
TRAINING, QUALITY ASSURANCE FACTORS, AND TOOLS INVESTIGATION: 
A WORK REPORT AND SUGGESTIONS ON 

SOFTWARE QUALITY ASSURANCE 

Final Report 

NASAl ASEE Summer Faculty Fellowship Program-1991 

Prepared By: 

Academic Rank: 

University & Department: 

NASA/JSC 

Directorate: 

Division: 

Branch: 

JSC Colleague: 

Date Submitted: 

Contract Number: 

Johnson Space Center 

Pen-Nan Lee, Ph.D. 

Assistant Professor 

University of Houston - University Park 
Department of Computer Science 
Houston, Texas 77204-3475 

Safety, Reliability and Quality Assurance Office 

Quality Assurance and Engineering Division 

Software Product Assurance Office 

Vincent D. Watkins 

August 16, 1991 

NGT-44-001-800 

13-1 



ABSTRACT 

In the past Summer, several research tasks have been conducted, some obser
vations were obtained, and several possible suggestions have been contemplated 
involving software quality assurance engineering in JSC. This report briefly de
scribes these research tasks. Next, it gives a brief discussion on the role of software 
quality assurance in software engineering, following that are some observations and 
suggestions. A brief discussion on a training program for software quality assurance 
engineers is provided. A list of assurance factors as well as quality factors are also 
included. Finally, a process model which can be used for searching and collecting 
software quality assurance tools is presented. 

13-2 



1. INTRODUCTION 

It has been a very pleasant and enjoyful experience to work with NASA/JSC 
software quality assurance engineers during this past Summer. The JSC Summer 
faculty fellow program office has provided us with a great deal of assistance in
cluding providing weekly seminars and tours, special events and activities, such as 
the SOAR'91 conference, and arranging meetings with JSC management. Every 
Summer faculty fellow also received the necessary help and convinence within each 
individual branch to make his/her task work done in the best possible way. 

In the past 10 weeks, I worked on several tasks for Quality Assurance Engineer
ing Office. One task was to search and collect materials and references related to 
software quality assurance engineering, and JSC technical library's RECON data 
base was the primary resource. Several thousand articles on quality and software 
engineering were saved to diskette. Key words used in the search for the quality 
articles were determined by searching JSC technical library's ARIN data base for 
general books on quality. The software life cycle was used to determine key words 
to use for searching for articles on software engineering. A list of 688 references in 
90 pages has been produced. However, there are more references left to be collected. 

The other task was to investigate tools which can be utilized by' SQA engineers. 
After weeks of contacting dozens of organizations, I found that the best possible 
way could be to coordinate with JSC's Software Technology Brance (STB) and 
MITRE for the matter. They have a great volume of software available and free, 
unless otherwise noted, to needed organizations. Assistance in identifying, evaluat
ing and developing software technologies and tools can also be attained from them. 
I accessed the "library X", but found none of the about 180 software programs 
has merits for direct usages in software quality assurance. However, there is more 
software, such as Autolib, COSTMODL, COMPASS, REAP, etc., which deserve a 
chance to be appraised and determined based on SQA needs. 

I also tried to observe the role of SQA in JSC's software engineering and to give 
suggestions. A preliminary impression is obtained and included in this report. The 
rest of this report gives some details of my observations and suggestions. 

2. THE ROLE OF QUALITY ASSURANCE IN SOFTWARE ENGINEERING 

As mentioned in the introduction, only an impression was obtained due to the 
short period of time. Before expressing my observation, some issues regarding SQA 
in software engineering in general deserve a brief discussion. Within the context of 
"role", two issues are briefly stated in terms of quality assurance personnel. 

2a. WITHIN THE ORGANIZATION 

There are controversial opinions regarding the necessity of having an indepen
dent software quality assurance (SQA) group. Arguments for opposing an inde
pendent SQA include wasting resources or else other key problem areas could have 
made the endeavor a greater success, increasing costs, to nurture counterproduc
tive attitudes such as they-against-us, not-our-responsibility, and the total quality 
management is not possible. 

11-3 



On the other hand, however, a good independent SQA group can shake that 
complacency of the development organization. The SQA group should become in
volved before a project begins and work with the managers and developers through
out the life of a project. As a team player, a good independent SQA and total quality 
management are complementary. In order to promote SQA staff as part of the team 
and achieve their trustworthiness, effective methods and tools have to be in place 
and necessary training must be available. 

Managers and developers may also be provided with these methods and tools 
if necessary, hence, the total quality management is emplaced and high quality 
software is guaranteed. 

2b. BETWEEN THE CONTRACTING ORGANIZATION AND ITS CONTRACTORS 

Three different roles could be adopted, and each role has its own importance. 
The role of an "approver" is usually to make, or to make jointly, the decision of 
accepting and thus allowing the software to be used, and hence, has the decision 
authority as well as responsibility. The other role is the "evaluator" who's task is 
to attain a high level of understanding of the system, and to make a judgement 
as to the reliability based on criteria indicating the assurance level required. The 
criteria and assurance levels are set by the "policy authority", th~ third possible 
role, who is able to issue a certificate based on evaluation. For statutory integrity 
requirements, these three roles should not be mixed. 

The software procurement process should include a set of assurance metrics or 
measures which would have to be applicable throughout the entire procurement 
process: 

1. Procurement of a major system shall start with a definition of requirement and 
a risk assessment for the system. Based on the risk assessment, the requisite 
assurance level for. each aspect of the system software should be specified. 

2. The measures must be applicable during software development in order that 
the development process can be geared to produce an engineered level of 
assurance for the software. 

3. The measures should be capable of use by an evaluation team. Specifically, 
they should form the basis of the assurance judgements made in evaluaton. 

4. If a component is to be used in a number of applications, it is necessary to 
have a "certificate" indicating the assurance level of the component 
independent of its application. One would expect the assurance measures to be 
usable in certification. 

5. The measures must help in making the decision whether or not to accept a given 
software in a particular environment. One should be able to compare the achieved 
assurance levels with the required assurance levels and determine whether or 
not the implemented software meets or exceeds its requirements. 

13-4 



2c. OBSERVATION 

My impression is that SQA engineers in JSC are basically overloaded with work 
and duty, i.e. under-staffed. If the situation continues, two obvious things will 
happen: 1) a SQA staff member can not perform the best way he/she could due to 
lack of time, and 2) he/she must assume more duty and that may blur his/her role. 
One way to resolve this is to recruit more SQA engineers and provide them with 
quality training. The concept, which is under development in JSC, of attaching a 
software quality expert to each project throughout its life-cycle is an effective idea. 
As mentioned earlier, the expert will be part of the team, and he/she can handle 
the quality issues in details and in daily bases. 

3. DIRECTIONS AND ADVANCEMENTS 

Three discussions are given in the areas of training, assurance and quality fac
tors, and investigation of tools. In section 3a, developing and delivering a joint 
training program with a major local university and industrial software developers 
is discussed. Section 3b discusses the assurance and quality factors, requirements 
of assurance measures, and the need of metrics. In section 3c, a process model for 
investigating SQA tools is presented . 

3a. TRAINING PROGRAM 

It is essential to have skilled software engineering and quality assurance engi
neering work forces within NASA/JSC as well as its contractor companies. However, 
highly qualified software engineers are normally attained through training and ex
tensive experience. The main reasons for the lack of these engineers are that most 
universities do not prepare students to develop industrial software and little is avail
able in the way of continuing professional development. 

It is important to develop and deliver software engineering and quality engi
neering training. By cooperating with a major local university and collaborating 
with key software developers, a professional training center could be established. 
Both dedicated consultant staff as well as full time professional training staff could 
work on developing the training program, to supply the knowledge and to teach the 
detailed techniques to the trainee. 

An organization should establish a policy which requires every employee to 
receive a minimum number of hours of training per year. These hours, for examples 
30 or 40, should be determined based on the organization's scope of needs. 

The training center should provide various levels of training programs for a 
variety of participants, such as senior software engineers, project managers, etc. 
A basic program may contain a list of fundamental courses, such as Concepts in 
Programming, Ada, Operating Systems, etc. An advanced training program may 
contain courses in areas such as: 

Project Management 
Software Design 
Configuration Management 

13-5 



Testing 
Metrics 
Risk Assessment 
Software Process Development and Improvemen 
Contracting Issues 
etc. 

3b. ASSURANCE FACTORS AND QUALITY FACTORS 

Technical staff should be concerned with assurance throughout the entire pro
curement process as well as the installed system in the operational environment. 
They should be able to and must attain a set of "sound" assurance metrics for 
some given application domain. The soundness of the measures sould be assessed 
through the normal scientific proven process, or, in practice, employ the measures, 
after peer review and reasonable confidence are attained, in real world situations in 
order to provide evidence of how they work in practice. 

The requirements of measures are concerned with the basis which is essentially 
a comparative analysis of the capabilities of different approaches to software devel
opment, and which identifies a range of factors which contribute to assurance. The 
following is a preliminary set of requirements for measures which should be helpful 
in any review process and which drive the selection of the technical factors which 
are believed contribute to assurance. 

1. Scale: The measures should be applicable across the spectrum of 
computer systems. 

2. Assurance Levels: The range spans from that gained in well tried commercial 
. software to the highest level achievable with current software 

engineering techniques. 

3. Uses: Applicable measures in specifying requirements, to assist in performing 
evaluation, to be usable as guidelines in development, and to form a. 
basis for certification. 

4. Users of the Measures: Meaningful measures to both "laymen" and technical 
staff in developing and assessing systems. 

5. Consistency in Application: Insurance that consistent results are produced 
by different evaluation teams. 

6. Profiles: A derivable assurance profile for a system, i.e. to assess the 
assurance in individual functions and properties of a system, rather 
than giving a blanket assurance level for the whole system: 

a) cost effective to have an assurance profile where there are high 
assurance defenses against the most serious threats, but where the rest 
of the system is developed to a lower level of assurance, 
than to develop a complete system to a uniformly high 
assurance level, 

13-6 



b) not desirable to have to give a low assurance level to a complete 
system if a single flaw is found which only affects one minor function. 
Thus, it is desirable both to specify an assurance profile in 
requirements, and to produce a profile in evaluation. 

Factors contributing to assurance are essential to the applications. The follow
ing is a preliminary list of assurance factors which cover facets of the procurement 
process from initial elicitation of requirements through to the procedures for in
stalling and updating the software in the operational environment. 

1. Development: The concern with the technology deployed in the production of the 
software components. 

2. Requirements: The confidence in the accuracy of the model of the operational 
environment for the software, and the normal software 
engineering issues of confidence that the requirements 
elicitation process has correctly identified the specific 
requirements for the system. 

3. Architecture: A high-level design description which identifies the trusted 
and untrusted components and the interdependencies between 
the components. 

4. Evaluation: The proper checking of the development process, and analyzing 
and testing the product to look for flaws. 

5. Configuration Control: The concern with the ability to identify all components 
of the system, through all stages of development 
and.evauation, and to control how they are changed. 

6. Complexity: A major factor which impacts comprehensibility; the more complex 
the less assurance. 

7. Human Interface: The confidence that the users would be able 
to comprehend the information from the computer system 
even during a safety-critical event. 

8. Staff Issues: Related to the skills of the staff employed in development and 
evaluation. 

9. Tools: Assurance in the tools which are used in support of development and 
evaluation. 

Another key issue is to attain a set of quality measures. As mentioned above, 
the set of measures must be sound, that is fewer failures occur in systems judged 
to have high assurance than those judged to have low assurance. The difficulty is 
that there is no agreed objective measure of relevant aspects of software such as 

13-7 



, 

reliability. The following is a preliminary list of quality factors. The-need is to 
design measurable requirements. 

1. Correctness: deals with the extent to which the software design and 
implementation conform to the stated requirements. 

2. Efficiency: deals with the resources needed to provide the required 
funtionality. 

3. Expandability: deals with the perfective aspects of software maintenance, 
i.e. increasing the software's functionality or performance to 
meet new needs. 

4. Flexibility: deals with the adaptive aspects of software mantenance, 
i.e. modifying the software to work in different environments. 

5. Integrity: deals with security against either overt or covert access 
to the programs or data bases. 

6. Interoperability: deals with how easy it is to couple the software :with 
software in other systems or applications. 

7. Maintainability: deals with the ease of finding and fixing errors. 

8. Manageability: deals with the administrative aspects of modification 
to the software. 

9. Portability: deals with transporting the software to execute on a host 
processor or operating system different from the one for which 
it was designed. 

10. Usability: deals with the initial effort required to learn, and the 
recurring effort to use, the functionality of the software. 

11. Reliability: deals with the rate of failures in the software that 
render it unusable. 

12. Reusability: deals with the use of portions of the software for other 
applications. 

13. Safety: deals with the absence of unsafe software conditions. 

14. Survivability: deals with the continuity of reliable software execution 
in the presence of a system failure. 

15. Verifiability: deals with how easy it is to verify that the software is 
working correctly. 

13-8 



3e. A PROCESS MODEL FOR SQA TOOLS INVESTIGATION 

The following is a process model for searching SQA tools. The model can also 
be used as a basis, i.e. some modifications may be needed, for coordinating with 
STB and MITRE for searching SQA tools. As mentioned earlier, both STB and 
MITRE can assist in performing the search task. This model contains 9 phases. 
The first three phases may not be necessary for someone who has been involved in 
JSC's SQA activites for long time, while the other six phases are needed in general: 

PHASE 

1. perform preliminary needs analysis 

2. characterize the existing culture 

3. analyze and summarize results of the characterizations: preliminary problem 
identification 

4. identify candidate tools/environments that can meet requirements or 
improvement needs 

5. present findings and obtain feedback 

6. present final recommendations and plan for evaluation 

7. arrange for evaluators from JSC/contractors to participate in decision 

8. develop transition and insertion plan 

9. develop comprehensive training plan 

4. CONCLUSION AND ACKNOWLEDGEMENTS 

It has been a very pleasant and enjoyful experience to work with NASA/JSC 
software quality assurance engineers. In the past Summer, several research tasks 
have been conducted, some observations were obtained, and several possible sug
gestions have been contemplated. This report describes these tasks, observations 
and suggestions. 

I would like to thank E. Joseph Ripma and Vincent D. Watkins of the Software 
Product Assurance Office for their support and patience, George Neil of UNISYS 
for his enthusiastic attitude on software procurement, Ernest Fridge of STB and 
Dona Erb of MITRE for their assistance in searching for SQA tools and help in 
forming the process model mentioned in section 3c, and finally, Robert Youngblood 
and Bernice Mays of LORAL for sharing their office with me. 

13-9 



5. REFERENCES 

BUCK89 Buckley, F., Implementating Software Engineering Practice" John Wi
ley & Sons, New York, 1989. 

CHAR89 Charette, R. N., Software Engineering Ri"k Analysis and Manage
ment, McGraw-Hill Book Company, New York, 1989. 

DEIM90 Deimel, L. E., editor, Software Engineering Education, SEI Confer
ence 1990, Springer-Verlag, New York, 1990. 

DEUT88 Deutsch, M. S. and R. R. Willis, Software Quality Engineering, Pren
tice Hall, Englewood Cliffs, New Jersey, 1988. 

DUNN90 Dunn, R. H., Software Quality: Concepts and Plans, Prentice Hall, 
Englewood Cliffs, New Jersey, 1990. 

EVAN89 Evans, M. W., The Software Factory, John Wiley & Sons, New York, 
1989. 

GERA86 Gerard, M. and P. W. Edwards, Strategies for Revitalizing Organi
zations, Proceeding" of the Second NASA Symposium on Quality ar.d 
Productivity, Washington, D.C., December 2-3, 1986. 

HUMP88 Humphrey, W. S., "Characterizing the Software Process" , IEEE Soft
ware, Vol. 5, No.2, March 1988, pp. 73-79. 

NASA91 NASA, SMAP DIDS - Information SYJtem Life-Cycle and and Doc
ument~.tion Standards, Version 4.3., 1991 

PERR91 Perry, D. E., and G. E. Kaiser, "Models of Software Development 
Environments, IEEE Tran.sadion.s on Software Engineering, Vol. 17, 
No.3, March 1991, PP. 283-295. 

PRES88 Pressman, R. S., Making Software Engineering Happen, Prentice Hall, 
Englewood Cliffs, New Jersey, 1989. 

SENN89 Sennett, C. T., editor, High-Integrity Software, Plenum Press, New 
Tork,1989. 

VINC88 Vincent, J., Waters, A. and J. Sinclair, Software Quality AJ"urance, 
Volume I, & II, Prentice Hall, Englewood Cliffs, New Jersey, 1988. 

WALT91 Walters, N. L., "An Ada Object-Based Analysis and Design Ap
proach", ACM Ada Letters, Vol. 11, No.5, SIGAda, ACM, July 
1991. 

13-10 


