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Abstract. The primary difficulty encountered when simulating hypersonic flow is the flow normally in­

cludes strong nonlinear discontinuities. These discontinuities fall into three broad classes: shoclcs, slip-lines 
Dlld rarefaction waYe5. Moreover, in the hypersonic flow regime, the chemistry of hot gases play:s a vi­

tal role I!.Dd CI!.D not be neglected. These facts combine to make the numerical treatment of spacecraft 

reentry a most challenging problem. In this work, we develop a cl~ of finite difference schemes that 

accurately resolve discontinuous solutions to spa.cecra.ft reentry flow and are simple to incorporate into 

existing spacecraft reentry codes. 

§1. Introduction. The most simple finite difference schemes for the numericnl approx­
imation of parlin! differential equations are easy to motivate. Basically what one does is 
replace derivatives by finite difference quotients that approximate them. However, this 
recipe does not alway guarantee a stable scheme. To see this, consider the pde: 

(1.1) 
au au 
-+A-=O 8t fk 

u(z,O) = uo(z). 

Let t n denote n~t with n = 0,1,2, ... and Zj denote j~= with j - ... ,-1,0,1, .... 
Let the grid function u'] approximate u(=j, tn ). One possible finite difference scheme to 
approximate the solution to the pde above is: 

au u~+I-u~ 
Replace - with' J 

8t ~t 
n... n n 
VI' u'+1 -u· 1 Replace - with J J-
fk 26= 

This gives and explicit tinie marching scheme 

n+l n ~t '( n n) 
ui = 1£i - 26= 1\ ui+1 - ui-l • 

Applying this scheme to discrete initin! data 

we obtain an exact solution 

.,0 _ eib; 
--j - , 

u'] = (g(06z»nei9:; 

g(O) = 1- :: Aisin(O). 

g(8) is called the amplification factor. For n1llr > 101 > ° we have that Ig(8)\ > 1. There­
fore, the nmplitude of every wave component with 11' > \86=\ > ° blows up geometrically 
- this scheme is unstable. 
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A desirable feature of the scheme above is the centered difference approximation for 
a/ax. In addition to its second order accuracy, central space differencing schemes re­
quire only a three point stencil. There are ways to construct linearly .stable central space 
differencing finite difference schemes to solve (1.1). For example, 

8 u'.'+l-u~ 
Replace atU 

with) ) 
At 

a u n+1 u n+1 

Re I u 'th ;+1 - j-l 
P ace ax W1 2Ax 

defines what is called backward Euler time discretization. This implicit scheme is uncon­
ditionally stable. Another implicit scheme that is unconditionally stable is the trapezoidal 
rule. It is given by 

au u'.'+1_u~ 
Repla.ce at with J At J 

R I _vu_ 'th! u;+1 - Uj_1 + u;+1 - u;_1 !:I.... ( n n n+l n+l) 
ep ace ax W1 2 26.x 26.x· 

While these two implicit schemes are stable and therefore convergent for smooth data., 
they both work poorly for problems that have discontinuous solutions. This fact results 
from their large phase errors in the high frequencies. It is wo possible to build an explicit 
conditionally stable centered scheme by the addition of artificial viscosity. A second order 
in space and time scheme for (1.1) is the popular Lax-Wendrofl" scheme 

.' n+1 n 6.t '( n n) u· = u· - --1\ U·+I- U. 1 
J J 26.x J J-

1 ( 6.t ')2( n n n) + 2 6.= 1\ u;+1 - 2u; + u;_1 . 

This scheme wo produces poor results when the solution to (1.1) is not smooth. To see 
this, consider (1.1) with), = 1 and with initial data 

( 0) - () - { 1 if \= - 1/21 ~ 0.10 u x, - Uo = - , o otherwise 

(see the left pulse around = = 0.5 in figure 1.1). The exact solution to this problem 
at t = 1.0 is just the pulse transla.ted to the right by 1 unit, (see the right pulse around 
= = 1.5). The small boxes in figure 1.1 depict the numerical results to this problem coming 
from the Lax-Wendrofl" difference scheme. 
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Figure 1.1. The colid line rep~ts the ini­
tial data and exact solution at t = 1.0. The 
mnall boxe5 indiate the grid w.lUe5 coming 
from. the L~-WendrofF difference scheme. 

-

- r 

~ 

= 
Figure 1.2. The colid line repreleIlt:s the ini­
tial data and exact colution at t = 1.0. The 
small boxe5 indicate the grid values coming 
from one of our modified fourth order central 
difference scheme5. 

The wiggle3 are a result of the high frequency phase error inherent to the Lax-Wendrofl' 
scheme. 

When simulating the flow of air around hypersonic spacecraft on reentry, large gradi­
ent flows nre the rule and not the exception. It should be obvious from the simple example 
above that traditional finite difference schemes can yield less than satisfactory results in 
these flow regimes. A certain amount of ca.re must therefore be given to the design of 
numerical approximation techniques to accurately solve hypersonic flow problems. Elimi­
nating nonphysical oscillations that are intrinsic to approximations coming from centered 
schemes applied to nonlinear systems of conservation laws is the main focus of this work. 
We modify a class of central space difference schemes to completely eliminate spurious 
numerical oscillations' found in the example above. Compare the results coming from one 
of our modified central schemes presented in figure 1.2. Our modified schemes are intended 
to be simple enough so as to easily lend themselves to reliably approximate solutions to 
the equations governing the reentry of hypersonic spacecraft. 

§2. The modified centered scheme for the scalar law. In this section, we de­
velop a simple modification to a central differencing scheme applied to nonlinear, scalar, 
conservation laws of the form: 

(2.1) 
8 8 -u+ -f(u) = O. 
8t 8z 

An explicit forward Euler in time and central differencing in space finite difference formula 
applied to this problem is mitten os 

(2.2) 
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where 11.7 is used to indicate the approximation of u{:z:, t) at time level tn and spatial 
grid block centered at :Z:i' 11.'1+1/2 will be used here to denote some approximation to 
U{:Z:;+1/2' t n

). For example, if we take 

then the resulting scheme is second order accurate in space and first order in time. One 
could hardly ask for a simpler approximation scheme to solve a partial differential equa­
tion. Unfortunately, as demonstrated above, this second order in space central differencing 
scheme is strictly unstable. To stabilize the central space differencing approach, we add a 
parameter free nonlinear artificial viscosity term to the right hand side of (2.2). This added 
viscosity term will have the property that in regions where the numerical approximation 
is not at a local extrema, the numerical viscosity term is identically zero. 

Throughout this section, we make the following assumptions concerning the midpoints 
required by the forward Euler difference scheme (2.2): 

(2.3a) For each j, the midpoint 11.;+1/2 is given by a continuous function of grid values Uk, 

k = j,j ± l,j ± 2,.. .. . 
(2.3b) For each j, the midpoint 11.;+1/2 is restricted to lie in the interval given by neighboring 

grid values 11.; and 11.;+1. 

The minmod function is defined by 

• d( ) - {min(l:z:I, lyDsign(:z:) mmmo :z:,y - 0 
if:z:·y<O 
if:z:·y>O' 

and we shall use the notation Uii = 11.']_1/2 - 11.'] and URi = 11.1+1/2 - 11.']. At each point 
:Z:;+1/2 midway between grid blocks, we consider left and right pomt values given by the 
formulae 

(2.4) 

where p > 0 is a finite parameter. 

Remark 1: If (2 .. 1), with any fi:z:ed p > 1, is applied to a tJmooth function u{:z:) that ha.s no 
local e:z:treme pointtJ in the interval (:Z:;-1/2,:Z:;+3/2), then for fl.:z: tJujJiciently tJmall 

(2.5) V , - v" - 11." ;+1/2 - ;+1/2 - ;+1/2· 

(The parameter p does not depend in any way on the grid size.) 

Our modified forward Euler centered scheme now rends 

(2.6) 
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where h,(1£1,1£2) is any continuous 2 point monotone flux function that is consistent to 
f( 1£) in the sense that 

h,(1£,1£) = feu); 

see [4]. Referring back to (2.5), note that we should expect generically that 

h,(vj+1/2,V;+1/2) = f(1£']+1/2)' 

so we should expect that generically (2.6) will reduce to the centered scheme given in (2.2). 
The modified scheme can be written u.s 

(2.7) n+1 n At (f( n ) f( n ) 1£j = 1£j - A:r; 1£j+1/2 - Uj-1/2 

-(Qj+1/2 - Qj-1/2»), 

where 

Qj+1/2 = f(1£']+1/2) - h,(vj+1/2,V;+1/2)' 

so as to indicate the particular form of the modification to the centered scheme (2.2). 

The modified forward Euler central difference scheme (2.6) satisfies in an obvious way 
the following theorem: 

THEOREM 1. Suppo!Se all intermediate points 1£'1+1/2 !SaWfy (~.3). Let Atb. denote the 
time !Step !Stability limit for the. jirJt order monotone Jcheme 

If the time !Step Jize At in (~. 6) is taken 30 that 

1 
At $ p+ 1 At,,, 

for the pea 1 < P < 00 in (~ .. lJ, then we have for each n > 0 

. m.inu~ < u~ < ma.xu~. 
; 1-1-; 1 

Moreover, if we we Var( Uj) to denote the wual pointwise variation of a grid values Uj I 
we have for each n > 0 -

Var(uj) < Var(u1)· 

Remark £: .From the .statement of Theorem 1, one .slwuld a.s1: the following paradoxical 
que3tion: Remark 1 8eemJ to imply that if the .solution to the pde that (£.6) appro:r;imate" 
i" mwoth, then (£.6) reduces generically w the .strictly un.stable .scheme (~.£). How can 
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the claim of the theorem then be correct? This question will be addT'e33ed at the end of this 
3ectUr.n. -

Proof of Theorem 1: In each cell Ij = [Zj-l/2, Zj+l/2) determine a number OJ such 
that 

(1/2 + OJ)(v'j_l/2 - ui) + (1/2 - OJ)(V~+1/2 - ui) = o. 

From the definitions of V'j_l/2 and VJ+l/2 we have for each j 

IOjl ~ 1/21:~~1· 
Cut Ij into two pieces with the dividing point given by Zj = :tj + OjA:t; that is Ij = 
[:tj-l/2,Zj) U [Z;,:t;+1/2) = IJ U IJ. Redistribute data un onto a nonuniform mesh given 
by U;(IJ U IJ), and let un denote the redistributed data: 

Scheme (2.6) amounts to nothing more than a classic monotone finite difference scheme 
applied to data un on a nonuniform mesh, and reaveraged back onto the original mesh. 
Since the minjmum grid spacing of the nonuniform mesh is 

1 
--A:t 
p+ 1 ' 

the results in [4] make the results of the present theorem obvious. 

The backward Euler version of (2.6) reads: 

(2.8) 

where for the implicit scheme we define 
~n+l n+l n+l 
ULj = u j _ 1/ 2 - Uj 

~n+l n+l n+l 
URj = u j +1/ 2 - Uj 

to get 

We assume that the midpoint values Ui:tt/2 are given by a continuous function of grid 

values at time level n + 1, and that they satisfy (2.3). Therefore, both v}+1/2 and vi+l/2 
are continuous functions of grid values. 
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THEOREM 2. The re3ul~ of the preview theorem remain valid fO! the backward Euler 
&cheme (!!..8) without any CFL re&trictioru regardle&& of the &ize of 1 :5 p < 00. 

Proof: The idea here is quite simple. Consider a compact and convex subspace of the 
space of sequences defined by 

Next, define 

1) = {:z:: Var(:Z:j) :5 Var(uj)} n {:z:: J:$(uj):5:Z:j :5 m~(uj)}. 
J J 

VJ+I/2(:Z:) =:Z:j + minmod(iRj,P:Z:Lj), 
Vi+I/2(:Z:) = :Z:j+l + minmod(ZLj+I,piRj+I), 

and .6.Fj(:Z:) by 

.6.Fj(:Z:) = h/(vi+I/2(:z:),VJ+I/2(:Z:)) - h/(vi-I/2(:z:),VJ-I/2(:Z:))· 

We use 

to denote the backward Euler scheme (2.8). We will show: (i) The implicit equation above 
has a solution. (ii) The solution obeys the stability results of Theorem 1. In order to 
accomplish these goals, consider the continuous map ;: on 1) defined by 

.;:"j(:Z:) = :Z:j - e (:Z:j + !: .6.Fj(:Z:) - Uj) • 

j=' can be rewritten as 

.;:";(:z:) = (1 - e) (:z:; __ E_ ~t aF;(:Z:)) + ruj. 
1- e~:z: 

From Theorem 1 it is clear thn.t for e smn.ll enough 

Va.r(;:j(:Z:)) :5 (1- e)Var(:Z:j) + EVar(uj), 

(1- e)J:$(:Z:j) + eI$(uj) < ;:j(:Z:) :5 (1- e)m~(:Z:j) + em~(uj). 
J J J J 

Therefore, we have that;: : 1) ~ V. 50 by the 5chn.uder fixed-point theorem (1], there 
exists a U,,+l E 1) such that U,,+l = ;:(u"+l), and the fixed-point u,,+l is a solution to 
the bn.ckward Euler scheme (2.8). Moreover, since u,,+l E 1) it n.lso sn.tisfies the desired 
stability properties. 

A second order centrn.l differencing scheme is generated by the intermedin.te point 
value formuln. 

(2.9) 
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Clearly (2.9) satisfies conditions (2.3a) and (2.3b). We now derive a fourth order in space 
centered scheme. Let Cj+1/l(Z) denote the cubic polynomial that interpolates the cell av­
erages 1£j-h 1£j, 1£j+1 and 1£Hl on cells (Zj-3/l, Zj-1/l), (Zj-1/2, Zj+1/l), (Zj+1/2, Zj+3/2) 
and (Zj+3/2' Zj+5/2) respectively. If Cj+1/2(:Z:) is applied to the values of a smooth func­
tion u(z, .), we have that CH1/2(Zj+1/2) = 1£(ZH1/2") + e(Zj+1/2), where e(z) depends 
smoothly on Z and e( z) = O( Llz"). Therefore, since 

1 l Zj
+t/

2 a 1 
A" -8 f(1£(z, t» d::c = -A (J(1£(Zj+1/2' t» - f(1£(Zj-1/2, t») , 
~Z Zj-l/2 Z Z 

we have that this is equal to 

~Z (J(Cj+1/2(Zj+1/2» - f(Cj-l/2(Zj-l/2») + O(Llz"). 

(2.10) 

where, 
1 1 

ql = 2(1£j+l + 1£j) - 6(1£;+1 - 21£j +1£;-1) 

1 1 
qr = 2(1£;+1 + 1£;) - 6(1£j+2 - 21£;+1 + u;), 

however, C;+1/2(Z;+1/2) does not always satisfy (2.3). Verification of (2.3) is crucial! We 
can ensure that (2.3) is satisfied by modifying ql and/or qr when necessary. We have taken 
the following approach: Let 

(2.11) ql = !(1£j+l +1£;) 
2 

- ~ min(I1£;+l - 21£; + 1£j-ll, 311£;+1 - 1£; Dsign( 1£j+l - 21£j + 1£;-1), 

qr = !(1£j+l +1£j) 
2 

- ! min(l1£j+2 - 21£;+1 + 1£;1,31~;+1 - 1£; Dsign(1£;+2 - 21£;+1 + 1£;), 
6 

and note that ql o.nd qr verify (2.3). So we define 

(2.12) 1(_ _ ) 
1£;+1/2 == 2 ql + qr 

and note that (2.12) satisfies (2.3) as well. However, when (2.12) is applied to a smooth 
function away from local extrema, we have that for sufficiently small /l.:r; 

1 
1£;+1/2 = 2{QZ + qr) = CHl/2{Z;+1/2), 
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therefore giving the desired accuracy away from extreme points of the solution. 

We conclude this section by addressing Remark 2. Consider the linear pde with 1-
periodic boundary conditions 

(2.13) 
8 8 
-u+-u=O at En 
u(O, t) = u(l, t) 
u(:z:, 0) = sin ( 21r:Z:). 

To approximate the solution to this pde, we will use the following fourth order in space, 
forward Euler scheme: 

(2.14) 

where 
I ". d(-" -") Vj+l/2 = Uj + mmmo URj ,PULj 

-n" "-"" n ULj = Uj-l/2 - Uj URj = uj+l/'J - Uj 

" 1 ( - - ) (2 11) Uj+l/2 = "2 ql + q", see • • 

Notice that at grid points where the approximate solution generated by (2.14) is not near 
a local extremum, \7e have that 

I 1 
V i +1 / 2 = 2(qZ + 40), see (2.10), 

and one can easily verify that (2.14), using these point values, is strictly unstable - for every 
nontrivial Fourier mode. However, the results of Theorem 1 imply that the approximate 
solution generated by the full nonlinear ucheme (2.14) is atable. What in :£act happens 
is the following: The scheme away from extrema is unstable and all Fourier modes are 
geometrically amplified. When an oscillation begins to form, the nonlinear limiting mech­
anism kicks in where local extreme points appear. This limiting mIl tend to flatten out 
extreme points producing a ~tairc.a.5e effect. This phenomena is demonstrated using (2.14) 
to approximate the solution to (2.13) using 6.:z: = 1/100 and the results are plotted in 
figure 2.1 at t = 1.0 
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Figure 2.1. The solid line represents the exact 
solution to (2.13) at t = 1.0. The circles 
depict the approximate solution coming from 
(2.14). 

Figure 2.2. The solid line represents the exact 
solution to (2.13) at t = 1.0. The circles 
depict the approximate solution coming from 
(2.15). 

While the results above do not contradict the results from Theorem 1, they should however 
be considered unsatisfactory. To eliminate this staircase phenomena, (this phenomena is 
inherent to our modified forward Euler central schemes), we introduce a Lax-Wendroff 
type of viscosity to the right hand side of (2.14). Specifically, we modify (2.14) to 

(2.15) 

where 

This modification leads to a scheme that is generically fourth order in space and .second 
order in time. More importantly however, in regions where the solution to the pde is 
smooth, (2.15) reduces to a stable numerical scheme. The results from (2.15) are plotted 
in figure 2.2. Implicit schemes of the form (2.8) do not exhibit the staircase phenomena 
demonstrated above for explicit schemes. The viscosity modification hinted to above in 
(2.15) will be analyzed and generalized in future work. 

§S. Hyperbolic systems and numerical examples. The extension of the implicit 
scheme (2.8) to hyperbolic systems is straight-forward. Numerical results coming from the 
implicit scheme applied to hypersonic reentry problems will appear in a future paper with 
C. P. Li of NASA Johnson Space Center. The extension of the modified explicit scheme 
(2.6) to time dependent hyperbolic systems is not so straight-forward. As demonstrated 
in the examples depicted in figures 2.1 and 2.2, some type or numerical viscosity must be 
appended to the basic central scheme. At present, we take the approach outlined below. 
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Consider a one space dimensional, hyperbolic system of m equations 

(3.1) 

and let D f( 11.) denote the Jacobian matrix of f( 1.1.). Since (3.1) is hyperbolic, the matrix 
Df(11.) has m real eigenvalues, denoted here by AIe(1.I.), k = 1, ... ,m and m independent 
eigenvectors, denoted here by r,,(1.I.), k = 1, ... , m. We let R(1.I.) denote the matrix whose 
columns are the right eigenvectors of Df(u), 

and 

The domain and range of the minmod function is extended to R m component-wise. That 
is, for each 1 ::; i ::; m 

The modification of (2.4) to systems is to perform the limiting in so-called character£,tic 
variable.s. Written in matrix form, this procedure is given by 

(3.2) ';;+1/2 = U']+R(1.I.'1) minmod(L(uj)iiRj,pL(u'1)iiLj), 

VJ+l/2 = U']+1+R(1.I.'1+1) minmod(L(ui+l)ULj+l,pL(ui+l)uaI+l)' 

The simplest numerical'flux h/(1.I.h1.l.2) we can envision (see (2.6» is the Lax-Friedichs 
numerical flux function. It is given by 

(3.3) 

where the parameter v is an artificial viscosity satisfying 

Since generically we will have that 1.1.1 = 1.1.2, the Lax-Friedrichs viscosity term above will 
vanish so that generically we mn have that 

h~P(Ul,U2) = J(Ul) = J(U2). 

Finally, the viscosity modification used in (2.15) mIl be extended to nonlinear systems of 
equntions in the fonowing mly. Define CLj and CBj by 

(3.4) CLj = minmod(L(u'1)ULj,pL(uj)Uij), 
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CRj = minmod(L(uj)U"Rj,pL(uj)iLLj), 

and from these define 

SLj = -(CRj - CLj) (Cij/CRj) , 

SRj = -(CRj - CLj) (CRj/CLj) , 

Note that both SLj and SRj are well defined and continuous functions of Uij and URi. 
Now in each cell j and for each vector component k, compute 

(3.5) (dLj)1c = 1/2 ~! min(A.(Uj),0)2("Lj)., 

At 
(dRj)k = 1/2 A:z: max(Ak(Uj),0)2("Rjh· 

The full numerical flux function we use in our forward Euler calculations below is given by 

(3.6) hfi+1/2 = h1F
(Vj+1/2'v}+1/2) - (R(uj+1)dLj+1 + R(uj)dRj), 

giving the scheme 

n+1 _ n At (h h ) 
Uj - Uj - A:z: f j+1/2 - f ;-1/2 • 

We consider the fourth order modified central scheme (3.6) taking the limit factor 
p = 3.0 and using a Courant number OFL = 0.25. This scheme is applied to the one 
dimensional Euler equations 

In the equations above, p is a fluid's density, U its velocity and e its total energy. The 
pressure p is given by the equation of state p = (i - 1)( e - pu2) where the parameter 
i = 1.4. The Riemann problem initial datum 

( () () p( » 
_ {( .445, .698, 3.528) if :c < 0.5 

p :c , U :c, :c - (.5,0, .571) if :c > 0.5 ' 

defines what is frequently referred to as the Lax Riemann problem. This datum is inte­
grated to time t = 0.15. See [7,2,6] for comparisons. 100 equally spaced points on the 
interval (0,1) are used for all results presented here. In all figures below, the solid lines 
represent the exact fluid density and the :c'" denote its numerical approximation. 
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Figure 3.1 depicts the results of the second order Lax-Wendroff finite difference scheme 
applied to the Lax Riemann test problem above with C F L = 0.8. Figure 3.2 depicts the 
results of the :first order Lax-Friedrichs finite difference scheme applied to this same test 
problem. figure 3.3 depicts our new scheme (3.6) applied to the Lax test problem. 

l~r-----------------~~--~ 

. 
. . 

Q4aDJ ~ ....... .". __ ,~ '--F. ~'!-o ... ::-O",-'..:.. • ....J 
--." .e. 

I • 

• r--
1-, • 
• 

~~--~--~------~ ______ -J = = 44aDI = = u:a:o 
Figure 3.1. The solid line represents the ex­
act solution to the LIIJ[ Riemann problem. 
The :r;' s are results from the LIIJ[-Wendroft" 
scheme. 

~r------------------------, 

. . 

,. 
" , , 

~=~--=onm~--7.04aDJ~--~omm~--~o~mm~~u:a:o~ 

Figure 3.2. Re:rults coming ,from the LIIJ[­
Friedrichs scheme. 

1~1r-----------------------~ 

= 

cwam~ ......... ___ -.l. 

Figure 3.3. Numericl result:! coming from 
our fourth order l:Cb.eme (3.6). 

The next test problem is referred to as the bla.st wave problem. This problem tests 
the performance of a numerical scheme on very strong shocks and shock wave interactions. 
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Its initial data contains two shock waves with pressure ratios of 100,000 and 10,000. The 
initial data to this problem is -

{ 

(1.0,0.0,1000.0) 
(p(z),u(z),p(z)) = (1.0,0.0,0.01) 

(1.0,0.0,100.0) 

if z < 0.1 
if 0.1 ~ z :5 0.9 , 
if z > 0.9 

The boundary conditions at :c = 0 and z = 1 are reflecting. The Lax-Wendroff scheme 
will not solve this problem. The initial shocks are so strong that negative densities and 
pressures occur almost immediately. The Lax-Friedrichs scheme will solve it - be it not 
very well. Figure 3.4 depicts the Lax-Friedrichs results using 400 points comparing it to 
the "exact" solution which came from (3.6) using 1200 points. (The exact solution to this 
problem can not be found in closed form.) Figure 3.5 demonstrates the performance of our 
scheme (3.6) on the blast wave test problem again using 400 points. We should point out 
that no modifications of the scheme was required to avoid negative densities and pressures. 

'amr---------------------~ 

~~==========~--~==~ = CIZDl) 0Aa:aI ca::a:D ca::a:D uxm 
Figure 3.4. The Lax-Friedrichs scheme np­
plied to the blest wave test problem. 

,=r--------------, 

= =;::===;a:nm;;:=;:a4I'TD:::::::::~.=~--o~rnm=-==::;uxm:;! 
Figure 3.5. Results coming from scheme (3.6). 
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