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FOREWORD

This represents a collection of the work completed in the past and in recent

years in the field of infrared radiative energy transfer in molecular gases. The

primary motivation of this compilation has been due to recent demand of the

subject by graduate students working on research projects in the areas of high

temperature gas dynamics, design of high pressure combustion chambers and high

enthalpy nozzles, entry and reentry phenomena, supersonic and hypersonic

propulsion, and in defense oriented research. The materials presented here should

provide some essential information on spectral models, gray as well as nongray

radiative formulations, computational procedures, and a few specific applications.

This work, in part, was supported by the NASA Langley Research Center

through grant NAG-1-423. The grant was monitored by Drs. A. Kumar and J. P.

Drummond (Fluid Mechanics Division-Theoretical Flow Physics Branch), Mail Stop

156.
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ELEMENTS OF RADIATIVE INTERACTIONS IN GASEOUS SYSTEMS

By
S. N. Tiwari*

Department of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, Virginia 23529

ABSTRACT

Basic formulations, analyses, and numerical procedures are presented to investigate radiative

interactions in gray as well as nongray gases under different physical and flow conditions. After

preliminary fluid-dynamical considerations, essential governing equations for radiative transport

are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions.

Auxiliary relations for relaxation times and spectral absorption models are also provided.

For specific applications, several simple gaseous systems are analyzed The first system

considered consists of a gas bounded by two parallel plates having the same temperature.

Within the gas there is a uniform heat source per unit volume. For this system, both vibrational

nonequilibrium effects and radiation-conduction interactions are investigated. The second system

consists of fully developed laminar flow and heat transfer in a parallel plate duct under the

boundary condition of a uniform surface heat flux. For this system, effects of gray surface

emittance are investigated. With the single exception of a circular geometry, the third system

considered is identical to the second system. Here, the influence of nongray walls is also

investigated, and a correlation between the parallel plates and circular rube results is presented.

The particular gases selected for this investigation are, CO, COz, HjO, CH4, NjO, NHa, OH, and

NO. The temperature and pressure range considered are 300-2000K, and 0.1-100 atmosphere,

respectively. Illustrative results obtained for different cases are discussed and some specific

conclusions are provided.

Eminent Professor, Department of Mechanical Engineering and Mechanics, College of Engineering and Technology.
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NOMENCLATURE

Latin Symbols

A, Aj Total band absorptance, cm"1

A0i Correlation quantity, cm"1

A, A-, Dimensionless band absorptance,

B2, B? Correlation quantity

Be, Bei Rotational Constant, cm"1

Bj/ Black-body intensity of frequency v and at local temperature

Bu;(Ti), Bu;(Tw) Spectral surface radiosity, (watts/cm2)cm"1

C Speed of light

CQ, CQJ Correlation quantity, atm"1 cm"1

D Diameter of a circular tube, cm

En(t) Exponential integral

Er Rotational energy

Ev Vibrational energy

EJ Equilibrium vibrational energy
e Total black body emissive power, watts/cm2

tu Planck's function, (watts/cm2)/cm"1

eiu;. ei^i Planck's function evaluated at temperature TI

e^c, ewi Planck's function evaluated at wave number u;c

h Planck's constant

h Heating function

HJ Gas property for the large path length limit

H Nondimensional heating function

\v Intensity of a beam of radiation of frequency v

Jj/, Jj/c Radiative source function

k Boltzmann constant; also thermal conductivity, (watts/cm2)/K

L Distance between plates, cm

M Radiation-conduction parameter for the large path length limit

MI Gray gas interaction parameter for parallel plates



M2 Gray gas interaction parameter for circular tube

N Rdiation-conduction parameter for optically thin limit

N Definition on N for NLTE case

N Gray gas optically thin parameter

P Gas pressure, atm

Pe, Pei Equivalent broadening pressure of ith band

qw Wall heat flux, watts/cm2

o,R Total radiative heat flux, watts/cm2

qRi Radiation heat flux for ith band, watts/cm2

qRw. qRwi Spectral radiative flux, (watts/cm2)/cm"1

Q Heat source or sink, watts/cm3

r Physical coordinate for circular tube

r0 Radius of the tube

S(T) Total band intensity, atm'1 cm'2

Si/ Non-equilibrium source function

S* Equilibrium source function

s Distance along direction of radiative propagation

T Temperature, kinetic temperature, K

T0 Reference temperature (equilibrium)

TI, T2, Tw Wall temperature

Tb Bulk temperature, K

u, Uj Dimensionless coordinate, CoPy or C2Pr

u0. Uoi Dimensionless path length, CoPL or

vx Velocity, cm/sec

vm Mean velocity, cm/sec

y Physical coordinate, cm

Greek Symbols

a Thermal diffusivity, cm2/sec

0> Pi Line structure parameter, B2Pe

71 Nondimensional quantity, 3 r*/N

72 Nondimensional quantity, 3(«pr0)2/N

e, ei, ei, ew Surface emittance

VI



TJC Vibrational relaxation time, sec

r]T Radiative lifetime of vibrational state, sec

0 Dimensionless temperature, (T - TI )/(QL2/k)

OP Dimensionless temperature, (T - Ti)/(qwL/k)

#T Dimensionless temperature, (T - Tw)/(qwr0/k)

0bP Dimensionless bulk temperature, (Tb - Ti)/(qwL/k)

#bT Dimensionless bulk temperature, (Tb - Tw)/(qwr0/k)

0bT Dimensionless bulk temperature, 0̂ 12
KV Absorption coefficient of frequency v

K* Equilibrium absorption coefficient at frequency v

*u Equilibrium spectral absorption coefficient, cm"1

«m Modified Planck mean coefficient, cm"1

KP Planck mean coefficient, cm"1

A Thermal conductivity, watts/cm2/K

v Frequency

fc, i/o, f, Frequency corresponding to band center

£ Dimensionless coordinate, y/L or r/r0

p Density

a Stefan-Boltzmann constant

T Optical coordinate, «py or /cpr

T0 Optical thickness, «PL or /epr0, or /cpD

TU> Optical coordinate, «wy or «wr

TOW Optical thickness, «WL or /C^FO

<t> Dimensionless function, (ew - eiu,)/(QL/A0u0)

4>* Dimensionless function, (T - TI )/(QL/H)

0 Solid angle

<*> Wave number, cm"1

wc, ^i Band center, cm"1

vu
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1. INTRODUCTION

In order to understand and investigate radiative interactions in gases, one should be quite

familiar with basic transfer processes (mass, momentum, and energy) in gaseous systems.

It is also essential to have fundamental knowledge of different numerical and computational

procedures. For a basic understanding of these subject areas one should refer to [1-10].

In the past three decades, a tremendous progress has been made in the field of radiative

energy transfer in nonhomogeneous nongray gaseous systems. As a result, several useful books

[11-29] and review articles [30-40] have become available for engineering, meteorological,

and astrophysical applications. In the sixties and early seventies, radiative transfer analyses

were limited to one-dimensional cases. Multidimensional analyses and sophisticated numerical

procedures emerged in the mid-to-late seventies. Today, the field of radiative energy transfer in

gaseous systems is getting an ever increasing attention because of its application in the areas of

the earth's radiation budget studies and climate modeling, fire and combustion research, entry

and reentry phenomena, hypersonic propulsion and defense-oriented research.

The main objectives of this study is to explore the extent of radiative contributions of

different molecular gases under varying physical and flow conditions. Attention has been directed

specifically towards infrared active diatomic and polyatomic gases, wherein the absorption

and emission of thermal radiation occurs as a result of vibration rotation bands. In order to

present a systematic study, it is necessary to assume a suitable model for vibration-rotation

bands, and to obtain relevant spectroscopic information for the gases under consideration. The

assumption of local thermodynamic equilibrium (LTE) will have to be justified, and any influence

of nonequilibrium (NLTE) should be investigated. Wherever applicable, radiative contributions

from weaker combination and overtone bands should be included in the general nongray analysis.
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In addition the effect of surface emittance (gray as well as nongray) upon gaseous radiation

should be investigated.

Basic governing equations and essential information on molecular radiative interactions are

provided in [11-29]. Radiative properties for important molecular species are available [33-37].

In this report, basic equations of fluid mechanics and heat transfer are presented and radiative

transport models are provided for molecular radiative interactions. The extent of radiative

interactions are investigated for several illustrative cases of absorbing-emitting species between

parallel plates and circular geometries. The entire procedure can be extended to investigate

radiative interactions in other geometries.



2. BASIC THEORETICAL FORMULATION

The governing equations for fluid mechanics and heat transfer are available in standard

references [1-8]. These are presented here without providing detailed derivations. Specific

conservation equations for a Newtonian fluid are derived in [1-3, 5].

The law of conservation of mass applied to a material volume yields the equation of

continuity as

a^/at + V • (jro ) = 0 (2. la)
r^t

For an incompressible fluid, this reduces to

V-u =0 (2.1b)
t**t

The Newton's second law applied to a Newtonian fluid yields the Navier-Stokes equation as

d \ fdu< dui\ 2c fak] , - ~ x£— u —i + — ̂  ) - ^ijUj^l (2.2a)
oxj I \oij on/ 3 oxifl

where £,y is the Kronecker delta function and i, j, k = 1,2,3. In the derivation of Eq. (2.2a),

it has been assumed that the coefficient of bulk viscosity is zero. For an incompressible fluid

and constant viscosity (//), Eq. (2.2a) reduces to a simpler form as

Du /Dt = f - Vp/p + i/V2u (2.2b)
r>*j rs^ r*^

It should be noted that Eq. (2.2b) is not applicable to a fluid whose viscosity is a strong function

the temperature.

The energy equation for a simple homogeneous system is expressed usually in three different

forms as [1, 5, 6]

p(De/Dt) = dQ/dt - V - q - p f v - u W f c (2.3a)
~ \ ~ /

p(Dh/Dt) = dQ/dt - V • q + DP/Dt + $ - (2.3b)
^s/

pCp(DT/Dt) = dQ/dt + V • (fcVT) - V • qR + 0T(Dp/Dt) + $ (2.3c)



where
£ — <7c T <?r — — + qR

$ = p ̂ 2(du/dx)2 + 2(dv/dy)2 + 2(8w/dz)2

+ (dv/dx + du/dy)2 + (dw/dy + dv/dz)2

+ (du/dz + dw/dx)2 - ^(du/dx + dv/dy + dw/dz)2

and Q represents the heat generated (or lost) per unit volume by external agencies, and 0 is

the coefficient of thermal expansion of the fluid. Simplified forms of Eqs. (2.3) can be obtained

easily for specific applications.

In order to close the system of conservation equations (2.1)-(2.3), it is essential to establish

relations between the thermodynamic variables p, p, T, e and h and relate these to transport

properties p and k. Since the local thermodynamic state is fixed by any two independent state

variables, one may express the equations of state for a simple system as

P = p(e,p) (2.4a)

T = T(e,p) (2.4b)

For a perfect gas, the following thermodynamic relations are applicable:

p = pRT, e = cvT, h = cpT (2.5a)

cv = R/(j - l),cp = 7*7(7 - 1),7 = cplcv (2.5b)

where R is the gas constant, c,, is the specific heat at constant volume, Cp is the specific heat

at constant pressure, and 7 is the ratio of specific heats. Thus, for a perfect gas, Eq. (2.4) may

be expressed as

p = (7 - l)pe (2.6a)

(2.6b)



The transport properties are related to the thermodynamic variables through use of the kinetic

theory of gases. The variation in viscosity is given by Sutherland's formula

= Clr
3/2/(r + 02) (2.7)

where GI and 02 are specific constants for a given gas. The thermal conductivity k usually is

determined through use of the Prandtl number defined by Pr = Cpp/k. This is possible because

for most gases the ratio Cp/Pr is essentially constant.

Following the nomenclature of the kinetic theory of gases, Eqs. (2.1)-(2.3), in general, are

referred to as the Navier-Stokes equations. For computational conveniences, it is quite often

desirable to express these equations in a compact vector form. For the case of no external heat

addition and in the absence of body forces, the Navier-Stokes equations are expressed in the

vector form as [9]

Or r Q rn on* ovt
^ + ̂  + £^4.^ = 0 (2.8)O i ' O ' O ' f\ ^^ v V**'**/dt dx dy dz

where U, E, F, and G are vectors and are defined as

P
pu

U= pv
pw

E =

F=

pu
pU2 +p- Txx

-T*y
pUW — Ttt

(Et + p)u - UTXX - VTzy - wrxx + qcx

pv
pUV — Txy

- UTXy ~ VTyy - WTy,



G =

pw
pUW —

— Tgz

- Tzz

. (Et + p)w - UTXZ - vryz - WTZZ -f qcz

'XX

Tyv = a/

Tzz = -/

Tr« =

\"— "» ~ /

frydv du dw\
\ dy dx dz)

\ dz dx dy)
f d Q \ou av\ _

I * Q I ^*P'x az/

(5u 5iy\
W "*" ^~ / = r*y

Note that the first row of the vector Eq. (2.8) corresponds to the continuity equation as given by

Eq. (2. la). Similarly, the second, third, and fourth rows represent the three momentum equations,

and the fifth row represents one form of the energy equation.

It should by noted that derivations of the governing equations presented in this section

assume the conditions of continuum and existence of a local thermodynamic equilibrium. For

the case of two-dimensional laminar flow in channels, the energy equations given by Eqs. (2.3)

and (2.8) reduce to [18]

dT

j-~d t v q R
(2.9)

The energy equation given in this form can be applied to radiatively induced nonequilibrium

situation by replacing the divergence of the radiative flux by its nonequilibrium counterpart.

At the same time it must be assumed that the departure in population distribution over excited
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states from the Boltzmann distribution will not significantly change the internal energy, and the

transport properties from their equilibrium values [16]. As discussed in [19], this assumption is

justified under the conditions where vibrational characteristic temperature hvjk is greater than or

is of the order of vibrational temperature. Consequently, the temperature appearing in Eq. (2.9)

will be regarded as the kinetic temperature.

In obtaining Eq. (2.9), it has been assumed that the conduction heat transfer in the x direction

is negligible compared with the net conduction in the y direction. This represents the physical

condition of a large value of the Peclet number. By an analogous reasoning, the radiative heat

transfer in the x direction can be neglected in comparison to that transferred in the y direction. If,

in addition, it is assumed that the Eckert number of the flow is small, then Eq. (2.9) reduces to

&T 8T dT 6*T 1 OqR ., im-5- +UTT- + «-«- = a^-r --77- -£- ' (2-10)at dx ay dy2 pCp dy

In the preceding equation a = k/pCp represents the thermal diffusivity of the fluid and it has

been assumed that the fluid properties are constant locally.

It should be evident that in order to apply the energy equation to any problem involving a

radiation participating medium, it is essential to have an appropriate formulation for the radiative

flux vector ^R. However, before going into the formulation of the radiative flux equations, it is

desirable to present some heat transfer results already available in the literature for simplified

geometries and conditions without the radiative interactions. These are discussed briefly in the

next section.



3. SIMPLE FLUID-DYNAMICAL APPLICATIONS

Attention is directed here to present solutions of the viscous heat conducting equations for

simple internal flows. These solutions are available in the literature and are presented here for

the sake of comparison with the solutions of radiative interactions obtained in Sec. 6. Before

presenting solutions for specific cases, it is desirable to provide some basic definitions associated

with velocity and temperature variations in internal flows.

3.1 Basic Definitions for Internal Flows

The basic definitions needed for description of internal flow in channels are provided in

this section.

1. Entrance (or Inlet) Region

It is the region in the flow up to which the velocity profile changes its shape due to presence

of the boundary layer (Fig. 3.1). The flow in such regions are divided into the boundary-layer

flow and the potential flow in the core. Because of the developing boundary layers, the velocity

U in the core (outside the boundary layer) increases along the length. This is the region of

potential flow (i.e., the region of negligible frictional effects). The change in core velocity is

related to the pressure change in the core.

2. Fully-Developed Flow

The flow in the region where the shape of velocity profiles remains constant is called the

fully-developed flow. For such a flow, the velocity components v = 0, u; = 0 and u = u(y).



3. Mean Velocity

The mean velocity (um or u) is defined as the average (or mean) velocity at any particular

location in the direction of flow. For the case of a fully-developed flow, this is defined as

u = um = — / u
AcJAc

dA (3.1)

where Ac is the cross- sectional area of the duct.

4. Hydraulic (or Equivalent) Diameter

The concept of hydraulic diameter is very useful in the study of turbulent flows and

noncircular duct flows; however, it is extensively used also in the study of laminar flows.

The hydraulic diameter Dh is defined by the following relation

Dh = 4A/P (3.2)

where A represents the flow area (or the area of the duct) and P is the wetted perimeter. For

circular ducts with actual diameter D, Dh = [4(7r£)2/4)]/(7rD) = D. For square ducts with

sides a, Dh = [4(a2)]/(4a) = a. For parallel plates a distance L apart, D^ = [4(L x l)]/2 = 2Z,,

i.e., the hydraulic diameter is equal to twice the depth of the channel.

5. Friction Factor (or Darcy Friction Factor)

In duct flows, the pressure drop along the flow direction varies, in general, as follows

,p,He) (3.3)

where e represents the statistical measure of surface roughness. Dimensional analysis of Eq. (3.3)

yields the nondimensional equation for the friction factor / as
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where Re = pumDh/n- Thus, the pressure drop in ducts may be expressed by a simple relation

between / and Re. Based on the concept of Eq. (3.4), the friction factor is defined in general as

/ = iTw/(pu*m/2) (3.5)

where rw represents the wall shear stress.

6. Skin-Friction Coefficient (or Fanning Friction Factor)

The concept of the fanning friction factor is used in the study of external flow fields. The

skin-friction coefficient (or simply the friction coefficient) c/ is defined as

cf = rw/(pUl/2) (3.6)

For external flows, c/ varies with the location x along the flow. Thus, an average skin-friction

coefficient for a characteristic length L is obtained by the relation

1 tl

= T cf(x)dx (3.7)
L Jo

7. Slug Flow

The slug flow is a case of an idealized fluid motion. It assumes that the flow in ducts is

of uniform (constant) velocity in the direction of flow. The concept is useful is preliminary

estimations of the pressure drop and drag.

8. Thermal Entrance Region

The thermal entrance region is the region of the thermal boundary layer (TBL) development

(Fig. 3.2). In this region, the shape of the temperature profile changes because of the presence

of the thermal boundary layer.
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9. Thermally Fully- Developed Flow

The flow in the region where the shape of the temperature profile remains constant is called

the thermally fully-developed flow (TFDF). Mathematically, for any set of boundary conditions,

a fully developed temperature profile is said to exist when the nondimensional temperature is a

unique function of y only (i.e., it is independent of the x coordinate).

10. Convection Heat Transfer Coefficient

The convective heat transfer coefficient h is defined by the Newtons law of cooling as

= h(Tw-T f) (3.8)

where T/ is the fluid temperature adjacent to the wall.

11. Bulk Temperature

The bulk temperature (or mixing-up temperature) is the mean temperature at any location x

in the flow direction. It is the temperature which fluid would assume if it was instantaneously

and adiabatically mixed after leaving the cross section under consideration. Mathematically, the

bulk temperature Tj (or Tm) is defined as

Tb = u T d A (3.9)
'Ae

3.2 Steady Fully-Developed Duct Flows

Steady fully-developed duct flow solutions are available for different geometries and flow

conditions. Results for flows between two parallel plates and within a circular tube are presented

here.

Consider first a steady incompressible constant properties laminar flow between two parallel

plates (Fig. 3.3). The governing equations for this case are simplified form of Eqs. (2.1b) and
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(2.2b). If a conservative body force is assumed then Vp - p£ = Vp. Since the plates are

infinite in z-direction, the velocity w in z direction is negligible. Also for a fully-developed

flow v = 0. Thus, for steady fully-developed flow between two parallel plates, Eqs. (2.1b) and

(2.2b) combine to yield

d^u/dy"2 = (l/fji)dp/dx = const. (3.10)

With boundary conditions u(±L/2) = 0 and (du/dy)y=0 = 0, the solution of Eq. (3.10) is

found to be

-'

By using the definitions of um, Re, Dh and /, it can be shown that

= 96 (3.12)

where D^ = 2L, Re = pumDh/f*. It should be noted that , for fully-developed flow, fRe =

constant for all ducts; the value of the constant depends on the shape of the duct. The result of

Eq. (3.12) is obtained for a laminar flow but it applies quite accurately also to turbulent flows.

Next, consider the case of steady, incompressible, constant properties, and fully-developed

laminar flow in a circular tube (Fig. 3.4). A combination of Eqs. (2.1b) and (2.2b) in this case

results in

d2u/dr2 + (l/r)du/dr = (l/n)dp/dx (3.13)

With boundary conditions tt(r0) = 0 and (du/dr)r_Q = 0, the solution of Eq. (3.13) is found

to be

(3.14)
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This is referred to as the Hagen-Poiseville profile.

The maximum velocity occurs in the center of the tube and is given by

(3.15)

The mean velocity «m is found to be umax/2. The volume flow rate Qv is given by

Qv = Aum = (7rrjj)um = -(*rl/Sp)dp/dx (3.16)

The friction factor in this case is found to be

fRe = 64 (3.17)

where Re — pDum/n.

3.3 Heat Transfer in Laminar Duct Flows

The heat transfer in duct flows is influenced directly by the conditions at the bounding

surfaces. The two typical conditions are that of the constant wall heat flux and constant wall

temperature. However, a combination of these also occurs in some cases.

For a constant wall heat flux, dT/dx is found to be constant, but this is not the case with

the constant wall temperature condition. To demonstrate this, consider the case of a laminar

fully-developed flow with constant properties between parallel plates (Fig. 3.5). For this case,

let us define the nondimensional temperature as

9 = (Tw - T)/(TW - Tb) = /(flrf = y/L (3.18)

Thus, for a thermally fully-developed flow, it follows that

de/dx = f-[(Tu, - T)/(TW - Tb)} = 0 (3.19a)
ox

or

-T)/(Tw-Tb)]-?-(Tw-Tb)=Q (3.19b)
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For constant properties, an energy balance on the differential distance dx results in

Q - W = mAff = (PumAc)(cp&T) (3.20a)

Since W = 0 and Q = qwA, Eq. (3.20a) becomes

qwA = (PumAc)cp(dT/dx)dx (3.20b)

Note that we have assumed a colorically perfect gas in developing the relations in Eq. (3.20).

Also, A is the area normal to the direction of qw. Thus, for a parallel-plate geometry, A = 2 dx,

and for a circular duct, A = P dx, where P is the perimeter of the duct.

For the parallel-plate geometry, Eq. (3.20b) is expressed as

dT/dx = 2qw/(pumAcCp) (3.21)

Equation (3.21) demonstrates that for the case a constant wall heat flux (and fully-developed

flow), the temperature gradient along x axis is constant.

The heat transfer to (or from) the wall can be written as

qw = hA(Tw-Tb) (3.22a)

and

qw = -kA-j-(Tw-T) (3.22b)

Since Tb is constant along y and Tw is fixed for a given x, a comparison of the two relations

for the heat flux in Eq. (3.22) provides the relation

h = -k - \ (T w - T)/(TW - Tb)} (3.23)

For a thermally fully developed flow, a comparison of Eqs. (3.19) and (3.23) indicates that the

derivate in Eq. (3.23) has a unique value at the wall that is independent of x. Thus, for a

fully-developed flow, h must be uniform along the duct
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It is evident from Eq. (3.22a) that for a constant qw, h, and ,4, (Tw — Tj) is constant along

the x axis. Consequently,

Thus, for the case of a fully-developed flow and heat transfer with constant surface heat flux, a

combination of Eqs. (3.19b), (3.21), and (3.24) yields the result

8T dTw ^ .....
= const- (3-25>ox

and the value of the constant is obtained from Eq. (3.21).

For the case of a constant wall temperature, dTw/dx = 0 and from Eqs. (3.18) and (3.19)

one obtains

— 1 \uTb _ f ,e\v*o (326)
o/in / fTj
Ol _ I lw -

dx ~ \TW -

In this case, therefore, dT/dx is a function of the normal (or radial) position in the duct.

Aside from the specification of the boundary conditions, the problem of heat transfer in

laminar duct flows may also be classified according to the velocity distribution, i.e. heat transfer

in slug flow, in fully-developed flow, and in entrance region flow. The cases of heat transfer

in fully-developed laminar flows between two parallel plates and within a circular tube are

considered in the following subsections.

3.3.1 Parallel Plates; Constant Wall Heat Flux

Consider the case of laminar fully-developed flow as shown in Fig. 3.5. For steady flow,

the momentum equation for this case is Eq. (3.10) and with plate spacing of 2L, the expression

for the velocity distribution u = u(y) is found to be

u = -(1/2 n)(dp/dx)(L* - y2) = (3um/2) [l - (y/L)2] (3.27)
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The general form of the energy equation (Eq. (2.3c)) reduces, in this case, to

udTjdx + vdT/dy = a(d2T/dx2 + d2T/dy2) + (u/cp)(du/dyf (3.28)

For constant properties, Eq. (3.28) is a linear equation in T since velocities can be determined

independent of temperature. Thus, Eq. (3.28) may be solved by superposition, first obtaining

the solution neglecting the viscous term and then including it. For low and moderate subsonic

velocities, the frictional term is negligible.

By noting that for fully-developed flow v = 0 and for thermally fully-developed flow with

constant wall heat flux dT/dx = const., Eq. (3.28) can be expressed (for the case with negligible

frictional heating) as

udT/dx = ad2T/dy2; (dT/dy)y=Q = 0, (T\=L = Tw(x) (3.29)

By using Eq. (3.20b), the value of dT/dx in the above equation is found to be

dT/dx = const. = aqw/(umLk); a = k/pcp (3.30)

A combination of Eqs. (3.27), (3.29) and (3.30) gives

d2T/dy2 = c(L2 - y2}- c = 3qw/(2kL^(dT/dy)y=0 = 0; T(L) = Tw(x] (3.31)

The solution of this readily follows as

Tw - T = (qwL/8k)(5 - 6? + £4);£ = V/L (3-32)

By defining nondimensional temperature as

9 = (T - Tw)/(qwl/k); eb = (Tb - Tw)/(qwL/k) (3.33)

the solution given by Eq. (3.32) is written as

(3.34)
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Now, by using the definition of the bulk temperature, Eq. (3.9), and combining it with Eq. (3.27),

there is obtained

(3-35)
o

By substituting Eq. (3.34) into Eq. (3.35) and integrating, one obtains

-Ob = 17/35 (3.36)

If one defines the Nusselt number as Nu = hL/k and uses the relation for heat transfer as

qw = h(Tw - Tj), then

Nu = hL/k = [qw/(Tv - Tb)](L/k) = -l/0j (3.37)

However, for duct flows, it is customary to express the Nusselt number in terms of the hydraulic

diameter as Nu = hD^/k. For the parallel-plate geometry, Dh - 4L and the expression for

the Nusselt number is found to be

Nu = hDh/k = -4/06 = 8.235 (3.38)

This is the relation for nondimensional heat transfer between two parallel plates and is a constant

only for the case of fully -developed flow.

Solutions for the parallel-plate geometry with constant wall temperature are available in

the literature for different flow conditions [1, 5-8]. Some specific results for the case of a

fully-developed flow are available in [6, 10].

3.3.2 Circular Tube: Constant Wall Heat Flux

Consider the case of a laminar fully-developed flow with negligible frictional heating in

a circular tube with constant wall heat flux (Fig. 3.6). For this physical problem, the fully-

developed velocity profile is given by Eq. (3.14) and this may be expressed alternately as

ti = 2um [l - (r/r0)2] = (2um/r2) (rj - r2) (3.39)
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The energy equation in Cartesian coordinate is given by Eq. (3.28) which for fully-developed

flow with no viscous dissipation is expressed in cylindrical coordinates (with appropriate bound-

ary conditions) as

Tw(x) (3.40b)

It should be noted that for the constant wall heat flux case dT/dx - dT^/dx = dTw/dx - const.,

and therefore, the term (82T/dx2) in the energy equation becomes zero. The value of the

constant dT/dx is evaluated from an energy balance on a differential volume as in Fig. 3.5 (see

Eq. 3.20b). For this case of circular geometry, one finds

dT/dx = dTbdx = 2qw/(pcpumrQ) = 2aqw/(kUmrQ) (3.41)

A combination of Eqs. (3.40) and (3.41) results in the energy equation for this case as

An integration of Eq. (3.42) and application of the boundary conditions given by Eq. (3.40b)

results in

Tw - T = (A/16)(3rJ - 4r0V + r4) (3.43)

From the definition of the bulk temperature, as given by Eq. (3.9), one obtains

- Tb = (l/uTO Ac) u(Tw - T}dAc
•Me

/ ' r M(r» - T)(rd0)dr (3.44)
Jo Jo
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A combination of Eqs. (3.39), (3.43) and (3.44) results in the relation for the bulk temperature as

(3-45)

consequently,

- T0) = h(ll/24)(r0qw/k)

and

Nu = hD/k = (24/11 r0)(2r0) = 4.364 (3.46)

Equation (3.46) provides the result for nondimensional heat transfer for fully-developed
\

laminar flow in a circular duct with uniform surface heat flux. There are several variations of

this physical problem and extensive results for most cases are provided by Shah and London [10].

3.3.3 Circular Tube: Constant Wall Temperature

This is the same physical problem as discussed in the preceding section but the boundary

condition is changed now to the uniform wall temperature. To make the problem a little more

interesting, let us include the viscous heating term in the energy equation and neglect the axial

temperature gradient (i.e., assume a fully-developed temperature profile). For this case, the

energy equation and boundary conditions may be expressed as

Tr (rf") = -(f/kWdu/dr? <3'47a>

(dT/dr)r=0 = 0, T(r0) = Tw = const. (3.47b)

The solution of Eq. (3.47) is obtained by utilizing Eq. (3.39) as

T - Tw = (^tti/fc) [l - (r/r0)
4] (3.48)
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If Tc represents the temperature at the center of the tube, then the expression for the maximum

temperature rise in the duct is obtained from Eq. (3.48) as

T e-Tw=pu*Jk (3.49)

The heat transfer from the wall, in this case, is found to be

qw = -k(dT/dr)r=0 = 4/«&/ro = 4fc(Tc - Tw)/r0 (3.50)

For the physical problem where the viscous heating is negligible but the axial temperature

variation is given by Eq. (3.26), the expression for the nondimensional heat transfer is found

to be [8, 10]

Nu = 3.658 (3.51)

A comparison of results given by Eqs. (3.46) and (3.51) reveals that the extent of heat transfer

is influenced significantly by the surface temperature variation.



21

Vn or V,

h.L.or D

H-En.ronce

Figure 3.1 Entrance region flow between two parallel plates
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Figure 3.2 Thermal entrance region flow between two parallel plates
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Figure 3.3 Incompressible laminar flow between two parallel plates
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Figure 3.4 Incompressible laminar flow in a circular tube
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Figure 3.5 Laminar flow between two parallel plates with constant wall heat flux
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Figure 3.6 Laminar flow in circular tube with constant wall heat flux
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4. RADIATIVE TRANSPORT MODELS

As mentioned in Sec. 2, an appropriate model for radiative transport is essential in applying

the energy equation to any problem involving participating mediums. This section provides

essential information on rate equations and equations for relaxation times, the equation of

radiative transfer, band absorption and correlations, and radiative flux equations.

4.1 Physical Model and Coordinate System

For many engineering and astrophysical applications, the radiative transport equations are

formulated for one-dimensional planar system. For this study, the physical model consists of an

absorbing-emitting gas bounded by two infinite parallel plates (Fig. 4.1). The plate surfaces are

assumed to emit and reflect in a diffuse manner.

Diatomic and polyatomic gases are considered at sufficiently low temperatures such that the

electronic, ionization, and dissociation effects can be neglected. For nonequilibrium analyses, the

gas model is considered to be that of a rigid rotator and harmonic oscillator. It is assumed that the

translational energy is governed by the Boltzmann law and a local kinetic temperature, referred

to simply as the temperature, is defined. Rotational modes requiring only a few collisions to

attain equilibrium are assumed to be in equilibrium at the kinetic temperature. Consequently, the

governing equations given by Eqs. (2.8)-(2.10) are applicable to the case of radiation participating

mediums.

4.2 Rate Equations and Equations for Relaxation Times

The rate of change of vibrational energy of a system of oscillators can be expressed as

where terms on the right represent contributions due to collisional and radiative processes

respectively. The radiation field exchanges energy with rotational as well as vibrational degree
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of freedom, and one can write

, (dEv\ ^(dE r\-diva = I — ] + I — - (4.2)
* \ dt Jrad \ dt Jrad

where ET represents rotational energy per unit volume. Because of small separation of rotational

levels, the change in rotational energy is small as compared to the change in vibrational energy

and therefore its contribution in Eq. (4.2) is usually neglected.

The divergence of radiative flux qn is related to the specific intensity /„, and for one-

dimensional problem considered here it is given by the expression

*•„ JR . ss „ r <s±* . r r ^ <4.3)
** dy JQ dy JQ JQ ds

A combination of Eqs. (4.1)-(4.3) results in

dEvv (dEv\ /°° /4* <*/„
- = -j- } - I I -r-dtodv

\ dt Jcoll JQ Jo ds
(4.4)

The vibrational energy of a system of oscillators undergoing a collisional relaxation process

is given by the Bethe-Teller relation

dt rjc

where E* represents the equilibrium value of vibrational energy, and TJC having the dimensions

of time is called the vibrational relaxation time. In general, the relaxation time is referred to
-
as the average time required to transfer energy from one mode to another by collision. It is

inversely proportional to the collisional frequency.

A simple derivation of Eq. (4.5) is given in [16, 19]. Since no assumption about the size of

the difference E* - Ev was made in its derivation, Eq. (4.5) should be valid for large departure

from the equilibrium. However, the assumption of simple harmonic oscillators restricts its
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applicability to small departures. By employing the initial condition E00, an integration of

Eq. (4.5) gives,

Ev - El = (Evo - £„*) exp (-t/r,e) (4.6)

It is obvious from this equation that the relaxation time is the time required for the difference

Ev — E* to come to 1/e of its initial value.

Before making use of Eq. (4.5), certain limitations inherent in its derivation must be justified.

The equation was derived on the assumption of dilute concentration of the system of oscillators

in a heat bath of constant state. However, it was pointed out in [16] that for all practical

purposes, Eq. (4.5) is valid irrespective of the number of excited molecules. Another assumption

made in the derivation is of a single quantum transition between adjacent levels of harmonic

oscillators. The effect of multiple quantum transitions was investigated by Northup and Hsu

[41]. They conclude that results of multiple transitions follow the general pattern of the Bethe-

Teller relationship up to a temperature of 7000K. The effect of anharmonicity was investigated

by Bazley ah Montroll [42.]. Their calculations show that the deviations of the fractional level

population from the harmonic oscillator values are generally of the order of the anharmonicity.

Consequently, the relaxation behavior of a system of anharmonic oscillators can be represented

quite accurately by that of a system of harmonic oscillators. Goody [14] suggests that it

would probably be wisest to accept Eq. (4.5) as an experimental rather than a theoretical result.

Whatever reasoning one might adopt, for the physical model considered in this study, there

should be no doubt now in accepting the relation given by Eq. (4.5).

In order to be able to use Eq. (4.5) an explicit relation for f/c = »/c(T, P) is required. This

is provided by the Landau-Teller relation

, (4.7)
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where K\ and KI are positive constants and depend on the physical properties of the molecule.

It should be noted that the vibrational relaxation time increases with decreasing pressure and

temperature. Generally, the product of pressure and relaxation time is plotted against the

temperature on a logarithmic scale. Such a plot is known as Landau-Teller plot and for two

level transitions it is a straight line for a wide range of temperatures.

Information on collisional relaxation times is available in the literature for some molecular

gases [43-66]. For diatomic gases, an empirical relation is given by Millikan and White [50,

52, 66]

Pr)c = exp [/l(r-1/3 - 0.015^1/4) - 18.42J (4.8)

where A is a constant and is related to the molecular constants of the colliding species and /j.

is the reduced mass of the colliding pairs. Values of A and \n are given in the references, and

for CO colliding with CO these are A = 175, and /i = 14. The collisional relaxation time for

COi is given by the relation [53]

Prjc = exp (Ar-1/3 - B) x 1(T6 (4.9)

where A = 36.5 and B = - 3.9. The collisional relaxation time for methane is given by Richards

and Sigafoos as [56]

Prjc = exp (-5.4 + 40r~1/3) x 1(T6 (4.10)

In all expressions for r/c, P is the total pressure in atmosphere, i;c is in seconds, and T represents

the temperature in degrees Kelvin. Although these relations show a strong dependency of rjc on

pressure, in reality it has a larger temperature variation. This is because collisional frequencies

are higher at higher temperatures and consequently it takes relatively less time to deactivate the

excited states. Further discussions on collisional relaxation times for different colliding pairs are

provided by Tiwari and Manian in [67].
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43 The Equation of Radiative Transfer

The equation of radiative transfer is derived for a simple harmonic oscillator on the

assumption that rotational and vibrational levels are populated according to the Boltzmann

distribution. The rotational energy is characterized by the equilibrium temperature whereas

the vibrational energy is described by the nonequilibrium temperature Tv. The derivation which

follows is analogous to that of Goody [14] and Gilles [69].

Two level transitions between the vibrational states are considered such that there results

a single independent vibration-rotation band corresponding to the fundamental frequency of

vibration. Consequently, the nonequilibrium transfer equation, as presented here, is only

applicable to fundamental bands of diatomic and polyatomic gases. At moderate temperatures,

however, the combination and overtone bands do not contribute significantly to the radiative

transfer processes except at very large path lengths. For the conditions where the assumption of

local thermodynamic equilibrium is valid, the transfer equation given here will reduce directly to

the traditional macroscopic equation for radiative transfer available in the literature [11, 12, 18].

For a two level system let n(v — 1) and n(v) represent the number density of molecules

in the lower and upper vibrational levels respectively. In each vibrational level, molecules are

assumed to be distributed over rotational levels according to the Boltzmann distribution function

f(J) such that ^,f(J) = 1. Here t; is the vibrational quantum number and J is a set of
j

rotational quantum numbers corresponding to the lower vibrational level. Consequently, number

density in the state (v - 1, J) will be given as n(v - 1) /(J). Number of molecules that actually

make the transition from a state (v — 1,J) to (u,/) are governed by the Einstein coefficients,

a (7', J)A(v,v - 1) for spontaneous emission, b(J',J)B(v,v— 1) for induced or stimulated

emission, and b(J,J')B(v — l,u) for absorption. Based on the assumption that rotational and

vibrational wave functions are separable, the multiplication of J and v coefficients is possible.
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Further, for J coefficients it can be assumed that

; j j
Spontaneous emission is independent of radiation field, i.e., it is isotropic. However,

absorption and induced emission depend upon the intensity of radiation lv. Following Goody

[14], sharp energy levels are initially considered and the transition is assumed to take place with

the loss of a quantum of energy hi/. In a rigorous analysis, by considering the broadening of

the energy levels and by defining a line shape function, Gilies [68] derives the same transfer

equation as given by Goody after the latter relaxes the requirements of sharp levels. For details,

reference should be made to these works.

For a two level transition of molecules contained in a volume of depth ds and unit cross

section, the change in radiative intensity, within the solid angle dfl, may be written as

d(l = n(v)f(j')a(J\ J)A(v,v - l)

- n(v)f(j')b(j',J)B(v,v- l)]-rffi (4.11)

where the first term on the right hand side represents the contribution due to spontaneous

emission, the second and third terms represent absorption and induced emission respectively,

and c is the speed of light.

Application of the principle of detailed balance gives the following relationships between

the Einstein coefficients

\ J)A(v,v- 1) = 6vb(J',J)B(v,v- 1) (4.12a)

, J)B(v,v- 1) = ^D-b(J,J')B(v-l,v) (4.12b)
9\J }

where 8V = 87ri/2/c3, and g(J) is the statistical weight of J rotational level. For a simple

harmonic oscillator, the following expression is obtained from quantum mechanics

) (4.13)
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Introduction of Eqs. (4.12) and (4.13) into Eq. (4.11) enables one to write the transfer equation

solely in terms of the coefficient 5(0,1). Since each pair of vibrational levels of a simple

harmonic oscillation absorb and emit identical quanta, a summation over all vibrational levels

must be taken. In doing so, following relationships are further employed

CO

vn(v) (4.14)

where Ev is written in the normalized form, and

El = n[exp(hv0/kT) - If1 (4.15)

such that [16]

l = [exp(h»*/kT) - l]/[exp(hv0/kTv) - 1] (4.16)

In writing Eq. (4.16) it has been assumed that the energy distribution over the vibrational levels

is of the Boltzmann type with a corresponding nonequilibrium temperature TV Goody [14] does

not explicitly make this assumption and derives the transfer equation directly in terms of the

ratio £„/£*.

By making use of all above information, the transfer equation, Eq. (4.11), can now be

written as

«*/, nB(0,l}b(J,J')f(J) [2/u/3 [ h(v. »-»Q\\
ds dl-cxp(-^/lbr.)]\ c2 exp[ k\T, T )\

(A(4.

where n is the total number of molecules. The form of this equation is identical to that of

Eq. (4.11), i.e., the terms on the right hand side represent contributions due to spontaneous

emission, absorption, and induced emission, respectively. Equation (4.17) is analogous to the

transfer equation obtained by Gilles [68].
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Defining the net absorption coefficient «„ and a source function Sv in the following manner,

Eq. (4.17) is expressed as

— = KV(SV - /„) (4.18a)

where

(4.180

For the physical model considered here, Eq. (4.18) is the most general form of the radiative

transfer equation. Under the assumption of LTE, Tw = 71, and there is obtained from Eqs. (4.18b)

and (4.18c)

5* = BV(T) = (2/»/3/c2)/[exP (hv/kT) - 1] (4. 19b)

where Bv represents the blackbody intensity of frequency v at local temperature.

A combination of Eqs. (4.16) through (4.19) gives an alternate form of the radiative transfer

equation as

dlv /«* Ev \ * f D E v KV T \— = K I -2-Bv— - Iv] = K* Bv— -- -/„ 1
da \KV E* ) \ E* K* J

fA1f\ \(4.20)

This is the form of nonequilibrium transfer equation obtained by Goody [14]. It is seen

that the quantity #„(«*/«„)(£„/£*) is the source function 5(T,Te). Another form of the

nonequilibrium transfer equation is derived by Tiwari and Manian in [67].

Before proceeding further, it is necessary to clarify a few points pertaining to the preceding

equations and then make some useful approximations. From Eqs. (4.18b) and (4.19a), it is
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apparent that at the band center the nonequilibrium absorption coefficient KV is equal to its

equilibrium counterpart K*. Away from the band center KV has a very weak dependence on

Tv. It was pointed out by Goody [14] that at atmospheric temperatures, the ratio «„/«*

differs from unity by less than 1.5% in the wings of the 15/i COj band (probably the worst

case), as EV/E* varies over a wide range of 0 to 2. In reality, it is the equilibrium value

of the absorption coefficient actually measured in the laboratory. Following such reasonings,

the differences between KV and «* are usually ignored. With this in mind, an examination

of Eqs. (4.17) and (4.20) would reveal that the effect of vibrational nonequilibrium is only

important in the spontaneous emission. This fact has also been discussed and experimentally

established by Millikan [47] and Hooker and Millikan [49]. However, according to Gilles [68]

this corresponds to a low temperature approximation and is only valid when vibrational and

kinetic temperatures are of the same order of magnitude. He argues that at high temperatures

NLTE effects cannot be ignored from the induced emission and absorption terms, and introduces

two other approximations.

Further, from Eq. (4.18), it should be noted that at v — v0 the source function becomes the

Planck function evaluated at the nonequilibrium temperature Tv, and away from the band center

it has only a weak dependency on the kinetic temperature.

For the present study, the difference between *„ and K* are ignored, and Eq. (4.20) is

taken as the nonequilibrium radiative transfer equation. In essence, it is assumed here that the

absorption coefficient is independent of the nonequilibrium effects and that the NLTE effects

come only through the source function, which can now be written as JV(T,TV) = BV(EV/E*).

This notation for the source function is introduced to distinguish it from the previous notation

of S»(T,TV).

Under steady-state conditions, for each fundamental band, a combination of Eqs. (4.4), (4.5)
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and (4.20) yields

,/Et) [(£;/r/c) + J dtt I KvBvdJ\ = (£*/T/C) + f

where integration is taken over the frequency range of an individual band and over the solid

angle from zero to 4?r. Defining a time constant rjr as

T)r = EH \j di7 j KvBvdl\ (4.22)

and combining Eqs. (4.20) and (4.21), there is obtained

^ = «„(,/„ - /„) (4.23a)

where

+ fc)l (4.23b)

Kv Ivdv\ /( f dn f KvBvdv\ (4.23c)

It can be shown [33] that »/r = l/A(l,0) is the radiative lifetime of the vibrational states, where

.4(1,0) is the Einstein coefficient for spontaneous emission from the first vibration level.

By employing Eqs. (4.3) and (4.23), the source function Jv can be expressed in an alternate

form as

where

h = ~ (dqRvldy}di, (4.24b)

It should be noted here that Jv like Bv is a slowly varying function of v and for narrow bands

it can be assumed as being independent of v. The value for Bv and Jv are, therefore, taken to



37

be the values evaluated at the band center. Further, by noting that both Bv and Jv are isotropic,

Eq. (4.24) is expressed as

J»c = B* + \(lcMH (4.25a)

where

R = h / \ 2 T f I Kvdv\ (4.25b)

For isotropic radiation, the blackbody intensity of radiation Bv is related to the Planck function

In the limit of very low pressure, the collisional relaxation time rjc is large and in Eq. (4.23b)

?7T can be neglected by comparison. The source function then becomes Jv = BVX. Further,

from Eqs. (4.3), (4.23), and (4.24), it can be shown that the divergence of radiative flux is zero.

The transfer equation for this case becomes as for incoherent scattering and a general integral

formulation of this is given by Wang [69]. In the limit of high pressure, on the other hand, the

collisional relaxation time approaches zero and the source function, Eq. (4.23b), becomes the

Planck function. This is the situation of LTE usually assumed in most radiation transfer analyses.

The degree of nonequilibrium effects is characterized by the order of magnitude of the

parameter (r/c/r/r) in the transfer equation. Significant deviations from the LTE results will start

when this ratio is unity or higher.

By combining Eqs. (4.15), (4.19b), and (4.22) and by noting that within the band Bv is

assumed to be independent of frequency, an expression of r/r is obtained

,-1 = 8ff(i/a/c)2 j (Kvln)dv = 8xcu*(P/n) I (Ku/P)du (4.26)

where n is the number density of molecules, and u>c = (v0/c) is the wave number corresponding

to i/0. In order to be consistent with the definition of «„ as given in Eq. (4.19a), Bv was first

divided by hv and then used to obtain the above relation. Applying the perfect gas law P = nkT,
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and by using appropriate units for c and k, Eq. (4.26) is expressed in an alternate form as

T]-1 = (87ru;c
2) (4.08 x 10-")T0S(T0) (4.27)

where S(T0) having the units of cm"2 - atm"1 is the integrated band intensity and is defined in

the next section, T0 is a reference temperature, and r}r has the units of seconds. For fundamental

bands of some important molecules, values of rjr were calculated and these are provided in

Appendix A.

4.4 Band Absorption and Correlations

The study of radiative transmission in nonhomgeneous gaseous systems requires a detailed

knowledge of the absorption, emission, and scattering characteristics of the specific species under

investigation. In absorbing and emitting mediums, an accurate model for the spectral absorption

coefficient is of vital importance in the correct formulation of the radiative flux equations. A

systematic representation of the absorption by a gas, in the infrared, requires the identification of

the major infrared bands and evaluation of the line parameters (line intensity, line half-width, and

spacing between the lines) of these bands. The line parameters depend upon the temperature,

pressure and concentration of the absorbing molecules and, in general, these quantities vary

continuously along a nonhomogeneous path in the medium. In recent years, considerable efforts

have been expended in obtaining the line parameters and absorption coefficients of important

atomic and molecular species [70-76].

A quantity that has application with respect to the band approximation is the integrated band

absorption 5, also known as integrated band intensity or simply band intensity, and is defined as

S(T)=f %
J&u r

du (4.28)

where KW is the spectral absorption coefficient. This quantity is independent of pressure because

the total area of he individual rotational lines is not dependent on pressure. The temperature
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variation of the integrated band intensity is given by the relation [33-37]

TS(T) = T0S(T0)F(T) (4.29)

where T0 denotes an arbitrary reference temperature. F(T) = 1 for fundamental and pure

rotation bands, but it differs from unity for overtone and combination bands. For combination

and overtone bands of important molecules, relations for .F(T) are available in the literature [35,

70-74]. Band intensities for some important gases are presented in Appendix A.

As discussed by Sparrow and Cess [18], optically thin radiation can often be formulated in

terms of the Planck mean absorption coefficient KP, and the modified Planck mean absorption

coefficient «m, which for a single band are defined as

In accordance with the previous assumption of the Planck function eu(T) being independent of

wave number within the band, and by making use of Eqs. (4.28) and (4.29), Eqs. (4.30) and

(4.31) can be expressed as

(4.32)

and

(4-33a)p
It must be noted here that both KP(T)/P, and Km(T,Ti)/P are independent of the actual line

structure of the band. However, the line structure will influence the range of applicability of

the optical thin limit. This is due the fact that the gas must be optically thin for all values of

wave number, such that (Kw)max L « 1, where (««)„,„ denotes the maximum value of KU

within the band.
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In general, definitions of KP and «m can be extended to multi-band gases, and through a

combination of Eqs. (4.29) through (4.31), the following relation can be established

where n represents the number of bands. By including the contributions from overtone and

combination bands, calculations performed for CO, CO2, and HfeO indicate [77] that the ratio

on the right side of Eq. (4.33b) is approximately equal to unity and, therefore, Eq. (4.33a) can

be regarded as an excellent approximation of Eq. (4.33b).

Equation (4.32) is expressed for a multiband system of a homogeneous gas as

n

Kp(T] = P £ [«»(««, T)Si(T)]/(oT*) (4.34)
t=i

This can be modified to apply to a mixture of different gases as

*pCH = £ pj{ £ MU*> T)St(T)] } / (ar4) (4.35)
j { «=i J j

where j denotes the number of species in the mixture and Pj is the partial pressure of the jth

species.

Several models for the mean absorption coefficient are available in the literature [18, 33, 78].

Since these models account for detailed spectral information of molecular bands, this approach

of radiative formulation is referred to as the "pseudo-gray formulation."

For an accurate evaluation of the transmittance (or absorptance) of a molecular band, a

convenient line model is used to represent the variation of the spectral absorption coefficient

The line models usually employed are Lorentz, Doppler, and Voigt line profiles. A complete

formulation (and comparison) of the transmittance and absorptance by these line profiles is given

in [33-37]. In a particular band consisting of many lines, the absorption coefficient varies very

rapidly with the frequency. Thus, it becomes very difficult and time-consuming task to evaluate
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the total band absorptance over the actual band contour by employing an appropriate line profile

model. Consequently, several approximate band models (narrow as well as wide) have been

proposed which represent absorption from an actual band with reasonable accuracy [33-37,

79-88]. Several continuous correlations for the total band absorption are available in literature

[33-37, 84-88]. These have been employed in many nongray radiative transfer analyses with

varying degree of success. A brief discussion is presented here on the total band absorption,

band models, and band absorptance correlations.

The absorption within a narrow spectral interval of a vibration rotation band can quite

accurately be represented by the so-called "narrow band models." For a homogeneous path, the

total absorptance of a narrow band is given by .

AN = [l-exp(-KuX)]du (4.36)

where «w is the volumetric absorption coefficients, u> is the wave number, and X = py is the

pressure path length. The limits of integration in Eq. (4.36) are over the narrow band pass

considered. The total band absorptance of the so-called "wide band models" is given by

A = / [1 - exp (-KuX)}d(u - u0) (4.37)
J-oo

where the limits of integration are over the entire band pass and u0 is the wave number at the

center of the wide band. In actual radiative transfer analyses, the quantity of frequent interest

is the derivative of Eqs. (4.36) and (4.37).

Four commonly used narrow band models are Elsasser, Statistical, Random Elsasser, and

Quasi-Random. The application of a model to a particular case depends upon the nature of the

absorbing emitting molecule. Complete discussion on narrow bands models, and expressions for

transmittance and integrated absorptance are available in the literature [33-37, 79-81]. Detailed

discussions on the wide band models are given in [33-37, 82-88]. The relations for total band
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absorptance of a wide band are obtained from the absorptance formulations of narrow band

models by employing the relations for the variation of line intensity as [33-37, 85-88]

Sj/d = (S/Ao) exp {(-b0\u - u0\]/A0} (4.38)

where Sj is the intensity of the jth spectral line, d is the line spacing, S is the integrated intensity

of a wide band, A0 is the band width parameter, and b0 = 2 for a symmetrical band and b0 = I for

bands with upper and lower wave number heads at u0. The total absorptance of an exponential

wide band, in turn, may be expressed by

(4.39)A(u, ft) = A(u, ft)/A0 = 4- / [Ajv(«> 0Mw -
A° ^

where u = SX/A0 is the nondimensional path length, 0 = 2ir^i/d is the line structure parameter,

7X, is the Lorentz line half-width, and ./4jv(u,/3) represents the mean absorptance of a narrow

band.

By employing the Elsasser narrow band absorptance relation and Eq. (4.38) the expression

for the exponential wide band absorptance is obtained as [36, 37].

,4(11,0) = 7 + (I/*) [mi/> + Eiti>)\dz (4.40)

where t/> = us'mh(3/(coshft — cosz), 7 = 0.5772156 is the Euler's constant, and E\(il>) is the

exponential integral of the first order. Analytic solution of Eq. (4.40) can be obtained in a series

form as [36, 37]

oo
A(u tft) = ̂  {-(A)n[SUM(mn))/[n(B + l)nn!(n - 1)!]} (4.41)

n=l

where
oo

SUM(mn) = £ •((»» + "» - l)!(2m - IJIC"71]/(2m(m!)2)
m=0

A = -u tanh P,B = 1/ cosh 0
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The series in Eq. (4.41) converges rapidly. When the weak line approximation for the Elsasser

model is valid (i.e. /? is large), then Eq. (4.40) reduces to
x

A(u) = 7 + ln(u) + £?i(ti) . (4.42)

In the linear limit, Eqs. (4.40) and (4.41) reduce to A = w, and in the logarithmic limit they

reduce to A = 7 + In (u). It can be shown that Eq. (4.40) reduces to the correct limiting form

in the square-root limit. Results of Eqs. (4.40) and (4.41) are found to be identical for all

pressures and pathlengths. For p > 1 atm, results of Eqs. (4.40)-(4.42) are in good agreement

for all path lengths.

By employing the uniform statistical, general statistical, and random Elsasser narrow band

models absorptance relations and Eq. (4.38), three additional expressions for the exponential

wide band absorptance were obtained in [36, 37]. The absorptance results of the four wide

band models are discussed in detail in [37]. The expression obtained by employing the uniform

statistical model also reduces to the relation given by Eq. (4.42) for large ft.

Several continuous correlations for the total absorptance of a wide band, which are valid

over different values of path length and line structure parameter, are available in the literature.

These are discussed, in detail, in [33-37, 85-88] and are presented here in the sequence that

they became available in the literature. Most of these correlations are developed to satisfy at

least some of the limiting conditions (nonoverlapping line, linear, weak line, and strong line

approximation, and square-root, large pressure, and large path length limits) for the total band

absorptance [34-37]. Some of the correlations even have experimental justifications [33-83].

The first correlation for the exponential wide band absorptance (a three piece correlation)

was proposed by Edwards et al. [35, 82, 83]. The first continuous correlation was proposed by

Tien and Lowder [33], and this is of the form

,i(ti, ft) = In (ti/(0((u 4- 2)/[u + 2/(«)J} + 1) (4-43)
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where

/(<) = 2.94[1 - exp (-2.600), * = 0/2

This correlation does not reduce to the correct limiting form in the square-root limit [34-37], and

its use should be made for /? > 0.1. Further discussions on correlations proposed by Edwards

et al. and by Tien and Lowder are provided in Appendix A.

Another continuous correlation was proposed by Goody and Belton [87], and in terms of

the present nomenclature, this is given by

A(u,0) = 2In {l + «/[4+ (;ru/4t)]1/2},0 = It (4.44)

Use of this correlation is restricted to relatively small /? values [34-37]. Tien and Ling [88]

have proposed a simple two parameter correlation for /!(«,/?) as

A(u) = sinh'1 (ti) (4.45)

which is valid only for the limit of large /3. A relatively simple continuous correlation was

introduced by Cess and Tlwari [34], and this is of the form

A(u,0) = 2In (l + «/{2+ Hi + 1/0)]1/2}) (4.46)

where J3 = 4t/ir = 20/?r. By slightly modifying Eq. (4.46), another form of the wide band

absorptance is obtained as [36, 37]

A(u,0) = 2In (l + t*/{2 + [ti(c + */2/3)]1/2}) (4.47)

where

{ 0.1, 0 < 1 and all u vlaues
0.1, 0 > 1 and u < 1
0.25, /?> 1 a n d u > 1.

Equations (4.46) and (4.47) reduce to all the limiting forms [34],
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Based on the formulation of slab band absorptance, Edwards and Balakrishnan [85] have

proposed the correlation

A(u) = ln(ti) + £i(u) + 7 + i - E3(u) (4.48)

which is valid for large /3. For present application, this correlation should be modified by using

the technique discussed in [36, 37]. Based upon the formulation of the total band absorptance

from the general statistical model, Felske and Tien [86] have proposed a continuous correlation

for A u / 3 as

= 2Ei(tpu) + Ei(pj2) - Ei((pn/2)(l + 2t)}

27 (4.49)

where

p. = {(t/u)[l + (i/u)]}-1/2

The absorptance relation given by Eq. (4.42) is another simple correlation which is valid for

all path lengths and for t = (/3/2) > 1. The relation of Eq. (4.41) can be treated as another

correlation applicable to gases whose spectral behavior can be described by the Elsasser model.

In Ref. 37, it was shown that the Elsasser as well as random band model formulations for the

total band absorptance reduce to Eq. (4.42) f or t > 1.

Band absorptance results of various correlations are compared and discussed in some detail in

[36, 37]. It was found that results of these correlations could be in error by as much as 40% when

compared with the exact solutions based on different band models. Felske and Hen's correlation

was found to give the least error when compared with the exact solution based on the general

statistical model while Tien and Lowder's correlation gave the least error when compared with

the exact solution based on the Elsasser model. The results of Cess and Tiwari's correlations

followed the trend of general statistical model. Tiwari and Batki's correlation [Eq. (4.41) or
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(4.42)] was found to provide a uniformly better approximation for the total band absorptance at

relatively high pressures. The sole motivation in presenting the various correlations here is to

see if their use in actual radiative processes made any significant difference in the final results.

From the basic information presented in [36, 37], it may be concluded that use of the

Tien and Lowder's correlation should be avoided at lower pressures, but its use is justified (at

moderate and high pressures) to gases whose spectral behavior can be described by the regular

Elasasser band model. For all pressures and path length conditions, use of the Cess and Tiwari's

correlations could be made to gases with bands of highly overlapped lines. In a more realistic

problem involving flow of an absorbing emitting gas, results of different correlations (except the

Tien and Lowder's correlation) differ from each other by less than 6% for all pressures and path

lengths. Use of Tien and Lowder's correlations is justified for gases like CO at moderate and

high pressures. For gases like CCh. use of any other correlation is recommended. The Felske

and Tien's correlation is useful for all pressures and path lengths to gases having random band

structure. Tiwari and Batki's simple correlation could be employed to gases with regular or

random band structure but for P > 1.0 atm.
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4.5 Radiative Flux Equations

Following the procedure described in [18], for the physical model illustrated in Figs. 4.1 and

4.2, and integration of the transfer equation, Eq. (4.23a), gives

[ / " Ju,(t)E2(Tu - t)dt - t ~ Ju
Uo Jra

+ 2;r Ju,(t)E2(Tu - t)dt - Ju(t)E2(t - Tu)dt (4.50a)

where

rw = /cwy , TOW = KuL (4.50b)

•/«(<) = + j # ( 0 , rj = rich, (4.50C)
7T Z

oo

- f (dqau/dy)du
_o _

2,PS(T)

In this equation rou, is the optical path length and f is a dummy variable tor rw. The quantities B\»

and Biu represent the surface radiosities, and En(t) are the exponential integral functions. In

writing the expression for the source function Jw, use was made of the relation ew = irBu.

Further, it has been assumed that the spectral absorption coefficient K^ is independent of

temperature, i.e., restriction is made to moderately small temperature differences within the gas.

Following the procedure outlined in [18], expression for the surface radiosities are obtained

as

2(1 - elw) B2(t,E^Tott>) + * Ju(t)Et(t)dt (4.5 la)

r /r« 1
-1- 2(1 - e2w) BluEi(T0<4>) -I- TT / Ju(t)E2(Toll> - t)dt\ (4.51b)

L Jo J
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Equations (4.51) constitute two simultaneous equations for B\u and B^. For black surfaces,

Biu = e\u and B^ = 6201- Under the assumptions of LTE, Ju(t) - eu(t)/Tr. For these specific

situations, the simplified form of Eq. (4.50) should be obvious.

The total radiative flux is given by the expression

•jf (4.52)

In general, for nongray gases, Eq. (4.50) does not possess a correct optically thick limit.

However, a correct large path length limit does exist and it will be discussed in a separate

subsection. A correct optically thin limit of Eq. (4.50) exists and is given by [18]

= Biu(l - 2rw) - £2w(l - 2TOW + 2rw)

+ 2*-[ / W Ju(t)dt- f" Ju(t)dt\ (4.53)

Differentiating Eq. (4.53) with respect to rw and neglecting terms of O(TOW), one finds an

expression for the divergence of radiative flux as

-divqR (y) = - I %^<k> = 2 /°° «w[5lw + B2u - ITT Ju(y}}du (4.54)
Jo dy Jo

By noting the assumption on Ju(y) as being independent of wave number, and using the

definitions of Planck mean and modified Planck mean absorption coefficients as given by

Eqs. (4.30) and (4.31), Eq. (4.54) is written in an alternate form as

"0 + ̂ ) ^f = 25l/Cm(r'Tl) + 252«m(T,T2) - ^(rXT^y) (4.55)

The expressions for surface radiosities corresponding to the optically thin limit are available

in [18].

The obvious simplification of NLTE effect in Eq. (4.55) should be noted. As such, all

optically thin analyses based on the assumption of LTE can be modified to include the effect
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of NLTE simply by multiplying the divergence of the radiative flux by a constant involving the

nonequilibrium parameter TJ = r/c/r/r.

Under the assumption of LTE, Eq. (4.50a) may be expressed for black bounding surfaces as

f r
Uo

u - t)dt - F2(t)E2(t - Tu)dt (4.56)
ra

where F\u(t) = ew(t)-e lw; F2(0 = ew(0~e2w A direct differentiation of Eq. (4.56) results in

- t)dt + f ~ F2u(t)Ei(t - ru)dt] (4.57)

Equation (4.56) and (4.57) are the LTE equations for one-dimensional absorbing-emitting medium

with diffuse nonreflecting boundaries and are very useful for many engineering applications

4.5.1 Fundamental Approximations and Resulting Equations

An often employed approximation in radiative transfer problems involves replacing the expo-

nential integral En(t) by an exponential function. The procedure for obtaining this approximation

and its validity is discussed in [18]. For the present situation, the exponential integrals £2(1)

and £"3(0 are approximated by

(4.58a)

~ iexp (-?*) (4.58b)

Employing these approximations, Eq. (4.50) is expressed in physical coordinates as

(--Kuy} -52wexp --/cw(£-y)

-Mz)Ku,exp --Ku(y-z) \dz+ -7T\ I*" wo

/

L f 3 1 1Ju(z)Kuexp \ - ~ K u ( z - y ) \ d z \
L ^ J J

L
(4.59)
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At the same time Eqs. (4.58) should also be used in Eqs. (4.51) to obtain corresponding

expressions for the surface radiosities. In order to avoid writing expressions for the radiosities

in the subsequent discussion, attention will be directed only to black bounding surfaces.

Again, by noting the assumptions on Ju(y) as being independent of wave number within

the band, for black bounding surfaces, a combination of Eqs. (4.52) and (4.59) gives

r -r / \ t I I *5 /3 t
o /2 Jo

dudz
Jo J &w L "

r _
3

u exp -r* ~
2

(4.60)

Equation (4.60) may now be formulated in terms of the derivative of the total band absorptance,

A'(y], since the kernal of the integrals in this equation have exactly the same form as the

derivative of the total band absorptance obtainable from Eq. (4.37). After expressing Eq. (4.60)

in terms of A'(y], it should be noted that the correlations for the total band absorptance are

available in terms of the dimensionless path length u. Thus it would be convenient to re-

express the resulting equation in terms of u. This is done by defining u0 = (S/A0)PL, and by

letting u' be the dummy variable for u. After this has been accomplished then by defining the

dimensionless independent variable as

{.I.i-.ijf.i.i (4.61)
L TOU ua u0 L

the equation for the radiative flux is expressed in its final form as

= ei - e2
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(4.62)

where A'(u] denotes the derivative of the dimensionless band absorptance A(u) with respect to u.

Performing spatial integration by parts, Eq. (4.62) can be expressed in an alternate form as

3 ( dqn -,-v\wA
•t

~ If ~dJA (4.63)

In obtaining this equation it was assumed that ewc(0) = eiwc, and ewc(l) = e2WCi which is

correct only in the large path length limit. Consequently, Eq. (4.63) is applicable only in the

limit of large u0.

Since restriction is made to moderately small temperature differences within the gas, Planck

function eu, can therefore be linearized as

^ elw + (deu/dT)Ti(T - (4.64)

By employing Eq. (4.64), linearized form of the radiative flux equations, Eqs. (4.62) and (4.63),

can be obtained.

Because of the restrictions of two level transitions inherent in the nonequilibrium transfer

equation, the radiative flux equations given by Eqs. (4.62) and (4.63) are applicable to gases with

only one fundamental band contributing to the radiative process. These equations, therefore,

are useful in describing radiative transfer only in diatomic gases where contributions from the

overtone bands are not important. For gases with more than one fundamental band, where each

band independently contributes to the radiative process, Eq. (4.62) is written in the form
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Here n denotes the number of fundamental bands. Equation (4.63) can also be written in a

similar form.

For the situations where assumptions of LTE are valid, the last two terms on the right

hand side of Eq. (4.65) vanish and then there remains no restriction of taking summation over

fundamental bands only. However, for the conditions (low pressure and moderate temperature)

where NLTE effects are important, fundamental bands are of main importance to the radiative

process. Contributions from the combination and overtone bands become significant only at

higher temperature and pressure where conditions of LTE usually prevail. As such, Eq. (4.65)

could be regarded as a general expression for the radiative flux in nongray gases.

4.5.2 Optically Thin Limit

As pointed out by Sampson [72], the effect of nonequilibrium radiation is more prominent in

the optically thin limit. Many physical problems involving nonequilibrium radiation can therefore

be formulated in this limit with considerable mathematical simplification. In a particular analysis,

this limit is approached when optical thickness TO, pressure path length X, or dimensionless path

length u0 is small. There are two ways of obtaining this limit One is to employ the Planck mean

and modified Planck mean coefficient and make use of Eq. (4.55), while the alternate method is

to directly obtain limiting forms of governing equations. Following the second approach, and
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by noting that for u0 « 1, A(u) = u, A'(u) = 1, there is obtained from Eq. (4.62)

(4.66)

Equation (4.66) along with the equation for the conservation of energy will describe a physical

problem completely in the optically thin limit. It should be noted that Eq. (4.66) is essentially

the same as Eq. (4.55).

4.5.3 The Large Path Length Limit

As discussed in [77, 89, 90], conventional Rosseland (or diffusion) limit does not apply to

infrared gaseous radiation. For Rosseland equation to apply, the gas must be optically thick

for all values of wave number that contribute to the absorption-emission process. However,

there will always be optically non-thick regions in the wings of vibration-rotation bands and this

prohibits using Rosseland limit as a proper limit for infrared radiation.

For vibration-rotation bands, even though the Rosseland equation is inapplicable, a large

path length limit does exist and is achieved when u0 » 1 for each band of importance. As

shown in [77, 89, 90], in this limit A(u) = ln(u), A'(u) = 1/u, such that their substitution

in Eqs. (4.62) and (4.63) gives

~™* p^ "••• ^>>— c- j o^

and

-Ao \ I .*, 1
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In order to obtain the divergence of the radiative heat flux and to compare the order of

magnitude of each term in the resulting equation, it seems convenient to work with Eq. (4.68).

Differentiation of Eq. (4.68) is performed by using the Cauchy principle and there is obtained

I™ = A I
dt °J0

Since, for the gas models considered here, the quantity TJ = T}C/T)T will not be much higher

than of order one, in the limit of large u0, Eq. (4.69) reduces to

= A0f
Jo

(4.70)

which is purely an equilibrium result The vanishing of nonequilibrium effects in this limit can

further be seen from the consideration of the source function. It should be recalled, from the

discussion of Sec. 4.2, that the NLTE effects come only through the source function. The source

function, as given by Eq. (4.50c), can be expressed in the following form

. (4.71)

A combination of Eqs. (4.69) and (4.71) results in

From a comparison of the order of magnitude of each term in this equation, it is noted that in

the large u0 limit the source function Jw(£) becomes the Planck function ew(£)/jr, and according

to the Kirchhoffs law the conditions of LTE prevail.

From a physical point of view, it should be noted that the large u0 limit is achieved by either

going to higher pressures or to larger path lengths. In case of high pressures, the energy levels are
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populated mainly by collisions (a collision dominated process) and consequently the conditions

of LTE prevail. On the other hand, when the large u0 limit is achieved as a result of large path

length, then LTE is assured by the conditions for optically thick radiation (photon continuum).

4.5.4 Gray Gas Formulation

Under the assumption of LTE, a combination of Eqs. (4.52) and (4.59) results in (for black

bounding surfaces and gray gas approximation)

qR(r) = F(r) + rjjT T\t)exp(-b(r-t)]dt

- JTJ T*(t)exp[-b(t-T)]dt\ (4.73)

where

F(r) = <7T4exp(-&T) - aT% exp[-6(r0 - r)]

and b — 3/2 and F = b<r. Differentiation of Eq. (4.73) twice by using the Leibnitz formula

results in

dr* ~ dr* dr

+ r&2 1 / T4(t) exp [-b(r - t)]dt

- r T4(t)exp[-b(t-T)]dt\ (4.74)

Eliminating the integrals between Eqs. (4.73) and (4.74), one obtains

^T) (4.75)

Equation (4.75) is the general differential equation for radiative flux for gray gas ap-

proximation. For the specific relation of F(T) as defined in Eq. (4.73), there is obtained

d2F/dr2 + 62F(r) = 0. Consequently, Eq. (4.75) reduces to

<PqR 9 (4.76)
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This is an appropriate relation for radiative flux for gray gas analyses of the present physical

problem.
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Figure 4.1 Physical model for radiative interaction
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Figure 4.2 Plane radiating layer between parallel boundaries
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5. RADIATIVE INTERACTION IN GASES
WITH VIBRATIONAL NONEQUELIBRIUM

In this section, basic features of infrared radiative heat transfer in nongray nonisothermal

gases are investigated. A general band absorptance model analysis is presented for diatomic

and polyatomic gases. This model, at least in an approximate manner, accounts for the line

structure behavior of the band and takes into consideration radiation in the wing regions. Other

approximate band models were considered in [77]. The particular gases selected are CO, COi,

F^O, and CFU mainly because the required spectroscopic information for these gases is easily

available. The effect of nonequilibrium is investigated for diatomic gases in general and for CO

in particular. It is further pointed out that for CO2 fundamental bands, at room temperature, the

assumption of LTE is valid even down to a pressure of 1/100 atmosphere. Under the assumption

of LTE, radiative contribution from the combination and overtone bands of COa and CO is

investigated. It was indicated in [71] that if band centers of two adjacent bands are separated

by more than about 100 Be cm'1 then these bands can be treated as independent bands and any

overlapping in the large path length limit can be neglected.

5.1 Infrared Radiation Transfer in Gases with Internal Heat Source

The physical model and the coordinate system are as shown in Rgs. 4.1 and 5.1 except

that the plate surfaces are assumed to be black and to have the same uniform temperature T\.

There is a uniform heat source (or sink) per unit volume Q within the gas. The model as stated

here, would at first appear to be quite unrealistic, but it serves a very useful purpose in the

investigation of the basic features of infrared radiative heat transfer. This is analogous to the

problem of slug flow convection in a parallel plate channel.
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5.1.1 General Formulation

From the conservation of energy, there is obtained

= Q (5.1)

where qn is the total radiative flux over all wave numbers and is given by Eq. (4.65). From

symmetry of the problem, it follows that q& = 0 at y = L/2, and Eq. (5.1) may be integrated

to yield

For the ith vibration-rotation band, a combination of Eqs. (4.61), (4.62), (5.1), and (5.2) yields

£<« -1) -

(5.3)

where

*:•(/) = 4-[|««fc - o]. ^(^) = 4[f««(^ - o]
The integro-differential equation expressed in this form is valid for gases with only one

fundamental band, i.e., to diatomic molecules. By defining a dimensionless quantity

QL/A0u
(5.4)

Eq. (5.3) may be expressed as

(5.5)
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The quantity <£(£) represents the temperature profile within the gas. The parameters in this

equation are, the dimensionless pathlength u<,, the nonequilibrium parameter (17 = ijc/Vr) and

the line structure parameter /? which enters through the empirical correlation for the total band

absorptance A(u).

For the conditions where the assumption of LTE is justified, a combination of Eqs. (4.61),

(4.64), (4.65), and (5.2) results in a linearized form of integro-differential equation for gases

with n-vibration rotation bands as

S o ~~ n .=1 °
(5.6)-r-

where the following definitions were employed

Af \ (5.7a)

(5.7c)

The quantity <£* represents the temperature profile for linearized radiation under the assumption

of LTE.

Note that, for a multiband system, a combination of Eqs. (4.61), (4.65), and (5.2) would

have resulted in a nonlinear integral equation. However, consistent with the assumption of a

temperature independent absorption coefficient, the problem was linearized through the use of

Eq. (4.64). Further, it should be noted that for a single band gas if ^* is available then <£ can

be obtained from the relation

(5-8)
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By making use of the correlation for the total band absorptance as given by the Eq. (4.43),

numerical solutions of Eqs. (5.5), and (5.6) were obtained. Spectroscopic information of

Tables Al and A2 was used, and for the relaxation time of CO fundamental band, Eq. (4.8)

was employed. The solutions were obtained by the method of undetermined parameters. A

polynomial solution for <f> was assumed, and the constants were evaluated by satisfying the

integral equation at equally spaced locations. Both quadratic and quartic solutions were utilized,

with the two solutions yielding virtually identical results. Simpson as well as Romberg techniques

of numerical integration were employed. The results are presented and discussed in Sec. 5.3.

5.1.2 Large /? Solution

For gases where detailed spectroscopic information about the line structure behavior of

individual bands is not available, radiative effects can be investigated in the limit of large

(3. This limit is approached when spectral lines are sufficiently pressure broadened such that

the total band absorptance is no longer a function of pressure. The line structure function in

Eq. (4.43) for this case becomes /(/?) = 2.94, and ft now ceases to be a parameter in the

integro-differential equations, Eqs. (5.5) and (5.6). It should be noted that for the conditions

where the assumption of large ft is valid, the assumption of LTE is also justified except for small

values of u0j. Formulations in this limit are especially useful in determining the contributions

from combinations and overtone bands.

The spectroscopic information required for this limit is the rotational constant, the band width

parameter, and the integrated band intensity. For important molecules, rotational constants and

band intensities are available in the literature [70, 91]. The band width parameter A0 can be

evaluated by the method presented in Appendix A. Large (3 solutions were obtained for CO,

, and CFU, and these are discussed along with the general band absorptance results
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in Sec. 5.3.

5.1.3 Optically Thin Limit

As discussed in [18], an exact formulation of the nongray problem is possible in the optically

thin limit. For the physical model considered here, the divergence of radiative flux for this limit

is obtained from Eq. (4.55) as

-(1 + i?) = MMr.T,)!? - «P(T)T4J (5.9)

Combining this with Eqs. (4.33) and (5.1), there is obtained

-«p(r1)S = (i + 7?) (5.10)

It should be noted that Eq. (5.9) is a completely general equation and is applicable to gases

with multiple bands. From the discussion of Sec. 4.4, Eq. (5.10) can also be regarded as a

general equation. However, the presence of the nonequilibrium parameter rj in these equations

should restrict their applicability to gases with fundamental bands only. Since, in the optically

thin limit, only fundamental and pure rotation bands contribute significantly to radiation, and

since rotational energy is assumed to be described by the kinetic temperature, Eq. (5.10) can

be treated as a general equation for the nonequilibrium conditions. In applying Eq. (5.10) to

multiband gases, the nonequilibrium parameter 77 must be summed over all bands. Alternately,

by making use of Eq. (4.33b), a rigorous formulation in the optically thin limit can be presented

for multiband gases.

Employing Eq. (4.32), and by noting that for fundamental and pure rotation bands S(T) ~

1/T, Eq. (5.10) can be expressed as

_ ,

where the result <j> = 1/4 was obtained in [77] for this limit under the assumption of LIE.
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Equation (5.11) could also be obtained by first allowing the spectral coefficient to be

temperature dependent, and then going to the limit of small temperature differences. This would

not be the case, however, if one employs Eq. (5.10) and then assumes that the Planck mean

absorption coefficient is independent of temperature. In other words the correct formulation for

small temperature differences corresponds to assuming that the spectral coefficient, and not the

Planck mean, is independent of temperature.

The optically thin limit can also be obtained by taking the limit of the integro-differential

equation, Eq. (5.5), as the dimensionless path length u0 becomes very small. Alternately, this

amounts to combining Eqs. (4.66) and (5.1) to obtain

e T i 1 1
Q/PS<(T) 3 4

The differences between Eqs. (5.11) and (5.12) are due to the fact that Eq. (5.11) was

obtained from an exact formulation while exponential kernal substitutions were made in obtaining

Eq. (5.12). The exponential kemal approximation, as given by Eq. (4.58), produces the greatest

error for optically thin conditions.

Further discussion about formulating the radiative problems in the optically thin limit is

given in [18, 77].

5.1.4 Large Path Length Limit

From the discussion of subsection 4.5.1, it should be recalled that in the large path length

limit the assumption of LTE is justified. Since in this limit A(ui) = In (ui), and A'(UJ) = 1/u,-,

then there is obtained from Eq. (5.6)
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Aside from the obvious simplification in form in going from Eq. (5.6) to Eq. (5.13), there

are other more striking consequences associated with Eq. (5.13). For example, of the three

correlation quantities A0i,C^, and B], only AOI remains in Eq. (5.13) through the definition of

<£*(0 as given by Eq. (5.7). The dependence upon this single correlation quantity in the large

path length limit has also been illustrated by Edwards et al. [35] in dealing with laminar flow

between parallel plates.

The absence of the line structure quantity B% is obvious, since the line structure of the band

plays no role when radiative transfer occurs solely in the wings of the band. Since the individual

band intensities correspond to A0iC^, the absence of C^ illustrates that the radiative transfer

process is independent of the band intensities in the large path length limit. This is physically

reasonable, since the central portion of the band does riot contribute to radiative transfer in this

limit.

A further simplication associated with Eq. (5.13) is that the temperature profile within the

gas is independent of pressure. This is not the case with the general formulation, Eq. (5.6), for

which pressure appears both in the dimensionless band path length uol and in the line structure

parameter /?,. This invariance with pressure can also be found from the results of Edwards et

al. [35].

The solution of Eq. (5.13) was obtained by Cess and Tiwari [89] as

It should be noted that this temperature profile yields the result that the gas temperature at the

surface is equal to the surface temperature, and this absence of a temperature slip is characteristic

of optically thick radiation. This, of course, is due to the fact that optically thick radiation is

occurring in certain spectral regions. As previously discussed, optically nonthick radiation exists
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in other spectral regions, with the result that Eq. (5.14) differs substantially from the temperature

profile which would be predicted using a Rosseland type (or diffusion) equation [77].

The dimensionless centerline temperature follows from Eq. (5.14) to be

QL/H
(5.15)

5.2 Energy lYansfer by Conduction and Radiation

The sole purpose of this subsection is to investigate the effects of including thermal

conduction as another mode of energy transfer in the physical system already considered in

Sec. 5.1. The physical model is still somewhat unrealistic, but the results will be of qualitative

use in assessing the relative importance of thermal radiation and molecular conduction as energy

transport mechanisms for other real physical systems to be treated in Sec. 6.

For the sake of brevity, band absorptance model solutions are obtained only for CO, and the

radiative contribution of the overtone band is investigated in the limit of large u0. Furthermore,

for the CO fundamental band, effects of vibrational nonequilibrium are studies in the presence of

molecular conduction. Limiting solutions of governing integro-differential equations are obtained

in general, and values of interaction parameters in the optically thin and large u0 limits are

evaluated for different gases.

5.2.1 General Formulation

The physical model for the present problem is taken to be the same as considered in Sec. 5.1.

Here, in addition to uniform heat generation within the gas, thermal conduction is also included.

From conservation of energy, Eq. (2.10), the temperature profile within the gas is described

by

t|I_^«+(3 = 0 (5.16)
«JT dy
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Upon integrating this equation once, and by noting that dT/dy = 0 and qx = 0 at y = L/2,

there results

AT
(5.17)

In this case, the appropriate equation for the radiative heat flux is Eq. (4.65). For linearized

radiation a combination of Eqs. (4.64) and (4.65) yields, for the ith band

= |̂ -««(^L) { j

(5.18)

where j4'j(/) and A;

Upon letting

are as defined in Eq. (5.3).

= (T-T l)/(QL2/k) (5.19)

and employing definitions of Eqs. (5.7a) and (5.7b), then for a multiband system, Eqs. (5.16)

through (5.18) combine to yield the integro differential equation

d(

jf

8
(5.20)

Since the presence of conduction implies continuity of temperatures at the boundaries, the

boundary condition for this equation is

9(0) = 0 (5.21)
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For the conditions where the assumption of LTE is justified, the second term on the right hand

side of Eq. (5.20) drops out. Furthermore, note that for negligible radiation transfer, Eq. (5.20)

yields the temperature profile

(5.22)

Following the identical procedures discussed in Sec. 5.1, numerical solutions of Eq. (5.20)

have been obtained for CO and results are presented in Sec. 5.3.

5.2.2 Optically Thin Limit

In the present notation, the optically thin limit corresponds to uot « 1 for each band of

importance. Noting that /4'-(u,) = 1 for u0, « 1, Eq. (5.20) reduces to

J/\ i
GLv J.

t* / d2e\ ,I (i + —r 1 ̂  -
Jo V d£' /

Differentiating this once, and upon letting

N =

and

PL2

k *

N =

the opticaUy thin form of the energy equation becomes

- we = -i

with boundary conditions

(5.23)

(5.24a)

(5.24b)

(5.25)

= 0, 0'(l/2) = 0
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Note that in Eq. (5.24b), the summation over the nonequilibrium parameter was not taken simply

because NLTE effects are investigated only for the fundamental band of CO. Equation (5.25)

possesses an elementary solution, and the centerline temperature is found to be

Tc - T, 1

l+exp(-\/3Jv)
(5.26)

It readily follows that the dimensionless parameter N (or N) characterizes the relative

importance of radiation versus conduction within the gas. For particular values of P and Ly it

is actually the dimensional gas property

which denotes the relative importance of radiation to conduction. This quantity was evaluated

for a number of gases and is illustrated in Fig. 5.2. For CO, COi, HjO, and CHj, Eq. (5.27)

was evaluated using the correlation quantities given in Table Al. For N2O and NHs, the band

intensities, A0iC^, were taken from Table A2. Thermal conductivity values were obtained from

Tsederberg [92] and information given in Appendix B. It was noted that inclusion of weaker

overtone and combination bands of these gases did not make any significant change in the values

of the quantity N/PL2. It should be emphasized that this quantity characterizes the radiation-

conduction interaction only in the optically thin limit, and that the nonequilibrium interaction

in this limit comes through the definition of N. For the range of pressure and temperature

considered here, the difference between N and N should be quite small for all gases except CO.

5.2.3 Large Path Length Limit

As noted earlier, in the large uot limit, the assumption of LTE is justified, and with

A'^ui) = l/ui for each band of importance, Eq. (5.20) reduces to

^77 (5.28)
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where Eq. (5.21) is again the appropriate boundary condition, and

HL L
(5'29)

The dimensionless parameter M constitutes the radiation-conduction interaction parameter

for the large path length limit, and the dimensional gas property M/L is illustrated in Fig. 5.3.

For each molecule, the number of bands included in evaluating Eq. (5.29) are listed in Table

A2. Contributions from weaker bands were seen to be significant at higher temperatures, and

therefore, they were included in evaluating the quantity M/L. For CO, CO2, H2O, and Cfy,

this quantity was evaluated by using the values for A<,i as given in Table Al. For weaker bands

of CO2, H2O, and CHi, and for all bands of N2O and NH3, Eq. (A. 10) for A0i was employed

A comparison of Figs. 5.2 and 5.3 shows a considerable difference in the radiation-

conduction interaction for the optically thin limits as opposed to the large path length limit.

For example, in the optically thin limit CO2 possesses a large radiation interaction relative to the

other gases, while the reverse is true in the large path length limit On the other hand, just the

opposite trend is observed for H2O. Since the thermal conductivities of the various gases do not

differ appreciably, this behavior is due to differences in the radiative transfer for the optically

thin and large path length limits, and a discussion to this effect has been given in [89].

Equation (5.28) does not appear to possess a closed form solution. A numerical solution

has thus been obtained, and the results for dimensionless centerline temperature are presented

in Sec. 5.3.

53 Results and Discussion

The results are presented first for the case of infrared radiation heat transfer in gases with

internal heat source, and this is followed by the results for combined conduction, uniform heat
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generation, and radiative interaction. For the sake of brevity, most of the results are expressed

in terms of the centeline temperature.

5.3.1 Radiation Transfer in Gases with Internal Heat Source

Numerical solutions of Eq. (5.5) are illustrated in Figs. 5.4 and 5.5 for ft = 0.1, and /? = oo,

and for a range of the nonequilibrium parameter r; = r)c/Tjr. Because of the limitation noted

earlier, these results are only applicable to diatomic gases. Also shown are results for the large

u0 limit, Eq. (5.15), and for the optically thin limit, Eq. (5.12). Optically thin results are shown

only for the case of LTE. It should be noted that a lower centerline temperature implies a greater

ability of the gas to transfer energy.

For conditions where the assumption of LTE is justified, all modes of energies are described

by a single equilibrium temperature (referred here as kinetic temperature). In the presence

of vibrational nonequilibrium, however, there would be a continuous exchange of energies

between the vibrational and the kinetic modes. As a consequence, there would be attained

a new temperature which would be higher than the temperature corresponding to the conditions

of LTE. This behavior is evident from the results of Figs. 5.4 and 5.5. As would be expected

the nonequilibrium effects are significant in the regions of small path lengths, and for the values

of the parameter 77 higher than unity. For large values of u0, the assumption of LTE is seen

to be justified.

For CO fundamental, the vibrational noneqilibrium parameter rj is illustrated in Fig. 5.6.

Values of TJC and rjr were obtained from Eqs. (4.8) and (4.27) respectively. It is seen that at

a pressure of one atmosphere and a temperature of 500K, the nonequilibrium parameter has a

value of about eight, indicating that for these conditions the assumption of LTE will prove to

be highly in error. It was pointed out by Hooker and Millikan [49] that at a pressure of one

atmosphere, the spontaneous radiation process should dominate the vibrational relaxation process



72

for temperatures lower than 600K. At a temperature of 1000K, the assumption of LTE will be

justified for pressure higher than 1/lOth of an atmosphere.

Information on relaxation time for the fundamental bands of COa is obtained from the

discussion and results presented in [62, 64]. According to these references, at room temperature,

both the bending mode (vibration of wave number 667 cm"1) and the asymmetric mode (wave

number 2349 cm"1) have a value of PTJC of 7 atm-p sec. At a mean translational temperature

of 500K, the values are 2.9 and 3.6 atm-p sec, and at 1000K they are 0.93 and 1.4 atm-^ sec,

respectively. Employing the values of rjr from Table A2 for bending and asymmetric modes

the quantity P(rjc/r}r), at room temperature, is found to be (3.26 x 10~5) and (3.21 x 10~3)

atm, respectively. Consequently, for CC>2 at room temperature, the assumption of LTE will be

justified at least down to a pressure of 10~3 atm, and at higher temperatures, the assumption will

be justified even to much lower pressures.

Information on relaxation time for N2O is available in [62]. Nitrous oxide has very similar

physical properties to carbon dioxide and, therefore, the above conclusions should also apply

to N2O.

For CO fundamental, LTE and NLTE band absorptance results are illustrated in Figs. 5.7

through 5.9 for temperature of 500K, 1000K, and 2000K, and for a range of pressures. In

evaluation of these results, spectroscopic information of Tien and Lowder [33] was employed.

Since the abscissa variable is the pressure path length, PL, then the separate influence of pressure

upon the LTE centerline temperature curves is due solely to the alteration of the line structure

of the bands as a consequence of pressure broadening. As the pressure is increased, the discrete

line structure is eliminated and pressure ceases to be a parameter in the high pressure limit

From a comparison of LTE and NLTE results in Figs. 5.7 through 5.9, one arrives at the

conclusions mentioned earlier, i.e., at a temperature of 500K, the assumption of LTE is not

justified up to a pressure of about 8 to 10 atmosphere. However, at a temperature of 2000K, the
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assumption of LTE will be valid for pressures higher than l/100th of an atmosphere.

Under the assumption of LTE, for CO, CO2, H2O, and CH4, general band absorptance and

large 0 results, as obtained from the numerical solutions of Eq. (5.6), are shown in Rgs. 5.10

through 5.13 for different temperatures and for a pressure of one atmosphere. These results

were obtained by considering the contributions from the three bands of COj, five bands of H2O,

and two bands of CHU, and spectroscopic information of Table Al was employed. For the CO

fundamental band, spectroscopic information of Tien and Lowder [33] was used. General band

absorptance results for these gases at various pressures were reported, along with results in the

large path length limit, by Cess and Tiwari [89].

It is seen from Figs. 5.10 through 5.13 that large /? and band absorptance results approach

to be the same in both optically thin and large path length limits, and that maximum differences

occur for the intermediate values of path lengths. The reasons for this can be given on the

physical grounds. In the optically thin limit results become independent of pressure because the

radiative transfer process in this limit depends solely upon the area under K^/P versus wave

number curve. In the large path length limit the total band absorptance reduces to the logarithmic

asymptote A — In u, and is thus independent of /?. It has been further explained in [77] that the

line structure of bands has maximum influence only for the intermediate values of path lengths.

It should be noted that for gases like CO2 and H2O, large /? solutions, for the most part, are

very good approximations to the general band model results. However, this is not so for gases

like CO and CHt. Further, for CO2 differences between the two results seem to disappear at

higher temperatures. This is because the quantity fi,?(T) is proportional to the square root of

temperature, and at higher temperatures this results in a larger value for /?.

A comparison of the relative ability of the various gases to transmit radiant energy is shown

in Fig. 5.14 for a temperature of 1000K and a pressure of one atmosphere. From previous

discussions, for these conditions, the assumption of LTE would be justified As discussed in
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[89] COi, having the largest Planck mean coefficient, is the best transmitter of radiant energy in

the optically thin limit, although just the opposite is true for the large path length limit.

Radiative contributions from overtone and combination bands of CO and COi were inves-

tigated and results are illustrated in Figs. 5.15 and 5.16. For CO, band absorptance results were

obtained by using the information of Table Al. Employing spectroscopic information of Tables

Al and A2, large /? solutions were obtained for COi. For the three weaker bands of COi,

the band width parameter A0 was calculated by using the relation given in Appendix A, i.e.,

Eq. (A. 10).

Figures 5.15 and 5.16 indicate that contributions from overtone and combination bands

are significant only for large path lengths and at higher temperatures. This is because at a

particular pressure, if the path length is increased there becomes available more molecules to

participate in the transfer process and at higher temperatures a significant number of molecules

make transitions to higher energy levels.

From the results presented in this section it may be concluded that in the large path length

limit the assumption of LTE is justified and that nonequilibrium has the largest effect in the

optically thin limit. At a pressure of one atmosphere, the assumption of LTE for CO is not valid

for temperatures below 600K, while for gases like CO2 and N2O, the assumption is justified at

room temperatures. Large 0 results represent good approximation to general band absorptance

results for CO2 and H2O, and at moderate temperatures, contributions from weaker combination

and overtone bands can usually be neglected.

5.3.2 Energy Transfer by Conduction and Radiation

The variations in radiation-conduction interaction parameters for optically thin and large

path length conductions are illustrated in Figs. 5.2 and 5.3, respectively. General results for the

centerline temperature as a function of the interaction parameter are shown for the optically thin
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radiation in Fig. 5.17 and for the large path length interaction in Fig. 5.18. Dimensionless

centerline temperatures for CO as obtained from the numerical solution of Eq. (5.20), are

illustrated in Figs. 5.19 through 5.21 for wall temperatures of 500K and l.OOOK, and for a

range of pressures. Since the centerline temperature for pure conduction follows from Eq. (6.7)

to be (Tc - Ti)/(QL2/k) = 0.125, then Figs. 5.17 through 5.21 serve to illustrate the influence

of radiative transfer upon the temperature profile within the gas.

Figure 5.17 illustrates the influence of nonequilibrium in the optically thin limit. It is seen

that for a fixed value of the interaction parameter N, the radiative contribution decreases as the

nonequilibrium parameter (r; = TJC/T}T) increases. This is consistent with the discussion given in

Sec. 5.1 that the presence of nonequilibrium will result in a higher centerline temperature. This

behavior is also observed from the results of Figs. 5.19 and 5.20. Once again, it is concluded

that for CO at one atmospheric pressure the assumption of LTE is not justified for a temperature

of 500K; however, at l.OOOK the assumption is valid even for a pressure of 0.01 atmosphere.

Also shown in Figs. 5.19 and 5.20 are the large path length limit (large u0t limit) results,

as obtained from Fig. 5.18 together with the M/L values from Fig. 5.3. It can be seen that

the large path length limit is essentially a limiting solution for large pressures. As would be

expected, the importance of radiation becomes more pronounced as the pressure, or the plate

spacing, or both are increased.

The radiative contribution from the 1st overtone band of CO was investigated in the

presence of molecular conduction, and results obtained in the large u0 limit indicate a significant

contribution only at a higher temperature and for a larger plate separation (Fig. 5.21).

For this problem, under the assumption of LTE, band absorptance and limiting solutions

were also obtained for (X>2, HaO, and CHi by Cess and Tiwari [90]. The band absorptance

results were based on the Tien and Lowder correlation, Eq. (4.43). From a comparison of

the entire results it was concluded that the large path length limit constitutes an upper bound
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upon the influence of radiative transfer on the temperature profile within the gas. This same

conclusion applies to the optically thin limit since self-absorption is neglected. This fact that

both limiting solutions constitute upper bounds on the radiative interaction can be employed to

estimate whether or not, for a given gas, the interaction of radiation may be of importance.
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6. HEAT TRANSFER TO LAMINAR FLOW OF RADIATING GASES IN DUCTS

The methods developed in the previous sections will now be applied to the more realistic

problem of combined conduction convection and radiation for laminar flow between two parallel

plates and within a circular tube. Analyses will be restricted to the conditions where the

assumption of LTE is justified. Gray as well as nongray treatments are presented and the

effects of surface emittance upon radiative transfer are also investigated for this problem. For

the parallel plate geometry nongray results for CO and COa have been obtained by employing

various band model correlations for comparative purposes.

Radiative interactions in duct flows have been investigated extensively during the past two

decades with certain inherent simplifying assumptions. Some important works are summarized

in [32-40] and details are available in cited references. Certain specific studies related to the

present problem are available in [93-114]. The main objective here is to provide gray as well

as nongray formulations in a systematic manner, discuss relevant solution procedures, present

results for some specific cases, and suggest certain areas for further research.

6.1 Heat Transfer in Laminar Flow of Absorbing-Emitting Gases between Parallel Plates

The physical model consists of laminar flow between two infinite parallel gray plates, each

of which has the same emissivity e. The boundary condition along each of the plate surfaces is

taken to be that of a uniform heat flux, and thus the temperature of the plates, T\, varies in the

axial direction (Rg. 6.1). Only fully developed flow and heat transfer are considered. Attention

will additionally be restricted to small temperature differences, such that constant properties and

linearized radiation may be assumed.

6.1.1 Basic Formulation

Since the wall temperature varies in the axial direction, there will exist radiative transfer

between wall elements located at different axial positions, and in general this would preclude
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the possibility of achieving fully developed heat transfer. For linearized radiation, however, it is

easily shown that fully developed heat transfer can be obtained, with the subsequent result that

there will be no net radiative transfer between wall elements.

Within the confines of the foregoing assumptions, the energy equation for the present problem

can be obtained from Eq. (2.10) as

dT
*~a~ ^"T -- 7T~a~ >

dx <9y2 pCp dy

where the parabolic velocity profile is described by Eq. (3.11) which for the present case is

expressed as

», = 6w« [(y/L) - (y/L)2] (6.2)

where the mean velocity vm — um is given by Eq. (3.1). For a uniform wall heat flux and fully

developed heat transfer dT/dx is a constant and is given by Eq. (3.21). Consequently, Eq. (6.1)

can be written in dimensionless form as

where f is defined by Eq. (4.61) and

(6.3b)

Upon integrating this equation once, and by noting that d0p/d£ = 0 and qz = 0 at £ = 1/2,

one finds

l = S£ (6.4)

The expression for the total radiative flux for gray surfaces and a single band gas was

developed by Tiwari and Cess [94], which can easily be extended to include multi-band gases,
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and for the present problem there is obtained

m=0

Note that for black plates, this coincides with the expression for the total radiative heat flux,

under the assumption of LTE, as given by Eq. (5.20).

The temperature profile within the gas, 9P(£), is thus defined by the combination of Eqs. (6.4)

and (6.5). The boundary condition for the resulting equation follows to be &P(Q) = 0. For flow

problems, the quantity of primary interest is the bulk temperature of the gas, which is defined

by Eq. (3.9). Employing Eq. (6.2) and the dimensionless quantities defined earlier, the bulk

temperature can be expressed in a dimensionless form as

= 6

which is equivalent to Eq. (3.35).

The heat transfer qw is given by the expression, qw = hc(T\ — TV), where hc is the equivalent

heat transfer coefficient watts/m2-k. As mentioned in Sec. 3, the heat transfer results are

expressed usually in terms of the Nusselt number Nu defined in terms of the hydraulic diameter

DA. For the present geometry D^ - 2L. Eliminating the effective heat transfer coefficient hc from

the expressions for qw and Nu, a relation between the Nusselt number and the bulk temperature

is obtained as

~2

0bp

Equation (6.7) is essentially the same as Eq. (3.37).
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By employing the techniques similar to that discussed in Sec. 5 and described in detail in

[109-1 14], numerical solutions yielding results for 0jp have been obtained for several illustrative

cases, and these are discussed in Sec. 6.4. It should be pointed out here that the number of terms

(m values) required in Eq. (6.5), for proper convergence, increases as values of wall emittance

decreases. For example, with e = 0.5 it was necessary to consider only three terms, while with e

= 0.1 a minimum of ten terms were required. The numerical procedure is described here briefly.

The numerical solutions of combined form of Eqs. (6.4) and (6.5) are obtained by the method

of undetermined parameters. For this case, a polynomial solution for Op(£) is assumed as

0P(0 = a0 4- ai£ 4- a* + a3£ + a4£ (6.8)

After employing the conditions 6P(Q) = 0, 0'p(l/2) = 0, and 8'p(l) = 0'p(Q), Eq. (6.8) becomes

(6.9)

The constants a\ and 03 are obtained by satisfying the governing integro-differential equation at

two locations £ = 0 and £ = 1/4. A combination of Eqs. (6.6) and (6.9) results in

06p = ^(17«i+3a2) (6.10)

Thus, with ai and 02 known, the bulk temperature (or the Nusselt number) is obtained from

Eq. (6.10). The procedure for evaluating the constants ai and a^ is described in detail in [109,

114].

6.1.2 Limiting Solutions

For negligible radiation, there will be obtained from Eq. (6.3a)

Op = 2?-?-t (6.11)

and substitution of this in Eq. (6.6) will yield

Obp = -17/70 (6.12)
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This is analogous to the result given in Eq. (3.36).

As discussed before, in the optically thin limit (i.e. the limit of small uai) A'(u) = 1, and

from a combination of Eqs. (6.4) and (6.5), there is obtained in this limit

-2£°4-

f rt rl }
(6.13)= f i E *™{ jf ww - jf WK

After differentiating once, this equation can be expressed in the following form

with boundary conditions

0p(0) = 0, 0p(l/2) = 0

The optically thin interaction parameter N in this equation is the same as defined by Eq. (5.24a).

It should be noted here that, under optically thin conditions the effect of surface emittance upon

the radiative transfer vanishes. Explanation to this effect has been given in [94].

Equation (6.14) possesses an elementary solution, and the result expressed in terms of the

bulk temperature is found to be

1 I 576

°bp (3AT)3 | v/3lV

l-exp(-v/3lv)
-21. 67V2 + 72W-288) (6.15), --- v

l+exp(-v/377)J

This result is illustrated in Fig. 6.2. Again, note that the parameter N characterizes the relative

importance of radiation versus conduction, for the present problem, in the optically thin limit.

The large path length limit is obtained by replacing A'(u) by 1/u in Eq. (6.5), and the

corresponding energy equation becomes

(<U6)
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n
where quantity (L/k) £ Hi = M, as defined by Eq. (5.29). Note that, written in this form,

i=i
Eq. (6.16) can also be applied to investigate the effects of nongray wall emittance. This, however,

will be treated in Sec. 6.2 while dealing with the problem of flow through specific circular tubes.

Numerical solution of Eq. (6.16) has been obtained by following the procedure described

for the general case, and 9^ results are given in Fig. 6.3 as a function of interaction parameter

M. For a particular physical system, the value of M can be obtained from Fig. 5.3.

6.1.3 Gray Gas Approximation

The gray gas assumption is probably the greatest approximation for the real gas. This

assumption replaces the wave-number dependent absorption coefficient by a wave-number

averaged quantity. For lack of a more rational choice, this average coefficient will be taken

to be Kp(Ti).

Employing Eq. (4.32) and using the information of Table A2, the Planck mean absorption

coefficient was calculated for a number of gases and is illustrated in Fig. 6.4. Values of KP for

higher temperatures than those given in Fig. 6.4, can be obtained from Refs. 18 and 33.

In this section, for convenience, attention will be directed only to black bounding surfaces.

Replacing KU by KP in Eq. (4.59), integrating over the wave number, and utilizing the linearized

expression

T4 - 7\4 = 4T}(T - Ti)

there is obtained for the present problem

qR = 6<r«p7?{ f [T(z) - r,]exp [-?«,(,, - »)]dz
Uo I 2 J

- j [r(*)-ri]exp[-|K,(z-y)]«faj (6.17)
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Upon differentiating this equation twice, the integrals repeat themselves and may be eliminated,

and the resulting equation can be expressed as

where

(<U8b)

Equation (6.18a) is, in fact, simply one form of the well-known differential approximation [16,

18] and is analogous to Eq. (4.75). The boundary conditions for this equation are found to be

Q (6.18c)

The simultaneous solution of Eqs. (6.4) and (6.18) is straightforward, and the final result for

the dimensionless bulk temperature is expressed as (see Appendix C)

ObP = Ci [24 - 12Mi -I- Ml + (Af? - 12Mi - 24) e~

12v 17 (619)
70 (tU '

where
= 71 48 - 3T0Af? + 36T0

1 Aff 3r0(l - e-^') + 2Ml(l

" > * = ' + *
The governing parameters for this equation are N, and r0. Note that N characterizes the relative

importance of radiation versus conduction for gray gas. The results of this equation are illustrated

in Fig. 6.5. For a particular physical system, values of r0 and N can be obtained from Eq. (6.18b)

by utilizing the result for KP as given in Fig. 6.4.
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For optically thin conditions (r0 -» 0), M\ -» 71, and Eq. (6.19) reduces to

eb =
 1 |576 h-expt-VTT)

- 2.47? + 247i - 2881 (6.20)

and from the definition of 71 it is seen that in this limit the governing parameter is N/T%. For

small values of 71, by expanding the exponential exp (—y/TT) in series, it can be shown that the

transparent limit (TO = 0) corresponds to the result with no radiation, Eq. (6.12), see Appendix C.

Under optically thick conditions, since TO » 1, then MI » 1, and Eq. (6.19) reduces to

(6.21)

and it is seen that this limit is characterized by the parameter N.

From a comparison of Eqs. (6.5) and (6.19) it is noted that, while the band absorptance

model formulation involves three basic parameters, band intensity S(T), band width A0, and line

structure 0, the gray gas formulation is governed only by two parameters N, and r0. The line

structure parameter j3 has no significance in a gray gas analysis. From Eq. (6.13) it may be

seen that the optically thin limit of the band model involves the single parameter N/u%, which

is analogous to the gray gas parameter N/T%. On the other hand, the large u0 limit parameter

A0 is not analogous to the gray gas counterpart N. This again illustrates that the large u0 limit

for a vibration-rotation band differs from the conventional optically thick limit

6.1.4 Results and Discussion

Bulk temperature results are presented in terms of the dimensional quantities L and P. For

CO, CO2, HaO, and CH», the band absorptance results obtained by using the Tien and Lowder

correlation are illustrated in Figs. 6.6 through 6.11. The limiting value of fy/> = -0.243,

Eq. (6.12), corresponds to negligible radiation, and effect of radiation increases with increasing
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plate spacing. As would be expected radiative transfer is more pronounced for higher pressures

and wall temperatures.

Figures 6.3 and 6.6 illustrate the effects of variable wall emittance upon radiative transfer.

Shown in Fig. 6.6 are the band absorptance results for CX>2 at P = 1 aim and TI = 500 K.

Radiative contribution is seen to become smaller for lower wall emittances. This is because

a lower surface emittance corresponds to a reduction in the energy transfer capability between

the gas and the surface.

For the sake of convenience and brevity, the results arc presented only for the case of

black bounding surfaces in Figs. 6.7 through 6.11. Also shown in these figures are the limiting

solutions for large u0. As in Sec. 5.2, the large u0 solutions for individuals gases are obtained

from the results of Fig. 6.3 together with the M/L values from Fig. 5.3. It is again seen that for

a given wall temperature, the large u0 limit can be obtained either by going to large values of

L or to high pressures. Furthermore, these results indicate that at a particular wall temperature,

the large u0 limit for COi is achieved at a relatively lower pressure than for other gases. As a

matter of fact, for most practical purposes involving CO2, at room temperature, the result at one

atmosphere can be regarded as a result for the large u0 limit

A comparison of the band absorptance results for the four gases is shown in Fig. 6.11 for

a pressure of one atmosphere and a wall temperature of 1000 K. The relative order of the four

curves, for small values of L, is characteristic of the interaction parameter for optically thin

radiation (see Fig. 5.2). As the value of L is increased the results approach to the solution

obtained for the large u0 limit, and the relative order of the curves become as indicated by the

large u0 interaction parameter of Fig. 5.3.

For CC>2, HiO, and CH*, a comparison of various solutions are illustrated in Figs. 6.12

through 6.14 for a wall temperature of 500 K and a pressure of one atmosphere. The gray

solutions were obtained from a combination of the results of Figs. 6.4 and 6.5, and the optically
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thin solutions were obtained from the results of Fig. 6.2 together with the N values from Fig. 5.2.

For CC>2 it is seen from Fig. 6.12 that, when radiation is of importance, the radiative transfer

process very nearly corresponds to the large path length limit. Conversely, this indicates that

when the radiation is optically thin, it is in turn negligible relative to conduction, such that the

optically thin limit does not constitute a useful limiting solution for the conditions illustrated

in Fig. 6.12. For H2O and CH4, however, a greater departure from the large path length

limit is noticed (Figs. 6.13 and 6.14), and optically thin limit is seen to be the appropriate

limiting solution for small values of L. Furthermore, when radiation is of importance (i.e.,

at relatively larger value of L), the optically thin limit greatly overestimates the influence of

radiation, indicating that for these conditions the actual radiative process is not optically thin.

Note that the gray gas solution also overestimates the importance of radiation. As explained

in [77], the reason for this is that the optical thickness of the gas based upon the Planck mean

coefficient can be several orders of magnitude less than that based upon the maximum absorption

coefficient within the vibration-rotation band. Correspondingly, the gray gas assumption may

predict optically thin radiation under conditions for which the real process is not optically thin.

Gray, optically thin as well as large u0 solutions can be obtained with considerable math-

ematical simplifications. Since these results overestimate the influence of radiation, they can

be utilized to estimate whether or not, for a given gas, the interaction of radiation is going to

be of importance.

Bulk temperature results for CO (fundamental band) and COi (15/x, 4.3/i, and 2.7p bands) as

obtained by employing the various correlations for band absorptance, are illustrated in Figs. 6.15

through 6.18. Results for CO are illustrated in Figs. 6.15 and 6.16 for wall temperatures of

500 K and 1,000 K, respectively. It is evident from these figures that, except for the results of

Tien and Lowder correlation, results of other correlations differ from each other by less than 6%

for all pressures and path lengths. For P = 0.1 and 1 atm, results differ by not more than 3%.
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The largest difference of about 6% occurs for P = 10.0 atm and TI = 1,000 K. From a close

observation of all results presented in Figs. 6.15 and 6.16, it may be concluded that, for low

to moderate pressures (say up to 5 atm), any one of the correlations (No. 2, 3, 5, or 6) could

be employed in radiative transfer analyses. At high pressures, however, use of correlations 5

or 7 is recommended.

From Ref. 101 and the results presented in Figs. 6.7, it is noted that for CO the limit of

large u0 is approached at P = 10 atm for T! = 500 K and at 100 atm for TI = 1,000 K. This

trend is also evident, in general, from the results of Figs. 6.15 and 6.16. The results of Tien and

Lowder correlation, however, follow this trend more closely than any other result As such, use

of Tien and Lowder correlation is justified for radiative transfer analyses involving gases like

CO (i.e., diatomic gases with single fundamental band having uniform distribution of spectral

lines) at moderate and high pressures.

For CO2, results of different correlations are illustrated in Figs. 6.17 and 6.18 for P = 0.01,

0.1, 1 and 10 atm, and for TI = 500 K and 1,000 K, respectively. From the results presented

in Fig. 6.8, it may be noted that for COi the limit of large UQ (LLU) is approached at 2 atm

for TI = 300 K, at about 4 atm for TI = 500 K, and at about 10 atm for TI = 1,000 K. Thus,

results for 10 atm in Figs. 6.17 and 6.18 essentially are LLU results. For clarity, results of P =

1 and 10 atm are not plotted on the same graph.

As was the case with CO, the results of all correlations (except Tien and Lowder) almost are

identical for COj also for P = 0.01 and 0.1 atm. This, however, would be expected because the

low pressure (small /?) situation corresponds to the case of square-root limit and most correlations

are developed to satisfy this limit It was pointed put earlier and in [34, 37] that the square-root

limit is not satisfied by the Tien and Lowder correlation. At low pressures, therefore, use of the

Tien and Lowder correlation certainly is not justified. Other results of CX>2 (shown in Figs. 6.17

and 6.18) follow the same general trend as for CO in Figs. 6.15 and 6.16. The maximum
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difference between the results of different correlations is about 6% for P = 1 atm and TI = 1,000

K. For the most part, results of correlations 3, 5, 6, and 7 are identical for P = 10 atm. This again

would be expected because for CC>2, the LLU is approached at relatively lower pressures and

most correlations are developed to satisfy the logarithmic limit. For gases like CO2, therefore,

use of any one of the correlations 2, 3, 5 and 6 is recommended at low and moderate pressures,

and of 3, 5, 6, and 7 at high pressures. Use of the correlations 2, 3, 6, and 7, in a particular

radiative transfer analysis, provides a greater mathematical flexibility and simplicity.

6.2 Radiative Interaction in Laminar Flow through a Circular l\ibe

This section is concerned with the heat transfer to absorbing-emitting gases in laminar flow

through a circular tube. With the single exception of a circular geometry, this problem is exactly

the same as treated in the previous chapter. As before, fully developed laminar flow and heat

transfer have been assumed, and the boundary condition at the tube wall has been taken to be

that of a uniform surface heat flux (see Figs. 3.6 and 6.19).

In addition to the consideration of gray wall emittance, effects of nongray wall emittance

upon radiative exchange have also been investigated. Specific results have been obtained for

the flow of CC>2 through stainless steel tubes of various compositions. Furthermore, based on

the gray gas analysis for black bounding surfaces, a correlation between the parallel plate and

the tube results has been established.

6.2.1 Governing Equations

For this problem, the energy equation, Eq. (2.10), can be expressed as

dT ad ( dT\ l i d .
»«-5- = -•=- r— ) -z-(rqR) (6.22)

ox r d r \ o r j pc^rdr^

where the velocity profile is given by Eq. (3.14) and is expressed here as

t>* = 2vm[l-(r/r0)2] (6.23)
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The mean velocity vm = um&x/2, and um&x is defined by Eq. (3.15). Noting again that for

a uniform wall heat flux and fully developed heat transfer, dT/dx is given by Eq. (3.41), a

combination of Eqs. (6.22) and (6.23) yields

(6-24a)

where

OT=T-^ ;£ = - = - (6.24b)
r0 u0

Upon integrating this equation, and noting that </0r/<f£ = 0 and q& = 0 at £ = 0, there is

obtained

e -K= q j L (6.25)

and the boundary condition for this is given as #r(l) = 0.

For a circular geometry, the spectral radiative heat flux is given by the expression [98, 100,

115-119]

(6.26)

where constants a and b have values of unity and 5/4 respectively, and the expression for the

radiosity is found to be

* ' ""BU(TW) = {eeu(Tw) + -(1 - e) /* ' /"" /cwew(r')
V. v Jo Jr0Kai

(6.27a)
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where

DEN = \ l - — . ( l - e ) r cos7exp[-^^(l-sin7)ld7J (6.27b)
( *<> Jo I cos 7 J J

In order to be able to apply the technique developed in [94] for combining Eqs. (4.52),

(6.26), and (6.27), it would be necessary to obtain an exact solution for the integral appearing in

Eq. (6.27b). However, this innocent looking integral does not appear to possess a closed form

solution and therefore it has been approximated by an exponential as

f** T /I -sin -A 1
/ cos7exp -(- — ̂ -MX \d i~

Jo [ \ COS7 / J

where C\ and GI are constants and X = 26 «w r0. Evaluation of the constants in the limit when

X approaches zero gives, C\ = 1, and Ci — (?r/2) - 1. With these values for the constants, the

exponential will be expected to be a good approximation of the integral only for small values of

X. However, from a comparison of the numerical solution of the integral with the exponential

result using C\ = 1, and €2 = 1/2, an excellent agreement between the two solutions has been

found for all values of X. Using this approximation, and by noting that 4a/irb ~ 1, and following

the identical procedure outlined in [94], Eq. (6.27) can now be expressed as

BU(TW) - eu(Tw) = -(I - e) [* (" [ew(r') - eu(Tw)]
ft Jo Jr0siny

oo r / _i_ ' o * \ i
E l l " ™ * £l /C^ \ 6Xp I ~~0&w [ - T* 7717*0 I I

I I \ S*fkQ ^ V / I
L \ ^vO 7 / I

exp f-6/cw (
r-^^- + mr^l \dr'di (6.28)

oo

X

Following the procedures adopted in the previous sections, Eqs. (6.25)-(6.28) are combined

and there is obtained the final form of the energy equation as
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,-=1

cos 7

cosT /' / MOl*/M*IK'rfy}<*r (6.29)
•'« •'sin 7' J

where

cos 7

cos 7'ff^o ^y / I i \ r^f iQ ^» i^fiQ ^» / IV-U3 f /I I \ l^wO / l>v/O 7 /I/ / J t V « ' X J

if FL ( ^ ~ £ 1 4-^' — 2 sin 7' \1 -, F /I— ^ 1~^' M
— A, ouol i 1 : H m I — /I,- bu0i { H + m I

[ \cos7 cos 7' /J [ \cos7 cos 7' /J

This equation along with the boundary condition 6j>(l) = 0 defines the temperature within the

gas.

The bulk temperature for this problem is defined by Eq. (3.44) and is expressed here as

j fir fra ^ /.r0 / r2\

Tb = j / / vxT(rd$dr} = -j / Til - -j jrdr (6.30a)

By employing the dimensionless quantities defined earlier, this can be expressed as

9bT = (Tb - Tw)/(qwr0/k) = 4 / 6T(t - Z3)dt (6.30b)

For negligible radiation, Eq. (6.29) yields the temperature profile

and the bulk temperature is found to be

ObT = -11/24 (6.31)
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In the large path length limit, Eq. (6.29) reduces to

1=1
I \ -1

cos 7 cos 7'

1-^

' _ / l z f + l + f - 2 . h . y +

\cos7 cos 7 /
'

+ -—r + m d£di }df (6.32)
cos 7 cos 7'

In the form presented, Eqs. (6.29) and (6.32) can be utilized to investigate the effects of

nongray wall emittance upon radiation.

Employing the Haselgrove technique for numerical integration of multidimensional integrals,

and following the procedure described in previous sections, numerical solutions of Eqs. (6.29)

and (6.32) can be obtained and results expressed in terms of the bulk temperature.

6.2.2 Gray Medium Approximation

As in Sec. 6.1, assumption of gray gas means replacing the wave number dependent

absorption coefficient by a wave number averaged quantity «P(T). Note that inherent in this

approximation is the fact that KP is independent of temperature, which actually is not realistic

and a discussion to this effect has been given in [77].

The expression involving the total radiative heat flux can be obtained from the differential

approximation [16, 18], and for this problem one finds from Eq. (4.75)

a l i a 1 9 o ™ /£. •ITV~T~ I ~~j~(rQR) I — ~KpQR = 30'/Cp—j— (6.33)

For linearized radiation

dr ~ "dr
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and Eq. (6.33) may now be expressed as

d 1 d .. .1 9
(6.34a)

a? LC a? J * " aC

where

, f0 = /epr<) (6.34b)

Equation (6.34) is analogous to Eq. (6.18) for the parallel plate geometry. For a black tube, the

boundary conditions for Eq. (6.34) are found to be

From a combination of Eqs. (6.25) and (6.34), there is obtained

£ ,(2 + £~je— (M^t + l)9fl = 729u>(2£ — £ ) (6.35)

where

First Eq. (6.35) is solved for qR, and then from Eq. (6.25) the solution is obtained for QT,

and finally from Eq. (6.30b) the result for the bulk temperature is obtained as (see Ref. 113

and Appendix D)

= C2[M2(8 - M2
2)/0(M2) - 16/i (M2)]

11_72 _ 8^ _ 11
24 Ml 3 A/,4 24

it &

72 3f0M| - 24f0 - 32

where

C2 =

and I0 and I\ represent the modified Bessel functions of the first kind.

For optically thin conditions (TO —»• 0), M| -» 72, and Eq. (6.36) reduces to

256 ""
-128 I- 72

2 + 1672 - 128 (6.37)
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Employing the series expansion of the modified Bessel functions for small values of the argument

72, Eq. (6.37) can be written in an alternate form and by letting 72 — > 0 in that form there is

obtained the result in the transparent limit Oyr = -11/24.

The optically thick limit of Eq. (6.36) is obtained by letting r0 — > oo in the asymptotic series

of the modified Bessel functions for large values of A/2. Consequently, one obtains

As in Sec. 6.1, it is also evident from the above equations that, optically thin and optically

thick limits are characterized by the parameters N/T%, and N respectively. The gray results are

illustrated in Fig. 6.20. Note that in this figure, both O\>T and TO are expressed in terms of the

diameter of the tube, and the solutions, as obtained by Eq. (6.36), are shown by the solid lines.

6.2.3 Results and Discussion

For the case of gray wall emittance, a general solution (Oyp versus A/) of Eq. (6.32) was

obtained and the results are illustrated in Fig. 6.21 by the solid lines. For a particular physical

system the value of M can be obtained from Fig. 5.3 simply by replacing L with either the

radius r0 or with the diameter of the tube.

As discussed in Sec. 6.1, the influence of radiation decreases with a decrease in the value

of the wall emittance. This decrease in radiative effect is seen to be higher for the parallel plate

geometry than for the tube. The reason for this is based on the fact that the reflection of radiant

energy from the bounding surfaces plays a greater role at lower values of wall emittance, and

under identical conditions the number of reflections resulting from a circular geometry will be

relatively higher than those from the parallel plates.

The assumption of a gray wall emittance is analogous to replacing /ew by /ep. This, as

discussed before, is not a very realistic assumption. In general, the wall emittance varies with
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the wave number and with the surface temperature. However, its variation with the temperature

is not as serious as with the wave number. As an example consider polished steel [18], for

which between the wave lengths of 0.5 to 9.3 microns, the wall emittance varies from a value

of 0.45 to 0.07; whereas, for a range of temperatures between 100-500°F, the average value of

the wall emittance varies only from 0.07 to 0.1.

The matter of considering nongray wall emittance becomes crucial in the analyses involving

real gas models. This is because at wave numbers, where for a particular gas the important

vibration-rotation bands are located, if the values of surface emittance are relatively higher, then

the results obtained on the assumption of gray wall emittance will greatly underestimate the

influence of radiation. On the other hand, at those wave numbers where wall emittance is higher

but there are no absorption-emission bands located, the analyses based on gray wall emittance

will overestimate the influence of radiation.

In Fig. 6.22, the spectral distribution of surface emittance for stainless steel of various

composition is shown. Using e, values from this figure, numerical solutions of Eq. (6.32) were

obtained for COi at temperatures of 300, 500 and 1000 K, and the bulk temperature results are

illustrated in Figs. 6.23 and 6.24 along with the result for the black tube. One again, it can

be seen from Figs. 6.23 and 6.24 that the importance of radiation becomes more pronounced at

higher temperatures and for larger tube diameters. Consider, for example, the result for stainless

steel tube of type 304 having a diameter of 2.5 cm, the radiative contribution is found to be

only about 5.5% at the room temperature, while it is 9.7% at 500 K and 37.4% at 1000 K.

These results are very close to the results for gray wall emittance with ew = 0.1 (Figs. 5.3 and

6.21). For the same conditions, if the tube surface is considered to be black, then the radiative

contributions are found to be 8.4%, 15.8%, and 49.5%, respectively.

The nongray analysis in this section was directed to the specific case of gas CO2 with

three important vibration-rotation bands contributing significantly in the radiative process. The
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solutions were obtained only in the large path length limit simply because for COi at room

temperature the large path length limit is achieved at a pressure of one atmosphere, and because

it is relatively easier to obtain numerical solutions in this limit. For other gases, under the

assumption of gray wall emittance, solutions in this limit can be obtained through a combination

of results presented in Figs. 5.3 and 6.21. For specific problems involving real gases other

than COi, the general band absorptance results can be obtained from a numerical solution of

Eq. (6.29).

6.3 Correlation Between Parallel Plate and Circular Tube Results

In the present case involving flow through a circular tube, it is not always an easy affair to

obtain the numerical solution of the governing equation, Eq. (6.29). Even the simplified form

of this equation, in the large path length limit, requires a considerable amount of numerical

computation before actual results are obtained.

As an alternate approach it was found that, for black bounding surfaces and for surfaces

with higher wall emittance, a correlation, established from the consideration of gray results,

serves a very useful purpose in extending all nongray results for the parallel plate geometry to

the present case of flow through a circular tube. A discussion pertaining to such a correlation

is presented in this section.

Consider flow of a gray gas through black bounding surfaces and let r0 = KpD denote the

gray gas optical thickness for the circular tube. Note the difference between this definition of r0

and that given by Eq. (6.34). In order to be consistent with the present definition, let

ebT = ehT/2 = (Tb - TJ/faD/k) (6.39)

The notations for the case of parallel plate geometry are taken to be the same as defined in

Sec. 6.1.3.
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From the gray results presented earlier, it follows that, in the transparent limit

= -17/70 , 06T = -11/48

while in the optically thick limit, 0bp is given by Eq. (6.21), and 0^ can be obtained from

Eq. (6.38) by replacing the constant 11/24 by 11/48. In both limits the following relation

between 9bp and Qyr ls found to exist

QbT = 0.943 ebP (6.40)

The reason that this applies to both r0 — 0 and TO » 1 is because in either case energy transport

within the gas is a diffusion process. For r0 = 0, this process is solely conduction, while for

T0 » 1 it is combined conduction and optically thick radiation.

It now remains to extend Eq. (6.40) to include all values of r0. From a comparison of

gray results (Figs. 6.5 and 6.20), it was found that the circular tube solution could be closely

approximated by the expression

QbT(r0) = 0.943 6bP(2T0/3) (6.41)

In other words, the circular tube is equivalent to a parallel plate geometry having an optical

thickness which is two-thirds that of the tube. The tube results obtained by using this correlation

are illustrated in Fig. 6.20 by the broken lines.

For infrared radiation in nongray gases, the spectral thickness can cover a large range of

values for one given system. Correspondingly, the obvious utility of Eq. (6.41) for all values

of optical thickness suggests that this same procedure should apply to nongray gases. As an

example, to extend the parallel plate results shown in Figs. 6.7 through 6.11 to the circular

tube geometry, the ordinate would be replaced by 6(7/0.943, while in the abscissa L would

be replaced by 2D/3. For Fig. 6.3, this amounts to redefining M for a cylindrical geometry as

M = 2HD/3k.
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Using the correlation of Eq. (6.41) and the parallel plate results of Fig. 6.3, solutions for the

circular tube were obtained and are illustrated in Fig. 6.21 by the dashed curves. It is noticed that

for a gray wall emittance higher than 0.5, there is no difference between the actual tube result and

the result obtained by using the correlation. For values of ew below 0.5, however, the correlation

does not seem to be satisfactory. The reason for this could be that the present correlation

is established on the basis of results obtained for black bounding surfaces. Furthermore, as

discussed in Sec. 6.2.3, in the case of a circular tube the possibilities of multiple reflections are

higher than those for the parallel plate geometry.

In conclusion it should be emphasized that the correlation given by Eq. (6.41) can be utilized,

along with the nongray solutions of the parallel plate geometry, to obtain qualitative results for

most physical systems involving circular tubes.
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Figure 6.1 Physical model for flow of radiating gases between parallel
plates with constant wall heat flux
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7. CONCLUDING REMARKS

Radiative interactions in molecular gases were investigated under different physical and

flow conditions. It was found that at a pressure of one atmosphere, the assumption of local

thermodynamic equilibrium (LTE) for a gas such as CO is not valid for temperature below 600K,

while for gases like CO2 and N2O, the assumption is justified at room temperature. The LTE

results indicate that the gas such as CO2 is a very poor transmitter of radiant energy, relative

to other absorbing-emitting gases, in the large path length limit, although just the opposite

is true under optically thin conditions. Large 0 results represent a good approximation to

general band absorptance results for CO2 and H2O. It was noted that at moderate temperatures,

radiative contributions from weaker combination and overtone bands can usually be neglected.

For CO2, at room temperature, it was found that the large path length (large u0) limit is achieved

approximately at the atmospheric pressure. The effect of radiation was seen to become smaller

for lower wall emittance. Gray, optically thin, as well as large u0 results overestimate the

influence of radiation, and this fact can be utilized to see whether or not, for given gas, the

interaction of radiation is going to be of importance. The accuracy of various correlations for

the total band absorptance was examined and specific recommendations were made for their

use. The entire procedure developed in this study can be easily adopted to investigate radiative

interactions in complex problems involving molecular radiating species.
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APPENDIX A

INFORMATION ON WIDE-BAND MODEL CORRELATIONS

Some relevant information on the wide-band model correlations proposed by Edwards et

al. [35, 82, 83] and by Tien and Lowder [33] are provided in this appendix.

After considering various models for the band absorption of vibration-rotation bands, Ed-

wards and Menard proposed the use of an exponential wide band model [82, 83]. Three functional

forms for the total band absorptance were suggested and these are, the linear, the square root

and the logarithmic, corresponding to the small, the medium, and the large path length regions

respectively. The three regions are characterized by three correlation constants, and in the no-

tations of Edwards et al. [35, 82, 83] these are the band intensity constant Q, the line width

constant Ca, and the constant for the band width Cj. At sufficiently large pressures, rotational

lines are pressure broadened and the line width constant C2 ceases to be a parameter. Further,

at sufficiently large path lengths, the central portion of the band becomes opaque and radiation

transfer within the gas takes place solely in the wing regions of the band. This is characterized

by the band width parameter €3. For important bands of CO, COi, H2O, and CH4, values of cor-

relation constants Q, C2, and Ca, were computed by Edwards et al. from reported experimental

data and are available in [33, 35, 83].

Using the detailed information on the three regions of the exponential wide band model and

by adopting an approach based on a set of mathematical properties of the total band absorptance,

a continuous correlation was introduced by Tien and Lowder [33]

where

« = ClPy, t = [C2
2/(4CiC3)]Pe = B2Pe , (A.lb)
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/(«) = 2.94(1 -exp (-2.600] • (A.lc)

Note that Eq. (A.I) is exactly same as Eq. (4.43). Quantities u, t, B2, and Pe are all

dimensionless. The band width parameter A0 = €3, and is a function of temperature only.

The correlation quantity C% is proportional to (Ci/Ca). It can be shown [33] that

A0Ct = S(T) . (A.2)

The quantity t is the line structure parameter, and Pe is the equivalent (effective) broadening

pressure and is given by the relation

Pe = \(PB + bPA)/Po]n , Po = 1 aim , (A.3)

where PA is the partial pressure of the absorbing gas, Pg the partial pressure of the broadening

gas, and b the self-broadening power of the A-molecule with respect to the B-molecule (N2 in

all cases here). The pressure parameter n, which is always less than or equal to unity, accounts

for the partial overlapping of bands with different lower states [35]. The quantities 6 and n are

estimated experimentally by using various gas compositions.

By using the information on C\, €2, and 63, quantities /!„, C2, and B2 were evaluated

and expressed in the units employed here. These are given in the Table Al. The procedure for

converting the correlation constants C\, Ci, and €3 from the data of Edwards et al. [35, 82,

83] into the relations and units of quantities A0, C2, and B2 is discussed here briefly. As noted

earlier, A0 = C$, and C2 is proportional to (Ci/Ca) such that

S(T) = A0C
2 = d [(p/P) x 104] (A.4)

where P, p, and S(T) have units of atm, gm/cm3, and cm~2/atm, respectively. The factor 104

enters into the relation of Eq. (A.4) because the unit for C\ involves meter instead of centimeter.
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The correlation constant €2 represents the square-root coefficient and is proportional to (2A0C0B)

such that the quantity [10*(p/P)C2] has the units of arm'1 - cm~3.

For perfect (ideal) gases,

P = pRT = p(R/M)T (A.5)

where R is the universal gas constant (= 1545.33 ft-lbv/lb mole-R) and M is the molecular

weight of the gas. Thus, R = R/M has the units of ft-lb/lbm-R, and one may express

fl = £/M = (1545.33/M), (ft - Ibf/lbm - R)

= (1545.33/M)(9/5), (ft - Ibf/lbm - K)

'(12x2.54)3/cm3 '
453.6 \ gm

h.

Consequently, Eq. (A.5) is expressed as

/>//> = 82.055(T/M) (A.6)

where units of P, p, and T are arm, gm/cm3, and K, respectively. Thus, a combination of

Eqs. (A.4) and (A.6) results in

S(T) = 121.869(M/T)Ci, aim'1 - cm'2 (A.7)

where values of C\ for different gases are as listed in [33, 35, 82, 83]. It should be noted that

the reference temperature T0 is taken to be 100 K in the cited references.

The correlation quantity #2(w, T) represents the mean line-width to spacing ratio at one

atmospheric pressure and is given by relation

B2 = vi-ri/d) = C2
2/(4CiC3) (A.8)

Since B2 is a nondimensional quantity, its value can be determined exactly from the tabulated

values of d, €2 and C$.
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For gases, where detail band information is not available, the radiative transfer capability

can be determined in the limit of large path length. As pointed out earlier, in this limit, radiation

is governed solely by the band width parameter A0. By comparing various molecular models

(rigid rotator, arbitrary, and non-rigid rotator) as suggested by Edwards and Menard [82], and

after personal communications with Dr. D. K. Edwards, it was decided to adopt the following

two relations for A0:

where Be is the equivalent rotational constant, c is the speed of light, h is the Planck constant,

and k is the Boltzmann constant. The two relations given by Eqs. (A.9) and (A. 10) are identical

except that in Eq. (A.9) the coefficient will be 0.707 instead of 0.9 as it is in Eq. (A. 10). Edwards

suggests that the relation given by Eq. (A. 10) will give a better agreement between the simple

theory and the experimental data. The information on rotational constants for selected molecules

is provided in Table A3.

It should be noted that in Eqs. (A.9) and (A. 10), Be, c, h and Jb are constants and do not

depend on the temperature. Thus, Eq. (A. 10) may be expressed as:

A0(T) = CONST (T)l/2 (A.1 la)

where

CONST = 0.9 F2 (|) (2£l\ ' * (A-1 lb>

By evaluating Eq. (A.I la) at a reference temperature Tref, the value of A<,(Tr<./) can be

determined and, therefore, Eq. (A. 11 a) may be expressed alternately, as:

A0(T) = A0(TTef) (r/Tre/)
1/2 (A. 12)
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Equation (A. 12) is a convenient form to compare its results with experimental values.

By noting that T2(|) = (r(3/4)]2 and substituting values for c, A, and k, Eq. (A.ll) can

be expressed as:

Ao(T) = 1.59313(£eT)1/2 (A.13)

where A0 and Be have units of cm"1 and T is in degrees Kelvin. For a particular gas, A0(Tref)

can be obtained from Eq. (A.13) and then Eq. (A. 12) can be used to determine A0(T) at other

temperatures. For example, for CO the rotational constant is 1.931 cm"1 and at a reference

temperature of 300 K, A0(Tref = SOOtf) = 38.344 cm"1. This compares very well with the

experimental value of 38.1 given in Refs. 33 and 35 and presented in Table A.I. Similarly,

for the 4.3/i band of (X>2, the equivalent rotational constant is 0.3906 cm"1 and, therefore,

A0(Tref = 30QK) = 17.246 cm"1; the experimental value of 19.9 cm"1 given in Table A.I for

this band is slightly higher.

Spectral Information for OH

For the fundamental band of OH, the following information is obtained from Ref. 74:

Band center, wc = 3570 cm"1

Band strength at STP,S(T0) = cm~2atm~1

Also, from Ref. 91 the information on equilibrium rotational constant of OH is obtained as:

A2Z+ -» 17.355 cm"1

18.871 cm-i
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Thus, it is suggested to use a value for the equilibrium rotational constant for OH as Bt = 18

cm"1. Using this, a value of A0(Tref = 300/f) is found as

A0(Tref = 300) = 1.59313(5eTre/)
1/2 = 117.0707 (A.14)

Considering the value of A0(Tre/) = 117 cm"1, the relation for A0(T) for OH is given as:

A0(T) = 117(T/300)1/2 (A.15)

By knowing wc, S(T0), and A0(T), other required spectral information for OH can be evaluated.

The pressure parameters for OH not available in the literature.

Spectral Information on NO and

Spectral information for NO and N2O obtained by various sources are listed Table A.4. The

band width parameters for these molecules are calculated by the following procedure.

For NO, the information on equilibrium constant is obtained by Herzberg 1950 [91], Table

39, page 558 as

A2S+ -v 1.9952 (high vibrational level)

X2Hi -» 1.7046 (low vibrational level)

According to Herzberg, one could use the value of the lowest vibrational level and this does

not cause any serious problem. Consequently, a value of Be = 1.7046 is selected for NO, and

the value of A0(Tref) is found to be

A0(Tref = SOOtf) = 1.59313(fleTre/)
1/2 = 36.027 (A.16)

This value of A0 at Tref = 300 K agrees with the value given by Edwards [35]. By adopting

the value of A0(Tre/) = 36 cm"1, the relation for A0(T) for NO is given as:

Ao(T) = 36(T/300)1/2 (A. 17)
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Other information for NO are available in [35] and, therefore, it is possible to calculate B2 and

0 (or t) by using the relations presented in this appendix.

For N2O, the value of the equilibrium rotational constant, as obtained from Herzberg and

listed in Table A3, is Be = 0.4182 and this is taken to be the same for all bands. Thus, the

value of A0(Tref) for NiO is found to be

A0(Tref = 300K) = 1. 59313 (BeTre/)
1/2 = 17.844 (A.18)

The relation for A0(T), therefore, is expressed as

A0(T) = 17.844(T/300)1/2 (

The pressure parameters for NiO are not available in the literature.

The values of A0(T) for NO and NaO are tabulated in Table A4 along with other spectral

information. Some relevant information on NO are also available in [35].
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Notes on Table Al

1. Correlation quantities are based on the results of Ref. 35. The intensity of the band marked

with * was taken from the Ref. 33.

2. Notations: Ki(T) = (r/300)1/2, K*(T) = (300/r)3/2,

61 = [fim/IdP)] x 10-3, 82 = tim/faWK^T)]

h = 6.625 x 10'27 erg-sec, C = 2.998 x 1010 cm/sec,

k = 1.380xl(r16, erg/K, hc/k = 1.44 cm -K

3. Temperature range: 300 K < T < Tmax. For CO, Tmax = 1800 K.

For CO2, Tmax =. 1400 K. For H2O, Tmax = 1100 K. For CHt, rmax = 830 K.

4. For CO, u; = 2143 cm"1 and

^i(r) = [l5.15 + 0.22(r/ro)
3/2][l -exp(-hCu/kT)],T0 = WOK

5. For CO2, wi = 1351 cnr1, u2 = 667 cm"1, o;3 = 2396 cm"1

0.053(T/100)3/2

6. For H2O, un = 3652 cm'1, w2 = 1595 cnr1, u>3 = 3756 cnr1

{[1 -

= exp -
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Note on Table A2

1. Information provided in Table A2 are based on data available in Refs. 33 and 35 and in

cited references.

2. The integrated intensities re evaluated at T0 = 273 except those marked with * where T0

= 300 K.

3. The lifetime of vibrational states for the fundamental bands was calculated by using Eq. (4.27).

4. Intensities of the bands listed in parentheses are small and at moderate temperatures their

contributions are generally ignored. However, in the large path length limit contribution from

these bands become important. The intensities of three weaker COa bands are given as:

a. 2.06/z band: S(T) = 0.272 (300/T)<£4

b. 2.0/z band: S(T) = 1.01 (300/T)<£5

c. 1.96ft band: S(T) = 0.426 (300/T)<66

where u>i = 1388 cm'1, u>2 = 667 cm"1, u;3 = 2349 cm'1 and

04 = (l-exp[(-hC/kT)(4*2 +u;3)]}x

{[1 -exp(-/iCu;2/fcr)]4[l -exp(-M7w3/fcr)]}"

05 = {1 - exp [(-hC/kT)(ui + 2u>2 + ws)]} x

{[1 - exp (-«7u»i/fcr)][l - exp (~hCu2/kT)f[l - exp (-

06 = {1 -exp[(-M7/W)(2wi +u;3)]}x

-1

-1
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APPENDIX B

THERMODYNAMIC AND TRANSPORT PROPERTIES OF SELECTED SPECIES

It is important to consider the variation of thermodynamic and transport properties of various

species with temperature and pressure. Quite often, the variation in properties with the pressure

is not as crucial as with the temperature. The information on variation of different properties

is provided here.

The information on variation of the thermal conductivity with temperature is obtained from

Ref. 92 and this is expresses as:

A = \0(T/T0)
n (B.I)

where

T = Temperature, K

X0 = thermal conductivity at T0 = 273 K, k cal/m-hrK

n = constant as given in Table Bl

Note that in the main text the notation of k is used for the thermal conductivity. In order to be

consistent with the units used in the present work, Eq. (B.I) is expressed as:

104A

For Eq. (B.2) the value of A0 is obtained from Table B.I; the units for A0 are shown in the table.

For example, thermal conductivities of CO and COj are expresses as:

CO : A = (11.627865289 x 200)(T/273)°-8

= 2325.570579* ((TW) '273.0)** 0.8) (B.3)

C02 : A = (11.627865289 x 128)(T/273)L23

= 1488.365171* ((rwy273.0)**1.23) (B.4)
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Thus, for Eq. (B.2), the tabulated values for A0 should be used without dividing by the factor 104.

Thermal conductivities of other species can be calculated in a similar manner. For species

not listed in the Table B.I, values should be obtained from Ref. 92 or other sources mentioned

in Ref. 111. For higher temperatures, values referred in Ref. Ill should be used Some of the

values used in the present study are listed in Table B.2.

The relations for the constant-pressure specific heat for different ideal gases are available in

the literature and these are given in Table B.3 for CO, OH, COa, and H20.
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Table B.I Constants for Calculation of Thermal Conductivity

Molecule

CO

CO2

CHt

H20

NH3

N2O

A0 • 104

kcal/m-hr-°C

200

128

264

130

181

130

n

0.80

1.23

1.33

1.48

1.53

1.23

Maximum
Temperature, °C

1,000

1,000

600

1,000

1,000

1,000



Table B.2 Thermal Conductivity of Selected Species*,
erg/(cm-sec-K)

177

Temp., K

300

500

1,000

2,000

Molecule

OH

(4879.71)

(6993.13)

(11504.56)

(20276.33)

CO

2507.82

(2674.22)

3773.77

(3938.09)

6570.51

(6888.51)

11439.93

(11730.56)

CO2

1671.43

(1820.47)

3133.02

(3339.63)

7349.02

(6716.93)

17238.37

(11822.63)

H2O

1738.04

(2925.31)

3703.67

(4980.15)

10325.76

11588.26)

28803.582

(26302.73)

* Values in parenthesis are from a source mentioned in Ref. 111.



Table B.3 Constant-pressure specific heat for selected ideal gases
(from a source mentioned in Ref. Ill)
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Gas

CO

OH

CO2

H2O

Cp = 69.145

Cp = 81.546

Cp = 3.7357

Cp = 143.05

Cp = kJ/kmole-K, 0 =

- 0.70463 0°-75 - 200.77 0

- 59.350

+ 30.529

- 183.54

0°-25 + 17.329

0°-5 - 4.1034

0°-25 -1- 82.751

00-

0 +

00.

= T (Kelvin)/100

-°-5 + 176.76

75 - 4.266 0

0.024198 02

5 - 3.6989 0

9—0.75
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APPENDIX C

GRAY SOLUTION FOR PARALLEL PLATE GEOMETRY

The governing equations for steady, constant properties, fully developed laminar flow of gray

radiating gases are given by Eqs. (4.75) and (6.4), and these are repeated here for convenience,

1 = qR/qw (C.I)

For linearized radiation, T4 = 4T%T - 3T4 such that dT4/dr = 4T*dT/dr, and Eq. (C.2) is

expressed as

9 , dB

which is exactly the same equation as Eq. (6.18).

A combination of Eqs. (C.I) and (C.3) results in

(C-4)

where M\ is same as defined in Eq. (6.19). By obtaining the complimentary and particular

solutions, the general solution of Eq. (C.4) is expressed as

qR =

- (71 fa/Atf) [M?(6£2 - 4£3 - l) + 12M,(1 - 20 -f 24] (C5)

A substitution of Eq. (C.5) into Eq. (C.I) gives

-f
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An integration of this equation results in

= - exp (Ml° ~ exp {-

+c

Note that for 71 = 0 this reduces to the case of convection heat transfer between parallel plates

with constant wall heat flux.

By using the boundary condition ^(1/2) = 0 and 0'(l/2) = 0, the relation between

coefficients A and B is found from Eqs. (C.5) and (C.6) as

A exp (Mi/2) + £exp (-Afi/2) = 24nqw/M? (C.8)

By using the boundary condition (dqn/d^)^_Q = (3T0/2)gfl(0), there is obtained from Eq. (C.5)

= (37i WAtf) (M}/2 - 6Mi - 12 - 8Mi/r0) (C.9)

By using the condition 0(0) = 0, one obtains from Eq. (C.7)

C = (\/qwM!)(B-A) (CIO)

Equations (C.8)-(C.10) provide three equations to evaluate three constants A, B and C.

Upon substituting the relation for 0(£) into Eq. (6.6) and performing the integrations, there

is obtained the result for bulk temperature as

06 = (6A/9aFAf,4)[(Afi - 2) exp (Mi) + MI + 2]

- (6B/qwM})[(Mi + 2) exp (-Mi) + MI - 2]

+ C- 1271/Mj5 - 15171/70M!2 - 17/70 (Gil)

C-3



181

By evaluating the constants A, B and C from Eqs. (C.8)-(C.10), Eq. (Cll) provides the

solutions given by Eq. (6.19).

In the optically thin limit (i.e., in the limit r0 -*• 0), M\ = ,/T", and the expression for

C\ becomes

= 24/{7l
7/2[l

Consequently, the gray solution for this limit is obtained as given by Eq. (6.20).

For small values of 71, the exponential term exp (— •v/rT) is expressed as

3/2 i 5/2 3'

7/2 4 9/2
_ 2l _ + 71 _ 71 4. (C
5040 40320 362880 V

Thus,

1 I i — >\ 1/2 3/2 5/2 ,- 7/2 ,,, 9/2
1 - exp (-./ft) = 7l_ _ V_ , V_ _ 17V , 61V , (C

2 24 240 40320 (70)(41472)

A substitution of Eq. (C.14) into Eq. (6.20) gives the relation for small values of 71 as

17
"- (C15)

For 71 = 0, we obtain the result for the transparent limit (i.e., the case of no radiative interaction)

as 0t = -17/70.

Under optically thick conditions, TO » 1 and, therefore, M\ » 1, and Eq. (6.19) becomes

0b = -17/70 + (17/70){4/[JV(3 + 4/#)] } (C.16)

This equation is rearranged to give the results of Eq. (6.21).
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APPENDIX D

GRAY SOLUTION FOR CIRCULAR TUBE GEOMETRY

The governing equation for steady, constant properties, fully developed laminar flow of gray

radiating gases within a black circular tube is given by Eq. (6.35) for linearized radiation. The

solution of Eq. (6.35) is found to be

+ (72 WA/24) (M%? + 8£ - 2Affr) (D.I)

where I\ and K\ represent the modified Bessel functions of first and second kind. For finite

solution as £ — > 0, B must be taken to be zero and Eq. (D.I) becomes

) + (72 W^2
4) (Mie + 8^ - 2MJO (D.2)

The constant A in Eq. (D.2) is evaluated by taking the derivative of this equation and invoking

the boundary condition given by Eq. (6.34c) as

3r,A/2
2 - 24r, - 32 ]

2M2/0(M2) + 3r./,(Jlfa)J \M*

A combination of Eqs. (6.25) and (D.2) results in

jn

-

2t-t3 (DA)

Equation (D.4) is integrated once to obtain

+ (72/M2
4

(D.5)
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By using the boundary condition 0(1) = 0, one finds

C4 = (A/qM)I0(Mi) + (72M2
4)(4 - 3M2

2/4) + 3/4 (D.6)

Consequently, the temperature distribution within the tube is obtained from a combination of

Eqs. (D.5) and (D.6) as

) - /0(M2)]

(72/4M2
4)(M2

2£4 + 16£2 - 4M|e2 + 3M| - 16)

(D.7)

The expression for the bulk temperature is obtained by substituting Eq. (D.7) into Eq. (6.30b).

The solution is as given by Eq. (6.36).

In the optically thin limit TO — » 0 and Af2 -» 72. Consequently, the constant C2 defined

in Eq. (6.36) becomes

0>.8)

and Eq. (6.36) reduces to the result provided by Eq. (6.37).

For small values of 72, the modified Bessel functions are expressed as

/o(V72~) = 1 + 72/4 + 72
2/64 + 72/2304 + . . . (D.9a)

... (D.9b)

Thus,
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Upon substituting Eq. (D.10) into Eq. (6.37), there is obtained for 72 = 0, 0» = -11/24. This

represents the result for the case of no radiative interaction.

In the optically thick limit TO » 1 and M? » 1. Asymptotic expansions of modified

Bessel functions for large values of A/2 are

I0(M2) = eM'/(2irM2)l/2[l 4- 1/8M2 + 9/128M2
2 + . . .] (D.I la)

= eMV(2*M2)1/2[l-3/8M2-15/128Af2
2 + ...] (D.llb)

Upon substituting this equation in Eq. (6.36), it is noted that <72 times the bracketed term on

the RHS approaches zero as M2 -» oo. Consequently, only the last three terms on the RHS of

Eq. (6.36) remain valid for r0 » 1, i.e.,

Ob = 1172/24A/22 - 872/3M24 - 11/24 (D.12)

By using the definitions of 72, Af2 and N, Eq. (D.12) is expressed as Eq. (6.38).




