.2639</td>
<td>0.1142</td>
<td>0.0053</td>
</tr>
<tr>
<td>52</td>
<td>4.3366</td>
<td>0.1126</td>
<td>0.3064</td>
<td>0.1071</td>
<td>0.0109</td>
</tr>
<tr>
<td>56</td>
<td>4.4911</td>
<td>0.1213</td>
<td>0.3360</td>
<td>0.0582</td>
<td>0.0044</td>
</tr>
<tr>
<td>60</td>
<td>4.6867</td>
<td>0.1480</td>
<td>0.3445</td>
<td>0.1057</td>
<td>0.0101</td>
</tr>
<tr>
<td>64</td>
<td>4.9277</td>
<td>0.1506</td>
<td>0.3727</td>
<td>0.0821</td>
<td>0.0079</td>
</tr>
<tr>
<td>68</td>
<td>5.1311</td>
<td>0.1954</td>
<td>0.4234</td>
<td>0.1234</td>
<td>0.0143</td>
</tr>
<tr>
<td>72</td>
<td>5.2337</td>
<td>0.1359</td>
<td>0.4305</td>
<td>0.0576</td>
<td>0.0016</td>
</tr>
<tr>
<td>76</td>
<td>5.3096</td>
<td>0.1571</td>
<td>0.4167</td>
<td>0.1068</td>
<td>0.0079</td>
</tr>
<tr>
<td>78</td>
<td>5.3586</td>
<td>0.2285</td>
<td>0.4073</td>
<td>0.1420</td>
<td>0.0153</td>
</tr>
<tr>
<td>80</td>
<td>5.4683</td>
<td>0.2669</td>
<td>0.4014</td>
<td>0.1232</td>
<td>0.0159</td>
</tr>
<tr>
<td>82</td>
<td>5.4239</td>
<td>0.3299</td>
<td>0.4037</td>
<td>0.1166</td>
<td>0.0103</td>
</tr>
<tr>
<td>84</td>
<td>5.3493</td>
<td>0.4357</td>
<td>0.3664</td>
<td>0.2189</td>
<td>0.0507</td>
</tr>
<tr>
<td>86</td>
<td>5.1744</td>
<td>0.5865</td>
<td>0.3393</td>
<td>0.3148</td>
<td>0.0777</td>
</tr>
<tr>
<td>88</td>
<td>5.0382</td>
<td>0.6124</td>
<td>0.4138</td>
<td>0.3660</td>
<td>0.1106</td>
</tr>
<tr>
<td>90</td>
<td>4.9143</td>
<td>0.5336</td>
<td>0.3138</td>
<td>0.3727</td>
<td>0.0854</td>
</tr>
<tr>
<td>92</td>
<td>4.9120</td>
<td>0.5395</td>
<td>0.2899</td>
<td>0.3211</td>
<td>0.0888</td>
</tr>
<tr>
<td>94</td>
<td>5.0160</td>
<td>0.4704</td>
<td>0.3674</td>
<td>0.3098</td>
<td>0.0746</td>
</tr>
<tr>
<td>96</td>
<td>5.0239</td>
<td>0.4544</td>
<td>0.3291</td>
<td>0.2903</td>
<td>0.0650</td>
</tr>
<tr>
<td>100</td>
<td>5.0056</td>
<td>0.4808</td>
<td>0.3487</td>
<td>0.2767</td>
<td>0.0704</td>
</tr>
<tr>
<td>104</td>
<td>4.9230</td>
<td>0.4966</td>
<td>0.3165</td>
<td>0.3008</td>
<td>0.0673</td>
</tr>
<tr>
<td>108</td>
<td>4.8070</td>
<td>0.4502</td>
<td>0.3430</td>
<td>0.2756</td>
<td>0.0617</td>
</tr>
<tr>
<td>112</td>
<td>4.7497</td>
<td>0.4147</td>
<td>0.3147</td>
<td>0.2862</td>
<td>0.0471</td>
</tr>
<tr>
<td>116</td>
<td>4.6833</td>
<td>0.4316</td>
<td>0.3279</td>
<td>0.2749</td>
<td>0.0524</td>
</tr>
<tr>
<td>120</td>
<td>4.5307</td>
<td>0.4391</td>
<td>0.3197</td>
<td>0.2884</td>
<td>0.0735</td>
</tr>
<tr>
<td>124</td>
<td>4.3488</td>
<td>0.4324</td>
<td>0.2880</td>
<td>0.2624</td>
<td>0.0636</td>
</tr>
<tr>
<td>128</td>
<td>4.1470</td>
<td>0.3838</td>
<td>0.2858</td>
<td>0.2563</td>
<td>0.0421</td>
</tr>
<tr>
<td>132</td>
<td>3.9336</td>
<td>0.4292</td>
<td>0.2963</td>
<td>0.2224</td>
<td>0.0469</td>
</tr>
<tr>
<td>136</td>
<td>3.7714</td>
<td>0.3997</td>
<td>0.2510</td>
<td>0.2536</td>
<td>0.0434</td>
</tr>
<tr>
<td>140</td>
<td>3.5997</td>
<td>0.4218</td>
<td>0.2911</td>
<td>0.2294</td>
<td>0.0414</td>
</tr>
<tr>
<td>144</td>
<td>3.2831</td>
<td>0.4232</td>
<td>0.2461</td>
<td>0.2546</td>
<td>0.0617</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>ě (m/sec)</td>
<td>u' (m/sec)</td>
<td>ě (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u'v' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>148</td>
<td>3.0355</td>
<td>0.4353</td>
<td>0.2657</td>
<td>0.2334</td>
<td>0.0418</td>
</tr>
<tr>
<td>152</td>
<td>2.7352</td>
<td>0.4206</td>
<td>0.2647</td>
<td>0.2677</td>
<td>0.0525</td>
</tr>
<tr>
<td>156</td>
<td>2.4566</td>
<td>0.3939</td>
<td>0.2337</td>
<td>0.2562</td>
<td>0.0401</td>
</tr>
<tr>
<td>160</td>
<td>2.1026</td>
<td>0.4061</td>
<td>0.2163</td>
<td>0.2311</td>
<td>0.0333</td>
</tr>
<tr>
<td>164</td>
<td>1.6702</td>
<td>0.3546</td>
<td>0.1306</td>
<td>0.2282</td>
<td>0.0349</td>
</tr>
<tr>
<td>168</td>
<td>1.2737</td>
<td>0.3310</td>
<td>0.0979</td>
<td>0.1960</td>
<td>0.0307</td>
</tr>
<tr>
<td>172</td>
<td>0.9657</td>
<td>0.2723</td>
<td>0.1003</td>
<td>0.1736</td>
<td>0.0241</td>
</tr>
<tr>
<td>176</td>
<td>0.6303</td>
<td>0.2107</td>
<td>0.0566</td>
<td>0.1091</td>
<td>0.0086</td>
</tr>
<tr>
<td>180</td>
<td>0.3866</td>
<td>0.1415</td>
<td>0.0338</td>
<td>0.0731</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

SPRE

s/d = 30

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>ě (m/sec)</th>
<th>u' (m/sec)</th>
<th>ě (m/sec)</th>
<th>v' (m/sec)</th>
<th>-u'v' (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3650</td>
<td>0.1316</td>
<td>-0.0073</td>
<td>0.0557</td>
<td>-0.0029</td>
</tr>
<tr>
<td>8</td>
<td>0.6694</td>
<td>0.1213</td>
<td>0.0179</td>
<td>0.0685</td>
<td>-0.0003</td>
</tr>
<tr>
<td>12</td>
<td>0.9861</td>
<td>0.1203</td>
<td>0.0539</td>
<td>0.0723</td>
<td>-0.0015</td>
</tr>
<tr>
<td>16</td>
<td>1.4051</td>
<td>0.1216</td>
<td>0.0875</td>
<td>0.0738</td>
<td>-0.0015</td>
</tr>
<tr>
<td>20</td>
<td>1.6319</td>
<td>0.1068</td>
<td>0.1152</td>
<td>0.0779</td>
<td>-0.0005</td>
</tr>
<tr>
<td>24</td>
<td>2.1395</td>
<td>0.1162</td>
<td>0.1418</td>
<td>0.0779</td>
<td>0.0012</td>
</tr>
<tr>
<td>28</td>
<td>2.4491</td>
<td>0.1038</td>
<td>0.1685</td>
<td>0.0661</td>
<td>0.0014</td>
</tr>
<tr>
<td>32</td>
<td>2.6809</td>
<td>0.1028</td>
<td>0.2015</td>
<td>0.0721</td>
<td>0.0021</td>
</tr>
<tr>
<td>36</td>
<td>3.2251</td>
<td>0.0933</td>
<td>0.2211</td>
<td>0.0887</td>
<td>0.0034</td>
</tr>
<tr>
<td>40</td>
<td>3.5078</td>
<td>0.1193</td>
<td>0.2559</td>
<td>0.0855</td>
<td>0.0063</td>
</tr>
<tr>
<td>44</td>
<td>3.7683</td>
<td>0.0968</td>
<td>0.2589</td>
<td>0.0896</td>
<td>0.0063</td>
</tr>
<tr>
<td>48</td>
<td>4.1780</td>
<td>0.1364</td>
<td>0.2437</td>
<td>0.1093</td>
<td>0.0064</td>
</tr>
<tr>
<td>52</td>
<td>4.4356</td>
<td>0.1049</td>
<td>0.3255</td>
<td>0.0880</td>
<td>0.0075</td>
</tr>
<tr>
<td>56</td>
<td>4.6548</td>
<td>0.1070</td>
<td>0.3436</td>
<td>0.0909</td>
<td>0.0081</td>
</tr>
<tr>
<td>60</td>
<td>4.8532</td>
<td>0.0960</td>
<td>0.3370</td>
<td>0.0747</td>
<td>0.0051</td>
</tr>
<tr>
<td>64</td>
<td>5.1479</td>
<td>0.1193</td>
<td>0.3777</td>
<td>0.1099</td>
<td>0.0110</td>
</tr>
<tr>
<td>68</td>
<td>5.3912</td>
<td>0.1070</td>
<td>0.4063</td>
<td>0.1065</td>
<td>0.0101</td>
</tr>
<tr>
<td>72</td>
<td>5.4700</td>
<td>0.0897</td>
<td>0.3679</td>
<td>0.0484</td>
<td>0.0006</td>
</tr>
<tr>
<td>76</td>
<td>5.6279</td>
<td>0.1050</td>
<td>0.3775</td>
<td>0.0765</td>
<td>0.0054</td>
</tr>
<tr>
<td>80</td>
<td>5.6728</td>
<td>0.1595</td>
<td>0.3805</td>
<td>0.1168</td>
<td>0.0127</td>
</tr>
<tr>
<td>82</td>
<td>5.7306</td>
<td>0.2297</td>
<td>0.3895</td>
<td>0.1344</td>
<td>0.0146</td>
</tr>
<tr>
<td>84</td>
<td>5.7150</td>
<td>0.3691</td>
<td>0.3873</td>
<td>0.2368</td>
<td>0.0406</td>
</tr>
<tr>
<td>86</td>
<td>5.6220</td>
<td>0.4726</td>
<td>0.3722</td>
<td>0.2503</td>
<td>0.0486</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>(\ddot{u}) (m/sec)</td>
<td>(u') (m/sec)</td>
<td>(\ddot{v}) (m/sec)</td>
<td>(v') (m/sec)</td>
<td>(-u'v') (m²/sec²)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>88</td>
<td>5.4040</td>
<td>0.5532</td>
<td>0.3188</td>
<td>0.3458</td>
<td>0.0930</td>
</tr>
<tr>
<td>90</td>
<td>5.3587</td>
<td>0.4818</td>
<td>0.3353</td>
<td>0.3343</td>
<td>0.0729</td>
</tr>
<tr>
<td>92</td>
<td>5.3024</td>
<td>0.4633</td>
<td>0.3308</td>
<td>0.2844</td>
<td>0.0634</td>
</tr>
<tr>
<td>94</td>
<td>5.3414</td>
<td>0.4463</td>
<td>0.3621</td>
<td>0.2837</td>
<td>0.0624</td>
</tr>
<tr>
<td>96</td>
<td>5.3836</td>
<td>0.4195</td>
<td>0.3845</td>
<td>0.2549</td>
<td>0.0536</td>
</tr>
<tr>
<td>100</td>
<td>5.3918</td>
<td>0.4136</td>
<td>0.3696</td>
<td>0.2237</td>
<td>0.0382</td>
</tr>
<tr>
<td>104</td>
<td>5.3321</td>
<td>0.4444</td>
<td>0.3858</td>
<td>0.2900</td>
<td>0.0670</td>
</tr>
<tr>
<td>108</td>
<td>5.2162</td>
<td>0.4244</td>
<td>0.3928</td>
<td>0.2644</td>
<td>0.0523</td>
</tr>
<tr>
<td>112</td>
<td>5.1269</td>
<td>0.4493</td>
<td>0.3680</td>
<td>0.2748</td>
<td>0.0569</td>
</tr>
<tr>
<td>116</td>
<td>4.9577</td>
<td>0.4806</td>
<td>0.3507</td>
<td>0.2899</td>
<td>0.0758</td>
</tr>
<tr>
<td>120</td>
<td>4.8443</td>
<td>0.4096</td>
<td>0.3427</td>
<td>0.2785</td>
<td>0.0733</td>
</tr>
<tr>
<td>124</td>
<td>4.6796</td>
<td>0.3906</td>
<td>0.3377</td>
<td>0.2583</td>
<td>0.0546</td>
</tr>
<tr>
<td>128</td>
<td>4.4502</td>
<td>0.3622</td>
<td>0.3001</td>
<td>0.2330</td>
<td>0.0376</td>
</tr>
<tr>
<td>132</td>
<td>4.3230</td>
<td>0.3554</td>
<td>0.2856</td>
<td>0.2131</td>
<td>0.0372</td>
</tr>
<tr>
<td>136</td>
<td>4.0866</td>
<td>0.3996</td>
<td>0.2809</td>
<td>0.2277</td>
<td>0.0487</td>
</tr>
<tr>
<td>140</td>
<td>3.9401</td>
<td>0.3682</td>
<td>0.2885</td>
<td>0.2303</td>
<td>0.0316</td>
</tr>
<tr>
<td>144</td>
<td>3.7346</td>
<td>0.3717</td>
<td>0.2574</td>
<td>0.1675</td>
<td>0.0259</td>
</tr>
<tr>
<td>148</td>
<td>3.4596</td>
<td>0.3160</td>
<td>0.2778</td>
<td>0.2022</td>
<td>0.0235</td>
</tr>
<tr>
<td>152</td>
<td>3.0764</td>
<td>0.4170</td>
<td>0.2518</td>
<td>0.2349</td>
<td>0.0345</td>
</tr>
<tr>
<td>156</td>
<td>2.7873</td>
<td>0.3501</td>
<td>0.2119</td>
<td>0.1939</td>
<td>0.0320</td>
</tr>
<tr>
<td>160</td>
<td>2.3643</td>
<td>0.4025</td>
<td>0.2126</td>
<td>0.2083</td>
<td>0.0302</td>
</tr>
<tr>
<td>164</td>
<td>1.8936</td>
<td>0.3794</td>
<td>0.1527</td>
<td>0.2207</td>
<td>0.0379</td>
</tr>
<tr>
<td>168</td>
<td>1.5529</td>
<td>0.3106</td>
<td>0.1557</td>
<td>0.1878</td>
<td>0.0283</td>
</tr>
<tr>
<td>172</td>
<td>1.1514</td>
<td>0.2891</td>
<td>0.0929</td>
<td>0.1830</td>
<td>0.0183</td>
</tr>
<tr>
<td>176</td>
<td>0.7916</td>
<td>0.2502</td>
<td>0.0760</td>
<td>0.1377</td>
<td>0.0132</td>
</tr>
<tr>
<td>180</td>
<td>0.4450</td>
<td>0.1506</td>
<td>0.0450</td>
<td>0.0755</td>
<td>0.0041</td>
</tr>
</tbody>
</table>

Spre

s/d = 30

r/R = 0.467

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>(\ddot{u}) (m/sec)</th>
<th>(u') (m/sec)</th>
<th>(\ddot{v}) (m/sec)</th>
<th>(v') (m/sec)</th>
<th>(-u'v') (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3205</td>
<td>0.1028</td>
<td>0.0114</td>
<td>0.0528</td>
<td>0.0001</td>
</tr>
<tr>
<td>8</td>
<td>0.6029</td>
<td>0.1402</td>
<td>0.0245</td>
<td>0.0750</td>
<td>-0.0017</td>
</tr>
<tr>
<td>12</td>
<td>0.9175</td>
<td>0.1278</td>
<td>0.0618</td>
<td>0.0791</td>
<td>-0.0003</td>
</tr>
<tr>
<td>16</td>
<td>1.3359</td>
<td>0.1191</td>
<td>0.0797</td>
<td>0.0806</td>
<td>-0.0024</td>
</tr>
<tr>
<td>20</td>
<td>1.7636</td>
<td>0.1066</td>
<td>0.1237</td>
<td>0.0790</td>
<td>-0.0006</td>
</tr>
<tr>
<td>24</td>
<td>2.0766</td>
<td>0.1117</td>
<td>0.1384</td>
<td>0.0828</td>
<td>0.0012</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u*v' (m²/sec²)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>28</td>
<td>2.4099</td>
<td>0.1283</td>
<td>0.1762</td>
<td>0.1042</td>
<td>0.0064</td>
</tr>
<tr>
<td>32</td>
<td>2.6077</td>
<td>0.1130</td>
<td>0.2062</td>
<td>0.0737</td>
<td>0.0044</td>
</tr>
<tr>
<td>36</td>
<td>3.1927</td>
<td>0.0989</td>
<td>0.2148</td>
<td>0.0821</td>
<td>0.0029</td>
</tr>
<tr>
<td>40</td>
<td>3.4773</td>
<td>0.0751</td>
<td>0.2397</td>
<td>0.0621</td>
<td>0.0005</td>
</tr>
<tr>
<td>44</td>
<td>3.7743</td>
<td>0.1043</td>
<td>0.2634</td>
<td>0.0713</td>
<td>0.0036</td>
</tr>
<tr>
<td>48</td>
<td>4.1665</td>
<td>0.1303</td>
<td>0.2346</td>
<td>0.1212</td>
<td>0.0103</td>
</tr>
<tr>
<td>52</td>
<td>4.4197</td>
<td>0.0966</td>
<td>0.3165</td>
<td>0.0852</td>
<td>0.0058</td>
</tr>
<tr>
<td>56</td>
<td>4.6201</td>
<td>0.1139</td>
<td>0.3175</td>
<td>0.1053</td>
<td>0.0092</td>
</tr>
<tr>
<td>60</td>
<td>4.8697</td>
<td>0.1077</td>
<td>0.3365</td>
<td>0.0970</td>
<td>0.0091</td>
</tr>
<tr>
<td>64</td>
<td>5.2193</td>
<td>0.1193</td>
<td>0.4151</td>
<td>0.1015</td>
<td>0.0096</td>
</tr>
<tr>
<td>68</td>
<td>5.3653</td>
<td>0.0639</td>
<td>0.3660</td>
<td>0.0555</td>
<td>0.0017</td>
</tr>
<tr>
<td>72</td>
<td>5.4971</td>
<td>0.1156</td>
<td>0.3638</td>
<td>0.1192</td>
<td>0.0124</td>
</tr>
<tr>
<td>76</td>
<td>5.6428</td>
<td>0.1086</td>
<td>0.3760</td>
<td>0.0946</td>
<td>0.0080</td>
</tr>
<tr>
<td>78</td>
<td>5.7177</td>
<td>0.1610</td>
<td>0.3866</td>
<td>0.1443</td>
<td>0.0176</td>
</tr>
<tr>
<td>80</td>
<td>5.7893</td>
<td>0.1341</td>
<td>0.3900</td>
<td>0.1062</td>
<td>0.0056</td>
</tr>
<tr>
<td>82</td>
<td>5.7946</td>
<td>0.1907</td>
<td>0.3814</td>
<td>0.1524</td>
<td>0.0117</td>
</tr>
<tr>
<td>84</td>
<td>5.8187</td>
<td>0.3063</td>
<td>0.3866</td>
<td>0.2234</td>
<td>0.0419</td>
</tr>
<tr>
<td>86</td>
<td>5.8584</td>
<td>0.3754</td>
<td>0.3724</td>
<td>0.2145</td>
<td>0.0357</td>
</tr>
<tr>
<td>88</td>
<td>5.7459</td>
<td>0.4571</td>
<td>0.3397</td>
<td>0.3329</td>
<td>0.0817</td>
</tr>
<tr>
<td>90</td>
<td>5.6090</td>
<td>0.4564</td>
<td>0.3303</td>
<td>0.2596</td>
<td>0.0509</td>
</tr>
<tr>
<td>92</td>
<td>5.5576</td>
<td>0.4334</td>
<td>0.3283</td>
<td>0.2617</td>
<td>0.0538</td>
</tr>
<tr>
<td>94</td>
<td>5.5854</td>
<td>0.4331</td>
<td>0.3920</td>
<td>0.2611</td>
<td>0.0524</td>
</tr>
<tr>
<td>96</td>
<td>5.6153</td>
<td>0.4196</td>
<td>0.4119</td>
<td>0.3042</td>
<td>0.0672</td>
</tr>
<tr>
<td>100</td>
<td>5.5797</td>
<td>0.4401</td>
<td>0.3515</td>
<td>0.2347</td>
<td>0.0496</td>
</tr>
<tr>
<td>104</td>
<td>5.5452</td>
<td>0.3628</td>
<td>0.3805</td>
<td>0.2372</td>
<td>0.0310</td>
</tr>
<tr>
<td>108</td>
<td>5.4114</td>
<td>0.4168</td>
<td>0.3451</td>
<td>0.2550</td>
<td>0.0443</td>
</tr>
<tr>
<td>112</td>
<td>5.3362</td>
<td>0.4060</td>
<td>0.4009</td>
<td>0.2467</td>
<td>0.0440</td>
</tr>
<tr>
<td>116</td>
<td>5.2502</td>
<td>0.4208</td>
<td>0.3734</td>
<td>0.2740</td>
<td>0.0516</td>
</tr>
<tr>
<td>120</td>
<td>5.0956</td>
<td>0.3748</td>
<td>0.3556</td>
<td>0.2410</td>
<td>0.0433</td>
</tr>
<tr>
<td>124</td>
<td>4.9263</td>
<td>0.3393</td>
<td>0.3459</td>
<td>0.1888</td>
<td>0.0222</td>
</tr>
<tr>
<td>128</td>
<td>4.7605</td>
<td>0.3185</td>
<td>0.3219</td>
<td>0.2321</td>
<td>0.0355</td>
</tr>
<tr>
<td>132</td>
<td>4.5040</td>
<td>0.3321</td>
<td>0.2790</td>
<td>0.2447</td>
<td>0.0479</td>
</tr>
<tr>
<td>136</td>
<td>4.3394</td>
<td>0.2771</td>
<td>0.2771</td>
<td>0.1941</td>
<td>0.0244</td>
</tr>
<tr>
<td>140</td>
<td>4.1706</td>
<td>0.2583</td>
<td>0.2654</td>
<td>0.1366</td>
<td>0.0152</td>
</tr>
<tr>
<td>144</td>
<td>3.9240</td>
<td>0.2671</td>
<td>0.2714</td>
<td>0.1715</td>
<td>0.0207</td>
</tr>
<tr>
<td>148</td>
<td>3.6300</td>
<td>0.2655</td>
<td>0.2810</td>
<td>0.1886</td>
<td>0.0199</td>
</tr>
<tr>
<td>152</td>
<td>3.2796</td>
<td>0.3353</td>
<td>0.2571</td>
<td>0.1635</td>
<td>0.0096</td>
</tr>
<tr>
<td>156</td>
<td>3.0164</td>
<td>0.2520</td>
<td>0.2362</td>
<td>0.1860</td>
<td>0.0133</td>
</tr>
<tr>
<td>160</td>
<td>2.6084</td>
<td>0.2833</td>
<td>0.2028</td>
<td>0.1808</td>
<td>0.0188</td>
</tr>
<tr>
<td>164</td>
<td>2.1309</td>
<td>0.3147</td>
<td>0.1706</td>
<td>0.2369</td>
<td>0.0226</td>
</tr>
<tr>
<td>168</td>
<td>1.7169</td>
<td>0.2874</td>
<td>0.1544</td>
<td>0.2041</td>
<td>0.0217</td>
</tr>
<tr>
<td>172</td>
<td>1.2889</td>
<td>0.2771</td>
<td>0.0909</td>
<td>0.1870</td>
<td>0.0151</td>
</tr>
<tr>
<td>176</td>
<td>0.8284</td>
<td>0.2428</td>
<td>0.0773</td>
<td>0.1459</td>
<td>0.0160</td>
</tr>
<tr>
<td>180</td>
<td>0.4829</td>
<td>0.1578</td>
<td>0.0467</td>
<td>0.0908</td>
<td>0.0058</td>
</tr>
</tbody>
</table>
SPRE

\(r/R = 0.333 \)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\dot{u})</th>
<th>(u')</th>
<th>(\dot{v})</th>
<th>(v')</th>
<th>(-u'v')</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m(^2)/sec(^2)</td>
</tr>
<tr>
<td>4</td>
<td>0.2747</td>
<td>0.0773</td>
<td>0.0170</td>
<td>0.0517</td>
<td>0.0004</td>
</tr>
<tr>
<td>6</td>
<td>0.5389</td>
<td>0.1138</td>
<td>0.0285</td>
<td>0.0682</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>0.8817</td>
<td>0.1210</td>
<td>0.0633</td>
<td>0.0840</td>
<td>-0.0012</td>
</tr>
<tr>
<td>16</td>
<td>1.3005</td>
<td>0.0945</td>
<td>0.0960</td>
<td>0.0818</td>
<td>-0.0002</td>
</tr>
<tr>
<td>20</td>
<td>1.7403</td>
<td>0.1124</td>
<td>0.1198</td>
<td>0.0792</td>
<td>-0.0020</td>
</tr>
<tr>
<td>24</td>
<td>2.0697</td>
<td>0.1188</td>
<td>0.1536</td>
<td>0.0833</td>
<td>0.0012</td>
</tr>
<tr>
<td>28</td>
<td>2.3738</td>
<td>0.1106</td>
<td>0.1681</td>
<td>0.0928</td>
<td>0.0036</td>
</tr>
<tr>
<td>32</td>
<td>2.7912</td>
<td>0.1058</td>
<td>0.1855</td>
<td>0.0879</td>
<td>0.0031</td>
</tr>
<tr>
<td>36</td>
<td>3.1939</td>
<td>0.0943</td>
<td>0.2100</td>
<td>0.0706</td>
<td>0.0009</td>
</tr>
<tr>
<td>40</td>
<td>3.4889</td>
<td>0.0876</td>
<td>0.2487</td>
<td>0.0714</td>
<td>0.0023</td>
</tr>
<tr>
<td>44</td>
<td>3.7725</td>
<td>0.0831</td>
<td>0.2567</td>
<td>0.0649</td>
<td>0.0015</td>
</tr>
<tr>
<td>48</td>
<td>4.1719</td>
<td>0.1179</td>
<td>0.2444</td>
<td>0.1276</td>
<td>0.0058</td>
</tr>
<tr>
<td>52</td>
<td>4.4492</td>
<td>0.1189</td>
<td>0.3099</td>
<td>0.1253</td>
<td>0.0125</td>
</tr>
<tr>
<td>56</td>
<td>4.6827</td>
<td>0.1145</td>
<td>0.3444</td>
<td>0.1134</td>
<td>0.0108</td>
</tr>
<tr>
<td>60</td>
<td>4.9046</td>
<td>0.1151</td>
<td>0.3318</td>
<td>0.1143</td>
<td>0.0116</td>
</tr>
<tr>
<td>64</td>
<td>5.2017</td>
<td>0.1096</td>
<td>0.3805</td>
<td>0.1047</td>
<td>0.0097</td>
</tr>
<tr>
<td>68</td>
<td>5.4455</td>
<td>0.1390</td>
<td>0.4014</td>
<td>0.1439</td>
<td>0.0187</td>
</tr>
<tr>
<td>72</td>
<td>5.5465</td>
<td>0.0993</td>
<td>0.3555</td>
<td>0.1028</td>
<td>0.0090</td>
</tr>
<tr>
<td>76</td>
<td>5.6672</td>
<td>0.1239</td>
<td>0.3551</td>
<td>0.1247</td>
<td>0.0134</td>
</tr>
<tr>
<td>78</td>
<td>5.7597</td>
<td>0.1519</td>
<td>0.3862</td>
<td>0.1455</td>
<td>0.0178</td>
</tr>
<tr>
<td>80</td>
<td>5.8211</td>
<td>0.1324</td>
<td>0.3661</td>
<td>0.1035</td>
<td>0.0057</td>
</tr>
<tr>
<td>82</td>
<td>5.9025</td>
<td>0.1654</td>
<td>0.3943</td>
<td>0.1561</td>
<td>0.0123</td>
</tr>
<tr>
<td>84</td>
<td>5.9333</td>
<td>0.2447</td>
<td>0.3880</td>
<td>0.1710</td>
<td>0.0212</td>
</tr>
<tr>
<td>86</td>
<td>6.0092</td>
<td>0.3272</td>
<td>0.4001</td>
<td>0.2218</td>
<td>0.0287</td>
</tr>
<tr>
<td>88</td>
<td>6.0573</td>
<td>0.3902</td>
<td>0.3616</td>
<td>0.2618</td>
<td>0.0558</td>
</tr>
<tr>
<td>90</td>
<td>5.9271</td>
<td>0.4199</td>
<td>0.3685</td>
<td>0.2695</td>
<td>0.0432</td>
</tr>
<tr>
<td>92</td>
<td>5.8480</td>
<td>0.4349</td>
<td>0.3715</td>
<td>0.2927</td>
<td>0.0589</td>
</tr>
<tr>
<td>94</td>
<td>5.8083</td>
<td>0.3824</td>
<td>0.3515</td>
<td>0.2687</td>
<td>0.0415</td>
</tr>
<tr>
<td>96</td>
<td>5.8178</td>
<td>0.3973</td>
<td>0.3839</td>
<td>0.2616</td>
<td>0.0380</td>
</tr>
<tr>
<td>100</td>
<td>5.8178</td>
<td>0.3463</td>
<td>0.3870</td>
<td>0.2521</td>
<td>0.0393</td>
</tr>
<tr>
<td>104</td>
<td>5.7328</td>
<td>0.3474</td>
<td>0.3677</td>
<td>0.2247</td>
<td>0.0276</td>
</tr>
<tr>
<td>108</td>
<td>5.5789</td>
<td>0.3620</td>
<td>0.3716</td>
<td>0.2202</td>
<td>0.0248</td>
</tr>
<tr>
<td>112</td>
<td>5.5170</td>
<td>0.3550</td>
<td>0.3846</td>
<td>0.2094</td>
<td>0.0173</td>
</tr>
<tr>
<td>116</td>
<td>5.3807</td>
<td>0.3737</td>
<td>0.3638</td>
<td>0.2389</td>
<td>0.0318</td>
</tr>
<tr>
<td>120</td>
<td>5.2974</td>
<td>0.3395</td>
<td>0.3757</td>
<td>0.2324</td>
<td>0.0285</td>
</tr>
<tr>
<td>124</td>
<td>5.1116</td>
<td>0.3253</td>
<td>0.3737</td>
<td>0.2380</td>
<td>0.0274</td>
</tr>
<tr>
<td>128</td>
<td>4.9624</td>
<td>0.3561</td>
<td>0.3321</td>
<td>0.2502</td>
<td>0.0529</td>
</tr>
<tr>
<td>132</td>
<td>4.7395</td>
<td>0.2370</td>
<td>0.3175</td>
<td>0.1765</td>
<td>0.0163</td>
</tr>
<tr>
<td>136</td>
<td>4.5120</td>
<td>0.1551</td>
<td>0.3077</td>
<td>0.1328</td>
<td>0.0031</td>
</tr>
<tr>
<td>140</td>
<td>4.2960</td>
<td>0.1733</td>
<td>0.2466</td>
<td>0.1559</td>
<td>0.0123</td>
</tr>
<tr>
<td>144</td>
<td>4.0142</td>
<td>0.1714</td>
<td>0.2756</td>
<td>0.1376</td>
<td>0.0050</td>
</tr>
<tr>
<td>148</td>
<td>3.7400</td>
<td>0.2042</td>
<td>0.2498</td>
<td>0.1412</td>
<td>0.0153</td>
</tr>
</tbody>
</table>

81
<table>
<thead>
<tr>
<th>θ</th>
<th>ıu</th>
<th>u'</th>
<th>ıv</th>
<th>v'</th>
<th>-ıuıv'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>152</td>
<td>3.4052</td>
<td>0.2553</td>
<td>0.2371</td>
<td>0.1921</td>
<td>0.0020</td>
</tr>
<tr>
<td>156</td>
<td>3.0659</td>
<td>0.2561</td>
<td>0.1755</td>
<td>0.1859</td>
<td>0.0163</td>
</tr>
<tr>
<td>160</td>
<td>2.6861</td>
<td>0.2671</td>
<td>0.1967</td>
<td>0.1783</td>
<td>0.0083</td>
</tr>
<tr>
<td>164</td>
<td>2.2303</td>
<td>0.2563</td>
<td>0.1636</td>
<td>0.1890</td>
<td>0.0098</td>
</tr>
<tr>
<td>168</td>
<td>1.8339</td>
<td>0.2664</td>
<td>0.1318</td>
<td>0.1964</td>
<td>0.0133</td>
</tr>
<tr>
<td>172</td>
<td>1.3825</td>
<td>0.2690</td>
<td>0.1189</td>
<td>0.1872</td>
<td>0.0141</td>
</tr>
<tr>
<td>176</td>
<td>0.9456</td>
<td>0.2342</td>
<td>0.0931</td>
<td>0.1566</td>
<td>0.0156</td>
</tr>
<tr>
<td>180</td>
<td>0.5111</td>
<td>0.1592</td>
<td>0.0438</td>
<td>0.0904</td>
<td>0.0064</td>
</tr>
</tbody>
</table>

SPRE

s/d = 30

r/R = 0.200

<table>
<thead>
<tr>
<th>θ</th>
<th>ıu</th>
<th>u'</th>
<th>ıv</th>
<th>v'</th>
<th>-ıuıv'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.2644</td>
<td>0.0753</td>
<td>0.0218</td>
<td>0.0501</td>
<td>0.0014</td>
</tr>
<tr>
<td>8</td>
<td>0.5110</td>
<td>0.1216</td>
<td>0.0313</td>
<td>0.0718</td>
<td>0.0021</td>
</tr>
<tr>
<td>12</td>
<td>0.8520</td>
<td>0.1118</td>
<td>0.0763</td>
<td>0.0810</td>
<td>0.0009</td>
</tr>
<tr>
<td>16</td>
<td>1.2527</td>
<td>0.0999</td>
<td>0.1060</td>
<td>0.0696</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>1.6710</td>
<td>0.1106</td>
<td>0.1252</td>
<td>0.0908</td>
<td>0.0042</td>
</tr>
<tr>
<td>24</td>
<td>2.0262</td>
<td>0.1026</td>
<td>0.1525</td>
<td>0.0835</td>
<td>0.0021</td>
</tr>
<tr>
<td>28</td>
<td>2.3639</td>
<td>0.1014</td>
<td>0.1676</td>
<td>0.0984</td>
<td>0.0037</td>
</tr>
<tr>
<td>32</td>
<td>2.7835</td>
<td>0.1051</td>
<td>0.2009</td>
<td>0.0932</td>
<td>0.0038</td>
</tr>
<tr>
<td>36</td>
<td>3.1659</td>
<td>0.1183</td>
<td>0.2291</td>
<td>0.1118</td>
<td>0.0085</td>
</tr>
<tr>
<td>40</td>
<td>3.4537</td>
<td>0.0819</td>
<td>0.2481</td>
<td>0.0693</td>
<td>0.0013</td>
</tr>
<tr>
<td>44</td>
<td>3.7378</td>
<td>0.1271</td>
<td>0.2473</td>
<td>0.1182</td>
<td>0.0119</td>
</tr>
<tr>
<td>48</td>
<td>4.1524</td>
<td>0.1244</td>
<td>0.2592</td>
<td>0.1066</td>
<td>0.0040</td>
</tr>
<tr>
<td>52</td>
<td>4.4225</td>
<td>0.0867</td>
<td>0.3147</td>
<td>0.0892</td>
<td>0.0056</td>
</tr>
<tr>
<td>56</td>
<td>4.6495</td>
<td>0.0717</td>
<td>0.3371</td>
<td>0.0652</td>
<td>0.0026</td>
</tr>
<tr>
<td>60</td>
<td>4.8774</td>
<td>0.0702</td>
<td>0.3293</td>
<td>0.0583</td>
<td>0.0027</td>
</tr>
<tr>
<td>64</td>
<td>5.1664</td>
<td>0.0890</td>
<td>0.3643</td>
<td>0.0805</td>
<td>0.0054</td>
</tr>
<tr>
<td>68</td>
<td>5.4158</td>
<td>0.1679</td>
<td>0.3952</td>
<td>0.1714</td>
<td>0.0274</td>
</tr>
<tr>
<td>72</td>
<td>5.5226</td>
<td>0.0764</td>
<td>0.3542</td>
<td>0.0715</td>
<td>0.0043</td>
</tr>
<tr>
<td>76</td>
<td>5.6409</td>
<td>0.1197</td>
<td>0.3632</td>
<td>0.1274</td>
<td>0.0128</td>
</tr>
<tr>
<td>78</td>
<td>5.7144</td>
<td>0.0962</td>
<td>0.3622</td>
<td>0.1045</td>
<td>0.0048</td>
</tr>
<tr>
<td>80</td>
<td>5.7977</td>
<td>0.1372</td>
<td>0.3539</td>
<td>0.1307</td>
<td>0.0072</td>
</tr>
<tr>
<td>82</td>
<td>5.8813</td>
<td>0.2007</td>
<td>0.3614</td>
<td>0.1842</td>
<td>0.0219</td>
</tr>
<tr>
<td>84</td>
<td>5.9653</td>
<td>0.1950</td>
<td>0.3516</td>
<td>0.1764</td>
<td>0.0147</td>
</tr>
<tr>
<td>86</td>
<td>6.1590</td>
<td>0.3250</td>
<td>0.3889</td>
<td>0.2476</td>
<td>0.0399</td>
</tr>
<tr>
<td>88</td>
<td>6.2116</td>
<td>0.3061</td>
<td>0.3591</td>
<td>0.2553</td>
<td>0.0237</td>
</tr>
<tr>
<td>θ</td>
<td>̅u</td>
<td>u'</td>
<td>̅v</td>
<td>v'</td>
<td>-u'v'</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>90</td>
<td>6.0627</td>
<td>0.4075</td>
<td>0.3777</td>
<td>0.2748</td>
<td>0.0455</td>
</tr>
<tr>
<td>92</td>
<td>5.9538</td>
<td>0.3101</td>
<td>0.3984</td>
<td>0.2157</td>
<td>0.0236</td>
</tr>
<tr>
<td>94</td>
<td>5.9587</td>
<td>0.3355</td>
<td>0.3580</td>
<td>0.2512</td>
<td>0.0267</td>
</tr>
<tr>
<td>96</td>
<td>5.9027</td>
<td>0.2877</td>
<td>0.3970</td>
<td>0.2233</td>
<td>0.0239</td>
</tr>
<tr>
<td>100</td>
<td>5.8501</td>
<td>0.3174</td>
<td>0.3812</td>
<td>0.2174</td>
<td>0.0209</td>
</tr>
<tr>
<td>104</td>
<td>5.7968</td>
<td>0.3006</td>
<td>0.3835</td>
<td>0.2048</td>
<td>0.0144</td>
</tr>
<tr>
<td>108</td>
<td>5.6861</td>
<td>0.2882</td>
<td>0.3488</td>
<td>0.1988</td>
<td>0.0154</td>
</tr>
<tr>
<td>112</td>
<td>5.6043</td>
<td>0.3274</td>
<td>0.3608</td>
<td>0.2593</td>
<td>0.0259</td>
</tr>
<tr>
<td>116</td>
<td>5.4799</td>
<td>0.2893</td>
<td>0.3526</td>
<td>0.2218</td>
<td>0.0118</td>
</tr>
<tr>
<td>120</td>
<td>5.3979</td>
<td>0.2773</td>
<td>0.3274</td>
<td>0.1911</td>
<td>0.0109</td>
</tr>
<tr>
<td>124</td>
<td>5.2439</td>
<td>0.2864</td>
<td>0.3370</td>
<td>0.2234</td>
<td>0.0288</td>
</tr>
<tr>
<td>128</td>
<td>5.0158</td>
<td>0.2725</td>
<td>0.3193</td>
<td>0.2182</td>
<td>0.0251</td>
</tr>
<tr>
<td>132</td>
<td>4.7339</td>
<td>0.2206</td>
<td>0.2782</td>
<td>0.1725</td>
<td>0.0168</td>
</tr>
<tr>
<td>136</td>
<td>4.4914</td>
<td>0.1946</td>
<td>0.2864</td>
<td>0.1538</td>
<td>0.0151</td>
</tr>
<tr>
<td>140</td>
<td>4.2754</td>
<td>0.1929</td>
<td>0.2455</td>
<td>0.1491</td>
<td>0.0152</td>
</tr>
<tr>
<td>144</td>
<td>3.9894</td>
<td>0.2034</td>
<td>0.2318</td>
<td>0.1471</td>
<td>0.0077</td>
</tr>
<tr>
<td>148</td>
<td>3.7441</td>
<td>0.2105</td>
<td>0.2297</td>
<td>0.1507</td>
<td>0.0167</td>
</tr>
<tr>
<td>152</td>
<td>3.4030</td>
<td>0.2226</td>
<td>0.2122</td>
<td>0.1478</td>
<td>0.0019</td>
</tr>
<tr>
<td>156</td>
<td>3.0378</td>
<td>0.2683</td>
<td>0.1620</td>
<td>0.1734</td>
<td>0.0125</td>
</tr>
<tr>
<td>160</td>
<td>2.6719</td>
<td>0.2713</td>
<td>0.1521</td>
<td>0.1942</td>
<td>0.0096</td>
</tr>
<tr>
<td>164</td>
<td>2.5250</td>
<td>0.2536</td>
<td>0.1275</td>
<td>0.1957</td>
<td>0.0120</td>
</tr>
<tr>
<td>168</td>
<td>1.8411</td>
<td>0.2625</td>
<td>0.0801</td>
<td>0.2016</td>
<td>0.0133</td>
</tr>
<tr>
<td>172</td>
<td>1.4337</td>
<td>0.2665</td>
<td>0.1012</td>
<td>0.1655</td>
<td>0.0120</td>
</tr>
<tr>
<td>176</td>
<td>0.9965</td>
<td>0.2252</td>
<td>0.0821</td>
<td>0.1574</td>
<td>0.0122</td>
</tr>
<tr>
<td>180</td>
<td>0.5649</td>
<td>0.1622</td>
<td>0.0312</td>
<td>0.0837</td>
<td>0.0034</td>
</tr>
</tbody>
</table>

SPRE

\[r/R = 0.000 \]

<table>
<thead>
<tr>
<th>θ</th>
<th>̅u</th>
<th>u'</th>
<th>̅v</th>
<th>v'</th>
<th>-u'v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.2584</td>
<td>0.0752</td>
<td>0.0222</td>
<td>0.0513</td>
<td>0.0018</td>
</tr>
<tr>
<td>8</td>
<td>0.5016</td>
<td>0.1182</td>
<td>0.0451</td>
<td>0.0760</td>
<td>0.0042</td>
</tr>
<tr>
<td>12</td>
<td>0.8136</td>
<td>0.1166</td>
<td>0.0764</td>
<td>0.0872</td>
<td>0.0043</td>
</tr>
<tr>
<td>16</td>
<td>1.2239</td>
<td>0.1025</td>
<td>0.0952</td>
<td>0.0878</td>
<td>0.0030</td>
</tr>
<tr>
<td>20</td>
<td>1.6723</td>
<td>0.0854</td>
<td>0.1348</td>
<td>0.0890</td>
<td>0.0024</td>
</tr>
<tr>
<td>24</td>
<td>1.9864</td>
<td>0.1060</td>
<td>0.1445</td>
<td>0.0866</td>
<td>0.0036</td>
</tr>
<tr>
<td>28</td>
<td>2.3326</td>
<td>0.1074</td>
<td>0.1647</td>
<td>0.1007</td>
<td>0.0055</td>
</tr>
<tr>
<td>32</td>
<td>2.7505</td>
<td>0.0916</td>
<td>0.1979</td>
<td>0.0886</td>
<td>0.0042</td>
</tr>
<tr>
<td>36</td>
<td>3.1388</td>
<td>0.0914</td>
<td>0.2129</td>
<td>0.0812</td>
<td>0.0040</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(\ddot{u})</td>
<td>(u')</td>
<td>(\ddot{v})</td>
<td>(v')</td>
<td>(-u\ddot{v}')</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>40</td>
<td>3.4487</td>
<td>0.1080</td>
<td>0.2485</td>
<td>0.1007</td>
<td>0.0071</td>
</tr>
<tr>
<td>44</td>
<td>3.7207</td>
<td>0.0863</td>
<td>0.2510</td>
<td>0.0634</td>
<td>0.0047</td>
</tr>
<tr>
<td>48</td>
<td>4.1216</td>
<td>0.1263</td>
<td>0.2347</td>
<td>0.1297</td>
<td>0.0071</td>
</tr>
<tr>
<td>52</td>
<td>4.3848</td>
<td>0.0905</td>
<td>0.3076</td>
<td>0.0946</td>
<td>0.0067</td>
</tr>
<tr>
<td>56</td>
<td>4.6113</td>
<td>0.0744</td>
<td>0.3164</td>
<td>0.0730</td>
<td>0.0034</td>
</tr>
<tr>
<td>60</td>
<td>4.8446</td>
<td>0.1154</td>
<td>0.3150</td>
<td>0.1187</td>
<td>0.0118</td>
</tr>
<tr>
<td>64</td>
<td>5.1395</td>
<td>0.1000</td>
<td>0.3536</td>
<td>0.0986</td>
<td>0.0079</td>
</tr>
<tr>
<td>68</td>
<td>5.3685</td>
<td>0.0965</td>
<td>0.3668</td>
<td>0.1046</td>
<td>0.0086</td>
</tr>
<tr>
<td>72</td>
<td>5.4744</td>
<td>0.0824</td>
<td>0.3235</td>
<td>0.0780</td>
<td>0.0052</td>
</tr>
<tr>
<td>76</td>
<td>5.6074</td>
<td>0.0835</td>
<td>0.3393</td>
<td>0.0778</td>
<td>0.0033</td>
</tr>
<tr>
<td>80</td>
<td>5.6860</td>
<td>0.1027</td>
<td>0.3495</td>
<td>0.1000</td>
<td>0.0049</td>
</tr>
<tr>
<td>84</td>
<td>5.7940</td>
<td>0.1374</td>
<td>0.3668</td>
<td>0.1593</td>
<td>0.0121</td>
</tr>
<tr>
<td>88</td>
<td>5.8741</td>
<td>0.1792</td>
<td>0.3751</td>
<td>0.1688</td>
<td>0.0124</td>
</tr>
<tr>
<td>92</td>
<td>5.9850</td>
<td>0.2422</td>
<td>0.3616</td>
<td>0.1728</td>
<td>0.0133</td>
</tr>
<tr>
<td>96</td>
<td>6.1766</td>
<td>0.2992</td>
<td>0.3565</td>
<td>0.2316</td>
<td>0.0191</td>
</tr>
<tr>
<td>100</td>
<td>6.2618</td>
<td>0.3130</td>
<td>0.3575</td>
<td>0.2350</td>
<td>0.0140</td>
</tr>
<tr>
<td>104</td>
<td>6.1204</td>
<td>0.3879</td>
<td>0.3537</td>
<td>0.2201</td>
<td>0.0203</td>
</tr>
<tr>
<td>108</td>
<td>5.9615</td>
<td>0.3266</td>
<td>0.3672</td>
<td>0.2422</td>
<td>0.0113</td>
</tr>
<tr>
<td>112</td>
<td>5.8811</td>
<td>0.3143</td>
<td>0.3546</td>
<td>0.2508</td>
<td>0.0193</td>
</tr>
<tr>
<td>116</td>
<td>5.8453</td>
<td>0.2822</td>
<td>0.3577</td>
<td>0.2005</td>
<td>-0.0131</td>
</tr>
<tr>
<td>120</td>
<td>5.8362</td>
<td>0.2909</td>
<td>0.3682</td>
<td>0.2112</td>
<td>-0.0063</td>
</tr>
<tr>
<td>124</td>
<td>5.7415</td>
<td>0.2763</td>
<td>0.3646</td>
<td>0.2096</td>
<td>-0.0020</td>
</tr>
<tr>
<td>128</td>
<td>5.6736</td>
<td>0.2805</td>
<td>0.3434</td>
<td>0.2105</td>
<td>-0.0114</td>
</tr>
<tr>
<td>132</td>
<td>5.5963</td>
<td>0.2922</td>
<td>0.3443</td>
<td>0.2149</td>
<td>-0.0019</td>
</tr>
<tr>
<td>136</td>
<td>5.5247</td>
<td>0.3121</td>
<td>0.3363</td>
<td>0.2130</td>
<td>-0.0063</td>
</tr>
<tr>
<td>140</td>
<td>5.3931</td>
<td>0.2772</td>
<td>0.3658</td>
<td>0.2241</td>
<td>-0.0076</td>
</tr>
<tr>
<td>144</td>
<td>5.2396</td>
<td>0.2391</td>
<td>0.3494</td>
<td>0.1755</td>
<td>-0.0061</td>
</tr>
<tr>
<td>148</td>
<td>4.9574</td>
<td>0.2266</td>
<td>0.2810</td>
<td>0.1574</td>
<td>-0.0076</td>
</tr>
<tr>
<td>152</td>
<td>4.6761</td>
<td>0.2311</td>
<td>0.2367</td>
<td>0.1748</td>
<td>-0.0152</td>
</tr>
<tr>
<td>156</td>
<td>4.3907</td>
<td>0.2411</td>
<td>0.2384</td>
<td>0.1527</td>
<td>-0.0142</td>
</tr>
<tr>
<td>160</td>
<td>4.1317</td>
<td>0.2048</td>
<td>0.1760</td>
<td>0.1269</td>
<td>-0.0004</td>
</tr>
<tr>
<td>164</td>
<td>3.8399</td>
<td>0.2667</td>
<td>0.1968</td>
<td>0.1619</td>
<td>-0.0044</td>
</tr>
<tr>
<td>168</td>
<td>3.5455</td>
<td>0.2333</td>
<td>0.1876</td>
<td>0.1465</td>
<td>-0.0056</td>
</tr>
<tr>
<td>172</td>
<td>3.1437</td>
<td>0.2955</td>
<td>0.1624</td>
<td>0.2093</td>
<td>0.0054</td>
</tr>
<tr>
<td>176</td>
<td>2.8431</td>
<td>0.2996</td>
<td>0.1350</td>
<td>0.1843</td>
<td>0.0026</td>
</tr>
<tr>
<td>180</td>
<td>2.5168</td>
<td>0.3121</td>
<td>0.1037</td>
<td>0.2007</td>
<td>-0.0016</td>
</tr>
<tr>
<td>200</td>
<td>2.0638</td>
<td>0.2608</td>
<td>0.1053</td>
<td>0.1833</td>
<td>-0.0019</td>
</tr>
<tr>
<td>220</td>
<td>1.7057</td>
<td>0.2821</td>
<td>0.0718</td>
<td>0.1772</td>
<td>0.0026</td>
</tr>
<tr>
<td>240</td>
<td>1.4133</td>
<td>0.2532</td>
<td>0.0859</td>
<td>0.1836</td>
<td>-0.0006</td>
</tr>
<tr>
<td>260</td>
<td>0.9781</td>
<td>0.2090</td>
<td>0.0792</td>
<td>0.1334</td>
<td>0.0006</td>
</tr>
<tr>
<td>300</td>
<td>0.5599</td>
<td>0.1656</td>
<td>0.0313</td>
<td>0.0918</td>
<td>-0.0002</td>
</tr>
</tbody>
</table>
Figure 20: Streamwise velocity fluctuation at s/d = 30 (smoothed)
Figure 21: Radial velocity fluctuation at s/d = 30 (smoothed)
Figure 22: Reynolds shear stress at s/d = 30 (not smoothed)
CROSS-WIRE DATA

SPRE

s/d = 44

r/R = 0.800

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>u (m/sec)</th>
<th>u' (m/sec)</th>
<th>v (m/sec)</th>
<th>v' (m/sec)</th>
<th>(-\overline{uv}') (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.4522</td>
<td>0.1425</td>
<td>-0.0103</td>
<td>0.0561</td>
<td>-0.0009</td>
</tr>
<tr>
<td>8</td>
<td>0.7957</td>
<td>0.1309</td>
<td>0.0183</td>
<td>0.0651</td>
<td>-0.0009</td>
</tr>
<tr>
<td>12</td>
<td>1.1081</td>
<td>0.1198</td>
<td>0.0588</td>
<td>0.0680</td>
<td>-0.0003</td>
</tr>
<tr>
<td>16</td>
<td>1.4820</td>
<td>0.1282</td>
<td>0.0882</td>
<td>0.0767</td>
<td>0.0033</td>
</tr>
<tr>
<td>20</td>
<td>1.8827</td>
<td>0.1033</td>
<td>0.1051</td>
<td>0.0649</td>
<td>0.0018</td>
</tr>
<tr>
<td>24</td>
<td>2.2207</td>
<td>0.1111</td>
<td>0.1416</td>
<td>0.0670</td>
<td>0.0035</td>
</tr>
<tr>
<td>28</td>
<td>2.5357</td>
<td>0.1106</td>
<td>0.1664</td>
<td>0.0657</td>
<td>0.0039</td>
</tr>
<tr>
<td>32</td>
<td>2.8830</td>
<td>0.1169</td>
<td>0.1849</td>
<td>0.0844</td>
<td>0.0063</td>
</tr>
<tr>
<td>36</td>
<td>3.2464</td>
<td>0.1201</td>
<td>0.2193</td>
<td>0.0788</td>
<td>0.0067</td>
</tr>
<tr>
<td>40</td>
<td>3.5073</td>
<td>0.1037</td>
<td>0.2400</td>
<td>0.0424</td>
<td>0.0015</td>
</tr>
<tr>
<td>44</td>
<td>3.7303</td>
<td>0.1397</td>
<td>0.2462</td>
<td>0.1031</td>
<td>0.0093</td>
</tr>
<tr>
<td>48</td>
<td>4.0460</td>
<td>0.1724</td>
<td>0.2845</td>
<td>0.1063</td>
<td>0.0120</td>
</tr>
<tr>
<td>52</td>
<td>4.3070</td>
<td>0.1700</td>
<td>0.2719</td>
<td>0.1032</td>
<td>0.0085</td>
</tr>
<tr>
<td>56</td>
<td>4.4893</td>
<td>0.1749</td>
<td>0.3250</td>
<td>0.1399</td>
<td>0.0195</td>
</tr>
<tr>
<td>60</td>
<td>4.6331</td>
<td>0.2121</td>
<td>0.3291</td>
<td>0.1610</td>
<td>0.0268</td>
</tr>
<tr>
<td>64</td>
<td>4.8253</td>
<td>0.2185</td>
<td>0.3565</td>
<td>0.1403</td>
<td>0.0199</td>
</tr>
<tr>
<td>68</td>
<td>4.9683</td>
<td>0.1760</td>
<td>0.3700</td>
<td>0.0591</td>
<td>0.0034</td>
</tr>
<tr>
<td>72</td>
<td>5.0692</td>
<td>0.1872</td>
<td>0.3762</td>
<td>0.0934</td>
<td>0.0080</td>
</tr>
<tr>
<td>76</td>
<td>5.1513</td>
<td>0.2192</td>
<td>0.3943</td>
<td>0.1427</td>
<td>0.0217</td>
</tr>
<tr>
<td>80</td>
<td>5.2289</td>
<td>0.2130</td>
<td>0.4039</td>
<td>0.1211</td>
<td>0.0162</td>
</tr>
<tr>
<td>84</td>
<td>5.2998</td>
<td>0.2046</td>
<td>0.4281</td>
<td>0.1093</td>
<td>0.0150</td>
</tr>
<tr>
<td>88</td>
<td>5.2533</td>
<td>0.2104</td>
<td>0.4011</td>
<td>0.1163</td>
<td>0.0132</td>
</tr>
<tr>
<td>92</td>
<td>5.2287</td>
<td>0.2094</td>
<td>0.4191</td>
<td>0.1091</td>
<td>0.0111</td>
</tr>
<tr>
<td>96</td>
<td>5.1776</td>
<td>0.2287</td>
<td>0.4165</td>
<td>0.0921</td>
<td>0.0104</td>
</tr>
<tr>
<td>98</td>
<td>5.1492</td>
<td>0.3066</td>
<td>0.3917</td>
<td>0.1197</td>
<td>0.0157</td>
</tr>
<tr>
<td>100</td>
<td>5.1589</td>
<td>0.4313</td>
<td>0.3912</td>
<td>0.1399</td>
<td>0.0191</td>
</tr>
<tr>
<td>102</td>
<td>5.1818</td>
<td>0.5525</td>
<td>0.3824</td>
<td>0.1668</td>
<td>0.0355</td>
</tr>
<tr>
<td>104</td>
<td>5.0879</td>
<td>0.6209</td>
<td>0.3474</td>
<td>0.3430</td>
<td>0.0860</td>
</tr>
<tr>
<td>106</td>
<td>4.7442</td>
<td>0.7768</td>
<td>0.3365</td>
<td>0.4172</td>
<td>0.1789</td>
</tr>
<tr>
<td>108</td>
<td>4.6660</td>
<td>0.6386</td>
<td>0.2398</td>
<td>0.3881</td>
<td>0.1310</td>
</tr>
<tr>
<td>110</td>
<td>4.6148</td>
<td>0.5137</td>
<td>0.2615</td>
<td>0.3532</td>
<td>0.1121</td>
</tr>
<tr>
<td>112</td>
<td>4.6831</td>
<td>0.4254</td>
<td>0.3242</td>
<td>0.2943</td>
<td>0.0664</td>
</tr>
<tr>
<td>114</td>
<td>4.6592</td>
<td>0.4379</td>
<td>0.3254</td>
<td>0.2791</td>
<td>0.0768</td>
</tr>
<tr>
<td>116</td>
<td>4.5754</td>
<td>0.4624</td>
<td>0.2874</td>
<td>0.2827</td>
<td>0.0737</td>
</tr>
<tr>
<td>120</td>
<td>4.4687</td>
<td>0.4630</td>
<td>0.2729</td>
<td>0.2850</td>
<td>0.0762</td>
</tr>
<tr>
<td>124</td>
<td>4.2101</td>
<td>0.4240</td>
<td>0.2624</td>
<td>0.2669</td>
<td>0.0427</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>u (m/sec)</td>
<td>u' (m/sec)</td>
<td>v (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u'v' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>128</td>
<td>4.0531</td>
<td>0.4195</td>
<td>0.2258</td>
<td>0.2700</td>
<td>0.0436</td>
</tr>
<tr>
<td>132</td>
<td>3.8974</td>
<td>0.4415</td>
<td>0.2521</td>
<td>0.2726</td>
<td>0.0435</td>
</tr>
<tr>
<td>136</td>
<td>3.6958</td>
<td>0.4080</td>
<td>0.2669</td>
<td>0.3071</td>
<td>0.0567</td>
</tr>
<tr>
<td>140</td>
<td>3.3610</td>
<td>0.4096</td>
<td>0.2051</td>
<td>0.2699</td>
<td>0.0449</td>
</tr>
<tr>
<td>144</td>
<td>3.1637</td>
<td>0.3974</td>
<td>0.2426</td>
<td>0.2445</td>
<td>0.0366</td>
</tr>
<tr>
<td>148</td>
<td>2.8658</td>
<td>0.3741</td>
<td>0.2129</td>
<td>0.2125</td>
<td>0.0358</td>
</tr>
<tr>
<td>152</td>
<td>2.5217</td>
<td>0.3492</td>
<td>0.1610</td>
<td>0.2194</td>
<td>0.0413</td>
</tr>
<tr>
<td>156</td>
<td>2.1675</td>
<td>0.3270</td>
<td>0.1354</td>
<td>0.1948</td>
<td>0.0295</td>
</tr>
<tr>
<td>160</td>
<td>1.9183</td>
<td>0.3058</td>
<td>0.1341</td>
<td>0.1750</td>
<td>0.0232</td>
</tr>
<tr>
<td>164</td>
<td>1.5690</td>
<td>0.3181</td>
<td>0.1265</td>
<td>0.1602</td>
<td>0.0282</td>
</tr>
<tr>
<td>168</td>
<td>1.2111</td>
<td>0.2461</td>
<td>0.0918</td>
<td>0.1262</td>
<td>0.0133</td>
</tr>
<tr>
<td>172</td>
<td>0.8839</td>
<td>0.2358</td>
<td>0.0754</td>
<td>0.1085</td>
<td>0.0119</td>
</tr>
<tr>
<td>176</td>
<td>0.5250</td>
<td>0.1957</td>
<td>0.0462</td>
<td>0.0795</td>
<td>0.0068</td>
</tr>
<tr>
<td>180</td>
<td>0.3196</td>
<td>0.1044</td>
<td>0.0283</td>
<td>0.0470</td>
<td>0.0025</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>\bar{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\bar{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-\bar{u}\bar{v}'$ (m2/sec2)</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>0.3766</td>
<td>0.1397</td>
<td>-0.0151</td>
<td>0.0553</td>
<td>-0.0021</td>
</tr>
<tr>
<td>8</td>
<td>0.7355</td>
<td>0.1431</td>
<td>0.0141</td>
<td>0.0584</td>
<td>-0.0014</td>
</tr>
<tr>
<td>12</td>
<td>1.0757</td>
<td>0.1198</td>
<td>0.0465</td>
<td>0.0726</td>
<td>-0.0017</td>
</tr>
<tr>
<td>16</td>
<td>1.4597</td>
<td>0.1127</td>
<td>0.0767</td>
<td>0.0755</td>
<td>0.0008</td>
</tr>
<tr>
<td>20</td>
<td>1.8821</td>
<td>0.1109</td>
<td>0.1042</td>
<td>0.0629</td>
<td>0.0008</td>
</tr>
<tr>
<td>24</td>
<td>2.2217</td>
<td>0.1189</td>
<td>0.1329</td>
<td>0.0827</td>
<td>0.0040</td>
</tr>
<tr>
<td>28</td>
<td>2.5460</td>
<td>0.1085</td>
<td>0.1539</td>
<td>0.0742</td>
<td>0.0041</td>
</tr>
<tr>
<td>32</td>
<td>2.9246</td>
<td>0.0878</td>
<td>0.1835</td>
<td>0.0526</td>
<td>0.0006</td>
</tr>
<tr>
<td>36</td>
<td>3.3112</td>
<td>0.1389</td>
<td>0.2108</td>
<td>0.1248</td>
<td>0.0134</td>
</tr>
<tr>
<td>40</td>
<td>3.6087</td>
<td>0.1087</td>
<td>0.2412</td>
<td>0.0747</td>
<td>0.0045</td>
</tr>
<tr>
<td>44</td>
<td>3.8658</td>
<td>0.1003</td>
<td>0.2642</td>
<td>0.0679</td>
<td>0.0043</td>
</tr>
<tr>
<td>48</td>
<td>4.2126</td>
<td>0.1276</td>
<td>0.2320</td>
<td>0.0908</td>
<td>0.0010</td>
</tr>
<tr>
<td>52</td>
<td>4.4675</td>
<td>0.1130</td>
<td>0.2933</td>
<td>0.0925</td>
<td>0.0089</td>
</tr>
<tr>
<td>56</td>
<td>4.7120</td>
<td>0.1567</td>
<td>0.3454</td>
<td>0.1407</td>
<td>0.0191</td>
</tr>
<tr>
<td>60</td>
<td>4.8585</td>
<td>0.1547</td>
<td>0.3190</td>
<td>0.1206</td>
<td>0.0136</td>
</tr>
<tr>
<td>64</td>
<td>5.1076</td>
<td>0.1377</td>
<td>0.3571</td>
<td>0.0915</td>
<td>0.0094</td>
</tr>
<tr>
<td>68</td>
<td>5.3232</td>
<td>0.1637</td>
<td>0.3979</td>
<td>0.1017</td>
<td>0.0107</td>
</tr>
<tr>
<td>72</td>
<td>5.4630</td>
<td>0.1336</td>
<td>0.4082</td>
<td>0.0870</td>
<td>0.0058</td>
</tr>
<tr>
<td>76</td>
<td>5.5169</td>
<td>0.1786</td>
<td>0.3834</td>
<td>0.1473</td>
<td>0.0172</td>
</tr>
<tr>
<td>80</td>
<td>5.5942</td>
<td>0.1305</td>
<td>0.3719</td>
<td>0.0796</td>
<td>0.0031</td>
</tr>
<tr>
<td>84</td>
<td>5.6733</td>
<td>0.1483</td>
<td>0.3888</td>
<td>0.0750</td>
<td>0.0037</td>
</tr>
<tr>
<td>88</td>
<td>5.6932</td>
<td>0.1843</td>
<td>0.3894</td>
<td>0.1176</td>
<td>0.0118</td>
</tr>
<tr>
<td>92</td>
<td>5.6883</td>
<td>0.1717</td>
<td>0.4000</td>
<td>0.0962</td>
<td>0.0076</td>
</tr>
<tr>
<td>96</td>
<td>5.6972</td>
<td>0.2291</td>
<td>0.3965</td>
<td>0.1491</td>
<td>0.0212</td>
</tr>
<tr>
<td>98</td>
<td>5.7133</td>
<td>0.3063</td>
<td>0.4051</td>
<td>0.1901</td>
<td>0.0306</td>
</tr>
<tr>
<td>100</td>
<td>5.6726</td>
<td>0.3401</td>
<td>0.3867</td>
<td>0.1378</td>
<td>0.0193</td>
</tr>
<tr>
<td>102</td>
<td>5.5948</td>
<td>0.4601</td>
<td>0.3803</td>
<td>0.2083</td>
<td>0.0349</td>
</tr>
<tr>
<td>104</td>
<td>5.4581</td>
<td>0.6025</td>
<td>0.3901</td>
<td>0.2974</td>
<td>0.1059</td>
</tr>
<tr>
<td>106</td>
<td>5.1104</td>
<td>0.6002</td>
<td>0.3209</td>
<td>0.4185</td>
<td>0.1155</td>
</tr>
<tr>
<td>108</td>
<td>4.8957</td>
<td>0.6338</td>
<td>0.2876</td>
<td>0.3847</td>
<td>0.1139</td>
</tr>
<tr>
<td>110</td>
<td>4.9102</td>
<td>0.5478</td>
<td>0.2430</td>
<td>0.3369</td>
<td>0.1038</td>
</tr>
<tr>
<td>112</td>
<td>4.8994</td>
<td>0.4832</td>
<td>0.3146</td>
<td>0.2620</td>
<td>0.0711</td>
</tr>
<tr>
<td>114</td>
<td>4.8174</td>
<td>0.4246</td>
<td>0.3317</td>
<td>0.2927</td>
<td>0.0663</td>
</tr>
<tr>
<td>116</td>
<td>4.7651</td>
<td>0.4045</td>
<td>0.3048</td>
<td>0.2931</td>
<td>0.0566</td>
</tr>
<tr>
<td>120</td>
<td>4.5942</td>
<td>0.4164</td>
<td>0.2925</td>
<td>0.2520</td>
<td>0.0581</td>
</tr>
<tr>
<td>124</td>
<td>4.4716</td>
<td>0.3863</td>
<td>0.2704</td>
<td>0.2635</td>
<td>0.0507</td>
</tr>
<tr>
<td>128</td>
<td>4.2346</td>
<td>0.4365</td>
<td>0.2310</td>
<td>0.3004</td>
<td>0.0717</td>
</tr>
<tr>
<td>132</td>
<td>4.0133</td>
<td>0.3669</td>
<td>0.2301</td>
<td>0.2485</td>
<td>0.0278</td>
</tr>
<tr>
<td>136</td>
<td>3.8312</td>
<td>0.3737</td>
<td>0.2419</td>
<td>0.2521</td>
<td>0.0434</td>
</tr>
<tr>
<td>140</td>
<td>3.5161</td>
<td>0.3429</td>
<td>0.2024</td>
<td>0.2321</td>
<td>0.0356</td>
</tr>
<tr>
<td>144</td>
<td>3.3057</td>
<td>0.3730</td>
<td>0.2387</td>
<td>0.2108</td>
<td>0.0428</td>
</tr>
<tr>
<td>148</td>
<td>3.0008</td>
<td>0.3249</td>
<td>0.1779</td>
<td>0.2033</td>
<td>0.0326</td>
</tr>
<tr>
<td>152</td>
<td>2.6712</td>
<td>0.3288</td>
<td>0.1782</td>
<td>0.2081</td>
<td>0.0332</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 44$

$r/R = 0.733$
<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\dot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\ddot{u}\ddot{v}'$ (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>2.3349</td>
<td>0.3079</td>
<td>0.1734</td>
<td>0.1962</td>
<td>0.0330</td>
</tr>
<tr>
<td>160</td>
<td>2.0123</td>
<td>0.2822</td>
<td>0.1305</td>
<td>0.2123</td>
<td>0.0315</td>
</tr>
<tr>
<td>164</td>
<td>1.6478</td>
<td>0.2675</td>
<td>0.1025</td>
<td>0.1660</td>
<td>0.0252</td>
</tr>
<tr>
<td>168</td>
<td>1.3010</td>
<td>0.2525</td>
<td>0.1131</td>
<td>0.1468</td>
<td>0.0164</td>
</tr>
<tr>
<td>172</td>
<td>0.9278</td>
<td>0.2192</td>
<td>0.0653</td>
<td>0.1027</td>
<td>0.0093</td>
</tr>
<tr>
<td>176</td>
<td>0.5821</td>
<td>0.1910</td>
<td>0.0465</td>
<td>0.0819</td>
<td>0.0092</td>
</tr>
<tr>
<td>180</td>
<td>0.3475</td>
<td>0.1065</td>
<td>0.0279</td>
<td>0.0546</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

SPRE

$r/R = 0.600$

<table>
<thead>
<tr>
<th>θ (deg)</th>
<th>\dot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-\ddot{u}\ddot{v}'$ (m²/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3368</td>
<td>0.1126</td>
<td>-0.0088</td>
<td>0.0536</td>
<td>-0.0018</td>
</tr>
<tr>
<td>8</td>
<td>0.6816</td>
<td>0.1334</td>
<td>0.0160</td>
<td>0.0654</td>
<td>-0.0016</td>
</tr>
<tr>
<td>12</td>
<td>1.0089</td>
<td>0.1206</td>
<td>0.0424</td>
<td>0.0774</td>
<td>-0.0011</td>
</tr>
<tr>
<td>16</td>
<td>1.4312</td>
<td>0.1155</td>
<td>0.0742</td>
<td>0.0727</td>
<td>-0.0013</td>
</tr>
<tr>
<td>20</td>
<td>1.8617</td>
<td>0.1215</td>
<td>0.1090</td>
<td>0.0864</td>
<td>-0.0007</td>
</tr>
<tr>
<td>24</td>
<td>2.2087</td>
<td>0.1158</td>
<td>0.1301</td>
<td>0.0986</td>
<td>0.0039</td>
</tr>
<tr>
<td>28</td>
<td>2.5492</td>
<td>0.1132</td>
<td>0.1513</td>
<td>0.0805</td>
<td>0.0027</td>
</tr>
<tr>
<td>32</td>
<td>2.9236</td>
<td>0.1019</td>
<td>0.1989</td>
<td>0.0620</td>
<td>0.0014</td>
</tr>
<tr>
<td>36</td>
<td>3.3001</td>
<td>0.0885</td>
<td>0.2152</td>
<td>0.0820</td>
<td>0.0037</td>
</tr>
<tr>
<td>40</td>
<td>3.5957</td>
<td>0.1172</td>
<td>0.2285</td>
<td>0.1041</td>
<td>0.0073</td>
</tr>
<tr>
<td>44</td>
<td>3.8861</td>
<td>0.0986</td>
<td>0.2487</td>
<td>0.0907</td>
<td>0.0061</td>
</tr>
<tr>
<td>48</td>
<td>4.2718</td>
<td>0.1144</td>
<td>0.2305</td>
<td>0.1041</td>
<td>0.0057</td>
</tr>
<tr>
<td>52</td>
<td>4.5285</td>
<td>0.0944</td>
<td>0.3101</td>
<td>0.0913</td>
<td>0.0060</td>
</tr>
<tr>
<td>56</td>
<td>4.7605</td>
<td>0.1315</td>
<td>0.3390</td>
<td>0.1329</td>
<td>0.0147</td>
</tr>
<tr>
<td>60</td>
<td>4.9927</td>
<td>0.1202</td>
<td>0.3470</td>
<td>0.1250</td>
<td>0.0136</td>
</tr>
<tr>
<td>64</td>
<td>5.2216</td>
<td>0.1287</td>
<td>0.3615</td>
<td>0.1092</td>
<td>0.0123</td>
</tr>
<tr>
<td>68</td>
<td>5.4791</td>
<td>0.0756</td>
<td>0.3899</td>
<td>0.0683</td>
<td>0.0036</td>
</tr>
<tr>
<td>72</td>
<td>5.5878</td>
<td>0.0909</td>
<td>0.3588</td>
<td>0.0875</td>
<td>0.0059</td>
</tr>
<tr>
<td>76</td>
<td>5.6943</td>
<td>0.0959</td>
<td>0.3517</td>
<td>0.0784</td>
<td>0.0060</td>
</tr>
<tr>
<td>80</td>
<td>5.8294</td>
<td>0.1315</td>
<td>0.3603</td>
<td>0.1161</td>
<td>0.0119</td>
</tr>
<tr>
<td>84</td>
<td>5.9651</td>
<td>0.1630</td>
<td>0.3813</td>
<td>0.1533</td>
<td>0.0218</td>
</tr>
<tr>
<td>88</td>
<td>6.0096</td>
<td>0.1081</td>
<td>0.3823</td>
<td>0.0712</td>
<td>0.0044</td>
</tr>
<tr>
<td>92</td>
<td>6.0451</td>
<td>0.1357</td>
<td>0.3838</td>
<td>0.1134</td>
<td>0.0117</td>
</tr>
<tr>
<td>96</td>
<td>6.0782</td>
<td>0.1682</td>
<td>0.3786</td>
<td>0.1238</td>
<td>0.0141</td>
</tr>
<tr>
<td>98</td>
<td>6.0531</td>
<td>0.2026</td>
<td>0.3825</td>
<td>0.0788</td>
<td>0.0051</td>
</tr>
<tr>
<td>100</td>
<td>6.0032</td>
<td>0.2818</td>
<td>0.3779</td>
<td>0.1289</td>
<td>0.0156</td>
</tr>
<tr>
<td>102</td>
<td>5.9468</td>
<td>0.2793</td>
<td>0.3776</td>
<td>0.1955</td>
<td>0.0243</td>
</tr>
<tr>
<td>θ (deg.)</td>
<td>\ddot{u} (m/sec)</td>
<td>u' (m/sec)</td>
<td>\ddot{v} (m/sec)</td>
<td>v' (m/sec)</td>
<td>$-u'v'$ (m2/sec2)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>104</td>
<td>5.7473</td>
<td>0.4379</td>
<td>0.3715</td>
<td>0.2661</td>
<td>0.0550</td>
</tr>
<tr>
<td>106</td>
<td>5.5184</td>
<td>0.5940</td>
<td>0.3721</td>
<td>0.3302</td>
<td>0.1067</td>
</tr>
<tr>
<td>108</td>
<td>5.2933</td>
<td>0.5320</td>
<td>0.2648</td>
<td>0.3494</td>
<td>0.1014</td>
</tr>
<tr>
<td>110</td>
<td>5.1873</td>
<td>0.4744</td>
<td>0.2970</td>
<td>0.2801</td>
<td>0.0503</td>
</tr>
<tr>
<td>112</td>
<td>5.1791</td>
<td>0.4059</td>
<td>0.3874</td>
<td>0.2928</td>
<td>0.0585</td>
</tr>
<tr>
<td>114</td>
<td>5.0902</td>
<td>0.3955</td>
<td>0.3299</td>
<td>0.2567</td>
<td>0.0566</td>
</tr>
<tr>
<td>116</td>
<td>5.0281</td>
<td>0.3967</td>
<td>0.3605</td>
<td>0.2660</td>
<td>0.0517</td>
</tr>
<tr>
<td>120</td>
<td>4.8540</td>
<td>0.4199</td>
<td>0.3362</td>
<td>0.2551</td>
<td>0.0522</td>
</tr>
<tr>
<td>124</td>
<td>4.7375</td>
<td>0.4294</td>
<td>0.3268</td>
<td>0.2882</td>
<td>0.0705</td>
</tr>
<tr>
<td>128</td>
<td>4.5353</td>
<td>0.3511</td>
<td>0.3172</td>
<td>0.2511</td>
<td>0.0392</td>
</tr>
<tr>
<td>132</td>
<td>4.2885</td>
<td>0.3635</td>
<td>0.2951</td>
<td>0.2784</td>
<td>0.0583</td>
</tr>
<tr>
<td>136</td>
<td>4.0664</td>
<td>0.3393</td>
<td>0.2521</td>
<td>0.2350</td>
<td>0.0313</td>
</tr>
<tr>
<td>140</td>
<td>3.7926</td>
<td>0.3397</td>
<td>0.2351</td>
<td>0.2323</td>
<td>0.0359</td>
</tr>
<tr>
<td>144</td>
<td>3.5485</td>
<td>0.3311</td>
<td>0.2581</td>
<td>0.2136</td>
<td>0.0341</td>
</tr>
<tr>
<td>148</td>
<td>3.2446</td>
<td>0.2997</td>
<td>0.2215</td>
<td>0.2257</td>
<td>0.0298</td>
</tr>
<tr>
<td>152</td>
<td>2.8621</td>
<td>0.3358</td>
<td>0.1908</td>
<td>0.2114</td>
<td>0.0362</td>
</tr>
<tr>
<td>156</td>
<td>2.5617</td>
<td>0.2588</td>
<td>0.1812</td>
<td>0.1726</td>
<td>0.0189</td>
</tr>
<tr>
<td>160</td>
<td>2.1643</td>
<td>0.2805</td>
<td>0.1361</td>
<td>0.1867</td>
<td>0.0276</td>
</tr>
<tr>
<td>164</td>
<td>1.8231</td>
<td>0.2545</td>
<td>0.1142</td>
<td>0.1479</td>
<td>0.0201</td>
</tr>
<tr>
<td>168</td>
<td>1.4367</td>
<td>0.2177</td>
<td>0.1085</td>
<td>0.1520</td>
<td>0.0190</td>
</tr>
<tr>
<td>172</td>
<td>1.0746</td>
<td>0.2070</td>
<td>0.0823</td>
<td>0.1184</td>
<td>0.0112</td>
</tr>
<tr>
<td>176</td>
<td>0.6787</td>
<td>0.1862</td>
<td>0.0586</td>
<td>0.0950</td>
<td>0.0097</td>
</tr>
<tr>
<td>180</td>
<td>0.3800</td>
<td>0.1135</td>
<td>0.0343</td>
<td>0.0593</td>
<td>0.0042</td>
</tr>
</tbody>
</table>

SPRE

$s/d = 44$

$r/R = 0.467$

<table>
<thead>
<tr>
<th>θ (deg.)</th>
<th>\ddot{u} (m/sec)</th>
<th>u' (m/sec)</th>
<th>\ddot{v} (m/sec)</th>
<th>v' (m/sec)</th>
<th>$-u'v'$ (m2/sec2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.3056</td>
<td>0.0956</td>
<td>0.0038</td>
<td>0.0527</td>
<td>-0.0008</td>
</tr>
<tr>
<td>8</td>
<td>0.6161</td>
<td>0.1133</td>
<td>0.0154</td>
<td>0.0786</td>
<td>0.0001</td>
</tr>
<tr>
<td>12</td>
<td>0.9797</td>
<td>0.1336</td>
<td>0.0468</td>
<td>0.0751</td>
<td>0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.3836</td>
<td>0.1178</td>
<td>0.0817</td>
<td>0.0753</td>
<td>-0.0014</td>
</tr>
<tr>
<td>20</td>
<td>1.8341</td>
<td>0.1303</td>
<td>0.1105</td>
<td>0.0920</td>
<td>0.0030</td>
</tr>
<tr>
<td>24</td>
<td>2.2036</td>
<td>0.1277</td>
<td>0.1429</td>
<td>0.0890</td>
<td>0.0011</td>
</tr>
<tr>
<td>28</td>
<td>2.5305</td>
<td>0.1204</td>
<td>0.1625</td>
<td>0.0961</td>
<td>0.0034</td>
</tr>
<tr>
<td>32</td>
<td>2.9152</td>
<td>0.0962</td>
<td>0.1959</td>
<td>0.0743</td>
<td>-0.0003</td>
</tr>
<tr>
<td>36</td>
<td>3.3242</td>
<td>0.1130</td>
<td>0.2205</td>
<td>0.0986</td>
<td>0.0049</td>
</tr>
<tr>
<td>40</td>
<td>3.6276</td>
<td>0.1201</td>
<td>0.2537</td>
<td>0.1042</td>
<td>0.0066</td>
</tr>
<tr>
<td>44</td>
<td>3.9263</td>
<td>0.0934</td>
<td>0.2564</td>
<td>0.0887</td>
<td>0.0037</td>
</tr>
<tr>
<td>48</td>
<td>4.2970</td>
<td>0.0946</td>
<td>0.2312</td>
<td>0.0843</td>
<td>0.0050</td>
</tr>
<tr>
<td>52</td>
<td>4.5842</td>
<td>0.1076</td>
<td>0.3178</td>
<td>0.1035</td>
<td>0.0084</td>
</tr>
<tr>
<td>θ</td>
<td>u</td>
<td>m/sec</td>
<td>θ</td>
<td>m/sec</td>
<td>θ</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>----</td>
<td>-------</td>
<td>----</td>
</tr>
<tr>
<td>56</td>
<td>4.8104</td>
<td>0.0845</td>
<td>56</td>
<td>0.3101</td>
<td>56</td>
</tr>
<tr>
<td>60</td>
<td>5.0541</td>
<td>0.1114</td>
<td>60</td>
<td>0.3483</td>
<td>60</td>
</tr>
<tr>
<td>64</td>
<td>5.3401</td>
<td>0.1001</td>
<td>64</td>
<td>0.3961</td>
<td>64</td>
</tr>
<tr>
<td>68</td>
<td>5.5347</td>
<td>0.0869</td>
<td>68</td>
<td>0.3576</td>
<td>68</td>
</tr>
<tr>
<td>72</td>
<td>5.6648</td>
<td>0.0672</td>
<td>72</td>
<td>0.3468</td>
<td>72</td>
</tr>
<tr>
<td>76</td>
<td>5.8058</td>
<td>0.1163</td>
<td>76</td>
<td>0.3738</td>
<td>76</td>
</tr>
<tr>
<td>80</td>
<td>5.9636</td>
<td>0.1216</td>
<td>80</td>
<td>0.3783</td>
<td>80</td>
</tr>
<tr>
<td>84</td>
<td>6.0882</td>
<td>0.0927</td>
<td>84</td>
<td>0.3845</td>
<td>84</td>
</tr>
<tr>
<td>88</td>
<td>6.1584</td>
<td>0.0672</td>
<td>88</td>
<td>0.4009</td>
<td>88</td>
</tr>
<tr>
<td>92</td>
<td>6.2206</td>
<td>0.1527</td>
<td>92</td>
<td>0.4049</td>
<td>92</td>
</tr>
<tr>
<td>96</td>
<td>6.2290</td>
<td>0.1199</td>
<td>96</td>
<td>0.3926</td>
<td>96</td>
</tr>
<tr>
<td>98</td>
<td>6.2016</td>
<td>0.2243</td>
<td>98</td>
<td>0.3771</td>
<td>98</td>
</tr>
<tr>
<td>100</td>
<td>6.1673</td>
<td>0.2247</td>
<td>100</td>
<td>0.3658</td>
<td>100</td>
</tr>
<tr>
<td>102</td>
<td>6.0698</td>
<td>0.2853</td>
<td>102</td>
<td>0.3712</td>
<td>102</td>
</tr>
<tr>
<td>104</td>
<td>6.0420</td>
<td>0.3569</td>
<td>104</td>
<td>0.3620</td>
<td>104</td>
</tr>
<tr>
<td>106</td>
<td>6.0827</td>
<td>0.4551</td>
<td>106</td>
<td>0.4105</td>
<td>106</td>
</tr>
<tr>
<td>108</td>
<td>5.7450</td>
<td>0.5014</td>
<td>108</td>
<td>0.3478</td>
<td>108</td>
</tr>
<tr>
<td>110</td>
<td>5.5130</td>
<td>0.4016</td>
<td>110</td>
<td>0.3216</td>
<td>110</td>
</tr>
<tr>
<td>112</td>
<td>5.3613</td>
<td>0.3571</td>
<td>112</td>
<td>0.3579</td>
<td>112</td>
</tr>
<tr>
<td>114</td>
<td>5.3778</td>
<td>0.3114</td>
<td>114</td>
<td>0.3743</td>
<td>114</td>
</tr>
<tr>
<td>116</td>
<td>5.2977</td>
<td>0.3538</td>
<td>116</td>
<td>0.3618</td>
<td>116</td>
</tr>
<tr>
<td>120</td>
<td>5.1242</td>
<td>0.3628</td>
<td>120</td>
<td>0.3394</td>
<td>120</td>
</tr>
<tr>
<td>124</td>
<td>4.9753</td>
<td>0.3573</td>
<td>124</td>
<td>0.3615</td>
<td>124</td>
</tr>
<tr>
<td>128</td>
<td>4.7732</td>
<td>0.3359</td>
<td>128</td>
<td>0.3228</td>
<td>128</td>
</tr>
<tr>
<td>132</td>
<td>4.5402</td>
<td>0.3080</td>
<td>132</td>
<td>0.2923</td>
<td>132</td>
</tr>
<tr>
<td>136</td>
<td>4.3106</td>
<td>0.2991</td>
<td>136</td>
<td>0.2567</td>
<td>136</td>
</tr>
<tr>
<td>140</td>
<td>3.9680</td>
<td>0.3467</td>
<td>140</td>
<td>0.2236</td>
<td>140</td>
</tr>
<tr>
<td>144</td>
<td>3.7548</td>
<td>0.3207</td>
<td>144</td>
<td>0.2361</td>
<td>144</td>
</tr>
<tr>
<td>148</td>
<td>3.4093</td>
<td>0.3207</td>
<td>148</td>
<td>0.2024</td>
<td>148</td>
</tr>
<tr>
<td>152</td>
<td>3.0723</td>
<td>0.2583</td>
<td>152</td>
<td>0.2154</td>
<td>152</td>
</tr>
<tr>
<td>156</td>
<td>2.7081</td>
<td>0.2636</td>
<td>156</td>
<td>0.1929</td>
<td>156</td>
</tr>
<tr>
<td>160</td>
<td>2.3470</td>
<td>0.2626</td>
<td>160</td>
<td>0.1428</td>
<td>160</td>
</tr>
<tr>
<td>164</td>
<td>1.9850</td>
<td>0.2446</td>
<td>164</td>
<td>0.1511</td>
<td>164</td>
</tr>
<tr>
<td>168</td>
<td>1.5479</td>
<td>0.2395</td>
<td>168</td>
<td>0.1041</td>
<td>168</td>
</tr>
<tr>
<td>172</td>
<td>1.1941</td>
<td>0.2064</td>
<td>172</td>
<td>0.0983</td>
<td>172</td>
</tr>
<tr>
<td>176</td>
<td>0.7893</td>
<td>0.1743</td>
<td>176</td>
<td>0.0512</td>
<td>176</td>
</tr>
<tr>
<td>180</td>
<td>0.4362</td>
<td>0.1118</td>
<td>180</td>
<td>0.0371</td>
<td>180</td>
</tr>
<tr>
<td>θ (deg)</td>
<td>ū (m/sec)</td>
<td>u' (m/sec)</td>
<td>ẁ (m/sec)</td>
<td>v' (m/sec)</td>
<td>-u′v' (m²/sec²)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
</tr>
<tr>
<td>4</td>
<td>0.2980</td>
<td>0.0961</td>
<td>0.0060</td>
<td>0.0623</td>
<td>-0.0002</td>
</tr>
<tr>
<td>8</td>
<td>0.5851</td>
<td>0.1277</td>
<td>0.0270</td>
<td>0.0745</td>
<td>0.0008</td>
</tr>
<tr>
<td>12</td>
<td>0.9228</td>
<td>0.1259</td>
<td>0.0450</td>
<td>0.0780</td>
<td>0.0003</td>
</tr>
<tr>
<td>16</td>
<td>1.3440</td>
<td>0.1076</td>
<td>0.0768</td>
<td>0.0867</td>
<td>-0.0010</td>
</tr>
<tr>
<td>20</td>
<td>1.7855</td>
<td>0.1235</td>
<td>0.1020</td>
<td>0.0776</td>
<td>0.0011</td>
</tr>
<tr>
<td>24</td>
<td>2.1405</td>
<td>0.1013</td>
<td>0.1288</td>
<td>0.0761</td>
<td>-0.0012</td>
</tr>
<tr>
<td>28</td>
<td>2.4729</td>
<td>0.1337</td>
<td>0.1519</td>
<td>0.0983</td>
<td>0.0040</td>
</tr>
<tr>
<td>32</td>
<td>2.8825</td>
<td>0.1116</td>
<td>0.1811</td>
<td>0.0815</td>
<td>0.0017</td>
</tr>
<tr>
<td>36</td>
<td>3.2880</td>
<td>0.1125</td>
<td>0.2149</td>
<td>0.0954</td>
<td>0.0036</td>
</tr>
<tr>
<td>40</td>
<td>3.6037</td>
<td>0.1122</td>
<td>0.2359</td>
<td>0.0994</td>
<td>0.0051</td>
</tr>
<tr>
<td>44</td>
<td>3.8780</td>
<td>0.1090</td>
<td>0.2430</td>
<td>0.1083</td>
<td>0.0068</td>
</tr>
<tr>
<td>48</td>
<td>4.2817</td>
<td>0.1071</td>
<td>0.2214</td>
<td>0.1078</td>
<td>0.0047</td>
</tr>
<tr>
<td>52</td>
<td>4.5503</td>
<td>0.0802</td>
<td>0.2998</td>
<td>0.0858</td>
<td>0.0037</td>
</tr>
<tr>
<td>56</td>
<td>4.8024</td>
<td>0.0993</td>
<td>0.3187</td>
<td>0.1002</td>
<td>0.0071</td>
</tr>
<tr>
<td>60</td>
<td>5.0179</td>
<td>0.0854</td>
<td>0.3225</td>
<td>0.0823</td>
<td>0.0056</td>
</tr>
<tr>
<td>64</td>
<td>5.2968</td>
<td>0.1227</td>
<td>0.3547</td>
<td>0.1181</td>
<td>0.0119</td>
</tr>
<tr>
<td>68</td>
<td>5.5242</td>
<td>0.0884</td>
<td>0.3613</td>
<td>0.0900</td>
<td>0.0059</td>
</tr>
<tr>
<td>72</td>
<td>5.6333</td>
<td>0.1090</td>
<td>0.3171</td>
<td>0.1033</td>
<td>0.0099</td>
</tr>
<tr>
<td>76</td>
<td>5.7861</td>
<td>0.1135</td>
<td>0.3537</td>
<td>0.1161</td>
<td>0.0121</td>
</tr>
<tr>
<td>80</td>
<td>5.9292</td>
<td>0.0630</td>
<td>0.3374</td>
<td>0.0630</td>
<td>0.0027</td>
</tr>
<tr>
<td>84</td>
<td>6.0864</td>
<td>0.1438</td>
<td>0.3695</td>
<td>0.1455</td>
<td>0.0020</td>
</tr>
<tr>
<td>88</td>
<td>6.1428</td>
<td>0.1120</td>
<td>0.3602</td>
<td>0.1128</td>
<td>0.0120</td>
</tr>
<tr>
<td>92</td>
<td>6.2027</td>
<td>0.1223</td>
<td>0.3700</td>
<td>0.1222</td>
<td>0.0139</td>
</tr>
<tr>
<td>96</td>
<td>6.1962</td>
<td>0.1525</td>
<td>0.3513</td>
<td>0.1481</td>
<td>0.0175</td>
</tr>
<tr>
<td>98</td>
<td>6.2168</td>
<td>0.1729</td>
<td>0.3581</td>
<td>0.1613</td>
<td>0.0177</td>
</tr>
<tr>
<td>100</td>
<td>6.1968</td>
<td>0.1972</td>
<td>0.3691</td>
<td>0.1343</td>
<td>0.0137</td>
</tr>
<tr>
<td>102</td>
<td>6.1620</td>
<td>0.2520</td>
<td>0.3571</td>
<td>0.1754</td>
<td>0.0207</td>
</tr>
<tr>
<td>104</td>
<td>6.2130</td>
<td>0.3580</td>
<td>0.3546</td>
<td>0.2467</td>
<td>0.0353</td>
</tr>
<tr>
<td>106</td>
<td>6.2164</td>
<td>0.4265</td>
<td>0.3521</td>
<td>0.3470</td>
<td>0.0607</td>
</tr>
<tr>
<td>108</td>
<td>6.0122</td>
<td>0.4175</td>
<td>0.3408</td>
<td>0.2937</td>
<td>0.0425</td>
</tr>
<tr>
<td>110</td>
<td>5.7198</td>
<td>0.3354</td>
<td>0.3342</td>
<td>0.2311</td>
<td>0.0257</td>
</tr>
<tr>
<td>112</td>
<td>5.5931</td>
<td>0.3162</td>
<td>0.3344</td>
<td>0.2463</td>
<td>0.0262</td>
</tr>
<tr>
<td>114</td>
<td>5.5333</td>
<td>0.2996</td>
<td>0.3364</td>
<td>0.2363</td>
<td>0.0257</td>
</tr>
<tr>
<td>116</td>
<td>5.5100</td>
<td>0.2992</td>
<td>0.3446</td>
<td>0.2471</td>
<td>0.0313</td>
</tr>
<tr>
<td>120</td>
<td>5.3121</td>
<td>0.3528</td>
<td>0.3436</td>
<td>0.2108</td>
<td>0.0359</td>
</tr>
<tr>
<td>124</td>
<td>5.1467</td>
<td>0.3558</td>
<td>0.3376</td>
<td>0.2371</td>
<td>0.0463</td>
</tr>
<tr>
<td>128</td>
<td>4.8953</td>
<td>0.3636</td>
<td>0.3278</td>
<td>0.2625</td>
<td>0.0578</td>
</tr>
<tr>
<td>132</td>
<td>4.6968</td>
<td>0.2877</td>
<td>0.2978</td>
<td>0.2355</td>
<td>0.0385</td>
</tr>
<tr>
<td>136</td>
<td>4.4358</td>
<td>0.3146</td>
<td>0.2652</td>
<td>0.2264</td>
<td>0.0383</td>
</tr>
<tr>
<td>140</td>
<td>4.1994</td>
<td>0.2948</td>
<td>0.2653</td>
<td>0.2266</td>
<td>0.0341</td>
</tr>
<tr>
<td>144</td>
<td>3.8511</td>
<td>0.2805</td>
<td>0.2196</td>
<td>0.2174</td>
<td>0.0288</td>
</tr>
<tr>
<td>148</td>
<td>3.5329</td>
<td>0.2688</td>
<td>0.1932</td>
<td>0.1822</td>
<td>0.0218</td>
</tr>
<tr>
<td>θ</td>
<td>𝑢</td>
<td>𝑢'</td>
<td>𝑣</td>
<td>𝑣'</td>
<td>−𝑢𝑣'</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>152</td>
<td>3.1972</td>
<td>0.2271</td>
<td>0.1826</td>
<td>0.1656</td>
<td>0.0121</td>
</tr>
<tr>
<td>156</td>
<td>2.8405</td>
<td>0.2531</td>
<td>0.1619</td>
<td>0.1697</td>
<td>0.0156</td>
</tr>
<tr>
<td>160</td>
<td>2.4740</td>
<td>0.2461</td>
<td>0.1686</td>
<td>0.1882</td>
<td>0.0228</td>
</tr>
<tr>
<td>164</td>
<td>2.0768</td>
<td>0.2065</td>
<td>0.1444</td>
<td>0.1491</td>
<td>0.0116</td>
</tr>
<tr>
<td>168</td>
<td>1.6524</td>
<td>0.1949</td>
<td>0.1027</td>
<td>0.1413</td>
<td>0.0086</td>
</tr>
<tr>
<td>172</td>
<td>1.2388</td>
<td>0.1797</td>
<td>0.0779</td>
<td>0.1283</td>
<td>0.0096</td>
</tr>
<tr>
<td>176</td>
<td>0.8439</td>
<td>0.1576</td>
<td>0.0453</td>
<td>0.1000</td>
<td>0.0050</td>
</tr>
<tr>
<td>180</td>
<td>0.4782</td>
<td>0.1216</td>
<td>0.0369</td>
<td>0.0616</td>
<td>0.0038</td>
</tr>
</tbody>
</table>

SPRE
s/d = 44

<table>
<thead>
<tr>
<th>θ</th>
<th>𝑢</th>
<th>𝑢'</th>
<th>𝑣</th>
<th>𝑣'</th>
<th>−𝑢𝑣'</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m^2/sec^2</td>
</tr>
<tr>
<td>4</td>
<td>0.3218</td>
<td>0.1214</td>
<td>0.0325</td>
<td>0.0732</td>
<td>0.0046</td>
</tr>
<tr>
<td>8</td>
<td>0.5833</td>
<td>0.1298</td>
<td>0.0233</td>
<td>0.0869</td>
<td>0.0021</td>
</tr>
<tr>
<td>12</td>
<td>0.8923</td>
<td>0.1143</td>
<td>0.0540</td>
<td>0.0778</td>
<td>0.0005</td>
</tr>
<tr>
<td>16</td>
<td>1.3195</td>
<td>0.1234</td>
<td>0.0843</td>
<td>0.0902</td>
<td>0.0012</td>
</tr>
<tr>
<td>20</td>
<td>1.7432</td>
<td>0.1054</td>
<td>0.1108</td>
<td>0.0799</td>
<td>0.0014</td>
</tr>
<tr>
<td>24</td>
<td>2.1165</td>
<td>0.1017</td>
<td>0.1356</td>
<td>0.0731</td>
<td>0.0004</td>
</tr>
<tr>
<td>28</td>
<td>2.4421</td>
<td>0.1052</td>
<td>0.1751</td>
<td>0.0843</td>
<td>0.0009</td>
</tr>
<tr>
<td>32</td>
<td>2.8522</td>
<td>0.1049</td>
<td>0.1798</td>
<td>0.0824</td>
<td>0.0019</td>
</tr>
<tr>
<td>36</td>
<td>3.2515</td>
<td>0.1219</td>
<td>0.2000</td>
<td>0.0948</td>
<td>0.0066</td>
</tr>
<tr>
<td>40</td>
<td>3.5736</td>
<td>0.0832</td>
<td>0.2270</td>
<td>0.0709</td>
<td>0.0019</td>
</tr>
<tr>
<td>44</td>
<td>3.8768</td>
<td>0.0984</td>
<td>0.2572</td>
<td>0.0947</td>
<td>0.0056</td>
</tr>
<tr>
<td>48</td>
<td>4.2647</td>
<td>0.0957</td>
<td>0.2361</td>
<td>0.1059</td>
<td>0.0016</td>
</tr>
<tr>
<td>52</td>
<td>4.5458</td>
<td>0.0932</td>
<td>0.3048</td>
<td>0.0939</td>
<td>0.0064</td>
</tr>
<tr>
<td>56</td>
<td>4.7973</td>
<td>0.1328</td>
<td>0.3237</td>
<td>0.1424</td>
<td>0.0164</td>
</tr>
<tr>
<td>60</td>
<td>5.0154</td>
<td>0.1470</td>
<td>0.3313</td>
<td>0.1588</td>
<td>0.0215</td>
</tr>
<tr>
<td>64</td>
<td>5.2706</td>
<td>0.0861</td>
<td>0.3343</td>
<td>0.0849</td>
<td>0.0050</td>
</tr>
<tr>
<td>68</td>
<td>5.5352</td>
<td>0.0501</td>
<td>0.3746</td>
<td>0.0497</td>
<td>0.0004</td>
</tr>
<tr>
<td>72</td>
<td>5.6319</td>
<td>0.1000</td>
<td>0.3190</td>
<td>0.1039</td>
<td>0.0088</td>
</tr>
<tr>
<td>76</td>
<td>5.7749</td>
<td>0.0711</td>
<td>0.3408</td>
<td>0.0731</td>
<td>0.0042</td>
</tr>
<tr>
<td>80</td>
<td>5.9385</td>
<td>0.0685</td>
<td>0.3451</td>
<td>0.0661</td>
<td>0.0035</td>
</tr>
<tr>
<td>84</td>
<td>6.0947</td>
<td>0.0611</td>
<td>0.3558</td>
<td>0.0630</td>
<td>0.0032</td>
</tr>
<tr>
<td>88</td>
<td>6.1608</td>
<td>0.1058</td>
<td>0.3785</td>
<td>0.1090</td>
<td>0.0110</td>
</tr>
<tr>
<td>92</td>
<td>6.2119</td>
<td>0.1235</td>
<td>0.3697</td>
<td>0.1335</td>
<td>0.0147</td>
</tr>
<tr>
<td>96</td>
<td>6.2149</td>
<td>0.1487</td>
<td>0.3999</td>
<td>0.1450</td>
<td>0.0166</td>
</tr>
<tr>
<td>98</td>
<td>6.1963</td>
<td>0.1532</td>
<td>0.3512</td>
<td>0.1535</td>
<td>0.0141</td>
</tr>
<tr>
<td>100</td>
<td>6.2010</td>
<td>0.2004</td>
<td>0.3370</td>
<td>0.1685</td>
<td>0.0183</td>
</tr>
</tbody>
</table>
Table 1:

<table>
<thead>
<tr>
<th>θ</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{v})</th>
<th>(v')</th>
<th>(-\overline{u'v'})</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>102</td>
<td>6.2352</td>
<td>0.2600</td>
<td>0.3406</td>
<td>0.1930</td>
<td>0.0241</td>
</tr>
<tr>
<td>104</td>
<td>6.4041</td>
<td>0.3608</td>
<td>0.3786</td>
<td>0.2667</td>
<td>0.0366</td>
</tr>
<tr>
<td>106</td>
<td>6.4804</td>
<td>0.3351</td>
<td>0.3592</td>
<td>0.2978</td>
<td>0.0343</td>
</tr>
<tr>
<td>108</td>
<td>6.0446</td>
<td>0.3795</td>
<td>0.3513</td>
<td>0.2665</td>
<td>0.0355</td>
</tr>
<tr>
<td>110</td>
<td>5.8585</td>
<td>0.2963</td>
<td>0.3440</td>
<td>0.2228</td>
<td>0.0129</td>
</tr>
<tr>
<td>112</td>
<td>5.7088</td>
<td>0.2972</td>
<td>0.3394</td>
<td>0.2234</td>
<td>0.0282</td>
</tr>
<tr>
<td>114</td>
<td>5.6487</td>
<td>0.2578</td>
<td>0.3531</td>
<td>0.2041</td>
<td>0.0101</td>
</tr>
<tr>
<td>116</td>
<td>5.6085</td>
<td>0.2823</td>
<td>0.3437</td>
<td>0.2206</td>
<td>0.0323</td>
</tr>
<tr>
<td>120</td>
<td>5.4756</td>
<td>0.2825</td>
<td>0.2949</td>
<td>0.2258</td>
<td>0.0260</td>
</tr>
<tr>
<td>124</td>
<td>5.2777</td>
<td>0.2753</td>
<td>0.3206</td>
<td>0.1828</td>
<td>0.0213</td>
</tr>
<tr>
<td>128</td>
<td>5.0670</td>
<td>0.2732</td>
<td>0.3307</td>
<td>0.2191</td>
<td>0.0275</td>
</tr>
<tr>
<td>132</td>
<td>4.8251</td>
<td>0.2567</td>
<td>0.3026</td>
<td>0.2376</td>
<td>0.0294</td>
</tr>
<tr>
<td>136</td>
<td>4.6104</td>
<td>0.2517</td>
<td>0.2683</td>
<td>0.1895</td>
<td>0.0226</td>
</tr>
<tr>
<td>140</td>
<td>4.2676</td>
<td>0.2449</td>
<td>0.2233</td>
<td>0.1848</td>
<td>0.0136</td>
</tr>
<tr>
<td>144</td>
<td>3.9821</td>
<td>0.2608</td>
<td>0.2402</td>
<td>0.2007</td>
<td>0.0157</td>
</tr>
<tr>
<td>148</td>
<td>3.6069</td>
<td>0.2522</td>
<td>0.1975</td>
<td>0.1909</td>
<td>0.0226</td>
</tr>
<tr>
<td>152</td>
<td>3.2497</td>
<td>0.2246</td>
<td>0.1864</td>
<td>0.1701</td>
<td>0.0148</td>
</tr>
<tr>
<td>156</td>
<td>2.9425</td>
<td>0.2000</td>
<td>0.1871</td>
<td>0.1963</td>
<td>0.0144</td>
</tr>
<tr>
<td>160</td>
<td>2.5362</td>
<td>0.2062</td>
<td>0.1515</td>
<td>0.1625</td>
<td>0.0096</td>
</tr>
<tr>
<td>164</td>
<td>2.1672</td>
<td>0.2132</td>
<td>0.1484</td>
<td>0.1612</td>
<td>0.0112</td>
</tr>
<tr>
<td>168</td>
<td>1.7292</td>
<td>0.1946</td>
<td>0.0860</td>
<td>0.1311</td>
<td>0.0087</td>
</tr>
<tr>
<td>172</td>
<td>1.3278</td>
<td>0.1736</td>
<td>0.0847</td>
<td>0.1218</td>
<td>0.0095</td>
</tr>
<tr>
<td>176</td>
<td>0.9160</td>
<td>0.1407</td>
<td>0.0504</td>
<td>0.0934</td>
<td>0.0022</td>
</tr>
<tr>
<td>180</td>
<td>0.5112</td>
<td>0.1200</td>
<td>0.0324</td>
<td>0.0633</td>
<td>0.0025</td>
</tr>
</tbody>
</table>

Table 2:

<table>
<thead>
<tr>
<th>θ</th>
<th>(\ddot{u})</th>
<th>(u')</th>
<th>(\ddot{v})</th>
<th>(v')</th>
<th>(-\overline{u'v'})</th>
</tr>
</thead>
<tbody>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>4</td>
<td>0.3839</td>
<td>0.1349</td>
<td>0.0627</td>
<td>0.0720</td>
<td>0.0057</td>
</tr>
<tr>
<td>8</td>
<td>0.6103</td>
<td>0.1261</td>
<td>0.0546</td>
<td>0.0854</td>
<td>0.0042</td>
</tr>
<tr>
<td>12</td>
<td>0.8879</td>
<td>0.1053</td>
<td>0.0674</td>
<td>0.0825</td>
<td>0.0014</td>
</tr>
<tr>
<td>16</td>
<td>1.2943</td>
<td>0.1036</td>
<td>0.0970</td>
<td>0.0940</td>
<td>0.0023</td>
</tr>
<tr>
<td>20</td>
<td>1.7137</td>
<td>0.1019</td>
<td>0.1288</td>
<td>0.0889</td>
<td>0.0031</td>
</tr>
<tr>
<td>24</td>
<td>2.0703</td>
<td>0.1117</td>
<td>0.1373</td>
<td>0.0920</td>
<td>0.0038</td>
</tr>
<tr>
<td>28</td>
<td>2.4149</td>
<td>0.1082</td>
<td>0.1388</td>
<td>0.0883</td>
<td>0.0038</td>
</tr>
<tr>
<td>32</td>
<td>2.8266</td>
<td>0.0890</td>
<td>0.1837</td>
<td>0.0845</td>
<td>0.0023</td>
</tr>
<tr>
<td>36</td>
<td>3.2417</td>
<td>0.1077</td>
<td>0.2113</td>
<td>0.0964</td>
<td>0.0065</td>
</tr>
<tr>
<td>40</td>
<td>3.5675</td>
<td>0.0928</td>
<td>0.2212</td>
<td>0.0861</td>
<td>0.0040</td>
</tr>
<tr>
<td>θ</td>
<td>u</td>
<td>u'</td>
<td>v</td>
<td>v'</td>
<td>-(\bar{u}\bar{v})</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----------------</td>
</tr>
<tr>
<td>deg.</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m/sec</td>
<td>m²/sec²</td>
</tr>
<tr>
<td>44</td>
<td>3.6608</td>
<td>0.0822</td>
<td>0.2443</td>
<td>0.0774</td>
<td>0.0033</td>
</tr>
<tr>
<td>48</td>
<td>4.2567</td>
<td>0.0905</td>
<td>0.2126</td>
<td>0.0933</td>
<td>0.0017</td>
</tr>
<tr>
<td>52</td>
<td>4.5250</td>
<td>0.1162</td>
<td>0.2763</td>
<td>0.1145</td>
<td>0.0106</td>
</tr>
<tr>
<td>56</td>
<td>4.7839</td>
<td>0.0997</td>
<td>0.3043</td>
<td>0.1090</td>
<td>0.0082</td>
</tr>
<tr>
<td>60</td>
<td>5.0038</td>
<td>0.0617</td>
<td>0.3078</td>
<td>0.0580</td>
<td>0.0024</td>
</tr>
<tr>
<td>64</td>
<td>5.2806</td>
<td>0.1253</td>
<td>0.3439</td>
<td>0.1349</td>
<td>0.0146</td>
</tr>
<tr>
<td>68</td>
<td>5.5157</td>
<td>0.1079</td>
<td>0.3566</td>
<td>0.1236</td>
<td>0.0116</td>
</tr>
<tr>
<td>72</td>
<td>5.6445</td>
<td>0.1084</td>
<td>0.3154</td>
<td>0.1105</td>
<td>0.0110</td>
</tr>
<tr>
<td>76</td>
<td>5.7890</td>
<td>0.0822</td>
<td>0.3354</td>
<td>0.0832</td>
<td>0.0053</td>
</tr>
<tr>
<td>80</td>
<td>5.9464</td>
<td>0.1384</td>
<td>0.3315</td>
<td>0.1488</td>
<td>0.0188</td>
</tr>
<tr>
<td>84</td>
<td>6.0788</td>
<td>0.0946</td>
<td>0.3368</td>
<td>0.0953</td>
<td>0.0086</td>
</tr>
<tr>
<td>88</td>
<td>6.1579</td>
<td>0.1264</td>
<td>0.3538</td>
<td>0.1344</td>
<td>0.0159</td>
</tr>
<tr>
<td>92</td>
<td>6.1951</td>
<td>0.0987</td>
<td>0.3322</td>
<td>0.0955</td>
<td>0.0070</td>
</tr>
<tr>
<td>96</td>
<td>6.2159</td>
<td>0.1457</td>
<td>0.3407</td>
<td>0.1430</td>
<td>0.0148</td>
</tr>
<tr>
<td>98</td>
<td>6.2116</td>
<td>0.1568</td>
<td>0.3357</td>
<td>0.1380</td>
<td>0.0114</td>
</tr>
<tr>
<td>100</td>
<td>6.2340</td>
<td>0.1790</td>
<td>0.3510</td>
<td>0.1723</td>
<td>0.0127</td>
</tr>
<tr>
<td>102</td>
<td>6.2778</td>
<td>0.2720</td>
<td>0.3592</td>
<td>0.2363</td>
<td>0.0216</td>
</tr>
<tr>
<td>104</td>
<td>6.5112</td>
<td>0.4084</td>
<td>0.3821</td>
<td>0.3192</td>
<td>0.0664</td>
</tr>
<tr>
<td>106</td>
<td>6.5550</td>
<td>0.3946</td>
<td>0.3594</td>
<td>0.2485</td>
<td>0.0029</td>
</tr>
<tr>
<td>108</td>
<td>6.2652</td>
<td>0.3738</td>
<td>0.3288</td>
<td>0.2531</td>
<td>0.0285</td>
</tr>
<tr>
<td>110</td>
<td>5.9013</td>
<td>0.2955</td>
<td>0.2964</td>
<td>0.2094</td>
<td>0.0077</td>
</tr>
<tr>
<td>112</td>
<td>5.7703</td>
<td>0.2838</td>
<td>0.3259</td>
<td>0.2064</td>
<td>0.0062</td>
</tr>
<tr>
<td>114</td>
<td>5.7274</td>
<td>0.2442</td>
<td>0.3221</td>
<td>0.2104</td>
<td>-0.0012</td>
</tr>
<tr>
<td>116</td>
<td>5.6787</td>
<td>0.2510</td>
<td>0.3289</td>
<td>0.2202</td>
<td>0.0018</td>
</tr>
<tr>
<td>120</td>
<td>5.5319</td>
<td>0.2705</td>
<td>0.3210</td>
<td>0.2043</td>
<td>0.0054</td>
</tr>
<tr>
<td>124</td>
<td>5.3399</td>
<td>0.2302</td>
<td>0.3212</td>
<td>0.1922</td>
<td>0.0043</td>
</tr>
<tr>
<td>128</td>
<td>5.1066</td>
<td>0.2464</td>
<td>0.2975</td>
<td>0.2122</td>
<td>0.0041</td>
</tr>
<tr>
<td>132</td>
<td>4.8893</td>
<td>0.2452</td>
<td>0.2719</td>
<td>0.2035</td>
<td>0.0154</td>
</tr>
<tr>
<td>136</td>
<td>4.5900</td>
<td>0.2266</td>
<td>0.2309</td>
<td>0.1790</td>
<td>0.0125</td>
</tr>
<tr>
<td>140</td>
<td>4.3280</td>
<td>0.2341</td>
<td>0.2185</td>
<td>0.1891</td>
<td>0.0140</td>
</tr>
<tr>
<td>144</td>
<td>4.0434</td>
<td>0.2199</td>
<td>0.1938</td>
<td>0.1919</td>
<td>0.0047</td>
</tr>
<tr>
<td>148</td>
<td>3.6807</td>
<td>0.2092</td>
<td>0.2216</td>
<td>0.1866</td>
<td>0.0058</td>
</tr>
<tr>
<td>152</td>
<td>3.3379</td>
<td>0.2166</td>
<td>0.1729</td>
<td>0.1783</td>
<td>0.0068</td>
</tr>
<tr>
<td>156</td>
<td>2.9843</td>
<td>0.1988</td>
<td>0.1791</td>
<td>0.1661</td>
<td>0.0052</td>
</tr>
<tr>
<td>160</td>
<td>2.5907</td>
<td>0.1915</td>
<td>0.1396</td>
<td>0.1525</td>
<td>0.0094</td>
</tr>
<tr>
<td>164</td>
<td>2.1900</td>
<td>0.1907</td>
<td>0.1173</td>
<td>0.1423</td>
<td>0.0020</td>
</tr>
<tr>
<td>168</td>
<td>1.7311</td>
<td>0.1866</td>
<td>0.1025</td>
<td>0.1279</td>
<td>0.0021</td>
</tr>
<tr>
<td>172</td>
<td>1.3773</td>
<td>0.1572</td>
<td>0.0756</td>
<td>0.1238</td>
<td>0.0018</td>
</tr>
<tr>
<td>176</td>
<td>0.9349</td>
<td>0.1327</td>
<td>0.0420</td>
<td>0.1049</td>
<td>0.0022</td>
</tr>
<tr>
<td>180</td>
<td>0.5284</td>
<td>0.1089</td>
<td>0.0245</td>
<td>0.0662</td>
<td>0.0017</td>
</tr>
</tbody>
</table>
Figure 23: Streamwise velocity fluctuation at s/d = 44 (smoothed)
Figure 24: Radial velocity fluctuation at s/d = 44 (smoothed)
Figure 25: Reynolds shear stress at s/d = 44 (not smoothed)
PROCESSED DATA

I. Bulk-mean velocity, u_m, friction velocity, u_τ, skin friction coefficient, c_f, and Couette flow model versus crank position, θ

Note: The symbol in the "model" column indicates which of the Couette flow models, laminar (l) or turbulent (t), was used in processing.

$s/d = 0.33$

<table>
<thead>
<tr>
<th>θ (°)</th>
<th>u_m (m/sec)</th>
<th>u_τ (m/sec)</th>
<th>c_f</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.518</td>
<td>0.138</td>
<td>0.01653</td>
<td>t</td>
</tr>
<tr>
<td>30</td>
<td>2.303</td>
<td>0.158</td>
<td>0.00941</td>
<td>t</td>
</tr>
<tr>
<td>40</td>
<td>3.001</td>
<td>0.182</td>
<td>0.00735</td>
<td>t</td>
</tr>
<tr>
<td>50</td>
<td>3.703</td>
<td>0.215</td>
<td>0.00674</td>
<td>t</td>
</tr>
<tr>
<td>60</td>
<td>4.130</td>
<td>0.235</td>
<td>0.00648</td>
<td>t</td>
</tr>
<tr>
<td>70</td>
<td>4.605</td>
<td>0.242</td>
<td>0.00552</td>
<td>l</td>
</tr>
<tr>
<td>80</td>
<td>4.812</td>
<td>0.252</td>
<td>0.00548</td>
<td>l</td>
</tr>
<tr>
<td>90</td>
<td>4.808</td>
<td>0.248</td>
<td>0.00532</td>
<td>l</td>
</tr>
<tr>
<td>100</td>
<td>4.746</td>
<td>0.242</td>
<td>0.00520</td>
<td>l</td>
</tr>
<tr>
<td>110</td>
<td>4.533</td>
<td>0.233</td>
<td>0.00528</td>
<td>l</td>
</tr>
<tr>
<td>120</td>
<td>4.186</td>
<td>0.215</td>
<td>0.00528</td>
<td>l</td>
</tr>
<tr>
<td>130</td>
<td>3.732</td>
<td>0.198</td>
<td>0.00563</td>
<td>l</td>
</tr>
<tr>
<td>140</td>
<td>3.164</td>
<td>0.167</td>
<td>0.00557</td>
<td>l</td>
</tr>
<tr>
<td>150</td>
<td>2.457</td>
<td>0.134</td>
<td>0.00595</td>
<td>l</td>
</tr>
</tbody>
</table>

$s/d = 16$

<table>
<thead>
<tr>
<th>θ (°)</th>
<th>u_m (m/sec)</th>
<th>u_τ (m/sec)</th>
<th>c_f</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.539</td>
<td>0.140</td>
<td>0.01656</td>
<td>l</td>
</tr>
<tr>
<td>30</td>
<td>2.387</td>
<td>0.187</td>
<td>0.01228</td>
<td>l</td>
</tr>
<tr>
<td>40</td>
<td>3.061</td>
<td>0.189</td>
<td>0.00762</td>
<td>l</td>
</tr>
<tr>
<td>50</td>
<td>3.701</td>
<td>0.198</td>
<td>0.00573</td>
<td>l</td>
</tr>
<tr>
<td>60</td>
<td>4.131</td>
<td>0.200</td>
<td>0.00469</td>
<td>l</td>
</tr>
<tr>
<td>70</td>
<td>4.511</td>
<td>0.241</td>
<td>0.00571</td>
<td>t</td>
</tr>
<tr>
<td>80</td>
<td>4.741</td>
<td>0.282</td>
<td>0.00708</td>
<td>t</td>
</tr>
<tr>
<td>90</td>
<td>4.806</td>
<td>0.294</td>
<td>0.00749</td>
<td>t</td>
</tr>
<tr>
<td>100</td>
<td>4.826</td>
<td>0.278</td>
<td>0.00664</td>
<td>t</td>
</tr>
<tr>
<td>110</td>
<td>4.597</td>
<td>0.210</td>
<td>0.00417</td>
<td>t</td>
</tr>
<tr>
<td>120</td>
<td>4.256</td>
<td>0.169</td>
<td>0.00315</td>
<td>l</td>
</tr>
<tr>
<td>130</td>
<td>3.791</td>
<td>0.139</td>
<td>0.00269</td>
<td>l</td>
</tr>
<tr>
<td>140</td>
<td>3.279</td>
<td>0.090</td>
<td>0.00151</td>
<td>l</td>
</tr>
<tr>
<td>150</td>
<td>2.607</td>
<td>0.087</td>
<td>0.00223</td>
<td>l</td>
</tr>
</tbody>
</table>
s/d = 30

<table>
<thead>
<tr>
<th>θ (°)</th>
<th>u_m (m/sec)</th>
<th>u_* (m/sec)</th>
<th>c_l</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.479</td>
<td>0.140</td>
<td>0.01792</td>
<td>l</td>
</tr>
<tr>
<td>30</td>
<td>2.201</td>
<td>0.156</td>
<td>0.01005</td>
<td>l</td>
</tr>
<tr>
<td>40</td>
<td>2.878</td>
<td>0.175</td>
<td>0.00740</td>
<td>l</td>
</tr>
<tr>
<td>50</td>
<td>3.465</td>
<td>0.190</td>
<td>0.00602</td>
<td>l</td>
</tr>
<tr>
<td>60</td>
<td>3.886</td>
<td>0.193</td>
<td>0.00493</td>
<td>l</td>
</tr>
<tr>
<td>70</td>
<td>4.246</td>
<td>0.193</td>
<td>0.00413</td>
<td>l</td>
</tr>
<tr>
<td>80</td>
<td>4.441</td>
<td>0.189</td>
<td>0.00362</td>
<td>l</td>
</tr>
<tr>
<td>90</td>
<td>4.518</td>
<td>0.318</td>
<td>0.00991</td>
<td>t</td>
</tr>
<tr>
<td>100</td>
<td>4.548</td>
<td>0.315</td>
<td>0.00959</td>
<td>t</td>
</tr>
<tr>
<td>110</td>
<td>4.321</td>
<td>0.318</td>
<td>0.01083</td>
<td>t</td>
</tr>
<tr>
<td>120</td>
<td>4.080</td>
<td>0.290</td>
<td>0.01010</td>
<td>t</td>
</tr>
<tr>
<td>130</td>
<td>3.667</td>
<td>0.248</td>
<td>0.00915</td>
<td>t</td>
</tr>
<tr>
<td>140</td>
<td>3.176</td>
<td>0.200</td>
<td>0.0093</td>
<td>t</td>
</tr>
<tr>
<td>150</td>
<td>2.517</td>
<td>0.142</td>
<td>0.00637</td>
<td>t</td>
</tr>
<tr>
<td>160</td>
<td>1.849</td>
<td>0.100</td>
<td>0.00585</td>
<td>t</td>
</tr>
<tr>
<td>170</td>
<td>0.995</td>
<td>0.051</td>
<td>0.00525</td>
<td>t</td>
</tr>
</tbody>
</table>

s/d = 44

<table>
<thead>
<tr>
<th>θ (°)</th>
<th>u_m (m/sec)</th>
<th>u_* (m/sec)</th>
<th>c_l</th>
<th>model</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.578</td>
<td>0.147</td>
<td>0.01735</td>
<td>l</td>
</tr>
<tr>
<td>30</td>
<td>2.295</td>
<td>0.170</td>
<td>0.01097</td>
<td>l</td>
</tr>
<tr>
<td>40</td>
<td>2.962</td>
<td>0.180</td>
<td>0.00739</td>
<td>l</td>
</tr>
<tr>
<td>50</td>
<td>3.569</td>
<td>0.189</td>
<td>0.00561</td>
<td>l</td>
</tr>
<tr>
<td>60</td>
<td>3.981</td>
<td>0.192</td>
<td>0.00465</td>
<td>l</td>
</tr>
<tr>
<td>70</td>
<td>4.358</td>
<td>0.200</td>
<td>0.00421</td>
<td>l</td>
</tr>
<tr>
<td>80</td>
<td>4.567</td>
<td>0.195</td>
<td>0.00365</td>
<td>l</td>
</tr>
<tr>
<td>90</td>
<td>4.631</td>
<td>0.188</td>
<td>0.00330</td>
<td>l</td>
</tr>
<tr>
<td>100</td>
<td>4.624</td>
<td>0.182</td>
<td>0.00310</td>
<td>l</td>
</tr>
<tr>
<td>110</td>
<td>4.445</td>
<td>0.390</td>
<td>0.01540</td>
<td>t</td>
</tr>
<tr>
<td>120</td>
<td>4.142</td>
<td>0.298</td>
<td>0.01035</td>
<td>t</td>
</tr>
<tr>
<td>130</td>
<td>3.708</td>
<td>0.267</td>
<td>0.01037</td>
<td>t</td>
</tr>
<tr>
<td>140</td>
<td>3.185</td>
<td>0.220</td>
<td>0.00954</td>
<td>t</td>
</tr>
<tr>
<td>150</td>
<td>2.511</td>
<td>0.156</td>
<td>0.00772</td>
<td>t</td>
</tr>
<tr>
<td>160</td>
<td>1.755</td>
<td>0.103</td>
<td>0.00689</td>
<td>t</td>
</tr>
<tr>
<td>170</td>
<td>0.891</td>
<td>0.040</td>
<td>0.00403</td>
<td>t</td>
</tr>
</tbody>
</table>

II. Processed (θ, u^+, y^+) Data: Experiment and Couette Flow Model
s/d=0.33 Experiment

<table>
<thead>
<tr>
<th></th>
<th>20°</th>
<th></th>
<th>40°</th>
<th></th>
<th>60°</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>1.31</td>
<td>0.78</td>
<td></td>
<td>1.73</td>
<td>1.65</td>
<td>2.24</td>
<td>2.29</td>
</tr>
<tr>
<td>1.81</td>
<td>0.96</td>
<td></td>
<td>2.39</td>
<td>2.30</td>
<td>3.08</td>
<td>3.12</td>
</tr>
<tr>
<td>2.30</td>
<td>1.12</td>
<td></td>
<td>3.04</td>
<td>2.71</td>
<td>3.92</td>
<td>3.63</td>
</tr>
<tr>
<td>2.92</td>
<td>1.77</td>
<td></td>
<td>3.86</td>
<td>4.03</td>
<td>4.98</td>
<td>4.83</td>
</tr>
<tr>
<td>3.54</td>
<td>2.34</td>
<td></td>
<td>4.67</td>
<td>4.68</td>
<td>6.03</td>
<td>5.52</td>
</tr>
<tr>
<td>4.78</td>
<td>4.21</td>
<td></td>
<td>6.31</td>
<td>6.80</td>
<td>8.14</td>
<td>7.78</td>
</tr>
<tr>
<td>6.02</td>
<td>5.36</td>
<td></td>
<td>7.94</td>
<td>8.34</td>
<td>10.25</td>
<td>9.57</td>
</tr>
<tr>
<td>9.74</td>
<td>7.98</td>
<td></td>
<td>12.84</td>
<td>12.04</td>
<td>16.58</td>
<td>13.22</td>
</tr>
<tr>
<td>13.46</td>
<td>9.42</td>
<td></td>
<td>17.75</td>
<td>13.97</td>
<td>22.91</td>
<td>15.34</td>
</tr>
<tr>
<td>25.85</td>
<td>11.54</td>
<td></td>
<td>34.09</td>
<td>16.56</td>
<td>44.01</td>
<td>17.57</td>
</tr>
<tr>
<td>50.63</td>
<td>11.74</td>
<td></td>
<td>66.77</td>
<td>17.05</td>
<td>86.21</td>
<td>17.73</td>
</tr>
<tr>
<td>75.41</td>
<td>11.58</td>
<td></td>
<td>99.45</td>
<td>17.16</td>
<td>128.41</td>
<td>17.71</td>
</tr>
<tr>
<td>100.19</td>
<td>11.30</td>
<td></td>
<td>132.13</td>
<td>17.01</td>
<td>170.61</td>
<td>17.56</td>
</tr>
<tr>
<td>124.97</td>
<td>11.25</td>
<td></td>
<td>164.81</td>
<td>17.03</td>
<td>212.81</td>
<td>17.52</td>
</tr>
<tr>
<td>149.75</td>
<td>11.12</td>
<td></td>
<td>197.50</td>
<td>17.11</td>
<td>255.01</td>
<td>17.51</td>
</tr>
<tr>
<td>186.92</td>
<td>11.21</td>
<td></td>
<td>246.52</td>
<td>17.07</td>
<td>318.31</td>
<td>17.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>30°</th>
<th></th>
<th>50°</th>
<th></th>
<th>70°</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>1.50</td>
<td>1.17</td>
<td></td>
<td>2.05</td>
<td>2.13</td>
<td>2.30</td>
<td>2.63</td>
</tr>
<tr>
<td>2.07</td>
<td>1.61</td>
<td></td>
<td>2.82</td>
<td>2.96</td>
<td>3.17</td>
<td>3.44</td>
</tr>
<tr>
<td>2.64</td>
<td>1.96</td>
<td></td>
<td>3.59</td>
<td>3.33</td>
<td>4.04</td>
<td>3.94</td>
</tr>
<tr>
<td>3.35</td>
<td>3.08</td>
<td></td>
<td>4.56</td>
<td>4.56</td>
<td>5.13</td>
<td>5.19</td>
</tr>
<tr>
<td>4.06</td>
<td>3.75</td>
<td></td>
<td>5.52</td>
<td>5.39</td>
<td>6.21</td>
<td>6.16</td>
</tr>
<tr>
<td>5.48</td>
<td>5.63</td>
<td></td>
<td>7.45</td>
<td>7.72</td>
<td>8.39</td>
<td>8.48</td>
</tr>
<tr>
<td>11.15</td>
<td>10.13</td>
<td></td>
<td>15.17</td>
<td>12.79</td>
<td>17.08</td>
<td>14.45</td>
</tr>
<tr>
<td>15.41</td>
<td>12.08</td>
<td></td>
<td>20.96</td>
<td>14.88</td>
<td>23.60</td>
<td>16.69</td>
</tr>
<tr>
<td>29.59</td>
<td>14.60</td>
<td></td>
<td>40.27</td>
<td>17.13</td>
<td>45.32</td>
<td>18.77</td>
</tr>
<tr>
<td>57.96</td>
<td>15.26</td>
<td></td>
<td>78.88</td>
<td>17.36</td>
<td>88.78</td>
<td>18.81</td>
</tr>
<tr>
<td>86.34</td>
<td>15.34</td>
<td></td>
<td>174.48</td>
<td>17.44</td>
<td>132.24</td>
<td>18.77</td>
</tr>
<tr>
<td>114.71</td>
<td>15.28</td>
<td></td>
<td>156.09</td>
<td>17.30</td>
<td>175.69</td>
<td>18.60</td>
</tr>
<tr>
<td>143.08</td>
<td>15.32</td>
<td></td>
<td>184.70</td>
<td>17.26</td>
<td>219.15</td>
<td>18.54</td>
</tr>
<tr>
<td>171.45</td>
<td>15.29</td>
<td></td>
<td>233.31</td>
<td>17.27</td>
<td>262.60</td>
<td>18.51</td>
</tr>
<tr>
<td>214.01</td>
<td>15.35</td>
<td></td>
<td>291.22</td>
<td>17.32</td>
<td>327.79</td>
<td>18.57</td>
</tr>
<tr>
<td>θ</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>80°</td>
<td>2.40</td>
<td>2.71</td>
<td>3.30</td>
<td>3.54</td>
<td>4.21</td>
<td>4.11</td>
</tr>
<tr>
<td>90°</td>
<td>3.30</td>
<td>3.54</td>
<td>4.21</td>
<td>4.11</td>
<td>5.34</td>
<td>5.46</td>
</tr>
<tr>
<td>100°</td>
<td>4.21</td>
<td>4.11</td>
<td>5.34</td>
<td>5.46</td>
<td>6.47</td>
<td>6.28</td>
</tr>
<tr>
<td>110°</td>
<td>6.47</td>
<td>6.28</td>
<td>8.73</td>
<td>8.80</td>
<td>11.00</td>
<td>10.54</td>
</tr>
<tr>
<td>120°</td>
<td>11.00</td>
<td>10.54</td>
<td>17.78</td>
<td>14.69</td>
<td>24.57</td>
<td>17.19</td>
</tr>
<tr>
<td>130°</td>
<td>24.57</td>
<td>17.19</td>
<td>47.20</td>
<td>18.87</td>
<td>92.45</td>
<td>18.63</td>
</tr>
<tr>
<td>140°</td>
<td>92.45</td>
<td>18.63</td>
<td>137.70</td>
<td>18.81</td>
<td>182.95</td>
<td>18.63</td>
</tr>
<tr>
<td>150°</td>
<td>182.95</td>
<td>18.63</td>
<td>226.20</td>
<td>18.58</td>
<td>273.46</td>
<td>18.58</td>
</tr>
<tr>
<td>160°</td>
<td>273.46</td>
<td>18.58</td>
<td>341.33</td>
<td>18.58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>θ</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>90°</td>
<td>2.36</td>
<td>2.66</td>
<td>2.22</td>
<td>2.40</td>
<td>3.05</td>
<td>3.13</td>
</tr>
<tr>
<td>100°</td>
<td>3.25</td>
<td>3.38</td>
<td>3.89</td>
<td>3.66</td>
<td>4.94</td>
<td>4.89</td>
</tr>
<tr>
<td>110°</td>
<td>4.14</td>
<td>3.96</td>
<td>5.98</td>
<td>5.73</td>
<td>8.08</td>
<td>8.02</td>
</tr>
<tr>
<td>120°</td>
<td>5.25</td>
<td>5.26</td>
<td>10.17</td>
<td>9.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130°</td>
<td>6.37</td>
<td>6.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140°</td>
<td>7.59</td>
<td>6.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150°</td>
<td>10.82</td>
<td>10.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160°</td>
<td>17.50</td>
<td>14.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170°</td>
<td>24.18</td>
<td>17.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180°</td>
<td>46.45</td>
<td>19.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190°</td>
<td>90.98</td>
<td>19.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200°</td>
<td>135.52</td>
<td>19.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210°</td>
<td>180.05</td>
<td>19.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220°</td>
<td>224.58</td>
<td>19.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230°</td>
<td>269.12</td>
<td>19.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240°</td>
<td>335.92</td>
<td>19.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
s/d = 0.33 Model

140°

<table>
<thead>
<tr>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.59</td>
<td>1.33</td>
</tr>
<tr>
<td>2.19</td>
<td>1.80</td>
</tr>
<tr>
<td>2.79</td>
<td>2.27</td>
</tr>
<tr>
<td>3.54</td>
<td>3.70</td>
</tr>
<tr>
<td>4.29</td>
<td>4.29</td>
</tr>
<tr>
<td>5.79</td>
<td>6.99</td>
</tr>
<tr>
<td>7.29</td>
<td>8.19</td>
</tr>
<tr>
<td>11.79</td>
<td>12.69</td>
</tr>
<tr>
<td>16.28</td>
<td>16.09</td>
</tr>
<tr>
<td>31.28</td>
<td>20.05</td>
</tr>
<tr>
<td>61.27</td>
<td>20.17</td>
</tr>
<tr>
<td>91.25</td>
<td>20.10</td>
</tr>
<tr>
<td>121.24</td>
<td>19.90</td>
</tr>
<tr>
<td>151.23</td>
<td>19.77</td>
</tr>
<tr>
<td>181.22</td>
<td>19.78</td>
</tr>
<tr>
<td>226.20</td>
<td>19.89</td>
</tr>
</tbody>
</table>

20°

<table>
<thead>
<tr>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>2.00</td>
<td>1.91</td>
</tr>
<tr>
<td>3.00</td>
<td>2.80</td>
</tr>
<tr>
<td>4.00</td>
<td>3.65</td>
</tr>
<tr>
<td>5.00</td>
<td>4.45</td>
</tr>
<tr>
<td>6.00</td>
<td>5.21</td>
</tr>
<tr>
<td>7.00</td>
<td>5.92</td>
</tr>
<tr>
<td>8.00</td>
<td>6.59</td>
</tr>
<tr>
<td>9.00</td>
<td>7.21</td>
</tr>
<tr>
<td>10.00</td>
<td>7.99</td>
</tr>
<tr>
<td>11.00</td>
<td>8.33</td>
</tr>
<tr>
<td>12.00</td>
<td>8.82</td>
</tr>
<tr>
<td>13.00</td>
<td>9.27</td>
</tr>
<tr>
<td>14.00</td>
<td>9.68</td>
</tr>
<tr>
<td>15.00</td>
<td>10.04</td>
</tr>
</tbody>
</table>

150°

<table>
<thead>
<tr>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.28</td>
<td>0.89</td>
</tr>
<tr>
<td>1.76</td>
<td>1.07</td>
</tr>
<tr>
<td>2.24</td>
<td>1.25</td>
</tr>
<tr>
<td>2.64</td>
<td>2.09</td>
</tr>
<tr>
<td>3.44</td>
<td>2.80</td>
</tr>
<tr>
<td>4.64</td>
<td>5.12</td>
</tr>
<tr>
<td>5.85</td>
<td>6.77</td>
</tr>
<tr>
<td>9.46</td>
<td>11.32</td>
</tr>
<tr>
<td>13.07</td>
<td>14.87</td>
</tr>
<tr>
<td>25.10</td>
<td>19.69</td>
</tr>
<tr>
<td>49.16</td>
<td>20.01</td>
</tr>
<tr>
<td>73.22</td>
<td>19.90</td>
</tr>
<tr>
<td>97.28</td>
<td>19.79</td>
</tr>
<tr>
<td>121.35</td>
<td>19.63</td>
</tr>
<tr>
<td>145.41</td>
<td>19.63</td>
</tr>
<tr>
<td>181.50</td>
<td>19.83</td>
</tr>
</tbody>
</table>

30°

<table>
<thead>
<tr>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>3.00</td>
</tr>
<tr>
<td>4.0</td>
<td>4.00</td>
</tr>
<tr>
<td>5.0</td>
<td>4.99</td>
</tr>
<tr>
<td>6.0</td>
<td>5.99</td>
</tr>
<tr>
<td>7.0</td>
<td>6.97</td>
</tr>
<tr>
<td>8.0</td>
<td>7.95</td>
</tr>
<tr>
<td>9.0</td>
<td>8.91</td>
</tr>
<tr>
<td>10.0</td>
<td>9.85</td>
</tr>
<tr>
<td>11.0</td>
<td>10.76</td>
</tr>
<tr>
<td>12.0</td>
<td>11.65</td>
</tr>
<tr>
<td>13.0</td>
<td>12.50</td>
</tr>
<tr>
<td>14.0</td>
<td>13.32</td>
</tr>
<tr>
<td>15.0</td>
<td>14.10</td>
</tr>
<tr>
<td>16.0</td>
<td>14.85</td>
</tr>
<tr>
<td>17.0</td>
<td>15.55</td>
</tr>
<tr>
<td>18.0</td>
<td>16.22</td>
</tr>
<tr>
<td>19.0</td>
<td>16.86</td>
</tr>
<tr>
<td>20.0</td>
<td>17.45</td>
</tr>
<tr>
<td>21.0</td>
<td>18.02</td>
</tr>
<tr>
<td>22.0</td>
<td>18.55</td>
</tr>
<tr>
<td>23.0</td>
<td>19.06</td>
</tr>
<tr>
<td>24.0</td>
<td>19.53</td>
</tr>
<tr>
<td>25.0</td>
<td>19.98</td>
</tr>
<tr>
<td>26.0</td>
<td>20.41</td>
</tr>
<tr>
<td>27.0</td>
<td>20.82</td>
</tr>
<tr>
<td>28.0</td>
<td>21.20</td>
</tr>
<tr>
<td>29.0</td>
<td>21.56</td>
</tr>
<tr>
<td>30.0</td>
<td>21.91</td>
</tr>
<tr>
<td>31.0</td>
<td>22.24</td>
</tr>
<tr>
<td>32.0</td>
<td>22.55</td>
</tr>
<tr>
<td>33.0</td>
<td>22.85</td>
</tr>
<tr>
<td>34.0</td>
<td>23.13</td>
</tr>
<tr>
<td>35.0</td>
<td>23.40</td>
</tr>
<tr>
<td>36.0</td>
<td>23.66</td>
</tr>
<tr>
<td>37.0</td>
<td>23.91</td>
</tr>
<tr>
<td>38.0</td>
<td>24.15</td>
</tr>
<tr>
<td>39.0</td>
<td>24.38</td>
</tr>
<tr>
<td>40.0</td>
<td>24.59</td>
</tr>
<tr>
<td>41.0</td>
<td>24.80</td>
</tr>
<tr>
<td>42.0</td>
<td>25.00</td>
</tr>
<tr>
<td>43.0</td>
<td>25.20</td>
</tr>
<tr>
<td>44.0</td>
<td>25.38</td>
</tr>
<tr>
<td>45.0</td>
<td>25.56</td>
</tr>
<tr>
<td>46.0</td>
<td>25.74</td>
</tr>
<tr>
<td>47.0</td>
<td>25.90</td>
</tr>
<tr>
<td>48.0</td>
<td>26.06</td>
</tr>
<tr>
<td>49.0</td>
<td>26.22</td>
</tr>
<tr>
<td>50.0</td>
<td>26.37</td>
</tr>
<tr>
<td>y'</td>
<td>u'</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>3.00</td>
</tr>
<tr>
<td>4.0</td>
<td>3.99</td>
</tr>
<tr>
<td>5.0</td>
<td>4.96</td>
</tr>
<tr>
<td>6.0</td>
<td>5.90</td>
</tr>
<tr>
<td>7.0</td>
<td>6.81</td>
</tr>
<tr>
<td>8.0</td>
<td>7.66</td>
</tr>
<tr>
<td>9.0</td>
<td>8.46</td>
</tr>
<tr>
<td>10.0</td>
<td>9.19</td>
</tr>
<tr>
<td>11.0</td>
<td>9.86</td>
</tr>
<tr>
<td>12.0</td>
<td>10.47</td>
</tr>
<tr>
<td>13.0</td>
<td>11.03</td>
</tr>
<tr>
<td>14.0</td>
<td>11.54</td>
</tr>
<tr>
<td>15.0</td>
<td>12.01</td>
</tr>
<tr>
<td>16.0</td>
<td>12.44</td>
</tr>
<tr>
<td>17.0</td>
<td>12.83</td>
</tr>
<tr>
<td>18.0</td>
<td>13.19</td>
</tr>
<tr>
<td>19.0</td>
<td>13.52</td>
</tr>
<tr>
<td>20.0</td>
<td>13.83</td>
</tr>
<tr>
<td>21.0</td>
<td>14.12</td>
</tr>
<tr>
<td>22.0</td>
<td>14.39</td>
</tr>
<tr>
<td>23.0</td>
<td>14.63</td>
</tr>
<tr>
<td>24.0</td>
<td>14.87</td>
</tr>
<tr>
<td>25.0</td>
<td>15.09</td>
</tr>
<tr>
<td>26.0</td>
<td>15.29</td>
</tr>
<tr>
<td>27.0</td>
<td>15.48</td>
</tr>
<tr>
<td>28.0</td>
<td>15.67</td>
</tr>
<tr>
<td>29.0</td>
<td>15.84</td>
</tr>
<tr>
<td>30.0</td>
<td>16.00</td>
</tr>
<tr>
<td>31.0</td>
<td>16.16</td>
</tr>
<tr>
<td>32.0</td>
<td>16.31</td>
</tr>
<tr>
<td>33.0</td>
<td>16.45</td>
</tr>
<tr>
<td>34.0</td>
<td>16.58</td>
</tr>
<tr>
<td>35.0</td>
<td>16.71</td>
</tr>
<tr>
<td>36.0</td>
<td>16.83</td>
</tr>
<tr>
<td>37.0</td>
<td>16.95</td>
</tr>
<tr>
<td>38.0</td>
<td>17.06</td>
</tr>
<tr>
<td>39.0</td>
<td>17.17</td>
</tr>
<tr>
<td>40.0</td>
<td>17.27</td>
</tr>
<tr>
<td>41.0</td>
<td>17.37</td>
</tr>
<tr>
<td>42.0</td>
<td>17.47</td>
</tr>
<tr>
<td>43.0</td>
<td>17.56</td>
</tr>
<tr>
<td>44.0</td>
<td>17.65</td>
</tr>
<tr>
<td>45.0</td>
<td>17.73</td>
</tr>
<tr>
<td>46.0</td>
<td>17.82</td>
</tr>
<tr>
<td>47.0</td>
<td>17.90</td>
</tr>
<tr>
<td>48.0</td>
<td>17.97</td>
</tr>
<tr>
<td>49.0</td>
<td>18.05</td>
</tr>
<tr>
<td>50.0</td>
<td>18.12</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.99</td>
</tr>
<tr>
<td>3.00</td>
<td>2.99</td>
</tr>
<tr>
<td>4.00</td>
<td>3.98</td>
</tr>
<tr>
<td>5.00</td>
<td>4.96</td>
</tr>
<tr>
<td>6.00</td>
<td>5.95</td>
</tr>
<tr>
<td>7.00</td>
<td>6.93</td>
</tr>
<tr>
<td>8.00</td>
<td>7.90</td>
</tr>
<tr>
<td>9.00</td>
<td>8.88</td>
</tr>
<tr>
<td>10.00</td>
<td>9.85</td>
</tr>
<tr>
<td>11.00</td>
<td>10.82</td>
</tr>
<tr>
<td>12.00</td>
<td>11.79</td>
</tr>
<tr>
<td>13.00</td>
<td>12.75</td>
</tr>
<tr>
<td>14.00</td>
<td>13.71</td>
</tr>
<tr>
<td>15.00</td>
<td>14.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.01</td>
</tr>
<tr>
<td>3.00</td>
<td>2.99</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.03</td>
</tr>
<tr>
<td>4.00</td>
<td>3.99</td>
<td>4.00</td>
<td>4.01</td>
<td>4.00</td>
<td>4.05</td>
</tr>
<tr>
<td>5.00</td>
<td>4.98</td>
<td>5.00</td>
<td>5.02</td>
<td>5.00</td>
<td>5.08</td>
</tr>
<tr>
<td>6.00</td>
<td>5.98</td>
<td>6.00</td>
<td>6.03</td>
<td>6.00</td>
<td>6.11</td>
</tr>
<tr>
<td>7.00</td>
<td>6.97</td>
<td>7.00</td>
<td>7.04</td>
<td>7.00</td>
<td>7.15</td>
</tr>
<tr>
<td>8.00</td>
<td>7.96</td>
<td>8.00</td>
<td>8.05</td>
<td>8.00</td>
<td>8.20</td>
</tr>
<tr>
<td>9.00</td>
<td>8.95</td>
<td>9.00</td>
<td>9.06</td>
<td>9.00</td>
<td>9.25</td>
</tr>
<tr>
<td>10.00</td>
<td>9.93</td>
<td>10.00</td>
<td>10.08</td>
<td>10.00</td>
<td>10.31</td>
</tr>
<tr>
<td>11.00</td>
<td>10.92</td>
<td>11.00</td>
<td>11.09</td>
<td>11.00</td>
<td>11.38</td>
</tr>
<tr>
<td>12.00</td>
<td>11.90</td>
<td>12.00</td>
<td>12.11</td>
<td>12.00</td>
<td>12.45</td>
</tr>
<tr>
<td>13.00</td>
<td>12.89</td>
<td>13.00</td>
<td>13.13</td>
<td>13.00</td>
<td>13.52</td>
</tr>
<tr>
<td>14.00</td>
<td>13.87</td>
<td>14.00</td>
<td>14.15</td>
<td>14.00</td>
<td>14.61</td>
</tr>
<tr>
<td>15.00</td>
<td>14.85</td>
<td>15.00</td>
<td>15.17</td>
<td>15.00</td>
<td>15.70</td>
</tr>
<tr>
<td>(s/d=16) Experiment</td>
<td>(130^\circ)</td>
<td>(150^\circ)</td>
<td>(20^\circ)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(y^+)</td>
<td>(u^+)</td>
<td>(y^+)</td>
<td>(u^+)</td>
<td>(y^+)</td>
<td>(u^+)</td>
</tr>
<tr>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
<td>1.02</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>2.00</td>
<td>2.02</td>
<td>2.00</td>
<td>2.09</td>
<td>1.47</td>
<td>0.91</td>
</tr>
<tr>
<td>3.00</td>
<td>3.05</td>
<td>3.00</td>
<td>3.20</td>
<td>3.28</td>
<td>2.41</td>
</tr>
<tr>
<td>4.00</td>
<td>4.08</td>
<td>4.00</td>
<td>4.36</td>
<td>7.92</td>
<td>7.02</td>
</tr>
<tr>
<td>5.00</td>
<td>5.13</td>
<td>5.00</td>
<td>5.56</td>
<td>11.79</td>
<td>9.11</td>
</tr>
<tr>
<td>6.00</td>
<td>6.18</td>
<td>6.00</td>
<td>6.80</td>
<td>24.69</td>
<td>12.03</td>
</tr>
<tr>
<td>7.00</td>
<td>7.25</td>
<td>7.00</td>
<td>8.09</td>
<td>50.49</td>
<td>12.48</td>
</tr>
<tr>
<td>8.00</td>
<td>8.33</td>
<td>8.00</td>
<td>9.42</td>
<td>76.29</td>
<td>12.24</td>
</tr>
<tr>
<td>9.00</td>
<td>9.41</td>
<td>9.00</td>
<td>10.80</td>
<td>102.09</td>
<td>11.87</td>
</tr>
<tr>
<td>10.00</td>
<td>10.51</td>
<td>10.00</td>
<td>12.22</td>
<td>127.90</td>
<td>11.49</td>
</tr>
<tr>
<td>11.00</td>
<td>11.62</td>
<td>11.00</td>
<td>13.69</td>
<td>153.70</td>
<td>11.26</td>
</tr>
<tr>
<td>12.00</td>
<td>12.74</td>
<td>12.00</td>
<td>15.20</td>
<td>192.40</td>
<td>11.37</td>
</tr>
<tr>
<td>13.00</td>
<td>13.86</td>
<td>13.00</td>
<td>16.75</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>14.00</td>
<td>15.00</td>
<td>14.00</td>
<td>18.35</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>15.00</td>
<td>16.15</td>
<td>15.00</td>
<td>20.00</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

| \(140^\circ\) | \(\ldots\) | \(\ldots\) | \(\ldots\) |
|--------------|--------------|--------------|
| \(y^+\) | \(u^+\) | \(\ldots\) | \(\ldots\) |
| 1.00 | 1.01 | \(\ldots\) | \(\ldots\) |
| 2.00 | 2.04 | \(\ldots\) | \(\ldots\) |
| 3.00 | 3.09 | \(\ldots\) | \(\ldots\) |
| 4.00 | 4.16 | \(\ldots\) | \(\ldots\) |
| 5.00 | 5.25 | \(\ldots\) | \(\ldots\) |
| 6.00 | 6.37 | \(\ldots\) | \(\ldots\) |
| 7.00 | 7.50 | \(\ldots\) | \(\ldots\) |
| 8.00 | 8.65 | \(\ldots\) | \(\ldots\) |
| 9.00 | 9.82 | \(\ldots\) | \(\ldots\) |
| 10.00 | 11.01 | \(\ldots\) | \(\ldots\) |
| 11.00 | 12.23 | \(\ldots\) | \(\ldots\) |
| 12.00 | 13.46 | \(\ldots\) | \(\ldots\) |
| 13.00 | 14.72 | \(\ldots\) | \(\ldots\) |
| 14.00 | 15.99 | \(\ldots\) | \(\ldots\) |
| 15.00 | 17.28 | \(\ldots\) | \(\ldots\) |

<p>| (40^\circ) | (\ldots) | (\ldots) | (\ldots) |
|--------------|--------------|--------------|
| (y^+) | (u^+) | (\ldots) | (\ldots) |
| 1.29 | 1.21 | (\ldots) | (\ldots) |
| 1.99 | 1.60 | (\ldots) | (\ldots) |
| 4.42 | 3.98 | (\ldots) | (\ldots) |
| 10.69 | 9.12 | (\ldots) | (\ldots) |
| 15.92 | 12.04 | (\ldots) | (\ldots) |
| 33.33 | 16.91 | (\ldots) | (\ldots) |
| 68.16 | 18.44 | (\ldots) | (\ldots) |
| 103.00 | 18.52 | (\ldots) | (\ldots) |
| 137.83 | 18.32 | (\ldots) | (\ldots) |
| 172.66 | 17.66 | (\ldots) | (\ldots) |
| 207.49 | 17.00 | (\ldots) | (\ldots) |
| 259.74 | 16.88 | (\ldots) | (\ldots) |</p>
<table>
<thead>
<tr>
<th></th>
<th>50°</th>
<th></th>
<th>80°</th>
<th></th>
<th>110°</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>1.35</td>
<td>1.34</td>
<td>1.92</td>
<td>2.33</td>
<td>1.43</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>2.08</td>
<td>1.82</td>
<td>2.96</td>
<td>3.04</td>
<td>2.21</td>
<td>2.17</td>
<td></td>
</tr>
<tr>
<td>4.63</td>
<td>4.26</td>
<td>6.60</td>
<td>5.92</td>
<td>4.91</td>
<td>4.62</td>
<td></td>
</tr>
<tr>
<td>11.20</td>
<td>9.62</td>
<td>15.95</td>
<td>11.05</td>
<td>11.88</td>
<td>10.44</td>
<td></td>
</tr>
<tr>
<td>16.68</td>
<td>12.73</td>
<td>23.75</td>
<td>13.38</td>
<td>17.69</td>
<td>13.96</td>
<td></td>
</tr>
<tr>
<td>34.92</td>
<td>18.72</td>
<td>49.74</td>
<td>16.61</td>
<td>37.04</td>
<td>20.91</td>
<td></td>
</tr>
<tr>
<td>71.41</td>
<td>21.37</td>
<td>101.71</td>
<td>18.33</td>
<td>75.74</td>
<td>24.86</td>
<td></td>
</tr>
<tr>
<td>107.80</td>
<td>21.65</td>
<td>153.68</td>
<td>18.88</td>
<td>114.44</td>
<td>25.75</td>
<td></td>
</tr>
<tr>
<td>144.39</td>
<td>21.58</td>
<td>205.65</td>
<td>19.03</td>
<td>153.14</td>
<td>25.83</td>
<td></td>
</tr>
<tr>
<td>180.86</td>
<td>21.38</td>
<td>257.62</td>
<td>19.06</td>
<td>191.84</td>
<td>25.86</td>
<td></td>
</tr>
<tr>
<td>217.37</td>
<td>20.76</td>
<td>309.59</td>
<td>18.84</td>
<td>230.55</td>
<td>25.73</td>
<td></td>
</tr>
<tr>
<td>272.11</td>
<td>19.44</td>
<td>387.55</td>
<td>18.34</td>
<td>288.60</td>
<td>25.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60°</td>
<td></td>
<td>90°</td>
<td></td>
<td>120°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>1.36</td>
<td>1.44</td>
<td>2.00</td>
<td>2.46</td>
<td>1.15</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>1.95</td>
<td>3.09</td>
<td>3.21</td>
<td>1.78</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>4.68</td>
<td>4.46</td>
<td>6.88</td>
<td>6.18</td>
<td>3.96</td>
<td>3.81</td>
<td></td>
</tr>
<tr>
<td>16.84</td>
<td>13.50</td>
<td>24.76</td>
<td>13.04</td>
<td>14.23</td>
<td>13.60</td>
<td></td>
</tr>
<tr>
<td>35.27</td>
<td>20.56</td>
<td>51.85</td>
<td>16.11</td>
<td>29.61</td>
<td>22.55</td>
<td></td>
</tr>
<tr>
<td>72.13</td>
<td>23.62</td>
<td>106.03</td>
<td>17.57</td>
<td>60.95</td>
<td>29.40</td>
<td></td>
</tr>
<tr>
<td>108.99</td>
<td>24.05</td>
<td>160.22</td>
<td>18.39</td>
<td>92.10</td>
<td>30.79</td>
<td></td>
</tr>
<tr>
<td>145.85</td>
<td>23.98</td>
<td>214.40</td>
<td>18.56</td>
<td>123.24</td>
<td>30.71</td>
<td></td>
</tr>
<tr>
<td>182.71</td>
<td>23.38</td>
<td>268.58</td>
<td>18.83</td>
<td>154.39</td>
<td>30.65</td>
<td></td>
</tr>
<tr>
<td>219.57</td>
<td>23.40</td>
<td>322.76</td>
<td>18.39</td>
<td>185.53</td>
<td>30.50</td>
<td></td>
</tr>
<tr>
<td>274.85</td>
<td>22.19</td>
<td>404.04</td>
<td>17.94</td>
<td>232.25</td>
<td>29.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>70°</td>
<td></td>
<td>100°</td>
<td></td>
<td>130°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>1.64</td>
<td>1.78</td>
<td>1.90</td>
<td>2.36</td>
<td>0.95</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>2.53</td>
<td>2.42</td>
<td>2.92</td>
<td>3.06</td>
<td>1.46</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>5.64</td>
<td>5.03</td>
<td>6.51</td>
<td>5.78</td>
<td>3.25</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>13.64</td>
<td>10.61</td>
<td>15.73</td>
<td>11.22</td>
<td>7.86</td>
<td>9.16</td>
<td></td>
</tr>
<tr>
<td>20.30</td>
<td>13.71</td>
<td>23.41</td>
<td>13.30</td>
<td>11.71</td>
<td>13.31</td>
<td></td>
</tr>
<tr>
<td>42.51</td>
<td>18.50</td>
<td>49.03</td>
<td>16.77</td>
<td>24.52</td>
<td>23.61</td>
<td></td>
</tr>
<tr>
<td>86.92</td>
<td>20.86</td>
<td>100.26</td>
<td>18.89</td>
<td>50.13</td>
<td>32.26</td>
<td></td>
</tr>
<tr>
<td>131.33</td>
<td>21.46</td>
<td>151.50</td>
<td>19.70</td>
<td>75.75</td>
<td>33.87</td>
<td></td>
</tr>
<tr>
<td>175.75</td>
<td>21.55</td>
<td>202.73</td>
<td>19.95</td>
<td>101.37</td>
<td>33.61</td>
<td></td>
</tr>
<tr>
<td>220.16</td>
<td>21.50</td>
<td>253.96</td>
<td>20.03</td>
<td>126.98</td>
<td>33.79</td>
<td></td>
</tr>
<tr>
<td>264.58</td>
<td>21.10</td>
<td>305.20</td>
<td>19.92</td>
<td>152.60</td>
<td>33.72</td>
<td></td>
</tr>
<tr>
<td>331.20</td>
<td>20.25</td>
<td>382.05</td>
<td>19.36</td>
<td>191.02</td>
<td>33.56</td>
<td></td>
</tr>
<tr>
<td>s/d=16 Model</td>
<td>140°</td>
<td>20°</td>
<td>40°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td></td>
</tr>
<tr>
<td>0.61</td>
<td>0.90</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>0.95</td>
<td>0.88</td>
<td>2.00</td>
<td>1.92</td>
<td>2.00</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>2.27</td>
<td>3.00</td>
<td>2.81</td>
<td>3.00</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td>5.09</td>
<td>10.54</td>
<td>4.00</td>
<td>3.67</td>
<td>4.00</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>7.58</td>
<td>16.03</td>
<td>5.00</td>
<td>4.49</td>
<td>5.00</td>
<td>4.83</td>
<td></td>
</tr>
<tr>
<td>15.87</td>
<td>30.86</td>
<td>6.00</td>
<td>5.26</td>
<td>6.00</td>
<td>5.75</td>
<td></td>
</tr>
<tr>
<td>32.46</td>
<td>43.41</td>
<td>7.00</td>
<td>5.99</td>
<td>7.00</td>
<td>6.67</td>
<td></td>
</tr>
<tr>
<td>49.05</td>
<td>45.92</td>
<td>8.00</td>
<td>6.68</td>
<td>8.00</td>
<td>7.56</td>
<td></td>
</tr>
<tr>
<td>65.63</td>
<td>45.93</td>
<td>9.00</td>
<td>7.33</td>
<td>9.00</td>
<td>8.45</td>
<td></td>
</tr>
<tr>
<td>82.22</td>
<td>45.89</td>
<td>10.00</td>
<td>7.94</td>
<td>10.00</td>
<td>8.32</td>
<td></td>
</tr>
<tr>
<td>98.81</td>
<td>45.75</td>
<td>11.00</td>
<td>8.51</td>
<td>11.00</td>
<td>10.17</td>
<td></td>
</tr>
<tr>
<td>123.68</td>
<td>45.33</td>
<td>12.00</td>
<td>9.04</td>
<td>12.00</td>
<td>11.02</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.00</td>
<td>9.52</td>
<td>13.00</td>
<td>11.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.00</td>
<td>9.96</td>
<td>14.00</td>
<td>12.66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.00</td>
<td>10.37</td>
<td>15.00</td>
<td>13.46</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>150°</th>
<th>30°</th>
<th>50°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
</tr>
<tr>
<td>0.59</td>
<td>0.53</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>0.91</td>
<td>0.39</td>
<td>2.00</td>
<td>1.97</td>
</tr>
<tr>
<td>2.04</td>
<td>0.67</td>
<td>3.00</td>
<td>2.93</td>
</tr>
<tr>
<td>4.92</td>
<td>7.02</td>
<td>4.00</td>
<td>3.87</td>
</tr>
<tr>
<td>7.33</td>
<td>11.49</td>
<td>5.00</td>
<td>4.80</td>
</tr>
<tr>
<td>15.34</td>
<td>24.51</td>
<td>6.00</td>
<td>5.71</td>
</tr>
<tr>
<td>31.38</td>
<td>35.58</td>
<td>7.00</td>
<td>6.61</td>
</tr>
<tr>
<td>47.41</td>
<td>38.66</td>
<td>8.00</td>
<td>7.49</td>
</tr>
<tr>
<td>63.44</td>
<td>38.67</td>
<td>9.00</td>
<td>8.36</td>
</tr>
<tr>
<td>79.48</td>
<td>38.66</td>
<td>10.00</td>
<td>9.20</td>
</tr>
<tr>
<td>95.51</td>
<td>38.58</td>
<td>11.00</td>
<td>10.04</td>
</tr>
<tr>
<td>119.56</td>
<td>38.93</td>
<td>12.00</td>
<td>10.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.00</td>
<td>11.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.00</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.00</td>
<td>13.21</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.98</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>2.97</td>
<td>3.00</td>
<td>2.99</td>
</tr>
<tr>
<td>4.00</td>
<td>3.94</td>
<td>4.00</td>
<td>3.96</td>
</tr>
<tr>
<td>5.00</td>
<td>4.91</td>
<td>5.00</td>
<td>4.89</td>
</tr>
<tr>
<td>6.00</td>
<td>5.66</td>
<td>6.00</td>
<td>5.76</td>
</tr>
<tr>
<td>7.00</td>
<td>6.82</td>
<td>7.00</td>
<td>6.56</td>
</tr>
<tr>
<td>8.00</td>
<td>7.76</td>
<td>8.00</td>
<td>7.28</td>
</tr>
<tr>
<td>9.00</td>
<td>8.70</td>
<td>9.00</td>
<td>7.93</td>
</tr>
<tr>
<td>10.00</td>
<td>9.62</td>
<td>10.00</td>
<td>8.50</td>
</tr>
<tr>
<td>11.00</td>
<td>10.55</td>
<td>11.00</td>
<td>9.01</td>
</tr>
<tr>
<td>12.00</td>
<td>11.46</td>
<td>12.00</td>
<td>9.47</td>
</tr>
<tr>
<td>13.00</td>
<td>12.36</td>
<td>13.00</td>
<td>9.88</td>
</tr>
<tr>
<td>14.00</td>
<td>13.26</td>
<td>14.00</td>
<td>10.25</td>
</tr>
<tr>
<td>15.00</td>
<td>14.15</td>
<td>15.00</td>
<td>10.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.00</td>
<td>10.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.00</td>
<td>11.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18.00</td>
<td>11.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.00</td>
<td>11.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.00</td>
<td>11.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.00</td>
<td>12.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.00</td>
<td>12.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23.00</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.00</td>
<td>12.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.00</td>
<td>12.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26.00</td>
<td>12.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27.00</td>
<td>13.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.00</td>
<td>13.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.00</td>
<td>13.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.00</td>
<td>13.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.00</td>
<td>13.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.00</td>
<td>13.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33.00</td>
<td>13.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34.00</td>
<td>13.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.00</td>
<td>13.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36.00</td>
<td>14.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.00</td>
<td>14.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.00</td>
<td>14.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39.00</td>
<td>14.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40.00</td>
<td>14.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.00</td>
<td>14.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.00</td>
<td>14.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.00</td>
<td>14.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.00</td>
<td>14.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.00</td>
<td>14.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46.00</td>
<td>14.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.00</td>
<td>14.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.00</td>
<td>14.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.00</td>
<td>14.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.00</td>
<td>15.00</td>
</tr>
<tr>
<td>90°</td>
<td>100°</td>
<td>110°</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
</tr>
<tr>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
</tr>
<tr>
<td>5.0</td>
<td>4.88</td>
<td>5.0</td>
<td>4.87</td>
</tr>
<tr>
<td>6.0</td>
<td>5.73</td>
<td>6.0</td>
<td>5.72</td>
</tr>
<tr>
<td>7.0</td>
<td>6.51</td>
<td>7.0</td>
<td>6.49</td>
</tr>
<tr>
<td>8.0</td>
<td>7.20</td>
<td>8.0</td>
<td>7.18</td>
</tr>
<tr>
<td>9.0</td>
<td>7.82</td>
<td>9.0</td>
<td>7.79</td>
</tr>
<tr>
<td>10.0</td>
<td>8.36</td>
<td>10.0</td>
<td>8.33</td>
</tr>
<tr>
<td>11.0</td>
<td>8.85</td>
<td>11.0</td>
<td>8.82</td>
</tr>
<tr>
<td>12.0</td>
<td>9.28</td>
<td>12.0</td>
<td>9.24</td>
</tr>
<tr>
<td>13.0</td>
<td>9.67</td>
<td>13.0</td>
<td>9.63</td>
</tr>
<tr>
<td>14.0</td>
<td>10.02</td>
<td>14.0</td>
<td>9.97</td>
</tr>
<tr>
<td>15.0</td>
<td>10.34</td>
<td>15.0</td>
<td>10.29</td>
</tr>
<tr>
<td>16.0</td>
<td>10.62</td>
<td>16.0</td>
<td>10.57</td>
</tr>
<tr>
<td>17.0</td>
<td>10.89</td>
<td>17.0</td>
<td>10.83</td>
</tr>
<tr>
<td>18.0</td>
<td>11.13</td>
<td>18.0</td>
<td>11.07</td>
</tr>
<tr>
<td>19.0</td>
<td>11.35</td>
<td>19.0</td>
<td>11.29</td>
</tr>
<tr>
<td>20.0</td>
<td>11.56</td>
<td>20.0</td>
<td>11.49</td>
</tr>
<tr>
<td>21.0</td>
<td>11.75</td>
<td>21.0</td>
<td>11.68</td>
</tr>
<tr>
<td>22.0</td>
<td>11.93</td>
<td>22.0</td>
<td>11.86</td>
</tr>
<tr>
<td>23.0</td>
<td>12.09</td>
<td>23.0</td>
<td>12.02</td>
</tr>
<tr>
<td>24.0</td>
<td>12.25</td>
<td>24.0</td>
<td>12.18</td>
</tr>
<tr>
<td>25.0</td>
<td>12.40</td>
<td>25.0</td>
<td>12.32</td>
</tr>
<tr>
<td>26.0</td>
<td>12.54</td>
<td>26.0</td>
<td>12.46</td>
</tr>
<tr>
<td>27.0</td>
<td>12.67</td>
<td>27.0</td>
<td>12.59</td>
</tr>
<tr>
<td>28.0</td>
<td>12.79</td>
<td>28.0</td>
<td>12.71</td>
</tr>
<tr>
<td>29.0</td>
<td>12.91</td>
<td>29.0</td>
<td>12.83</td>
</tr>
<tr>
<td>30.0</td>
<td>13.02</td>
<td>30.0</td>
<td>12.94</td>
</tr>
<tr>
<td>31.0</td>
<td>13.13</td>
<td>31.0</td>
<td>13.05</td>
</tr>
<tr>
<td>32.0</td>
<td>13.23</td>
<td>32.0</td>
<td>13.15</td>
</tr>
<tr>
<td>33.0</td>
<td>13.33</td>
<td>33.0</td>
<td>13.25</td>
</tr>
<tr>
<td>34.0</td>
<td>13.42</td>
<td>34.0</td>
<td>13.34</td>
</tr>
<tr>
<td>35.0</td>
<td>13.51</td>
<td>35.0</td>
<td>13.43</td>
</tr>
<tr>
<td>36.0</td>
<td>13.60</td>
<td>36.0</td>
<td>13.51</td>
</tr>
<tr>
<td>37.0</td>
<td>13.68</td>
<td>37.0</td>
<td>13.60</td>
</tr>
<tr>
<td>38.0</td>
<td>13.76</td>
<td>38.0</td>
<td>13.68</td>
</tr>
<tr>
<td>39.0</td>
<td>13.84</td>
<td>39.0</td>
<td>13.75</td>
</tr>
<tr>
<td>40.0</td>
<td>13.92</td>
<td>40.0</td>
<td>13.83</td>
</tr>
<tr>
<td>41.0</td>
<td>13.99</td>
<td>41.0</td>
<td>13.90</td>
</tr>
<tr>
<td>42.0</td>
<td>14.06</td>
<td>42.0</td>
<td>13.97</td>
</tr>
<tr>
<td>43.0</td>
<td>14.13</td>
<td>43.0</td>
<td>14.04</td>
</tr>
<tr>
<td>44.0</td>
<td>14.19</td>
<td>44.0</td>
<td>14.10</td>
</tr>
<tr>
<td>45.0</td>
<td>14.26</td>
<td>45.0</td>
<td>14.16</td>
</tr>
<tr>
<td>46.0</td>
<td>14.32</td>
<td>46.0</td>
<td>14.23</td>
</tr>
<tr>
<td>47.0</td>
<td>14.38</td>
<td>47.0</td>
<td>14.29</td>
</tr>
<tr>
<td>48.0</td>
<td>14.44</td>
<td>48.0</td>
<td>14.34</td>
</tr>
<tr>
<td>49.0</td>
<td>14.49</td>
<td>49.0</td>
<td>14.40</td>
</tr>
<tr>
<td>50.0</td>
<td>14.55</td>
<td>50.0</td>
<td>14.46</td>
</tr>
<tr>
<td></td>
<td>120°</td>
<td></td>
<td>140°</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>1.00</td>
<td>1.01</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>2.02</td>
<td></td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>3.06</td>
<td></td>
<td>3.00</td>
</tr>
<tr>
<td>4.00</td>
<td>4.10</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>5.00</td>
<td>5.16</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>6.00</td>
<td>6.22</td>
<td></td>
<td>6.00</td>
</tr>
<tr>
<td>7.00</td>
<td>7.31</td>
<td></td>
<td>7.00</td>
</tr>
<tr>
<td>8.00</td>
<td>8.40</td>
<td></td>
<td>8.00</td>
</tr>
<tr>
<td>9.00</td>
<td>9.50</td>
<td></td>
<td>9.00</td>
</tr>
<tr>
<td>10.00</td>
<td>10.62</td>
<td></td>
<td>10.00</td>
</tr>
<tr>
<td>11.00</td>
<td>11.75</td>
<td></td>
<td>11.00</td>
</tr>
<tr>
<td>12.00</td>
<td>12.90</td>
<td></td>
<td>12.00</td>
</tr>
<tr>
<td>13.00</td>
<td>14.05</td>
<td></td>
<td>13.00</td>
</tr>
<tr>
<td>14.00</td>
<td>15.22</td>
<td></td>
<td>14.00</td>
</tr>
<tr>
<td>15.00</td>
<td>16.40</td>
<td></td>
<td>15.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>130°</th>
<th></th>
<th>150°</th>
<th></th>
<th>30°</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
</tr>
<tr>
<td>1.00</td>
<td>1.01</td>
<td></td>
<td>1.00</td>
<td>1.08</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>2.00</td>
<td>2.06</td>
<td></td>
<td>2.00</td>
<td>2.32</td>
<td>1.89</td>
<td>1.50</td>
</tr>
<tr>
<td>3.00</td>
<td>3.13</td>
<td></td>
<td>3.00</td>
<td>3.71</td>
<td>3.04</td>
<td>2.72</td>
</tr>
<tr>
<td>4.00</td>
<td>4.23</td>
<td></td>
<td>4.00</td>
<td>5.27</td>
<td>3.61</td>
<td>3.69</td>
</tr>
<tr>
<td>5.00</td>
<td>5.36</td>
<td></td>
<td>5.00</td>
<td>6.98</td>
<td>5.04</td>
<td>5.15</td>
</tr>
<tr>
<td>6.00</td>
<td>6.52</td>
<td></td>
<td>6.00</td>
<td>8.85</td>
<td>6.48</td>
<td>6.41</td>
</tr>
<tr>
<td>7.00</td>
<td>7.71</td>
<td></td>
<td>7.00</td>
<td>10.87</td>
<td>10.77</td>
<td>9.45</td>
</tr>
<tr>
<td>8.00</td>
<td>8.92</td>
<td></td>
<td>8.00</td>
<td>13.06</td>
<td>15.07</td>
<td>11.53</td>
</tr>
<tr>
<td>9.00</td>
<td>10.17</td>
<td></td>
<td>9.00</td>
<td>15.40</td>
<td>29.40</td>
<td>14.97</td>
</tr>
<tr>
<td>10.00</td>
<td>11.44</td>
<td></td>
<td>10.00</td>
<td>17.91</td>
<td>58.05</td>
<td>15.96</td>
</tr>
<tr>
<td>11.00</td>
<td>12.74</td>
<td></td>
<td>11.00</td>
<td>20.57</td>
<td>86.70</td>
<td>15.81</td>
</tr>
<tr>
<td>12.00</td>
<td>14.07</td>
<td></td>
<td>12.00</td>
<td>23.39</td>
<td>115.36</td>
<td>15.69</td>
</tr>
<tr>
<td>13.00</td>
<td>15.43</td>
<td></td>
<td>13.00</td>
<td>26.36</td>
<td>144.01</td>
<td>15.42</td>
</tr>
<tr>
<td>14.00</td>
<td>16.82</td>
<td></td>
<td>14.00</td>
<td>29.50</td>
<td>172.66</td>
<td>15.44</td>
</tr>
<tr>
<td>15.00</td>
<td>18.24</td>
<td></td>
<td>15.00</td>
<td>32.79</td>
<td>215.64</td>
<td>15.36</td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td></td>
<td>60°</td>
<td></td>
<td>80°</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>y</td>
<td>u</td>
<td>y</td>
<td>u</td>
<td>y</td>
<td>u</td>
<td>y</td>
</tr>
<tr>
<td>1.16</td>
<td>1.14</td>
<td>1.28</td>
<td>1.32</td>
<td>1.84</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>1.83</td>
<td>2.34</td>
<td>2.20</td>
<td>2.88</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>3.41</td>
<td>3.31</td>
<td>3.76</td>
<td>3.64</td>
<td>4.27</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>4.01</td>
<td>4.47</td>
<td>4.34</td>
<td>4.96</td>
<td>4.30</td>
<td></td>
</tr>
<tr>
<td>5.66</td>
<td>5.52</td>
<td>6.24</td>
<td>5.93</td>
<td>6.70</td>
<td>5.92</td>
<td></td>
</tr>
<tr>
<td>7.26</td>
<td>6.85</td>
<td>8.01</td>
<td>7.38</td>
<td>8.44</td>
<td>7.36</td>
<td></td>
</tr>
<tr>
<td>12.09</td>
<td>10.15</td>
<td>13.33</td>
<td>10.98</td>
<td>13.64</td>
<td>11.10</td>
<td></td>
</tr>
<tr>
<td>16.91</td>
<td>12.60</td>
<td>18.65</td>
<td>13.73</td>
<td>18.85</td>
<td>14.24</td>
<td></td>
</tr>
<tr>
<td>32.98</td>
<td>16.90</td>
<td>36.37</td>
<td>19.50</td>
<td>36.21</td>
<td>21.72</td>
<td></td>
</tr>
<tr>
<td>65.12</td>
<td>18.67</td>
<td>71.82</td>
<td>23.08</td>
<td>70.92</td>
<td>27.25</td>
<td></td>
</tr>
<tr>
<td>97.26</td>
<td>18.77</td>
<td>107.27</td>
<td>23.72</td>
<td>105.63</td>
<td>28.36</td>
<td></td>
</tr>
<tr>
<td>129.40</td>
<td>18.74</td>
<td>142.72</td>
<td>23.85</td>
<td>140.35</td>
<td>28.76</td>
<td></td>
</tr>
<tr>
<td>161.55</td>
<td>18.54</td>
<td>178.16</td>
<td>23.72</td>
<td>175.06</td>
<td>28.68</td>
<td></td>
</tr>
<tr>
<td>193.69</td>
<td>18.56</td>
<td>213.61</td>
<td>23.80</td>
<td>209.77</td>
<td>28.77</td>
<td></td>
</tr>
<tr>
<td>241.90</td>
<td>18.49</td>
<td>266.78</td>
<td>23.79</td>
<td>261.84</td>
<td>28.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>u</td>
<td>y</td>
<td>u</td>
<td>y</td>
<td>u</td>
<td>y</td>
</tr>
<tr>
<td>1.26</td>
<td>1.29</td>
<td>1.28</td>
<td>1.34</td>
<td>2.10</td>
<td>2.45</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>2.13</td>
<td>2.34</td>
<td>2.22</td>
<td>3.86</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>3.70</td>
<td>3.59</td>
<td>3.76</td>
<td>3.67</td>
<td>6.19</td>
<td>5.11</td>
<td></td>
</tr>
<tr>
<td>4.40</td>
<td>4.26</td>
<td>4.47</td>
<td>4.39</td>
<td>7.36</td>
<td>5.85</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>5.81</td>
<td>6.24</td>
<td>6.00</td>
<td>10.28</td>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>7.89</td>
<td>7.22</td>
<td>8.01</td>
<td>7.48</td>
<td>13.20</td>
<td>8.38</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>10.60</td>
<td>13.33</td>
<td>11.15</td>
<td>21.96</td>
<td>10.34</td>
<td></td>
</tr>
<tr>
<td>18.36</td>
<td>13.22</td>
<td>18.65</td>
<td>14.13</td>
<td>30.72</td>
<td>11.28</td>
<td></td>
</tr>
<tr>
<td>35.80</td>
<td>18.22</td>
<td>36.37</td>
<td>20.62</td>
<td>59.93</td>
<td>12.99</td>
<td></td>
</tr>
<tr>
<td>70.70</td>
<td>20.82</td>
<td>71.82</td>
<td>25.35</td>
<td>118.33</td>
<td>14.63</td>
<td></td>
</tr>
<tr>
<td>105.60</td>
<td>21.10</td>
<td>107.27</td>
<td>26.30</td>
<td>176.74</td>
<td>15.92</td>
<td></td>
</tr>
<tr>
<td>140.50</td>
<td>21.14</td>
<td>142.72</td>
<td>26.61</td>
<td>235.15</td>
<td>16.90</td>
<td></td>
</tr>
<tr>
<td>175.39</td>
<td>21.01</td>
<td>178.16</td>
<td>26.45</td>
<td>293.55</td>
<td>17.35</td>
<td></td>
</tr>
<tr>
<td>210.29</td>
<td>21.05</td>
<td>213.61</td>
<td>26.58</td>
<td>351.96</td>
<td>17.96</td>
<td></td>
</tr>
<tr>
<td>262.64</td>
<td>21.00</td>
<td>266.78</td>
<td>26.65</td>
<td>439.57</td>
<td>18.20</td>
<td></td>
</tr>
</tbody>
</table>

114
<table>
<thead>
<tr>
<th>100°</th>
<th>120°</th>
<th>140°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>2.08</td>
<td>2.47</td>
<td>1.92</td>
</tr>
<tr>
<td>3.82</td>
<td>3.74</td>
<td>3.52</td>
</tr>
<tr>
<td>6.13</td>
<td>5.18</td>
<td>5.65</td>
</tr>
<tr>
<td>7.29</td>
<td>6.15</td>
<td>6.71</td>
</tr>
<tr>
<td>10.18</td>
<td>7.56</td>
<td>9.37</td>
</tr>
<tr>
<td>13.08</td>
<td>8.90</td>
<td>12.04</td>
</tr>
<tr>
<td>21.75</td>
<td>11.06</td>
<td>20.03</td>
</tr>
<tr>
<td>30.43</td>
<td>12.20</td>
<td>28.02</td>
</tr>
<tr>
<td>59.36</td>
<td>13.63</td>
<td>54.65</td>
</tr>
<tr>
<td>117.22</td>
<td>15.04</td>
<td>107.91</td>
</tr>
<tr>
<td>175.07</td>
<td>16.01</td>
<td>161.18</td>
</tr>
<tr>
<td>232.93</td>
<td>16.75</td>
<td>214.44</td>
</tr>
<tr>
<td>290.78</td>
<td>17.08</td>
<td>267.71</td>
</tr>
<tr>
<td>348.64</td>
<td>17.36</td>
<td>320.97</td>
</tr>
<tr>
<td>435.42</td>
<td>17.46</td>
<td>400.87</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>110°</th>
<th>130°</th>
<th>150°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>2.10</td>
<td>2.29</td>
<td>1.64</td>
</tr>
<tr>
<td>3.66</td>
<td>3.46</td>
<td>3.01</td>
</tr>
<tr>
<td>6.19</td>
<td>4.90</td>
<td>4.83</td>
</tr>
<tr>
<td>7.36</td>
<td>5.55</td>
<td>5.74</td>
</tr>
<tr>
<td>10.28</td>
<td>7.07</td>
<td>8.02</td>
</tr>
<tr>
<td>13.20</td>
<td>8.38</td>
<td>10.29</td>
</tr>
<tr>
<td>21.96</td>
<td>10.28</td>
<td>17.13</td>
</tr>
<tr>
<td>30.72</td>
<td>11.20</td>
<td>23.96</td>
</tr>
<tr>
<td>59.93</td>
<td>12.91</td>
<td>46.73</td>
</tr>
<tr>
<td>118.33</td>
<td>14.19</td>
<td>92.28</td>
</tr>
<tr>
<td>176.74</td>
<td>15.02</td>
<td>137.63</td>
</tr>
<tr>
<td>235.15</td>
<td>15.71</td>
<td>183.39</td>
</tr>
<tr>
<td>293.55</td>
<td>16.17</td>
<td>228.93</td>
</tr>
<tr>
<td>351.96</td>
<td>16.47</td>
<td>274.49</td>
</tr>
<tr>
<td>439.57</td>
<td>16.76</td>
<td>342.81</td>
</tr>
<tr>
<td></td>
<td>s/d=30 Model</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>20°</td>
<td>40°</td>
</tr>
<tr>
<td>y</td>
<td>u</td>
<td>y</td>
</tr>
<tr>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>1.92</td>
<td>2.00</td>
</tr>
<tr>
<td>3.00</td>
<td>2.81</td>
<td>3.00</td>
</tr>
<tr>
<td>4.00</td>
<td>3.67</td>
<td>4.00</td>
</tr>
<tr>
<td>5.00</td>
<td>4.48</td>
<td>5.00</td>
</tr>
<tr>
<td>6.00</td>
<td>5.26</td>
<td>6.00</td>
</tr>
<tr>
<td>7.00</td>
<td>5.99</td>
<td>7.00</td>
</tr>
<tr>
<td>8.00</td>
<td>6.68</td>
<td>8.00</td>
</tr>
<tr>
<td>9.00</td>
<td>7.33</td>
<td>9.00</td>
</tr>
<tr>
<td>10.00</td>
<td>7.93</td>
<td>10.00</td>
</tr>
<tr>
<td>11.00</td>
<td>8.50</td>
<td>11.00</td>
</tr>
<tr>
<td>12.00</td>
<td>9.02</td>
<td>12.00</td>
</tr>
<tr>
<td>13.00</td>
<td>9.51</td>
<td>13.00</td>
</tr>
<tr>
<td>14.00</td>
<td>9.95</td>
<td>14.00</td>
</tr>
<tr>
<td>15.00</td>
<td>10.35</td>
<td>15.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>50°</th>
<th>70°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>u</td>
<td>y</td>
<td>u</td>
</tr>
<tr>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>2.00</td>
<td>1.94</td>
<td>2.00</td>
<td>1.98</td>
</tr>
<tr>
<td>3.00</td>
<td>2.88</td>
<td>3.00</td>
<td>2.95</td>
</tr>
<tr>
<td>4.00</td>
<td>3.78</td>
<td>4.00</td>
<td>3.91</td>
</tr>
<tr>
<td>5.00</td>
<td>4.66</td>
<td>5.00</td>
<td>4.86</td>
</tr>
<tr>
<td>6.00</td>
<td>5.50</td>
<td>6.00</td>
<td>5.80</td>
</tr>
<tr>
<td>7.00</td>
<td>6.33</td>
<td>7.00</td>
<td>6.72</td>
</tr>
<tr>
<td>8.00</td>
<td>7.12</td>
<td>8.00</td>
<td>7.64</td>
</tr>
<tr>
<td>9.00</td>
<td>7.89</td>
<td>9.00</td>
<td>8.54</td>
</tr>
<tr>
<td>10.00</td>
<td>8.62</td>
<td>10.00</td>
<td>9.43</td>
</tr>
<tr>
<td>11.00</td>
<td>9.33</td>
<td>11.00</td>
<td>10.32</td>
</tr>
<tr>
<td>12.00</td>
<td>10.02</td>
<td>12.00</td>
<td>11.19</td>
</tr>
<tr>
<td>13.00</td>
<td>10.67</td>
<td>13.00</td>
<td>12.04</td>
</tr>
<tr>
<td>14.00</td>
<td>11.30</td>
<td>14.00</td>
<td>12.89</td>
</tr>
<tr>
<td>15.00</td>
<td>11.90</td>
<td>15.00</td>
<td>13.73</td>
</tr>
</tbody>
</table>
\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{y$^+$} & \textbf{u$^+$} \\
\hline
1.00 & 1.00 \\
2.00 & 1.99 \\
3.00 & 2.99 \\
4.00 & 3.98 \\
5.00 & 4.96 \\
6.00 & 5.94 \\
7.00 & 6.92 \\
8.00 & 7.90 \\
9.00 & 8.87 \\
10.00 & 9.84 \\
11.00 & 10.81 \\
12.00 & 11.78 \\
13.00 & 12.74 \\
14.00 & 13.70 \\
15.00 & 14.65 \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{y$^+$} & \textbf{u$^+$} \\
\hline
1.0 & 1.00 \\
2.0 & 2.00 \\
3.0 & 2.99 \\
4.0 & 3.95 \\
5.0 & 4.88 \\
6.0 & 5.73 \\
7.0 & 6.51 \\
8.0 & 7.20 \\
9.0 & 7.82 \\
10.0 & 8.36 \\
11.0 & 8.85 \\
12.0 & 9.28 \\
13.0 & 9.67 \\
14.0 & 10.02 \\
15.0 & 10.34 \\
16.0 & 10.62 \\
17.0 & 10.89 \\
18.0 & 11.13 \\
19.0 & 11.35 \\
20.0 & 11.56 \\
21.0 & 11.75 \\
22.0 & 11.93 \\
23.0 & 12.09 \\
24.0 & 12.25 \\
25.0 & 12.40 \\
26.0 & 12.54 \\
27.0 & 12.67 \\
28.0 & 12.79 \\
29.0 & 12.91 \\
30.0 & 13.02 \\
31.0 & 13.13 \\
32.0 & 13.23 \\
33.0 & 13.33 \\
34.0 & 13.42 \\
35.0 & 13.51 \\
36.0 & 13.60 \\
37.0 & 13.68 \\
38.0 & 13.76 \\
39.0 & 13.84 \\
40.0 & 13.92 \\
41.0 & 13.99 \\
42.0 & 14.06 \\
43.0 & 14.13 \\
44.0 & 14.19 \\
45.0 & 14.26 \\
46.0 & 14.32 \\
47.0 & 14.38 \\
48.0 & 14.44 \\
49.0 & 14.49 \\
50.0 & 14.55 \\
\hline
\end{tabular}
\end{table}
<table>
<thead>
<tr>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
<th>y^+</th>
<th>u^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
</tr>
<tr>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
<td>2.99</td>
</tr>
<tr>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
<td>3.95</td>
</tr>
<tr>
<td>5.0</td>
<td>4.87</td>
<td>5.0</td>
<td>4.86</td>
<td>5.0</td>
<td>4.85</td>
</tr>
<tr>
<td>6.0</td>
<td>5.72</td>
<td>6.0</td>
<td>5.71</td>
<td>6.0</td>
<td>5.69</td>
</tr>
<tr>
<td>7.0</td>
<td>6.49</td>
<td>7.0</td>
<td>6.47</td>
<td>7.0</td>
<td>6.44</td>
</tr>
<tr>
<td>8.0</td>
<td>7.18</td>
<td>8.0</td>
<td>7.15</td>
<td>8.0</td>
<td>7.11</td>
</tr>
<tr>
<td>9.0</td>
<td>7.78</td>
<td>9.0</td>
<td>7.76</td>
<td>9.0</td>
<td>7.69</td>
</tr>
<tr>
<td>10.0</td>
<td>8.32</td>
<td>10.0</td>
<td>8.29</td>
<td>10.0</td>
<td>8.21</td>
</tr>
<tr>
<td>11.0</td>
<td>8.80</td>
<td>11.0</td>
<td>8.76</td>
<td>11.0</td>
<td>8.67</td>
</tr>
<tr>
<td>12.0</td>
<td>9.23</td>
<td>12.0</td>
<td>9.18</td>
<td>12.0</td>
<td>9.08</td>
</tr>
<tr>
<td>13.0</td>
<td>9.61</td>
<td>13.0</td>
<td>9.56</td>
<td>13.0</td>
<td>9.45</td>
</tr>
<tr>
<td>14.0</td>
<td>9.96</td>
<td>14.0</td>
<td>9.90</td>
<td>14.0</td>
<td>9.78</td>
</tr>
<tr>
<td>15.0</td>
<td>10.27</td>
<td>15.0</td>
<td>10.21</td>
<td>15.0</td>
<td>10.08</td>
</tr>
<tr>
<td>16.0</td>
<td>10.55</td>
<td>16.0</td>
<td>10.49</td>
<td>16.0</td>
<td>10.35</td>
</tr>
<tr>
<td>17.0</td>
<td>10.81</td>
<td>17.0</td>
<td>10.74</td>
<td>17.0</td>
<td>10.60</td>
</tr>
<tr>
<td>18.0</td>
<td>11.05</td>
<td>18.0</td>
<td>10.98</td>
<td>18.0</td>
<td>10.82</td>
</tr>
<tr>
<td>19.0</td>
<td>11.27</td>
<td>19.0</td>
<td>11.19</td>
<td>19.0</td>
<td>11.03</td>
</tr>
<tr>
<td>20.0</td>
<td>11.47</td>
<td>20.0</td>
<td>11.39</td>
<td>20.0</td>
<td>11.23</td>
</tr>
<tr>
<td>21.0</td>
<td>11.66</td>
<td>21.0</td>
<td>11.58</td>
<td>21.0</td>
<td>11.41</td>
</tr>
<tr>
<td>22.0</td>
<td>11.83</td>
<td>22.0</td>
<td>11.75</td>
<td>22.0</td>
<td>11.58</td>
</tr>
<tr>
<td>23.0</td>
<td>12.00</td>
<td>23.0</td>
<td>11.91</td>
<td>23.0</td>
<td>11.74</td>
</tr>
<tr>
<td>24.0</td>
<td>12.15</td>
<td>24.0</td>
<td>12.07</td>
<td>24.0</td>
<td>11.88</td>
</tr>
<tr>
<td>25.0</td>
<td>12.30</td>
<td>25.0</td>
<td>12.21</td>
<td>25.0</td>
<td>12.02</td>
</tr>
<tr>
<td>26.0</td>
<td>12.44</td>
<td>26.0</td>
<td>12.34</td>
<td>26.0</td>
<td>12.16</td>
</tr>
<tr>
<td>27.0</td>
<td>12.56</td>
<td>27.0</td>
<td>12.47</td>
<td>27.0</td>
<td>12.28</td>
</tr>
<tr>
<td>28.0</td>
<td>12.69</td>
<td>28.0</td>
<td>12.59</td>
<td>28.0</td>
<td>12.40</td>
</tr>
<tr>
<td>29.0</td>
<td>12.80</td>
<td>29.0</td>
<td>12.71</td>
<td>29.0</td>
<td>12.51</td>
</tr>
<tr>
<td>30.0</td>
<td>12.92</td>
<td>30.0</td>
<td>12.82</td>
<td>30.0</td>
<td>12.62</td>
</tr>
<tr>
<td>31.0</td>
<td>13.02</td>
<td>31.0</td>
<td>12.92</td>
<td>31.0</td>
<td>12.72</td>
</tr>
<tr>
<td>32.0</td>
<td>13.12</td>
<td>32.0</td>
<td>13.02</td>
<td>32.0</td>
<td>12.82</td>
</tr>
<tr>
<td>33.0</td>
<td>13.22</td>
<td>33.0</td>
<td>13.12</td>
<td>33.0</td>
<td>12.91</td>
</tr>
<tr>
<td>34.0</td>
<td>13.31</td>
<td>34.0</td>
<td>13.21</td>
<td>34.0</td>
<td>13.00</td>
</tr>
<tr>
<td>35.0</td>
<td>13.40</td>
<td>35.0</td>
<td>13.30</td>
<td>35.0</td>
<td>13.09</td>
</tr>
<tr>
<td>36.0</td>
<td>13.49</td>
<td>36.0</td>
<td>13.38</td>
<td>36.0</td>
<td>13.17</td>
</tr>
<tr>
<td>37.0</td>
<td>13.57</td>
<td>37.0</td>
<td>13.47</td>
<td>37.0</td>
<td>13.25</td>
</tr>
<tr>
<td>38.0</td>
<td>13.65</td>
<td>38.0</td>
<td>13.54</td>
<td>38.0</td>
<td>13.33</td>
</tr>
<tr>
<td>39.0</td>
<td>13.73</td>
<td>39.0</td>
<td>13.62</td>
<td>39.0</td>
<td>13.40</td>
</tr>
<tr>
<td>40.0</td>
<td>13.80</td>
<td>40.0</td>
<td>13.69</td>
<td>40.0</td>
<td>13.48</td>
</tr>
<tr>
<td>41.0</td>
<td>13.87</td>
<td>41.0</td>
<td>13.77</td>
<td>41.0</td>
<td>13.55</td>
</tr>
<tr>
<td>42.0</td>
<td>13.94</td>
<td>42.0</td>
<td>13.83</td>
<td>42.0</td>
<td>13.61</td>
</tr>
<tr>
<td>43.0</td>
<td>14.01</td>
<td>43.0</td>
<td>13.90</td>
<td>43.0</td>
<td>13.68</td>
</tr>
<tr>
<td>44.0</td>
<td>14.07</td>
<td>44.0</td>
<td>13.97</td>
<td>44.0</td>
<td>13.74</td>
</tr>
<tr>
<td>45.0</td>
<td>14.14</td>
<td>45.0</td>
<td>14.03</td>
<td>45.0</td>
<td>13.80</td>
</tr>
<tr>
<td>46.0</td>
<td>14.20</td>
<td>46.0</td>
<td>14.09</td>
<td>46.0</td>
<td>13.86</td>
</tr>
<tr>
<td>47.0</td>
<td>14.26</td>
<td>47.0</td>
<td>14.15</td>
<td>47.0</td>
<td>13.92</td>
</tr>
<tr>
<td>48.0</td>
<td>14.31</td>
<td>48.0</td>
<td>14.21</td>
<td>48.0</td>
<td>13.98</td>
</tr>
<tr>
<td>49.0</td>
<td>14.37</td>
<td>49.0</td>
<td>14.26</td>
<td>49.0</td>
<td>14.03</td>
</tr>
<tr>
<td>50.0</td>
<td>14.43</td>
<td>50.0</td>
<td>14.32</td>
<td>50.0</td>
<td>14.09</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
<td>u^+</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
<td>1.00</td>
<td>0.16</td>
<td>0.97</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
<td>2.00</td>
<td>0.43</td>
<td>0.83</td>
</tr>
<tr>
<td>3.0</td>
<td>2.98</td>
<td>3.0</td>
<td>2.97</td>
<td>0.98</td>
<td>0.64</td>
</tr>
<tr>
<td>4.0</td>
<td>3.93</td>
<td>4.0</td>
<td>3.88</td>
<td>1.53</td>
<td>1.10</td>
</tr>
<tr>
<td>5.0</td>
<td>4.83</td>
<td>5.0</td>
<td>4.71</td>
<td>2.07</td>
<td>1.21</td>
</tr>
<tr>
<td>6.0</td>
<td>5.64</td>
<td>6.0</td>
<td>5.44</td>
<td>3.44</td>
<td>2.96</td>
</tr>
<tr>
<td>7.0</td>
<td>6.36</td>
<td>7.0</td>
<td>6.07</td>
<td>4.81</td>
<td>4.68</td>
</tr>
<tr>
<td>8.0</td>
<td>6.99</td>
<td>8.0</td>
<td>6.61</td>
<td>13.01</td>
<td>9.20</td>
</tr>
<tr>
<td>9.0</td>
<td>7.55</td>
<td>9.0</td>
<td>7.07</td>
<td>26.69</td>
<td>11.63</td>
</tr>
<tr>
<td>10.0</td>
<td>8.04</td>
<td>10.0</td>
<td>7.48</td>
<td>54.04</td>
<td>12.17</td>
</tr>
<tr>
<td>11.0</td>
<td>8.47</td>
<td>11.0</td>
<td>7.84</td>
<td>81.39</td>
<td>11.94</td>
</tr>
<tr>
<td>12.0</td>
<td>8.85</td>
<td>12.0</td>
<td>8.16</td>
<td>108.74</td>
<td>11.59</td>
</tr>
<tr>
<td>13.0</td>
<td>9.20</td>
<td>13.0</td>
<td>8.44</td>
<td>136.09</td>
<td>11.08</td>
</tr>
<tr>
<td>14.0</td>
<td>9.50</td>
<td>14.0</td>
<td>8.70</td>
<td>163.44</td>
<td>10.98</td>
</tr>
<tr>
<td>15.0</td>
<td>9.78</td>
<td>15.0</td>
<td>8.93</td>
<td>204.46</td>
<td>11.31</td>
</tr>
<tr>
<td>16.0</td>
<td>10.04</td>
<td>16.0</td>
<td>9.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>10.27</td>
<td>17.0</td>
<td>9.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>10.48</td>
<td>18.0</td>
<td>9.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>10.68</td>
<td>19.0</td>
<td>9.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>10.86</td>
<td>20.0</td>
<td>9.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>11.03</td>
<td>21.0</td>
<td>9.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>11.19</td>
<td>22.0</td>
<td>10.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>11.34</td>
<td>23.0</td>
<td>10.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>11.48</td>
<td>24.0</td>
<td>10.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>11.61</td>
<td>25.0</td>
<td>10.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>11.74</td>
<td>26.0</td>
<td>10.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>11.86</td>
<td>27.0</td>
<td>10.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>11.97</td>
<td>28.0</td>
<td>10.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>12.07</td>
<td>29.0</td>
<td>10.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>12.18</td>
<td>30.0</td>
<td>10.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>12.27</td>
<td>31.0</td>
<td>11.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>12.37</td>
<td>32.0</td>
<td>11.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>12.46</td>
<td>33.0</td>
<td>11.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>12.54</td>
<td>34.0</td>
<td>11.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>12.63</td>
<td>35.0</td>
<td>11.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>12.71</td>
<td>36.0</td>
<td>11.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>12.78</td>
<td>37.0</td>
<td>11.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>12.86</td>
<td>38.0</td>
<td>11.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td>12.93</td>
<td>39.0</td>
<td>11.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>13.00</td>
<td>40.0</td>
<td>11.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.0</td>
<td>13.07</td>
<td>41.0</td>
<td>11.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.0</td>
<td>13.13</td>
<td>42.0</td>
<td>11.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.0</td>
<td>13.19</td>
<td>43.0</td>
<td>11.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.0</td>
<td>13.25</td>
<td>44.0</td>
<td>11.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.0</td>
<td>13.31</td>
<td>45.0</td>
<td>12.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.0</td>
<td>13.37</td>
<td>46.0</td>
<td>12.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.0</td>
<td>13.43</td>
<td>47.0</td>
<td>12.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>13.48</td>
<td>48.0</td>
<td>12.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.0</td>
<td>13.54</td>
<td>49.0</td>
<td>12.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>13.59</td>
<td>50.0</td>
<td>12.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40°</td>
<td></td>
<td>60°</td>
<td></td>
<td>80°</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>0.19</td>
<td>1.05</td>
<td></td>
<td>0.21</td>
<td>1.16</td>
<td>0.21</td>
</tr>
<tr>
<td>0.53</td>
<td>1.00</td>
<td></td>
<td>0.56</td>
<td>1.15</td>
<td>0.57</td>
</tr>
<tr>
<td>1.20</td>
<td>1.21</td>
<td></td>
<td>1.28</td>
<td>1.46</td>
<td>1.30</td>
</tr>
<tr>
<td>1.87</td>
<td>1.68</td>
<td></td>
<td>1.99</td>
<td>2.06</td>
<td>2.02</td>
</tr>
<tr>
<td>2.54</td>
<td>1.93</td>
<td></td>
<td>2.71</td>
<td>2.39</td>
<td>2.75</td>
</tr>
<tr>
<td>4.21</td>
<td>4.11</td>
<td></td>
<td>4.49</td>
<td>4.57</td>
<td>4.56</td>
</tr>
<tr>
<td>5.89</td>
<td>5.71</td>
<td></td>
<td>6.28</td>
<td>6.26</td>
<td>6.38</td>
</tr>
<tr>
<td>15.93</td>
<td>11.74</td>
<td></td>
<td>17.00</td>
<td>13.01</td>
<td>17.26</td>
</tr>
<tr>
<td>32.66</td>
<td>16.73</td>
<td></td>
<td>34.86</td>
<td>19.83</td>
<td>35.40</td>
</tr>
<tr>
<td>66.17</td>
<td>18.68</td>
<td></td>
<td>70.58</td>
<td>23.80</td>
<td>71.68</td>
</tr>
<tr>
<td>99.66</td>
<td>18.79</td>
<td></td>
<td>106.30</td>
<td>24.43</td>
<td>107.96</td>
</tr>
<tr>
<td>133.15</td>
<td>18.79</td>
<td></td>
<td>142.02</td>
<td>24.59</td>
<td>144.24</td>
</tr>
<tr>
<td>166.64</td>
<td>18.61</td>
<td></td>
<td>177.75</td>
<td>24.39</td>
<td>180.52</td>
</tr>
<tr>
<td>200.13</td>
<td>18.63</td>
<td></td>
<td>213.47</td>
<td>24.42</td>
<td>216.80</td>
</tr>
<tr>
<td>250.36</td>
<td>18.87</td>
<td></td>
<td>267.05</td>
<td>24.83</td>
<td>271.22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>50°</th>
<th></th>
<th>70°</th>
<th></th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td></td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
</tr>
<tr>
<td>0.20</td>
<td>1.15</td>
<td></td>
<td>0.22</td>
<td>1.15</td>
<td>0.20</td>
</tr>
<tr>
<td>0.56</td>
<td>1.14</td>
<td></td>
<td>0.59</td>
<td>1.14</td>
<td>0.55</td>
</tr>
<tr>
<td>1.26</td>
<td>1.45</td>
<td></td>
<td>1.33</td>
<td>1.47</td>
<td>1.25</td>
</tr>
<tr>
<td>1.96</td>
<td>2.03</td>
<td></td>
<td>2.08</td>
<td>2.08</td>
<td>1.95</td>
</tr>
<tr>
<td>2.67</td>
<td>2.35</td>
<td></td>
<td>2.82</td>
<td>2.43</td>
<td>2.65</td>
</tr>
<tr>
<td>4.42</td>
<td>4.57</td>
<td></td>
<td>4.68</td>
<td>4.52</td>
<td>4.40</td>
</tr>
<tr>
<td>6.16</td>
<td>6.21</td>
<td></td>
<td>6.54</td>
<td>6.19</td>
<td>6.15</td>
</tr>
<tr>
<td>15.73</td>
<td>12.78</td>
<td></td>
<td>17.70</td>
<td>13.01</td>
<td>16.64</td>
</tr>
<tr>
<td>34.31</td>
<td>18.55</td>
<td></td>
<td>36.31</td>
<td>20.17</td>
<td>34.13</td>
</tr>
<tr>
<td>69.48</td>
<td>21.58</td>
<td></td>
<td>73.52</td>
<td>25.11</td>
<td>69.11</td>
</tr>
<tr>
<td>104.64</td>
<td>21.89</td>
<td></td>
<td>110.73</td>
<td>26.06</td>
<td>104.09</td>
</tr>
<tr>
<td>139.80</td>
<td>21.96</td>
<td></td>
<td>147.94</td>
<td>26.19</td>
<td>139.06</td>
</tr>
<tr>
<td>174.97</td>
<td>21.74</td>
<td></td>
<td>185.15</td>
<td>26.10</td>
<td>174.04</td>
</tr>
<tr>
<td>210.13</td>
<td>21.77</td>
<td></td>
<td>222.36</td>
<td>26.13</td>
<td>209.02</td>
</tr>
<tr>
<td>262.88</td>
<td>22.12</td>
<td></td>
<td>278.18</td>
<td>26.43</td>
<td>261.49</td>
</tr>
<tr>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
<td>y⁺</td>
<td>u⁺</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0.20</td>
<td>1.04</td>
<td>0.32</td>
<td>1.52</td>
<td>0.24</td>
<td>1.29</td>
</tr>
<tr>
<td>0.54</td>
<td>0.97</td>
<td>0.88</td>
<td>1.75</td>
<td>0.65</td>
<td>1.33</td>
</tr>
<tr>
<td>1.21</td>
<td>1.17</td>
<td>1.98</td>
<td>2.43</td>
<td>1.47</td>
<td>1.86</td>
</tr>
<tr>
<td>1.89</td>
<td>1.62</td>
<td>3.09</td>
<td>3.14</td>
<td>2.28</td>
<td>2.48</td>
</tr>
<tr>
<td>2.57</td>
<td>1.88</td>
<td>4.20</td>
<td>3.49</td>
<td>3.10</td>
<td>2.67</td>
</tr>
<tr>
<td>4.26</td>
<td>4.03</td>
<td>6.97</td>
<td>5.74</td>
<td>5.15</td>
<td>5.02</td>
</tr>
<tr>
<td>5.95</td>
<td>5.64</td>
<td>9.75</td>
<td>7.41</td>
<td>7.20</td>
<td>6.60</td>
</tr>
<tr>
<td>16.11</td>
<td>12.89</td>
<td>26.38</td>
<td>11.01</td>
<td>19.47</td>
<td>11.26</td>
</tr>
<tr>
<td>33.04</td>
<td>21.96</td>
<td>54.10</td>
<td>13.00</td>
<td>39.94</td>
<td>13.50</td>
</tr>
<tr>
<td>66.90</td>
<td>29.70</td>
<td>109.54</td>
<td>14.43</td>
<td>80.87</td>
<td>15.10</td>
</tr>
<tr>
<td>100.76</td>
<td>31.19</td>
<td>164.99</td>
<td>15.43</td>
<td>121.80</td>
<td>16.19</td>
</tr>
<tr>
<td>134.63</td>
<td>31.75</td>
<td>220.43</td>
<td>16.17</td>
<td>162.74</td>
<td>17.07</td>
</tr>
<tr>
<td>168.49</td>
<td>31.77</td>
<td>275.88</td>
<td>16.76</td>
<td>203.67</td>
<td>17.71</td>
</tr>
<tr>
<td>202.35</td>
<td>31.95</td>
<td>331.32</td>
<td>17.15</td>
<td>244.60</td>
<td>18.14</td>
</tr>
<tr>
<td>253.14</td>
<td>32.51</td>
<td>414.48</td>
<td>17.56</td>
<td>305.99</td>
<td>18.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y⁺</th>
<th>u⁺</th>
<th>y⁺</th>
<th>u⁺</th>
<th>y⁺</th>
<th>u⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.42</td>
<td>1.42</td>
<td>0.29</td>
<td>1.36</td>
<td>0.17</td>
<td>1.17</td>
</tr>
<tr>
<td>1.15</td>
<td>1.65</td>
<td>0.79</td>
<td>1.57</td>
<td>0.46</td>
<td>1.16</td>
</tr>
<tr>
<td>2.60</td>
<td>2.28</td>
<td>1.78</td>
<td>2.12</td>
<td>1.04</td>
<td>1.42</td>
</tr>
<tr>
<td>4.05</td>
<td>2.98</td>
<td>2.77</td>
<td>2.80</td>
<td>1.62</td>
<td>1.86</td>
</tr>
<tr>
<td>5.50</td>
<td>3.16</td>
<td>3.77</td>
<td>3.14</td>
<td>2.20</td>
<td>2.19</td>
</tr>
<tr>
<td>9.13</td>
<td>5.11</td>
<td>6.25</td>
<td>5.33</td>
<td>3.65</td>
<td>4.50</td>
</tr>
<tr>
<td>12.76</td>
<td>6.42</td>
<td>8.73</td>
<td>6.93</td>
<td>5.10</td>
<td>6.25</td>
</tr>
<tr>
<td>34.52</td>
<td>9.26</td>
<td>23.64</td>
<td>10.80</td>
<td>13.81</td>
<td>11.70</td>
</tr>
<tr>
<td>70.80</td>
<td>10.63</td>
<td>48.47</td>
<td>13.01</td>
<td>28.32</td>
<td>14.92</td>
</tr>
<tr>
<td>143.36</td>
<td>11.82</td>
<td>98.15</td>
<td>14.44</td>
<td>57.35</td>
<td>16.92</td>
</tr>
<tr>
<td>215.92</td>
<td>12.50</td>
<td>147.83</td>
<td>15.51</td>
<td>86.37</td>
<td>18.21</td>
</tr>
<tr>
<td>288.49</td>
<td>13.24</td>
<td>197.50</td>
<td>16.32</td>
<td>115.39</td>
<td>19.34</td>
</tr>
<tr>
<td>361.04</td>
<td>13.63</td>
<td>247.18</td>
<td>16.71</td>
<td>144.42</td>
<td>20.00</td>
</tr>
<tr>
<td>433.61</td>
<td>13.95</td>
<td>296.85</td>
<td>17.28</td>
<td>173.44</td>
<td>20.79</td>
</tr>
<tr>
<td>542.45</td>
<td>14.35</td>
<td>371.37</td>
<td>17.78</td>
<td>216.98</td>
<td>21.25</td>
</tr>
</tbody>
</table>
s/d=44 Model

<table>
<thead>
<tr>
<th>160°</th>
<th>20°</th>
<th>40°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>0.11</td>
<td>1.15</td>
<td>1.00</td>
</tr>
<tr>
<td>0.30</td>
<td>0.89</td>
<td>2.00</td>
</tr>
<tr>
<td>0.69</td>
<td>0.80</td>
<td>3.00</td>
</tr>
<tr>
<td>1.07</td>
<td>0.99</td>
<td>4.00</td>
</tr>
<tr>
<td>1.45</td>
<td>1.13</td>
<td>5.00</td>
</tr>
<tr>
<td>2.41</td>
<td>2.61</td>
<td>6.00</td>
</tr>
<tr>
<td>3.37</td>
<td>4.62</td>
<td>7.00</td>
</tr>
<tr>
<td>9.12</td>
<td>11.45</td>
<td>8.00</td>
</tr>
<tr>
<td>18.70</td>
<td>15.36</td>
<td>9.00</td>
</tr>
<tr>
<td>37.86</td>
<td>17.92</td>
<td>10.00</td>
</tr>
<tr>
<td>57.03</td>
<td>19.62</td>
<td>11.00</td>
</tr>
<tr>
<td>76.19</td>
<td>21.12</td>
<td>12.00</td>
</tr>
<tr>
<td>95.35</td>
<td>22.16</td>
<td>13.00</td>
</tr>
<tr>
<td>114.52</td>
<td>23.00</td>
<td>14.00</td>
</tr>
<tr>
<td>143.26</td>
<td>23.96</td>
<td>15.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>170°</th>
<th>30°</th>
<th>50°</th>
</tr>
</thead>
<tbody>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>0.04</td>
<td>1.72</td>
<td>1.00</td>
</tr>
<tr>
<td>0.12</td>
<td>1.02</td>
<td>2.00</td>
</tr>
<tr>
<td>0.27</td>
<td>0.46</td>
<td>3.00</td>
</tr>
<tr>
<td>0.42</td>
<td>0.31</td>
<td>4.00</td>
</tr>
<tr>
<td>0.56</td>
<td>0.30</td>
<td>5.00</td>
</tr>
<tr>
<td>0.94</td>
<td>0.66</td>
<td>6.00</td>
</tr>
<tr>
<td>1.31</td>
<td>1.58</td>
<td>7.00</td>
</tr>
<tr>
<td>3.54</td>
<td>9.87</td>
<td>8.00</td>
</tr>
<tr>
<td>7.26</td>
<td>18.17</td>
<td>9.00</td>
</tr>
<tr>
<td>14.70</td>
<td>23.75</td>
<td>10.00</td>
</tr>
<tr>
<td>22.15</td>
<td>26.68</td>
<td>11.00</td>
</tr>
<tr>
<td>29.59</td>
<td>29.69</td>
<td>12.00</td>
</tr>
<tr>
<td>37.03</td>
<td>32.16</td>
<td>13.00</td>
</tr>
<tr>
<td>44.47</td>
<td>34.06</td>
<td>14.00</td>
</tr>
<tr>
<td>55.64</td>
<td>35.87</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>°</td>
<td>y+</td>
<td>u+</td>
</tr>
<tr>
<td>60°</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>2.96</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>3.93</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>4.89</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>5.85</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>6.79</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>7.73</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8.66</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>9.58</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>10.49</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>11.39</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>12.29</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>13.18</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>14.05</td>
<td></td>
</tr>
<tr>
<td>70°</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>2.98</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>4.94</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>5.91</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>6.88</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>7.84</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>8.79</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>9.75</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>10.69</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>11.63</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>12.57</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>13.50</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>14.43</td>
<td></td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>2.99</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.95</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>4.87</td>
<td>5.0</td>
</tr>
<tr>
<td>6.0</td>
<td>5.72</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>6.50</td>
<td>7.0</td>
</tr>
<tr>
<td>8.0</td>
<td>7.19</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0</td>
<td>7.80</td>
<td>9.0</td>
</tr>
<tr>
<td>10.0</td>
<td>8.34</td>
<td>10.0</td>
</tr>
<tr>
<td>11.0</td>
<td>8.83</td>
<td>11.0</td>
</tr>
<tr>
<td>12.0</td>
<td>9.26</td>
<td>12.0</td>
</tr>
<tr>
<td>13.0</td>
<td>9.64</td>
<td>13.0</td>
</tr>
<tr>
<td>14.0</td>
<td>9.99</td>
<td>14.0</td>
</tr>
<tr>
<td>15.0</td>
<td>10.30</td>
<td>15.0</td>
</tr>
<tr>
<td>16.0</td>
<td>10.59</td>
<td>16.0</td>
</tr>
<tr>
<td>17.0</td>
<td>10.85</td>
<td>17.0</td>
</tr>
<tr>
<td>18.0</td>
<td>11.09</td>
<td>18.0</td>
</tr>
<tr>
<td>19.0</td>
<td>11.31</td>
<td>19.0</td>
</tr>
<tr>
<td>20.0</td>
<td>11.51</td>
<td>20.0</td>
</tr>
<tr>
<td>21.0</td>
<td>11.70</td>
<td>21.0</td>
</tr>
<tr>
<td>22.0</td>
<td>11.88</td>
<td>22.0</td>
</tr>
<tr>
<td>23.0</td>
<td>12.04</td>
<td>23.0</td>
</tr>
<tr>
<td>24.0</td>
<td>12.20</td>
<td>24.0</td>
</tr>
<tr>
<td>25.0</td>
<td>12.34</td>
<td>25.0</td>
</tr>
<tr>
<td>26.0</td>
<td>12.48</td>
<td>26.0</td>
</tr>
<tr>
<td>27.0</td>
<td>12.61</td>
<td>27.0</td>
</tr>
<tr>
<td>28.0</td>
<td>12.74</td>
<td>28.0</td>
</tr>
<tr>
<td>29.0</td>
<td>12.85</td>
<td>29.0</td>
</tr>
<tr>
<td>30.0</td>
<td>12.96</td>
<td>30.0</td>
</tr>
<tr>
<td>31.0</td>
<td>13.07</td>
<td>31.0</td>
</tr>
<tr>
<td>32.0</td>
<td>13.17</td>
<td>32.0</td>
</tr>
<tr>
<td>33.0</td>
<td>13.27</td>
<td>33.0</td>
</tr>
<tr>
<td>34.0</td>
<td>13.36</td>
<td>34.0</td>
</tr>
<tr>
<td>35.0</td>
<td>13.45</td>
<td>35.0</td>
</tr>
<tr>
<td>36.0</td>
<td>13.54</td>
<td>36.0</td>
</tr>
<tr>
<td>37.0</td>
<td>13.62</td>
<td>37.0</td>
</tr>
<tr>
<td>38.0</td>
<td>13.70</td>
<td>38.0</td>
</tr>
<tr>
<td>39.0</td>
<td>13.78</td>
<td>39.0</td>
</tr>
<tr>
<td>40.0</td>
<td>13.85</td>
<td>40.0</td>
</tr>
<tr>
<td>41.0</td>
<td>13.93</td>
<td>41.0</td>
</tr>
<tr>
<td>42.0</td>
<td>13.99</td>
<td>42.0</td>
</tr>
<tr>
<td>43.0</td>
<td>14.06</td>
<td>43.0</td>
</tr>
<tr>
<td>44.0</td>
<td>14.13</td>
<td>44.0</td>
</tr>
<tr>
<td>45.0</td>
<td>14.19</td>
<td>45.0</td>
</tr>
<tr>
<td>46.0</td>
<td>14.25</td>
<td>46.0</td>
</tr>
<tr>
<td>47.0</td>
<td>14.31</td>
<td>47.0</td>
</tr>
<tr>
<td>48.0</td>
<td>14.37</td>
<td>48.0</td>
</tr>
<tr>
<td>49.0</td>
<td>14.43</td>
<td>49.0</td>
</tr>
<tr>
<td>50.0</td>
<td>14.48</td>
<td>50.0</td>
</tr>
<tr>
<td>y^+</td>
<td>u^+</td>
<td>y^+</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.00</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>2.98</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>3.94</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>4.84</td>
<td>5.0</td>
</tr>
<tr>
<td>6.0</td>
<td>5.66</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>6.39</td>
<td>7.0</td>
</tr>
<tr>
<td>8.0</td>
<td>7.04</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0</td>
<td>7.61</td>
<td>9.0</td>
</tr>
<tr>
<td>10.0</td>
<td>8.12</td>
<td>10.0</td>
</tr>
<tr>
<td>11.0</td>
<td>8.56</td>
<td>11.0</td>
</tr>
<tr>
<td>12.0</td>
<td>8.96</td>
<td>12.0</td>
</tr>
<tr>
<td>13.0</td>
<td>9.31</td>
<td>13.0</td>
</tr>
<tr>
<td>14.0</td>
<td>9.63</td>
<td>14.0</td>
</tr>
<tr>
<td>15.0</td>
<td>9.91</td>
<td>15.0</td>
</tr>
<tr>
<td>16.0</td>
<td>10.18</td>
<td>16.0</td>
</tr>
<tr>
<td>17.0</td>
<td>10.41</td>
<td>17.0</td>
</tr>
<tr>
<td>18.0</td>
<td>10.63</td>
<td>18.0</td>
</tr>
<tr>
<td>19.0</td>
<td>10.84</td>
<td>19.0</td>
</tr>
<tr>
<td>20.0</td>
<td>11.02</td>
<td>20.0</td>
</tr>
<tr>
<td>21.0</td>
<td>11.20</td>
<td>21.0</td>
</tr>
<tr>
<td>22.0</td>
<td>11.36</td>
<td>22.0</td>
</tr>
<tr>
<td>23.0</td>
<td>11.52</td>
<td>23.0</td>
</tr>
<tr>
<td>24.0</td>
<td>11.66</td>
<td>24.0</td>
</tr>
<tr>
<td>25.0</td>
<td>11.79</td>
<td>25.0</td>
</tr>
<tr>
<td>26.0</td>
<td>11.92</td>
<td>26.0</td>
</tr>
<tr>
<td>27.0</td>
<td>12.04</td>
<td>27.0</td>
</tr>
<tr>
<td>28.0</td>
<td>12.16</td>
<td>28.0</td>
</tr>
<tr>
<td>29.0</td>
<td>12.27</td>
<td>29.0</td>
</tr>
<tr>
<td>30.0</td>
<td>12.37</td>
<td>30.0</td>
</tr>
<tr>
<td>31.0</td>
<td>12.47</td>
<td>31.0</td>
</tr>
<tr>
<td>32.0</td>
<td>12.57</td>
<td>32.0</td>
</tr>
<tr>
<td>33.0</td>
<td>12.66</td>
<td>33.0</td>
</tr>
<tr>
<td>34.0</td>
<td>12.75</td>
<td>34.0</td>
</tr>
<tr>
<td>35.0</td>
<td>12.83</td>
<td>35.0</td>
</tr>
<tr>
<td>36.0</td>
<td>12.91</td>
<td>36.0</td>
</tr>
<tr>
<td>37.0</td>
<td>12.99</td>
<td>37.0</td>
</tr>
<tr>
<td>38.0</td>
<td>13.06</td>
<td>38.0</td>
</tr>
<tr>
<td>39.0</td>
<td>13.14</td>
<td>39.0</td>
</tr>
<tr>
<td>40.0</td>
<td>13.21</td>
<td>40.0</td>
</tr>
<tr>
<td>41.0</td>
<td>13.28</td>
<td>41.0</td>
</tr>
<tr>
<td>42.0</td>
<td>13.34</td>
<td>42.0</td>
</tr>
<tr>
<td>43.0</td>
<td>13.41</td>
<td>43.0</td>
</tr>
<tr>
<td>44.0</td>
<td>13.47</td>
<td>44.0</td>
</tr>
<tr>
<td>45.0</td>
<td>13.53</td>
<td>45.0</td>
</tr>
<tr>
<td>46.0</td>
<td>13.59</td>
<td>46.0</td>
</tr>
<tr>
<td>47.0</td>
<td>13.65</td>
<td>47.0</td>
</tr>
<tr>
<td>48.0</td>
<td>13.70</td>
<td>48.0</td>
</tr>
<tr>
<td>49.0</td>
<td>13.76</td>
<td>49.0</td>
</tr>
<tr>
<td>50.0</td>
<td>13.81</td>
<td>50.0</td>
</tr>
<tr>
<td>y^*</td>
<td>u^*</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>2.92</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>4.01</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>4.53</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>4.76</td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td>4.96</td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td>5.33</td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td>5.65</td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td>5.80</td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td>5.94</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>6.07</td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>6.19</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>6.31</td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>6.42</td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>6.53</td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>6.63</td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>6.73</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>6.82</td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>6.91</td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>7.00</td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>7.09</td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>7.17</td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>7.25</td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>7.32</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>7.40</td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>7.47</td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>7.54</td>
<td></td>
</tr>
<tr>
<td>35.0</td>
<td>7.61</td>
<td></td>
</tr>
<tr>
<td>36.0</td>
<td>7.68</td>
<td></td>
</tr>
<tr>
<td>37.0</td>
<td>7.74</td>
<td></td>
</tr>
<tr>
<td>38.0</td>
<td>7.80</td>
<td></td>
</tr>
<tr>
<td>39.0</td>
<td>7.86</td>
<td></td>
</tr>
<tr>
<td>40.0</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>41.0</td>
<td>7.98</td>
<td></td>
</tr>
<tr>
<td>42.0</td>
<td>8.04</td>
<td></td>
</tr>
<tr>
<td>43.0</td>
<td>8.10</td>
<td></td>
</tr>
<tr>
<td>44.0</td>
<td>8.15</td>
<td></td>
</tr>
<tr>
<td>45.0</td>
<td>8.20</td>
<td></td>
</tr>
<tr>
<td>46.0</td>
<td>8.26</td>
<td></td>
</tr>
<tr>
<td>47.0</td>
<td>8.31</td>
<td></td>
</tr>
<tr>
<td>48.0</td>
<td>8.36</td>
<td></td>
</tr>
<tr>
<td>49.0</td>
<td>8.41</td>
<td></td>
</tr>
<tr>
<td>50.0</td>
<td>8.45</td>
<td></td>
</tr>
</tbody>
</table>
I. Data Acquisition Program Listings

Note: All the programs were written in C and executed on a UNIX operating system.

CROSS
This is the main program for cross-wire data acquisition, adapted from the single-wire acquisition program, SINGLE, written by J. Seume (1988). It calls the subroutines ENTER_COND, SET_UP_VMX, and ACQUIREX.

ENTER_COND
This subroutine inputs the test conditions specific to the data set, including piston bore, pipe diameter, stroke, test section length, axial probe location, drive speed, and number of readings per cycle.

SET_UP_VMX
This subroutine sets up the NORLAND digital storage oscilloscope on the IEEE interface for data storage and transfer.

ACQUIREX
This subroutine acquires cross-wire anemometer data with the NORLAND, updates quantities for the calculation of streamwise and radial ensemble-averaged and fluctuating velocities, and velocity correlations, and stores them in a file.

AIR_STATEX
This subroutine is called by ACQUIREX and supplies ambient air conditions to the acquisition program.
II. Data Processing Program Listings

PROCESSX
This is the main program for the processing of cross-wire data into traces and profiles of both the streamwise and radial component of ensemble-averaged and rms-velocity fluctuations, and the Reynolds shear stress.

VEL_REDTURB
This data reduction program converts profiles of ensemble-averaged velocity into wall coordinates, iterating on the wall shear stress and y-offset to fit the data to the Couette flow model for turbulent-like flow, including the effect of pressure gradient.

DUPDYP
This subroutine is called by VEL_REDTURB and calculates the slope in wall coordinates based on the Van Driest mixing length model.

VEL_REDLAM
This data reduction program converts profiles of ensemble-averaged velocity into wall coordinates, iterating on the wall shear stress and y-offset to fit the data to the Couette flow model for laminar-like flow, including the effect of pressure gradient.
#include <stdio.h>
#define void int

/* definition of external variables */
int ib3;
int mrad, lastrad, lastcycle, iuerr, irmserr;
int ndummy = 50;
int abort, diagnosis, add_to_set, m_cycle, oldfile, old_file = 0;
int no_inst;
int m_out = 0, m_out[20];
double mstroke, mbore, mdiam, mlength, maxial, speed;
double t_dry, t_wet, p_stm;
int nread = 1, nlag = 0, mcycle = 0;
char filename[30];
char usage[] = "Usage: single [-a runid or -d or -m mcycle or -n or -o m_out n, out[1...m_out]]n";

main(argc,argv)
/* Data acquisition main program, "cross", for cross wire anemometer measurements. G. Friedman, 8/80 */
/* The program is an adaptation of single.c, written by J. Smue for use with single wires */

int argc;
char *argv[];
{
#include <string.h>

int i;

extern int abort, diagnosis, add_to_set, m_cycle, mcycle;
extern int no_inst;
extern int m_out, n_out[];
extern char filename[];

void set_up_vmx();
void enter_cond();
void acquirex();

/* setvbuf (stdout,NULL,_IONBF,1); */
/* Set default values. */
diagnosis = 0;
add_to_set = 0;
m_cycle = 0;
no_inst = 0;

/* Read command line for control parameters. */
while(**argv == '-')
{--argc;
 switch(**argv)
 { case 'a':
 /* Add to an already existing data set. */
 add_to_set = 1;
 strcpy(filename, "/usr/geoff/shwdata/ ");
 strcpy(&filename[19], **argv);
--argc;
 break;

case 'd':
/* Print out diagnostic information. */
diagnosis = 1;
 break;

case 'm':
/* Set maximum number of cycles to be acquired
to a value different from the default specified in acquire.c. */
m_cycle = 1;
mcycle = atoi(**argv);
--argc;

/*..." */
}
case 'n':
 /* Do not access the A/D converter. */
 no_inst = 1;
 --argc;
 break;

case 'o':
 /* Set maximum number of cycles to be acquired
 to a value different from the default
 specified in acquire.c. */
 if(m_out > 9) {
 printf("m_out = \%d > 9 => Choose ", m_out);
 printf("m_out <= 9 \n\n");
 }
 for(i = 1; i <= m_out; i++) {
 n_out[i] = atoi(*++argv);
 if(diagnosis) printf("n_out[%d] = \%d\n", i, n_out[i]);
 }
 --argc;
 break;

default:
 printf("%s", usage);
 break;
}

/* *************************************** */
/* Calls to the various subroutines */
/* Enter experimental conditions. */
enter_cond();
if(abort) goto the_end;
/* Set up A/D converter. */
if(! no_inst) set_up_vmix();
if(abort) goto the_end;
/* Acquire data and store them in file under
 directory /usr/geoff/shwdata */
aquirex();
if(abort) goto the_end;
/* Address for abort sequence. */
the_end;
ENTER_COND

enter_cond()
/ * Enter nominal test conditions. */
{
#include <stdio.h>
#include <math.h>
#include <string.h>
#define NSTROKE 6
#define NBORE 4
#define NDIAM 3
#define NLENGTH 9
#define NAXIAL 21
#define IDLENGTH 10
#define NNDUMMY 50
#define MCYCLE 100
#define PI (4. * atan(1.0))
#define NU 16.0e-06 /* nominal kinematic viscosity */

extern int abort, add_to_set; /* = 1 => Add runs to an existing set of data. */
extern int diagnosis;
extern int old_file;
extern int m_cycle, mcycle;
extern int oldfile; /* = 1 => File existed and will be updated. */
extern double mstroke, mbore, mdiam, mlength, maxial, mspeed;
extern int nread; /* number of readings per cycle */
extern int nlag; /* number of sample pulses (readings) by which TDC trigger lags TDC */
extern char filename[];

FILE *storefile;

int i, istroke, ibore, idiam, ilength, jaxial, ispeed, inerr;
double Remax, Va, Ar, loverd, xoverl, xoverd, uavenmax;
static double mstroke[NSTROKE] = {0.0, 14.0, 9.9, 7.0, 4.95, 3.5};
static double lag_angle[NSTROKE] = {0.0, 0.0, 0.180, 0.0, 0.270, 0.210};
/* lag_angle = angle by which TDC trigger signal lags TDC */
static double bore[NBORE] = {0.0, 14.0, 0.8, 5.5, 0.1};
/* Ideal diameters would be: {0.0, 14.142, 8.409, 5.0}; */
static double diam[NDIAM] = {0.0, 1.5, 1.25};
static int nlengths[NDIAM][NLENGTH] =
"{{0},
{0, 1, 2, 3, 4, 5, 6},
{0, 7, 8}};
static double length[NLENGTH] = {0.0, 0.42, 0.60, 0.102, 0.72, 0.120, 0.127, 0.59, 0.5, 0.127, 0.5};
static double axial[NLENGTH][NAXIAL] =
"{{0.0},
{0.1, 1.5, 3.6, 12.24, 30.72},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5, 66.72, 78.84, 87.88, 85.5},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5, 72.78, 72.90, 72.96, 72.99, 72.101, 22},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5, 72.96, 108.114, 117.118, 115.5},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5, 63.75, 72.79, 5.103, 5.115, 5.121, 5.124, 5.126},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5, 42.5, 51.55, 25.57, 25.375},
{0.1, 1.5, 3.6, 12.24, 30.72, 36.48, 51.36, 54.57, 58.5, 42.5, 51.55, 25.57, 25.375, 63.75, 93.5, 110.5, 115.0, 123.25, 125.375}};

static char dummy[NNDUMMY]; /* dummy array to keep room for further descriptors for runs */
char runid[10], resp[5];
char year[3], month[3];

131
if(! add_to_set) {

 /* Set the maximum number of cycles to be acquired. */
 if(!m_cycle) mcycle = MCYCLE;

 /* Read run identification and check whether the corresponding
 file already exists. */
 for(inerr = 1; inerr;) {
 printf("Enter run identification: \n\n");
 printf("(Use the format mmddyy where: \n");
 printf(" and ss = a sequence number of the day's\n\n");
 printf(" runs)\n\n");
 scanf("%s", runid);
 printf("(mm = %d\n", runid[0], runid[1]);
 printf("(dd = %d\n", runid[2], runid[3]);
 printf("(yy = %d\n", runid[4], runid[5]);
 printf("(ss = %d\n", runid[6], runid[7]);
 strcpy(filename, "/usr/geoff/shdata/\n");
 strcpy(argv[13], runid);
 filename = fopen(filename, "r+\n");
 if(storefile == NULL) {
 printf("This file did not exist but may now \n");
 printf("be created.\n\n");
 oldfile = 0;
 } else {
 printf("This file exists and data may be added.\n\n")
 oldfile = 1;
 printf("\n Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 (inerr = 0);
 else if(resp[0] == 'n' && resp[0] == 'N')
 (inerr = 1);
 else {
 printf("Respond with y, Y for 'yes ');
 printf("or with n, N for 'no' next time.\n\n");
 }
 }
 }
 if(!oldfile) {
 printf("File has now been created.\n\n");
 storefile = fopen(filename, "r+\n");
 fclose(storefile);
 } else oldfile) {
 printf("Enter nominal test conditions from keyboard. */
 for(inerr = 1; inerr;) {
 print("Enter nominal test conditions.\n\n");
 printf("Stroke: \n\n");
 printf(" Stroke code\n");
 printf(" length number\n");
 printf("(inches)\n");
 for(i = 1; i <= NSTROKE-1; i = i + 1) {
 printf(" Stroke\n", stroke[i], i);
 printf(" Enter code for stroke length.\n");
 printf(" If the desired stroke is not listed, ");
 printf("enter a '0'.\n\n");
 while(scanf("%d", &stroke[i]) == 0) {
 getchar();
 printf(" Enter an integer code number!\n");
 }
 if(istroke == 0) {
 printf(" Enter stroke value in inches.\n");
 scanf("%d", &stroke[0]);
 printf(" Stroke length = %7.3f", stroke[istroke]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 inerr = 0;
 else if(resp[0] == 'n' && resp[0] == 'N')
 inerr = 1;
 else {
 printf(" Respond with y, Y for 'yes ');
 return;
 }
 }
 }
 }
 return;
 /* Check for the right keyboard stroke value. */
 for(i = 0; i < 13; i++) {
 printf("Stroke length = %7.3f", stroke[i]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 inerr = 0;
 else if(resp[0] == 'n' && resp[0] == 'N')
 inerr = 1;
 else {
 printf(" Respond with y, Y for 'yes ');
 return;
 }
 }
 return;
}

132
printf("or with n, N for 'no' next time.
")

}
for(inerr = 1; inerr;)
{printf("nBore: \n");
 printf(" bore code\n");
 printf(" (inches) number\n");
 for(i = 1; i <= NBORE-1; i = i + 1)
 printf("\t%7.3f \tkd\n", bore[i], i);
 printf(" Enter code for bore.\n");
 printf(" [If the desired bore is not listed, "");
 printf("enter a '0'.]\n");
 while(scanf("%d", &ibore) == 0)
 {getchar();
 printf(" Enter an integer code number!\n");}
 if(ibore == 0)
 {printf(" Enter bore value in inches.\n");
 scanf("%lf", &bore[0]);
 printf(" Bore = %7.3f in\n", bore[ibore]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {printf(" Respond with y, Y for 'yes' ");
 printf("or with n, N for 'no' next time.\n");}
}
for(inerr = 1; inerr;)
{printf("nTube diameter: \n");
 printf(" diameter code\n");
 printf(" (inches) number\n");
 for(i = 1; i <= NDIAM-1; i = i + 1)
 printf("\t%7.3f \tkd\n", diam[i], i);
 printf(" Enter code for diameter.\n");
 printf(" [If the desired diameter is not listed, "");
 printf("enter a '0'.]\n");
 while(scanf("%d", &idiam) == 0)
 {getchar();
 printf(" Enter an integer code number!\n");}
 if(idiam == 0)
 {printf(" Enter diameter value in inches.\n");
 scanf("%lf", &diam[0]);
 printf(" Tube diameter = %7.3f in\n", diam[idiam]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {printf(" Respond with y, Y for 'yes' ");
 printf("or with n, N for 'no' next time.\n");}
}
for(inerr = 1; inerr;)
{printf("nTest section length: \n");
 printf("t\n\ntube\tto\code\n\nt\length\nt\number\tov\n\nt\length\tdiameter\n");
 for(i = 1; i <= NLENGTH-1; i = i + 1)
 printf("\t%7.2f\t\tkd\%7.2f\n",
 length[nlengths[idiam][i]],
 lengths[idiam][i],
 length[nlengths[idiam][i]] /
 diam[idiam]);
 printf(" Enter code for test section length.\n");
 printf(" [If the desired length is not listed, "");
 printf("enter a '0'.]\n");
 while(scanf("%d", &ilength) == 0)
 {getchar();
 printf(" Enter an integer code number!\n");}
 if(ilength == 0)
{printf(" Enter tube length in inches.\n");
 scanf("%lf", &length[0]);
 printf(" Test section length = %f in\n",
 length[length[1]]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {printf(" Respond with y, Y for 'yes' ");
 printf(" or with n, N for 'no' next time.\n");}
}
for(inerr = 1; inerr;)
 {printf(" Axial probe location: \n");
 printf(" axial code\n");
 printf(" distance number\n");
 printf(" (inches)\n");
 for(i = 1; i <= MAXIAL-1; i = i + 1)
 printf(" %6.3f axial[%d]\n",
 axial[i], i);
 printf(" Enter code for axial distance.\n");
 printf(" [If the desired distance is not listed,]");
 printf(" enter a 'O'.]\n");
 while(scanf("%d", &axial) == 0)
 {getchar();
 printf(" Enter an integer code number!\n");}
 if(axial == 0)
 {printf(" Enter axial distance in inches.\n");
 scanf("%lf", &axial[length[0]]);
 printf(" Probe location = %6.3f in\n",
 axial[length][axial]);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {printf(" Respond with y, Y for 'yes' ");
 printf(" or with n, N for 'no' next time.\n");}
 }
for(inerr = 1; inerr;)
 {printf(" Drive speed: \n");
 printf(" Code to enter drive shaft rpm = '1'\n");
 printf(" Code to enter flywheel frequency in Hz =\n");
 printf(" 2'\n");
 printf(" Enter code for entry.\n");
 while(scanf("%d", &ispeed) == 0)
 {getchar();
 printf(" Enter an integer code number!\n");}
 if(ispeed == 1)
 {printf(" Enter shaft speed in rpm.\n");
 scanf("%lf", &speed);
 speed = speed / 240.0;}
 else if(ispeed == 2)
 {printf(" Enter flywheel frequency in Hz.\n");
 scanf("%lf", &speed);}
 printf(" Shaft speed = %6.1f rpm , (speed = 240.0).\n",
 speed, speed);
/* The following lines is used to incorporate shaft-angle encoder signals with less than 720 pulses per revolution. */
for(err = 1; err;)
 print("\n Enter number of readings per cycle: \n”);
 while(scand (\’d\’, &read) == 0)
 {getchar();
 printf(" Enter an integer number: \n”);
 print("%d readings per cycle will be taken. \n",
 nread);
 printf(" Divide 720 pulses by %f, \n",
 720. / (double)nread);
 if(speed = (double) nread > 25.)
 printf(" Frequency of readings is %f Hz! \n",
 speed = (double) nread);
 nlag = (int)((double)nread * lag_angle[istroke] / 360.);
 if(diagnosis) printf(" lag angle = %lf, nlag = %d\n",
 lag_angle[istroke], nlag);
 printf(" Entry correct? (y or n)\n”);
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {err = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {err = 1;}
 else
 {printf(" Respond with y, Y for 'yes' \n”);
 printf(" or with n, N for 'no' next time. \n”);}

/* Alternative: Dummy entry of shaft-angle encoder pulses. */
/* NOT USED: */
 nread = 720;
 nlag = 2 * (int)(lag_angle[istroke]);
 if(diagnosis) printf(" lag angle = %lf, nlag = %d\n",
 lag_angle[istroke], nlag);

/* Convert to SI base units. */
 mstroke = stroke[istroke] * 0.0254;
 mbore = bore[istroke] * 0.0254;
 mdiam = diam[istroke] * 0.0254;
 mlength = length[ialength] * 0.0254;
 maxial = axiial[ialength][ialial] * 0.0254;

/* Write runid and parameters to new data file. */
 storefile = fopen(filename, "r+");
 fwrite(runid, sizeof(char), 10, storefile);
 fwrite(&stroke, sizeof(double), 1, storefile);
 fwrite(&bore, sizeof(double), 1, storefile);
 fwrite(&diam, sizeof(double), 1, storefile);
 fwrite(&length, sizeof(double), 1, storefile);
 fwrite(&axial, sizeof(double), 1, storefile);
 fwrite(&speed, sizeof(double), 1, storefile);
 fwrite(&nread, sizeof(int), 1, storefile);
if (! old_file) {
 fwrite(&cycle, sizeof(int), 1, storefile);
 fwrite(dummy, sizeof(char), NDUMMY, storefile);
}
fclose(storefile);
}

else {
 /* Read parameters from old data file and provide a summary in
 English units. */
 storefile = fopen(filename, "r");
 fread(runid, sizeof(char), 10, storefile);
 fread(&stroke, sizeof(double), 1, storefile);
 fread(&bore, sizeof(double), 1, storefile);
 fread(&diameter, sizeof(double), 1, storefile);
 fread(&length, sizeof(double), 1, storefile);
 fread(&maximal, sizeof(double), 1, storefile);
 fread(&read, sizeof(int), 1, storefile);
 strncpy(year, &runid[4], 2);
 strncpy(month, &runid[0], 2);
 if (atoi(year) == 88 && atoi(month) < 6) old_file = 1;
 if (! old_file) {
 fread(&cycle, sizeof(int), 1, storefile);
 fread(dummy, sizeof(char), NDUMMY, storefile);
 }
 fclose(storefile);
}

 /* Determine the lag in terms of number of pulses. */
 for (i = 0; ; i <<= NSTROKE) {
 if (stroke[i] > (0.95 * mstroke / 0.0254) && stroke[i] < (1.05 * mstroke / 0.0254)) {
 nlag = (int)((double)nread * lag_angle[i] / 560.);
 istroke = i;
 }
 }
 if (diagnosis) printf("lag angle = %lf, nlag = %dk
", lag_angle[istroke], nlag);
 printf("In Input data summary in English units:
");
 printf("stroke = %6.1f in
", mstroke / 0.0254);
 printf("bore = %6.1f in
", mbore / 0.0254);
 printf("test section diameter = %6.1f in
", mdiameter / 0.0254);
 printf("test section length = %6.1f in
", mlength / 0.0254);
 printf("axial location = %6.1f in
", maximal / 0.0254);
 printf("drive shaft speed = %6.1f rpm
", speed * 240.);
 printf("%d readings per cycle
", nread);
 printf("[Divide 720 by %f.]\n", 720. / (double)nread);
 printf("%s", dummy);
 printf("Type 'c<CRT>' to continue.\n");
 scanf("%s", resp);
}

 /* Echo print input data in SI units. */
 printf("In Input data summary in SI units:\n");
 printf("stroke = %6.1f mm
", mstroke * 1000);
 printf("bore = %6.1f mm
", mbore * 1000);
 printf("test section diameter = %6.1f mm
", mdiameter * 1000);
 printf("test section length = %6.1f mm
", mlength * 1000);
 printf("axial location = %6.1f mm
", maximal * 1000);
 printf("frequency = %6.3f Hz\n", speed);
 /* estimate of the amplitude of the bulk-mean velocity */
 printf("Estimated amplitude of the bulk-mean velocity = ");
 uavemax = PI * speed * mstroke * (mbore * mbore) / (mdiameter * maximal);
 printf("5.2f m/sec\n", uavemax);

 /* Calculate and print similarity parameters. */
 printf("In Nominal similarity parameters:\n");
 printf("Remax = %10.2f\n", Remax = PI * mstroke * mstroke / (mdiameter * NDUMMY);
 printf("Va = %6.1f\n", Va = 0.5 * PI * speed * mdiameter / NDUMMY);
 printf("Ar = %6.2f\n", Ar = mbore * mbore / (mdiameter * mdiameter * mstroke / mlength);

 printf("Ar = %6.2f\n", Ar = mbore * mbore / (mdiameter * mdiameter * mstroke / mlength);
else {
 storefile = fopen(filename, "w");
 if(storefile == NULL) {
 printf("This file does not exist.\n");
 abort = 1;
 } else {
 oldfile = 1;

 /* Read parameters from old data file. */
 fread(runid,sizeof(char),10,storefile);
 fread(&mstroke,sizeof(double),1,storefile);
 fread(&mbore,sizeof(double),1,storefile);
 fread(&mdiam,sizeof(double),1,storefile);
 fread(&length,sizeof(double),1,storefile);
 fread(&maxial,sizeof(double),1,storefile);
 fread(&aspeed,sizeof(double),1,storefile);
 fread(&read,sizeof(int),1,storefile);
 strncpy(year,&runid[4],2);
 strncpy(month,&runid[0],2);

 /* Determine the lag in terms of number of pulses. */
 for(i = 0; i <= NSTROKE; i++) {
 if(stroke[i] > (0.95 * mstroke / 0.0254) && stroke[i] < (1.05 * mstroke / 0.0254)) {
 nlag = (int)((double)nread * 360. / lag_angle[i]);
 istroke = i;
 }
 }
 if(diagnosis) printf("lag angle = %lf, nlag = %d\n",
 lag_angle[istroke], nlag);

 /* Check whether this is a file of the old format. */
 if(atoi(year) == 88 && atoi(month) < 6) old_file = 1;
 if(! old_file) fread(dummy,sizeof(char),NDUMMY,storefile);
 fclose(storefile);
 }
}
SET_UP_VMX

set_up_vmx()
/* Set up NORLAND Prowler on IEEE interface. */
/* This program is an adaptation of set_up_vm for cross wire */
{
#include <gpi.h>
#include <stdio.h>
#include <string.h>

extern int ib3;
char set3[100];
char resp[100];

/* Send message to screen. */
printf("NORLAND Prowler will now be configured.\n");
/* Identify device and set up interface. */
ib3 = ibfind("/dev/ib3"); // Define device ID. */
ibmo(ib3, 14); // Timeout = 30sec */
/* Set controls on device and check interface communications. */
/* Generate string of control commands to be sent to device. */
strcpy(set3,"JLA"); // Beeper off */
strcat(set3,"""); /* ACQ. MODE */
strcat(set3,"E"); /* TRIGGERED HOLD */
strcat(set3,"M4096"); /* BLOCK SIZE = 4096 */
strcat(set3,"L0"); // SAMPLE INTERVAL = EXT. */
strcat(set3,"Z"); /* TRIGGER SETUP */
strcat(set3,"G4096"); /* EXTERNAL TRIGGER DELAY = 4096 */
strcat(set3,"ME"); /* SOURCE = EXTERNAL */
strcat(set3,"); /* A SETUP */
strcat(set3,"E"); /* ACTIVE */
strcat(set3,"C2="); /* RANGE = 2 */
strcat(set3,"E0="); /* BIAS = 0% */
strcat(set3,"GC"); /* COUPLING = DC */
strcat(set3,"); /* B SETUP */
strcat(set3,"E"); /* ACTIVE */
strcat(set3,"C2="); /* RANGE = 2 */
strcat(set3,"E0="); /* BIAS = 0% */
strcat(set3,"GC"); /* COUPLING = DC */

ibwr(ib3, set3, strlen(set3)); /* Send string to device. */
while(ERR & ibsta){

 switch (iberr) {
 case 0:
 {printf("iberr = %d: operating system error\n", iberr);
printf("UNIX error code = %d\n", ibcnt);
break; }
 case 1:
 {printf("iberr = %d: GPIB must be in charge.\n", iberr);
break; }
 case 2:
 {printf("iberr = %d: Write function detected ",
iiberr);
printf("no listeners.\n");
break; }
 case 3:
 {printf("iberr = %d: interface board", iberr);
printf(" not addressed correctly.\n");
break; }
 case 4:
 {printf("iberr = %d: invalid arg. to fctn call\n", iberr);
break; }
 case 5:
 {printf("iberr = %d: GPIB-board must be ", iberr);
printf("System Active Controller.\n");
break; }
 case 6:
 {printf("iberr = %d: \n", iberr);
break; }
 }
case 7:
 {printf("iberr = %d: Interface board does not exist. \n", iberr);
 break;}

case 10:
 {printf("iberr = %d: I/O started before previous operation completed. \n", iberr);
 break;}

case 11:
 {printf("iberr = %d: no capability for operation\n", iberr);
 break;}

case 14:
 {printf("iberr = %d: command error during device call\n", iberr);
 break;}

case 15:
 {printf("iberr = %d: Serial Poll status\n", iberr);
 printf("byte lost\n");
 break;}

case 16:
 {printf("iberr = %d: SQR remains asserted.\n", iberr);
 break;}

} printf(" => Check NORLAND and connections.\n");
printf(" Type 'c <CR>' when you are ready.\n");
scanf("%s",resp);
ibwrt(ib3,set3,strlen(set3)); /* Send string to device. */
}
ACQUIREX

acquirex()
/* This program acquires cross-wire anemometer data with a NORLAND Prowler
digital storage oscilloscope, updates quantities for the calculation of
mean and fluctuating velocities, and stores them in
a file. G. Friedman, 8/90 */
/* This program is based on a version of acqu_c_u.c, with wires A and B, written
by J. Beume, 1986 */
{
#include <stdio.h>
#include <string.h>
#include <math.h>

#define MREAD 181 /* maximum number of data array entries */
#define MREAD 211 /* shaft-angle encoder angles in NORLAND arrays */
#define MREAD 903 /* fuseA storage for 180 pts x 5 cycles */
#define AMAX 4096 /* number of entries in NORLAND data array */
#define MAX 8452 /* number of entries in string received from NORLAND */
#define MCYCLE 50 /* maximum number of cycles */
#define MRAD 30 /* maximum number of radial probe locations */
#define STRNLING 30
#define NTWISTY 30 /* This parameter is also needed in air_statex. */
#define PI 3.14159265

extern int ib3;
extern int diagnosis, m_cycle, old_file, no_inst;
extern int m_out, n_out[];
extern double mstroke, mboore, mdiam, mlenght, maxial, speed;
extern double t_dry, t_wet, p_atm; /* air conditions during run */
extern int mread, mcycle;
extern int nlag; /* number of sample pulses (readings) by which the
DTC trigger lags TDC */
extern char filename[];

FILE *storefile, *densfile;
FILE *umfile, *vmfile;

int ierr, /* error in input data */
 irad, /* number of current radial probe location */
 iuerr = 0, irmserr = 0, /*sequence number of angle at which
maximum error in mean and rms
occurred in this cycle */
 next_round = 1, /* A "round" of data are those data points in the
NORLAND's buffer that represent a complete cycle. */
 round,
 cr_in_buf, /* number of cycles in the NORLAND's buffer */
 morerad = 1, /* acquire at more radial locations */
 fin_prt = 0, /* = 1 => final printout, lastcy => mcycle */
 int_prt = 0, /* = 1 => intermediate printout, m_out => 1 */
 iout = 0, /* index for n_out[] */
 icycle, /* number of current cycle */
 lastcy, /* number acquired at one radial location */
 iangle, /* number of current crank location */
 i, jcount, kcount, lcount, ucoupnt, count3, /* auxiliary counters */
 iter
;

double dist, distance, relrad, /* probe location */
accuracy = 0.005, /* accuracy of mean */
acalib, bcalib, ncalib, /* general calibration constants for
substitution of values below */

ninv, /* inverse of ncalib */

/****************************

wired calibrations
/****************************
/ calibration of 7/10/80, cross-wire #35333 for ujet <= 25 m/sec */
acalibA = 2.94834, bcalibA = 1.85552, ncalibA = 0.435,
acalibB = 3.18061, bcalibB = 1.96477, ncalibB = 0.435,
ref_temp = 27.2, /* dry-bulb temperature at calibration in degrees Celsius */
ref_press = 0.991e+05, /* atmospheric pressure at calibration in Pa */
ref_dens, /* density at calibration */
volOffset, /* voltage that was subtracted from hot wire signal during conditioning */
vGainA, vGainB, /* multiplication factor that was applied to voltage during signal conditioning */
vgainA = 1.0, vgainB = 1.0, /* hot-wire bridge output voltage */
voltage, /* angle after TDC at which the TDC trigger is actuated (in degrees) */
trigAng = 0.0, /* auxiliary variables */
base, argument, /* instantaneous effective velocity in m/s */
veff, /* number of cycles processed at this point */
cycles, /* accuracy of uMean */
maxErr = 0.0, /* auxiliary variable for um and vm */
mxrMErr = 0.0,
um, /* auxiliary variables for u and v, based on ueffA and ueffB */
u, v,
theta = 45., /* between sensor and the normal to flow */
angle, /* theta, in radians */
kt = 0.135, /* coefficient for the tangential cooling, based on Champagne's work, for l/d = 330 */
{kAterm, kBterm, /* terms from the iteration for u and v */
sint, cost, /* auxiliary voltage offset variable */
ueffAnew, ueffBnew, /* voltage correction to account for ambient temperature difference between calibration and run */
vmnew, unew, /* sensor temperature in degrees Celsius */
epsilonA, epsilonB, /* universal gas constant in kg/kmol/K */
rhsA, lhsA, rhsB, lhsB,
off_set, /* molecular weight in kg/kmol for air with mole fractions of: */
vol_corr, /* N2 = 0.7808 */
t_sensor = 250., /* O2 = 0.2095 */
gas_const = 8315., /* Ar = 0.0086 */
air_mwt = 28.96, /* */
density, /* current air density */
mean_dens; /* density at atmospheric pressure */
static double sumu[MREAD], /* sum of instantaneous velocities, for u */
also: values of uMean[], re-sorted for lag in crank-angle */
sumv[MREAD], /* sum of squares of instantaneous velocities, also: values of urms[], re-sorted for */
sumu2[MREAD], /* lag in crank-angle */
sumv2[MREAD], /* sum of product of instantaneous velocities */
sumuv[MREAD], /* oldSu[] = [] */
old_su[MREAD], old_su2[MREAD], /* current values of sumu, sumu2 */
old_sv[MREAD], old_sv2[MREAD], old_suv[MREAD], /* effective velocities from wires A and B, from which get u, v */
ueffA[MREAD3], ueffB,
umean[MREAD], /* ensemble averaged velocity, also
used to store the density correction
factor */
vmean[MREAD],
urms[MREAD], /* velocity fluctuation */
vrms[MREAD], /* Reynolds' shear stress */
upv[MREAD];

char resp[5];
char status_byte;
char set3[STRLEN], acquire[2], beeper_on[4];
static char set_range[100], rcmdA[STRLEN], rcmdB[STRLEN];

int *iptr, ifactor1, hexdigit, sign, ivalue;
int first_time;
int bit7, bit6, bit5, bit4, bit3, bit2, bit1, bit0;
int air_statext();
double *dptr, factor1, factor2, factor, offset;
static char readstrA[SMAX], readstrB[SMAX], digit[2];
static char *ptrdstr; /* pointer to readstr */
static char dummy[NDUMMY], buffer[NDUMMY];
/* Prepare for communication with the NORLAND *
 */
/* Generate strings for ACQUIRE and Beep Off commands. */
strcpy(acquire,"R"); /* Beeper on */
strcpy(beeper_on,"ILC");

/* Generate command string for data transfer from NORLAND of array A */
strcpy(rcmdA, "\")
strcat(rcmdA, "K\"); /* 1/O */
strcat(rcmdA, "C\"); /* TRANSFER */
strcat(rcmdA, "G\"); /* XFAST BINARY */
strcat(rcmdA, "A\"); /* ARRAY A */

/* Generate command string for data transfer from NORLAND of array B */
strcpy(rcmdB, "\")
strcat(rcmdB, "K\"); /* 1/O */
strcat(rcmdB, "C\"); /* TRANSFER */
strcat(rcmdB, "G\"); /* XFAST BINARY */
strcat(rcmdB, "C\"); /* ARRAY B */

/* Generate and send command string to reset the voltage ranges */
strcpy(set_range,"C\")
strcat(set_range,"5\"); /* 5 V */
strcat(set_range,"B\"); /* B SETUP RANGE */
strcat(set_range,"5\"); /* 5 V */
ibv(1b5,set_range,strlen(set_range));
/* Input and print run information prior to
entering the main loop for ensemble averaging */

/* Calculate number of cycles completely represented in one NORLAND buffer
based upon 720 samples/cycle via the shaft angle encoder */
cy_in_buf = 4096 / (MREAD-1);
/* Print out nlag. */
if(diagnosis) printf("nlag = %d\n", nlag);

/* Print out cycles at which intermediate results are to be stored. */
if(diagnosis) {
for(i = 1; i <= m_out; i++) {
printf("n_out[%d] = %d\n", i, n_out[i]);
}
}
/* Set the maximum number of cycles to be acquired */
if(!m_cycle) mcycle = MCYCLE;
/* Convert temperatures from Celsius to Kelvin */
ref_temp += 273.15;
t_sensor += 273.15;
/* Enter voltage offsets for wires A and B */
for(count = 1; count<2; count++)

for(inerr = 1; inerr;){
 if(count == 1) printf("\nVoltage offset for wire A:\n");
 printf("\nVoltage offset for wire B:\n");
 printf(" Enter absolute voltage value.\n");
 if(count == 1) scanf("%lf", &voffsetA);
 else
 scanf("%lf", &voffsetB);
 if(count == 1) printf(" Voltage offset = %7.4g V\n", voffsetA);
 else
 printf(" Voltage offset = %7.4g V\n", voffsetB);
 printf(" Entry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {
 printf(" Respond with y, Y for 'yes' ");
 printf("or with n, N for 'no' next time.\n");
 }
}

/* The program assumes that thetA = 45 degrees for the wire probe. The iteration section must be changed if this is not the case. */
printf("\nNote that the program assumes theta = 45.\n");

**

/* Loop for radial positions*/
for(; 1;)
{
 /* Initialize arrays for summation and velocity calculation. */
 for(i = 0; i < MREAD; i++)
 {sumu[i] = 0.0;
 sumv[i] = 0.0;
 sumu2[i] = 0.0;
 sumv2[i] = 0.0;
 sumuv[i] = 0.0;
 }

 /* Wake up the operator with a bell. */
 for(i = 0; i < 10; i++) printf("%c", '007');

 /* Enter a comment line. */
 for(inerr = 1; inerr;)
 {printf("\nEnter a 50 character comment line:\n");
 printf(" (Use _ instead of blank spaces!)\n");
 for(i = 1; i <= 5; i++) printf("1234567890\n");
 printf("\n");
 for(i = 1; i <= 6; i++) printf("%d", i-1);
 printf("\n");
 for(i = 0; i < NDUMMY; i++) dummy[i] = '0';
 strcpy(dummy,"ensemble-averaged velocity: ");
 printf("%s", dummy);
 scanf("%s", buffer);
 strcat(dummy, buffer);
 printf("\nComment line: \n%ks", dummy);
 scanf("\nEntry correct? (y or n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 {inerr = 1;}
 else
 {printf(" Respond with y, Y for 'yes' ");
 printf("or with n, N for 'no' next time.\n");
 }

 /* Enter room air conditions. */
 if(! old_file) air_statex();

 /* Enter probe position. */
for(inerr = 1; inerr;){
 printf("\nradial probe location:\n");
 printf("\nCode to enter wall distance in inches = '1'\n");
 printf("\nCode to enter wall distance in mm = '2'\n");
 printf("\nCode to enter radius as fraction ");
 printf("\nof the tube radius = '3'\n");
 printf("\nCode to quit = '0'\n");
 printf("\nEnter code for entry.\n");
 while(scanf("%d", &irad) == 0) {
 getchar();
 printf("\nEnter an integer code number!\n");
 }
 switch (irad) {
 case 0:
 {goto the_end;
 break;
 }
 case 1:
 {printf("\nEnter wall distance in inches.\n");
 scanf("%lf", &dist);
 distance = dist * 0.0254;
 break;
 }
 case 2:
 {printf("\nEnter wall distance in mm.\n");
 scanf("%lf", &dist);
 distance = dist / 1000.0;
 break;
 }
 case 3:
 {printf("\nEnter radius as a fraction of the\n");
 printf("\ntube radius.\n");
 scanf("%lf", &relrad);
 distance = (1.0 - relrad) / 0.5 * mrad;
 break;
 }
 }
 printf("\nWall distance = 7.4g inches\n",
 printf("\nRadius / Tube Radius = 6.5g \n",
 printf("\n Entry correct? (y or n)\n");
 printf("\nEnter 'y' to start acquisition.\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 {inerr = 0;}
 else if(resp[0] == 'n' && resp[0] == 'N')
 {inerr = 1;}
 else
 {printf("\nRespond with y, Y for 'yes' \n");
 printf("or with n, N for 'no' next time.\n");
 }
 } /* If no instrument is available on the IEEE interface ... */
 if(no_inst) {goto the_end;
 } /*
 *****************************/
 Acquire data with NORLAND until the
 maximum number of cycles is reached
 /*
 printf("\nData will be acquired now.\n");
 */
 first_time = 1;
 /* Set flag for acquisition of first round. */
 /*
 for(round = 1, next_round = 1; next_round; round++) {*/
 /*
 Calculate density transient. */
 ref_dens = ref_press * air_mw / gas_const / ref_temp;
 if((densfile = fopen("densfile", "r")) != NULL) {
 fseek(densfile, 0L, 0);
 for(i = 0; i <= nread; i++) {
 if(! fread(&density, sizeof(double), 1, densfile)
printf("Reading of density failed.\n")
 umean[i] = ref_dens / density;
}
fclose(densfile);
}
else {
 printf("densfile does not exist. p_utm assumed\n");
 mean_dens = p_utm * air_mwt / gas_const / t_dry;
 for(i = 0; i < nread; i++) {
 umean[i] = ref_dens / mean_dens;
 }
}

/* Send string to start acquisition. */
ibwt(ib3, acquire, strien(acquire));

/* Wait until NORLAND starts acquisition. */
/* (Loop to test whether NORLAND is already acquiring). */
do{
 ibrsp(ib3,&status_byte);
 if(diagnosis)printf("status_byte = %x\n", status_byte)
}while(!status_byte & 5);
if(diagnosis)printf("N started acquisition\n");

/* If this is the first acquisition at this radial position, do not attempt to process data. */
if(!first_time){
 if(diagnosis)printf("This is not the first time.\n");
}

/*}
loop through for both ueffA and ueffB, the effective cooling velocities
*/
for(ucount = 1; ucount<2; ucount++){
 if(ucount == 1) {
 ncalib = ncalibA;
 ptrlstr = readstrA;
 acalib = acalibA;
 bcalib = bcalibA;
 voffset = voffsetA;
 vgain = vgainA;
 } else {
 ncalib = ncalibB;
 ptrlstr = readstrB;
 acalib = acalibB;
 bcalib = bcalibB;
 voffset = voffsetB;
 vgain = vgainB;
 }

/* Evaluate Factor and Offset from data sent in XFAST binary format. See NORLAND Prowler manual
to options for the Prowler", pp.46-48. */
/* Calculate Factor. */
/* The first two hex digits (Word 1) represent the log to the base two, biased by 128, of the first factor
of the Factor. */
scanf(ptrlstr, "%2X", &factor1);

/* Compute the first factor of the Factor. */
factor1 = pow(2, (double)factor1 - 128.);

/* The next six hex digits (Words 2, 3, 4) represent the sign and the base two fractions of the second
factor of Factor. Calculate contributions to the second factor, hex-digit by hex-digit. */
for(i=0, factor2=0; i<6; i++) {
 strncpy(pg, (ptrlstr+2+i), 1);
}

/* The next eight hex digits (Words 5, 6, 7) represent the sign and the base two fractions of the third
factor of Factor. Calculate contributions to the second factor, hex-digit by hex-digit. */
digit[1] = '0';

/* Determine bit pattern corresponding to each
hex-digit and calculate the second factor. */
ascanf(digit,"%X",&hexdigit);
bit0 = hexdigit & 1;
bit1 = hexdigit & 2;
bit2 = hexdigit & 4;
bit3 = hexdigit & 8;
if(i==0){
 if(bit3)
 sign = -1;
 else
 sign = 1;
 bit3 = 1;
}
if(bit3) factor2 = factor2
 + pow(2.,-(double)(i*4 + 1));
if(bit2) factor2 = factor2
 + pow(2.,-(double)(i*4 + 2));
if(bit1) factor2 = factor2
 + pow(2.,-(double)(i*4 + 3));
if(bit0) factor2 = factor2
 + pow(2.,-(double)(i*4 + 4));
}
}

/* Calculate Offset. */

/* The first two hex digits
(Word 1) represent the log to the base two,
biased by 128, of the first factor
of the Offset. */
ascanf((ptrdstr+8),"%2X",&factor1);

/* Compute the first factor of the Offset. */
factor1 = pow(2.,((double)factor1 - 128.));

/* The next six hex digits (Words 2, 3, 4) represent
the sign and the base two fractions of the second
factor of Offset. */
/* Calculate contributions to the second factor,
hex-digit by hex-digit. */
for(i=0, factor2=0; i<6; i++){
 strncpy(digit,(ptrdstr+10+i),1);
 digit[1] = '0';

 /* Determine bit pattern corresponding to each
hex-digit and calculate the second factor. */
 ascanf(digit,"%X",&hexdigit);
 bit0 = hexdigit & 1;
 bit1 = hexdigit & 2;
 bit2 = hexdigit & 4;
 bit3 = hexdigit & 8;
 if(i==0){
 if(bit3)
 sign = -1;
 else
 sign = 1;
 bit3 = 1;
 }
 if(bit3) factor2 = factor2
 + pow(2.,-(double)(i*4 + 1));
 if(bit2) factor2 = factor2
 + pow(2.,-(double)(i*4 + 2));
 if(bit1) factor2 = factor2
 + pow(2.,-(double)(i*4 + 3));
 if(bit0) factor2 = factor2
 + pow(2.,-(double)(i*4 + 4));
}
 }
offset = (double) sign * factor1 * factor2;
if(diagnosis)printf("offset = %f\n",offset);
if(diagnosis)printf("fraction and offset are calc\n");

/* *********************************** */
/* Evaluate individual data points */

icount = (MREAD2 - 1) / nread;
ninv = 1. / ncalib;
off_set = offset + voffset * vgain;
volt_corr = sqrt((t_sensor - ref_temp)
/ (t_sensor - t_dry)) / vgain;
angle = PI * theta / 180.;
sint = sin(angle);
cost = cos(angle);
jcount = 0;
for(i = 1, iptr = (int *)(ptrdstr+256);
 iptr < (int *)(ptrdstr+256+2*cy_len*(MREAD2-1));
 i++, iptr++)

 /* NOTE: Due to storage limitations, only every
 fourth point (2 degrees) is included, i.e.
 2 4 6 ... 180 182 ... 360 degrees */
 if(!(i % icount)){
 icount++;
 /* Calculate voltage value according to
 NORLAND Prowler manual pp.48-49 of 5/20/85. */
 voltage = ((double *)(iptr-0X8000)*factor
 + off_set) * volt_corr;

 /* Calculate instantaneous velocity. */
 /* King's Law, with exponent other than 0.5 */
 if((base = voltage*voltage - acalib) > 0.0) {
 veleff = pow(base/bcalib,nninv);
 }
 else {
 veleff = 0.0;
 }

 /* Correct velocity for static pressure. */
 /* Note: Currently, the density transient for the pressure
 correction is corrected for angular offset between
 piston TDC and TDC-marker in def_density; this also applies
 to acq_u.c. 4/9/89 JS */
 vleff *= umean[jcount % (MREAD-1)];

 if(ucount == 1) uEff[jcount] = veleff;
 else {
 uEffB = veleff;
 lhsA = pow(ueff[jcount],2.);
 lhsB = pow(ueffB,2.);
 v = sint * (ueff[jcount] - uEffB);
 u = (ueff[jcount] - v - sint) / cost;
 iter = 0;

 /* *********************************** */
 /* iteration to determine u and v instantaneous */
 do
 { iter++;
 ktAterm = pow((kt * sint * (u - v)),2.);
 ktBterm = pow((kt * cost * (u + v)),2.);
 uEffAnew = sqrt(lhsA - ktAterm);
 uEffBnew = sqrt(lhsB - ktBterm);
 vnew = sint * (uEffAnew - uEffBnew);
 unew = (uEffAnew - vnew * sint) / cost;
 epsylonA = fabs(vnew - v) / v;
 epsylonB = fabs(unew - u) / u;
 u = unew;
 v = vnew;
 if(iter > 2)
 printf("i = %d iter = %d epA = %f epB = %f\n",
i, iter, epsilonA, epsilonB);
}
while ((epsilonA > 0.001) || (epsilonB > 0.001));
angle = jcount % (MREAD-1);
/* Update the summations */
sumu[angle] += u;
sumv[angle] += v;
sumu2[angle] += (u*u);
sumv2[angle] += (v*v);
sumuv[angle] += (u*v);

/* Output v instantaneous to the file "vminst" */
if((angle == 179) && (i < 750)){
 vmfile = fopen("/usr/geoff/proc/vminst","w");
 for(kcount = 1; kcount <= 178; kcount++){
 printf(vmfile, "%d\t%d\n", 2 * kcount, sumv[kcount]);
 }
 flush(vmfile);
 fclose(vmfile);
 printf("vminst file printed\n");
}
/* end of loop for ueffB */
/* end of loop for every 4th pt */
/* end of binary string breakdown loop */
/* end of ucount loop for ueffA and ueffB */
if(diagnosis) printf("data converted\n");

/* ************************************* */
/* Section to determine run status */
/* Should another buffer of data be acquired? */
if((lastcy = (round - 1) = cy_in_buf) >= mcycle)
 next_round = 0;
if(diagnosis) printf("next_round = %d\n", next_round);
if(diagnosis) printf("wait for end of acquisition\n");
if(diagnosis) printf("status_byte = %0\n", status_byte);

/* Send message about current round. */
printf(" Data for round %d (cycle %d) processed.\n",
 (round - 1), (round - 1) = cy_in_buf);

/* Wait until NORLAND is done acquiring. */
/* (Loop to test whether NORLAND is still acquiring.) */
i = 0;
do{
 ibsp(ib3,&status_byte);
 if(diagnosis){
 i += 1;
 if(i > 100){
 i = 0;
 printf("%0\n", status_byte);
 }
 }
}while(status_byte & 5);
if(diagnosis) printf("N stopped acquisition\n");
if(diagnosis) printf("status_byte = %0\n", status_byte);

/* If necessary, read results of data acquisition. */
if(next_round){
 if(diagnosis) printf("reading of A will begin\n");
 /* Send command to read NORLAND buffer for Chan A. */
 ibwrt(ib3,rdcmdA,strlen(rcmdA));
 /* Read data from NORLAND. */
 ibrd(ib3,readstrA,SMAX);
 if(diagnosis) printf("reading of A done\n");
 if(diagnosis) printf("status_byte = %0\n", status_byte);

148
if(diagnosis)printf("reading of B will begin\n");
 /* Send command to read NORLAND buffer for Chan B */
 ibwrt(ib3,rdcmdB,strlen(rcmdB));
 /* Read data from NORLAND. */
 ibrd(ib3,readstrB,SMAX);
if(diagnosis)printf("reading of B done\n");
}
if(diagnosis)printf("status_byte = %0\n", status_byte);

/* Reset flag for first round of acquisition. */
if(first_time) first_time = 0;

/* Calculate the number of cycles stored and entered
 into the summation so far. */
cycles = (double)((round - 1) * cy_in_buf);
printf("cycles stored, summed = %f\n",cycles);

/* Set flags for printout and for updating sums. */
if(!next_round) {
 fin_pr = 1;
}
if(m_out >= 1 && iout <= m_out
 && cycles >= (double)n_out[iout]) {
 iout++;
 int_pr = 1;
}

if(fin_pr || int_pr) {
 printf("cycles = %f\n",cycles);
 /* ***/
 /* Calculate ensemble averaged velocities,
 rms velocity fluctuations, and shear stresses
 based on the summations */
 for(iangle = 1; iangle <= nread; iangle++){
 um = sumu[iangle] / cycles;
 vmean[iangle] = um;
 vm = sumv[iangle] / cycles;
 vmean[iangle] = vm;
 if((argument = 1.0/(cycles - 1.) *
 (sumu2[iangle] - um*um*cycles)) > 0.0)
 urms[iangle] = sqrt(argument);
 else urms[iangle] = 0.0;
 if((argument = 1.0/(cycles - 1.) *
 (sumv2[iangle] - vm*vm*cycles)) > 0.0)
 vrms[iangle] = sqrt(argument);
 else vrms[iangle] = 0.0;
 upv[iangle] = 1.0/(cycles - 1.) *
 (sumuv[iangle] - um*vm*cycles);
 }
 /* Store sums in auxiliary arrays to be updated
 further during subsequent rounds. */
 for(iangle = 1; iangle <= nread; iangle++) {
 old_su[iangle] = sumu[iangle];
 old_sv[iangle] = sumv[iangle];
 old_su2[iangle] = sumu2[iangle];
 old_sv2[iangle] = sumv2[iangle];
 old_sum[iangle] = sumuv[iangle];
 }
}
if(fin_pr || int_pr) {
 if(diagnosis) printf("fin_pr = %d, int_pr = %d \n",
 fin_pr, int_pr);
 /* Sort entries in umean and urms arrays according to
 crank angle to account for angular offset
 between TDC and trigger. */
 */
for(iangle = 1; iangle <= nread - nlag; iangle++){
 sumu[iangle + nlag] = umean[iangle];
 sumv[iangle + nlag] = vmean[iangle];
 sumu2[iangle + nlag] = urms[iangle];
 sumv2[iangle + nlag] = vrms[iangle];
 sumuv[iangle + nlag] = upvp[iangle];
}

for(iangle = nread - nlag + 1;
 iangle <= nread; iangle++){
 sumu[iangle + nlag - nread] = umean[iangle];
 sumv[iangle + nlag - nread] = vmean[iangle];
 sumu2[iangle + nlag - nread] = urms[iangle];
 sumv2[iangle + nlag - nread] = vrms[iangle];
 sumuv[iangle + nlag - nread] = upvp[iangle];
}

/* Store the results in a binary string */
if(diagnosis) printf("will open storefile\n");
storefile = fopen(filename, "r+");
if(diagnosis) printf("opened storefile\n");
if(storefile == NULL) printf("fopen failed\n");
/* Move to end of file. */
if(fseek(storefile, 0L, 2))
 printf("fseek failed\n");
if(fwrite(&distance.sizeof(double), 1, storefile) != 1)
 printf("fwrite failed\n");
if(fwrite(&accuracy.sizeof(double), 1, storefile) != 1)
 printf("fwrite failed\n");
if(fwrite(&lastc.sizeof(int), 1, storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("lastc = %d\n", lastc);
if(fwrite(&amxerr.sizeof(double), 1, storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("amxerr = %f\n", amxerr);
if(fwrite(&auerr.sizeof(int), 1, storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("auerr = %d\n", auerr);
if(fwrite(&maxerr.sizeof(double), 1, storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("maxerr = %f\n", maxerr);
if(fwrite(&maxuerr.sizeof(double), 1, storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("maxuerr = %f\n", maxuerr);
if(fwrite(&urms.sizeof(double), 1, storefile) != 1)
 printf("fwrite failed\n");
if(diagnosis) printf("urms = %f\n", urms);
if(fwrite(&sumu.sizeof(double), nread, storefile) != nread)
 printf("fwrite failed\n");
if(diagnosis) {
 for(count3 = 1; count3 <= 180; count3++)
 printf("u%3d = %f\n", count3, sumu[count3]);
}
if(fwrite(&sumu2.sizeof(double), nread, storefile) != nread)
 printf("fwrite for sumu2 failed\n");
if(fwrite(&sumv.sizeof(double), nread, storefile) != nread)
 printf("fwrite for sumv failed\n");
if(fwrite(&sumv2.sizeof(double), nread, storefile) != nread)
 printf("fwrite for sumv2 failed\n");
if(fwrite(&sumuv.sizeof(double), nread, storefile) != nread)
 printf("fwrite for sumuv failed\n");
if(! old_file) {
 if(fwrite(&t_dry.sizeof(double), 1, storefile) != 1) printf("fwrite for t_dry failed\n");
 if(fwrite(&t_wet.sizeof(double), 1, storefile) != 1) printf("fwrite for t_wet failed\n");
 if(fwrite(&p_atm.sizeof(double), 1, storefile) != 1) printf("fwrite for p_atm failed\n");
}
if(!1) printf("fwrite for p_atm failed\n");
 if(fwrite(dummy,sizeof(char),NDUMMY/storefile) == NDUMMY) printf("fwrite for NDUMMY failed\n");
 if(diagnosis) printf("Comment: %s\n", dummy);
}
 if(diagnosis) printf("will close storefile\n");
 if(fclose(storefile) == EOF) printf("fclose failed\n");
 printf("Data were stored in file.\n");
} if(fin_prt) {
 /* Reset the sums used for averaging to zero for the
 next calculation of ensemble averages. */
 for(iangle = 1; iangle <= nread; iangle++){
 sumu[iangle] = 0.0;
 sumv[iangle] = 0.0;
 sumu2[iangle] = 0.0;
 sumv2[iangle] = 0.0;
 sumuv[iangle] = 0.0;
 } iout = 1;
 /* Reset fin_prt to zero. */
 fin_prt = 0;
} if(int_prt) {
 /* Reset the sums used for averaging to zero for the
 ongoing calculation of ensemble averages. */
 for(iangle = 1; iangle <= nread; iangle++){
 sumu[iangle] = old_su[iangle];
 sumv[iangle] = old_sv[iangle];
 sumu2[iangle] = old_su2[iangle];
 sumv2[iangle] = old_sv2[iangle];
 sumuv[iangle] = old_suv[iangle];
 } /* Reset int_prt to zero. */
 int_prt = 0;
}
the_end: printf("No further data will be acquired.\n"); /* Acquirex program end */
/* ************************************ */

151
AIR_STATEX

air_statex() {
/* Function to enter, or read from existing file, the ambient air
conditions and to enter mean static air pressure in a file.
Function adapted from air_state.c for cross-wires 3/80 */

#include <stdio.h>
#include <string.h>
#define STRLNG 30
#define NDUMMY 50

FILE *storefile;
extern int diagnosis, oldfile;
extern int nread; /* number of readings per cycle */
extern char filename[];
extern double t_dry, t_wet, p_atm; /* air conditions during run,
stored in Kelvin and Pascal internally. */

int inerr, /* error in input data */
 i /* auxiliary counter */;

long offset;
long sizeofheader, sizeofset;
double gas_const = 8315.0, /* universal gas constant in kg/kmol/K */
 air_mwt = 28.96, /* molecular weight in kg/kmol for air
with mole fractions of:
 N2 = 0.7809
 O2 = 0.2095
 Ar = 0.0096 */

density /* air density in kg/m^3 */;

char resp[STRLNG];

/* Open storefile. */
storefile = fopen(filename, "r");

/* Enter ambient air conditions. */
if(diagnosis) printf("oldfile = %d\n", oldfile);
if(oldfile) {
 printf("Current ambient air conditions:\n");
 resp[0] = 'n';
} else {
 printf("\nEnter ambient air conditions.\n");
 resp[0] = 'y';
 oldfile = 1;
}

switch(resp[0]) {
 case 'n': case 'N': {
 /* Determine the size of the header. */
 sizeofheader = (long)((10+NDUMMY)*sizeof(char)
 + 6*sizeof(double)
 + 2*sizeof(int));
 if(diagnosis) printf("sizeofheader = %ld\n", sizeofheader);
 /* Determine the size of a data set. */
 sizeofset = (long)(7*sizeof(double) + 3*sizeof(int)
 + 2 * nread * sizeof(double)
 + NDUMMY * sizeof(char));
 /* Addition to size of a data set for cross wire */
 sizeofset += (long)(3 * nread * sizeof(double));
 if(diagnosis) printf("sizeofset = %ld\n", sizeofset);
 /* Determine offset of latest air data from end of file. */
 fseek(storefile, 0L, 2); /* Move to end of file. */
 }
}
if(diagnosis) printf("fseek 0 end ok\n");

/* Check whether there is an entry for the state of the air. Read the air data. */
offset = ftell(storefile);
if(diagnosis) printf("offset = %ld\n", offset);
if(offset >= sizeof(header + sizeofset) {
 if(diagnosis) printf("ftell >\n");
 offset = (long)(- 3 * sizeof(double)
 - NDUMMY = sizeof(char));
 fseek(storefile,offset,2);
 offset = ftell(storefile);
 if(diagnosis) {
 printf("offset = %ld\n", offset);
 printf("errors before reading: ");
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 if(fread(&t_dry,sizeof(double),1,storefile) != 1) {
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 else {
 if(diagnosis) printf("fread of t_dry succ.\n");
 if(fread(&t_wet,sizeof(double),1,storefile) != 1) {
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 else {
 if(diagnosis) printf("fread of t_wet succ.\n");
 if(fread(&p_atm,sizeof(double),1,storefile) != 1) {
 if(feof(storefile)) printf("EOF\n");
 if(ferror(storefile)) printf("error\n");
 }
 else {
 printf("dry-bulb temperature = %lf degr.C\n",
 t_dry = 273.15);
 printf("wet-bulb temperature = %lf degr.C\n",
 t_wet = 273.15);
 printf("atmospheric pressure = %lf bar\n",
 p_atm = 1.e+05);
 printf("Entry correct? (y/n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 break;
 }
 }
 }
}
 printf("There is no old entry of ambient air data.\n");
}
}
case 'y': case 'Y':{
 /* Enter ambient air conditions. */
 for(inerr = 1; inerr;) {
 printf("Enter dry-bulb temperature (degr.C)\n");
 printf("Enter wet-bulb temperature (degr.C)\n");
 printf("Enter atmospheric pressure (bar)\n");
 scanf("%lf%lf%lf", &t_dry, &t_wet, &p_atm);
 printf("dry-bulb temperature = %lf degr.C\n",
 t_dry);
 printf("wet-bulb temperature = %lf degr.C\n",
 t_wet);
 printf("atmospheric pressure = %lf bar\n",
 p_atm);
 t_dry += 273.15;
 t_wet += 273.15;
 p_atm += 1.e+05;
 printf("Entry correct? (y/n)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' && resp[0] == 'Y')
 break;
 }
 break;
}

153
inerr = 0;
else if(resp[0] == 'n' || resp[0] == 'N')
inerr = 1;
else {
 printf("Enter numbers and \n");
 printf("respond with y, Y for 'yes' ");
 printf("or with n, N for 'no' next time. \\
\n");
}
}

break;
}
fclose(storefile);
}
PROCESSX

/* "processx.c" processes two channel xwire measurement files.
G. Friedman, 8/80 */
/* Program is adapted from "process.c" written by J. Seume for single
- wire data processing */

#include <stdio.h>
#include <math.h>
#include <string.h>

#define MRADE 40
#define MREAD 181
#define IDLENGTH 10
#define NDOFFX 50
#define PI (4. * atan(1.0))
#define NU 16.e-06

char usage[] = "Usage: processw [-f runid or -t position or -p time or\n-v or -a or -d or -w or -r or -R]n"

main(argc, argv)
int argc;
char *argv[];
{
FILE *storefile;
FILE *tracefile;
FILE *profilev;
FILE *avefile;
FILE *idealfile;

int write_all; /* Write to files the data for all active traces and
for profiles in increments of 30 degs of crank angle. */
int diagnosis = 1; /* Print error diagnostics. */
int fast = 1; /* Enter file i.d. from the command line.
skip echo print of run parameters. */
int radial = 1; /* Process the radial velocity component v */
int trace = 1; /* Generate data for a plot of the ensemble-averaged
mean-velocity fluctuation transient
at one radial location. */
int profile = 1; /* Generate data for a plot of a mean-vel. profile */
int average = 1; /* Generate data for a plot of the cross-sectional
mean mean-velocity transient (real and ideal). */
int rms = 1; /* Process rms-velocity fluctuations instead of
ensemble-averaged velocities. */
int Rss = 1; /* Process Reynolds' shear stress values */
int position; /* Number of the radial position at which a trace shall
be plotted. */
int itime; /* Number of the current crank angle. */
int not_done = 1; /* Program is not ready to be terminated. */
int old_file = 0; /* file format old or new ? */
int inerr, flag, iangle, nrad, nsort, i, j, irad;
int nread; /* number of readings per cycle */
int ncycle; /* maximum number of cycles to be acquired */
int nangle = 12; /* number of angles at which profiles are to be plotted
when write_all = 1 */

int lastcr, iuerr, irmserr;
long p, prtr[MREAD], offset;
long sizeofheader, sizeofset;
double angle; /* crank angle */
double time; /* Integer crank angle at which a mean-velocity profil
shall be plotted. */
double mstroke, mmore, mdiam, mlength, maxial, freq;
double radl;
double Rmax, Vs, Ar, loverd, xoverl, xoverd, uavemx;
double accuracy, maxuerr, mxrmserr;
static double distance, umean[MREAD], urms[MREAD], uave[MREAD];
static double vmean[MREAD], vrms[MREAD], vave[MREAD], upvp[MREAD];
static double dist[MREAD], value, umprf[MREAD], ucl;
double uprt; /* auxiliary variable to print umean, urms */
double d, sortdist[MREAD];
double umint, aint;
double rim, ri; /* auxiliary radii */
double fnull = 0.0;
double pi; /* pi = 3.1415... */
double air_viscosity(), air_cond(), air_cp(),
 air_density(), dry_air_density(), psat_water();
double T_dry, T_wet, p_atm;
double rho, rhod, hum_ratio, air_cont, rh, mu, nu, cond, cp, alpha, Pr;

char runid[10], resp[20], resp2[20], filename[30], title[NDUMMY], dummy[NDUMMY]
char tfname[10], tfnumber[5], pfname[10], pfname[5];
char year[3], month[3];

/* Calculate pi */
pi = PI;
printf("nread = %d\n", nread);

/* Determine the sizes of header and data sets. */
sizeofheader = (long)(10*sizeof(char) + 6*sizeof(double))
 + sizeof(int); /* size of the run information */
sizeofsset = (long)(4*sizeof(double) + 3*sizeof(int)
 + 2*nread * sizeof(double)); /* size of one data set */

/* Add to "sizeofsset" the size of the 3 new arrays used in
the cross-wire measurements */
sizeofsset += (long)(3*nread * sizeof(double));

/* Set defaults for command line parameters. */
fast = 0;
radial = 0;
trace = 0;
profile = 0;
average = 0;
diagnosis = 0;
write_all = 0;
rms = 0;
Rs = 0;

/* Read the command line for control parameters. */
while(**argv == '-'){
 --argc;
 switch(**argv)
 {
 case 'f':
 fast = 1;
 strcpy(runid,**argv);
 --argc;
 break;
 case 't':
 trace = 1;
 position = atof(**argv);
 --argc;
 break;
 case 'r':
 radial = 1;
 --argc;
 break;
 case 'p':
 profile = 1;
 time = atof(**argv);
 --argc;
 break;
 case 'a':
 average = 1;
 --argc;
 break;
 case 'd':
 diagnosis = 1;
 --argc;
 break;
 case 'w':
 write_all = 1;
 --argc;
}
break;

 case 'r':
 rms = 1;
 --argc;
 break;

 case 'R':
 Res = 1;
 --argc;
 break;
}

if(diagnosis)printf("trace position = %d\n",position);
for(not_done = 1; not_done;)
 if(! fast){
 /* Read run identification and check whether the corresponding
 file already exists. */
 for(ierr = 1; ierr;){
 printf("\n\nEnter run identification: \n\n");
 printf("(Use the format mmddyy where: \n\n");
 printf(" mm = month, dd = day, yy = year,\n\n");
 printf(" and as = a sequence number of the day's);
 printf(" runs)\n\n");
 printf("Enter c to continue using the same ");
 printf("run.\n");
 printf("Enter s to stop the program\n");
 scanf("%s", runid);
 if(runid[0] == 'c') goto the_end;
 if(runid[0] == 's') goto the_end;
 printf("%s\n", runid[0], runid[1]);
 printf("%s %s\n", runid[2], runid[3]);
 printf("%s %s\n", runid[4], runid[5]);
 printf("%s %s\n", runid[6], runid[7]);
 strcpy(filename,="/usr/geofo/shwdata/");
 strcpy(&filename[19], runid);
 printf("%s\n", filename);
 fclose(storefile);
 storefile = fopen(filename, "r+");
 if(storefile == NULL)
 printf("This file does not exist.\n");
 else
 printf("This file exists.\n");
 printf("Entry correct? (y or n or stop)\n");
 scanf("%s", resp);
 if(resp[0] == 'y' || resp[0] == 'Y')
 {ierr = 0;}
 else if(resp[0] == 'n' || resp[0] == 'N')
 continue;
 else if(resp[0] == 's' || resp[0] == 'S')
 {goto the_end;}
 else
 {printf("Respond with y, Y for 'yes'; ");
 printf("or with n, N for 'no';\n");
 printf("or with s, S for 'stop' next time.\n");
 }

 printf("If you want to process instantaneous\n");
 printf("or ensemble-averaged data or times,\n");
 printf("=> enter 'm',\n");
 printf("If you want to process differences \n");
 printf("or rms-fluctuations or angular velocity,\n");
 printf("=> enter 'r',\n");
 printf("If you want to process Reynolds'\n");
 printf("shear stress,\n");
 printf("=> enter 'R',\n");
 scanf("%s", resp);
 if(resp[0] == 'm' || resp[0] == 'r')
 {printf("Enter a 'v' for radial velocity or any other ");
 printf("character for the axial velocity,\n");
 scanf("%s", resp2);
 if(resp2[0] == 'v') radial = 1;
 }
 if(resp[0] == 'm') rms = 0;
 else if(resp[0] == 'r') rms = 1;
else if (resp[0] == 'R') Rss = 1;
else{
 printf("Mean velocity will be processed.\n");
 Rss = 0;
 rms = 0;
}
}

/* Take run i.d. from command line. */
strcpy(filename,"/usr/geoff/shwdata/"");
strcpy(&filename[19],runid);
storefile = fopen(filename, "r+");
if(storefile == NULL){
 printf("This file does not exist.\n");
 goto the_end;
}

/* Read parameters from data file. */
storefile = fopen(filename, "r+");
fread(runid,sizeof(char),10,storefile);
fread(&stroke,sizeof(double),1,storefile);
fread(&bone,sizeof(double),1,storefile);
fread(&diem,sizeof(double),1,storefile);
fread(&length,sizeof(double),1,storefile);
fread(&frequ,sizeof(double),1,storefile);
fread(&nread,sizeof(int),1,storefile);
/* Check whether this is a file of the old format. */
strcpy(year,&runid[4],2);
strcpy(month,&runid[0],2);
if (atoi(year) == 68 & atoi(month) < 6)
 old_file = 1;
else
 old_file = 0;
if (diagnosis) printf("old_file = %d\n", old_file);
if (old_file){
 fread(&cycle,sizeof(int),1,storefile);
 fread(title,sizeof(char),NDUMMY,storefile);
}
fseek(storefile,0L,0); /* rewind */
/* Determine the sizes of header and data sets. */
sizeofheader = (long)(10*sizeof(char) + 6*sizeof(double))
 + sizeof(int); /* size of the run information */
sizeofset = (long)(4*sizeof(double) + 3*sizeof(int)
 + 2 * nread * sizeof(double)); /* size of one
data set */
if (old_file){
 sizeofheader += (long)(sizeof(int) + NDUMMY * sizeof(char));
 sizeofset += (long)(3 * sizeof(double) + NDUMMY * sizeof(char));
}
/* Add to "sizeofset" the size of the 3 new arrays used in
the cross-wire measurements */
sizeofset += (long)(3 * nread * sizeof(double));
/* Print title. */
printf("\nTitle:\n");
printf("%s\n", title);

if (fast){
/* Print data summaries in English and SI units
and dimensionless form. */
/* Echo print input data in English units. */
printf("\nInput data summary in English units:\n");
printf(" stroke = \%6.1f in\n", mstroke/0.0254);
printf(" bore = \%6.1f in\n", mbore/0.0254);
printf(" test section diameter = \%6.1f in\n", mdiam/0.0254);
printf(" test section length = \%6.1f in\n", mlength/0.0254);
printf(" axial location = \%6.1f in\n", maxloc/0.0254);

printf("\nInput data summary in SI units:\n");
printf(" stroke = \%6.1f mm\n", mstroke/25.4);
printf(" bore = \%6.1f mm\n", mbore/25.4);
printf(" test section diameter = \%6.1f mm\n", mdiam/25.4);
printf(" test section length = \%6.1f mm\n", mlength/25.4);
printf(" axial location = \%6.1f mm\n", maxloc/25.4);

printf("\nInput data summary in dimensionless form:\n");
printf(" stroke = \%6.1f\n", stroke);
printf(" bore = \%6.1f\n", bore);
printf(" test section diameter = \%6.1f\n", testsectiondiameter);
printf(" test section length = \%6.1f\n", testsectionlength);
printf(" axial location = \%6.1f\n", axiallocation);

printf("\nInput data summary in dimensionless form using SI units:\n");
printf(" stroke = \%6.1f\n", stroke/25.4);
printf(" bore = \%6.1f\n", bore/25.4);
printf(" test section diameter = \%6.1f\n", testsectiondiameter/25.4);
printf(" test section length = \%6.1f\n", testsectionlength/25.4);
printf(" axial location = \%6.1f\n", axiallocation/25.4);

printf("\nInput data summary in dimensionless form using English units:\n");
printf(" stroke = \%6.1f\n", stroke/25.4);
printf(" bore = \%6.1f\n", bore/25.4);
printf(" test section diameter = \%6.1f\n", testsectiondiameter/25.4);
printf(" test section length = \%6.1f\n", testsectionlength/25.4);
printf(" axial location = \%6.1f\n", axiallocation/25.4);
}

158
printf(" drive shaft freq = %6.1f rpm/n", freq=240.);
printf(" %d readings taken per cycle/n", nread);
if (! old_file) {
 printf(" Maximum number of cycles ");
 printf(" to be acquired = %d/n", mcycle);
 printf(" Comment: %s\n", dummy);
}
printf("Type a character followed by <CR> to continue./n");
if (scanf(%s", resp));

/* Echo print input data in SI units. */
printf(" n Input data summary in SI units:/n");
printf(" stroke = %6.1f mm/n", mstroke=1000);
printf(" bore = %6.1f mm/n", mbore=1000);
printf(" test section diameter = %6.1f mm/n", mdiam=1000);
printf(" test section length = %6.1f mm/n", mlengh=1000);
printf(" axial location = %6.1f mm/n", maxial=1000);
printf(" frequency = %6.3f Hz/n", freq);
printf(" %d readings taken per cycle/n", nread);

/* Estimate of the amplitude of the bulk-mean velocity */
unammax = PI * freq * mstroke * (mbore*mbore) / (mdiam*mdiam);
printf("Estimate of the amplitude of the bulk-mean velocity ");
printf("=%6.2f m/sec/n", unammax);

/* Calculate and print similarity parameters. */
printf(" Nominal similarity parameters:/n");
printf(" Remax = %10.2e/n", Remax = PI*mbore*mbore*freq*mstrok / mdiam / NU);
printf(" Va = %6.1f/n", Va = 0.5*PI*freq*mdiam/mdiam / NU);
printf(" Ar = %6.2f/n", Ar = mbore*mbore/(mdiam*mdiam)*mstrok/mlengh);
printf(" l/d = %6.1f/n", lverd = mlengh / mdiam);
printf(" x/l = %6.3f/n", xoverd = maxial / mlengh);
printf(" x/d = %6.1f/n", xoverd = maxial / mdiam);

/* Reset control parameters. */
trace = 0;
profile = 0;
average = 0;

/* Enter type of output desired. */
for (inerr = 1; inerr;){
 printf(" Enter t for trace/n");
 printf(" Enter p for profile/n");
 printf(" Enter a for average/n");
 scanf(%s", resp);
 switch(resp[0])
 {
 case 't':
 trace = 1;
 printf("Trace will be plotted./n");
 break;
 case 'p':
 profile = 1;
 printf("Profile will be plotted./n");
 break;
 case 'a':
 average = 1;
 printf("Transient of bulk-mean ");
 printf("quantity will be plotted./n");
 break;
 default:
 printf("Enter correct code letter./n");
 break;
 }
 printf(" Entry correct? (y or n)/n");
}
```c
scanf("%s", resp);
if(resp[0] == 'y' || resp[0] == 'Y')
inerr = 0;
else if(resp[0] == 'n' || resp[0] == 'N') {
  /* Reset control parameters. */
  trace = 0;
  profile = 0;
  average = 0;
}
else {
  printf(" Please respond with y, Y for 'yes' : ");
  printf(" or with n, N for 'no' next time. \n");
  /* Reset control parameters. */
  trace = 0;
  profile = 0;
  average = 0;
}

/* Scan the file for wall distance entries. */
fseek(storefile, sizeof(header), 0); /* Rewind and move to
beginning of first data set. */
flag = 1;
nrad = 0;
i = 1;
while(flag != 0) {
  flag = fread(&dist[i], sizeof(double), 1, storefile);
  if(flag)
    nrad = nrad + 1;
    if(diagnosis) printf(" # of radial data sets = %d \n", nrad);
    rptr[i] = ftell(storefile)
    - (long) sizeof(double);
    fseek(storefile, sizeofset
    - (long) sizeof(double), 1);
  else
    if(diagnosis) printf(" # of radial data sets = 0 \n");
    i = i + 1;
  }
  if(diagnosis) printf(" # of radial data sets = %d \n", nrad);
  
  if(! fast) {
    /* Echo list of radial data sets. */
    printf(" There are %d radial data sets: \n", nrad);
    printf(" Number \tdistance \t\radius /\n");
    printf(" \t\mm \t\t\inches \t\tube ");
    printf(" \n");
    for(i = 1; i <= nrad; i++) {
      printf(" # \%f \%f \ %f \n", i, dist[i]*1000., dist[i]/0.0254,
      1. - 2.*dist[i]/mdiam);
    }
  /* To remove data sets, substitute distance from the
wall by its negative value. */
  printf(" Do you want to (de)activate any data set? ");
  printf(" \n");
  scanf("%s", resp);
  if(resp[0] == 'y' || resp[0] == 'Y') {
    printf(" Enter numbers of sets to be \n");
    printf(" (de)activated. (Enter 's' to \n");
    printf(" terminate.) \n");
    while(scanf("%s", resp)) {
      if(resp[0] == 's') break;
      i = atoi(resp);
      dist[i] = - dist[i];
      fseek(storefile,
      sizeofset*(long)(i-1) +
      sizeof(header), 0);
      fwrite(&dist[i], sizeof(double), 1, storefile);
    }
  }
```
if (trace){
 if (!fast){
 /* Choose a radial location at which the traces are to
 * be plotted. */
 printf("Enter number of the trace to be plotted. \n”);
 while (scanf("%d", &position) == 0){
 getchar();
 printf("Enter the integer number ");
 printf("of the trace: \n”);
 }
 }
 /* Move to the dat set of this radial location. */
 fseek(storefile, (long)(position-1)*sizeofset
 + sizeofheader, 0); /* Move to
 beginning of desired data set. */
 if (diagnosis) printf("sizeofset = %.d\n", sizeofset);
 if (diagnosis) printf("sizeofheader = %.d\n", sizeofheader);
 /* Read in the desired data set. */
 fread(&distance,sizeof(double),1,storefile);
 fread(&accuracy,sizeof(double),1,storefile);
 fread(&lastcy,sizeof(int),1,storefile);
 fread(&maxuerr,sizeof(double),1,storefile);
 fread(&diuerr,sizeof(int),1,storefile);
 fread(&rmrserr,sizeof(double),1,storefile);
 fread(&trserr,sizeof(int),1,storefile);
 fread(&umean[1],sizeof(double),mread,storefile);
 fread(&urms[1],sizeof(double),mread,storefile);
 fread(&vmean[1],sizeof(double),nread,storefile);
 fread(&vsum[1],sizeof(double),nread,storefile);
 fread(&upvp[1],sizeof(double),nread,storefile);
 if (!old_file)
 fread(&T_dry,sizeof(double),1,storefile);
 fread(&T_wet,sizeof(double),1,storefile);
 fread(&p_atm,sizeof(double),1,storefile);
 /* Read and print comment. */
 fread(dummy,sizeof(char),NDUMMY,storefile);
 printf("Comment: %s\n", dummy);
}
 /* Print out air state for this trace. */
 if (!old_file)
 printf("dry-bulb temperature = %f, C\n",
 T_dry - 273.15);
 printf("wet-bulb temperature = %f, C\n",
 T_wet - 273.15);
 printf("atmospheric pressure = %f bar\n",
 p_atm = 1.e-5);
}
 /* Print out air properties for this trace. */
 if (old_file & (!fast))
 for (im = 1; imerr;)
 printf("Do you want to list property values? ");
 scanf("(y or n)\n”, &resp);
 scanf("%s", resp);
 if (resp[0] == 'y' & resp[0] == 'Y') {
 printf("Enter humidity ratio, air content ");
 printf("(kg/m^3) \n”);
 printf("from psychrometric chart ");
 printf("at 1 atmosphere. \n”);
 scanf("%lf\n", &hum_ratio, &air_cont);
 rhod = dry_air_density(T_dry, p_atm);
 rho = (p_atm / 1.013e+05) * air_cont
 * (1. + hum_ratio);
 printf("Air density (dry, humid) = %.3g, %.3g\n",
 rhod, rho);
printf("Air density decrease ");
printf("due to humidity = \%lg\n",
(1. - rho / rhod) * 100.);
printf("Relative humidity = \%lg\n",
rh = 100. * hum_ratio
* (p_atm - psat_water(T_dry))
/ 0.622 / psat_water(T_dry));
printf("Air dynamic viscosity = \%lg\n",
mu = air viscosity(T_dry));
printf("Air kinematic viscosity = \%lg\n",
u = mu / rho);
printf("Air thermal conductivity = \%lg\n",
cond = air_cond(T_dry));
printf("Air specific heat at constant ");
printf("pressure = \%lg\n", cp = air cp(T_dry));
printf("Air thermal diffusivity = \%lg\n",
alpha = cond / rho / cp);
printf("Air Prandtl number = \%lg\n",
Pr = nu / alpha);
printf("Entry correct? ");
printf("(y or n)\n");
scanf("%s", resp);
if(resp[0] == 'y' || resp[0] == 'Y') {
 inerr = 0;
}
else if(resp[0] == 'n' || resp[0] == 'N') {
 inerr = 0;
}
else {
 printf("Respond with y, Y for 'yes'; ");
 printf("or with n, N for 'no';\n");
 printf("or with s, S for 'stop' next time.\n");
}

*/ Print data in column format to be plotted. */
tracefile = fopen("trace", "w");
for(i = 1; i <= nread; i++){
 if(rms) { if(!radial)
 [uprt = urms[i];
 if(diagnosis)printf("processing urms\n");
]
 else
 [uprt = vrms[i];
 if(diagnosis)printf("processing vrms\n");
]
 else if(Rss)
 [uprt = upvp[i];
 if(diagnosis)printf("processing upvp\n");
]
 else {
 if(!radial)
 [uprt = umean[i];
 if(diagnosis)printf("processing umean\n");
]
 else
 [uprt = vmean[i];
 if(diagnosis)printf("processing vmean\n");
]
 }
 fprintf(tracefile, "%f\n",
 (double) i = 360. / (double) nread, uprt);
 fclose(tracefile);
}
if(write_all){
 for(i = 1; i <= nread; i++){
/* Read and process non-deactivated traces. */
if(dist[i] > 0.0){

 /* Move to the data set of this radial location. */
 fseek(storefile, (long)(i - 1)*sizeofset + sizeofheader, 0); /* Move to
 beginning of desired data set. */

 /* Read in the desired data set. */
 fread(&distance, sizeof(double), 1, storefile);
 fread(&accuracy, sizeof(double), 1, storefile);
 fread(&lastcy, sizeof(int), 1, storefile);
 fread(&maxuerr, sizeof(double), 1, storefile);
 fread(&guerr, sizeof(int), 1, storefile);
 fread(&nxrmserr, sizeof(double), 1, storefile);
 fread(&irmserr, sizeof(int), 1, storefile);
 fread(&umean[1], sizeof(double), nread, storefile);
 fread(&u rms[1], sizeof(double), nread, storefile);
 fread(&vmean[1], sizeof(double), nread, storefile);
 fread(&v rms[1], sizeof(double), nread, storefile);
 fread(&upvp[1], sizeof(double), nread, storefile);

 /* Print data in column format to be plotted. */
 strcpy(tfname, "trace");
 sprintf(tfnumber, "kd", i);
 strcat(tfname, tfnumber);
 tracefile = fopen(tfname, "w");
 for(iangle = 1; iangle <= nread; iangle++){
 if(rms) {
 if(!radial) uprt = urms[iangle];
 else
 uprt = v rms[iangle];
 } else if(Rss)
 uprt = upvp[iangle];
 else {
 if(!radial) uprt = u mean[iangle];
 else
 uprt = v mean[iangle];
 }
 fprintf(tracefile, "%f %f
",
 (double) iangle * 360. / (double) nread,
 uprt);
}
fclose(tracefile);
}

if(profile || average || write_all){
 /* Sort traces with increasing wall distance. */
 /* Write wall distances and data-set pointers into
 new arrays, omitting deactivated data sets. */
 for(i = 1, j = 1; i <= nread; i++){
 if(dist[i] > 0.0){
 sortdist[j] = dist[i];
 rptr[j] = rptr[i];
 j = j + 1;
 }
 }
 nsort = j - 1;

 /* Rearrange the arrays. */
 /* (See section 6.1 of W. H. Press et al.: Numerical
 Recipes, Cambridge (UK) University Press 1986.) */
 for(j = 2; j <= nsort; j++){
 d = sortdist[j];
 p = rptr[j];
 for(i = j - 1; i >= 1; i--){
 if(sortdist[i] > d){
 sortdist[i+1] = sortdist[i];
 rptr[i+1] = rptr[i];
 }
 }
 }

 /* Output data file */
 flag = 0;
 for(i = 0; i < nread; i++){
 if(flag){
 fprintf(tracefile, "%f %f
",
 (double) iangle * 360. / (double) nread,
 uprt);
 flag = 0;
 } else {
 fprintf(tracefile, "%f %f
",
 (double) iangle * 360. / (double) nread,
 uprt);
 flag = 1;
 }
 }
}
}

163
else goto sortmark;
}

i = 0;
sortdist[i+1] = d;
ptr[i+1] = p;
}

if(diagnosis){
 printf("Sorting results: \n");
 printf("# \distance \t\sortdist \n");
 for(i = 0; i < nrad; i++)
 printf("%d \t%f \t%f \n", i, dist[i],
 sortdist[i]);
}

if(profile){
 if(! fast){
 /* Choose phase angle at which the profile is to
 * be plotted. */
 printf("Enter the phase angle. \n");
 while(scanf("%lf", &time) == 0){
 getchar();
 printf(" Enter the integer ");
 printf("phase angle: \n");
 }
 }
 /* Calculate the offset from the beginning of the data
 * set to the entry corresponding to the time of
 * interest in the storage file. */
 /* If it is for u */
 if(!radial && !Rss) offset =
 (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 + sizeof(double));
 /* If it is for v */
 else if(radial) offset =
 (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 + sizeof(double));
 /* If it is for upvp */
 else if(Rss) offset =
 (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(4 * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 + sizeof(double));

 if(diagnosis){
 printf("offset of entry = \%ld", offset);
 printf("nread = \%d", nread);
 printf("time = \%f", time);
 printf("rms = \%d", rms);
 printf("Rss = \%d", Rss);
 printf("radial = \%d", radial);
 }
 /* Read entries from data storage file and write to
 * plot file. */
 profilename = fopen("profile", "w");
 fprintf(profilename, "%f \n", 0.0, umax[0] = 0.0);
 for(i = 1; i < nsort; i++){
 /* Move to the entries corresponding
 * to this phase angle. */
 fseek(storefile, (ptr[i] + offset), 0);
 /* Move to the desired entry. */
 fread(&umax[i], sizeof(double), 1, storefile);
 if(diagnosis){
 fseek(storefile, (ptr[i] + offset), 0);
 }
if(read(&d,sizeof(double),1,storefile);
printf("radius = %f\n", d);
}

/* Print data in column format to be plotted. */
fprintf(proffile, "%f %g\n",
sortdist[i]/mdiam,
umprf[i]);
}
fclose(proffile);
}

if(write_all){
 for(iangle = 1; iangle <= nangle; iangle++){

 /* Choose phase angle at which the profile is to be plotted (every 30 degrees). */
 time = (360. / (double)nangle) * (double)iangle;

 /* Calculate the offset from the beginning of the data set to the entry corresponding to the time of interest in the storage file. */
 /* If it is for u */
 if(!radial & & !Rs) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)((time = (double)nread / 360. - 1.)
 * sizeof(double));

 /* If it is for v */
 else if(radial)
 offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)((time = (double)nread / 360. - 1.)
 * sizeof(double));

 /* If it is for upv */
 else if(Rs)
 offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)((time = (double)nread / 360. - 1.)
 * sizeof(double));

 /* Read entries from data storage file and write to plot file. */
 strcpy(pfname,"profile");
 sprintf(pnumber,"%d", (int)time);
 strcat(pfname,pnumber);
 proffile = fopen(pfname,"w");
 fprintf(proffile,"%f %g\n", 0.0, umprf[0] = 0.0);
 for(i = 1; i <= nsort; i++){
 /* Move to the entries corresponding to this phase angle. */
 fseek(storefile,(rptr[i] + offset),0); /* Move to the desired entry. */
 if(diagnosis){
 fread(&d,sizeof(double),1,storefile);
 printf("radius = %f\n", d);
}

 /* Read in the desired entry. */
 fread(&umprf[i],sizeof(double),1,storefile);

 /* Print data in column format to be plotted. */
 fprintf(proffile, "%f %g\n",
sortdist[i]/mdiam,
umprf[i]);
}
fclose(proffile);
}
if

if (average)
 /* Open file for results of computation of the
cross-sectional average mean velocity. */
 avefile = fopen("avefile", "w");
 if (avefile == NULL) printf("avefile was not opened.");
 idealfile = fopen("idealfile", "w");
 if (idealfile == NULL) printf("idealfile was not opened.");
 /* Calculate cross-sectional area for averaging. */
 /* The integral excludes areas beyond the centerline. */
 aint = mdiam * mdiam / 6.;
 /* Vary time. */
 for (itime = 1; itime <= nread; itime++)
 if (diagnosis) printf("itime =%d
", itime);
 /* Calculate the offset from the beginning of the data
set to the entry corresponding to the time of
interest in the storage file. */
 /* If it is for u */
 if (:radial) offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 * sizeof(double));
 /* otherwise it is for v */
 else
 offset = (long)(3 * sizeof(int))
 + (long)(4 * sizeof(double))
 + (long)(2 * nread * sizeof(double))
 + (long)(rms * nread * sizeof(double))
 + (long)((time * (double)nread / 360. - 1.)
 * sizeof(double));
 /* Read the mean-velocity profile. */
 umprf[0] = 0.0; /* Set mean-velocity at the wall
to zero. */
 for (i = 1; i <= nsort; i++) sortdist[i] <= 0.5*mdiam; i++)
 /* Move to the entries corresponding
to this phase angle. */
 fseek(storefile, (ptr[i] + offset), 0);
 /* Read in the desired entry. */
 fread(&umprf[i], sizeof(double), 1, storefile);
 if (diagnosis) printf("velocity =%f
", umprf[i]);
}

/* Integrate profile at this time. */
/* (Read the Oscillating Flow Experiment Log
entry of 3/15/88 for details on the integration.) */
/* Set integral to zero. */
/* The integral excludes areas beyond the
center-line. */
/* for(i = 1; i <= nsort; i++)
 rilm = 0.5 * mdiam - sortdist[i-1];
 ri = 0.5 * mdiam - sortdist[i];
 if (ri == rilm) continue;
 */
else if (sortdist[i] <= 0.5 * mdiam) {
 /* Integration between the far
wall and the center-line. */
 umint = umint + ((umprf[i-1] - umprf[i]) / (rilm - ri))
 * (rilm*rilm*rilm/3. - ri*ri*ri)/2. + ri*ri*ri/6.)
 + umprf[i]
 * 0.5 * (ri*ri*ri - rilm*rilm);
else if(rim1 > 0.0 && ri < 0.0) {
 /* Integration to the center-line. */
 /* ucl = interpolated centerline velocity */
 ucl = (umprf[i] - umprf[i-1]) /
 (sortdist[i] - sortdist[i-1])
 * (0.5*mdiam - sortdist[i-1])
 + umprf[i];
 umint = umint
 + ((umprf[i-1] - ucl) / rim1
 * (rim1*rim1/3.)
 + ucl * 0.5 * rim1*rim1);
 break;
}
else { /* Exclude integration from center-line to the near wall. */
 continue;
}

if(diagnosis){
 printf(" itime = %d, umint = %f\n",
 itime, umint);
}

/* Calculate and store the mean-velocity averaged over the cross-section. */
fprintf(avefile, "%f\t%f\n", (angle = 360. * (double)itime / (double)nread),
 umint/aim1);
if(diagnosis) printf("Writing to avefile complete.\n")
fprintf(idealfile, "%f\t%f\n",
 angle,
 pi = freq * mstroke =
 mbo Chief (mdiam + mdiam)
 * fabs(sin(pi*angle/180.)));
if(diagnosis) printf("Writing to files complete.\n");
}
fclose(avefile);
fclose(idealfile);
if(diagnosis) printf("Files closed. \n");

if(fast) not_done = 0;
}

/* Wake up the operator with a bell. */
for(i = 0; i < 10; i++) printf("%c", '\007');

the_end;
/* End of the processing program "processx.c" */
}
VEL_REDTURB

/* vel_redturb
Converting (u,y) data profiles for turbulent-like portions of the cycle
into (u+,y+) by iterating on the wall shear stress and y-offset.
Results are stored in "upyp"
The data is compared to curves which model the pressure-gradient effect.
Results are stored in "upypress"
G. Friedman, 10/90 */

main()
{
#include <stdio.h>
#include <string.h>
#include <math.h>

#define N 200
#define N2 10
#define YPMAX 49
#define TUBE_D 1.5
#define TUBE_R 0.75
#define N 28.96
#define R 8315
#define CONV 0.0254
#define STRLNG 30
#define STRLNG2 100
#define PI 3.14159265
#define LIMIT 15

FILE *profile,*datafile,*presfile;
int a,b,i,j,k,l,m,inerr;
double um[N],y[N],yorig[N],utau,uplus[N],yplus[N],ubm;
double yovd,u,yoffset,dudt,pplus,angle,tmp,lnum,splus,factor;
double t_dry,p_atm,rho,nu,mu;
double h,hover2,s,x,sf,denpy2();
char filename[],theta[4],resp[STRLNG],syst[STRLNG2];
char syst2[STRLNG2];

printf("This program converts (u,y) data profiles into (uplus,yplus)\n");
printf("by iterating on entered values of cf (tau wall) and yoffset\n");
printf("** Turbulent profiles **\n");
printf("Input the crank position of the profile to be converted\n");
scanf("%s",theta);
printf("theta = %s\n",theta);
printf("Input the crank position of the profile to be converted\n");
scanf("%f",angle);
printf("alpha = %f\n",angle);
strcpy(filename,"/usr/geoff/proc/prof");
strcpy(&filename[20],theta);
profile = fopen(filename,"r");
if(profile == NULL)
{
printf("This file does not exist.\n");
exit();
}

i = 1;
printf("Note that um is corrected by 1.0205 for the temperature error\n");
do{
 fscanf(profile,"%1f %1f", &yovd, &u);
 um[i] = u * 1.0205; /* u is in m/sec */
 yorig[i] = CONV * yovd * TUBE_D; /* convert y/d to meters */
 printf("i = %d y = %1f u = %1f\n",i,yorig[i],um[i]);
 i++;
}
while (yovd < 0.5);
fclose(profile);
printf("Enter t_dry (degr.C) and p_atm (bar): \n");
scanf("%lf %lf", &t_dry, &p_atm);
printf("t_dry = %lf deg.C p_atm = %lf bar\n", t_dry, p_atm);
t_dry += 273.15;
p_atm *= 1.e+05;
rho = p_atm * M / t_dry;
printf("rho = %f\n", rho);
mu = 9.3277e-08 * t_dry - 1.2248e-05; /* viscosity at 1 atm */
mu *= 1.01325e+05 / p_atm;
printf("\nmu = %e\n", mu);
mu = mu / rho;
printf("webpack = %e\n", mu);

/*
 **
*/
for(ierr = 1; ierr;){
printf("\nInput the necessary y offset (in inches): \n");
scanf("%lf", &yoffset);
printf("\noffset = %f\n", yoffset);
offset *= CONV;
for(k = 1; k <= i-1; k++){
 y[k] = yorig[k] - yoffset;
 /* printf("k = %d y = %.1f u = %.1f\n", k, y[k], um[k]); */
 if(y[k] < 0.0) y[k] = 0.0;
}

printf("Input utau\n");
scanf("%lf", &utau);
printf("\nutau = %lf\n", utau);

datafile = fopen("upyp","w");
for(j = 1; j <= i-1; j++){
 uplus[j] = um[j] / utau;
yplus[j] = y[j] * utau / nu;
 if(yplus[j] > 0.0)
 /*
 * printf("j = %d yplus[j] = %f uplus[j] = %f\n", j, yplus[j], uplus[j]); */
 fprintf(datafile,"%f %f\n", yplus[j], uplus[j]);
}
close(datafile);
/* uplus vs. yplus determination for effects of p-gradient */
presfile = fopen("upypress","w");
uplus[1] = 1.0;
b = 1;
printf(presfile,"%d %f\n", b, uplus[1]);
dudt = -8.725 * cos(angle * PI / 180.);
pplus = (nu * dudt) / pow(utau,3.);
if(angle <= 90.0)
 factor = 30.175;
else
 factor = 20.59;
aplus = 25.0 / ((factor * pplus) + 1.0);
if(aplus <= 0.0)
aplus = 1000;
printf("aplus = %f\n", aplus);

h = 0.1;
hover2 = 0.05;
/* loop to determine uplus vs. yplus */
for(m = 1; m <= YMAX;m++){
 a = m;
 b = a + 1;
 s = 0.0;
 half = dupdyp((double)(a) + hover2, aplus);
 for(l = 1; l <= (N2-1); l++){
 x = (double)a + (double)l*h;
 s = s + dupdyp(x, aplus);
 half = half + dupdyp(x + hover2, aplus);
 s = s + dupdyp(x, aplus);
 half = half + dupdyp(x + hover2, aplus);
 }


```c
int pr(a + it); s

ubm = _f

/pri

ubm = _f

ubm[a]; */

/* printf("yplus = %d uplus[kd] = %f\n",b,b,uplus[b]); */

fprintf(presfile,"%d %f\n",b,uplus[b]);

fclose(presfile);

printf("\nScreen plot of velocities desired? y or n\n");
scanf("%s",resp);
if(resp[0] == 'y' ){

strcpy(syst,"graph -s -g 1 -x 1 1 100 ");
strcpy(syst,"-y 0 35 5 < upyp : plot");
system(syst);
strcpy(syst2,"graph -s -g 1 -x 1 1 100 ");
strcpy(syst2,"-y 0 35 5 < upypress : plot");
system(syst2);
scanf("%s",resp);
}

system("erase");

}

printf("Paper plot of velocities desired? y or n\n");
scanf("%s",resp);
if(resp[0] == 'y' ){

strcpy(syst,"graph -s -g 1 -x 1 1 1000 ");
strcpy(syst,"-y 0 35 5 < upyp : plot-Thpib" );
system(syst);
strcpy(syst2,"graph -s -g 0 -x 1 1 1000 ");
}

system(syst);

printf(" aplus = %f\n",aplus);
printf("Input the bulk mean velocity\n");
scanf("%lf",&ubm);

printf(" ubm = %f\n",ubm);
printf(" utau = %f\n",utau);
printf(" cf = %f\n",pow((utau/ubm),2.) * 2.);

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s",resp);
if(resp[0] == 'n') inerr = 0;
}

/* ********************************************************* */

printf(" rho = %f\n",rho);
printf(" utau = %f\n",utau);
printf(" utau * utau = %f\n",utau * utau);
printf(" tau wall = %f\n",utau * utau * rho);
printf(" ubm = %f\n",ubm);
printf(" cf = %f\n",pow((utau/ubm),2.) * 2.);
printf(" aplus = %f\n",aplus);
printf(" yoffset = %lf\n",yoffset);

/* end */
```

170
DUPDYP

#include <math.h>

#define KAPPA 0.41
#define square(x) (x) * (x)

double dupdp(yplus,aplus)
double yplus,aplus;

/*
 This function determines duplus/dyplus for the given yplus */
{
 double slope, arg1, arg2, arg3;
 double damping:

 damping = 1.0 - 1.0/exp(yplus/aplus);

 /* Van Driest mixing length model with variable A+ */
 arg1 = square(KAPPA*yplus);
 arg2 = square(damping);
 arg3 = sqrt(1.0 + 4.0*arg1*arg2);
 slope = (-1.0 + arg3)/(2.0*arg1*arg2);

 return(slope);
}
VEL_REDLAM

/* vel_redlam
Converts (u,y) data profiles in the laminar-like portions of the cycle
into (u*,y*) coordinates by iterating on the wall shear stress and the
y-offset. Results are stored in "upyp"
Also generates a (u*,y*) curve based on a pressure-gradient influenced
model for the Couette flow region. Results are stored in "upypress"
G. Friedman, 10/80 */

main()
{
#include <stdio.h>
#include <string.h>
#include <math.h>

#define N 200
#define TUBE_D 1.5
#define TUBE_R 0.75
#define M 28.86
#define R 6315
#define CONV 0.0254
#define STRLNG 30
#define STRLNG2 100
#define H 5.14158265
#define LIMIT 16

FILE *profile, *datafile, *presfile;
int i, j, k, l, inerr;
double um[N], y[N], yorg[N], utau, uplus[N], yplus[N], uum;
double yovd, u, yoffset, duct, const, angle, tmp, inum;
double t_dry, p_atm, rho, nu, mu;
char filename[], theta[4], resp[STRLNG], syst[STRLNG2];
char syst2[STRLNG2];

printf("This program converts (u,y) data profiles into (uplus,yplus)\n");
printf("by iterating on entered values of tau wall and y-offset\n");
printf("# Laminar profiles \#\n");
printf("Input the crank position of the profile to be converted\n");
scanf("%s", theta);
printf("%s\n", theta);
printf("Input the crank angle of the profile to be converted\n");
scanf("%lf", &angle);
printf("angle = %f\n", angle);
strncpy(filename, "/usr/geooff/proc/prof\n");
strncpy(&filename[20], theta);
profile = fopen(filename, "r");
if(profile == NULL)
{
printf("This file does not exist.\n");
exit();
}

i = 1;
printf("u corrected by 1.0205\n");
do{
	fscanf(profile, "%lf %lf", &yovd, &u);
	um[i] = 1.0205 * u;
	/* u is in m/sec */
yorg[i] = CONV * yovd * TUBE_D;
	/* convert y/d to meters */
	printf("i = %d y = %lf u = %lf\n", i, yorg[i], um[i]);
	i++;
} while (yovd < 0.5);
/* Ignore pts. beyond ctrlme */
fclose(profile);

printf("\nEnter t_dry (deg.C) and p_atm (bar):\n");
scanf("%lf%lf", &t_dry, &p_atm);
printf("t_dry = %lf deg.C p_atm = %lf bar\n", t_dry, p_atm);
t_dry += 273.15;
p_atm *= 1.e+05;

172
\(\rho = \frac{p_{\text{atm}} \times M}{R \times t_{\text{dry}}} \)

\(\mu = 9.3277 \times 10^{-8} \times t_{\text{dry}} - 1.2248 \times 10^{-05} \)
(\text{viscosity at 1 atm})

\(\mu = \frac{1.0125 \times 10^{-05}}{p_{\text{atm}}} \)

\(\text{printf(}"\mu = %e\n", \mu); \)

\(\text{printf(}"\rho = %f\n", \rho); \)

\(\text{for} \ (j = 0; j < i-1; j++) \{
 \text{yplus}[j] = um[j] / utau;
 \text{yplus}[j] = y[j] * utau / nu;
 \text{printf(}"yplus = %lf uplus = %lf um = %lf\n", yplus[j], uplus[j], um[j]);
\}

\(\text{fclose(datafile)}; \)

\(\text{fclose(presfile)}; \)

\(\text{printf(}"\text{ndudt = %f\n", ndudt);} \)

\(\text{printf(}"\text{const = %f\n", const);} \)

\(\text{printf(}"\text{nScreen plot of velocities desired? \text{y or n}\n\n}; \)

\(\text{scanf(}"%s", resp); \)

\(\text{if} \ (\text{strcmp(resp, }"y") \ & \ 0) \{
 \text{strcpy(syst, }"\text{graph -s -g 1 -x 1 .1 100 }\");
 \text{system(syst); \}
\}

\(\text{printf(}"\text{Paper plot of velocities desired? \text{y or n}\n\n}; \)

\(\text{scanf(}"%s", resp); \)

\(\text{if} \ (\text{strcmp(resp, }"y") \ & \ 0) \{
 \text{strcpy(syst, }"\text{graph -s -g 1 -x 1 .1 100 }\");
 \text{system(syst); \}
\}

\(\text{173} \)
 system(syst);
strcpy(syst2, "graph -s -g 0 -x 1 1 1
strcat(syst2, "-y 0 35 5 < upypress
plot -Thpib\n
system(syst2);

printf("Input the bulk mean velocity\n");
scanf("%lf", &ubm);
printf("ubm = %f\n", ubm);
printf("utau = %f\n", utau);
printf("cf = %f", pow((utau/ubm), 2.)* 2.);

printf("\nContinue the iteration on yoffset and utau?\n");
scanf("%s", resp);
if(resp[0] == 'n') inerr = 0;

if (inerr)
 printf("rho = %f\n", rho);
 printf("utau = %f\n", utau);
 printf("utau = utau = %f\n", utau * utau);
 printf("utau = utau = %f\n", utau * utau);
 printf("utau = utau = %f\n", utau * utau);

 printf("cf = %f", pow((utau/ubm), 2.)* 2.);
Fluid Mechanics Experiments in Oscillatory Flow
Volume II—Tabulated Data

J. Seume, G. Friedman, and T.W. Simon

University of Minnesota
Dept. of Mechanical Engineering
Minneapolis, Minnesota 55455

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135–3191

Project Managers, Roy C. Tew and James E. Dudenhoefer, Power Technology Division, NASA Lewis Research Center, (216) 433–8471

UC-141 0704-0188

Unclassified - Unlimited
Subject Category 34

Results of a fluid mechanics measurement program in oscillating flow within a circular duct are presented. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, R_e, R_e^{\max}, and R_e^{\min}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA's Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radial components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and its reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).