
tVASA-c_.R-)<F-<7,6/5

NASA ContractorReport189613
ICASE Report No. 92-8 NASA-C_-189613

: 19920012008

ICASE
EXECUTION MODELS FOR MAPPING PROGRAMS ONTO
DISTRIBUTED MEMORY PARALLEL COMPUTERS

Alan Sussman

Contract No. NAS1-18605
March 1992

Institute for Computer Applications in Science and Engineering
•NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

!i :) ",,,,;I

NationalAeronautics and f

Space Administration APR I 1992_.1LangleyResearchCenter
Hampton,Virginia23665-5225 LANGLEYREoE.AROH(Y.NfER.

LIBRARYNASA
HAiVtPl-t)l_,VlRI;It_IIA

EXECUTION MODELS FOR MAPPING PROGRAMS ONTO
DISTRIBUTED MEMORY PARALLEL COMPUTERS

Alan Sussman1

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center

Hampton, VA 23665
als@icase.edu

This paper addresses the problem of exploiting the parallelism available in a
program to efficiently employ the resources of the target machine, in the context
of building a mapping compiler for a distributed memory parallel machine. The
paper describes using execution models to drive the process of mapping a program
in the most efficient way onto a particular machine.

Through analysis of the execution models for several mapping techniques for one
class of programs, we show that the selection of the best technique for a particular
program instance can make a significant difference in performance. On the other
hand, the results of benchmarks from an implementation of a mapping compiler
show that our execution models areaccurate enough to select the best mapping
technique for a given program.

1This work was supported by the National Aeronautics and Space Administration under NASA
Contract No. NAS1-18605 while the author was in residence at the Institute for Computer
Applications in Science and Engineering (ICASE). While the author was a student in the School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, the research was sponsored by the
Defense Advanced Research Projects Agency, Information Science and Technology Office, under
the title Research on Parallel Computing issued by DARPA/CMO under Contract MDA972-90-
C-0035, ARPA order No. 7330.

i

1 Introduction

Programming a distributed memory parallel computer is a notoriously difficult
task. One approach to alleviating those difficulties is to provide tools that auto-
matically map a single-threaded program description into the multiple programs
that will run on each processor of the parallel machine. Such tools must also gen-
erate the communication between processors that is necessary to correctly execute
the parallel version of the program. Many different methods to map programs onto
distributed memory parallel machines have been described, with each method tai-
lored to the requirements of both the program and the machine. In addition, some
tools have been built that apply a single mapping strategy to each input program,
to generate a parallel program for a given machine. However, relatively little work
has been done on deciding what is the best mapping method, of those that are
applicable, for a particular program on a particular machine. This paper promotes
execution modeling as an effective method for guiding the process of automatically
mapping a program onto a distributed memory parallel computer.

A mapping compiler for a distributed memory parallel processor can solve many
of the problems that exist in writing efficient programs for such a machine. This
paper presents a method for automatically mapping programs onto the distributed
memory parallel machine that has two components: mapping techniques and exe-
cution models. The compiler writer selects a set of efficient structured techniques
for mapping programs onto the target machine and then builds execution models
to predict the run-time behavior of programs mapped using those techniques. This
task is analogous to building the code generation part of a compiler for a sequential
machine, where the compiler writer must find criteria for selecting the best code
sequences to perform a particular computation. The execution models are used by
the mapping compiler to guide the selection of the most efficient method for map-
ping a particular program onto the target machine. The results from experiments
with a mapping compiler for Sisal on Warp show that this approach is effective for
automatically mapping programs onto a real distributed memory parallel machine.
By accurately modeling the run-time behavior of mapped programs, a mapping
compiler can provide both a wide range of mapping techniques, and the ability to
select the most efficient technique(s) for a particular program.

The process of transforming a single-threaded input program into executable
programs for each processor in the distributed memory parallel machine has several
stages. Since this paper does not address the problem of finding the parallelism
available in a program, we assume that the mapping compiler takes, as input, a
program that has already been transformed (or originally written) to expose par-
allelism. The mapping compiler uses the execution models to select from among a
set of mapping techniques that can be applied to the input program, and produces
a separate program for each processor in the distributed memory parallel machine.
We call these separate programs cell programs, and assume that cell programs are
in the form of a sequential high-level language program (e.g. Fortran, C, etc.), aug-

Source Parallelizing Parallel Mapping Cell Cell Executable

program transformations program compiler programs compiler cell code

Figure 1: Compiling a program Onto a distributed memory parallel machine

mented with send and receive primitives for communication between processors.
A compiler for the cell programs, called a cell compiler, generates executable code
for each processor. Utilizing the cell compiler in this manner allows the mapping
compiler to benefit from any optimization techniques developed specifically for pro-
ducing code for the individualprocessors in the machine, and allows the mapping
compiler to ignore many of the low-level details of the individual processors. The
entire compilation process is depicted in Figure 1.

The approach to mapping programs onto the parallel machine is compiler-
oriented, in that the ultimate application of the execution models and mapping
techniques is a compiler that efficiently maps a single program onto the multiple
processors of a distributed memory parallel machine. Therefore, the set of mapping
techniques considered is constrained to those that are well-structured, so they can
be applied automatically by a compiler. The execution models for the machine
and for the mapping techniques are limited to being inexpensive to evaluate, so
they can be used by a compiler to guide the mapping process.

1.1 Analysis

Detailed analyses of the execution time behavior of one class of programs, mapped
in multiple ways onto a linear processor array, are presented in the paper. Analyz-
ing the execution models for different mapping techniques that can be applied to
the same program allows the determination of the values of the program param-
eters for which each mapping technique performs best. The program parameters
include the size of the data set(s) and the amount of computation in the body of
a loop.

If we vary the values of program (e.g. data set size) and machine parameters
(e.g. number of processors), the execution models can provide information about
the sensitivity of the execution time of a program, mapped in a particular way, to
such changes. In comparing two mapping techniques that can be applied to the
same program, a comparative analysis can determine the conditions under which
one of the techniques is preferred, because it will perform better on the machine.
Significant differences in the performance of code generated using competing tech-
niques are possible, as willbe shown in the analyses in Section 3. Such performance
differences indicate that the ability to choose from more than one mapping tech-

nique is a significant enhancement to the capabilities of a mapping compiler.

1.2 Evaluation

While the general model of execution presented in this paper applies to mapping
any program onto any distributed memory parallel machine, using a structured
mapping technique, uncertainty in the values of various parameters of the pro-
gram and machine can lead to great difficulties in predicting the execution time
of real programs on a real machine. The values of many program and machine
parameters can be difficult to obtain. For example, it can be difficult to estimate
the execution time of the code assigned to each processor, or to predict the la-
tency of messages propagating through the communication paths in the machine.
We therefore present the results of implementing a set of mapping techniques and
their associated execution models for Sisal [12] programs on the Warp systolic
array machine [2], to show that uncertainty in the parameter values does not sig-
nificantly affect the accuracy of the models. In particular, the models are accurate
enough that the mapping compiler can select the best technique from among those
applicable, for a given program.

2 A General Model of Execution

A general model for predicting the execution time behavior of a program on a dis-
tributed memory parallel machine must model both the behavior of the individual
processors in the machine and the behavior of communication between processors.
The modeling method presented in this paper is targeted at structured mapping
techniques, meaning those that can be applied automatically by a mapping com-
piler. To build an execution model for a class of programs mapped with a particular
technique onto a given machine, the parameters of both the machine (e.g. number
of processors, interprocessor connection topology, etc.) and the program (e.g. data
set size, data access patterns, etc.) must be considered. In addition, the mapping
technique provides information on the allocation of data and computation to the
various processors. All three of these components must be considered in building
an accurate model of execution for the mapped program on the distributed memory
parallel machine.

2.1 A general framework

Since we are not imposing restrictions on either the programs to be modeled or
the mapping techniques to be applied, the only fixed point on which to base a
general model of execution is the parallel machine. If we examinethe behavior of a
program executed on a distributed memory parallel machine from the point of view
of a single processor in the machine, there are only three possible activities that

the processor can be performing at any given time: local (sequential) computation,
communication with another processor, or waiting (either for data to be received
from or sent to another processor). In some machines, a processor can perform
computation and communication at the same time, so a general model must also
account for any overlap.

In a distributed memory parallel machine with P processors, there are four
parts to the execution model of a mapped program for processor i, V1 < i < P:

• SEQI - local, sequential computation

• CLi - communication, to receive and/o r send data

• SDi - synchronization delay; waiting either for data to be received or sent

• OLi - overlap between computation (SEQI) and communication (CLi)

We will use this terminology throughout the paper to describe the various compo-
nents of the execution models for mapped programs.

SEQi, CLi, SDi and OLi completely characterize the execution time behavior
of the mapped program on processor i in the distributed memory parallel machine,
and the total execution time for the mapped program on the processor is given by

(i).

T_ = SEQ_ + CL_ + SD_ - OLi (1)

The execution time for the mapped program on the entire distributed memory
parallel machine with P processors is then determined by the processor with the
greatest total execution time, as shown in (2).

T = max Ti (2)
l<i<_P

The formulas in (1) and (2) provide a way to model the execution time of any
program mapped onto any distributed memory.parallel machine, provided that the
four parts of the model (SEQi, CLi, SD_ and OLi) can be characterized for each
processor in the machine. In practice, the structure of a mapping technique Can be
exploited, so the behavior of all processors, for each of the four components, does
not have to be characterized in detail. We are only interested in structured mapping
techniques, because those are the ones that can be applied automatically by a
mapping compiler. We now discuss the four components of the general execution
model in more detail.

2.1.1 Local, sequential computation on a processor

SEQi is the local computation component of the general execution model. SEQI
models the execution time of the computation that a mapping technique for a
program assigns to a processor. In addition, SEQi includes the local memory

4

management overhead introduced by some mapping techniques (to optimize the
use of limited local memory). Determining SEQi is a completely local analysis,
because it only requires analyzing the behavior of the computation assigned locally
to a processor, and not the computation assigned to other processors.

2.1.2 Communication between processors

CLI models the communication time for messages received and sent by a processor.
CLi includes all the execution time for a processor to receive all the data required
from other processors, and all the time to send data to other processors. CLi also
includes the time for a processor to pass through data that is destined for other
processors. In general, for a structured mapping technique, all the messages that

will be transmitted for a given program are known at mapping time, so CL_ can be
determined. Computing CLi requires only local analysis of the messages received
and sent by a processor.

2.1.3 Overlap between computation and communication

OLi models the overlap between computation (SEQ_) and communication (CL_)
on a processor. If a processor can perform non-blocking sends and receives, or can
perform both computation and communication in the same instruction (e.g. the
Warp systolic array machine [2]), then an accurate execution model must account
for potential overlap. In a machine with processors that can perform computation
and communication at the same time, designing mapping techniques that take
advantage of that capability is crucial in obtaining the best performance from the
machine. Modeling the overlap for a mapping technique on a distributed memory
parallel machine allows the designer of a mapping technique to determine how
much of the communication overhead required to implement the technique can be
hidden by useful computation. Determining OL_ requires only local analysis of the
computation and communication assigned to a processor by a mapping technique.

2.1.4 Synchronization delay

SD_ models the time a processor spends blocked waiting for data either to be
received or sent. A processor can block to receive data for various reasons, for
example, when receiving input data from an external device (e.g. disk, network,
etc.), or when receiving data produced by another processor. On the other hand,
a processor can block when sending data to another processor if the queue for the
data is full on the receiving processor. Such implicit synchronization is usually
implemented in the communications hardware of the distributed memory parallel
machine, but deciding when synchronization delay will occur for a message can be
determined from the structure of the mapping technique. In particular, the pattern
of communication required by a mapping technique for a given program can be used
to determine the synchronization delays for the various processors taking part in

the communication. Determining SDi requires global analysis of the communica-
tion and computation patterns a mapping technique generates for a program. The
delays a processor experiences during mapped program execution are a function
of all the messages each processor receives and sends, so the total synchronization
delay depends on the execution-time behavior of the mapped program on all pro-
cessors. Fortunately, all the structured mapping techniques we have investigated
produce message patterns with a discernible structure that can be exploited, so
the synchronization delays for the various processors can be determined.

2.2 Related work

Several efforts have been made to model general program execution on an MIMD
distributed memory parallel computer. Cytron [7] describes models for choosing the
number of processors needed to minimize execution time (or maximize processor
utilization) of parallel (doall) loops and reduction operations on ring and tree-based
processor networks. Chen et al. [6] describe a general model for predicting program
performance, in the context of choosing optimization strategies for mapping Crystal
functional programs onto hypercube multicomputers.

Work has also been done on mode!ing the run-time performance of programs
executed on shared memory multiprocessors. Sarkar [14, 15, 16] uses execution
profile information to approximate the time to execute a node in a dataflow graph,
derived from an applicative program, on a multiprocessor. Such information must
be generated by running the program, so his approach cannot solve the problem
of deciding how to map a program without actually producing the mapped pro-
gram. The PTRAN analyzer [1, 5] can generate estimated execution times for
Fortran programs, including estimates for parMlelizing loops on shared-memory
multiprocessors. The estimates characterize the performance of a sequential For-
tran program and estimate the speedup obtainable from parallel execution of the
program. Polychronopoulos et al. [13] describe a static program analyzer for
Parafrase-2 that obtains compile-time estimates of execution time using a general,
parameterized model for program execution on a shared memory multiprocessor.
To model sequential execution time, the analyzer uses the longest path through
the program (over all branches) to obtain an estimate, but can also use the average
time over all paths for a more realistic sequential model. Atapattu and Gannon
[3] describe performance models to help programmers find bottlenecks in parallel
programs. The models use the' assembly code for each processor, generated by a
parallelizing compiler, to model execution-time behavior.

Another class of work on modeling program execution concentrates on particu-

lar types of programs and/or structured mapping techniques. Hudak and Abraham
[10] describe models for data partitioning a sequentially iterated parallel loop onto
a shared memory parallel machine. King et al. [11] describe models for pipelined
data parallel algorithms, using timed Petri nets, on linear processor arrays and
two-dimensional processor meshes. Balasundaram et al. [4] describe a perfor-

mance estimator to select a data decomposition strategy. A set of routines is used
to 'train' the estimator, to determine both how long various operations take to
execute on one processor, and how long various communication patterns take to
complete on the machine. The estimator only works on programs implemented
with the loosely synchronous programming model [8].

3 Analysis of Mapping Techniques

The general execution model presented in Section 2 can be applied to various
methods for mapping the same program onto a distributed memory parallel ma-
chine. For a program that can be mapped in multiple ways, the models can be
used to determine which method produces the best performance on the machine,
for a particular set of values of program and machine parameters. In this section,
we apply the general execution model to analyze, in detail, the execution time
behavior of a linear processor array on a parallel loop program, mapped both by
data partitioning and by pipelining the body of the parallel loop. Analysis of map-
ping techniques for a more complex program, a sequentially iterated parallel loop
[10], are presented in the author's dissertation [18]. We develop execution models
for each mapping technique under various assumptions about the structure of the
code generated by the mapping technique for the processors in the parallel ma-
chine, and then apply those execution models to compare the performance of the

different mapping techniques for various values of the parameters of the program.
In analyzing the execution time behavior of programs on the parallel machine,

all execution time behavior is presented in terms of arbitrary time units. The
time units can represent processor cycles, processor instructions counts, or any
other measure of processor execution time. For a real machine, the units should
correspond directly to processor execution time (in seconds). Throughout the
analysis, we will refer to these time units as an execution cost to perform an activity
(computation or communication) on a processor.

In the following analyses, we assume that the communication cost on the ma-
chine can be modeled as one cycle per data item sent or received. The assumption
is accurate for a machine with programmed communication, such as the Warp sys-
tolic array machine, but may not be accurate for message-passing machines (where
a message startup latency may occur). The assumption can be modified if there is
a better communication model for the machine.

In analyzing the parallel loop program, we only consider the mapped program
behavior for program input data set(s), and not for output data set(s). For this
program and its associated mapping techniques, output data are handled analo-
gously to input data (instead of distributing data, collect data), and the execution
costs involved are exactly the same.

The linear processor array is viewed as an attached processor, with a host
machine supplying input data and collecting output data. As shown in Figure 2,

7

HOST I-_

Figure 2: A linear processor array, attached to a host machine

forall i in i, N

out[i] := f(in[i-x], in[i-x+l], ... , in[i]0 ... ,

in[i+y-l]0in[i+y])
end

Figure 3: Parallel loop with neighborhood computation

each processor in the array can receive data from the processor to its left and send
data to the processor to its right, except for the first (P1) and last (Pp) processors
in the array. The first processor in the array receives input data from the host
machine and the last processor sends output data to the host. The number of
processors in the array, P, is a parameter in the analysis.

The parallel loop program to be analyzed is shown in Figure 3. The call
to function f in the loop body represents the loop body computation, and is a
neighborhood computation. 'The output for such programs can be computed in
parallel using both data partitioning and loop body pipelining techniques.

Two parameters of the program are required to analyze its execution when
mapped onto the linear processor array. The first parameter is the loop body
execution cost, which is represented by BBi for each processor i. BBi represents
the number of instructions (or machine cycles) required on processor i to execute
one iteration of the loop. The second program parameter is the size of the data
set, N. To simplify the analysis, we only analyze parallel loop programs that have
one-dimensionM data sets as input. The execution models can be extended to data
sets with more than one dimension [18]. A data set of size N implies that there
are N total loop iterations to be performed across all the processors in the linear

array. -:

Pi Pi+l
Dam

Data Synchronizationin

distribution2N _ V delaYN/p
Time Data

distribution
Local

2N
computation

BB*N/P Local

computation

BB*N/P

Figure 4: Execution time behavior for block data partitioning a parallel loop

3.1 Data partitioning

Data partitioning divides the input (and output) data sets across the processors
in the linear array, so each processor can compute its output in parallel. As shown
in Figure 4, there are two phases to the mapped program; first distribute the
input data set across the processors and then perform the loop body computation
on the data stored locally. Because the loop body computation in Figure 3 is
a neighborhood computation, the input data set can be partitioned across the
processors (with some overlap between neighboring cells, if either x or y from
Figure 3 is non-zero).

The general execution model can now be used to analyze the execution time
behavior of the parallel loop program, mapped by data partitioning onto a linear
processor array. In analyzing the execution of the program, we assume that the
mapping technique generates homogeneous, or SPMD (single program, multiple
data); code. This means that each processor executes the same program text. For
such code,

BBi = BB, VI<i<P

meaning that the loop body execution costs are the same on all processors.

Data partitioning assigns the computation for NIP output data items (loop
'iterations) to each processor. If P does not divide N, the data set can be padded so
that all processors are assigned the same number of data items ([N/P]). Because
the data partitioning technique generates homogeneous code, the local computa-
tion term is the same for all processors (SEQi = SEQ). Therefore, the local

9

, computation cost in the general execution model is

SEQi = SEQ = [N/P]. BB

For the rest of the analysis, we will ignore the ceiling on N/P, to simplify the
presentation of the modeled execution costs by allowing the combining of terms
from the various components of the execution models.

For the communication term in the execution model, we assume that each
processor receives and sends all N data items, so

CL_ = CL = 2N

Overlap between local computation and communication is not as straightfor-
ward to model. Since the mapping technique generates the same code for each

processor, the overlap is the same on all processors (OLi = OL). OL is modeled
as a fraction of the communication cost, so

OL = K. CL, 0 < K < 1

For example, the model for overlapping all communication with computation on
processor i, except the receives and sends of the input data that will be stored on

processor i (i.e. I/O for the fraction of the data set stored on processor i, l/P, is
not overlapped with computation), is

P-1 P-1

OL, = OL = (1 - l/P). CL = -7-. CL = ---fi-- . 2N

The last term in the general execution model is synchronization delay. For this
analysis, assume that the input data are block partitioned, so the first processor is
assigned the computation for the first NIP loop iterations, the second processor the
second N/P loop iterations, etc. This assignment of the computation to processors
naturally partitions the input and output data sets onto the processors in the linear
array by blocks of data with consecutive indices. For block data partitioning,

SOb = (i- 1). N/P

because processor i cannot start receiving its local input data until after processor
i - 1 has completed receiving its local input data.

To complete the analysis, we must find the processor that takes the longest
time to complete execution. The execution model terms for all processors are the
same, except for SDI. For SDI, processor P waits the longest, with

SDp = (P-1). N/P

Therefore, the execution cost for processor i, Ti, is greatest for processor P in
the linear array, and with Ti = SEQi + CLi - OLi + SDi, the total execution cost,
T, is shown in Equation (3).

T = Tp = (N/P).BB+2N-K.2N+(P-1).N/P = (BB+3P-2K.P-1).N/P
(3)

10

®40000
E

35000
......K=! I
--K=.9 _ ._.-"30000 _ ,.,_*:_,'"
-- -- K=0 / N=3000 ,..,,,:€_.,'-

• _ • _

25000 _ .*

20000 . _ ._€_...I j/;..'
15000

10000 j. , " -- -- _= -
5000 ** _ _

I I I I I I I I I I

0 10 20 30 40 50 60 70 80 90 100
BB

Figure 5: Varying overlap of communication and computation

Now that we have a general execution model for block data partitioning a paral-
lel loop on a linear processor array, we investigate how sensitive the execution cost
of the program, as modeled in Equation (3), is to a change in one of the parameters
of the model. The analysis examines the effect of varying the overlap between com-
munication and computation on the processors. Figure 5 plots program execution
cost against loop body execution cost (BB), on a ten processor array (P = 10),
for data set sizes of 1000 and 3000 (N = 1000,3000). With OL = K. CL, curves
are shown for K = 0, corresponding to no overlap on each processor between
communication and computation, K = 1, Corresponding to complete overlap, and
K = .9, for which communication for all data not stored on a processor (but only
passed through to be stored on another processor) is overlapped with computation
(g = l-1/P).

Figure 5 shows that the amount of overlap between communication and com-
putation can significantly affect the execution cost of the block data partitioned
parallel loop. In particular, in varying the overlap, the relative differences in exe-
cution costs (slowdown factor relative to complete overlap) are larger for smaller
N, but absolute execution cost differences are larger for larger N. For fixed data set
size N, decreasing the fraction of overlap between communication and computation
can cause a large, but constant, increase in program execution cost with increasing
loop body execution cost. For example, for N = 3000, the program with no overlap
between communication and computation will have an execution cost 6000 greater
than the program that overlaps all communication and computation, for any loop
body execution cost BB. For small BB, that difference is a significant fraction of
total program execution cost.

11

Another form of data partitioning can be applied to the parallel loop program
in Figure 3. For a P processor linear array, with both processor numbers and data
indices starting from one, interleaved data partitioning assigns the first processor
all data items with indices congruent to 1 mod P, the second processor all data
items with indices congruent to 2 rood P, etc. Interleaved data partitioning is
mainly useful for programs that do not require overlapping input data sets on
neighboring processors (i.e. x = 0 and Y = 0 in the parallel loop program from
Figure 3), otherwise each data item would have to be replicated on several (x+y+l)
processors, leading to inefficient use of local memory on the processors.

As for block data partitioning, interleaved data partitioning assigns the com-
putation for N/P loop iterations to each processor in the linear array. For inter-
leaved data partitioning, the local computation (SEQ), communication (CL) and
overlap (OL) terms in the general execution model are the same as for block data

partitioning, because each processor is still doing the same computation and com-
munication, but stores and computes a different part of the data set. However, the
synchronization delay term for processor i is

SDi = i - 1

because each processor can receive one data item and then pass the next P- 1 data
items immediately, so no processor has to wait long to start receiving its local data.
For interleaved data partitioning, again with OL = K. CL, 0 < K < 1, processor
P takes the longest time to complete execution (because of the SDi term in the
model). The execution cost for the complete program, T, is shown in Equation (4).

T -- Tp = (N/P).BB+2N-K.2N+P-1 = (BB+2P.(1-K)).N/P+P-1 (4)

We can now compare the execution costs of the block data partitioning and
interleaved data partitioning mapping techniques on the parallel loop program
from Figure 3. Figure 6 plots the relationship between data set size N and the

parallel loop program execution cost, for a ten processor linear array (P = 10),
with a loop body execution cost BB of 10. With OL = K. CL, the overlap between
communication and computation on a processor varies from none (K = 0), to half
(K = .5), to overlap of communication for all data except that of data that is
stored on the cell (J_"= .9).

Figure 6 shows that the program, mapped with interleaved data partitioning,
can perform significantly better than the same program, mapped by block data
partitioning (by a constant factor), for fixed loop body execution cost (BB). The
improved performance comes from the difference in the synchronization delay term
in the execution model (SD_), which is proportional to P for interleaved data
partitioning, as opposed to being proportional to Nfor block data partitioning. The
difference in execution cost between block data partitioning, Tbdp, and interleaved
data partitioning, Tidp, is determined by the difference in synchronization costs,
which is

Tbdp-- T_dp-- (P - 1). NIP - (P - 1) = (f - 1). (N/P - 1)

12

,= 20000
.- ,. K=0
P"18000 -- -- Interleavedpa__o_*_g[,. °

..... BlockpartJ.tioning"'I """16000 "°

o°°°°o°° I° ''/'° K=O14000 K=.5

12000 "° "" "°
ooo _oO

,," ,-"-" • . K=.9
10000 •" _" . •""_

°° .,,.. ,_. _, K=.5
8000 . _ ..;.-

° • oO_
6000 •" 't_ ."_ .,-,.

,. ,_-=..-..... ..-.--..... K=.9
,o° .€_ _.=.o,_,',

4000 . .,,_,.,.----
• o_tP'_ °re•O,° _ _ -,," ,

2000 °,_,"._"_" --"

I rm i I I I I I I I I I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
N

Figure 6: Block vs. interleaved data partitioning (BB = i0)

Since the data set size for a program (N) is almost always larger than the number of
processors (P), the difference is positive, so interleaved data partitioning produces
faster programs.

For the same overlap of communication and computation (K), interleaved data
partitioning can be much better than block data partitioning. The difference in
synchronization costs shown above is proportional to data set size (N), but is only a
significant fraction of the total execution cost, for either block or interleaved data
partitioning, for relatively small loop body execution cost (BB). For programs
with small BB, as in Figure 6, interleaved data partitioning can provide up to a
factor Of two improvement in performance relative to block data partitioning. The
greatest performance improvements from interleaved data partitioning appear in
mapped programs with a high proportion of overlap between communication and
communication (e.g. K = .9), since those are the programs with the smallest total
execution costs.

The analysis of the interleaved and block data parti'tioning mapping techniques
also shows that the synchronization delay term (SD_) in the general execution
model can be critical in selecting the best mapping technique from among those
applicable to a particular program. In analyzing the performance of mapped pro-
grams, synchronization delay is often the most difficult component of the general
execution model to determine, because it is a global property of the mapped pro-
gram. All other terms in the general model can be determined by local analysis
of the computation and communication that each processor must perform. How-
ever, synchronization delay depends on interactions between multiple processors, so
must be determined by examining the execution behavior of the mapped program

13

P i Pi+l

Input Synchronization

Local delay

computation BB i +Ci" Oi

BB i
Time

Output Input

Local
N computation

loop BB i+!

iterations Output

N

loop

iterations

Figure 7: Execution time behavior for pipelining the body of a parallel loop

on all processors.

/

3.2 Loop body pipelining

Loop body pipelining assigns a part of the loop body computation of the parallel
loop to each processor in the linear array [9]. The intermediate results for each
loop iteration flow between processors, with multiple loop iterations executing in
parallel once the pipeline fills. Loop body pipelining is similar to the DOPIPE loop
transformation [19] that has been proposed for separating a loop body into multiple
stages that can be assigned to distinct processors. As shown in Figure 7, the loop
body pipelining mapping technique assigns all N loop iterations of the parallel loop
program from Figure 3 to each processor, with each processor performing part of
the loop body computation for each iteration.

The general execution model can be applied to the parallel loop program,
mapped by loop body pipelining, onto the linear processor array. Loop body
pipelining generates heterogeneous code for the processors in the linear array,
meaning that each processor executes different program text. In the execution
model, BB_ represents the execution cost of the loop body computation assigned
to processor i. The local computation cost for processor i in the general execution

14

model is then given by
SEQ_ = N. BB_

For the communication term, Ci is the execution cost of communication for

processor i in each loop iteration, and includes both receiving input from processor
i - 1 and sending output to processor i + 1. Then, for N loop iterations,

CLi = N. C_

Overlap between communication and local computation for one loop iteration
is modeled as O_, so the total overlap term is

OL_ = N . Ok

To model the synchronization delay term, assume that the processor executes a
loop iteration in three phases, as shown in Figure 7. The first phase receives input,
the second phase performs the loop body computation and the third phase sends
output. The synchronization delay is determined by the time to fill the pipeline,
because a processor can start its local computation as soon as all the processors
before it in the pipeline perform one loop iteration (including receiving input and
sending output). There is no synchronization delay for the first processor in the
linear array, and the synchronization delay for processors two through P can be
expressed as

i-1

SDi : SDi-1 . BB,-1 + C{_I - O,__ = _(BBj + Ci - Oj)
j=l

With T; = SEQ{ + CL{ - OL{ + SDI, the total execution cost for processor i
in the linear array is shown in Equation (5).

i-1

T{ : (BB{ + Ci - Oi) . N + _']_(BBj + Cj - Oj) (5)
j=l

The last step is to find the processor that takes the longest to complete exe-
cution. To simplify the complete analysis, we assume that Vi, O{ : C{, meaning
that all communication of intermediate results (and program input and output) is
overlapped with the loop body computation on each processor. This assumption
is not unrealistic, because only the communication for one iteration of the loop
(of intermediate results) must be overlapped with the loop body computation as-
signed to a processor. With that assumption, the execution cost for each processor
is given by Equation (6).

• i-1

T, -- BB,. N . _ BBj (6)
j=l

15

The analysis is presented in two parts; first for the computation load equally
balanced across the processors (i.e. Vl < i,j < P, BBi = BBj), and then for the
computation load not balanced across the processors. For both parts, BB is the
execution cost for the complete body of the parallel loop.

For the first part of the analysis, the computation load across the processors in
the linear array is balanced, implying that

Yl < i < P, BB_ = [BB/P]
. \

In this case, processor P completes execution after all other processors, since it has
the largest synchronization delay, which is the cost for the other P - 1 processors
to complete one loop iteration ((P- 1). (BB/P)). Assuming that P divides BB,
applying Equation (6) produces the execution cost given by Equation (7) for the
loop body pipelined parallel loop.

T = Tp = (BB/P). N . (P - 1). (BB/P) - (BB/P). (N -t- P - 1) (7)

In the second part of the analysis, with the computation load not balanced
across the processors, there is some processor j assigned the most computation per
loop iteration. In other words, the loop body computation assigned to processor
j has the largest execution cost over all the loop body segments assigned to the
processors. This is modeled as

BBj = LF. BB/P

and 1 < LF <_P, since the total execution cost of the complete loop body is BB.
We call LFthe computation load factor, because it determines the computation load
on the processor that is performing the most work, which limits the performance
of the mapped program. To simplify the application of Equation (6), assume that
j = P, so the last processor in the linear array both performs the most computation
per loop iteration and has the greatest synchronization delay. The synchronization
delay is, therefore, BB - LF. BB/P, since that is the cost for one iteration of the
loop body passing through all processors, except the last processor. The execution
cost for the parallel loop is determined by processor P and is given by Equation (8).

T = Tp = (LF.BB/P).N+(BB-LF.BB/P)= (BB/P).(LF.N+P-LF) (8)

Figure 8 shows the effect that the computation load factor, LF, has on the
execution time of the parallel loop program, mapped by loop body pipelining.
Figure 8 plots program execution cost vs. data set size (N) on a ten processor
linear array (P = 10), for loop body execution costs (BB) of 10, 50 and 100.

The computation load factor, LF, is a multiplicative factor in the slope of the
curves shown in Figure 8. In particular, Figure 8 shows that having the processor
assigned the most computation per loop iteration (as measured by execution cost)
perform twice the average per processor amount of computation per loop iteration

16

a)120000
E

I "100000 -- -- LF=I ." °
..... LF=2 *°."

,l e

#e
80000 .,

60000 ,••* 8B=I00

40000 *" " "

• , ." - _ ..,.. "" BB=50
20000 .'** ._._"_" .-.." " " "

----
0 I000 2000 3000 4000 5000

N

Figure 8: Varying BB, with computation load balanced (LF=I) and unbalanced
(LF-2)

(LF = 2) is equivalent to doubling the amount of computation in the entire loop
body with optimal assignment of computation to processors (LF = 1) (i.e. so
all the processors do twice as much computation per loop iteration). This effect is
highlighted in Figure 8, in which the line for K = 1 with BB = 50 coincides with
the line for K = 2 with BB "-"100. This result implies that effective techniques
are required for evenly partitioning the computation in the loop body onto the
processors in the linear array, to even consider applying loop body pipelining to a
parallel loop.

3.3 Comparative analysis

We have presented the execution models for two different techniques (data parti-
tioning and loop body pipelining) for mapping the parallel loop program in Figure 3
onto a linear processor array. Because we are interested in mapping the program
in the most efficient way onto the linear array, in this section we compare the two
mapping techniques under a variety of values for the parameters of the program
(N and BB). For the block data partitioning technique, we also vary the degree of
overlap between communication and computation and, for loop body pipelining_
we vary the computation load factor (LF). In this section s we only consider a ten
processor linear array (P - 10).

The first analysis, shown in Figure 9, plots program execution cost against "
loop body execution cost (BB), fixing the data set size (N) at 1000. For block data
partitioning, three curves are shown, varying the overlap of communication and

17

computation from no overlap (OL = 0), to overlapping half the communication
with computation (OL = .5. CL), to complete overlap between communication
and computation (OL = CL). For loop body pipelining, curves are shown with
computation load factors (LF) of 1, 1.5 and 2.

Figure 9 shows that the execution cost of the block data partitioned program
is not particularly sensitive to the overlap between communication and computa-
tion on each processor, as is shown by the small upward shift in the curves with
decreasing overlap. On the other hand, the performance of the program, mapped
by loop body pipelining, is very sensitive to the computation load factor (LF). An
increase in the computation load factor increases the slope of the curve plotting
program execution cost against loop body execution cost, rather than just shifting
the curve. Overall, Figure 9 shows that block data partitioning usually performs at
least as well as loop body pipelining. However, loop body pipelining can perform
better than block data partitioning, but only with good load balancing across the
processors in the linear array (LF ,._1).

In Figure 10, with N = 10,000, the effects from Figure 9, with N = 1000, are
exaggerated, so loop body pipelining with perfect load balancing (LF = 1) is better
than block data partitioning by even more (about 9000 instead of 900). In general,
the parallel loop program mapped by loop body pipelining can perform better than
the block data partitioned program by an arbitrary amount (up to a factor of 2
for small BB and large iV).Figure 10 also shows that, for block data partitioning,
the overlap between communication and computation (OL) has a greater effect on
program execution cost for larger data:set sizes (AT),especially for programs with
relatively small loop body execution costs (BB). For large N (e.g. 10,000), loop
body pipelining is better than block data partitioning, even with an unbalanced
load (LF > 1), so long as BB is relatively small (e.g. for OL = 0 and LF = 1,5,
loop body pipelining is better for B13 < 60). For parallel loop programs with
those characteristics, the overhead for distributing the data for data partitioning is
a significant fraction of the total execution cost of the program, while the overhead
for filling the pipeline for loop body pipelining does not depend on the data set
size.

In general, the complete analysis shows that loop pipelining provides better
performance for programs with small loop body execution cost (BB), as long as
the work load is reasonably balanced (LF _ 1). On the other hand, block data
partitioning provides better performance for larger BB, so long as communication
is overlapped with computation (OL is a large fraction of CL). In either Case,
the mapping technique that performs better can perform better by an arbitrary
amount, meaning that selecting the better mapping technique, for a particular
program instance, can be crucial in obtaining the best performance.

18

,_50000
._E

-- -- Datapartitioningl ,., LF=240000 Looppipelining[••, •

,#" "" •" • • "" • •. • " • • •

LF:I
°

30000

•,° •-"" .OL=O
• •• •-" _ ,OL=.gCL

," .," _ _" ,€..'OL=CL•• " _" ,,_'.-" EF=I20000 ° .• _ J.•
• • v o -

,• °• _ _,.Y"
10000 • '" -- ;°

° • =Jm'_to

i=_• •
_ " I I I I I

0 50 100 150 200 250
BB

Figure 9:Block data partitioning vs. loop body pipelining, N=1000

200000

160000 Looppipelinmg

140000 •.••°•°• .LF=I.5
120000 °,° OL=O

80000 • ••••.... ." o: _ _ _"_'"'''''"LF=Io•_ ooo •60000 ._" - - _ " "

40000 _ °" -_ _ -'"

20000"_-._" .''"

,$_° I I I I I I I I I l

0 10 20 30 40 50 60 70 80 90 100
BB

Figure 10: Block data partitioning vs. loop body pipelining, N=10,000

19

4 Experimental Results- Sisal on Warp

We have implemented a mapping compiler for the applicative programming lan-
guage Sisal [12] on the Warp systolic array machine [2] to demonstrate that execu-
tion models can be used successfully to guide a mapping compiler for a distributed
memory parallel processor. Sisal programs do not contain any provisions for inter-
processor communication, so both the mapping onto processors and the generation
of interprocessor communication must be done by the mapping compiler. The map-
ping compiler translates the IF1 dataflow graph representation of a Sisal program
[17] into complete programs for the Warp machine.

The mapping compiler applies one or more mapping techniques to generate
code for each processor in the Warp array. The compiler selects which mapping
technique(s) to apply to a particular Sisal program automatically, using execution
models developed for those mapping techniques on the Warp machine to select
the technique(s) that generate the most efficient code from among the techniques
implemented. The set of techniques implemented includes block and interleaved
data partitioning, function body pipelining and forall loop body pipelining.

We present evidence that the execution models developed for the machine al-
low the compiler to select a good mapping technique for a particular program.
If the execution models can accurately predict the performance of a program (or

program segment) mapped in different ways, then the compiler can select the best
method(s) for the program. For example, within the data partitioning mapping
technique, choices must be made, such as whether to use block or interleaved data
partitioning or whether it is worthwhile to overlap I/O and computation. The
execution models for data partitioning predict that interleaved data partitioning
is always better than block data partitioning, when it is reasonable to apply in-
terleaved data partitioning. The models also predict that overlapping I/O and
computation always is preferable to not doing the overlap. Both predictions are in
accordance with the performance of programs generated using the various forms
of data partitioning.

The major difficulty in applying the execution models relates to the complexity
of the horizontal microcode of a Warp processor. On each clock cycle, a Warp pro-
cessor may perform several operations, including integer and floating point arith-
metic, local memory accesses and reads from and writes to the queues between
neighboring processors. The cell compiler Uses many complex techniques to opti-
mize the use of the functional units in the processor. Therefore, instead of a single
execution cost the mapping compiler uses both upper and lower bound estimates
to characterize the execution time of a sequential block of cell code. The mapping
compiler can then use those bounds to determine the best mapping strategy to use
for a particular program (or program, segment).

All of the benchmark programs can be mapped onto the Warp machine using
more than one of the mapping techniques. The key result from executing the
mapped benchmark programs on the systolic array machine is that the execution

2O

models are accurate enough to always allow selection of the mapping technique that
provides the best performance on the machine. For a given program instance, the
models can predict which mapping technique performs best on the machine, but
cannot always predict exactly how much better one mapping technique performs
compared to another. Examples comparing the predictions of the execution models
with the actual performance of programs on the Warp machine are presented.

4.1_ Image processing

Two low-level image processing benchmarks illustrate the ability of the execution
models to select the best mapping method from among the forms of data parti-
tioning applicable to a program. Three sequential models, an upper bound model
and two lower bound models (with and without software pipelining of innermost
loops) have been applied to the imag e processing programs. All the models are able
to order the techniques so the best one can be selected, and together the models
are also able to bound the actual execution time of programs mapped onto the
Warp machine. The lower bound sequential model that takes into account soft-
ware pipelining is usually much too optimistic in predicting the execution time of
mapped programs, so we concentrate on the upper bound model and lower bound
model without software pipelining. Results are presented for both interleaved
and block data partitioning, both with and without overlap of communication and
computation. Interleaved data partitioning can be applied to the addclb program
because of the structure of the loop body computation, while the asmt program
can only be block data partitioned.

Figure 11 shows both the actual times and the model predictions for the two
image processing programs, presented to look at the question of how well the
models order the applicable mapping techniques. Each vertical curve connects
the points for a single mapping technique, across the actual times and estimates
produced using all three sequential machine models (the horizontal lines). If the
vertical curves cross, then either the various sequential models do not produce the
same ordering among the different mapping techniques or the execution models do
not correctly order the mapping techniques with respect to actual execution time
on the machine. In fact the curves do not cross, so all the sequential models can be
used to order the mapping techniques correctly for_both of the image processing
programs.

The other interesting question is how well do the sequential models for the
Warp machine predict the execution time of data partitioned programs. Figure 12
shows the same data as in Figure 11, presented to show how well the sequential
models bound the execution time of the mapped programs. In these graphs, we
are looking to see whether the actual execution time of the programs is between
the estimates using the lower and upper bound sequential machine models.

In Figure 12 the data appears somewhat inconclusive as to how good the esti-
mates are at predicting actual execution times of data partitioned programs. For

21

[] Interleaveddatapartitioning(overlapped)
o Interleaveddatapartitioning(non-overlapped)
0 Blockdatapartitioning(overlapped)
x BlockdatapartitiQning(non-overlapped)

! UpperboundcostLowerboundcost(w/osoftwarepipelining)

/
'..3 ./

,, _ _ Lowerboundcost(w/softwarepipelining),:,

..,,. ,,,," Actualtime

I I I I I I I I. I I

0 50 100 150 200 250 300 350 400 450 500
Time(msec)

Addclb

I 0 Blockdata partitioning(overlapped)x Blockdata partitioning(non-overlapped)

Upperboundcost

Lowerboundcost(w,osoftwarepipelining) "'j, o,_,,,,,f,°_,"_I

Lowerboundcost(w/s_l_lltilng)

Actualtime *"---..L.'_.:_._.._.:_:-. -'_,:_..L.-'-:- -.....
y

I I I I I I I I I I I I I I I

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Time(msec)

Asmt

Figure 11: Image processing benchmarks, for ordering mapping techniques

22

addclb, the upper bound estimate appears to be too low, because the program
execution time is greater than the supposed upper bound estimate. However, note
that there are two actual execution times for addclb, for non-overlapped block
and interleaved data partitioning. The larger time was generated under the same
machine and compiler conditions as the other image processing benchmark time.
The smaller time, which is much closer to the predicted time, was generated after
fixing a bug in the W2 cell compiler for the Warp machine. The performance of
addclb is limited by the I/O capabilities of the Warp host, because of the small
amount of computation in the loop body of the program. The bug in the cell
compiler slowed down the host I/O significantly, so the program time was much
higher than it should have been. In addition, the execution models do not take
into account the capabilities of the host machine, only looking at the processors
in the Warp array, so the true performance of any program that is limited by the

host machine is not easily predictable.
On the other hand, for asmt, the models do a good job of bounding the exe-

cution time of the program mapped by block data partitioning.
In general, the models predict that, if applicable, interleaved data partitioning

is at least as good as (and usually better than) block partitioning on a systolic array
machine, and the actual execution times of the data partitioned image processing
programs follow the predictions. Also, the models predict that overlapping commu-
nication and computation on the processors in the Warp machine is always better
than not doing so, and the image processing programs support that prediction.

4.2 Polynomial evaluation

The polynomial evaluation benchmarks illustrate both the benefits of overlapping
communication and computation for interleaved data partitioning and the relative
merits of data partitioning and loop body pipelining for one type of program.
Polynomials of degree 3, 5, 7, 9, 10, 12, 14 and 17 are used to evaluate the execution
models. For these programs, the execution cost estimates for the loop bodies are the
same whether using the upper bound sequentialmodel or the lower bound model
(without software pipelining), because the loop body consists of a single chain of
data" dependent operations (i.e. there is no parallelism in the operations for one
loop iteration). Figure 13 shows the actual execution times of the polynomial
evaluation programs mapped by data partitioning (both with and without overlap
of communication and computation) and loop body pipelining. Figure 14 shows
the predictions of the models using the upper bound sequential model and the
lower bound model

For all polynomial degrees tested, the data partitioned program with overlap
of communication and computation is predicted to perform better than the non-
overlapped program, and the prediction holds up for the actual execution times.
However, for polynomials of up to degree 10, the predictions are much too pes-
simistic for overlapped data partitioning, because of software pipelining of inner-

23

[] . Actualtime(defaultcellcompiler)
,*- Actualtime(correctedcellcompiler)
o Lowerboundcost(w/softwarepipelining)
0 Lowerboundcost(w/osoftwarepipelining)

Upperboundcost

Z_ O , Blockdatapartitioning
(non-overlapped)

'0 [] Blockdatapartitioning
(overlapped)

[] Interleaveddatapartitioning
(non-overlapped)

O [] Interleaveddatapartitioning
(overlapped)

I I I I I I I !

0 50 100 150 200 250 300 350 400
Time(msec)

Addclb

[] Actualtime
o Lowerboundcost(w/softwarepipelining)
<> Lowerboundcost(w/osoftwarepipelining)
x Upperboundcost

Blockdatapartitioning(non-overlapped)
o 0 c ×

Blockdatapartitioning(overlapped)
V

I I I I I I f ' I I I I I l ' i

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Time(msec)

Asmt

Figure 12: Image processing benchmarks, for predicting execution times

24

-G70
o_ • Interleaveddatapartitioning(overlapped)E ×
_"60 o Interleaveddatapartitioning(non-overlapped)
E x Looppipelining
V- 0

50 x X •
o

40 o •
X X ® •

0
30

0

0
20 X X

0

10 • • • • •

0 I I I I I I I I I I I I I I I
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Polynomialdegree

Figure 13: Polynomial evaluation, actual times

_-70
(n

• Interleaveddatapartitioning(overlapped) X
o 60 o Interleaved data partitioning(non-overlapped)
o x Looppipelining

0
50 X X •

0

40 0 •

x X _ •
u

30 0

0

20 X _ •
0 •

10 •

I I I I I I I I I I I I I I I

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Polynomialdegree

Figure 14: Polynomial evaluation, execution cost estimates

25

most loops. For those programs, a lower bound sequential model that includes
software pipelining provides a more accurate estimate of actual execution time
[is].

Loop body pipelining is also predicted to be inferior to overlapped data par-
titioning, and the prediction holds true on the machine. The only anomaly is for
the degree 5 polynomial, for which the prediction says that loop body pipelining
is slightly slower than non-overlapped interleaved data partitioning (20 vs. 18 mil-
liseconds), while the actual performance of the loop pipelined program is somewhat
better than the data partitioned version (19 vs. 22 msec). Since the difference in
performance between the two versions of the mapped program is so small, for both
the predicted and actual execution times, it is not surprising that the execution
models cannot perfectly distinguish between them. This observation also applies
to the degree 10 polynomial, for which loop body pipelining and non-overlapped
data partitioning have the same execution times (36 msec).

5 Conclusions

In this paper, we have shown that the selection of the best mapping technique for a
program can have a significant impact on performance, and that accurate execution
models can be developed for a real distributed memory parallel machine. In using
the general model of execution to analyze mapping techniques for a parallel loop
program on a linear processor array, we have demonstrated that different instances
of a single program can require different mapping techniques to obtain the best
performance from the parallel machine. The results from the implementation of
mapping techniques and execution models for the Warp systolic array machine
show that the models can predict execution time accurately enough that a compiler
can select the best technique from among those applicable to a particular program.
Taken together, these two results allow us to conclude that execution models can
be used effectively to drive the process of automatically and efficiently mapping
programs onto a distributed memory parallel machine.

References

[1] Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne
Ferrante. An overview of the PTRAN analysis system for multiprocessing.
Journal of Parallel and Distributed Computing, 5(5):617-640, October 1988.

[2] Marco Annaratone, Emmanuel Arnould, Thomas Gross, H.T. Kung, Monica
Lain, Onat Menzilcioglu, and Jon A. Webb. The Warp computer: Architec-
ture, implementation, and performance. IEEE Transactions on Computers,
C-36(12):1523-1538, December 1987.

/

26

[3] Daya Atapattu and Dennis Gannon. Building analytical models into an inter-
active performance prediction tool. In Proceedings Supercomputing '89, pages
521-530. ACM Press, November 1989.

[4] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A
static performance estimator to guide data partitioning decisions. In Proceed-
ings of the Third ACM SIGPLAN Symposium on Principles _J Practice of
Parallel Programming (PPOPP), pages 213-223. ACM Press, April 1991.

[5] Michael Burke, Ron Cytron, Jeanne Ferrante, Wilson Hsieh, Vivek Sarkar, and
David Shields. Automatic discovery of parallelism: A tool and an experiment

(extended abstract), In Proceedings of the ACM/SIGPLAN PPEALS 1988,
pages 77-84. ACM Press, July 1988.

[6] Marina Chen, Young il Choo, and Jingke Li. Compiling parallel programs by
optimizing performance. Journal of Supercomputing, 2(2):171-207, October
1988.

[7] Ron Cytron. Useful parallelism in a multiprocessing environment. In Pro-
ceedings of the 1985 International Conference on Parallel Processing, pages
450-457. IEEE Computer Society Press, August 1985.

[8] Geoffrey C. Fox. Parallel computing comes of age: supercomputer level parallel
computations at Caltech. Concurrency: Practice and Experience, 1(1):63-103,
September 1989.

[9] Thomas Gross and Alan Sussman. Mapping a single-assignment language onto
the Warp systolic array. In Gilles Kahn, editor, Proceedings of the 3rd Con-
ference on Functional Programming Languages and Computer Architecture,
pages 347-363. Springer-Verlag, September 1987.

[10] David E. Hudak and Santosh G. Abraham. Compiler techniques for data
partitioning of sequentially iterated parallel loops. In Conference Proceedings
of the 1990 International Conference on Supercomputing, pages 187-200. ACM
Press, June 1990.

[11] C.-T. King, W.-H. Chou, and L.M. Ni. Pipelined data-parallel algorithms:
Part I - concept and modeling. IEEE Transactions on Parallel and Distributed
Systems, 1(4):470-485, October 1990.

[12] James McGraw, Stephen Skedzielewski, Stephen Allan, Rod Oldehoeft, John
Glauert, Chris Kirkham, Bill Noyce, and Robert Thomas. SISAL: Streams
and Iteration in a Single Assignment Language, Language Reference Manual
Version 1.2. Lawrence Livermore National Laboratory, March 1985.

27

[13] Constantine D. Polychronopoulos, Milind Girkar, Mohammad Reza
Haghighat, Chia Ling Lee, Bruce Leung, and Dale Schouten. Parafrase-2:
An environment for parallelizing, partitioning, synchronizing, and schedul-
ing programs on multiprocessors. In Proceedings of the 1989 International
Conference on Parallel Processing, pages II-39 - II-48. Pennsylvania State
University Press, August 1989.

[14] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors. PhD thesis, Computer Systems Laboratory, Stanford Univer-
sity, April 1987.

[15] Vivek Sarkar and John Hennessy. Compile-time partitioning and scheduling
of parallel programs. In Proceedings of the ACM SIGPLAN '86 Symposium
on Compiler Construction, pages 17-26. ACM, June 1986.

[16] Vivek Sarkar and John Hennessy. Partitioning parallel programs for macro-
dataflow. In Proceedings of the 1986 ACM Conference on Lisp and Functional
Programming, pages 202-211. ACM, August 1986.

[17] Stephen Skedzielewski and John Glauert. IF1: An Intermediate Form for
Applicative Languages. Lawrence Livermore National Laboratory, July 1985.

[18] Alan Sussman. Model-Driven Mapping of Computation onto Distributed Mem-
ory Parallel Computers. PhD thesis, Carnegie Mellon University, September
1991. Also available as Technical Report CMU-CS-91-187.

[19] Youfeng Wu and Ted G. Lewis. Parallelizing while loops. In Proceedings of
the 1990 International Conference on Parallel Processing, pages II-1 - II-8.
Pennsylvania State University Press, August 1990.

28

I

REPORTDOCUMENTATION PAGE I Form Approved

I OMB No. 0704-0188

Public reporting burden for this collectzon of mformation is esttmated to average 1 hour per response, including the time for review ng instructions, searching exlstmg data sources,
gathering and ma_ntainfng the data needed, and completing and reviewing the collection of information. Send comments re@ard ng th s burden estimate or any other aspect of th s
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations'and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Offi(e of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

1. AGENCYUSEONLY(Leaveblank) 2. REPORTDATE 3. REPORTTYPEAND DATESCOVERED

March 1992 ContrAetnr lennrr
4. TITLEANDSUBTITLE 5. FUNDINGNUMBERS

EXECUTION MODELS FOR MAPPING PROGRAMS ONTO DISTRIBUTED

MEMORY PARALLEL COMPUTERS C NASI-18605

6. AUTHOR(S) _ 505-90-52-01

Alan Sussman

7. PERFORMINGORGANIZATIONNAME(S)AND ADDRESS(ES) 8. PERFORMINGORGANIZATION
REPORTNUMBER

Institute for Computer Applications in Science

and Engineering ICASE Report No. 92-8
NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORINGAGENCYNAME(S)AND ADDRESS(ES) 10.SPONSORINGi MONITORING

NationalAeronauticsandSpaceAdministration AGENCYREPORTNUMBER
Langley ResearchCenter NASA CR-189613
Hampton,VA 23665-5225 ICASE Report No. 92-8

11. SUPPLEMENTARYNOTES

LangleyTechnicalMonitor:MichaelF. Card Submittedto the20thInternational
Final Report Conferenceon ParallelProcess-

ing, August-1992
12a. DISTRIBUTION/AVAILABILITYSTATEMENT 12b.DISTRIBUTIONCODE
Unclassified- Unlimited

SubjectCategory61

13. ABSTRACT(Ma_mumZOOwords)

This paper addresses the problem of exploiting the parallelism available in a progra_

to efficiently employ the resources of the target machine, in the Context of building
a mapping compiler for a distributed memory parallel machine. The paper describes
using execution models to drive the process of mapping a program in the most effi-
cient way onto a particular machine.

Through analysis of the execution models for several mapping techniques for one

class of programs, we show that the selection of the best technique for a particular
program instance can make a significant difference in performance. On the other

hand, the results of benchmarks from an implementation of a mapping compiler show

that our execution models are accurate enough to select the best mapping technique
for a given program.

14. SUBJECTTERMS 15. NUMBEROFPAGES

performance modeling; modeling; compilers; systolic arrays 30
16. PRICECODE

A03
17. SECURITYCLASSIFICATION18. SECURITYCLASSIFICATION 19. sEcURITYCLASSIFICATION 20. LIMITATIONOFABSTRACT

OF REPORT OF THISPAGE OF ABSTRACT
Unclassified Jnclassifled

NSN7540-01-280-5500 StandardForm 298 (Rev.2-89)
Pr,escttbed by ANSI Std. Z39-18
29B-102

NASA-Langley, 1992

.f

3 1176 01364 0462 !

...

,#,

