
AUTOMATION OF CLOSED ENVIRONMENTS IN

SPACE FOR HUMAN COMFORT AND

SAFETY

REPORT

FOR

ACADEMIC YEAR 1990-91

BY

Kansas State University
College of Engineering

Departments of Mechanical Engineering, Architectural Engineering,
Electrical and Computer Engineering, and Chemical Engineering

College of Education
Faculty Advisor: Dr. Allen C. Cogley

Submitted to

NASA/USRA
ADVANCED DESIGN PROGRAM

(NASA-CR-190016) AUTOMATION OF CLOSED N92-21246
ENVIRONMENTS IN SPACE FOR HUMAN COMFORT AND
SAFETY Report, for Academic Year 1990-1991
(Kansas State Univ.) 156 p CSCL 06K Unclas

G3/54 0073943



AUTOMATION OF CLOSED ENVIRONMENTS IN

SPACE FOR HUMAN COMFORT AND

SAFETY

REPORT

FOR

ACADEMIC YEAR 1990-91

BY

Kansas State University
College of Engineering

Departments of Mechanical Engineering, Architectural Engineering,
Electrical and Computer Engineering, and Chemical Engineering

College of Education
Faculty Advisor: Dr. Allen C. Cogley

Submitted to

NASA/USRA
ADVANCED DESIGN PROGRAM



ABSTRACT

This report presents the results of the second year of a three year
design project on the automation of the Environmental Control and
Life Support System (ECLSS) of the Space Station Freedom (SSF). The
results are applicable to other space missions that require long
duration space habitats. The report begins with a description of
conceptual controls which are developed for the Water Recovery and
Management (WRM) subassembly. Mathematical modeling of the Air
Revitalization (AR) subassembly is presented next. The report
concludes the work done by the Kansas State University NASA/USRA
interdisciplinary student design team with a discussion of the
expert system which was developed for the AR subassembly.



TABLE OF CONTENTS
page

1.0 INTRODUCTION 1
1.1 Proj ect Description 2
1.2 Three Phase Design Plan 3
1.3 Design Team Description 4
1.4 Organization of the Document 5

2. 0 CONCEPTUAL CONTROLS 6
2.1 Introduction 7
2.2 Water Quality Monitor 8

2.2.1 Water Quality Monitoring Systems
Description 9

2.2.2 Water Quality Monitoring Controls 14
2.3 Urine Processor 20

2.3.1 Urine Processor Description 21
2.3.2 Urine Processor Controls 24

2.4 Hygiene Water Processor 30
2.4.1 Hygiene Water Processor Description 31
2.4.2 Hygiene Water Processor Controls 34

2.5 Potable Water Processor 40
2.5.1 Potable Water Processor Description 41
2.5.2 Potable Water Processor Controls 44

3 . 0 MATHEMATICAL MODELING 53
3.1 Introduction 54
3.2 C02 Removal Assembly Model 55
3.3 C02 Reduction Assembly Model 64
3.4 Oxygen Generation Assembly Model 74

4 . 0 EXPERT SYSTEM 88
4.1 Introduction 89
4.2 Atmosphere Revitalization Expert System (ARES)... 90

4.2.1 C02 Removal Assembly 93
4.2.2 CO2 Reduction Assembly 95
4.2.3 Oxygen Generation Assembly 98

4.3 Verification and Testing of Expert System 101
4.4 Conclusions 106

5. 0 APPENDICES 107
1. References 108
2A. CO2 Removal Assembly Program Ill
2B. CO2 Reduction Assembly Program 125
2C. Oxygen Generation Assembly Program 129
2D. Air Revitalization System Program 132
3A. CO2 Removal Assembly Knowledge Base 140
3B. C02 Reduction Assembly Knowledge Base 142
3C. Oxygen Generation Assembly Knowledge Base 143
3D. SAVANT. 3 Expert System Code 145

11



LIST OF FIGURES •
Figure page

2.2-1 Current PCWQM 10
2.2-2 Current WQM 12
2.2-3 Proposed PCWQM 15
2.2-4 Proposed WQM 18
2.3-1 Urine Processor Assembly Schematic 22
2.3-2 Current Urine Processor Assembly Control Schematic.. 25
2.3-3 Proposed Urine Processor Assembly Control Schematic. 27
2.4-1 Proposed Hygiene Processor Schematic 36
2.4-2 Legend of the Proposed Hygiene Water Processor 37
2.5-1 Multifiltration Potable Subsystem Schematic 42
2.5-2 Proposed Potable Water Processor Control Schematic.. 45
3.2-1 CO2 Removal Assembly 55
3.2-2 Temperature of Desiccant Bed 61
3.2-3 Concentration of CO2 Leaving Sorbent Bed 61
3.2-4 Mass CO2 in Accumulator 62
3.2-5 Temperature of Accumulator 63
3.2-6 Outlet Pressure of C02 Pump 63
3.3-1 C02 Reduction Assembly 64
3.3-2 Mass Balance of Sabatier Reactor 65
3.4-1 Oxygen Generation Assembly 74
3.4-2 Electrolysis Module 75
4.2-1 C02 Removal Assembly 93
4.2-2 C02 Reduction Assembly 95
4.2-3 Oxygen Generation Assembly 98

111



LIST OF TABLES

Table page

2.2-1 WQM Measured Parameters 12
2.3-1 Product Water Quality Requirements 23
3.3-1 Reactor Volumes for Various Man-loadings 72

IV



1.0 INTRODUCTION



1.1 PROJECT DESCRIPTION

The development of Environmental Control and Life Support Systems
(ECLSS) for the Space Station Freedom, future colonization of the
moon and Mars missions presents new challenges for present
technologies. ECLS Systems which operate during long duration
missions must be semi-autonomous to allow crew members
environmental control without constant supervision. A control
system for the ECLSS must address these issues as well as being
reliable. The Kansas State University Advanced Design Team is in
the process of researching and designing controls for the
automation of the ECLS system for Space Station Freedom and beyond.

The ECLS system for Freedom is composed of six subsystems. The
Temperature and Humidity Control (THC) subsystem maintains the
cabin temperature and humidity at a comfortable level. The
Atmosphere Control and Supply (ACS) subsystem insures proper cabin
pressure and partial pressures of oxygen and nitrogen. To protect
the space station from fire damage, the Fire Detection and
Suppression (FDS) subsystem provides fire sensing alarms and
extinguisher. The Waste Management (WM) subsystem compacts solid
wastes for return to earth, and collects urine for water recovery.
The Atmosphere Revitalization (AR) subsystem removes CO2 and other
dangerous contaminants from the air. The Water Recovery and
Management (WRM) subsystem collects and filters condensate from the
cabin to replenish potable water supplies, and processes urine and
other waste waters to replenish hygiene water supplies.

These subsystems are not fully automated at this time.
Furthermore, the control of these subsystems is not presently
integrated; they are largely independent of one another. A fully
integrated and automated ECLS system would increase astronaut's
productivity and contribute to their safety and comfort.



1.2 THREE PHASE DESIGN PLAN

A three phase approach was implemented by the Kansas State
University Advanced Design Team to design controls for the ECLSS.
The first phase, completed within one year, researched the ECLSS as
a whole system and then focused on the automation of the Atmosphere
Revilatization (AR) subsystem.

During the second phase, the system control process was applied to
the Atmosphere Revitalization subsystem. To aid in the development
of automatic controls for each subsystem and the overall ECLSS,
mathematical models have been developed for system simulation on a
computer. Expert system control as well as conventional control
methods are being tested on the models. Using the Atmosphere
Revitalization subsystem control system as a "proof of concept",
the other ECLSS subsystems will be automated.

Finally, during phase three, the control system of the six
subsystems will be combined to form a control system for ECLSS.
The expert system developed for the AR will be expanded to control
the ECLSS as well as provide fault diagnosis and isolation to the
astronauts.

The Kansas State University Design Team has completed phase one and
two. Mathematical models for the CO2 Removal Assembly, CO2
Reduction Assembly and Oxygen Generation Assembly, as well as an
expert system, have been developed for the AR. The mathematical
models are written in the C-Language. At this time, the models
function independently at the assembly level. The expert system,
using a written shell program called CLIPS, monitors and controls
the AR System assemblies in a hierarchical manner.



1.3 DESIGN TEAM DESCRIPTION

The Kansas State University Advanced Design Team is composed of
engineering students from several disciplines, a student from
general science and education, two graduate student assistants, and
engineering faculty members. Architectural, chemical, computer,
electrical, and mechanical engineering disciplines are represented
by both students and faculty.



1.4 ORGANIZATION OF THE DOCUMENT

Chapter two of the report presents the work which was done by the
conceptual controls group during the first semester of the design
project. Conceptual controls were developed for the Water Recovery
and Management System. These control schemes will be tested next
year when the appropriate mathematical models are developed, and
will aid in the development of an integrated ECLSS control scheme.

The mathematical models which were formulated for the Air
Revitalization (AR) are presented in chapter three. These models
are being used to test the conceptual control schemes which were
developed in the first year of the project and also the expert
system which was developed this year.

An expert system was created which monitors the AR system. Chapter
four details the development and use of the expert system within
the AR.



2.0 CONCEPTUAL CONTROLS



2.1 INTRODUCTION

This chapter outlines the progress made by the conceptual
controls group toward the design of a control system for the
Water Recovery and Management (WRM) System of the ECLSS. The WRM
System was divided into four subsystems which are 1) Water
Quality Monitor and Process Control Water Quality Monitor, 2)
Urine Processor, 3) Hygiene Water Processor and 4) Potable Water
Processor.

In designing the conceptual control scheme of the WRM System,
several steps were taken before the final conceptual control
scheme was developed. The first step was to research existing
control schemes. Using this information, a tentative control
scheme for each subsystem was developed. The final step involved
critiqueing and revising each control scheme by group members and
the faculty advisor until the best conceptual control scheme
emerged.

Each section of this Chapter contains a description of the
current control scheme, the proposed control scheme, the system
monitoring scheme and a detailed sensor layout. A comparison
between the current and proposed control schemes is also
included.



2.2 WATER QUALITY MONITOR

8



2.2.1 WATER QUALITY MONITORING SYSTEMS DESCRIPTION

Two separate systems monitor the water quality from the various
processors. The systems are called the Process Control Water
Quality Monitor and the Water Quality Monitor which are discussed
below in that order.

PROCESS CONTROL WATER QUALITY MONITOR

The Process Control Water Quality Monitor (PCWQM) is a system of
monitors that continuously monitor the quality of product water
from a particular processor—either a potable processor, a
hygiene processor, or a urine processor. Each processor has a
dedicated PCWQM through which all of its product water flows.
The PCWQM has two distinct sections—the Continuous Section and
the Intermittent Section (See Figure 2.2-1).

In the Continuous Section, product water from the particular
processor flows into the PCWQM and on out through a series of
four monitors. The monitors measure pH, Temperature, Iodine, and
Conductivity levels every 15 seconds [5:1], [8:6]. Conductivity
and pH are measured using standard conductivity and pH cells.
Iodine is measured using absorption of UV/VIS light at 476
nanometers [5:1]. It is not known how the temperature is
measured. The temperature reading is used to adjust the
conductivity and pH readings.

In the Intermittent Section, Total Organic Carbon (TOC) is
analyzed and pH and TOC are calibrated. Every 15 minutes, a 10
ml sample is diverted from the product water flow in the
Continuous Section to be analyzed in the Intermittent Section
[5:1-2], [8:6].

The TOC is measured using an ultraviolet reactor. The water
sample is mixed with dilute phosphoric acid from the Acid
Injection Module (AIM). The acid reacts with any inorganic
carbon present. Any gases present in the water sample or
resulting from the reaction of acid and inorganic carbon are
vented. Oxygen is mixed with the water sample and ultraviolet
light oxidizes the organic carbon to carbon dioxide. The
infrared detector measures the amount of infrared light (4.28
micrometers) absorbed by the carbon dioxide and correlates this
measurement to TOC content [5:1]. The TOC analyzer is calibrated
every 24 hours by an unknown process using fluid from the
Calibration Injection Module (CIM) [8:6],

The pH Calibration Monitor calibrates the pH monitor in the
Continuous Section. The pH Calibration Monitor measures the pH
of the 10 ml sample and compares its reading to that of the pH



monitor. If the readings are different, the controlling
processor calibrates the pH monitor accordingly. The pH
Calibration Monitor itself is calibrated every 24 hours using
fluid of known pH from the Base Injection Module (BIM) [8:6].

now \
IN >

now /
our N

CONTINUOUS
SECTION

P

TE

inn

CO

BE

H

MP

IMF

NO

IW| Icvl

1 11 1

r i u R i u A i u

1 1 1

1 1 1
|JW| |JW| |2W|

, ^ TESTED SAMPLE

i pH TOTAL ORGANIC v ._,
Ep CAL CARBON > VCNT

I-U 
0̂2 IN

1 INTFRUITTTNT 1

SECTION

LEGEND
|WJ 2-WAY SOLENOID VALVE

1^ 3-WAY SOLENOID VALVE

|C?/] CHECK VALVE

Figure 2.2-1 Current PCWQM
(adapted from [2:1])

The acid-tainted 10 ml sample and the used calibration fluid are
sent to the hygiene waste water storage. The gasses from the
gas/liquid separator are vented to the cabin. This minuscule
amount of gas is eventually removed by the Trace Contaminant
Contro1 System.

Every 15 seconds, the PCWQM sends the pH, conductivity, raw
iodine, and adjusted iodine readings to the Data Management
System (DMS) [5:2], [8:6]. The raw iodine is the iodine
measurement at the pH of the water. The adjusted iodine is the
iodine measurement that would be present at a pH of 7 [5:2].

TOC measurements are sent to the DMS as they become available.

10



WATER QUALITY MONITOR

A Water Quality Monitor (WQM) analyzes each full tank of product
water from a Potable Water Processor (PWP) and Hygiene Water
Processor (HWP) pair. Only one product water tank from either
the PWP or the HWP can be analyzed at any one time. The WQM also
accepts manual samples when it is not already conducting an
analysis. See Figure 2.2-2 for system layout.

The Data Management System (DMS) sends a signal to start the
analysis process. The process begins by circulating water to the
WQM from a selected product water tank. Circulation continues
until a representative sample of the processed water can be
extracted for analysis. This small sample is distributed to the
various analyzers using an unknown internal sample distribution
system. Each analyzer performs its own tests. As results from
each analyzer become available, they are sent to the DMS. Some
analyses are available almost instantaneously, while other
analyses take up to 12 hours [7:2].

The various analyzers and the corresponding measured parameters
for the WQM are listed in Table 2.2-1. In addition to these, the
Gas Chromatograph/Mass Spectrometer can identify thousands of
other compounds by sending the Mass Spectrometer scan to earth
for further analyses.

11



HYGIENE SAMPLE
INLET

POTABLE SAMPLE
INLET

EXTERNAL
PORT

STERILE
WASTE

ACID
RINSE

CARBONL--g—fr i

1
'MS

IRGANiC

nuER

) WHtt
mm

T@ ,

IEGENO

4-»AY MOTORIZED YK.VE

CHECK VAIVE

PRESSURE REGUIMOR V*LV€

©WESSWESENSC*

Q PUi>

RECYCLED
WASTE

Figure 2.2-2 Current WQM
(adapted from [3:1])

Table 2.2-1 WQM Measured Parameters
(based on information from [7:1-2] and [3:1])

ANALYZER
PARAMETER

UV-Visible
Spectroscopy

pH Electrode

Conductivity Csll

Spectrophotometer
(UV-Vis. Spectroscopy)

Photometric

BLOCK NAME MEASURED
(In Fig. 1.1-2)

Turbidimeter

unknown

unknown

Spectrophotometer

Gas Analyzer

12

Turbidity

pH

Conductivity

Color
Iodine

Free Gas



continued.
Table 2.2-1 WQM Measured Parameters

ANALYZER
PARAMETER

Gas Chromatograph/
Alcohol
Mass Spectrometer

Gold Film Analyzer

UV Oxidation

High Performance
Liquid Chromatograph

BLOCK NAME

GC/MS

MEASURED

Aliphatic

Carboxylic Acid
Halogenated
Hydrocarbons

Mercury Analyzer Mercury

Total Organic Carbon TOC

HPLC

Bact. Sensor Assembly
(Bacteria Concentrator,
Incubation Chambers,
Conductivity Sensor,
Chromogenic Limulus,
Reagents & Reaction
Chamber, & Colorimeter)

Sensor Assembly

Ammonium
Barium
Cadmium
Calcium
Copper
Iron
Lead
Manganese
Magnesium
Nickel
Potassium
Silver
Arsenic
Chloride
Chromium
Cyanide
Fluoride
Iodide
Nitrate
Selenium
Sulfate
Sulfide
Phenol Alcohol

Bacteria

13



2.2.2 WATER QUALITY MONITORING CONTROLS

Two separate systems—the Process Control Water Quality Monitor
(PCQWM) and the Water Quality Monitor (WQM)—analyze the water
quality of the product water from the potable, hygiene, and urine
water processors. A PCWQM constantly monitors the quality of the
continuous flow of product water from its associated potable,
hygiene, or urine processor. A WQM thoroughly analyzes one
sample at a time from each processor storage tank as the final
test before the water is used. A WQM is responsible for
monitoring a potable water processor and hygiene water processor
pair. The PCWQM and the WQM will be discussed separately below.

PCWQM CONCEPTUAL CONTROLS

CURRENT PCWQM CONTROL SCHEME

The current PCWQM control scheme is a three operational mode
system that has a sensor system consisting only of valve position
indicators monitoring each valve.

The three operational modes are ON, STANDBY, and OFF [4:1]. In
the ON mode, all systems are powered. In the STANDBY mode, only
the electronic control system is powered. In the OFF mode, all
electrical power to the PCWQM is off. The PCWQM operational mode
is determined by the operational mode of its associated
processor. For example, if the associated processor changes from
the STANDBY mode to the ON mode, the processor sends a signal
telling the PCWQM to do the same.

When the PCWQM is in the ON mode and product water is available,
the PCWQM monitors the product water. If the monitored values
are within the normal range, the results are sent to the Data
Management System (DMS). If the analyzed value in a particular
monitor is out-of-range, the calibration of the monitor is
checked. If the calibration is acceptable, the results are sent
to the DMS. If the calibration is unacceptable the astronauts
are notified.

Valve position sensors provide feedback to determine if the
valves are functioning properly. Readings from the sensors are
monitored by the DMS.

PROPOSED PCWQM CONTROL SCHEME

Several features where added to the initial control scheme to
allow for greater fault detection and isolation (Fig. 2.2-3).
The features added are:

14



calibrating analyzers that are out of calibration before
notifying the astronauts.

adding seven sensors.

adding a manual shut-off option to the solenoid valves on
the Calibration Injection Module (CIM), the Base Injection
Module (BIM), and the Acid Injection Module (AIM).

aow
IN

FLOW
OUT

6

i —

3

— on —

pH
CAL

— — DWI

TOTAL ORGAN
CARBON

/

va
V x TES

/ 10 H

1C \

\

TESTED SAMPLE

VENT

02 IN

LEGEND
EJJ 2-WW SCUNOD VALVE «im WMW. WHW1E

Ejj J-«HY SOUNOC VM.VE WH IMNUM. WEffilOE

@ J-WY SOUNOO VM.VC

0 CWEKWLVE

0 FUJWSDGOR

@ FUIO LEVEL SENSOR

© IIOUO VOUJIC SENSOR

Figure 2.2-3 Proposed PCWQM
(adapted from [2:1])

PCWQM MONITORING SCHEME

System components are listed below along with a description of
the monitoring scheme for each component.

Monitors

The pH and Total Organic Carbon (TOC) monitors are calibrated in
the TOC section of the PCWQM. The iodine, conductivity, and
temperature monitors do not need calibration.

15



Valves

Position indicators are used to determine if a valve is in the
correct position. Whenever power is not available to the valve,
the valve moves to a fail-safe position.

Check Valves

Flow sensors are placed after these valves to detect any leaks.

CIM. BIM and AIM

Fluid level sensors are used to indicate if a fluid tank is
almost empty. Liquid volume sensors are used to ensure that the
proper amount of fluid is drawn from the tank.

COMPARISON OF PCWQM CONTROL SCHEMES

The proposed control scheme has several advantages. It has more
feedback because of the additional sensors. This increases
knowledge that the system is working properly. The automatic
calibration of out-of-range analyzers saves the astronauts from
constantly monitoring and adjusting them. Finally, the valves
with a manual override for the CIM, BIM, and AIM can be used to
prevent damage to the PCWQM.

The disadvantages of the proposed system are the increased cost
and complexity, the small increases in power consumption, and the
increase in associated microprocessor size.

WQM CONCEPTUAL CONTROLS

CURRENT WQM CONTROL SCHEME

The current WQM control scheme is a three operational mode system
with five sensors, in addition to valve position sensors, to
monitor the process.

The three operational modes are ON, STANDBY, and OFF [6:1]. In
the ON mode, all subsystems and analyzers are powered. In the
STANDBY mode, only the ion pump, embedded controller, and related
electronics are powered. In the OFF mode, all electrical power
to the WQM is off. The normal WQM operational mode is the
STANDBY mode, but the WQM changes to the ON mode when a sample
becomes available. The OFF mode is used for maintenance of the
WQM.

When the WQM is testing a sample (ON mode), each particular test
result is sent to the DMS as it becomes available, as long as the

16



result is in the normal range. If it is not in the normal range,
the calibration status of the particular analyzer is determined.
If calibration is acceptable, the test results are sent to the
DMS. If the calibration is unacceptable, the astronauts are
notified.

Sensors provide feedback to determine if various system
components are functioning properly. Readings from the sensors
are monitored by the DMS.

PROPOSED WQM CONTROL SCHEME

This scheme modifies the current control scheme by:

• calibrating analyzers that are out of calibration before
notifying the astronauts.

• adding ten sensors.

• stirring the particular processor storage tank before a
sample is sent to the WQM.

• discontinuing any remaining WQM tests if one test is out of
range.

See Figure 2.2-4 for the proposed WQM system layout.

WQM MONITORING SCHEME

System components are listed below along with a description of
the monitoring scheme for each component.

Analyzers

Each analyzer block has its own calibration mechanism within the
block.

Valves

Position indicators are used to determine if a valve is in the
correct position. Whenever power is not available to the valve,
the valve moves to a fail-safe position.

Check Valves

Flow sensors are placed after these valves to detect any leaks.

17



?HYKIFNF <MUWF .. 1 =r.
INLET ' Ba

©
POTARtF «UPIF v 1 f=TJ fits -

? ""

en , — 1
PORT

FILTER ASSEMBLY (J5J-1

,-v 1 1 1© — ' — '
STERILE < fa
WASTE 0

1 O 1 /
' r \

ACID vJ
RINSE

(F) —

£
£
£
E

(?) X (?)

3V)
HYDROGEN ECLSS AIR Mironrru
S^p^y REVITA1JZATION UNIT ""jog"

r̂ E) T^< 1 t

L^ (g)
| — :MJ3 -\ ^-^

- >v (TOTAL ORGANIC] 1
I WWH 1i — E§ — ̂  i

' MM-O FITCR

1
PURFED WWW

REStFVW
1

•

LEGEND

I 3-WAY MOTORIZED VALVE ® PRESSURE SENSOR

4-WAY MOTORIZED VALVE © nff" SENSOR

CHECK VALVE © CURRENT SENSOR

PRESSURE REGULATOR VALVE Q PUMP

TI imnniucTEii

livJ i
|

!
spEcmci-

1 • R-^^— i
SENSOR

ASSEMBLY

@

MERCURY ®
ANALYZER

1 ft/1

^rH
1

RECYCLED
WASTE

Figure 2.2-4 Proposed WQM

Pumps

Pressure sensors are placed directly before and after each pump
to make sure the pump has the proper pressure differential across
it.

Also, current sensors are placed on each pump to determine if the
pump motor is drawing the proper amount of current. This will
help determine if a pipe is plugged or if a pump fin is broken.

Pressure Regulator

A pressure sensor is placed after the regulator to determine if
the pressure is being regulated properly.

18



COMPARISON OF WQM CONTROL SCHEMES

The proposed control scheme has several advantages. It has more
feedback because of the additional sensors. This increases
certainty that the system is working properly. The automatic
calibration of an analyzer before notifying the astronauts saves
the astronauts' valuable time by not calling them unless
absolutely necessary. Stirring the processor storage tanks
before sending a sample to the WQM ensures that a representative
sample is analyzed. Stopping the remaining WQM tests if one test
is out-of-range saves power.

The disadvantages of the proposed system are the increased cost
and complexity, the increased power consumption for some of the
changes, and the increase in associated microprocessor size.

19



2.3 URINE PROCESSOR

20



2.3.1 URINE PROCESSOR ASSEMBLY DESCRIPTION

The main objective of the Urine Processor Assembly (UFA) is to
recover water from the urine and flush water from the
urinal.[2:1] The UFA works in conjunction with the hygiene water
processor by sending product water to be further processed and
with the potable water processor by accepting brine to be
processed.

Two urine processors will be located on the Space Station
Freedom. A schematic of the UFA is shown in Figure 2.3-1.[4:1 of
1] One will be in the laboratory module and another in the
habitat module. Each UFA can accept urine and waste water
partially pretreated with Oxone (manufactured by Dupont) in the
urinal on a 24 hour basis.[2:1] To further inhibit microbial
growth and ammonia formation, a small amount of concentrated
sulfuric acid will be injected by the acid injector pump into
each flush from the urinal as it proceeds to the pretreated urine
collection tank.[2:1]

The UFA units must be in a preheated state before a batch process
is initiated. Electric heaters will operate for a sufficient
period of time before each batch process, to achieve the
necessary temperature for processing.

Processing will begin when the pretreated storage tank is 60-85%
full depending on whether the other processor is running. [3:Fig
I] Only one processor can run at a time because of power
constraints. A UFA will also begin processing if it has been
more than 48 hours since the last batch process. Pretreated
urine should not be stored longer than 48 hours.[3:Fig I]

The pretreated urine is drawn from the storage tanks through a
regenerative heat exchanger which preheats the urine and flush
water. This mixture is then sent through a filter to trap any
large particles in the waste water. The heated waste water is
pumped into the Thermoelectric Integrated Membrane Evaporative
System (TIMES). It first enters the TIMES heat exchangers which
receive heat transferred from the Thermoelectric Devices
(TED).[2:2] Heated waste water is pumped through bundles of
hollow fiber membrane tubules whose external surfaces are exposed
to a saturated gaseous environment maintained at a pressure of 2
psig.[2:2] Relatively clean product water permeates through the
membranes and evaporates from their outer surface due to the high
temperature of the waste water and the reduced pressure outside
the tubes.[2:2] Accompanied by the evaporation is a decrease in
temperature and an increase of the brine solute in the recycle
flow.[2:2] The water vapor enters a condenser where it is cooled
and partially condensed, releasing latent heat to the TED on
either side of the condenser. The TED's act like heat pumps by

21



transferring the latent heat from the cooler condenser to the
warmer waste water heat exchanger.[2:2]

CO © 0-)

II111

if III
ifiiii!

Figure 2.3-1 Urine Processor Assembly Schematic

22



Due to the waste heat generated by the electrical input to the
TED's, only part of the steam condenses and a mixture of vapor and
liquid leaves the condenser [2:2]. The mixture exits the TIMES and
more vapor is condensed as the mixture passes through the
regenerative heat exchanger and an air-cooled heat exchanger.[2:2]
The mixture of water vapor and liquid water enters a rotary water
separator where water is removed from the stream and the
noncondensible gases are vented to the Trace Contaminant Control
System (TCCS).[2:2] A compressor removes enough gas to maintain a
pressure of approximately 2 psig at the water separator gas
outlet.[2:2] The water leaving the separator is checked by the
Process Control Water Quality Monitor (PCWQM) for conductivity, pH,
total organic carbon (TOG) and microbes. A listing of water
quality requirements is shown in Table 2.3-1.[2:Table 1]

Table 2.3-1. Product Water Quality Requirements

conductivity < 150 micro-mho/cm
p H 3 - 8
total organic carbon (TOG) < 50 ppm
microbes < 1 cfu/100 ml

If the product water does not meet the PCWQM water quality
requirements it remains in the recycle loop and is reprocessed. At
about 25% dissolved solids the flow rate through the hollow fiber
membrane tubules decreases below a minimum set point and the
decreased flow rate initiates a brine dump to the brine storage
tank. [2:1] Once the brine tank is full it is replaced with an
empty one and the full tank is sent back to earth. Pretreated
urine will displace the old recycle loop brine when processing
begins again.[2:1]

23



2.3.2 URINE PROCESSOR ASSEMBLY CONTROLS

CURRENT URINE PROCESSOR ASSEMBLY CONTROL SCHEME

The current control scheme used for the Urine Processor Assembly
(UFA) subsystem is a batch process or timed process depending on
the situation. When the pretreated urine tank is 60-85% full or
the time elapsed since the last processing is 48 hours then
processing will begin. Pretreated urine should not be stored
longer than 48 hours. See Figure 2.3-2 for a schematic of the
current system.[4:1 of 1]

PROPOSED URINE PROCESSOR ASSEMBLY CONTROL SCHEME

A timed control scheme was considered for controlling the UPA, but
the efficiency of the equipment would be decreased if small batches
were run on timed intervals. The batch process was found to be the
best method for controlling the UPA. A few additions were made to
improve the system and these are explained below.

An Emergency Process mode was added to the existing modes of On,
Off, Standby, and Emergency Shutdown.[5:1 ] The Emergency Process
mode would be initiated when there is a need for waste water to be
processed immediately because of another system failure. This mode
would be included in the Standby mode, so if directed the UPA will
begin processing even though the pretreat tank is not 60-85% full.

Another system improvement would be to add a pH sensor to the inlet
of the UPA subsystem. Currently there is a small quantity of
sulfuric acid being injected into the urine and waste water stream
as it enters the waste water bus and flows into the pretreated
urine tank. Since the pH of human urine varies from 4.8 to 8.4
depending on changes in the body metabolism or diet, the urine may
need to be treated with more or less sulfuric acid than the
measured amount. A pH sensor located in the waste bus between the
2-way valve and the pretreat urine storage tank could indicate how
much acid pretreat is required for that particular flush. This
would decrease the bacterial growth and thus decrease the amount
of recycling required through the UPA.

When the recycle water has reached 25% solute, the efficiency of
the water permeating through the hollow fiber membrane tubules
decreases and a brine dump is initiated. There are no sensors in
the current system to indicate when the recycle water has reached
25% solute. A flow sensor was considered since the flow through
the hollow fiber membrane tubules decreases as the solute
increases. Measuring the conductivity of the recycling water would
indicate when there is 25% solute in the recycling water. Once
this set point is reached a brine dump would be initiated to the

24



i l l
iflilif

Figure 2.3-2 Current Urine Processor Assembly Control Schematic

25



brine storage tank. Other recommendations consist of placing
additional sensors for system monitoring and failure detection.

The present UFA subsystem consists of a wide range of sensors.
However, a few additional sensors could help track down specific
problems that may occur. The recommended additions along with the
current sensors are discussed in the following sections.

UFA MONITORING SCHEME

The following information is a list of all the major system
components. Sensor methods currently being employed and suggested
are included in these descriptions. For each sensor there will be
a comparison made with a range of the desired output and an error
signal will be generated. The controlling processor unit will
determine if the sensor is giving correct output or if a failure
has occurred. In the event of failure, the astronauts will be
alerted. See Figure 2.3-3 for a schematic of the proposed system
with the additional sensor placements.[4:1 of 1]

Acid Pretreat Tank

A quantity sensor is located in the tank to indicate when the
sulfuric acid is getting low.

Pretreat Urine Tank

A quantity sensor is located in the tank to indicate when to begin
processing. A liquid sensor detects any pretreated urine leaks.

Heat Exchangers

There were no sensors placed near the heat exchangers located
external to the Thermal Integrated Membrane Evaporative System
(TIMES). It is suggested that temperature sensors be placed at the
outputs and inputs of the regenerative heat exchanger to monitor
any temperature deviations that would indicate that the heat
exchanger was not working properly. Flow sensors were placed in
the air-cooled heat exchanger to monitor any changes in the flow of
air.

Pumps

The two pumps used in the UFA are the acid injector pump and the
recycle loop pump. Each one has a speed sensor and a current
sensor. A differential pressure sensor was included with the
recycle loop pump and it is suggested that a differential pressure
sensor be added to the acid injector pump.

26



Figure 2.3-3
Schematic

Proposed Urine Processor Assembly Control

27



TIMES

The TIMES includes evaporators, heat exchangers, thermoelectric
devices, and a condenser. There are currently three temperature
sensors located on each evaporator to monitor the efficiency.
A temperature sensor was added to the output of each heat exchanger
to check the efficiency of the thermal electric devices to transfer
latent heat to the recycling waste water. Flow sensors were added
to the inlets of the TIMES to monitor any obstructions that may
occur in the pipes.

Air/Water Separator

A speed sensor is located on the air/water separator to monitor the
compressor speed. In the product water line there is a pressure
sensor which monitors the separator liquid pressure. A relief
valve is included to relieve any excess pressure buildup. In the
waste gas line there is a liquid sensor to sense any leaks in the
separator. A pressure sensor to monitor the separator gas pressure
is also in the waste gas line.

Compressor

A speed sensor is located on the compressor to determine if it is
running.

Valves

All of the valves, excluding the 2-way valves located between the
filters of the acid pretreat tank and brine tank, have manual back-
ups. Motor driven valves are indicated by a semi-circle setting on
top of the valve in Figure 2.3-3. If the valve is not motor driven
then it is a solenoid valve which is electrically actuated. All
the 2-way and 3-way valves have position indicators.

Check Valves

The check valves prevent backflow from contaminating other lines.

PCWQM

The Process Control Water Quality Monitor is explained in section
2.2 in this chapter.

Flow Sensors

It is suggested that flow sensors be placed in select locations
along the recycle loop to indicate any obstructions in the piping.

28



COMPARISON OF CONTROL SCHEMES

The basic control scheme of the current control system and the
proposed control system are the same. The batch process will
continue to be the controlling system of the UFA subsystem. The
proposed pH sensor in the waste water bus line would allow a more
accurate amount of acid pretreat to be added. This would decrease
the amount of bacterial growth and recycling necessary through the
processor. The additional Emergency Process mode would be
advantageous in emergency situations. Measuring the conductivity
of the recycling water to initiate a brine dump would also be
highly effective. Also, the recommended sensor additions can allow
for more fault protection, detection, and isolation. Although the
additional sensors of the proposed system could increase the cost
of the system, it would be more productive and efficient.

29



2.4 HYGIENE WATER PROCESSOR

30



2.4.1 HYGIENE WATER PROCESSOR DESCRIPTION

The Hygiene Water Processor (HWP) consists of four major sections:
gas pressurization, waste water storage, water processing and
product water storage.

The Gas Pressurization section pressurizes the air on the air side
of the bellows tanks (water busses). This pressure is necessary in
order for the water to flow through the processor.

Water enters the HWP at a pressure of 34.5-82.74 kN/m2 (5-12 psig) .
This pressure range allows the waste water storage section to
maintain a waste water bus pressure between 34.5-82.74 kN/m2 (5-15
psig) during both static and flow conditions. The gas
pressurization section maintains this pressure by monitoring the
water inlet pressure and by opening a valve on the gas side of the
tank to lower pressure if the pressure exceeds 82.74 kN/m2 (12
psig) and opening a valve from the higher pressure section if the
pressure falls below 34.5 kN/m2 (5 psig). If the waste water
storage tank level exceeds 80% capacity. The inlet valves will be
closed to prevent potential damage to the water storage tanks. A
check valve is placed before the inlet valve on the waste water
storage tank. This prevents the delivery of water from the waste
water storage tank back to the waste water bus in the event of a
waste water bus depressurization due to external leakage.[1:1]

When water is available in the waste water storage section, and the
product water tanks are not full, the processing section will
process and deliver water from the waste water storage section to
the product water storage section. A water pump draws the waste
water from the waste water storage tank to the water processing
section. In this water processing section the water goes through
a sterilization loop that sterilizes and filters the waste water.
Sterilization is accomplished by heating and maintaining the water
at a temperature greater than 121° C (250° F) for 20 minutes. For
energy efficiency, a regenerative heat exchanger is used in
conjunction with the particulate filter electrical heater to
achieve the sterilization temperature. After heating, the water
goes into the combination filter-residence tank, which uses a 40
micron filter and provides for a residence time greater than 20
minutes. Water leaves the filter and exits from the sterilization
section by flowing through the hot side of the regenerative heat
exchanger. The pressure of the cold inlet and cold outlet water
sides of the regenerative heat exchanger are monitored to detect an
expended filter and insure proper pressure maintenance to maintain
water in the liquid state.[5:4]

The water then enters the recycle loop which circulates the water
through two membrane-based filtration modules. The first membrane
filtration is done in the Ultrafiltration (UF) module. Suspended

31



solids and dissolved macromodules (i.e. skin cells and soaps) are
rejected while lower molecular-weight species pass through the
membrane and become feed for the second stage of membrane
filtration. The Reverse Osmosis (RO) module, is capable of
reversing this feed flow within the UF module periodically to
backflush the module and prolong membrane life. A valve also
directs the outflow from the UF module to the brine processor to
flush out the concentrated brine solution and replace it with fresh
waste water. The reservoir tank placed before the recycle loop
reduces the brine concentration in the recycle loop. This will
allow an increase in the time between backflushes.[1:2]

The permeate water from the UF module passes through an air/water
heat exchanger to cool the water to a temperature below 45° C (113°
F) and prevent the delivery of water with a temperature in excess
of 45° C (113° F) to the RO module. The permeate water then enters
the second membrane-based filtration module, the RO module. The RO
module removes low-molecular weight species (i.e. salts and low
molecular weight organic material) which passed through the UF
module, while allowing water to pass through and return to the
recycle flow upstream of the reservoir tank. A check valve
prevents backflow of fresh waste water through the RO module. In
this way the RO module separates a relatively cleaner (compared to
the UF permeate) water, which is then delivered to the unibeds.
The RO permeate water is monitored by both a pressure sensor and a
conductivity sensor. The pressure sensor will determine if flow
blockage downstream of the RO has occurred. The conductivity
sensor is used to determine when to backflush the recycle loop. A
check valve prevents the backflow of water from the unibeds into
the RO module. This backflow could damage the RO module.

The RO permeate then flows to the post-treatment loop. The post-
treat loop consists of two unibeds that use the principle of
adsorption to remove contaminants. Adsorption is a process in
which contaminant particles are deposited on the surface of solid
particles. The solid particles known as adsorbents, are chosen to
preferentially adsorb the contaminants expected in the waste
stream. The amount and type of material adsorbed varies from
adsorbent to adsorbent. The unibeds in the HWP are arranged in a
series configuration, such that when one bed is expended, the next
bed is used. A new bed is then placed in the spot vacated by the
expended bed. These beds will be replaced in staggered intervals
of 30 days.[5:4]

The Process Control Water Quality Monitor evaluates the quality of
the processed water and determines if it meets the required
specifications. If it does not, the water must be redirected to
the water pump inlet to be reprocessed. The PCWQM is discussed in
detail elsewhere in this report.

32



The product water storage section stores the processed water. If
the product water tanks are full, the inlet valves are closed and
the HWP enters a standby state. The only other time the inlet
valves are closed is during sterilization. If the product water
tanks are empty, the outlet valves are closed. Otherwise, the
outlet valves are kept open, and the water bus pressure is
controlled between 124.1-206.9 kN/m2 (18-30 psig) by the
pressurization section. This pressure range allows the product
water storage section to maintain a product water bus pressure of
between 102.4-206.9 kN/m2 (15-30 psig) during both static and flow
conditions. The pressurization section maintains this pressure by
monitoring the water pressure and by operating a valve to ambient
pressure if this pressure exceeds 206.9 kN/m2 (30 psig) and by
turning on the compressor if this pressure falls below 124.1 kN/m2

(18 psig). The product water tanks can accept processed water and
at the same time deliver stored water to the hygiene water
bus.[1:3]

33



2.4.2 HYGIENE WATER PROCESSOR CONTROLS

CURRENT HYGIENE WATER PROCESSOR CONTROL SCHEME

The present system uses a continuous cycling of waste water. The
water processing section will process water when the waste water
storage tank is full and there is room in the product water tanks
for the processed water. The mode of operation is determined from
a computer used by the astronauts. The water is sterilized and
filtered in the processing section. All valves and major system
components are controlled by electrical signals that arise from
sensors placed throughout the system. The hierarchy of this
control scheme is yet to be done. Detection of failure in the
current scheme is limited to pressure, temperature and conductivity
sensors and the PCWQM system. Again, the hierarchy of this control
scheme is for future work [3:1-2].

PROPOSED HYGIENE WATER PROCESSOR CONTROL SCHEME

This control scheme will be based on the amount of water to be
processed and the amount of water in the product water storage
tanks. The waste water will be processed when the tank is 60% full
and the product water tanks are only 60% full. The mode of
operation will be determined by the ratio of the amount of water to
be processed to the amount of water in the product water storage
tank, thus allowing the system to operate independently of an
external command. The modes of operation are standby, on, off and
emergency shutdown.[1:4]

Hygiene Water Processor Standby Mode

When the waste water storage tank is less than 60% full or the
product water tank is full, the processing section will be in
standby mode. This mode is used for equipment preheat, tank
pressurization and setting the valves to the ready position.

Hygiene Water Processor On Mode

When the waste water storage tank is over 60% full and the product
water tank is less than 60% full the processing section will begin
processing waste water. The processing occurs as discussed in the
operational description of the HWP. A submode of the on mode is
backflush. During backflush normal processing is stopped and the
filters are backflushed to clean and extend their useful life.

34



Hygiene Water Processor Off Mode
•

When the waste water storage tank is less than 30% full and the
product water tanks are greater than 20% full the processing
section will go into the off mode. During off mode processes are
gradually stopped and the power is removed from the system. While
the system is in this mode the system is isolated and can be
serviced.

Hygiene Water Processor Emergency Shutdown Mode

When either a part of the hygiene water processing system breaks or
the power consumed by this system is needed elsewhere the processor
will go into emergency shutdown mode. This mode is similar to off
mode except the system is stopped as quickly as possible.

SYSTEM MONITORING SCHEME

The major components and the sensors associated with each component
are listed in the following paragraphs. The monitoring scheme will
allow the system to be controlled, and allow component failures to
be detected. The output of the sensor will be compared with a
desired output and an error signal will be generated if the output
is not within the determined limits. A microprocessor will monitor
and determine, through the use of an artificial intelligence
program, if a component failure has occurred. The astronauts will
be alerted via a message displayed on a computer terminal in the
event of a failure. The necessary steps to correct any failure can
then be taken.[4:1-12] Figure 2.4-1 shows a schematic of the
proposed system.[1:4]

Gas Pressurization Section

Pressure sensors are placed on the waste water inlet line to
determine if the water pressure is between 34.5-82.74 kN/m2 (5-12
psig). If the pressure is either high or low then air is either
released or added to the gas side of the storage tank. Quantity
sensors are located on the water busses (bellows tanks) to
determine if they are pressurized. Quantity sensors are used to
measure the amount of gas or liquid contained in a tank.

Solenoid Valves

Position indicators are located on each valve. The position of the
valve is compared to the position required during the process. If
a valve becomes stuck open or shut the system will alert the
astronauts and begin emergency shutdown mode.

35



o
•H
•P

O
CO

•d
o
n
o
a
o

H
I

CM

36



VALVES

2W

3W

2-WAY VALVE C

3-WAY VALVE P

^ CHECK VALVE R

-, PRESSURE ,—
R REGULATOR S

V RELIEF VALVE

V SOLENOID VALVE
VALVL

4W

QDN

4-WAY VALVE M

/""H ll/^l/" P\IOf^/^M MCf^T .UUIl/K UlbUUNNt.L.1
J VALVE M

p MULIIPLL
PORT VALVE

_ k j ior>/M~>i A i .MIL»K(JDIAL
cv CHECK VALVE

MOTOR VALVE

H MANUAL

SENSORS

© MMCtSoR © TEMPERATURE 0 SPEED

(o) QUALITY (T) LIQUED (A) CURRENT

(?) FLOW (DP) PRESSURED © CONDUCTIVITY

@ RELATIVE HUMIDITY (P) PRESSURE Q

> < BELLOWS TANK <•
5 PUMP |

h

1 FILTER

^X HEAT EXCHANGER

Figure 2.4-2 Legend of the Proposed Hygiene Water Processor

Check Valves

A flow sensor will be placed on either side of a check valve to
determine if the valve is leaking. Check valves assure that water
will not flow backwards in the system. Backwards flow could
possibly damage the system.

Waste Water Storage

A quantity sensor is located on the storage tank to determine if
the processing cycle should begin, the system should go to standby
mode or if the system should proceed to off mode. The quantity
sensor also determines if a solenoid valves placed on the inlet and
outlet sides of the tank should be open or closed. These valves
either allow the water to be processed or stored.

37



Water Pump

Pressure sensors are placed on either side of the pump to determine
if it is working properly. Values for the pressure on either side
of the pump are checked with predetermined values in the
microprocessor program. If these values are not within the
predetermined range the system will go into emergency shutdown
mode.

Heat Exchanger

Pressure sensors are placed on the cold inlet and outlet sides of
the heat exchanger to detect an expended filter and ensure the
water is at the proper pressure to remain in the liquid state.

Filter/Residence Sterilization Tank

Temperature sensors are located in the tank to ensure that the
water has reached its sterilization temperature of 121.1° C (250°
F) . A current sensor is also located on the power supply to the
heater to determine if it is working properly.

Ultrafiltration Module

Pressure sensors are located on either side of the UF module to
determine if the filter is expended. Values for pressure still
need to be determined. A flow sensor is also located before the UF
module to determine if it is being backflushed or not.

Heat Exchanger

Flow sensors are placed on both the inlet and outlet sides of the
heat exchanger to determine if it has become clogged.

Reverse Osmosis Module

Pressure sensors are located on either side of the RO module to
determine if the module is functioning properly and determine if
blockage has occurred. A conductivity sensor will be used to
determine when to flush the recycle loop.

Unibeds

A conductivity sensor is placed between the two unibeds to
determine if they are expended. Each unibed will last
approximately 60 days according to current data.

38



Process Control Water Quality Monitor

This is a separate subsystem of the WRM and is discussed at length
in section 2.2 of this report.

Product Water Storage Tank

A quantity sensor is placed on the product water storage tank to
determine if the system should begin processing, go to standby
mode, or switch to off mode. The quantity sensor determines the
position of the solenoid valve on outlet of the tank. If the tank
becomes empty these valves would be closed.

Gas Pressurization Section

Pressure sensors are located on the exit side of the product water
storage tank to determine if the pressure is between 34.5-82.74
kN/m2 (15-30 psig). Quantity sensors are located on the water
busses to determine if they are pressurized.

COMPARISON OF CONTROL SCHEMES

The new control system has advantages over the current control
scheme. The primary advantage is that the new control system has
feedback to determine more accurately the condition of the system.
It operates on an as-needed basis, processing water only when there
is a sufficient amount to be processed and when water is needed.
This enables the new system to operate more efficiently by
consuming less power. The new system also frees up the astronauts
to perform their duties and not be bothered with controlling the
system. This control scheme also contains many fail safe features.
This allows the system to shut itself down if a problem arises that
would endanger the astronaut's safety.

The proposed control scheme has three main disadvantages; it will
be more complex, consume more space and be more costly to
implement. The new method also requires further research into the
proper operating pressures of each point and a complex hierarchy of
control.[3:1-2]

39



2.5 POTABLE WATER PROCESSOR

40



2.5.1 POTABLE WATER PROCESSOR DESCRIPTION

Figure 2.5-1 [2:8] is a diagram of the Potable Water Processor
(PWP). The purpose of this subsystem is to produce potable water
for consumption by space station astronauts. Condensate from the
Temperature and Humidity Control (THC) and Atmosphere
Revitalization (AR) subsystems provide feed water for the PWP. The
Potable Water Distribution Bus (PWDB) distributes processed water
about the space station. Two processors, one in the Habitation
Module and one in the Laboratory Module, comprise the PWP. Each
has a capacity based on 2.84-5.16 kg H2O/man-day with each
processor operating for forty hours[3:1]. Two twenty hour
processing periods exist in the forty hour cycle. The break allows
the Condensate Storage Tank to refill should the Condensate Storage
Tank empty before the end of the forty hour cycle.

During a normal processing cycle, Condensate from the Condensate
Storage Tank enters the Filter/Heater at a nominal rate of 1.81
kg/hr[3:l]. The Condensate Storage Tank and Main Pump bring system
pressure to 103.4-206.8 kPa[3:l]. The Filter/Heater raises the
water from ambient temperature to 121°C. The water remains at this
temperature for at least 20 minutes[3:1]. The Heat Exchanger pre-
heats water entering the Filter/Heater and allows the effluent to
move to the Unibeds at ambient temperature. The Filter/Heater
destroys microorganisms and filters particulate.

The Unibeds are multifiltration beds composed of ion-exchange
resins and activated carbon. They remove inorganic and high
molecular weight organic compounds. They also maintain a residual
iodine level of 2-4 ppm[2:3]. The Unibeds have a 30 day life-
time [3:1]. Replacing the filters involves rotating the second
filter into the lead position and placing a new filter in the
second position. The pressure and conductivity sensors monitor the
Unibeds for clogging. The controlling CPU can automatically
backflush the beds, based on bed age and sensor information. The
Urine/Flush Water Processor receives backflush brine.

The water moves on to a Volatile Removal Apparatus (VRA Reactor).
Hydrogen peroxide is the oxidant for a catalytic oxidation reaction
in the VRA Reactor. Alcohols and low molecular weight organic
compounds are oxidized for removal by a set of Polishing Ion-
Exchange beds. The oxidation reaction takes place at 121°C or
higher[3:2]. A regenerative Heat Exchanger pre-heats water
entering the VRA Reactor and brings VRA Reactor effluent to ambient
temperature. A Phase Separator removes oxidation process gas by-
products and vents them to the Gas Rack. A gas check valve
prevents backflow from the Gas Rack to the PWP. The Phase
Separator is assumed to be passive and does not need monitoring.

41



r^—

fi

s
£
,

B-

f

x

,

?

1

i

B-

I

I

^

i
a.
1
3*
|:jQ-i

uo
N

.1

O

•2

]3
0o

R-

s
>
\
i
rf

I
J

i
L_

<s

I1L

t

§ \

F

1
-0
-0

»' /

>>

i|
E[L

|c
W I—s
S
S£

o>

•- r~"5 [7*
Q- t

vAAA/

AAAA
1

KAAA/vv VV

'VXAA

NAAA/

AAAA
1

-»-

Tr̂

fl^jy™

r
j^
T^
P

O

wvv

AAAA

§

&

ils
III
p§?(•Sir

o
•H
43

V
A
o
CO

4J
n
>ia

CO

o
H
Aa
43
0
P4

a
o

(tf
H
43

<H
•H
43

H
I

in•
<M

42



Polishing Ion-Exchange beds follow the Phase Separator and remove
the alcohols and low molecular weight organic compounds oxidized by
the VRA Reactor. Pressure and conductivity sensors monitor for
filter clogging. The controlling CPU can backflush these filters
automatically with the Urine/Flush Water Processor receiving the
brine.

The Process Control Water Quality Monitor monitors water quality
during processing. Extensive batch testing by the Water Quality
Monitor provides calibration information to the controlling CPU
about the PCWQM. The PCWQM samples every 15 seconds to find pH,
conductivity, temperature and total organic carbon content [Table
2.2-1]. These factors determine if the processed water will enter
the Potable Water Holding Tanks or if the water should be recycled
through the PWP. To recycle the water, a three-way solenoid valve
redirects flow to the Main Pump inlet.

On its way to the Main Pump, the water passes through a Microbial
Check Valve (MCV) that at present adds iodine or another biocide to
the water. The MCV is assumed to be passive and lacks monitoring.
A check valve on the MCV outlet prevents water flowing into the PWP
from the Condensate Storage Tank from entering the MCV.

Each PWP has four Potable Water Holding Tanks. For each half cycle
(20 hours) they have different functions. One tank is filling with
processed water for later astronaut use while a second tank is
filling with processed water for batch testing by the WQM. A third
tank fills with potable water for standby and emergencies and the
fourth tank supplies potable water to the astronauts. The tank
supplying the astronauts is the tank that was filling for standby
in the previous half cycle. These tanks have bellows to maintain
an outlet pressure of 103.4-206.8 kPa on the PWDB. Control of
bellows pressure is similar to that used on the Condensate Storage
Tank. The two-way solenoid valves attached to the inlet and
outlets of the Potable Water Holding Tanks have fail-safe positions
reachable by spring force. They will close in the event of power
failure or power removal. Manual movement of the valves is
possible.

Each PWP processor has a controlling CPU. The controlling CPU
makes decisions on processor mode, start and stop times and
emergency control based on sensor information. The controlling CPU
reports to a master CPU, which then communicates with the space
station Systems Software. Providing each PWP with its own
controller relieves the Systems Software of processor control.
This allows a more sophisticated control scheme for the processor,
capable of near autonomous operation.

43



2.5.2 POTABLE WATER PROCESSOR CONTROLS

CURRENT POTABLE WATER PROCESSOR CONTROL SCHEME

The current Potable Water Processor (PWP) has five modes of
operation with sensors to report on the system status. The five
modes of operation are: Initialization, Standby, Operate, Shutdown
and Stop[3:3]. Space Station Freedom will have two PWPs, one in
the habitation module and one in the laboratory module. They
operate one at a time. Each processor operates for forty hours.
The operating processor will continue to process condensate stored
in a tank until the tank is empty or the Systems Software signals
a stop.

PROPOSED POTABLE WATER PROCESSOR CONTROL SCHEME

The proposed PWP control scheme uses additional sensors for
monitoring of storage tank pressure and three-way solenoid valves
to allow backflushing of individual filters. Figure 2.5-2 shows
placement of sensors and control valves. In the proposed system,
each PWP processor will be controlled by a dedicated CPU with a
third CPU monitoring both processors and reporting to the Systems
Software. Changes and additions to the processor modes provide
greater control of the system during normal operation and emergency
situations. The proposed modes of operation are: Initialization,
Update, Standby, Process, Normal Stop, Emergency Stop, Backflush,
Manual Valve Control, Receive, and Off.

The Initialization mode is the primary start-up mode for the PWP.
The controlling electronics of the PWP and the heating element of
the filter/heater receive power. If pumps that can be engaged and
disengaged while maintaining a constant motor speed are present,
then they will be powered. Bellows Storage Tank Compressors are
powered. The valve positions will not be changed during this mode.

Update mode will usually follow Initialization and the Controlling
CPU will find all valve positions to prepare for moving into
Process, Backflush or Manual Valve Operation modes. The CPU also
checks fluid levels in the Condensate Storage Tank, Potable Water
Storage Tanks, and the H2O2 Bladder Tank. If there is no condensate
to operate on, or if the Potable Water Storage Tanks are full, then
the system will move to the Off and Receive modes to conserve
power.

In the Standby mode, all electronics are powered, as are heaters,
pumps and compressors. The Controlling CPU will know all valve
positions and fluid levels in condensate storage, potable water
storage and H202 bladder tanks. Standby is a staging point for the
processor to move to Process or Backflush modes. The processor

44



o
•H
•P

o
M
•Pcoo
M
0
a
a
o
o
o
n
Pi
M
O
4>

I

4*
0
PU

•O
O
a
o
a
o

CM
I

in•
(M

M

&



will not remain in this mode for longer than it takes the
Controlling CPU to change valve positions for the next mode of
operation.

The PWP will spend most of its forty hour duty cycle in the Process
mode. During this mode, the PWP is actively processing Condensate
Storage Tank water. The Condensate Storage Tank will not receive
condensate from the Atmosphere Revitalization (AR) or Temperature
and Humidity Control (THC) sub-systems while Process mode is
active. The pressure of the Condensate Storage Tank is monitored
and maintained such that the outlet pressure is sufficient for
passing water through the system. When the bellows pressure is
within the proper range, the outlet valve will open and the main
pump will engage to begin processing. The temperature of the
filter/heater is monitored and adjusted as necessary. Line
pressures, water conductivity, quality testing PCWQM and holding
tank levels are monitored.

The Normal Stop mode of the PWP will be selected at the end of the
processor's forty hour cycle, if all water from the Condensate
Storage Tank has been processed, or if the Potable Water Holding
Tanks are approaching capacity. The Controlling CPU will close the
Condensate Storage Tank outlet valve but continue to power the Main
Pump until the Potable Water Storage Tank quantity sensors report
no addition of water to the receiving tank(s). The three-way valve
following the PCWQM is then set to recycle water back to the main
pump inlet and power will be removed from pumps, heaters, and
compressors. If the processor must be restarted after the Normal
Stop mode, the Initialization and Update modes must be activated.
The Off mode will generally follow the Normal Stop mode.

Emergency Stop provides a way to stop flow from the processor to
the Potable Water Storage Tanks quickly. Upon receiving the signal
to move to the Emergency Stop mode, the Controlling CPU will change
the three-way valve after the PCWQM to recycle the processed water
back to the main pump inlet. The outlet valve of the Condensate
Storage Tank also will be closed. Emergency Stop removes power
from the pumps, heaters and compressors. The Emergency Stop is
nearly the reverse of the Normal Stop, except that water will be
trapped in the system. Most of the trapped water can be removed by
the Backflush mode or by operating the PWP in the Manual Valve
Operation mode. To begin processing water after an Emergency Stop,
the Initialization and Update modes must be used.

The Manual Valve Operation mode allows the astronauts to start and
stop pumps and compressors manually, to have manual control of
heater temperature and manual control of valve positions. The
valve positions can be changed at the valve or via the Systems
Software, Master CPU and dedicated CPU. This mode allows the
astronauts complete control over the system during repairs or
routine maintenance (i.e., changing of filters). This mode can
only be reached after Initialization. If the system fails and

46



cannot be initialized, then the Systems Software must inform the
Master CPU to use only the undamaged PWP processor.

The Condensate Storage Tank cannot receive water from the AR and
THC sub-systems during Update, Process, Normal Stop, or Emergency
Stop modes. The Receive mode is a background task for the
Initialization, Standby, Backflush and Off modes. When the
processor is in the Receive mode, the bellows pressure is reduced
below the inlet line pressure (but no lower than ambient pressure)
and the inlet valve to the Condensate Storage Tank will be opened
allowing condensate to flow into the storage tank. Process mode
requires repressurization of the bellows.

The Off mode removes power from the electronics and generally will
be accompanied by the Receive mode. The Off mode follows the
Normal Stop and Emergency Stop modes. In an emergency or loss of
system control, the Off mode can be executed by the astronauts via
Systems Software. Executing the Off mode out of sequence (i.e.,
because of astronaut intervention) , removes all power from the
system. All solenoid valves in the PWP have fail-safe positions
(inhibit flow into and out of system). In the event of abnormal
power removal, these fail-safe positions are reached using springs.
The Off mode cannot be executed by the Controlling CPU except
following a Normal Stop mode or Emergency Stop mode.

The Controlling CPU will monitor sensors by multiplexing them onto
fewer lines. If a sensor begins to send information requiring the
attention of the CPU (i.e., pump speed dropping below a set level)
the CPU will poll that sensor more frequently until the problem has
been resolved. If a problem is not resolvable by the Controlling
CPU, it will report to the master PWP CPU, which will decide
whether to switch processing to the dormant PWP, continue
processing with the ailing PWP, halt all processing, signal the
astronauts via the Systems Software or some combination of the
above.

MODES FOR PROPOSED CONTROL SCHEME

Potable Water Processor Power-up Mode

The normal Power-up Sequence begins with the master PWP CPU
selecting the Habitation or Laboratory PWP. Processor condition
(damaged or healthy) and last processor to operate determine PWP
activation. If both processors are healthy, the dormant processor
will begin a power-up sequence as the operating processor is
following a normal stop sequence. The mode order for a normal
power-up sequence is: RECEIVE (background mode, operating since
last normal stop sequence) -> INITIALIZATION -> UPDATE -> STANDBY -
> PROCESS. If the filters in the processor are nearing the end of
their lifetime (approximately 30 days), the normal power-up
sequence could be modified to contain a Backflush mode before

47



Initialization. The Backflush could be performed on each section,
or on separate sections. The modified mode sequence is: RECEIVE ->
BACKFLUSH -> INITIALIZATION -> UPDATE -> STANDBY -> STANDBY ->
PROCESS.

Potable Water Processor Power-down Mode

The normal power-down sequence execution occurs at the end of a
processor's forty hour processing cycle, if the Condensate Storage
Tank is empty or if the Potable Water Storage Tanks are reaching
capacity. The mode order for a normal power-down sequence is:
PROCESS (current mode) -> NORMAL STOP -> OFF -> RECEIVE. If the
filters are near the end of their lifetime and a backflush was not
performed during the normal power-up sequence, a Backflush mode may
be inserted following the Normal Stop mode. The modified normal
power-down sequence is: PROCESS -> NORMAL STOP -> BACKFLUSH -> OFF
-> RECEIVE.

Potable Water Processor Emergency Power-down Mode

In an emergency (i.e., power must be diverted to another space
station function or there is an uncorrectable failure in the PWP)
the Controlling CPU can initiate an emergency power-down sequence.
The sequence of modes is: PROCESS (current mode) -> EMERGENCY STOP
-> OFF. No Backflush or Receive mode is part of the emergency
power-down sequence. The master PWP CPU also will alert Systems
Software to the emergency power-down and provide a reason for the
power-down.

SYSTEM MONITORING SCHEME

Water Storage Tanks (Condensate and Product)

A pressure sensor monitors the bellows pressure of each tank. If
the bellows pressure is not in range for the current mode of
operation, two solenoid valves provide a means for altering the
pressure. One solenoid valve connects the bellows to a compressor
to increase pressure. The fail-safe position for this valve is
closed. The second valve can open to vent air to release pressure.
The Gas Rack receives vented air. The fail-safe position for this
valve is open. Level sensors monitor the quantity of water in the
tanks. The Controlling CPU places this value in memory so that as
the water level in the tank begins to decrease rapidly (i.e., leak)
the CPU can change bellows pressure accordingly and, if necessary,
initiate the Emergency Power-down Sequence.

Condensate Bus Inlet

A pressure sensor on the Condensate Bus Inlet monitors the water
pressure so that the Condensate Storage Tank bellows pressure is
lower than the bus pressure. If the bellows pressure has been

48



reduced to ambient pressure but the bus pressure is still lower,
the Controlling CPU will alert the Master CPU. The Master CPU will
then attempt to increase the bus pressure. A check valve placed
between the two-way solenoid valve and the Condensate Storage Tank
prevents backflow from the Condensate Storage Tank to the bus.
Integral flow sensors in the check valve monitor for valve failure.

Condensate Storage Tank Outlet

The Condensate Storage Tank Outlet has a pressure sensor to monitor
outlet pressure. Information from this sensor is used to adjust
the bellows pressure. A two-way solenoid valve controls outlet of
water from the Condensate Storage Tank. A check valve follows the
two-way solenoid to prevent backflow into the storage tank. A
second check valve appears on the Recycle loop of the PWP to
prevent flow of water from the Condensate Storage Tank from
entering the outlet of the recycle loop. The check valves have
integral flow sensors to monitor for valve failure.

Pumps

Both the Main Pump and the H^ Pump have speed sensors. These
sensors monitor for proper operation of the pumps and provide an
estimate of the pump outlet pressure. The estimated outlet
pressure provides a check on both the pump performance and the
pressure sensors following the pump. Three-way solenoid valves
surround the main pump. Forcing potable water backward through the
pump to the Urine Processor Assembly backflushes the pump.

Filter/Heater and 1st Heat Exchanger

A set of pressure sensors surrounds the Filter/Heater and Heat
Exchanger. These monitor input and output pressures to alert the
Controlling CPU to leaks or the need for a backflush of the
Filter/Heater. Three-way solenoid valves surround the
Filter/Heater for backflushing. A temperature sensor in the
Filter/Heater provides information for maintaining the 250
temperature required. A mechanical thermostat backs up the
temperature sensor. The heating element has a current sensor to
monitor power consumed.

Multifiltration and Polishing Unibeds

Conductivity sensors surround the two Multifiltration and two
Polishing Unibeds followed by a pressure sensor. These sensors
inform the Controlling CPU about the condition of the Unibeds. A
marked increase in water conductivity ftom previous sampling
suggests Unibed clogging. Each Unibed can be backflushed
individually.

o

49



Volatile Removal Apparatus (VRA) Reactor and 2nd Heat Exchanger

A set of pressure sensors surrounds the VRA Reactor and Heat
Exchanger. The H2O2 Bladder Tank has a controllable pump to release
known amounts of H202 into the VRA Reactor. A level sensor on the
H2O2 Bladder Tank and speed sensor on the pump inform the
Controlling CPU about HjOj release. The CPU releases HjOj to match
the flow of water into the VRA Reactor, as monitored by a flow
sensor. Pressure sensors surround the VRA Reactor and Heat
Exchanger to monitor for proper line pressure. Insufficient line
pressure suggests a clogged VRA Reactor. Three-way solenoid valves
surround the VRA Reactor for backflushing.

Phase Separator

The Phase Separator vents gasses to the Gas Rack. The Phase
Separator is assumed to be a passive system and currently lacks a
control scheme.

Process Control Water Quality Monitor

This is a separate subsystem of the PWP and is discussed at length
in section 2.2 of this chapter.

Potable Water Storage Tanks

During potable water processing, each of the four tanks has a
different function. One tank is filling with processed water for
later distribution, another is filling with processed water for
further testing by the Water Quality Monitor subsystem, another
tank is on standby (empty) and the fourth tank is delivering water
to the Potable Water Distribution Bus. Each tank has a level
sensor to monitor fluid level inside the bellows. Bellows pressure
is monitored and used to control the inlet two-way solenoid valve
and vent two-way solenoid valve. The same compressor that supplies
air to the Condensate Storage Tank is used to supply the Potable
Water Storage Tank bellows with air. The tank designated as the
Potable Water Supply Tank maintains a higher pressure to deliver
water to the Potable Water Distribution Bus at 103.43 to 206.86 kPa
gage. A pressure sensor on the distribution bus is also used to
control the Potable Water Supply Tank bellows pressure. The two
filling tanks maintain a pressure below line pressure (not to fall
below ambient pressure) to allow filling. Check valves on the
outlet lines of the Potable Water Storage Tanks prevent backflow
from the distribution bus into the tanks. The check valves contain
integral flow sensors to monitor for valve failure. A two-way
solenoid valve on the distribution bus can be closed to isolate the
storage tanks from the bus. The valve's fail-safe position is
closed (isolate tanks). There are two of these valves present in
the event of device failure.

50



Microbial Check Valve

The Microbial Check Valve (MCV) is used to add an additional
biocide to the processed water as it is recycled to the main pump
inlet. A check valve after the MCV prevents flow of water from the
Condensate Storage Tank into the MCV. The MCV is assumed to be a
passive system and lacks a control scheme.

Check Valves

All check valves in the PWP have integral flow sensors (not shown
on the system diagram). These flow sensors notify the Controlling
CPU of a valve failure. In the event of a pressure sensor failure,
the check valve flow sensors indicate high line pressure.
Depending on the sensor location, number of sensors reporting out
of range, water waiting to be processed, Potable Water Storage Tank
levels and time remaining in the processing cycle, the Controlling
CPU can opt to continue processing or initiate the Emergency Stop
Sequence. The Master CPU will notify Systems Software in the event
of Emergency Stop Sequence.

Two and Three—Way Solenoid Valves

All solenoid valves in the PWP contain position sensors. These
sensors report to the Controlling CPU the current valve position.
If a valve is stuck, the Controlling CPU will initiate the
Emergency Stop Sequence. The Master CPU will notify Systems
Software of the Emergency Stop Sequence.

COMPARISON OF CONTROL SCHEMES

The proposed control scheme places the PWP under the control of a
dedicated CPU which reports to a Master CPU. The Master CPU then
reports to the Systems Software and ultimately the astronauts. By
placing these "buffers" between the PWP and the astronauts, the PWP
can 1) be self-contained, 2) self-repairing (in a limited way) and
3) portable. Because this control scheme is portable, the same PWP
can be implemented on different craft, each with different Systems
Software. The software of the Master CPU can be rewritten to
interface with the host Systems Software, rather than modifying the
host Systems Software and running the risk of losing control of
another vital system. The current control scheme implies that the
same software that is monitoring other life support systems also
will be required to monitor the PWP.

Because the PWP will have limited self-repair capabilities, it can
continue to run and ensure an emergency supply of potable water for
the astronauts. The inclusion of a Manual Valve Operation mode
makes the testing and repair of the system easier for the

51



astronauts. With this mode, they can perform dynamic testing on
the system. The current control scheme only allows for static
testing.

A self-contained system eases repair and upgrading of the system.
Addition of sensors requires only the Controlling CPU software to
be modified rather than the Master CPU software and/or the Systems
Software.

Drawbacks to this system result from increased system complexity.
The proposed control scheme has ten modes of operation, twice the
current scheme. The addition of sensors to storage tank bellows
and check valves will increase system cost. The writing of control
software for Controlling CPUs and Master CPUs also will increase
the cost. The number of sensors will produce a system that is
impossible to test exhaustively. Computer simulation of the system
must supplement physical tests. Reporting insufficient information
to the Controlling CPUi, the Master CPU or the Systems Software
could result in a system failure and notification of the astronauts
too late to correct the failure.

52



3.0 MATHEMATICAL MODELING

53



3.1 INTRODUCTION

The modeling of the Air Revitalization (AR) system is divided
into three distinct areas of concentration. First is the Carbon
Dioxide Removal Assembly. Next, the Carbon Dioxide Reduction
Assembly, and finally the Oxygen Generation Assembly (OGA).

Carbon Dioxide Removal Assembly uses a series of molecular sieve
beds to extract CO2 from the cabin air of the Space Station. The
CO2 is removed from the air and is pumped to a C02 storage tank.

Stored CO2 is drawn from the storage tank into the Carbon Dioxide
Reduction Assembly for conversion to methane (CH4) and water
vapor. The methane/water vapor mixture is cooled and water is
removed by a centrifugal separator. The methane is placed in a
storage tank for later disposal.

The Oxygen Generation Assembly converts water to oxygen and
hydrogen gas in electrolysis cells. An electrical current passes
through electrodes in each cell, causing the "cracking" of water
into hydrogen and oxygen gas at the electrode surface.

Math modeling serves two purposes. The first purpose is to
provide a means of learning how each system operates. Second it
provides the Expert System with data for its knowledge base.

The following subsections give an analysis of the three Air
Revitalization subassemblies.

54



3.2 CO, REMOVAL ASSEMBLY MODEL

DESCRIPTION

The C02 Removal Assembly is part of the Air Revitalization (AR)
Subsystem. Its purpose is to remove CO2 from the cabin
atmosphere, deliver CO2 to the CO2 Reduction Assembly and return
humidified air to the cabin. This is done using a four bed
molecular sieve consisting of: two desiccant beds to remove water
vapor from incoming air, two C02 adsorption beds, a blower to
force air through the system, a CO2 pump, a CO2 accumulator, a
pre-cooler and five multiple-flow selector valves [1:8]. Figure
3.2-1 illustrates these major components.

Desiccant
Bed

C02 Sorbent
Bed

C02
Accumulator

Bed
C02 Sorbent
Bed

Figure 3.2-1 CO2 Removal Assembly

MATH MODEL

Assumptions

1. All beds modeled as lumped systems.

2. For simplicity, we have neglected the fact that the
adsorbing/desorbing processes vary as a function of
distance through the bed.

3. Assumed thermal equilibrium which negates the dependence
on bed length.

4. Thermal equilibrium assumed for the CO2 desorbent bed.

5. Pump operation is 100% efficient, isentropic, and
adiabatic.

55



6. The model can be improved by sub-dividing each bed into
many smaller beds. This method results in plug flow
operation in which the simulation takes place several
times for each bed.

7. To implement the improved modeling scheme, the overall
bed volume and sorbent mass will be divided by the
number of plugs.

All four beds have been modeled as lumped systems. For
simplicity, we have neglected the fact that the adsorbing/
desorbing processes vary as a function of distance through the
bed. In our model, we have assumed instantaneous thermal
equilibrium, which in effect, negates the dependence on bed
length. We intend to improve the model by sub-dividing each bed
into many smaller beds. Plug flow operation results, in which
the simulation takes place several times for each bed. To
implement this scheme, the overall bed volume and sorbent mass
will be divided by the number of "plugs". The simulation will
most likely be modified using 2-D arrays.

The relationship equations and state variable equations are as
follows:

Equations

1) For the CO2 desorbent bed assuming thermal equilibrium,
one obtains

(2)

dm.

dt

56



d*
mbCvb

(6)

5

The required definitions are given as:
Pb = CO2 equilibrium pressure of bed (kPa),
kt = constant (picked to be 0 < Kt < 1) ,
md = mass of CO2 in sorbent material (kg) ,
m,, = mass of sorbent in bed (kg) ,
Tb = temperature of the bed (K),
Tref = reference temperature (K),
Tg = temperature of CO2 gas (K) (substitute Tb) ,
Pg = pressure of CO2 gas in bed void space (Kpa) ,
nig = mass of CO2 gas in void space (kg) ,
R = CO2 gas constant (kPa.m

3 / kg.K) ,
= void space of bed, also volume of C02 (m

3) ,
= transfer coefficient (0 < Kj < 1) ,
= C02 gas mass flow rate, determined by pump (kg/sec),

Sc = heat of sorption of CO2 (J/kg CO2) ,
Power = power applied to bed (J/sec),
cvb = heat capacity of sorbent material (J/kg.K) ,

dmd/dt = rate of CO2 desorbed (kg CO2/sec) ,
dffig/dt = change in mass of C02 in void space (kg CO2/sec) ,
dTb/dt = change in temperature of bed (K/sec).

Pump operation has been assumed to be 100% efficient,
isentropic, and adiabatic. In actuality, no pump exhibits
such behavior due to friction, windage, heat loss and
pressure losses. For our first attempt, however, we will
neglect these inefficiencies to simplify the model. At this
time, this is an acceptable model as it provides the correct
overall response.

2) For the rotary vane pump assuming 100% efficiency,
isentropic and adiabatic operation, we have

mi-m0, (7)

(8)

(9)

57



(10)

The symbols are defined as:
m0 = mass flow rate of CO2 gas stream (kg / sec) ,
w = angular velocity of pump (rad / sec),
k3 = transfer coefficient of pump (0 < K3 < 1) ,
pg = density of C02 gas (kg / m

3) ,
R = C02 gas constant (kPa.m

3 / kg.K) ,
Pg = entering CO2 gas pressure to pump (kPa) ,
Tb = entering CO2 gas temperature to pump (K) ,
Pp = exiting CO2 gas pressure from pump (kPa) ,
Tp = exiting CO2 gas temperature from pump (K) ,
k = specific heat ratio of C02.

3) The accumulator, during continuous operation, is governed by

ra=-^-+rof (ID
macv

<">

dU

The needed quantities are defined by:
Ta = temperature of accumulator (K) ,
Ua = internal energy of accumulator ( J) ,
cv = specific heat of CO2 gas (J / kg.K) ,
T0 = thermodynamic reference temperature for internal

energy (K) ,
Pp = CO2 pressure at pump exit (kPa) ,
R = C02 gas constant (kPa.m

3/kg.K) ,
V, = volume of accumulator (m3) ,
ma = mass of CO2 in accumulator (kg) ,
Tp = exiting temperature of pump (K) ,

= change in total mass of C02 in accumulator (kg/sec) ,

58



dUa/dt = change in internal energy of accumulator (J/sec) ,
m0 = CO2 mass flow rate through pump (kg/sec) ,
mom = CO2 mass flow rate to CO2 Reduction Assembly (kg/ sec) ,
Qioss = heat loss of accumulator (J/sec) .

TRANSFER COEFFICIENTS AND INITIAL CONDITIONS

The final values of the adsorbing cycle determine the initial
conditions Tb[0] and md[0] for the desorbing cycle. From these
values, the initial conditions are found. From Equation (1) one
obtains

(is)

Where the index of zero refers to the time relative to start of
cycle. At t,.̂  = 0 with Pb[0] = Pg[0], using equations (1), (3)
and (15) yields the initial condition m^O] as

Since the initial amount of CO2 in the desorbing bed is known and
will be desorbed in about 60 minutes, the coefficient k2 can be
estimated by (5) to obtain

(1) =0.0006 (17)
60-min

Next, to get k3, calculate pg[0] from (9) as

(18)

Taking the constant mass flow rate m0 to be dmd/dt for w=200
rad/sec. , k3 can be found from (8) as

fc,«0.0023

The k values are physical properties of the components and do not
change. The values calculated above are not exact, but they are
of the proper order of magnitude to allow model operation over a
wide range of parameters.

59



MODELING TECHNIQUES

Solution of the governing equations relies on solving
differential equations. This simple integration procedure gave
results accurate only for small time steps. The original
simulation program used a six second time step. In regions where
the solution has a steep slope, the large time step forced the
program to over or under estimate the answer. The over and
under-shoot appeared as transients on graphs of state variable
equations. These transients also caused negative absolute
pressures and negative absolute temperatures. The erroneous
negative numbers were fatal errors in program statements with
exponential functions. Decreasing the time step to one second
for the AT&T 3B1 model and 0.1 second for the IBM models
alleviated the problems caused by steep solution slopes.

Decreasing the time step introduces new difficulties. Because
data was saved in arrays, decreasing the time step increased the
number of array elements. The limited memory of the AT&T 3Bl's
prevented modeling of more than about ten minutes of the cycle.
To overcome this problem, temporary registers were used to hold
state equation variables and other variables until about thirty
seconds of the model has been simulated. After the thirty
seconds, the temporary register values are placed in plotting
arrays. In the case of CLPMODEL.C, the temporary registers are
used to collect data for five (length is arbitrary) minutes after
which time it is written to CLIPS sensor files.

Temperatures of the desorbing bed, CO2 accumulator and CO2 pump
reached very high (>1000 K) levels in initial modeling attempts.
Simple on/off control of the desorbing bed heater and cooling of
the accumulator were used to keep the temperature within
reasonable values. The controllers produce oscillations in bed
temperature, accumulator temperature and associated components.
Future versions of the program should incorporate control schemes
reflecting actual controllers.

SAMPLE OUTPUT

Several simulations were made using the AT&T 3B1 version of the
model, each time changing a single parameter. The model seems
most sensitive to pump speed and reference temperature. The
following set of graphs shows the model running with the listed
parameters:

Mass flow rate of air into model =0.2 kg/s
HjO concentration into model = 0.01 kg H2O/kg air
C02 concentration into model = 0.001 kg CO2/kg air
Temperature of air into model = 300 K
Angular velocity of CO2 pump =200 rad/s
Reference temperature of model = 250 K

60



10 15 20 25 30 35 40
Cycle Time (minutes)

45 50 55

Figure 3.2-2 Temperature of Desiecant Bed

Figure 3.2-2 gives indication that a half-cycle time of 55
minutes is sufficient for the desiccant bed to stabilize at or
near the ambient temperature. The temperature of the adsorbing
CO2 bed follows the same curve as the desiccant bed. Because of
simplifications made to the model, the maximum adsorbing bed
temperature was nearly the same as the maximum desiccant bed
temperature or approximately 322 K.

10 15 20 25 30 35 40
Cycle Time (minutes)

50 55

Figure 3.2-3 Concentration of C02 Leaving
Sorbent Bed

61



Figure 3.2-3 shows that most of the C02 is adsorbed in the first
third of the cycle. The graph actually shows the return air
concentration, but the amount of CO2 adsorbed would be the
initial concentration minus the graph value for a given
simulation time.

0.050

0.045

0.040

0.035

.030

00.025
o
%0.020
CO
a 0.015

0.010

0.005

0.000
60 65 70 75 80 85 90 95

Cycle Time (minutes)
100 105 110

Figure 3.2-4 Mass CO2 in Accumulator

The CO2 Removal model assumes that the CO2 Reduction assembly is
drawing CO2 from the storage tank at a constant rate. Figure
3.2-4 shows the accumulation of C02 in the tank. It was
important to note that the Removal and Reduction assemblies could
both place demands on the storage tank. As long as the Reduction
assembly does not draw C02 from storage at a greater rate than
the Removal assembly could produce C02/ the system will function
properly. The control system must be able to resolve conflicts
such as an empty CO2 storage tank or a Reduction assembly that is
drawing too much C02 from the tank.

62



610

573

536

^499

^462

o425
<u
1388
«j
•-351

314

277

240
60 65 70 75 80 85 90 95

Cycle Time (mintues)
100 105 110

Figure 3.2-5 Temperature of Accumulator

The accumulator tank was modeled with a cooling jacket in place
to remove a constant amount of heat when the tank reaches a set
temperature. The jacket is controlled by a thermostat as the
ECLSS control system should not bother with this low level
control requirement. An interesting result of this on-off
control of the tank temperature is the reflection of the graph
shape in any other variable which has accumulation tank
temperature as part of its controlling equation. The pump outlet
pressure shown in figure 3.2-6 below illustrates this point.

3.0

2.7

60
08 1.8

£0.9
QU

0.6

0.3

0.0
60 65 70 75 80 85 90 95 100 105 110

Cycle Time (minutes)

Figure 3.2-6 Outlet Pressure of CO2 Pump

63



3.3 CO, REDUCTION ASSEMBLY MODEL

DESCRIPTION

The C02 Reduction Assembly of the ECLSS reduces the excess C02/
provides oxygen for use in the cabin and hydrogen for use in the
Oxygen Generation Assembly. This is accomplished with a system
comprised of a Sabatier Methanian Reactor (SMR) which converts
CO2 and H2 to methane gas (CĤ ) and water vapor (H2O) , a
Condenser/Separator (C/S) to remove product water, and a Carbon
Formation Reactor (CFR) to break down methane into Carbon and
Hydrogen. A block diagram of the CO2 Reduction Assembly is shown
in Figure 3.3-1.

Hydrogen —

Oxygen —

KJifrnnpn

U1VCDMIAtK

TAH1/lAlm

Mflfl PQQP

Acr SABATIER CONDENSER WATFR GAS OUTLET^
REACTOR HX SEPARATOR

MM=JJ !!=«„

FAN WATER DRAIN rn VTIIT

Figure 3.3-1 CO2 Reduction Assembly

HATH MODEL

The following assumptions are made:

1. Steady-state behavior.

2. Plug flow behavior.

3. No convection.

4. No work is done by the system.

5. Heat capacity is constant over the temperature range.

6. No CH4 or H20 enters the gas stream.

7. The reactions occur in stoichiometric amounts.

8. Catalyst does not deactivate.

64



The CO2 Reduction Assembly takes carbon dioxide and reacts it
with hydrogen over a catalyst to produce methane and water. The
reaction is given by the Sabatier reaction:

C02 + 4H2 <==> CH4 + (1)

To find the volume of the catalyst (i.e. the reactor) necessary
to carry out this reaction, a mass balance needs to be
formulated.

Mass Balance

Mass Balance

\
/

Reactor

\/

\

/

V V+AV

Figure 3.3-2 Mass Balance for
Sabatier Reactor

In words, the mass balance is as follows:

Rate of accumulation rate at rate at rate of production
of A in the = which A - which A + of A by chemical
system enters leaves reaction

In this derivation, A will refer to CO2.

At this point, two assumptions are made. The system exhibits
1) steady-state behavior and 2) plug flow behavior. Assuming
plug flow behavior allows radial variations to be neglected.
These requirements give

(2)

AK dV
= rA> (3)

65



where
FA ! v = mqlar flow rate of CO2 entering reactor

(moles/sec) ,
FA ! V+DV = molar flow rate of CO2 leaving the reactor

(moles/ sec) ,
rA = reaction rate (moles/cm3) ,
dV = change in volume of the catalyst (liters) .

The molar flow rate of C02, FA, can also be represented in terms
of the conversion of CO2 as

FA = FAO(1 - XJ, (4)

where
XA = conversion of CO2 and FAo = inlet flow rate of CO2.
This gives

dFA = dfF^ - F^XJ) = -F^dXJ. (5)

Substituting this expression for dFA back into equation (4)
yields

Integrating both sides of equation (6) gives

V=rA. ,—. (7)

o TA

Equation (7) is the mass balance integral that gives the volume
of the catalyst necessary to carry out the reaction to be
determined. In order to find the volume of the reactor, a
reaction rate rA for this reaction must be determined. A
reaction rate was found in a SAE technical paper [Itall]. The
reaction rate used is given by

66



A

,0.25 00.5 1

(8)

where
A = 1.112393 x 106

-* = 8553°* (9)

)
~

+ 33.165
.

atm -2
(10)

with
T = Temperature
P = Partial Pressure (atm).

In order to evaluate the integral in the mass balance (7), rA
must be exclusively in terms of XA. Thus, temperature and
partial pressures must be in terms of XA. Temperature can be
represented in terms of conversion through the evaluation of an
energy balance.

Energy Balance

In words the energy balance is as follows: The rate of
accumulation of energy equals the rate of flow of heat from
surroundings, minus the rate of work done by system on
surroundings, plus the rate of energy added by mass flow in,
minus the rate of energy out by mass flow out. The standard
energy balance for this system can be represented by the
expression

(ID

67



where
Q = Heat flow from surroundings to system (cal/sec),
W, = Work done by system on surroundings (cal),
8; = Ratio of the number of moles of species i

entering initially to the number of moles of
A entering initially ( = Fto/FAo) ,

Cpi = Heat capacity of species i (cal/gmoleK) .

The following expression represents the heat of reation:

T

+ / ACp dT = Heat of reaction (callgmole). (12)

This derivation requires the following approximations: there is
no convection (Q = 0) , there is no work done by the system on the
surroundings (W, = 0) , the heat capacity, C^, stays constant over
the temperature range in question, and the system is in
steady-state.

The heat of reaction for this system was found in [1:1] to be
given by

AffJT] = 16.4T - 0.00557-7* + 11200° + 34633
* J gmole

For this system the term,

n T

E l A /"< AT
J *iC

PtdT (14)

expands to:

F.Ao

where
A = CO2

B = HZ
C = CH4

(15)

68



It is assumed that there is no CH4 and H2O in the entering stream,
thus FQ, and F^ are zero and the last two terms in equation (8)
are also zero. The heat capacities for CO2 and H2 were repre-
sented by linear functions with respect to temperature. The heat
capacity for C02 is given by [3:1]

CpA = a + bT, (16)
where
a = 5.316
b = 0.014285

for a temperature range of 273 K to 1800 K.

The heat capacity for H2 is represented by

CpB = a + bT, (17)
where
a = 6.952
b = -0.0004576

for a temperature range of 273 K to 1800 K.

It is also assumed that the reaction occurred in stoichiometric
amounts, that is,

Substituting Equations (16) and (17) into (15) and integrating
from TAo = TB,, = 293 to T yields (19) :

Fj(5.316T + 0.0071425-7* - 2170.8)-t-(27.808-r - 0.0009152-7* - 8069.2)]. (19)

Substituting Equations (13) and (19) into the energy balance
(14), along with the assumptions made, yields:

-FJ33.124-7- + 0.0062273-7* - 10240] +

[l6.4-r - 0.00557-7* + 11200° + 34633̂ '̂  =0. <20>
[ T r" A

Solving for XA then gives

33.124-J + 0.0062273-7* - 10240

16.4T - 0.00557-7* + 11200° + 34633 <2 1>
T

After conducting a linear regression analysis, equation (21)
reduces to:

T = 1088XA + 297.59 (22)

69



Equation (22) now allows the temperature to be expressed in terms
of XA in the mass balance.

The next step is to relate the partial pressures of each species
in terms of XA. This can easily be done by assuming ideal gas
behavior and using the ideal gas law. The ideal gas law for
component A (CO2) is given by

PA = CART, (23)
where
PA = partial pressure of CO2 (atm)
CA = concentration of CO2 (gmole/cm3)
R = gas constant
T = temperature (°K) .

The CO2 concentration CA can be represented by

C - NAc* ~ (24)

NA = number of moles of C02
where
NA =
V = volume.

The number of moles NA can then be represented by

NA - NJJ - XA). (25)

Since there is a change of moles in the Sabatier reaction, the
volume can best be represented by

Epsilon, e, is defined as the fraction change in volume per mole
of A reacted resulting from the change in the total number of
moles. Epsilon can be expressed by

„ _ i=1 NAO (27)
e — i

v^ NTO

70



where
Vj = stoichiometric coefficients which are negative

for the reactant and positive for the products,
NAo = initial moles of CO2,
NTo = total moles initially present.

Again the assumption that the reaction occurs in stoichiometric
amounts is made so NAo/NTo is equal to 1/5 and e becomes -0.4.
Substituting Equations (25) and (26) into (24) and using e = -0.4
yields:

Substituting Equation (28) into (23) and noting that NAo/V0 is
equal to CAo yields

1 - X* ** A
_

- 0.4x T (29>

Noting that CAoRT0 is equal to PAo and also noting that the
temperature cancels out, Equation (29) becomes

PA ~ PC02 =^1 _04y ' (30)
A

With the assumption of reactions occurring in stoichiometric
amounts, PAo is equal to 0.2. Thus, the partial pressure of A
(C02) is now a function of conversion (XA) . Following a similar
derivation, the partial pressures for the remaining species can
be represented as follows:

Z> — D -_
* a — * w ~ w.fcl I. / -a i \B Ht M _ n AY ' <31)

(32)

71



Since all partial pressures and temperatures for all the species
are in terms of conversion, the mass balance integral can now be
integrated where rA is exclusively in terms of conversion.

In equilibrium reactions, a maximum conversion can be achieved.
This maximum conversion becomes the upper limit when evaluating
the mass balance integral. The maximum conversion can be
determined by setting the reaction rate, rA/ equal to zero and
solving for XA. Doing this yields a maximum conversion of
approximately 0.52. This maximum conversion corresponds to a
reactor operation temperature of approximately 860 K. Thus, the
volume of the catalyst can be found by:

0.52

(34)

where
rA = equation (8)
temp. = given in terms of conversion by Equation (22)
pp. = given in terms of conversion by Equations (30)

through (33).

As can be seen by the complexity of the equations, this integral
is difficult to evaluate analytically. Therefore a different
method was employed. To evaluate this integral, a plot of l/-rA
vs. XA was made and the area under the curve measured from XA = 0
to 0.52. Using a software package, this area was found to be
1.652 x 107. Therefore the volume is

K= 1.652 x
gmoles (35)

Equation (35) now allows us to determine the catalyst volume
necessary to carry out the reaction for a specified inlet C02
rate. Below is a table representing the reactor volume necessary
for various man-loadings.

Table 3.3-1 Reactor Volumes for Various Man-loadings

Man Loading

3 - man

5 - man

8 - man

10 - man

Inlet CO2 Flow Rate

7 x 10"* mol/sec

1.3 x 10'3 mol/sec

2.1 x 10'3 mol/sec

2.8 x 10'3 mol/sec

Catalyst Volume

3.1 gallons

5.7 gallons

9.2 gallons

11.3 gallons
* Numbers obtained from SAE technical paper, # 840936.

72



Throughout this derivation there was one significant assumption
that was made but not incorporated in the mass balance. This
assumption was that the catalyst did not deactivate (i.e. the
catalyst remained active indefinitely).

Based on this analysis, a reactor size of 11.3 gallons is
recommended operating at a temperature of 860 K. A size of 11.3
gallons was chosen because any man-loading below 10-man could
easily be handled by this reactor.

At this point in the modeling, a computer program was developed
that would simulate the Sabatier reactor and it is listed in
Appendix 3b. Output from this program correlated with the
previously recommended reactor size. For a set reactor volume,
any flow rate of CO2 equal to or below the flow rate that
corresponds to maximum conversion is fine. Yet, for flow rates
that are just slightly larger, conversion drops exponentially.
One item to note is that small changes in flow rates in moles/sec
correspond to fairly big changes in grams/sec. Never-the-less, a
reactor size corresponding to a 10-man loading will be sufficient
for most worst-case scenario's.

MODELING REVIEW

- There are no controls in our model.
- We did not consider transient responses in our model.

This is because the Sabatier reactor has heaters to
heat the catalyst at the entrance. We assumed that the
reactor would be heated up to the temperature relating
to maximum conversion before any species entered the
reactor.

- Obviously, our model is only a part of the overall WRM.
We decided to assume that the CO2 and H2 coming into the
Sabatier was actually from an external tank and not
from another sub-assembly. Therefore, our model does
not "communicate" with anything else in the WRM.

- As far as the expert system is concerned, they can control
bur whole model since the only output that is vital is
conversion, which relates to the production of H20
forthe OGA. Depending on the needs for water for the
06A, or conversely the amount of CO2 that the C02
Removal sub-assembly is producing, the expert system
can vary conversion to account for different flow rates
of CO2 in or of H20 out.

73



3.4 OXYGEN GENERATION ASSEMBLY MODEL

The Oxygen Generation Assembly (OGA) of the AR provides the daily
requirements of oxygen to the cabin compartment of the space
station. It accomplishes this by using electrolysis to convert
water into its two components, oxygen and hydrogen. This water
is supplied to the OGA from the CO2 reduction sub-assembly and
the hygiene water supply. A by-product of this reaction is
hydrogen gas which is used in the C02 reduction sub-assembly of
the ECLSS.

Permeable
Membrane

Electrolysis Module

Water Tanks

To 02
Supply

To NS
Supply

Fron N2
Bus Vater

Supply 'To N2
Bus

Figure 3.4-1 Oxygen Generation Assembly

The OGA assembly consists of two main components, a water storage
and supply system and an electrolysis module. The storage and
supply system of the OGA consists of two water storage tanks
pressurized by nitrogen. These tanks supply water to the
electrolysis module in alternating cycles. As one tank drains to
the electrolysis module, the other tank fills with water. This
is accomplished by means of a 4-way, 3-position directional
control valve (DCV). See Figure 3.4-1. The Differential

74



pressure across the bellows of the water tanks force the water to
the electrolysis module membrane. When the draining tank reaches
a low level set-point, detected by a photo-cell indicator, the
DCV switches to drain the other tank and allows this tank to
refill. This cycle continues throughout the normal operational
mode of the oxygen generation process.

When the water reaches the electrolysis module, it encounters a
permeable membrane that separates the water supply from the water
vapor region of the 18 electrolysis cells. Upon reaching this
permeable membrane of the electrolysis module, the water diffuses
across it and forms water vapor on the other side. The
electrolysis module then produces H2 from the water vapor at the
cathode and passes OH" ion through a KOH matrix. O2 is then
formed on the other side of this matrix at the anode of the
module. Both gases then leave the electrolysis unit and pass
through the pressure control assembly. See Figure 3.4-2. This
pressure control assembly, consisting of pressure control valves
on both the O2 and H2 outgoing lines, regulates the differential
pressure of the two departing gases.

Permeable
Menbrane

Electrolysis Module

Figure 3.4-2 Electrolysis Module

75



The reation of interest at the cathode is

which for the anode one obtains

MATH MODELING

The modeling of the OGA has been separated into two components:
the water storage tanks and the electrolysis module. Each of
these have their separate governing equations which are covered
in their respective areas.

Water Tank

The mathematical modeling for the water tanks can be done by
modeling the water portion, and the nitrogen portion of each
tank.

Assumptions

1. Water has constant physical properties.

2. Nitrogen has a constant heat capacity.

3. The water flow into the storage tank can be considered
turbulent since the tank fills in a four to five
minute period through a small diameter pipe.

4. The water flow out of the storage tank can be considered
laminar since it flows out over a three hour period
through a similar sized pipe.

5. The nitrogen flow into and out of the storage tank can
be considered as turbulent during the fill mode; and is
laminar during the drain mode.

6. Nitrogen follows the ideal gas law.

7. All heat transfer by conduction and radiation will be
considered negligible because of minimal temperature
differences in the system (i.e. no heat loss) .

Math Modeling of Water Portion of Tank

When modeling the water portion of the water tank, the dependent
variables of interest are the change in the volume and
temperature, and the inlet and outlet water flows.

76



A material balance can be written to relate the change in volume
of the tank with respect to time. This material balance can be
written as:

Rate of Mass Accumulation = [Rate of Mass]̂  - [Rate of Mass]ODt.

Symbolically this becomes

where
VT1 = volume of water contained in the storage tank at

any given time (m3) ,
WH2o,i= mass flow rate of water in (Kg/ sec) ,
WH20,2= mass flow rate of water out (Kg/ sec) ,
Pmd = density of water (Kg/m3) .

During the tank fill mode, the WJCQ^ term in (1) is equal to zero
In the drain mode, the WJCQ.I term is equal to zero.

Since the tank takes four to five minutes to fill, it is a good
assumption that the water flowing into the tank is turbulent
because the Reynolds number (Re) is approximately 40,000. In
deriving an equation for the turbulent flow of water through a
tube, a good starting point is the Blassius Formula for friction
factors. The Blassius Formula is as follows:

for, Reynolds numbers in the range 2.1(10)3 < Re < 10s,
where
Re = the Reynolds number given by Re= D <v>
D = the tube diameter (m) ,
<v> = the average velocity of the water (ro/sec) ,

= tne viscosity of water (Kg/m sec) .

When the definition for the Reynolds number is substituted into
the Blassius Formula, Equation (2) becomes

f_ 0.0791

The friction factor can also be written as

•' •
2Lf>Ha0<V>2

77



where
ŝource = tne pressure of the external water source (N/m2) ,
PVI = the pressure in the water side of the tank (N/m2),
L = the tube length (m).

Setting Equations (3) and (4) equal to each other gives

f_ 0.0791 _£>(Psourca-PVI)

Multiplying each side by the tube cross sectional area(A=7rD2/4)
and then rearranging gives

Substituting Equation (6) into Equation (1) gives

L- = 2 source ^j

ot (0 .1582Li*H (j
1/4) */7

since

With the equation derived for the change in volume of the water
tank during the fill mode with respect to time, an equation that
models volume change when the water is flowing out of the tank is
needed. The water in the tank flows out over a period of three
hours, so laminar flow is assumed. The laminar flow of a fluid
through a tube is given by the Hagen-Poiseuille law as

;a e e c

where
peiec = the pressure in the electrolysis module.

Altering Equation (8) can be changed into mass flow rate by
multiplying by p^o to obtain

Substituting Eq. (9) into Eq. (7) , gives the change in volume of
the water portion of the water tank during the drain mode as

78



(>HodVH 2 o T i

With these equations that model the change in volume of the tank
during the fill and drain modes, an equation needs to be derived
to relate the change in temperature of the water with respect to
time. This can be done by writing an energy balance on the
system. The energy balance for the water portion of the water
tank is given by:

[Rate of Energy] = [Rate of Energy]̂  - [Rate of Energy ]out
-[Net Rate of Heat Loss to Surroundings].

Symbolically, this becomes:

^ TH30, 1 ~
 Tief ) ~ WH20. 2

 CpH0 ( ̂ O. 2

where
c
PH2o = heat capacity of Water (KJ/Kg K) ,
TH2o,i = temperature of water into the compartment (K) ,

= temperature of water out of the compartment (K) .

Note that the net rate of heat loss to the surroundings equals
zero. Assumptions were made that the system was well insulated
and any heat loss to the surroundings is negligible.

Equations for the mass flow rate of water in and out of the tank
have already been derived. By manipulating the left hand side of
Eq. (11) a relationship can be drawn between the rate of change
in temperature and volume given by

When solved for ST/St, Eq. (12) relates the change in temperature
of the water in the tank with time. This term should be
negligible if the temperature of the water and the temperature of
the surroundings are approximately the same. Assuming this, the
only variables of interest in the system become mass flow rate of
the water and the rate of change of volume in the water tank.

Nitrogen Portion of the Water Tank

When modeling the Nitrogen portion of the water tank, the

79



variables of interest are as follows:

wN2,i = mass flow rate of Nitrogen in (Kg/sec),
= mass flow rate of Nitrogen out (Kg/sec),
= temperature of Nitrogen in (K),
= temperature of Nitrogen out (K),
= pressure of the Nitrogen in the Water tank (N/m2) ,
= pressure of the Nitrogen in the supply tank (N/m2) ,

VTZ = volume of the Nitrogen side of the tank (m3) .

These variables can be related by differentiating the Ideal Gas
Law with respect to time to give

(13)

where
equals -dVT1/dt since

V,,,* = VT1 + V-n (14)

or:

^ _

The Snm/6t term can be determined by making a mole balance of the
Nitrogen compartment given by

[Accumulation of Moles] = [Rate of Moles in] -[Rate of Moles out]

Symbolically this can be written as

where
n^ = moles of Nitrogen,
M = molecular weight of Nitrogen.

When the water side of the tank is filling, the Nitrogen side of
the tank is draining. This process occurs over a four to five
minute period. Assuming turbulent flow for the nitrogen in this
case is a safe assumption. By analogy, Eq. (6) applies to the
flow rate of nitrogen leaving the tank given by

„ _
(0. 15821̂ )

where

80



= density of the nitrogen at the given pressure (Kg/m3) ,
= viscosity of the nitrogen (Kg/m sec) .

The flow of nitrogen into the tank can be considered laminar due
to the extended period of time of the nitrogen fill. Similar to
the case above, a simple manipulation of the equivalent water
side produces the equation for nitrogen flow into the tank of

Knowing these two flow rates, and assuming that the heat loss to
the surroundings is negligible, an equation similar to Eq. (11)
can be derived from the energy balance of the nitrogen portion of
the tank to give

where
C
PN2

 = Heat capacity of Nitrogen (KJ/Kg K)

Expanding the left-hand side of Eq. (19) gives

. (20)

However, knowing that

=ĵ £ (21)

the left side of Eq. (19) reduces to

3TM
<22)

Solving for dT^/dt give

_ y*.i<cpJr*.i-rr«f) -i) +^ (23)

With equations for dV^/dt, 3nN2/3t, and dT̂ /dt., an equation for
dPro/dt can be derived by substitution into Eq. (13). This
equation will yield the temperature, pressure, moles of nitrogen
and the volume of the tank at any time. The temperature term is
constant because of the negligible difference in the nitrogen and
ambient temperatures.

81



Electrolysis Module

The assumptions for this model are as follows:

1. Water has constant physical properties.

2. Water is an incompressible fluid.

3. The heat capacities of the gases are constant.

4. There is no accumulation of gases in the electrolysis
module.

5. "The non-electrolytic 'parasitic' energy used by the
electrolyses unit per kilogram of water converted to
gas" is negligible.

6. The amount of water vapor leaving in the product gases
is negligible.

Initially, the electrolysis module will be modeled as a single
cell. Modeling could be accomplished by dividing the module into
a feedwater compartment and the actual electrolysis compartment.
Variables of interest in modeling the water compartment are:

= mass flow rate of water into module (Kg/sec),
= mass flow rate of water out (Kg/sec),

Pmo - density of water (Kg/m3),
VE1 = volume of water contained in the water compartment

of the electrolysis module (m3) .

A material balance on the feedwater module produces the following
equation:

n. 3tr

=W -W (24)

The volume of the water compartment in the electrolysis module
remains constant at steady state, therefore the above equation
can be reduced to

(25)

The flow out of the water tank is considered laminar, so it
follows that the flow into the water compartment of the
electrolysis module is laminar as well. This allows Eq. (9) to
be used for the flow rate of water into the feedwater compartment
which takes the form

82



At steady state, the vapor rate (̂ m0ti) is equal to the rate of
water out of the feedwater module. The flow rate out could also
be estimated by deriving an expression for the diffusion of a
vapor through a porous membrane. However, very little
information exists about the membrane and the above equations
provide a better representation.

Writing an energy balance for the water compartment produces and
equation similar to those used for the water tank. However, the
equation for the water compartment contains a term for the
vaporization of water. The energy balance is written as follows:

~ Tief ) ~ WH^O. 2 CpS20 ( TH20, 2 ~ Txef>

, (26)

where
TH2o,i = temperature of water into the compartment (K) ,
Tmo2 = temperature of water out of the compartment (K ),
Qcond,Ei = heat loss by conduct ion (KJ/ sec. ),
QradjBi = heat loss by radiation (KJ/ sec. ),
-h = heat of vaporization of water (KJ/Kg) .

The equations for flow rate in and out of the water compartment
can be replaced by Eq. (27) . The heat loss by conduction through
the tank walls can be expressed as

n =A r - B i s o + -I -i / T _T \
Ucond.El AEi l~ il — * - r - r h - J (1Hto

 1auzr ) '

where
r^, = inside radius of the tank (m) ,
rm = outside radius of the tank (m) ,
Am = surface area of the water compartment, excluding side

with membrane (m2) .

Heat loss by radiation from the tank can be written as follows:

, < 28 >

83



where
€m = emissivity of the outer compartment walls.

The temperature in the feed water compartment is known at any
particular time. Also, the flow rate into and out of this
compartment can be calculated.

When looking at the electrolysis compartment of the module, there
are three variables that need to be considered, i.e., the
production of hydrogen, oxygen, and the change in temperature in
the module. It becomes necessary at this point to work on a mole
basis. Writing a mole balance for hydrogen and oxygen yields the
form

[moles accumulated ]= [moles in] - [moles out] + [moles produced].

By dividing Eq. (26) by the molecular weight of water, the number
of moles entering the electrolysis compartment are obtained.
This number of moles equals the number of moles of H2 and half
the number of moles of O2 leaving the system. The equations for
these two variables can be stated as

where
3H2o,i = Tne molar flow-rate of water into the electrolysis

module (moles/sec) .

Knowing that the moles of hydrogen and oxygen produced are
dependent upon the electrolysis rate given by

q=I/F*z, (30)

where
q = moles of gas produced (mols/sec) ,
I = current supplied to the electrodes (col/ sec) ,
F = Faraday's constant (9.6487 x 104) ,
z = equivalents/mole (H2=l, 02=2 ),

the moles of hydrogen produced can be written as

_ I (col/ sec)
(9.6487xl04col/egv. ) (2eqv.H2/mole)

Here hydrogen has 2 equivalents per mole. The stoichiometric
relationship of the dissociation of water into hydrogen and
oxygen is

HjO => H2 + %02. (32)

84



Therefore the number of moles of oxygen produced equals one-half
that of the amount of hydrogen produced. One can say that the
rate of production of moles of oxygen equals one-half that of
hydrogen which is written as

(33)

With this relationship, the flow rate of water into the
electrolysis module for a given current can be calculated,
assuming the accumulation of moles in the module equals zero. By
knowing the flow rate of the water, a pressure drop from the
water tank to the electrolysis can be also found.

An energy balance will produce the temperature changes in the
electrolysis module. This energy balance is similar to the
energy balances calculated earlier. However, it also accounts
for the energy supplied to the system through the electrodes
which operate at approximately 137 °F. The energy balance can be
expressed as

dTH,0
C \T ^ — nr f, IT _rn \ __. /o\ — / rp _rrj \

n 77 ^ . ' ff n 1 *m V •* If /> 1 -L -raft •9V 5 \ " / *n V •*• IT -^ f^flr&vg SJ> rit "2W/ A *^/aO **yJ, J. x&L ^*/»2»« Pjij "2 -cex

~C[ (32) c (r ~3* ^) ~O ~O +5 P/ •+• (H ) (34\

where:
= temperature of water into the compartment(K),
= temperature of hydrogen out of the module(K),

TQ^ = temperature of oxygen out of the module(K),
pavg = average density of the three gases (Kg/m3) ,
cpavg = average heat capacity of the gas (KJ/Kg K) ,
Cp^ = average heat capacity of the oxygen (KJ/Kg K),
cpH2 = average heat capacity of the Hj (KJ/Kg K) ,
Qcond,E2 = heat loss by conduction (KJ/sec) ,
Qrad,E2 = heat loss by radiation (KJ/sec),
Eelec = electrical energy added to the system by the

electrodes (KJ/Kg),
Hno, = the chemical energy added to the system due to

the heat of the reaction.

The heat loss through conduction can be expressed as follows:

l lJirR,/rp, 1 , 1 ,
Q 4 =A [ + + ] (!T -T )/ (35)

rE2̂ H2 KT ÊŜ BUII

where
TEJ = inside radius of the electrolysis module (m) ,
TES = outside radius of the electrolysis module (m) ,
Agj = surface are of electrolysis module, excluding side

with the membrane (m2) .

85



Heat loss by radiation from the tank can be written as

. E2=AB2eE2° ( Zj% * Ztirr > ' ( 3 6 >

where
= emissivity of the electrolysis module.

The energy added to the system by the electrodes can be
represented by the following equation:

elec (MW+MV) 2 . 7 87 8 xlO "* '

where
Ep = "the non-electrolytic 'parasitic1 energy used by

the electrolyses unit per kilogram of water converted
to gas,

V = cell Voltage,
I = electrolyses unit current efficiency,
Mw = mass of water electrolyzed to gas (Kg) ,
My = mass of water leaving the system (Kg) .

The value of Ep is less than 0.05% of the total energy, and is
therefore negligible. The My term is a function of temperature
and pressure and is essentially constant at the temperature and
pressure of interest. This allows a safe assumption that a
negligible amount of water vapor leaves the system with the
product gases. The previous equation can then be simplified to

= 10702 V/I. (38)

The chemical energy removed from the system due to the heat of
reaction can be written as

(39)

where
H° - H°0 = the enthalpy of the element at 298K and the system

temperature, respectively (KJ/mole) ,
AHf°0 = the heat of formation of the compound from its

elements .

Oxygen Generation Assembly

The rate of production of O2 in the OGA is directly related to
the electrolysis rate, which in turn is directly dependent upon
the amount of current supplied to the electrolysis module. This

86



assumption is the basis for the modeling of the entire OGA.

The rate of electrolysis depends upon the following relationship:

(40,

where
q = rate of gas produced (moles/sec) ,
I = current supply to the electrodes (col /sec) ,
F = Faraday's Constant (9.6487 x 104 (col/eqv) ) ,
z = equivalents/mole (H2 = I, O2 = 2) .

For example, the moles of hydrogen produced can be written as

_ J(coi/sec)

(9.6487xl04(col/egv))
mole

According to the stoichiometric relationship between H2 and O2 is

(42)

Therefore the moles of O2 produced equals half the moles of H2
produced.

MODELING TECHNIQUES

The above assumptions that the rate of 02 and H2 productions do
not take into account any temperature or pressure effects on the
electrolysis rates. After studying the complexities of the
pressure and temperature effects and seeing how they related to
the production results, it was determined that for simplicity,
they would be ignored. In essence, this assumption creates a
simple black box with known inputs and outputs for the
electrolysis module. It also provides a simple linear
relationship between the current and the production rate of O2.
The model eliminates any time based differential equations that
would otherwise govern the output of the system.

Based on the above assumptions and knowing the requirements for
O2 production, sizing of the water storage and supply side of the
OGA can be done. During normal (4-man) operational mode, the OGA
needs to produce 9.081b of 02/day. Knowing this O2 is generated
from 10.22 Ib of H2O/day, a rough tank size was determined to
hold 1 Ib of water. During the emergency (8-man) operational
mode, the system needs to generate 15.6 Ib of O2/day [3:1-11].
Since the water tank fills in only 3 min. and drains in over 70
min., this tank size meets water capacity needs and space
requirements.

87



4.0 EXPERT SYSTEM

88



4.1 INTRODUCTION

Monitoring and maintaining the Environmental Control and Life
Support System (ECLSS) on the Space Station Freedom (SSF)
requires the effort and expertise of many supervisors, engineers,
and technicians. If the station personnel is to provide this
expertise, then they will be less able to provide the expertise
and labor needed to perform their mission. However, if ECLSS can
intelligently-monitor itself and perform self-diagnosis, then the
crew's limited resources can be better applied to the mission.
This year, the design team investigated the application of expert
systems to provide for intelligent automated control and
monitoring of ECLSS. The prototype expert system the teams
developed is discussed in the following sections.

Besides the ultimate effect of providing automated life support
expertise for the SSF crew, an expert system controller provides
special benefits to the system designer. The use of an expert
system shell allows developers to program the system's knowledge
base using a high-level specification, object oriented, or rule
based style language. The format of the knowledge base can be
customized to suit the knowledge particular to a given
application. Furthermore, expert systems can be developed with
incomplete and inexact information. This feature permits expert
systems to function in poorly characterized applications such as
non-linear modeling and natural language interpretation. Because
an expert system can operate on incomplete information, it is
easier to produce and improve working prototypes. Improving the
prototype is a matter of adding additional and more specific
knowledge.

The final goal of the expert system design teams is to provide an
intellect controller for the whole of ECLSS. This year, the team
developed a prototype expert system for controlling the
Atmosphere Revitalization called ARES. As an expert system, ARES
has two major components, a knowledge base and an inference
engine. The three design teams developed knowledge bases for
controlling and monitoring the CO2 Reduction, CO2 Removal, and
Oxygen Generation subassemblies. Additionally, one of these
teams developed the inference engine to drive the expert system.
A more detailed description of ARES follows.

89



4.2 ATMOSPHERE REVTTALIZATION EXPERT SYSTEM (ARES)

The function of ARES is to intelligently monitor and control the
Atmosphere Revitalization (AR) assembly. Because this is a
hardware control application, ARES must receive sensor signals
from the assembly/ process these input signals, and provide
control signals to the assembly. Because ARES is an expert
system, the sensor signals are processed after the manner of an
expert. That is, as an expert, ARES translates the sensor values
into terms compatible with its knowledge base, applies its
knowledge to develop responses and diagnostics as an expert
would, and implements its responses by providing the proper
control signals to the assembly. An explanation facility enables
ARES to justify its conclusions to the crew.

As an expert system, ARES has two parts, an inference engine
shell and a knowledge base. The inference engine of an expert
system is a shell that separates the general knowledge and
support software from the application specific knowledge. It is
the inference engine that does the "thinking" for the expert
system. The knowledge base of an expert system contains the
knowledge that represents the expertise for the given
application.

ARES's inference engine supports and interprets a near-english,
rule-based knowledge base. ARES "thinks" by deductively chaining
conditional statements and thereby connects general sensor values
to specific conclusions. ARES's general line of reasoning is as
follows: "What sensors should I read? What numerical values do
these sensors currently offer? What linguistic values may I use
to describe these values, how are these linguistic values
defined, and how accurately can they be applied? What
conclusions can I draw from the linguistic descriptions I just
developed? Based on these conclusions, what instructions should
I send to the assembly. How should I resolve possible conflicts
in the instructions?" These questions are generally answered by
facts and rules found in the knowledge base. However, numeric
sensor values are read from data files. The general "meta-
knowledge" that is needed to interpret and chain rules, evaluate
the "fuzzy" logic embedded in the rules, and resolve conflicts
between instructions is encode into the inference engine shell.

ARES's knowledge base contains the knowledge needed to control
the Atmosphere Revitalization assembly. Rather than expressing
the control function as sets of feedback equations as is done for
conventional controls, the control function is express as a set
of conditional rules. Composed in a near-english format these
rules are written for ARES as one would write instructions to a
human performing the same job. The general format for a
conditional rule is

90



(<classifier>: if <statement> then <conclusion> <weight>),

where <statement> and <conclusion> are generally of the form

<noun> is/is_not <modifier>.

Note <statement> and <conclusion> can really be of any form but
it is preferred that they convey meaning to both developers and
users.

The inference engine interprets conditional rules by searching
through the knowledge base for a fact that matches the
<statement>. The <statement> has a weight value (0-1) associated
with it called the confidence value. The confidence value
represents the confidence an expert would have in the <statement>
for the given circumstances. ARES is constructed so that the
<statement> can always be found (eventually) although its
confidence value may be zero. Having found the <statement>, the
inference engine asserts the <conclusion> into the knowledge base
and gives it a confidence value. The confidence value for the
conclusion is calculated by multiplying the confidence value
found for the <statement> by the <weight> value associated with
the conditional rule. A future version will support multiple
layers of conclusions and drop the structural restrictions
imposed by the <classifier>: convention.

Once asserted by the inference engine, the <conclusion> can be a
valid <statement> for another rule. In this manner, conditional
rules can be chained. But how are initial statements provide to
start the chains? By membership rules that translate numeric
sensor values into descriptive linguistic values. The general
form of a membership rule is

(if <sensor> is X then <noun> is <modifier>
<min> <low> <high> <max> <units>),

where <sensor> is the name of a sensor listed in the knowledge
base. The "<noun> and <modifier>" is the conclusion that the
inference engine asserts. The numeric values <min> <low> <high>
and <max> define a triangular "fuzzy" membership function used to
calculate the confidence value for membership rule's conclusion.
If the value read from the <sensor> is between <low> and <high>,
then the confidence in the conclusion is absolute (its confidence
value is 1). If the value read is less than <min> or greater
than <max>, then the confidence in the conclusion is null (its
confidence value is 0). All other possible values for the
<sensor> are linearly interpolated to produce a continuous
function. A <units> is just a term used for the reference of the
developer and user.

ARES supports statements of the form

91



<statement A> <operator> <statement B>,

where <operator> is either OR/AND thereby permitting fuzzy logic.
The confidence of the statement is resolved according to fuzzy
algebra.

ARES also support statements of the form

<noun> is_not <modifier>.

The confidence value is the fuzzy logic's complement of the
statement "<noun> is <modifier>."

It is the nature of an expert's decision process to decide
between alternative or conflicting options. If the options
represent points values along a roughly continuous scale, the
conflict can be resolved by taking the centroid of the points as
a compromise value (use confidence values as weights). But, in
ARES, the subassemblies only accept a few discrete non-sealer
values: ON, OFF, STANDBY, ROLLOVER, PLAYDEAD, ARES resolve
conflicts by choosing the most confident of the conflicting
values.

IMPLEMENTATION:

In APPENDIX 4D is the listing for SAVANT.3. SAVANT.3 is a
program written for NASA's CLIPS expert system development shell.
The first section of SAVANT.3's code is the particular knowledge
base used to verify the system. All the following sections of
SAVANT.3 comprise the inference engine that would be transparent
to the user.

Expanded knowledge bases are presented in APPENDIXES 4A-4C.
These knowledge bases were developed by three teams for the CO2
Removal Assembly, C02 Reduction Assembly, and Oxygen Generation
Assembly. The assembly knowledge bases together contain rules
used to identify current operation conditions and diagnose
problems in the AR. They are based on expertise of how the AR
sub-assemblies should be controlled and how ARES should respond
to expected conditions.

The following sections discussed the rules of each assembly
knowledge base in depth.

92



4.2.1 CO, REMOVAL ASSEMBLY

The CO2 Removal Assembly is responsible for removing excessive
carbon dioxide from the cabin air. This removal is accomplished
by a four-bed molecular sieve. The sieve contains two beds for
removing moisture from the incoming air and two beds for removing
the carbon dioxide. In addition to the four beds, the system
contains a blower for moving the air, a precooler, a C02 pump and
accumulator, and a variety of flow control valves. A system
diagram of the assembly is shown in Fig. 4.2-1.

Desiccant
Bed

C02 Sorbent
Bed

Air in
C02
Accumulator

Figure 4.2-1 CO2 Removal Assembly

The purpose of this section is to indicate the work that has been
done on designing an expert system to monitor and control the
assembly. The rules were written to be compatible with the CLIPS
expert system package and are located in Appendix 4B.

The main function of the designed expert system was to monitor
the components of the CO2 Assembly. Different sensor values are
read and compared to certain parameters and the expert system
makes a decision based on those sensor values. The focus of the
rules was to detect component failures. Currently, the rules do
not include any valves or the four beds.

Rule # 1

The expert system monitors the temperature sensor at the output
of the precooler. If the value does not fall within accepted
parameters, the expert system makes a decision if failure has

93



occurred or not. If a failure decision is reached, the expert
system instructs the Removal Assembly to shut down.

Rule # 2

The expert system monitors the two pressure sensors located on
either side of the blower and checks for the differential
pressure. If the pressure is unacceptable, the Removal Assembly
is instructed to shut down.

Rule # 3

The expert system monitors the power sensor on the C02 pump. If
the value is unacceptable, then the Removal Assembly is
instructed to shut down.

Rule # 4

The expert system monitors the pressure sensor located on the C02
pump. If the value is not within the accepted parameters, the
Removal Assembly is instructed to shut down.

Rule # 5

The expert system monitors the gas flow at the C02 accumulator
through two gas flow sensors located on either side of the
accumulator. If a failure decision is reached, both the Removal
and the CO2 Reduction subassemblies are instructed to shut down.

94



4.2.2 CO2 REDUCTION ASSEMBLY

The CO2 Reduction Assembly is comprised of a Sabatier Methanian
Reactor (SMR) which converts CO2 and H2 to methane gas (CH4) and
water vapor (H2O), a Condenser/Separator (C/S) to remove product
water, and a Carbon Formation Reactor (CFR) to break down methane
into carbon and hydrogen. A block diagram of the CO2 Reduction
Assembly is shown in Figure 4.2-2.

Hydrogen—

Oxygen—

Nitrogen—

TO CABIN-

GAS OUTLET,

WATER OUTLET, ro TANK
WATER DRAIN, T0

Figure 4.2-2 CO2 Reduction Assembly

The main focus of this section will be on the steps that were
taken to construct an expert system for the SMR. The rules that
were written in CLIPS will be explained in the order that the
reactants flow through the SMR. See Appendix 4C for the rules as
found in CLIPS.

The main purpose of the SMR is to catalytically react C02 with H2
to form methane gas (CH4) and water vapor (H20) . The SMR receives
C02 from the CO2 Removal Assembly and the H2 is recycled from the
carbon formation reactor and is also received from the C02
Removal and Oxygen Generation Subassemblies. The chemical
reaction that takes place in the SMR is written as

CO2 + 4H2 = CH4 + 2H2O + HEAT.

A 4.0 molar ratio, which is equivalent to a molecular weight of
10.4 g/gmol of H2 to C02, must be maintained. To do this a
molecular weight sensor was already included in the prototype
SMR, so this was not included in the expert system sensors. The
actual volume of C02 was needed to accurately control the

95



molecular weight sensor which was not readily available and
difficult to approximate.

Rule # 9

The chemical reaction to convert CO2 and H2 to methane and water
is exothermic. Therefore the heaters used in the SMR are
primarily for reactor start up. Two redundant heaters are used
to heat up the catalyst bed to initiate the reaction [Forsythe,
1984]. A sensor to indicate a non-functional heater or heaters
was included in the expert system. When the reaction is below
400°K which would normally be during reactor start-up, there is
no conversion taking place. This would indicate to the system
that a heater or heaters has broken down and the system is turned
off so maintenance procedures can take place.

Rules # 7 and 8

The chemical reaction is also self-limiting via the reverse
endothermic reaction, to temperatures below 873°K [8:]. This
causes a loss in the normally expected 98% conversion of carbon
dioxide. Thus the efficiency of the reactor decreases. To
monitor this, two rules were added to the expert system. The
efficiency level is low below the temperature of 850°K. When
this occurs the expert system instructs the SMR to shut off since
low efficiency could be an indication of another problem. A
normal efficiency level was also included in the rules when the
temperature of the reaction was between 850°K and 873°K. The SMR
would continue to run as normal if this rule was executed.

Rules # 1, 2, 3, and 4

The next step in the SMR is to cool the chemical reaction
temperature down to the point that water can condense after it
has left the reactor. To do this a cooling jacket consisting of
a number of stainless steel serrated fins covered with a shell of
stainless steel is wrapped around the reactor bed and cooling air
is forced through a mid and rear cooling jacket inlets
[Forsythe,1984]. During the simulations of zero gravity on the
SMR it was found that a coolant flow of approximately 0.424 cfm
would be required for each jacket to compensate for the loss of
external convection [1:]. Since the only temperature modeled by
the CO2 Reduction Assembly modelers was the reaction temperature,
it was difficult to assume a temperature for the two cooling
jacket zones. The coolant flow did not seem to be an adjustable
variable. It was either on or off. Using these assumptions the
rules were based on having a coolant flow of 0.424 cfm. If
either of the jacket flows was below 0.2 cfm the heat would stay
in the reaction and the exit temperature would be too high for
the condenser/separator. This indicated a problem with one or
both of the coolant flows. Therefore the system would be shut

96



down for maintenance. There is also a normal flow mode between
0.4 and 0.7 cfm when the SMR continues running.

Rules # 5 and 6

Although the condenser/separator has not been modeled, an attempt
to include it in the expert system was made. Since the condenser
requires the water to be in a liquefied state it was assumed that
the exit temperature of the SMR would have to be approximately
373°K. Therefore, if the exit temperature was above this value
then the condenser temperature would be too high and the SMR was
turned off. A high exit temperature could be a result of the
coolant flows not working. If the exit temperature was below
373°K then the SMR was considered running normally.

The Carbon Formation Reactor was not included in the CO2
Reduction Assembly expert system. There was limited information
on the CFR and there had also been no attempts to model it.

97



4.2.3 OXYGEN GENERATION ASSEMBLY

The Oxygen Generation Assembly, OGA, is comprised of a
electrolysis module and water tanks to convert H2O to H2 and O2 by
the use of a catalysis, KOH. A block diagram of the OGA is shown
in figure 4.2-3.

Permeable
Membrane

Electrolysis Module

Water Tanks

TO as
Supply

To NZ
Supply

Fron N2
Bus Water

Supply »To HZ
Bus

Figure 4.2-3 Oxygen Generation Assembly

The main focus of this section will be on the steps that were
taken to construct an expert system for the OGA. The rules that
were written in CLIPS will be explained in the order that the
reactants flow through the OGA. See Appendix 4A for the rules as
found in CLIPS.

The main purpose of the OGA is to produce O2 by the electrolysis
module. The OGA receives water from the CO2 Reduction Assembly
and hygiene water. For the purpose of writing an expert system
to control the Atmosphere Revitalization Assembly, It was assumed
that all water supply would come from the C02 Reduction Assembly.

98



Rules # 1, 2, and 3

The water in the storage tanks must be moved to the electrolysis
module by the use of nitrogen pressure on the bellow of the water
tanks. This pressure is the H20 feed line pressure. From Boeing
document 683-10011, the H20 feed line pressure needed was given
as 25 ±5 psia. Rule 2 defines the normal pressure to the
electrolysis module between 20 and 30 psia. Rules 1 and 3 are
for high and low feed line pressure. If these rules are
activated, the OGA will be instructed to shutdown for
maintenance.

Rules # 4 and 5

To measure the amount of water in the H2O supply tanks, an
emitter detector infrared sensor was used. If the bellow was
obstructing the infrared sensor a binary output of one was the
output of the sensor. If the water supply in the tank was low,
the bellow would not obstruct the infrared sensor and the sensor
outputs a binary output of 0. In this manner the supply of water
for the electrolysis module was measured. An output of one
indicates water supply is sufficient. Where an output of zero
indicates the water supply is insufficient.

Rules #6, 7, and 8

After the H2O passes through the electrolysis unit its components
are H2 and O2. The differential pressure between the H2 and O2
output lines is an indication of the electrolysis efficiency.
Boeing document 683-10011 specifies the Hj-Ĉ  differential
pressure to be 2.83-3.35 psia for normal operation. If the
differential pressure is lower or higher than this specified
value it is an indication that one of the cell electrodes has
failed and the OGA is instructed to shutdown.

Rules #9, 10, and 11

The final constraint placed on the OGA is the temperature of O2
returned to the cabin. Although the temperature of O2 gas is not
an output from the models designed by our group, it has been
included in the expert system. The acceptable output temperature
listed in Boeing document 683-10011 is 55°-105.8° F. If the
temperature of O2 gas to the cabin is outside this range the OGA
is instructed to shutdown.

Rules #12 and 13

The electrolysis unit uses a series of voltage cells to control
and initiate the breakdown of H2O. If all cell voltages are high
meaning greater than 1.7 volts, as listed in NASA document 2-
H8RG-BMS-194/90, this is an indication of that the water supply

99



to the electrolysis module has been lost. Therefore, if all cell
voltages are high the OGA is instructed to shutdown.

An important section of ARES is the Explanation Facility. This
feature is not necessary for operation of ARES, but very
important. ARES is only as accurate as the experts of each
assembly. In other words, it is no smarter than its programmers
and therefore is suspect to incorrect conclusions. The
Explanation Facility allow the user to see the steps taken by
ARES in making a conclusion for each assembly. It does this by
retracing the paths used to chose responses. Then ARES generates
a dialogue explaining the responses, allowing the user to refute
the decision.

100



4.3 VERIFICATION AND TESTING OF EXPERT SYSTEM

ARES is designed to help monitor and control the Environmental
Control and Life Support System for the Space Station Freedom
(SSF). Currently, the system only has control over limited
portions of the Air Revitalization System. After rules that
govern system's behavior were written and placed into the
knowledge base, the expert system was tested to discover any
programming, knowledge, or conceptual errors that may have been
present.

The final stage of the expert system's development is
verification - applying a series of inputs and insuring the
decisions made were correct. Though the current system contains
only four components that may be varied, verification is a
difficult task. To verify all possible condition combinations
would require around 300 individual tests. The complete expert
system to govern the entire ECLSS will be nearly impossible to
verify completely. For this report, 12 different sets of
conditions were tested and checked. These twelve conditions sets
fall into nine cases as described below. For each case, the
conditions are stated first, then a brief description of the
system response is given. The four conditions which can be
varied are:

Cabin_02 - Indicates the concentration of 02 in the cabin.
Helps control Oxygen Generation Assembly (OGA)
and C02 Removal Assembly

Inlet_CO2 - Indicates concentration of CO2 present in the
cabin atmosphere. Helps control CO2 Removal
Assembly.

CO2_Accumulator - Indicates level of C02 storage tank
located between C02 removal and CO2
reduction assemblies. Helps control
these same two assemblies.

H20_Accumulator - Indicates level of water in storage
tank located between C02 reduction and
OGA assemblies. Helps control these
same two assemblies.

CASE 1:

Condition: All values in normal operating range

101



Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode.

CO2 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

C02 Removal - Commanded to move to an efficiency mode. Since
no supplies are low and cabin C02 is normal, CO2
Removal Assembly can reduce power requirements by
decreasing production slightly.

CASE 2:

Condition: Both accumulators are empty, all other values in
normal operating range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode. This system will not,
however, be able to operate if no water is available.
This system should perhaps turn off for a while until
water is available. This is the correct response as
programmed although not really the correct way to
handle the given situation.

CO2 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode. This is to refill
the empty H2O accumulator.

C02 Removal - Commanded to move to high production mode.
This will help to replenish the C02 accumulator and
provide resources needed by the C02 Reduction assembly
to refill H2O Accumulator.

CASE 3:

Condition: Both Accumulators at a low level, all other values
in normal operating range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode. This system will not,
however, be able to operate if no water is available.
This system should perhaps turn off for a while until
water is available. This is the correct response as
programmed although not really the correct way to
handle the given situation.

102



CO2 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode. This is to refill
the empty H2O accumulator.

CO2 Removal - Commanded to move to high production mode.
This will help to replenish the C02 accumulator and
provide resources needed by the C02 Reduction assembly
to refill H2O Accumulator.

CASE 4:

Condition: Both Accumulators at a high level, all other values
in normal operating range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode.

C02 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

CO2 Removal - Commanded to move to an efficiency mode. Since
no supplies are low and cabin C02 is normal, CO2
Removal Assembly can reduce power requirements by
decreasing production slightly.

CASE 5:

Condition: Inlet_CO2 at a high level, all other values in
normal operating range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode.

C02 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

CO2 Removal - Commanded to move to a high removal mode.
This is an attempt to remove the excess CO2 from the
cabin and restore a proper C02 - O2 balance for the
astronauts.

CASE 6:

Condition: Inlet C02 at a low level, all other values in
normal operating range

103



Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode.

CO2 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

CO2 Removal - Commanded to turn off. This is done to avoid
overfilling the CO2 accumulator before the need to
remove CO2 becomes important. This also conserves
power at times when the system is not needed.

CASE 7:

Condition: Cabin_02 level is low, all other values in normal
operating range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode. Since there is no high
production mode/ the expert system can only make sure
the OGA is producing oxygen as the environment
requires.

C02 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

CO2 Removal - Commanded to move to an efficiency mode. Since
no supplies are low and Cabin C02 is normal, C02
Removal Assembly can reduce power requirements by
decreasing production slightly. This will not affect
the rate of oxygen production which is most important
in this test case.

CASE 8:

Condition: Cabin 02 at a critical level, all other values in
normal operating range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode. Again, we would desire a
high production mode, but none is available. We can
only make sure the OGA is on and operating.

C02 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

104



CO2 Removal - Commanded to move to a high removal mode. This
is done to help restore CO2 - O2 balance in cabin and
to insure that adequate resources are available for the
OGA to continue operating normally.

CASE 9:

Condition: All values at a high level in the operating
range

Response:

OGA - commanded to turn on (if currently off) or to continue
in normal operating mode.

CO2 Reduction - commanded to turn on (if currently off) or to
continue in normal operating mode.

CO2 Removal - Commanded to move to a high removal mode. This
is done to compensate for excess CO2 in the cabin.

SPECIAL NOTE: For this section, one of the input values, the
CO2 accumulator, did not get read into the
system. The results may have been different if
this value was available.

Limitations

The biggest limitation at present is the number of rules which
the system can operate on. With only four pieces of data to make
decisions with, those decisions will be limited in scope and
accuracy. Additionally, some things have not been taken into
account. For example, the system will continue to remove C02
from the cabin even if the C02 accumulator is full. Next, the
system produces confidence factors although these factors
currently have no meaning. Finally, the expert system does not
always produce the best decision. As noted in cases 2 and 3
above, the OGA is commanded to turn on even though adequate
resources for operation may not be available. It is evident that
further options need to be considered and tested before a final
decision is made as to the operation of the system.

105



4.4 CONCLUSIONS

Because of the complex nature of the conditions which may affect
operation of the ECLSS, standard control schemes do not provide
convenient or adequate means for system development and
maintenance. The expert system, on the other hand, can handle
systems with multiple inputs and outputs and non-linear behavior.
Expert systems can be tolerant of inexact or incomplete
information permitting rapid prototyping. With an expert system
in charge ECLSS will not require constant supervision (a premium
commodity on a space flight). For these reasons, an expert
system solution makes a better choice for ECLSS control.

The expert system constructed this semester used NASA's CLIPS
expert system development shell. The CLIPS shell program does
not readily support real-time modeling or color graphics user
interfacing. Future effort should include a search for
development tools that can provide this support.

The rules defined in the previous sections obviously do not
represent a set which will completely control the Air
Revitalization assembly. Rather, these rules are a beginning set
which define the overall or general operation of the assembly's
main components. Many other, more detailed rules will be needed
to complete the knowledge bases for the expert system and to
provide an adequate control system for the ECLSS. Further
information about the operation and interaction of the various
sub-assemblies will be required before such rules can be defined.

The Savant.3 decision mechanism is the most complete portion of
the current expert system design. The inference engine, which
interprets knowledge base data, and the response selector, which
chooses an action based on the number of conclusions and their
associated confidence factors, will not be affected by the
addition of new rules. In fact, these sections could be used
with minor alteration in an expert system for control of the
entire ECLSS.

System testing validated the programming of the SAVANT.3
inference engine and its general application of deductive
reasoning. This testing also validated the technique of
representing the knowledge base. While the condensed version of
the control scheme generally worked, the expert system faithfully
demonstrates certain fallacies in the scheme. But this real
objective of the ECLSS simulation — to help verify the
conceptual control schemes.

106



107



2.2 WATER QUALITY MONITOR

1. Baer-Peckham, David L. Water Recovery and Management System
Major Components List. Seattle, Washington: Boeing
Company, 16 April 1990.

2. Boeing Company. Process Control Water Quality Monitor
Schematic. Seattle, Washington: Corporate Offices, 18
April 1990.

3. Boeing Company. Water Quality Monitor Schematic. Seattle,
Washington: Corporate Offices, 8 April 1990.

4. Conklin, Keith J. Process Control Water Quality Monitor
(PCWQM1 Control Description. Memo #2-H8RG-KJC 226/90
Seattle, Washington: Boeing Company, 9 April 1990.

5. Conklin, Keith J. Process Control Water Quality Monitor
fPCWQM) Description. Seattle, Washington: Boeing Company, 13
April 1990.

6. Conklin, Keith J. Water Quality Monitor (WQM) Control
Description. Memo #2-H8RG-KJC 228/90 Seattle, Washington:
Boeing Company, 9 April 1990.

7. Conklin, Keith J. Water Quality Monitor (WQM) Description.
Seattle, Washington: Boeing Company, 6 March 1990.

8. Whitley, Ken. Water Quality Monitor. Houston, Texas:
Marshall Space Flight Center—Environmental Control and
Life Support Branch, 27 June 1990.

2.3 URINE PROCESSOR ASSEMBLY

1. McGriff, Cindy. Urine Processing. Environmental Control and
Life Support Branch. National Aeronautics and Space
Administration (NASA). 27, June 1990.

2. Miernik, J. H. TIMES Urine Processor Assembly (UPA)
Description. Memo #2-H8RG-JHM-223/90. Boeing Company. 19,
June 1990.

3. Miernik, J. H. TIMES Urine Processor (UPA) Control
Description. Memo #2-H8RG-JHM-225/90. Boeing Company. 19,
April 1990.

4. Miernik, J. TIMES Urine Processor Schematic. Dwg # SK683-
20510. Boeing Company. 30, April 1990.

5. Miernik, J. H. TIMES Urine Processor Resource Requirements.
Memo #2-H8RG-JHM-249/90. Boeing Company. 19, April 1990.

108



6. Miernik, J. H. TIMES Urine Processor Assembly (UFA)
Instrumentation List. Memo #2-H8RG-JHM-224/90. Boeing
Company. 19, April 1990.

7. Miernik, J. H. TIMES Urine Processor Electrical Schematic.
Dwg # SK683-20511. Boeing Company. 20, April 1990.

8. Miernik, J. TIMES Urine Processor Rack Schematic. Dwg
#SK683-20500. Boeing Company. 2 Sheets. 7, April 1990.

9. Miernik, J. Urine Processor Assembly (UFA) ORU List. Memo
#2-H8RG-JHM-248/90. Boeing Company. 19, April 1990.

2.4 HYGIENE WATER PROCESSOR

1. Holder, Don. Hygiene Water Recovery. NASA Document (6-27-
90) .

2. Shaw, Glenn. Hygiene Water Processor Resource Requirements.
NASA Document 2-H8RG-RGS-253/90 (1990): 1.

3. Shaw, Glenn. Hygiene Water Processor Control Description.
NASA Document 2-H8RG-RGS-222/90 (1990): 1-6.

4. Shaw, Glenn. Hygiene Water Processor Instrumentation List.
NASA Document 2-H8RG-RGS-221/90 (1990): 1-12.

5. Shaw, Glenn. Hygiene Water Processor Description. NASA
Document 2-H8RG-RGS-258/90(1990) : 1-4.

2.5 POTABLE WATER PROCESSOR

1. Bagdigian, R.M. and P.L. Mortazavi. Status of the Space
Station Water Reclamation and Management Subsystem Design
Concept. NASA. George C. Marshall Space Flight Center.
Science and Engineering Directorate. Environmental Control
and Life Support Branch. Document # 371510. Society
of Automotive Engineers: 1987.

2. Carter, Layne. Potable Water Recovery. NASA. George C.
Marshall Space Fight Center. Science and Engineering
Directorate. Environmental Control and Life Support Branch.
June 27, 1990.

3. Hayase, John K. Potable Water Processor Control
Description. Boeing Inc. Document # 2-H8RG-JKH 213/90. April
18, 1990.

3.2 CO2 REMOVAL

1. College of Engineering, Kansas State University, Automation
of Closed Environments in Space for Human Comfort and
Safety, Academic Year 1989-90, pp. 8.

109



2. Dr. B. Jones, Professor of Mechanical Engineering, Kansas
State University. (Consultant)

3. Thermodynamics. An Engineering Approach. Yunus A. Cengel and
Michael A. Boles, New York: McGraw-Hill Publishing Co.,
1989.

3.3 CO2 REDUCTION

1. SAE Technical Paper Series, #840936, A Study of Sabatier
Reactor Operation in Zero * G'. Robert K. Forsythe, Charles
E. Verostko, Robert J. Cusick and Robert L. Blakely. 1984
Society of Automotive Engineers, Inc.

2. Elements of Chemical Reaction Engineering. Scott Fogler.

3. Chemical Process and Thermodynamics. B. G. Kyle.

3.4 OXYGEN GENERATION ASSEMBLY

1. Automation of Closed Environments in Space for Human Comfort
and Safety: Report of Academic Year 1989-90. Kansas State
University College of Engineering; pages 93-107.

2. Document 2-H8RG-BMS-194/90, Oxygen Generation Description
Control Description, pages 1-7.

3. Oxygen Generation Subassembly. NASA, pages 1-11.

4.0 Expert System

1. SAE Technical Paper Series, #840936, A Study of Sabatier
Reactor Operation in Zero 'G1. Robert K. Forsythe, Charles
E. Verostko, Robert J. Cusick and Robert L. Blakely. 1984
Society of Automotive Engineers, Inc.

2. Self, K. Designing with Fuzzy Logic. IEEE Spectrum. Vol. 27
(11), pp. 105. Nov 1190.

3. Kraus, H. The Development of a Fuzzy Controller and the
Comparison of Its Performance Against a Conventional PD
Controller. April 1991.

4. Kraus, H. GEDANKEN; A Language Interpreting Artificial
Reasoner. (software), March 1991. K-State.

5. Kraus, H. SAVANT.3; A Language Interpreting Artificial
Reasoner. (software), March 1991. K-State.

6. Giarratano, J. and Riley, G. Expert Systems: Principles and
Programming. PWS-KENT Publishing Co., pp. 64, 1989.

110



APPENDIX 2 A
CO2 REMOVAL ASSEMBLY PROGRAM

* *
* SOURCE FILE: REMOVE2.C AT&T 3B1 Version *
* *
* DESCRIPTION: This program models the CO2 removal system. *
* It simulates one adsorption and desorbtion *
* cycle. The desorbing desiccant bed has not *
* been included in this model. This program *
* can be used as a design tool to test the *
* CO2 removal system equations. *
* *
* USES : main ( ) *
* simple_plot( ) (S. Dyer) *
* *
* AUTHORS: Robert Young, Terry Hon, Joel Sommer *
* *
* LAST REVISION: 06 March 1991 *
* *
* LIMITATIONS: The desorbing desiccant bed has not been *
* included in this model because the CLIPS *
* Expert System is not concerned with the *
* rehumidification of cabin air. Only the *
* levels of CO2 into the Removal System, the *
* CO2 released to the cabin, the CO2 level of *
* the accumulator and the CO2 demand of the *
* Reduction System are currently necessary for *
* CLIPS to make an inference about mode *
* transitions. *
* *

#include <stdio.h>
#include <math.h>
#include "p_plot.h"
#include "simple_plot.h"
#define NUM_POINTS 100

main ( )
{
int dummy, pen;
long int i;
char rite;
double Time [100], /** time array **/

xTime,
Mg[100], /** mass of gas in void space **/
xMg,
Md[100], /** mass of gas in sorbent material **/
xMd,
Tb[100], /** temperature of bed and exiting air **/
xTb,
Ua[100], /** internal energy of accumulator **/
xUa,
MaflOO], /** mass of CO2 in accumulator **/
xMa,
Pp[100], /** output pressure of pump **/
xPp,
Tp(lQO], /** output temperature of pump **/

111



xTp,
Ta[100],
xTa,
Conc_w[100],
xConc_w,
Ccs_w,
M_flow,
Ti,
T_des[100],
xT_des,
xT_fan,
xT_hx,
Cci_w,
Cco_w,
Md_w[100],
xMd_w,
Cos,
Cci,
Ceo,
Cone[100],
xConc,
T_sorb[100],
xT sorb;

/** temperature of accumulator **/

/** relative humidity of outgoing air **/

/** cone, of H2O on sorbent (kgH2O/kgair) **/
/** mass flow rate of air (kg/sec) **/
/** incoming air temperature (K) **/
/** temp, of air leaving desiccant bed (K) **/

/** temperature of air after fan (K) **/
/** air temp, after heat exchanger (K) **/
/** cone, of H2O entering bed (kgH20/kgair) **/
/** cone, of H2O leaving bed (kgH2O/kgair) **/
/** mass of H2O on sorbent (kg) **/

/** cone. CO2 in sorbent (kgCO2/kg air) **/
/** cone. C02 entering bed (kg CO2/kg air) **/
/** cone. CO2 leaving bed (kg CO2/ kg air) **/
/** cone. CO2 leaving bed (ppm) **/

/** temp, of air leaving sorbent bed (K) **/

double Pg,
Pb,
m_o,
m_out,
w,
Q_loss,
Tref,
k_w,
k s;

/** CO2 pressure in void space **/
/** pump exit pressure **/
/** mass flow rate out of bed dMg/dt **/
/** assembly exiting flow rate (bang-bang) **/
/** angular velocity of pump (rad/sec) **/
/** accumulator heat loss (bang-bang) **/
/** reference temp, of desorbent bed **/
/** ratio of Ceo w/Ccs_w **/
/** ratio of Ccojcca **/

double Power=1000.0,
Mb=20.0,
Cpa=1003.0,
Cvs=844.0,
Sc w=2700.0E3,

Cvb=657.0,
Cp = 846.0,
R=0.1889,
To=0.0,
Vg=1.0,
Va=2.0,
kl=0.7,
k2=.0006,
k3=.0023,
k4= 2.0,
k = 1.29,
Sc=951E3;

double dt,
dTb,
dT_des,
dT_sorb,
dMd_w,
dMg,
dMd,
dMa,

/** mass of sorbent material (kg) **/
/** heat capacity of air (J/kgK) **/
/** heat capacity of sorbent (J/kgK) **/
/** heat of sorption of H2O

into sorbent (J/kgK) **/

/** reference temperature for internal energy **/

/**

/**

accumulator heat transfer coef. (Watts/K) **/

CO2 heat of sorption into sorbent (J/kgK) **/

112



dUa;

/** Inputting of parameters by user **/

printf("\nlnput mass flow rate of air, M_flow (kg/s) : ");
scanf("%lf",&M_flow);
printf("\nlnput H2O concentration entering assembly,");
printf(" Cci_w (kgH20/kg air) : ");
scanf("%lf",&Cci_w);
printf("\nlnput concentration of CO2 entering assembly,");
printf(" Cci (kgCO2/kg air): ");
scanf("%lf",&Cci);
printf("\nlnput temperature of incoming air, Ti (K) : ");
scanf("%lf",&Ti);
printf ("\nlnput angular velocity of pump (radians/second) : ");
scanf ("%lf",Sw);
printf ("\nlnput desired bed reference temperature, Tref (K) : ");
scanf ("%lf",&Tref);

Time[0] = 0.0; /** absolute start time in minutes **/
xTime = 0.0;

/** initial conditions for desiccant bed **/

Md_w[0] = xMd_w = 0;
T_des[0] =s xT_des = Ti;
Ccs_w = Md_w[0] / Mb;
k_w = 0.1;
Cco_w = k_w * Ccs_w;
Conc_w[0] = xConc_w = Cco_w * 10000.0;

/** initial conditions for sorbent bed **/

Md[0] = xMd = 0.0,
T_sorb[0] = xT_sorb = Ti;
Ccs = Md(0] / Mb;
k_s = 0.1;
Ceo = k_s * Ccs;
Conc[0] = xConc = Ceo * 1.0E6;
dt = 1.0;

printf("\n\nWorking desiccant and sorbent bed forward cycle...\n\n");

/*************************************************
* *
* Desiccant bed and Sorbent bed calculations *
* *
*************************************************/

i = i;
while (i<100) {

for (dummy=1;dummy<=3 3;dummy++){

/** desiccant bed equations **/

dT_des = dt * ((M_flow * Cpa * (Ti - xT_des)) +
(M_flow * Sc_w * (Cci_w - Cco_w))) / (Mb * Cvs);

dMd_w = M_flow * (Cci w - Cco_w) * dt;
xT_des - xT_des + dT_Hes;
xMd_w = xMd_w + dMd_w;
Ccs_w = xMd_w /Mb;
Cco_w = k_w * Ccs_w;
xConc_w = Cco_w * 10000.0;

/** fan and heat exchanger "equations" **/

113



xT_fan = xT_des + 6.81;
xT_hx = xT_des - 50.0; /** this is a kludge **/

/** sorbent bed calculations **/

dT_sorb = ((M_flow * Cpa * (xT_des - xT_sorb)) +
(M_flow * Sc * (Cci - Ceo))) * dt / (Mb * Cvs);

dMd = M_flow * (Cci - Ceo) * dt;
xT_sorb = xT_sorb + dT_sorb;
xMd = xMd + dMd;
Ccs = xMd / Mb;
Ceo = k_s * Ccs;
xConc = Ceo * 1.0E6;

xTime = xTime + dt/60.0;

Time[i] = xTime;
T_des(i] = xT_des;
Md_w[i] = xMd_w;
Conc_w[i] = xConc_w;
T_sorb[i] = xT_sorb;
Md[i] = xMd;
Conc[i] = xConc;
i = i + 1;

y

* *
* Plotting routine for Desiccant and Sorbent beds *
* *

printf("\n\nDone...");
printf("\n\nPlease choose which device you wish to use");
printf(" for plotting purposes.\n");
printf("\nDISPLAY = 1");
printf("\nPLOTTER = 2");
printf("\n\n");
scanf("%d",&pen);
if (pen == 1)

rite=DISPLAY;
else rite=PLOTTER;

/** Simple plot calls for desiccant bed data **/

simple_plot(rite,i,Time,T_des,"Time","minutes","Temperature",
"degrees Kelvin",
"Temperature of Desiccant Bed (T_des[i])",1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Md_w,"Time","minutes","Mass H20","kg",

"Mass H2O in Sorbent Bed Material (Md_w[i])",1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Conc_w,"Time","minutes",

"Relative Humidity","%",
"Relative Humidity of Air Leaving Desiccant Bed",
1,CURVE);

scanf("%d",&dummy);

114



/** Simple plot calls for sorbent bed data **/

simple_plot(rite,i,Time,T_sorb,"Time","minutes","Temperature",
"degrees Kelvin","Temp, of Air Leaving Sorbent Bed",
1,CURVE);

scanf("%d",&duramy);
simple_plot(rite,i,Time,Md,"Time","Minutes","Mass CO2","kg",

"Mass CO2 in Sorbent Bed Material (Md[i])",1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Cone,"Time","minutes","Concentration",

"ppm","Conc. CO2 Leaving Sorbent Bed",1,CURVE);

scanf("%d",&dummy);

system("clear"); /** clear the screen **/
printf("\n\nWorking on desorbing cycle...");

/** initial conditions for desorbing cycle **/

Time[0] = xTime = 62; /** reset array for this cycle **/
Md[0] = xMd = Md[99]; /** reset array for this cycle **/
Tb[0] = xTb = T_sorb[99]; /** reset array for this cycle **/
Mg[0] = kl * Vg * Md[0] * (Tb[0] - Tref) / (Mb * R * Tb[0]);

xMg = Mg[0];
Ua[0] = xUa = 407.34;
Ma[0] = xMa = 0.002;
Ta[0] = xTa = 300.0;
Pp[0] = xPp = 0.0567;
Tp[0] = xTp = 300.0;

/**********************************************
* *
* Calculations for Desorbing cycle *

i = 1;
while(i<100){
for(dummy=l;dummy<=2 8;dummy++){

if (xTb > 330.0) /** bang-bang bed temp, controller **/
Power=0.0;

else Power = 1000.0;

Pg = xMg * R * xTb / Vg;
Pb = kl * xMd /Mb * (xTb - Tref);
xPp = xMa * R * xTa / Va;
xTp = xTb*pow((xPp/Pg),(1.0-1.0/k));
xTa = xUa / (xMa * Cp) + To;
m_o = w*k3*Pg/R/xTb;

if (xMa < Ma[0]) /** bang-bang flow out control **/
m_out = 0.0;
else
m_out = 0.75 * m_o;

if (xTa > 600.0) /** bang-bang accumulator cooler **/
Q_loss=k4*(xTa - 300);

else Q_loss=0.0;

115



dMd = (Pg - Pb) * k2 * dt;
dMg = ((Pb - Pg) * k2 - (w * Pg * k3)/R/xTb) * dt;
dTb = (dMd * Sc / dt + Power)/Mb/Cvb * dt;
dMa = dt * (m_o - m_out);
dUa = dt * (m_o*(Tp[i-l]-To)*Cp-m_out*

(Ta[i-l]-To)*Cp - Q_loss);

xMg = xMg + dMg;
xMd = xMd + dMd;
xTb = xTb + dTb;
xMa = xMa + dMa;
xUa = xUa + dUa;
xTime = dt/60.0 + xTime;

Time[i] = xTime;
Mg[i] = xMg;
Md[i] = xMd;
Tbfi] = xTb;
Ma[i] = xMa;
Ua[i] = xUa;
Ta[i] = xTa;
Tp[i] = xTp;
Pp[i] = xPp;

i = i + 1;

printf("\nPress number and return to begin plotting...");
scanf("%d",&dummy);

/** SIMPLE PLOT CALLS FOR DESORBENT CYCLE DATA **/

simple_plot(rite,i,Time,Md,"Time","minutes",
"Mass CO2",nkg","Mass CO2 in Sorbent Bed Material (Md[i])",

,1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Ma,"Time","minutes",

"Mass CO2","kg","Mass CO2 in Accumulator (Ma[i])n

,1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Ua,"Time","minutes",

"Internal Energy","J",
"Internal Energy in Accumulator (Ua[i])"
,1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Tp,"Time","minutes", "Temperature",

"K","Temperature of Pump Outlet (Tp[i])"f 1,CURVE);

scanf("%d",&dummy);

simple_plot(rite,i,Time,Ta,"Time","minutes","Temperature",
"K","Temperature of Accumulator (Ta[i])",1,CURVE);

scanf("%d",&dummy);
simple_plot(rite,i,Time,Pp,"Time","minutes","Pressure",

"kPa","Outlet Pressure of Pump (Pp[i])",!,CURVE);
scanf("%d",dummy);
printf("\nDone sending plots...");

}

116



VERSION: 1.0* PROGRAM: CLPMODEL.H
*
* DESCRIPTION: Global variables for clpmodei.c
*
USES: none

* PROGRAMMER: Robert W. Young
*
* LAST REVISION: 03 March 1991
*

*
*
*
*
*
*
*

#define NORMAL 0 /** function main should return a value to DOS **/

/** GLOBAL VARIABLES
double time, tstop;
int pair;
int dummy;
long int i;

double xTime,
xMg,
xMd,
xTb,
xUa,
xMa,
xPp,
xTp,
xTa,
xT_fan,
xT hx,
xConc_w,
Ccs w,
M flow,
Tl,
xT_des,
Cci_w,
Ceo w,
xMd_w,
Ccs,
Cci,
Ceo,
xConc,
xT_sorb ;

double Pg,
Pb,
m_o,
m_out ,
w»
Q loss,
Tref,
k w,
k_s;

double Power,
Mb=20.0,
Cpa=1003.0,
Cvs=844.0,
Sc_w=2700.0E3

**/

/** time in cycle
/** mass of gas in void space
/** mass of gas in sorbent material
/** temperature of bed and gas desorbed
/** internal energy of accumulator
/** mass of CO2 in accumulator
/** output pressure of pump
/** output temperature of pump
/** temperature of accumulator
/** temperature of air after fan (K)
/** air temp, after heat exchanger (K)
/** relative humidity of outgoing air
/** cone, of H2O on sorbent (kgH2O/kgair)
/** mass flow rate of air (kg/sec)
/** incoming air temperature (K)
/** temp, of air leaving desiccant bed (K)
/** cone, of H2O entering bed (kgH2O/kgair)
/** cone, of H2O leaving bed (kgH2O/kgair)
/** mass of H2O on sorbent (kg)
/** cone. CO2 in sorbent (kgCO2/kg air)
/** cone. CO2 entering bed (kg CO2/kg air)
/** cone. CO2 leaving bed (kg CO2/ kg air)
/** cone. CO2 leaving bed (ppm)
/** temp, or air leaving sorbent bed (K)

/** CO2 pressure in void space
/** pump exit pressure
/** mass flow rate out of bed dMg/dt
/** assembly exiting flow rate (bang-bang)
/** angular velocity of pump (rad/sec)
/** accumulator heat loss (bang-bang)
/** reference temp, of desorbent bed
/** ratio of Ceo w/Ccs_w
/** ratio of Cco/Ccs

/** mass of sorbent material (kg)
/** heat capacity of air (J/kgK)
/** heat capacity of sorbent (J/kgK)

, /** heat of sorption of H2O
into sorbent (J/kgK)

** /
** /
It* I
** /
** /
** /
** /
** /
** /
** /
** /
** /
** /
** /**/
** /
** /
** /
**/**/**/**/
** /**/
**/
** /**/
** /
** /
** /
**/
**/**/

** /
** /

**/
** /

117



Cvb=657.0,
Cp = 846.0,
R=0.1889,
To=0.0,
Vg=1.0,
Va=2.0,
kl=0.7,
k2=.0006,
k3=.0023,
k4= 2.0,
k = 1.29,
Sc=951E3;

double dt,
dTb,
dT_des,
dT_sorb,
dMd_w,
dMg,
dMd,
dMa,
dUa;

FILE *clips,
*model;

char *mode;

/** reference temperature for internal energy **/

/** accumulator heat transfer coef. (Watts/K) **/

/** CO2 heat of sorption into sorbent (J/kgK) **/

/** file pointer for storage of sensor data
/** file pointer for storage of model data
/** string to hold CLIPS mode instructions

**/
** /
**/

* PROGRAM:
*

CLPMODEL.C VERSION: 1.1 *
*

* DESCRIPTION: Simulate CO2 removal sub-assembly using math *
* modeling equations derived in Fall 1990 report *
* of "Automation of Closed Environments in Space *
* for Human Comfort and Safety". *
* Program will provide five minutes of sensor *
* data to an ASCII file to be read by CLIPS and *
* acted upon. CLIPS will generate an ASCII com- *
* mand file which will direct operation of the *
* model. *

* USES: stdio.h
math.h
"clpmodel.h"*

*
* PROGRAMMER: Robert W. Young
*
* LAST REVISION: 04 March 1991
*
* LIMITATIONS:
*

*
*
*
*
*
*
*
*

*
*

The desorbing desiccant bed has not been
included in this model because the CLIPS
Expert System is not concerned with the
rehumidification of cabin air. Only the
levels of CO2 into the Removal System, the
CO2 released to the cabin, the CO2 level of *
the accumulator and the CO2 demand of the *
Reduction System are currently necessary for *
CLIPS to make an inference about mode *
transitions. *

/include <stdio.h>
/include <math.h>
/include "model.h"

118



*
*
*
*
*
*
*
*
*
*
*
*
it

FUNCTION: read_model
PURPOSE: Write data to CO2REMOV.DAT for re-starting model
INPUTS: none.
OUTPUTS: time — current time in half cycle

xMg — mass of gas in void space
xMd — mass of gas in sorbent material
xTb — temperature of bed and gas desorbed
xUa — internal energy in CO2 accumulator
xMa — mass of CO2 in accumulator
xT_sorb — temperature of sorbent bed
xT_des — temperature of desiccant bed
xMd_w — mass of H2O in desiccant bed
xTa — temperature of accumulator
xTp — temperature of pump outlet
xPp — pressure of pump outlet
w — pump speed
power — power applied to sorbent bed heaters
pair — which pair of beds is operating
Cci — incoming concentration of CO2
Cci w — incoming concentration of H2O

*
*

void readjmodel()

model = fopen("co2remov.dat","r");
fscanf(model,"%d %f %f %f %f %f",pair,time,xMg,xMd,xMd_w,xMa);
fscanf(model,"%f %f %f %f %f %f",xTb,xT_sorb,xT_des,xUa,w,Power);
fscanf(model,"%f %f %f %f %f",xTa,xTp,xPp,Cci,Cci_w);
fclose(model);

FUNCTION:
PURPOSE:

* INPUTS:
* OUTPUTS:

read_commands *
Read CLIPS CO2REMOV.CMD file for model operation *
instructions. CLIPS commands are currently *
ignored. *
none. *
mode — current mode of operation as determined *

by CLIPS *

void read_commands ( )

clips = f open ("co2remov.cmd", "r"
fscanf (clips, "%s",mode) ;
f close (clips) ;

FUNCTION: decode_commands
PURPOSE: Decode the command issued by CLIPS into model

parameters. Since the CLIPS commands are ignored
no decoding is done.

INPUTS: mode — current mode of operation as determined
by CLIPS

OUTPUTS: tstop — end of half cycle time
power — power applied to sorbent bed heaters *
m_out_scale — fraction of mass flow into CO2 *

accumulator released to CO2 *
reduction assembly *

w — CO2 pump speed *
blow — blower speed *

******
void decode_commands()

119



tstop = 55.0; /** model runs on 55 minute half cycles **/

* FUNCTION: adsorb_l
* PURPOSE: Simulate the operation of Desiccant bed #1, the
* blower, heat exchanger and sorbent bed #2.
* This provides for later simulation of component
* failures.

void adsorb_l( )
{

Ccs_w = xMd_w / Mb;
k_w = 0.1;
Cco_w = k_w * Ccs_w;
xConc_w = Cco_w * 10000.0;
Ccs = xMd / Mb;
k_s = 0.1;
Ceo = k_s * Ccs;
xConc = Ceo * 1.0E6;
dt = 0.1;
for (dummy=l;durnray<=5*60/dt;dummy++) {

/** desiccant bed equations **/
dT_des = dt * ( (M_f low * Cpa * (Ti - xT_des)) +
(M_flow * Sc_w * (Cci_w - Cco_w))) / (Mb * Cvs);
dMd_w = M_flow * (Cci_w - Cco_w) * dt;
xT_des = xT_des + dT_des;
xMd_w = xMd_w + dMd_w;
Ccs_w = xMd_w / Mb;~
Cco_w = k_w * Ccs_w;
xConc_w = Cco_w * 10000.0;

/** fan and heat exchanger "equations" **/
xT_fan = xT_des + 6.81;
xT_hx = xT_des - 50.0; /** this is a kludge **/

/** sorbent bed calculations **/
dT_sorb = ( (M_f low * Cpa * (xT_hx - xT_sorb) ) +

(M_flow * Sc * (Cci - Ceo))) * dt / (Mb * Cvs);
dMd = M_flow * (Cci - Ceo) * dt;
xT_sorb = xT sorb + dT_sorb;
xMd = xMd + dMd;
Ccs = xMd / Mb;
Ceo = k_s * Ccs;
xConc = Ceo * 1.0E6;
xTime = xTime + dt/60.0;

* FUNCTION: desorb_l
* PURPOSE: Simulate the operation of sorbent bed #4, CO2
* pump and CO2 accumulator.
* This provides for later simulation of component
* failures.

void desorb_l ( )
{

for(dummy=l;dummy<=5*60/dt;dummy++) {
if (xTb > 330.0) /** bang-bang bed temp, controller **/

Power =0.0;
else

Power = 1000.0;
Pg = xMg * R * xTb / Vg;
Pb = kl * xMd /Mb * (xTb - Tref);

120



xPp = xMa * R * xTa / Va;
xTp = xTb*pow((xPp/Pg),(1.0-1.0/k));
xTa = xUa / (xMa * Cp) + To;
m_o = w*k3*Pg/R/xTb;
if (xMa < 0.002) /** bang-bang flow out control **/

m_out = 0.0;
else

m_out = 0.75 * m_o;
if (xTa > 600.0) /** bang-bang accumulator cooler **/

Q_loas=k4*(xTa - 300);
else

Q_loss=0.0;
dMd = (Pg - Pb) * k2 * dt;
dMg = ((Pb - Pg) * k2 - (w * Pg * k3)/R/xTb) * dt;
dTb = (dMd * Sc / dt + Power)/Mb/Cvb * dt;
dMa = dt * (m_o - m_out);
dUa = dt * (m_o*(xTp-To)*Cp-m_out*(xTa-To)*Cp-Q_loss);
xMg = xMg + dMg;
xMd = xMd + dMd;
xTb = xTb + dTb;
xMa = xMa + dMa;
xUa = xUa + dUa;
xTime = dt/60.0 + xTime;

* FUNCTION: adsorb_2
* PURPOSE: Simulate the operation of Desiccant bed #3, the
* blower, heat exchanger and sorbent bed #4.
* This provides for later simulation of component
* failures.

*
*
*
*
*

void adsorb_2()
{

Ccs_w = xMd_w /Mb;
k_w = 0.1;
Cco_w = k_w * Ccs_w;
xConc_w = Cco_w * 10000.0;
Ccs = xMd / Mb;
k_s = 0.1;
Ceo = k_s * Ccs;
xConc = Ceo * 1.0E6;
dt = 0.1;
for (dummy=l;dummy<=5*60/dt;dummy++){

/** desiccant bed equations **/
dT_des = dt * ((M_flow * Cpa * (Ti - xT_des)) +

(M_flow * Sc_w * (Cci_w - Cco_w))) / (Mb * Cvs);
dMd_w = M_flow * (Cci_w - Cco_w) * dt;
xT_des = xT_des + dT_des;
xMd_w = xMd_w + dMd_w;
Ccs_w = xMd_w / Mb;
Cco_w = k_w * Ccs_w;
xConc_w = Cco_w * 10000.0;

/** fan and heat exchanger "equations" **/
xT_fan = xT_des + 6.81;
xT_hx = xT_des - 50.0; /** this is a kludge **/

/** sorbent bed calculations **/
dT_sorb = ((M_flow * Cpa * (xT_hx - xT_sorb)) +

(M_flow * Sc * (Cci - Ceo))) * dt / (Mb * Cvs);
dMd = M_flow * (Cci - Ceo) * dt;
xT sorb = xT sorb + dT sorb;

121



xMd = xMd + dMd;
Cos = xMd / Mb;
Ceo = k_s * Ccs;
xConc = Ceo * 1.0E6;
xTime = xTime + dt/60.0;

* FUNCTION: desorb_2
* PURPOSE: Simulate the operation of sorbent bed #2, CO2
* pump and CO2 accumulator.
* This provides for later simulation of component
* failures.

void desorb_2()

for(dummy=l;dummy<=5 * 60/dt;dummy++){
if (xTb > 330.0) /** bang-bang bed temp, controller **/

Power=0.0;
else Power = 1000.0;
Pg = xMg * R * xTb / Vg;
Pb = kl * xMd /Mb * (xTb - Tref);
xPp = xMa * R * xTa / Va;
xTp = xTb*pow((xPp/Pg),(1.0-1.0/k));
xTa = xUa / (xMa * Cp) + To;
m_o = w*k3*Pg/R/xTb;
if (xMa < 0.002) /** bang-bang flow out control **/

m out = 0.0;
else"

m_out = 0.75 * m_o;
if (xTa > 600.0) /** bang-bang accumulator cooler **/

Q_loss=k4*(xTa - 300);
else

Q_loss=0.0;
dMd = (Pg - Pb) * k2 * dt;
dMg = ((Pb - Pg) * k2 - (w * Pg * k3)/R/xTb) * dt;
dTb = (dMd * Sc / dt + Power)/Mb/Cvb * dt;
dMa = dt * (m_o - m_out);
dUa = dt * (m_o*(xTp-To)*Cp-m_out*(xTa-To)*Cp-Q_loss);
xMg = xMg + dMg;
xMd = xMd + dMd;
xTb = xTb + dTb;
xMa = xMa + dMa;
xUa = xUa + dUa;
xTime = dt/60.0 + xTime;

****************************************************************
* FUNCTION: write clips *
* PURPOSE: Write~data to CO2REMOV.SEN for CLIPS to analyze. *
* INPUTS: time — current time in half cycle *
* Cci — concentration of CO2 at assembly inlet *
* CCo — concentration of CO2 at assembly outlet *
* xMa — mass of CO2 in accumulator *
* m_out — mass CO2 released to reduction assembly *
* OUTPUTS: none. *

void write_clips()

clips = fopen("co2remov.sen","w");
fprintf(clips,"(sensor CO2_REMOVAL INLET_CO2 %f kg/kg %f)\n"

122



,Cci,time) ;
f print f( clips, "(sensor CO2_REMOVAL OUTLET_CO2 %f kg/kg %f)\n"

, Ceo, time) ;
f print f( clips, "(sensor CO2_REMOVAL CO2_ACCUMULATOR %f kg %f)\n"

>xMa,time) ;
f print f( clips, "(sensor CO2_REMOVAL CO2_DEMAND %f kg %f)\n"

,m_out,time) ;
f close (clips) ;

}**
FUNCTION: write_model *
PURPOSE: Write data to CO2REMOV.DAT for re-starting model *
INPUTS: time — current time in half cycle *

xMg — mass of gas in void space *
xMd — mass of gas in sorbent material *

* xTb — temperature of bed and gas desorbed *
* xUa — internal energy in CO2 accumulator *
* xMa — mass of CO2 in accumulator *
* xT_sorb — temperature of sorbent bed *
* xT_des — temperature of desiccant bed *
* xMd_w — mass of H2O in desiccant bed *
* xTa — temperature of accumulator *
* xTp — temperature of pump outlet *
* xPp — pressure of pump outlet *
* w — pump speed *
* power — power applied to sorbent bed heaters *
* pair — which pair of beds is operating *
* Cci — incoming concentration of CO2 *
* Cci_w — incoming concentration of CO2 *
* OUTPUTS: none. *

void write_model ( )
{

model = f open ("co2remov.dat", "w" ) ;
fprintf (model, "%d %f %f %f %f %f\n", pair, time, xMg,xMd,xMd_w, xMa) ;
fprintf (model, "%f %f %f %f %f %f\n",xTb,xT_sorb,xT_des,xUa,w, Power) ;
fprintf (model, "%f %f %f %f %f M,xTa,xTp,xPp,Cci,Cci_w) ;
f close (model) ;

The two halves of the assembly could be modeled using only *
* two functions, but by using four functions, the model can *
* by used to simulate component failures and valve change *
* sequencing. *

main ( )

read_model ( ) ; /** get info to start model **/
read_commands ( ) ; /** read CLIPS command file **/
printf( "\nOperating in %s mode .", mode );
decode_commands ( ) ; /** decode CLIPS command into model

parameters **/

* Entry point for restarting model. ,
*
* First check to see if mode change should be made, and
* make if necessary. Then using model data, run model
* for five minutes, writing sensor data and model data
* and quit to batch file.

123



if (time >= tstop)
time = 0.0;
if (pair == 1)

pair = 2;
else

pair = 1;

/** Determine which pair of functions **/
/** will be operating. If the model **/
/** is about to change half cycles,
/** make the necessary arrangements.

** /
**/

print f ("\nPair %d is operating. ..", pair) ;

if (pair == 1) {
adsorb_l();
desorb_l();
write_clips()
write_model()

}
else {

adsorb_2();
desorb_2 ();
write_clips()
write_model()

}
return NORMAL;

/** Run the model for five minutes and **/
/** output data to the necessary files.**/

/** Run the model for five minutes and **/
/** output data to the necessary files.**/

/** mainQ should return a value to DOS **/

124



APPENDIX 2B
CO, REDUCTION ASSEMBLY PROGRAM

*
*
*
*
*
*
*
*
*

*
*

Program Name:
Author:
Date:

Description:

Sabatier Methanation Reactor *
Jeff Newell *
2/15/91 *

This program will determine and *
set a reactor volume depending on *
the initial carbon dioxide flow *
rate entered by the user. It will *
then let the user enter different *
flow rates to see how conversion *
is affected. It will also give *
outputs of CO2 and H2 not reacted *
as well as H2O and CH4 produced. *

INCLUDE THE NECESSARY HEADER FILES

/include <stdio.h>
/include <math.h>

DEFINE CONSTANTS USED

#define A 1.112393E6
/define E 8553

/* catalyst activity constant */
/* catalyst activity constant = Ea/R */

START MAIN FUNCTION

main ( )

/*--
int

INITIALIZE VARIABLES */
doanother=l, /* variable for doing another run */
index; /* index for arrays */

double actconv,
actflow,
ch4prod,
co2notreac,
co2rate,
conversion,
h2notreac,
h2oprod,
integral,
keq,
partlkeq,
part2keq,
partlreac,
part2reac,
partSreac,
sqrtemp,
value,
volcentl,
volcent2,
volgal;

double reac[550],
pco2[550],
pch4[550],

*/
*/

/* actual conversion rate
/* actual flow rate of CO2
/* CH4 produced */

/* C02 not reacted */
/* incoming flow of CO2 */
/* conversion rate */

/* H2 not reacted */
/* H2O produced */

/* mass balance integral */
/* equilibrium constant */

/* part of keq */
/* part of keq */
/* part of reaction rate */
/* part of reaction rate */
/* part of reaction rate */
/* square of temperature */
/* used for integration */
/* volume of sabvol in cubic cent. */
/* volume of sabatier in cubic cnt */
/* volume of Sabatier in gallons */

/* rate of reaction */
/* partial pressure of C02 */
/* partial pressure of CH4 */

125



ph2o[550], /* partial pressure of H2O */
ph2[550], /* partial pressure of H2 */
sum[550], /* integral */
temp[550]; /* temperature of reaction */

/* ENTER INPUT VALUES */

/* This section will let the user input a flow rate of CO2 */

printf("Enter initial flow rate of carbon dioxide (in mol/sec): \n");
scanf("%lf",&co2rate);

/* This section calculates the volume required to achieve
maximum conversion in cubic cent, and gallons */

volcentl = 1.652E7 * co2rate;
volgal = volcentl * 2.642E-4;

/* This section lets the user know the volume necessary
to achieve maximum conversion for his flow rate */

printf("In order to achieve a maximum conversion rate of 0.515, \n");
printf("the volume of the reactor must be at least %5.21f

\n",volcentl);
printf("cubic centimeters, or in other words, %2.21f gallons.

\n",volgal);
printf("\n\n\n-);

/* This section sets the volume of the reactor to the value
above */

printf("The volume of the reactor is now set at %2.21f gallons.
\n",volgal);

printf("\n\n");

while(doanother==l)
{

/* This section lets the user input his own volume */

printf("You may now enter a test flow rate of carbon \n");
printf("dioxide to see the exact conversion rate for \n");
printf("the volume set above. \n");
printf("\n");
printf("Enter test carbon dioxide flow rate (in mol/sec):

\n");
scanf("%lf",fiactflow);

/* This section determines what the value of the mass balance
integral must be for the user's volume and flow rate */

integral = volcentl / actflow;

/* This section compares the value of the mass balance
integral to the value it should be for maximum conversion. If the integral is
larger than 1.652E7, then the volume of the reactor is large enough to achieve
maximum conversion for the user's flow rate. If this is the case, this
section sets the actual conversion rate to 51.5% and determines the temperature
of reaction. */

126



if ( integral>=l . 652E7 )
{

actconv = .515;
index = 515;
temp[index] = 1088 * actconv + 297.59;

}

/* This section also compares the value of the mass balance integral to the
maximum value. In this case, if the integral is smaller than 1.652E7, then the
reactor is not large enough to achieve maximum conversion. If this is the case,
this section evaluates the mass balance integral to determine the conversion rate
for the inputted flow rate of CO2. */

if ( integraKl . 652E7 )
{

/* Initialize values */

conversion = 0.0;
index =0;
actconv = 0.0;
sqrtemp = 0.0;
value = 0.0;

for ( conversions . 001 ; conversion<= . 515 ; conversion*3 . 001 )
{

index = conversion * 1000;
temp [index] = 1088 * conversion + 297.59;
/* partl&2keq used to calculate keq */
sqrtemp = temp [ index ] *temp [ index ] ;
partlkeq = 5600/sqrtemp + 34633/temp[ index] ;
part2keq = -16. 4* (log (temp [index] ) ) + 0. 005 57 *temp[ index ];
keq = exp( (1.0/1. 987)* {partlkeq + part2keq) + 33.165);
/* partial pressures of reactants and products */
pco2[ index] = 0.2*( (1-conversion) /(l-.4*conversion) ) ;
pch4[ index] = 0. 2* ( conversion/ ( 1-0. 4*conversion) );
ph2o[ index] = 0.2*( (2*conversion)/(l-0.4*conversion) ) ;
ph2[ index] = 0.2*( (4-4*conversion)/(l-0.4*conversion) ) ;
/* parti, 2&3reac used to calculate reaction rate */
partlreac = pow(pco2[ index] ,0.25) *ph2[ index ];
part2reac = pow(pch4[ index] , 0. 25 )*pow(ph2o[ index] ,0.5)/keq;
part3reac = A/temp [ index ];
reacf index] = partireac* ( part Ireac-part2reac ) *exp(-E/ temp [index] ) ;

/* This line multiplies the integrand by the time step */
value = ( l/reac[ index ])*. 001;

/* This line adds the values above to determine conversion */
sum [index] = sum [ index- 1] + value;
/* determines if integral has been computed */
if ( sum [ index ] >=int egral )
{

actconv=conversion;
conver 3 ion= .515;

/* This section prints output values */
printf ( "Actual rate of conversion = %4.41f \n\n", actconv );
printf ("Final temperature of reaction = %6.21f K
\n\n",temp[ index] ) ;
co2notreac = 44.0*actflow*(l-actconv) ;
printf ( "Amount of CO2 not reacted = %4.41f grams/sec.

127



\n" , co2notreac ) ;

h2notreac = 2.0*4.0*actf low*(l-actconv) ;
printf ("Amount of H2 not reacted = %4.41£ grams/sec.

\n",h2notreac) ;
h2oprod = 18.0*2.0*actf low*actconv;
printf ("Amount of H2O produced = %4.41f grams/sec. \n"

,h2oprod) ;
ch4prod = 16.0*actf low*actconv;
printf ( "Amount of CH4 produced = %4.41f grams/sec.

\n",ch4prod) ;
printf ("If you wish to do another analysis, enter 1, else 0.
\n" ) ;
scanf ( "%d" , Sdoanother) ;

END OF FILE

128



APPENDIX 2C
OXYGEN GENREATION ASSEMBLY PROGRAM

* SOURCE FILE: OGA.C
*
* DESCRIPTION: This program models the OGA electrolysis unit,
* H20 tanks, and the H2 and O2 output from the
* electrolysis unit.
*
* USES: main()
*
* AUTHORS: Original in fortran by Cark Perkins, David Kley,
* and Frank Lunkwitz.

*
*
* DATE:

Rewrite in C by Kevin Forssberg and William Biehl

March 1, 1991

/*************
* NOTE TO ROBERT YOUNG AND HAL KRAUS:
* — KEVIN AND BILL COULD NOT FIGURE OUT HOW TO STOP
* AND RESTART THE PROGRAM EVERY 5 MIN. THEREFORE,
* THIS PROGRAM DOES NOT HAVE THIS CAPABILITY.
************/

#include <stdio.h>
#include <math.h>

#define F 96487
#define FULL 35 /* A FULL WATER TANK IS PRESET AT 35 MOLES */
#define EMPTY 3 /* H20 AND A EMPTY TANK IS AT 3 MOLES H20 */
#define X 18 /* X IS THE NUMBER OF CELLS IN THE ELECTROL-

YSIS UNIT */

FILE *outfile; /* DECLARAITION OF OUTPUT FILE */

main()

int 1=0, /* ELECTROLYSIS UNIT CURRENT */
t=0, /* INCREMENTING VARIABLE IN FOR LOOPS */
TIME=0, /* TIME INITIAL SET POINT */
LEVEL=0;/* THIS IS THE DISCRETE INITIAL SETTING OF

THE WATER TANK WHERE 1 INDICATES FULL
AND 0 INDICATES EMPTY */

/* MOLES OF H2 OUT OF ELECTROLYSIS UNIT*/
/* MOLES OF O2 OUT OF ELECTROLYSIS UNIT*/

INITIAL SETTING OF H2 TANK */
INITIAL SETTING OF O2 TANK */

/* AMOUNT OF WATER IN SYSTEM */
/* OPERATING TEMP OF ELECTROLYSIS UNIT */

O2_OUTTAKE_TEMP, /* LINEAR CONVERTION FOR TEMP OF O2
OUT TO THE CABIN */

double H2OUT,
02OUT,
H2TANK=0.0,
O2TANK=0.0,
H20,
TEMP,

/<
/*

/*PRAMETERS NOT CALCULATED BY MODEL BUT NEEDED FOR EXPERT
/*SYSTEM. — TO VARY EXPERT SYSTEM OUTPUTS CHANGE THESE
/* VARIABLES AT THIS POINT ONLY.

*/
*/

129



H2O FEEDLINE_PRESSURE=25.0, /* H2O PRESSURE TO ELECTROL-
YSIS UNIT */

H_O_DEFERENTIAL_PRESSURE=3.0,/* DERERENTIAL PRESSURE OF
02 AND H2 OUTPUT LINES */

CELL_VOLTAGE=1.67; /* INDIVIDUAL CELL VOLTAGE
IN ELECTROLYSIS UNIT */

outfile=fopen("OGA.DAT","w"); /* OPEN DATAFILE "OGA.DAT" */

H20 = FULL;
for(1=15; I<=28; I++)

TIME++;
H2OUT= (double) I/F*X*60.0;
O20UT=H2OUT/2.0;
H2TANK=H2TANK+H20UT;
O2TANK=O2TANK+O20UT;
H20=H20-H20UT-O2OUT;
TEMP=((-0.0391*1*1) + (4.38*1) + 67);
O2 OUTTAKE_TEMP=TEMP-68;
if~(H20 <= EMPTY)

H2O=FULL;
LEVEL=0;

else
LEVEL=1;

fprintf(outfile,"(SENSOR OGA H2O_FEEDLINE_PRESSURE %4.2f PSIG %2.0d)\n",
H20_FEEDLINE_PRESSURE,TIME);

fprintf(outfile,"(SENSOR OGA H20_PHOTOCELL %d discrete %2.0d)\n",
LEVEL,TIME);

fprintf(outfile,"(SENSOR OGA H/0_DEFERENTIAL PRESSURE %4.2f PSIG %2.0d)\n",
H_O_DEFERENTIAL PRESSURE,TIME); ""

fprintf(outfile,"(SENSOR OGA O2_OUTTAKE_TEMP %5.3f F %2.0d)\n",
O2_OUTTAKE_TEMP,TIME);

fprintf(outfile,"(SENSOR OGA CELL_VOLTAGE %4.2f volts %2.Od)\n\n\n",
CELL_VOLTAGE,TIME);

for(t=l; t<200; t++)

TIME++;
H20UT=H20UT;
O2OUT=O2OUT;
H2TANK=H2TANK+H20UT;
O2TANK=02TANK+020UT;
H2O=H2O-H2OUT-O2OUT;
if(H20 <= EMPTY)

H2O = FULL;
LEVEL = 0;

else
LEVEL = 1;

fprintf(outfile,"(SENSOR OGA H2O_FEEDLINE_PRESSURE %4.2f PSIG %2.0d)\n",
H2O_ifEEDLINE_PRESSURE,TIME) ;

fprintf(outfile,"(SENSOR OGA H20_PHOTOCELL %d discrete %2.0d)\n",
LEVEL,TIME);

fprintf(outfile,"(SENSOR OGA H/O_DEFERENTIAL_PRESSURE %4.2f PSIG %2.0d)\n",
H O DEFERENTIAL PRESSURE,TIME);

fprintf"(outfile,n(S"ENSOR OGA O2_OUTTAKE_TEMP %5.3f F %2.0d)\n",

130



02_OUTTAKE_TEMP,TIME);
fprintf(outfile,"(SENSOR OGA CELL_VOLTAGE %4.2f volts %2.Od)\n\n\n",

CELL_VOLTAGE,TIME);
}

fclose(outfile); /* CLOSE OUTPUT FILE "OGA.DAT" */

131



APPENDIX 2D
AIR REVTTALIZATION SYSTEM PROGRAM

Contained within this appendix is information about the compliling of the
computer modeling groups into one. Information is given for the benefit of
giving next semester students background on the computer program and why it
operates the way it does. Also,included in this appendix is logon procedures
for operating the program on the AT&t lab computers on second floor of
Durland.

Logon on Procedures

To log onto the 3bl's, AT&T lab — second floor Durland:

login: <student> type student @ login command and return
use mouse to select Full screen unix

To run program: insert floppy w/ program
program name is ARjnodel.c

To look at program —Type: mread -t ar_model.c ar_model.c
To compile program —Type: cc -Q -I/usr/local/include arjmodel.c -Iksu -

levdi -1m -o run
To run program Type: run

3bl's packet, available from Ruth Dyer, gives editor commands, logon
procedures, etc.

Assumptions and Conditions of Program

Assumptions of each individual portion of this modeling program can be
examined in detail from previous sections. Each model has its' input and
output parameters, which are discussed in their individual sections.

This program takes all three modeling programs and puts them into one working
program, each dependent on the other. A few things have been changed and
added to complete this task.

1. The CO2 is not delivered from the Removal to the Reduction until the
sorbent bed is reversed and CO2 is being removed from the bed.

2. Certain values are inputs to the system and are asked for when running
the program.

3. Between plots of output, any key has to be hit to continue to see next
plot.

4. A tank is inserted between the CO2 Reduction and the OGA systems. This
tank is initially set and has two inputs and one output: in—CO2 Red. and
Hygiene Water

out— OGA system.
5. The OGA system operates a little differently in this program than it

does seperately.
a. The system is already at steady state by the time the CO2 Red.

receives any CO2 from the CO2 Rem.
b. The time interval is different in this program, it is made to

better match the time scale that is seen
from the CO2 Removal.

c. Since the small H2O tanks in the OGA system will not empty in
the time period in which this program operates, the water is assumed
to come directly from the tank that we created between the CO2 Red.

132



and the OGA.

Modeling Program

The following is a listing of the file that was created and edited to fit all
three working computer models of the AR system.

*
*
*
*
*
*
*

SOURCE FILE:

DESCRIPTION:

USES:

AUTHORS :

MODEL4.C

This program models the CO2 reduction system
during its sorbtion and desorption half
cycles. CO2 conversion and O2 generation
by the REDUCTION and OGA subsystems are also
included; however, the REDUCTION model is *
not time dependent. We have arranged it so *
its outputs appear time dependent by assuming*
steady-state operation at all times. *

main()
simple_plot( (S. Dyer)

Robert Young, Terry Hon, Joel Sommer,
Carl Perkins

*
*
*

LAST REVISION:29 April 1991

/include <stdio.h>
/include <math.h>
/include "p plot.h"
/include "slmple_plot.h"
/define NUM_POINTS 100

void input();
void co2removal();
void co2reduction();
void oga();
void h2otank ();

int dummy;
long int i,q;
double Time[100],

xTime,
Mg[100],
xMg,
Md[100],
xMd,
Tb[100],
xTb,
Ua[100],
xUa,
Ma[100],
xMa,
PptlOO],
xPp,
Tp[100],
xTp,

/** time array **/

/** mass of gas in void space **/

/** mass of gas in sorbent material **/

/** temperature of bed and gas desorbed **/

/** internal energy of accumulator **/

/** mass of CO2 in accumulator **/

/** output pressure of pump **/

/** output temeprature of pump **/

133



Ta[100],
xTa,
Conc_w[100],
xConc_w,
Ccs_w,
M flow,
Tl,
T_des[100],
xT des,
CcT_w,
Cco_w,
Md_w[100],
xMd_w,
Ccs,
Cci,
Ceo,
Cone[100],
xConc,
T_sorb[100],
xT_sorb,
Fa[100],
F_water[100];

/** temperature of accumulator **/

/** relative humidity of outgoing air **/

/** cone, of H2O on aorbent (kgH2O/kgair) **/
/** mass flow rate of air (kg/sec) **/
/** incoming air temperature (K) **/
/** temp, of air leaving desicant bed (K) **/

/** cone, of H2O entering bed (kgH2O/kgair) **/
/** cone, of H20 leaving bed (kgH2O/kgair) **/
/** mass of H2O on sorbent (kg) **/

/** cone. C02 in sorbent (kgCO2/kg air) **/
/** cone. C02 entering bed (kg CO2/kg air) **/
/** cone. CO2 leaving bed (kg CO2/ kg air) **/
/** cone. CO2 leaving bed (ppm) **/

/** temp, or air leaveing sorbent bed (K) **/

/** CO2 flow exiting the REDUCTION ass. (kmoles/s)**/
/** H2O flow exiting REDUCTION ass. (kmoles/s)**/

double Pg,
Pb,
m_o,
xm_out,
m_out[100],
w,
Q_loss,
Tref,
k_w,
k_s,
to_red,
conv,
F,
X,
H2OUT[100],
O2OUT[100],
a,
minimum,
hyg_H2O,
oga_H2O[100],
elapse[100],
level[100];

double Power=1000.0,
Mb=20.0,
Cpa=1003.0, .
Cvs=844.0,
Sc w=2700.0E3,

/** CO2 pressure in void space **/
/** pump exit pressure **/
/** mass flow rate out of bed dMg/dt **/

/** assembly exiting flow rate (bang-bang) **/
/** angular velocity of pump (rad/sec) **/
/** accumulator heat loss (bang-bang) **/
/** reference temp, of desorbent bed **/
/** ratio of Ceo w/Ccs_w **/
/** ratio of Ccojcca **/
/** CO2 flow rate to REDUCTION assembly (kg/s) **/
/** conversion factor for REDUCTION **/
/** Faraday's constant for OGA **/
/** number of electrolysis cells in OGA **/
/** OGA hydrogen production rate **/
/** OGA oxygen production rate **/
/** OGA current in amps **/
/** minimum level in h2otank **/
/** H2O flow rate into h2o_tank from HYGIENE **/
/** H20 flow rate into h2o_tank from OGA **/
/** time array for OGA and h2otank models **/
/** level in h2otank (kmoles)**/

/** power input to desorbing CO2 bed **/
/** mass of sorbent material (kg) **/
/** heat capacity of air (J/kgK) **/
/** heat capacity of sorbent (J/kgK) **/

heat of sorption of H2O
into sorbent (J/kgK) **/

**

Cvb=657.0,
Cp = 846.0,
R=0.1889,
To=0.0, /** reference temperature for internal energy **/
Vg=1.0,
Va=2.0,
kl=0.7,
k2=.0006,
k3=.0023,
k4= 2.0,
k = 1.29,
Sc=951E3;

/** accumulator heat transfer coef. (Watts/K) **/

/** C02 heat of sorption into sorbent (J/kgK) **/

134



double dt,
dTb,
dT_des,
dT_sorb,
dMd_w,
dMg,
dMd,
dMa,
dUa;

main ()
{
input(); /** subroutine which asks for user input **/
co2removal(); /** subroutine modelling the REMOVAL assembly **/
co2reduction(); /** subroutine modelling the REDUCTION assembly **/
oga(); /** subroutine modelling the OGA assembly **/
h2otank(); /** subroutine modelling the H2O tank serving OGA **/
return(0);
}

/** Inputting of parameters by user **/
void input()
{
system("clear");
printf("\nlnput mass flow rate of air, M_flow (kg/s) : ");
scanf("%lf",£M_flow);
printf("\nlnput H2O concentration entering assembly,");
printf(" Cci_w (kgH20/kg air) : ");
scanf("%lf",£Cci_w);
printf("\nlnput concentration of CO2 entering assembly,");
printf(" Cci (kgCO2/kg air): ");
scanf("%lf",&Cci);
printf("\nlnput temperature of incoming air, Ti (K) : ");
scanf("%lf",&Ti);
printf ("\nlnput angular velocity of pump (radians/second) : ");
scanf ("%lf",&w);
printf ("\nlnput desired bed reference temperature, Tref (K) : ");
scanf ("%lf",&Tref);
printf("\nlnput desired conversion of CO2 (0.52 max) : ");
scanf("%lf",&conv);
}
void co2removal()
{
Time[0] = 0.0; /** absolute start time in minutes **/
xTime = 0.0;

/** initial conditions for desiccant bed **/
Md_w[0] = xMd_w = 0;
T_des[0] = xT_des = Ti;
Ccs_w = Md_w[0] / Mb;
k_w = 0.1;
Cco_w = k_w * Ccs_w;
Conc_w[0] = xConc_w = Ceo w * 10000.0;

/** initial conditions for sorbent bed **/
Md[0] = xMd = 0.0,
T_sorb[0] = xT_sorb = Ti;
Ccs = Md[0] / Mb;
k_s = 0.1;
Ceo = k_s * Ccs;
Conc[0] = xConc = Ceo * 1.0E6;

dt = 1.0;
printf("\n\nWorking desiccant and sorbent bed forward cycle...\n\n");

/*************************************************
* *
* Desiccant bed and Sorbent bed calculations *
* *
*************************************************/

i = 1;

135



while (i<100) {
for ( dummy=l ; dummy<=33 ; dummy++ ) {

/** desiccant bed equations **/
dT_des = dt * ( (M flow * Cpa * (Ti - xT_des)) +

(M_flow *~Sc_w * (Cci_w - Cco_w))) / (Mb * Cvs);
dMd_w = M_flow * (Cci_w - Cco_w) * dt;
xT_des = xT_des + dT_des;
xMd_w = xMd_w + dMd_w;
Ccs_w = xMd_w /Mb;
Cco_w = k_w * Ccs_w;
xConc_w = Cco_w * 10000.0;

/** sorbent bed calculations **/
dT_sorb = ((M_flow * Cpa * (xT_des - xT_sorb)) +

(M_flow * Sc * (Cci - Ceo))) * dt / (Mb * Cvs);
dMd = M_flow * (Cci - Ceo) * dt;
xT_sorb = xT_sorb + dT_sorb;
xMd = xMd + dMd;
Ccs = xMd / Mb;
Ceo = k_s * Ccs;
xConc = Ceo * 1.0E6;
xTime = xTime + dt/60.0;

}
Time[i] = xTime;
T_des[i] = xT_des;
Md_w[i] = xMd_w;
Conc_w[i] = xConc_w;
T_sorb[i] = xT_sorb;
Md[i] = xMd;
Cone [ i ] = xConc ;
i = i + 1;

* *
* Plotting routine for Desiccant and Sorbent beds *

print f ( " \n\nDone ...");
printf ("\n\nPress a number and <Return> to plot...");
scanf ("%d",&dummy) ;

/** Simple plot calls for desiccant bed data **/
simple_plot (DISPLAY, i,Time,T_des, "Time", "minutes", "Temperature",

"degrees Kelvin",
"Temperature of Desicant Bed (T_des[i] )", 1, CURVE );

scanf ("%d",&dummy) ;
simple_plot (DISPLAY, i, Time, Md_w, "Time", "minutes", "Mass H2O","kg",

"Mass H20 in Sorbent Bed Material (Md_w[i] )", 1, CURVE) ;
scanf ( "%d" , Scdummy ) ;
simple_plot( DISPLAY, i, Time, Conc_w, "Time", "minutes",

"Relative Humidity" , "%" ,
"Relative Humidity of Air Leaving Desicant Bed",
1, CURVE);

scanf ("%d",&dummy) ;
/** Simple plot calls for sorbent bed data **/

simple_plot (DISPLAY, i,Time,T_sorb, "Time" , "minutes" , "Temperature" ,
"degrees Kelvin", "Temp, of Air Leaving Sorhent Bed",
1, CURVE);

scanf ( "%d" , &dummy ) ;
simple_plot (DISPLAY, i, Time, Md, "Time" , "Minutes" , "Mass CO2" , "kg" ,

"Mass C02 in Sorbent Bed Material (Md[i] )", 1, CURVE) ;
scanf ( "%d",&dummy) ;
simple_plot (DISPLAY, i, Time, Cone, "Time", "minutes", "Concentration",

"ppm","Conc. CO2 Leaving Sorbent Bed", 1, CURVE );
scanf ("%d",&dummy) ;
sy stem (" clear" ); /** clear the screen **/

136



printf(

Time[0]
Md[0] =
Tb[0] =
Mg[0] =

xMg ••
Ua[0] =
Ma[0] =
Ta[0] =
Pp[0] =
Tp[0] =

'\n\nWorking on desorbing cycle...");
/** initial conditions for desorbing cycle **/

= xTime =62; /** reset array for this cycle **/
xMd = Md[99]; /** reset array for this cycle **/
xTb = T_sorb(99J; /** reset array for this cycle **/
kl * Vg * Md[0] * (Tb[0] - Tref) / (Mb * R * Tb[0]);
• Mg(0];
xUa = 407.34;
xMa = 0.002;
xTa = 300.0;
xPp = 0.0567;
xTp = 300.0;

/**********************************************
* *
* Calculations for Desorbing cycle *
* *
**********************************************/

i = 1;
while(i<100){

for (dummy=l; dvunmy<=28; dummy++) {

if (xTb > 330.0) /** bang-bang bed temp, controller **/
Power=0.0;

else Power = 1000.0;

Pg = xMg * R * xTb / Vg;
Pb = kl * xMd /Mb * (xTb - Tref);
xPp = xMa * R * xTa / Va;
xTp = xTb*pow((xPp/Pg),(1.0-1.0/k));
xTa = xUa / (xMa * Cp) + To;
m_o = w*k3*Pg/R/xTb;

if (xMa < Ma[0]) /** bang-bang flow out control **/
xm_out = 0.0;

else
xm_out = 0.85 * m_o; /** CO2 flow rate to REDUCTION **/

if (xTa > 860.0) /** bang-bang accumulator cooler **/
Q_loss=k4*(xTa - 300);

else Q loss=0.0;

dMd
dMg
dTb
dMa
dUa

(Pg - Pb) * k2 * dt;
((Pb - Pg) * k2 - (w * Pg * k3)/R/xTb) * dt;

= (dMd * Sc / dt + Power)/Mb/Cvb * dt;
= dt * (m_o - xm_out);
= dt * (m_o*(Tp[i-l]-To)*Cp-xm_out*

(Ta[i-l]-To)*Cp - Q_loss);

xMg = xMg + dMg;
xMd = xMd + dMd;
xTb = xTb + dTb;
xMa = xMa + dMa;
xUa = xUa + dUa;
xTime = dt/60.0 + xTime;

Time[i] = xTime;
Mg[i] = xMg;
Md[i] = xMd;
Tb[i] = xTb;
Ma[i] = xMa;
Ua[i) = xUa;
Ta[i] = xTa;
Tp[i] = xTp;
Pp[i] = xPp;

137



m_out[i] = xm_out;
i = i + 1;

}

printf("\nPress*number and return to begin plotting...");
scanf("%d",&dummy);

/** SIMPLE PLOT CALLS FOR DESORBENT CYCLE DATA **/

simple_plot(DISPLAY,i,Time,Ma,"Time","minutes",
"Mass CO2","kg","Mass CO2 in Accumulator (Ma[i])n

,1,CURVE);

scanf("%d",&dummy);
simple_plot(DISPLAY,i,Time,Ua,"Time","minutes",

"Internal Energy","J",
"Internal Energy in Accumulator (Ua[i])"
,1,CURVE);

scanf("%d",&dummy);
simple_plot(DISPLAY,i,Time,Tp,"Time","minutes", "Temperature",

"K","Temperature of Pump Outlet (Tp[i])", 1,CURVE);

scanf("%d",Sdumrny);
simple_plot(DISPLAY,i,Time,Ta,"Time","minutes","Temperature",

"K","Temperature of Accumulator (Ta[i])",1,CURVE);

scanf("%d",&dummy);
simple_plot(DISPLAY,i,Time,Pp,"Time","minutes","Pressure",

"kPa","Outlet Pressure of Pump (Pp[i])",!,CURVE);
scanf("%d",&dummy);
printf("\nDone sending plots..");
system ("clear");

void co2reduction()
C

for (i=l; i<100;i++)

Fa[i] = m_out[i] /44.0 * (1-conv);
F_water[i] =2/44.0 * m_out[i] * conv;

simple_plot(DISPLAY,!,Time,Fa,"Time","minutes","C02 Flow Rate",
"kmoles/s","CO2 Flow Rate Exiting REDUCTION Assembly (Fa[i])",
1,CURVE);

scanf("%d",&dummy);
simple_plot(DISPLAY,i,Time,F_water,"Time","minutes","H2O Flow Rate",

"kmoles/s",
"H2O Flow Rate Exiting REDUCTION Assembly (F_water[i])",
1,CURVE);

scanf("%d",&dummy);
printf("\nDone with REDUCTION...\n\n");
system("clear");

void oga()

F=96487.0;
X=18.0;
a=15.0; /** initial current in electrolysis module **/
elapse[0]=0.0; /** time array **/
H20UT[0]=0.0;
020UT[0]=0.0;

138



oga_H2O[0]=0.0;
for (q=l;g<=13;q++) /** this Loop models transient operation **/
{ /** when the current is increasing w/time **/
H20UT[q]= a*X/F;
O2OUT[q]= H2OUT[q]/2.0;
oga_H2O[q]= H2OUT[q];
a=a+l;

}
while (q<=46) /** this loop models steady-state operation **/
{ /** when current is constant **/
H2OUT[q]=a*X/F;
O2OUT[q]=H20UT[q]/2.0;
oga_H2O(q]=H2OUT[q];
elapse[q]=q;
q=q+l;

}
simple_plot(DISPLAY,q,elapse,O2OUT,"Time","minutes","flow rate",

"kmoles/s","Oxygen Production by OGA",1,CURVE);
scanf ("%d" , Sdummy);
system ("clear");
printf("\nDone with OGA...\n\n");

}

void h2otank()
{ /** models the water tank that the OGA draws from **/
q=l;
hyg_H20=0.0;
level[0]=65.0;
while (q<=45)
{
minimum=50.0;
if (level[q]>minimum) /** checks hyg_H2O supply **/
hyg_H2O=0.0;

else hyg_H2O=0.1; /** turns hyg_H2O supply on **/
level[q]=level[q-l]-(60.0*oga_H2O[q])+

(60.0*F_water[i]+hyg_H2O);
q=q+l;
}
simple_plot(DISPLAY,q,elapse,level,"Time","minutes","tank level",

"kmoles","h2otank level",1,CURVE);
scanf("%d",&dummy);
system ("clear");
printf("\n\nDone with AR-Simulation..,\n\n");

139



APPENDIX 3A
CO2 REMOVAL ASSEMBLY KNOWLEDGE BASE

C02 REMOVAL PRECOOLER OUTPUT AIR TEMPERATURE SENSOR

PARAMETER MODIFIER DEFINITIONS

(RULE #1)

(level: if COOLER TEMP is X then TEMP is HI 100 212 500 900 F)
(level: if COOLER~TEMP is X then TEMP is NORMAL 0 32 100 212 F)
(level: if COOLER~TEMP is X then TEMP is LOW -400 -100 0 32 F)

DEFINE CONDITIONS

(condition: if COOLER TEMP is HI then COOLER is FAIL 1)
(condition: if COOLER~TEMP is NORMAL then COOLER is FAIL 1)
(condition: if COOLER~TEMP is LOU then COOLER is FAIL 1)

DEFINE RESPONSES

(response: if COOLER is FAIL then C02_REMOVAL_COMMAND is OFF 0.70)

C02 REMOVAL BLOWER PRESSURE DIFFERENTIAL SENSORS (RULE #2)

PARAMETER MODIFIER DEFINITIONS

(level: if BLOWER
(level: if BLOWER
(level: if BLOWER

DEFINE CONDITIONS

is X then BLOW PRES is HI 18 35 100 100 psia)
is X then BLOW~PRES is NORMAL 8 12 18 35 psia)
is X then BLOW PRES is LOW -100 -100 8 12 psia)

(condition: if BLOW_PRES is HI
(condition: if BLOW_PRES is NORMAL
(condition: if BLOW PRES is LOW

then BLOWER is FAILED 0.2)
then BLOWER is FAILED 0.0)
then BLOWER is FAILED 1.0)

DEFINE RESPONSES

(response: if BLOWER is FAILED then C02_REMOVAL_COMMAND is OFF 1)

C02 PUMP POWER SENSOR (RULE #3)

PARAMETER MODIFIER DEFINITIONS

(level: if C02 PUMP is X then PUMP POWER is HI 400 600
(level: if C02~PUMP is X then PUMP~POWER is NORMAL 20 100
(level: if C02~PUMP is X then PUMP~POWER is LOW 0 5

DEFINE CONDITIONS

(condition:
(condition:
(condition:

if PUMP POWER is HI
if PUMP~POWER is NORMAL
if PUMP~POWER is LOW

then C02 PUMP is FAILED
then C02~PUMP is FAILED
then C02~PUMP is FAILED

800
300
20

1.0)
0.0)
0.4)

1000 watt)
500 uatt)
100 watt)

DEFINE RESPONSES

(response: if C02_PUMP is FAILED then C02_REMOVAL_COMMAND is OFF 1)

C02 PUMP PRESSURE SENSOR

PARAMETER MODIFIER DEFINITIONS

(RULE #4)

(level: if C02_PUMP PRES is X then PUMP PRES is HI 50 100
(level: if C02_PUMP~PR£S is X then PUMP~PRES is NORMAL 2 10
(level: if C02_PUMP~PRES is X then PUMP~PRES is LOW 0 0

DEFINE CONDITIONS

500 900 psia)
30 75 psia)
2 5 psia)

(condition: if PUMP PRES is HI then C02 PUMP is FAILED 0.8)
(condition: if PUMP~PRES is NORMAL then C02J>UMP is FAILED 0.0)
(condition: if PUMP~PRES is LOW then C02_PUMP is FAILED 0.1)

140



DEFINE RESPONSES

(response: if C02_PUMP is FAILED then C02_REMOVAL_COMMAND is OFF 0.9)

C02 ACCUMULATOR AIR FLOW SENSOR

PARAMETER MODIFIER DEFINITIONS

(RULE #5)

(level: if C02 ACCUH
(level: if C02~ACCUM
(level: if C02~ACCUM

DEFINE CONDITIONS

is X then ACCUM FLOW is HI 50 100 500 900 Ib/hr)
is X then ACCUM~FLOU is NORMAL 1 5 20 50 Ib/hr)
is X then ACCUM FLOW is Low -900 -100 0 1 Ib/hr)

(condition: if ACCUM FLOW is HI then C02 ACCUM is FAILED 0.2)
(condition: if ACCUM^FLOW is NORMAL then C02JVCCUM is FAILED 0.0)
(condition: if ACCUM_FLOW is LOW then C02_ACCUM is FAILED 0.8)

DEFINE RESPONSES

(response: if C02_ACCUM is FAILED then C02_REMOVAL COMMAND is OFF
(response: if C02_ACCUM is FAILED then C02_REDUCTION_COMMAND is OFF

0.9)
1.0)

141



APPENDIX 3B
CO, REDUCTION ASSEMBLY KNOWLEDGE BASE

/** This set of statements defines the sensors, their names, and the units they read in **/

(deffacts sensor_list
"(define sensor: ?subassembly
(define'sensor C02 REDUCTION
(define~sensor C02~REDUCTION
(define~sensor C02~REDUCTION
(define~sensor C02~REDUCTION

?sensor ?units)"
JACKET FLOW 1 CFM)
JACKET~FLOW~2 CFM)
SYSTEM~EXIT~TEMP K)
REACTION TEMP K)

This section defines the ranges the sensors will be reading if certain problems are occurring,
referred to in the report portion of this paper. **/

These ar the "rules"

(deffacts parameter level_def initions
ii ~
(level: if
(level: if
(level: if
(level: if
(level: if
(level: if
(level: if
(level: if
(level: if

sensor
JACKET FLOW 1 is
JACKET~FLOW 1 is
JACKET~FLOW~2 is
JACKET FLOW 2 is
SYSTEM~EXIT~TEMP
SYSTEM EXIT TEMP
REACTION TEMP is
REACTION~TEMP is
REACTION~TEMP is

X
X
X
X
is
is
X
X
X

parameter
then COOLANT FLOW 1 is
then COOLANT~FLOW 1 is
then COOLANT~FLOW~2 is
then COOLANT FLOW 2 is
x then CONDENSER'TEMP
X then CONDENSER TEMP
then EFFICIENCY LEVEL
then EFFICIENCY~LEVEL
then EFFICIENCY'LEVEL

modifier minimum
LO
NORMAL
LO
NORMAL
is HIGH
is NORMAL

is LO
is NORMAL

0.2
0.4
0.2
0.4
360
300
873
400

is NOT FUNCTIONAL

lower
0.2
0.4
0.2
0.4
373
310
900
450
300

upper maximum
0.4

0.7
0.4
0.7
1000
350
2000
850
310

0.4
0.7
0.4
0.7
1000
360
2000
873

380 400

units"
CFM)
CFM)
CFM)
CFM)
K)
K)
K)
K)
K)

(Rule
(Rule
(Rule
(Rule
(Rule
(Rule
(Rule
(Rule
(Rule

1)
2)
3)
4)
5)
6)
7)
8)
9)

This section defines the probable trouble occurring for the sensor indications listed above. **/

(deffacts condi t i on_def i ni t i ons
"condition:
(condition:
(condition:
(condition:
(condition:
(condition:
(condition:
(condition:
(condition:
(condition:

if
if
if
if
if
if
if
if
if

COOLANT FLOW 1 is
COOLANT'FLOW 1 is
COOLANT FLOW 2 is
COOLANT FLOW~2 is
CONDENSER TEMP is
CONDENSER TEMP is
EFFICIENCY LEVEL
EFFICIENCY LEVEL
EFFICIENCY LEVEL

LO then EXIT TEMP
NORMAL then EXIT TEMP
LO then EXIT TEMP
NORMAL then EXIT TEMP
HIGH then CONDENSER
NORMAL then CONDENSER
is LO then REACTOR
is NORMAL then REACTOR
is NOT FUNCTIONAL then

strength"
is HIGH 1)
is OK 1)
is HIGH 1)
is OK 1)
is NOT WORKING 1)
is WORKING 1)
is TOO HOT 1)
is AT RIGHT TEMP

REACTOR is TOO COLD
1)

1)

This section defines the expert system's suggested response to problems occurring in the assembly. **/

(deffacts response_define
"?sub assembly ?mode ?condition ?strength"

(response: if EXIT_TEMP is HIGH then C02 REDUCTION COMMAND is OFF 1)
(response: if EXIT TEMP is OK then C02~REDUCTION~COMMAND is NORMAL 1)
(response: if CONDENSER is NOT WORKING then C02_REDUCTION COMMAND is OFF 1)
(response: if CONDENSER is WORKING then C02_REDUCTION_COMMAND is NORMAL 1)
(response: if EFFICIENCY LEVEL is LO then C02 REDUCTION COMMAND is OFF 1)
(response: if EFFICIENCY J.EVEL is NORMAL then~C02_REDUCTION_COMMAND is NORMAL 1)
(response: if EFFICIENCY LEVEL is NONFUNCTIONAL then C02 REDUCTION_COMMAND is OFF 1)

/** This section sends a set of command signals to the system based on the decisions made above. **/

(deffacts implementation_commands
"?sub_assembly ?mode ?command"

(implement: if C02_REDUCTION COMMAND is OFF then COMMAND C02_REDUCTION to OFF)
(implement: if C02 REDUCTION~COMMAND is NORMAL then COMMAND C02 REDUCTION to NORMAL)

142



APPENDIX 3C
OXYGEN GENERATION ASSEMBLY KNOWLEDGE BASE

•
/** This set of statements defines the sensors, their names, and the units they read in **/

(deffacts sensor_list
"(sensor: Vsubassembly ?senor ?units)"
(sensor: OGA H20 FEEDLINE PRESSURE PSI )
(sensor: OGA H20~PHOTOCELL logical)
(sensor: OGA H/OJ)EFERENTIAL_PRESSURE PSI )
(sensor: OGA 02 OUTTAKE TEMP F )
(sensor: OGA CELL VOLTAGE volts )

/** This section defines the ranges the sensors will be reading if certain problems are occuring.
are the "rules" referred to in the report portion of this paper. **/

These

(deffacts parameter_level_definitions
11 sensor parameter
(level: if H20_FEEDLINE PRESSURE is X then MODULE H20 PRESSURE
(level: if H20 FEEDLINEJ>RESSURE is X then MOOULE~H2(TPRESSURE
(level: if H20~FEEDLINE PRESSURE is X then MOOULE~H20~PRESSURE is LOU
(level: if H20~PHOTOCELL is X then H20 SUPPLYJ.EVEL is HI
(level: if H20~PHOTOCELL is X then H20~SUPPLY LEVEL is LOU
(level: if H/0_DEFERENTIAL PRES is X then CROSS_CATALYIST_PRESSURE is HI
(level: if H/0_DEFERENTIAL~PRES is X then CROSS CATALYIST PRESSURE is NOMINAL
(level: if H/0_DEFERENTIAL PRES is X then CROSS~CATALYIST~PRESSURE is LOU
(level: if 02 OUTTAKE TEMP~is X then OUTTAKE 02 is HOT
(level: if 02JXJTTAKE~TEMP is X then OUTTAKE~02 is NOMINAL
(level: if 02 OUTTAKE~TEMP is X then OUTTAKE~02 is COLD
(level: if CELL VOLTAGE is X then CELL_VOLTAGE is HI
(level: if CELL~VOLTAGE is X then CELL_VOLTAGE is NOMINAL

modifier
HI
NOMINAL
LOU

• is
• is
• is

HI

minimum
30
19
0
1
0
3

NOMINAL 2
LOU 0

105
50
32
1
1

.1

.83

.8

.68

.6

lower upper maximum units"
31 40 40 PSI) (rule 1)
20 30 31 PSI) (rule 2)
0 19 20 PSI) (rule 3)
1 1 1 BIN) (rule 4)
0
3
2
0

110
55
32
1
1

.35

.9

.4

.7

.64

0
4
3
2

125
105
50
2
1

.1

.83

.8

.68

0
4
3
2

125
110
50
2
1

BIN)
PSI)

.35PSI)

.9PSI)
F)
F)
F)
V)

• TV)

(rule
(rule
(rule

5)
6)
7)

(rule 8)
(rule
(rule
(rule
(rule
(rule

9)
10)
11)
12)
13)

/** This section defines the probable trouble occuring for the sensor indications listed above. **/

(deffacts condition_define:
"condition:
(condition: if MODULE H20 PRESSURE
(condition: if MODULE~H20~PRESSURE
(condition: if MOOULE~H2CfPRESSURE
(condition: if H20 SUPPLY~LEVEL
(condition: if H20~SUPPLY~LEVEL
(condition: if CROSS CATALYIST PRESSURE is HI then
(condition: if CROSS~CATALYISTJ>R£SSURE is NOMINAL
(condition: if CROSS JTATALY1ST PRESSURE is LOU then
(condition: if OUTTAKE 02 is HOT
(condition: if OUTTAKE~02 is NOMINAL
(condition: if OUTTAKE~02 is COLD
(condition: if CELL VOLTAGE is HI
(condition: if CELL~VOLTAGE is NOMINAL

is HI then
is NOMINAL then
is LOU then

is HI then
is LOU then

then
then
then
then
then

H20 DELIVERY PRESSURE
H20~DELIVERY~PRESSURE
H20 DELIVERY PRESSURE
WATER TANK is OK
UATER~TANK is EMPTY
CELL_ELECTROOE is BAD
then CELL ELECTRODE is GOOD
CELL ELECTRODE is BAD
THROTTLE is TOO TIGHT
THROTTLE is FINE
THROTTLE is TOO OPEN
INTAKE H20 is LOST
INTAKE~H20 IS FINE

is HI
strength

1)
is NOMINAL 1)
is LOU

GOOD

1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)

/** This section defines the expert systems suggested response to problems occuring in the assembley **/

(deffacts response_define
"?sub assembly ?mode

(response: if H20~DELIVERY PRESSURE
(response: if H20~DELIVERY~PRESSURE
(response: if H20~DELIVERY~PRESSURE
(response: if UATER TANK is OK
(response: if UATER~TANK is EMPTY
(response: if CELL ELECTRODE is BAD
(response: if CELL~ELECTRODE is GOOD
(response: if THROTTLE is TOO TIGHT
(response: if THROTTLE is FINE
(response: if THROTTLE is TOO_OPEN
(response: if INTAKE H20 is LOST
(response: if INTAKE~H20 IS FINE

?condition ?strength"
is HI then OGA COMMAND is SHUTDOWN 1)
is NOMINAL then OGAJXJMMAND is NORMAL 1)
is LOU then OGA_COMMAND is SHUTDOWN 1)
then OGA COMMAND
then OGA'COMMAND
then OGA'COMMAND
then OGA'COMMAND
then OGA'COMMAND
then OGAlCOMMAND
then OGA COMMAND
then OGAJXJMMAND
then OGA COMMAND

is NORMAL
is SWITCH
is SHUTDOWN
is NORMAL
is SHUTDOWN
is NORMAL
is SHUTDOWN
is SHUTDOWN
is NORMAL

1)
1)
1)
1)
1)
1)
1)
1)
1)

143



/** This section sends a set of command signals to the system based on the decisions made above.

(deffacts implementation_commands
11 ~ responsetsub assembly ?mode ?command"

(implement: if OGA COMMAND is NORMAL then COMMAND: OGA to NORMAL )
(implement: if OGAJTOMMAND is SHUTDOWN then COMMAND: OGA to SHUTDOWN )
(implement: if OGA COMMAND is UNPOWERED then COMMAND: OGA to UNPOWERED )
(implement: if OGA~COMMAND is STANDBY then COMMAND: OGA to STANDBY )
(implement: if OGAJTOMMAND is CURRENT then COMMAND: OGA to CURRENT }
(implement: if OGA COMMAND IS SWITCH then COMMAND: OGA to SWITCH )

144



APPENDIX 3D
SAVANT.3 EXPERT SYSTEM CODE

; C02_REMOVAL - KNOWLEDGE BASE

(def facts sensor_list
; "(sensor:~?sub-assembly ?sensor ?units )"

(sensor: C02 REMOVAL INLET_C02 ppm )
(sensor: C02JIEMOVAL C02 ACCUMULATOR g )

(sensor: OGA H20 ACCUMULATOR g )
(sensor: OGA CABIN 02 ppm )

(deffacts parameterjnodifier_def initions " define triangle membership functions"
; (level: if ?sensor is~?X then ?parameter is ?modifier ?minimum ? lower ?upper Tmaximun ?units)

(level: if INLET_C02 is X then C02J.EVEL is HI 900 1100 1000000 1000000 ppm)
(level: if INLET_C02 is X then C02 LEVEL is NORMAL 275 325 900 1100 ppm)
(level: if INLET_C02 is X then C02J.EVEL is LOU 0 0 275 325 ppm)

(level:
(level:
(level:
(level:
(level:

(level:
(level:
(level:
( level :
(level:

(level:
(level:
(level:
(level:

if
if
if
if
if

if
if
if
if
if

if
if
if
if

C02 ACCUMULATOR
C02~ACCUMULATOR
C02~ACCUMULATOR
C02~ACCUMULATOR
C02JVCCUMULATOR

H20 ACCUMULATOR
H20~ACCUMULATOR
H20~ACCUMULATOR
H20~ACCUMULATOR
H20JVCCUMULATOR

CABIN 02 is X 1
CABIN~02 is XI
CABIN 02 is X 1
CABIN~02 is XI

is
is
is
is
is

is
is
is
is
is

:hei
:hei
:hei
:hei

X then C02 SUPPLY is HI
X then C02~SUPPLY is OK
X then C02 SUPPLY is LOU
X then C02~SUPPLY

700
100
50

is CRITICAL 0
X then C02_SUPPLY is EMPTY

X then H20_SUPPLY is HI 1400
X then H20 SUPPLY is OK 200
X then H20~SUPPLY is LOU 100
X then H20 SUPPLY is CRITICAL 0
X then H20~SUPPLY is EMPTY 0

then 02 LEVEL is HI 230000 250000
then 02J.EVEL is OK 15000 18000
then 02 LEVEL is LOU 12000 15000
then 02~LEVEL is CRITICAL 0 0

900
300
75
0
0

1800
600
300
0
0

1000000
23000
15000
12000

1000
700
100
50
5

2000
1400
200
100
5

1000 g
900 g
300 g
75 g
10 g

2000 g
1800 g
600 g
300 g
10 g

1000000 ppm
25000 ppm
18000 ppm
15000 ppm

(deffacts define_conditions
(condition: if ?parameter is ?modifier then ?condition
(condition: if C02 LEVEL is HI then C02_REMOVAL_DEHANO is HI
(condition: if 02 LEVEL is CRITICAL then C02 REMOVAL DEMAND is HI
(condition: if C02_SUPPLY is LOU or H20_SUPPLY is CRITICAL then C02~REMOVAL~DEMAND is HI
(condition: if C02J.EVEL is NORMAL
(condition: if C02 LEVEL is LOU

is ?modifier ?strength)

then C02 REMOVAL_DEMAND is NORMAL
then C02~REMOVAL DEMAND is LOU

(condition: if C02J.EVEL is LOU and C02_SUPPLY is LOU then C02_REMOVAL_DEMAND is NORMAL

(condition: if 02 LEVEL is HI
(condition: if 02J.EVEL is_not HI

(condition: if H20 SUPPLY is HI
(condition: if H20~SUPPLY is_not HI

(condition: if H20_SUPPLY is EMPTY
(condition: if H20 SUPPLY is CRITICAL
(condition: if C02~SUPPLY is EMPTY
(condition: if C02~SUPPLY is CRITICAL

then 02 GENERATION DEMAND is LOU
then 02~GENERATION~DEMAND is HI

then C02 REDUCTION_DEMAND is LOU
then C02~REDUCTION_DEMAND is HI

1
1
1
.8
.7
.9 )

then OGA_SUB-ASSEMBLY is OUT OF UATER 1
then OGA SUB-ASSEMBLY is OUT~OF~UATER .2
then C02~REDUCTION_SUB-ASSEMBLY~is OUT_OF_C02 1
then C02~REDUCTION SUB-ASSEMBLY is OUT OF C02 .2

(deffacts define^responses
; (response: Tf ?condition

(response: if C02 REMOVAL_DEMAND
(response: if C02~REMOVAL DEMAND
(response: if C02 REMOVAL~DEMAND

is ?modifier then ?sub-assembly is ?conmanded ?strength)
is HI then C02 REMOVAL is GO TO HIGH REHOVAL_MOOE 1 )
is NORMAL then C02~REMOVAL is GO~TO~POUER EFFICIENCY_MODE 1 )
is LOU then C02~REMOVAL is TURN OFF 1 )

(response: if 02 GENERATION DEMAND is LOU
(response: if 02~GENERATION~DEMAND is HI
(response: if C02_REDUCTION~DEMAND is LOU
(response: if C02 REDUCTION~DEMAND is HI

then OGA is TURN OFF
then OGA is TURN~ON
then C02 REDUCTION is TURN~OFF
then C02~REDUCTION is TURN~ON

(response: if OGA SUB-ASSEMBLY is OUT OF_UATER then OGA is TURN_OFF
(response: if C02J?EDUCTION_SUB-ASSEMBLY is OUT_OF_C02 then C02_REDUCTION is TURN_OFF

145



)
(deffacts command_implementation
; (implement: if ?sub-assembly is ?commanded then WRITE: ?sub-assembly to ?string )

(implement: if C02 REMOVAL is GO_TO_HIGH REMOVAL_MODE • then WRITE: C02_REMOVAL to HIGH_POWER )
(implement: if C02~REMOVAL is GO TO POWER EFFICIENCY MODE then WRITE: C02 REMOVAL to ECONOMY )
(implement: if C02~REMOVAL is TURN_OFF ~ then WRITE: C02~REMOVAL to OFF )
(implement: if OGA is TURN OFF then WRITE: OGA to OFF )
(implement: if OGA is TURN~ON then WRITE: OGA to ON )
(implement: if C02 REDUCTION is TURN~OFF then WRITE: C02_REDUCTION to OFF )
(implement: if C02~REDUCTION is TURN~ON then WRITE: C02_REDUCTION to ON )

; SAVANT.3

; "INFERENCE" ENGINE (shell above CLIPS)

(defrule evaluate_parameters "(direct reading of parameters)"
(sensor: ?sub-assembly1 ?sensor ?units )

(sub-assembly: ?sub-assembly2 ?file_id )
(time ?time ?time ?iterations) ~
(sensor ?sub-assembly1 ?sensor ?value ?units ?time stamp)
(test (= ?time ?time_stamp))

=> ~
(assert (?sensor is ?value ?units =(gensym) ))

(defrule determine_parameter_modifiers "evaluate membership function to convert value to weighted level"
(level: if ?sensor is ?X then ?parameter is ?modifier ?minimum ?lower ?upper ?maximum ?units)

(?sensor is ?value ?units ?tag )
; (test (and (>= ?value ?minimum) (< ?value ?maximum)))
=>

(bind ?weight 0)
(if (and (> ?value ?minimum) (< ?value ?lower ))

then (bind ?weight (/ (- ?value ?minimum ) (- ?lower ?minimum ))))
(if (and (>= ?value ?lower ) (<= ?value ?upper))

then (bind ?weight 1))
(if (and (> ?value ?upper ) (< ?value ?maximum))

then (bind ?weight (/ (- ?value ?maximum ) (- ?upper ?maximum ))))
(bind ?confidence ?weight)
(assert (?parameter is ?modifier ?confidence =(gensym) ))

(defrule determine_conditions
(condition: if $?parameter_statement then $?asserted_condition_statement ?strength)
($?parameter_statement ?confidence ?tag )

=>
(bind ?confidence (* ?confidence ?strength))
(assert ($?asserted_condition_statement ?confidence =(gensym) ))

(defrule determine_response
(response: if~S?condition_statement then $?asserted_response_statement ?strength)
($?condition_statement ?confidence ?tag )

=>
(bind ?confidence (* ?confidence ?strength))
(assert ($?asserted_response_statement ?confidence =(gensym) ))

;mutual renforcement?

; SAVANT.3

; RESOLVE LOGICAL OPERATIONS

(defrule logical and "VW"
(declare (salience -5))

?rm <- ($?left $?left statement and $?right statement $?right)
($?left_statement ?Tconfidence ?ltag )
(test (numberp ?Iconfidence ))
($?right_statement ?rconfidence ?rtag )
(test (numberp ?rconfidence ))

=>
V

(bind ?confidence (* ?tconfidence ?rconfidence ))
(retract ?rm)

(assert ($?left $?left_statement AND $?right_statement $?right))
(assert ($?left_statement~AND $?right_statement ?confidence =(gensym) ))

146



(defrule logical_or "W"
(declare (salience -5)}

?rm <- ($?left $?left statement or $?right statement $?right)
($?left_statement ?Tconfidence ?ltag )
(test (nunberp ?Iconfidence ))
($?right_statement ?rconfidence ?rtag )
(test (nunberp ?rconfidence ))

=>
V

(bind ?confidence (min (+ ?lconfidence ?rconfidence ) D)
(retract ?rm)

(assert ($?left $?left_statement OR $?right_statement $?right))
(assert ($?left statement OR $?right statement~?confidence =(gensym) ))
)

(defrule logical_not
(declare (salience -5))

?rm <- ($?left ?noun is_not Tmodifier $?right)
(?noun is ?modifier ?confidence ?tag )
(test (nunberp ?confidence ))

=>
V

(bind ?not_confidence (- 1 ?confidence ))
(retract ?rm)
(assert ($?left ?noun IS_NOT ?modifier $?right))
(assert (?noun IS NOT ?modifier ?not_confidence =(gensym) ))
)

(defrule mutual_renforcement "'OR1 confidence values of identiaI facts
[those with identical nouns and modifiers].
Form a single fact from the two."

?rm1 <- (?noun1 is ?modifier1 ?confidence1 ?tag1 )
?rm2 <- (?noun2 is ?modifier2 ?confidence2 ?tag2 )

(test (and (eq ?noun1 ?noun2)
(eq ?modifier1 ?modifier2 )

(neq ?tag1 ?tag2 }))
=>

(bind ?confidence (min (+ ?confidence1 ?confidence2) D)
(retract ?rm1 ?rm2)
(assert (?noun1 is ?modifier1 ?confidence =(gensym) ))
)

; SAVANT.3

• RESPONSE SELECTION AND IMPLEMENTATION

(defrule select_response1
(declare (salience -10))
(response: if $?condjtion_statement then ?sub-assembly is ?command ?strength)

?rm1 <- (?sub-assembly is ?command1 ?confidence1 ?tag1 )
?rm2 <- (?sub-assembly is ?command2 ?confidence2 ?tag2 )

(test (neq ?connand1 ?command2 ))
(test (neq ?tag1 ?tag2))

=>
(if (< ?confidence1 ?confidence2)

then (retract ?rm1)
else (retract ?rm2))

)

;threshold?

(defrule implement response
(declare (salience -100))
(implement: if ?sub-assembly1 is ?mode then WRITE: ?sub-assembly to ?string )

(?sub-assembly1 is ?mode ?confidence ?tag )
(sub-assembly: ?sub-assembly2 ?file_id)
(time ?time ?time ?iterations)

=>
(bind ?file id.ext (str_cat ?file_id ".CMD"))

(bind $?comnan3_fact (mv-append command ?sub-assembly1 to ?string ?time))
(printout ?file id.ext "(" $?cormand_fact ")" crlf )
(printout t ~ "(" $?comnand fact ")" crlf )
)

; SAVANT.3

• EXPLANATION FACILITY

147



(defrule echo_parameters
(sensor: ?sub-assembly1 ?sensor ?units )

(?sensor is ?value ?units ?tag1 )
(level: if ?sensor is ?X then ?parameter is ?modifier $? ?units)

(?parameter ?link ?modifier ?confidence ?tag2 )
(test (> ?confidence 0 ))

=>
(printout t ?sensor " is " ?value " " ?units " => " ?parameter " " ?link " " ?modifier " " ?confidence crlf)
)

(defrule evaluate_parameters "(direct reading of parameters)11
(sensor: ?sub-assembly1 ?sensor ?units )

(sub-assembly: ?sub-assembly2 ?file id )
(time ?time ?time ?iterations)
(sensor ?sub-assembly1 ?sensor ?value ?units ?time_stamp)
(test (= ?time ?time_stamp))

=> ~
(assert (?sensor is ?value ?units =(gensym) ))
)

(defrule determine_parameter_modifiers "evaluate membership function to convert value to weighted level"
(level: if ?sensor is ?X then ?parameter is ?modifier ?minimum ?lower ?upper ?maximum ?um'ts)

(?sensor is ?value ?units ?tag )
; (test (and (>= ?value ?minimum) (< ?value ?maximum)))
=>

(bind ?weight 0)
(if (and (>= ?value ?minimum) (< ?value ?lower ))

then (bind ?weight (/ (- ?lower ?value) (- ?lower ?mininun))))
(if (and (>= ?value ?lower ) (< ?value ?upper))

then (bind ?weight 1))
(if (and (>- ?value ?upper ) (< ?value ?maximunO)

then (bind ?weight (/ (- ?maximum ?value) (- ?maximum ?upper))))
(bind ?confidence ?weight)
(assert (?parameter is ?modifier ?confidence =(gensym) ))
)

(defrule start explanation of response
(declare Tsalience -10007)

?rm <- (?response is ?mode ?confidence ?tag )
(response: if $?condition_statement then ?response is ?mode ?strength)

=> ~~
(retract ?rm)
(assert (?response is ?mode ?confidence ))
(assert (explain_response: ?response ?mode))
(printout t crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf crlf "EXPLANATION:" crlf)
(printout t "SAVANT commands the " ?response " sub-assembly to " ?mode "." crlf crlf)
(printout t "This is because SAVANT has determined that the following conditions are " crlf)
(printout t "likely to exist onboard, and SAVANT has been told that the proper response " crlf)
(printout t "to these conditions is to command the " ?response " sub-assembly " crlf)
(printout t "to " ?mode "." crlf)
)

(defrule explain_conditions
(declare (salience -10))
(explain_response: ?response ?mode)
(response: if ?condition is ?modifier then ?response is ?mode ?strength)
( ?condition is ?modifier ?confidence ?tag )
(test (> ?confidence 0))

=>
(assert (explain condition: ?condition ?modifier ))
(printout t crlf~"CONDITION: " ?condition " is likely to be " ?modifier crlf)
(printout t " This condition is likely because: " crlf)
)

(defrule list_evidence
(explain'response: ?response ?mode)
(response: if /condition is ?cmodifier then ?response is ?mode ?rstrength)
(explainjrondition: ?condition ?cmodifier )
(condition: if $?parameter_statement then ?condition is ?cmodifier ?cstrength)
($?parameter_statement ?pconfidence ?tag )
(test (> ?pconfidence 0))

=>
(printout t " > " $?parameter statement " ( " ?pconfidence " ) " crlf)
)

(defrule complete_explanation_of_condition
(declare (salience -10))~
(explain_response: ?response ?mode)

148



(?response is ?mode ?confidence }
=>

(printout t crlf "The cumulative confidence of this conclusion is " ?confidence "." crlf)
(printout t "Continue (Y/N>? ")
(bind ?continue (read))

; (if (or (eq ?continue n) (eq ?continue no) (eq ?continue N) (eq ?continue NO) )
then (halt))
)

; SAVANT.3

; FILE I/O OVERHEAD

(defrule open_command file
(declare (salience 100))
(sub-assembly: ?sub-assembly_name ?file_id)

=> ~
(bind ?file id.ext (str cat ?file_id ".CMD"))

(open ?file idText ?file_id.ext "w")
)

(defrule close_command_file
(declare Tsalience -100))
(sub-assembly: ?sub-assembly_name ?file_id)

=> ~ ~
(bind ?file_id.ext (str cat ?file id ".CMD"))

(close ?file id.ext)
)

; SAVANT.3

(def facts sub-assembly_I/0_f i le_def initions
; (sub-assembly: ?sub-assembly ?filename )

(sub-assembly: C02_REMOVAL "C02REHOV" )

(def facts conf igure_prograra
11 sub-assembly file id "

(A0)
(load ».CMD")
(load ".SEN")
(extract time 0)

(defrule load_facts file
(declare (salience 100))
(sub-assembly: ?sub- assembly name ?file id)
(load ?ext)

=>
(bind ?file id.ext (str cat ?file id ?ext))

(load-facts ?fTle id.ext) ~

; SAVANT. 3

• TIME STAMP EXTRACTION AND INSERTION

(defrule extract_time "what time is it?"
(declare (salience 100))

?rm <- (extract_time ?time)
(sensor C02_REMOVAL CLOCK ? iterations min ?time stamp )
(test (< ?time ?time_stamp ))

=>
(if (!= ?time_stamp ?time)

then (bind ?time ?time_stamp )
(retract ?rm) ~
(assert (extract time ?time))

(defrule time extracted "time is:"
(dec I are~( salience -100))

?rm <- (extract time ?time)
(sensor C02_REMOVAL CLOCK ? iterations min ?time)

=>
(retract ?rm)
(assert (time ?time ?time ?iterations))

149



; SAVANT.3

• EXIT

(defrule exit
(declare (salience -1000))
(time ?time ?time ?iterations)

=>
(save-facts "facts")
(if (>= ?time 60 )
then (halt)

; block out following line with a semicolon to keep system from looping
; else (batch "model.bat")

150




