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TECHNICAL PAPER

THE EFFECT OF ACCELERATION VERSUS DISPLACEMENT METHODS
' ON STEADY-STATE BOUNDARY FORCES

I. INTRODUCTION

When a substructure model is reduced by the Craig-Bampton method, a number of
degrees-of-freedom (DOF) are retained as physical DOF's to provide interface to other
substructures. When more DOF’s are retained in this interface than are actually required, the
model is said to be over constrained. The results of this, when using the displacement
method, are typically an inaccurate distribution of boundary forces. This inaccuracCy also
occurs when there are justifiably many interface DOF’s which result in an indeterminate
interface. When the acceleration method is used, this inaccuracy is overcome. However, many
people do not fully understand this method and the many ways of implementing it, so its
implementation is sometimes haphazard.

In the space shuttle payload community there has been an increase in the use of over-
constrained payload models. This has been, mainly, to afford easy recovery of relative
deflection data between the payload and the shuttle. While there has also been an increase in
the use of the acceleration method for the recovery of payload displacements and forces, the
displacement method remains the method used for recovering system displacements and
forces.

The purpose of this study is to describe the acceleration method and investigate the
problem of indeterminate or over-constrained interface substructures.

This report will first look at the acceleration and displacement methods from the
example of a simple 2-DOF problem. This will define the methods and describe the
similarities and differences. Generalizations will then be made to larger systems. A simple
two-dimensional, two-beam problem will then be explored and conclusions drawn.
Recommendations for areas of study with space shuttle payload systems will be made.

II. DYNAMIC BASICS

Before discussing the acceleration method, it is useful to look at a simple 2-DOF
system as shown in figure 1.
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Figure 1. Two-DOF system.
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The equation of motion for this system is:
[ mp 0 ] +[k—k“ﬂ}= F(1)
0 my ~k k |1x2 0 ’ (1)

The eigenvalues and eigenvectors can be determined and normalized (appendix A) such that
the problem simplifies to:
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my nyp
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L “2 my my (3a, 3b)
@, is the frequency of the rigid body mode; i.e., both masses move in unison with no
deflection in the spring. w, is the elastic mode frequency of the two masses moving relative to
each other deflecting the spring. A rigid-body mode will cause no internal forces since there is
no deflection in the spring.

Here, an assumption will be made about the applied force, F(¢). It will be assumed to
be a linear force since this assumption is typically made for each time step in a numerical
solution. Therefore:

F(t)=F; t+F, 4)

where s stands for slope and ¢ for constant.

The solutions to the now uncoupled equations in equation (2) are then:

F,i® F.p } ]
=\t +Ct+ Gl
1 [ 6 2 LT 2 S (5a)
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mi(mi+msy) (5d)



The detailed steps for this solution are shown in appendix B. The constants, Cy, C2, A, and B
are determined by initial conditions.

One can see here that g, is the generalized displacement of the first mode which is the
rigid body mode. One can also see that g, is the generalized displacement of the second or
elastic mode. This mode relates to the two masses moving relative to each other, and one can
see that it has two terms. The first term is the particular or steady-state solution which is
the response due to the steady-state equilibrium between the applied and inertia forces. The
second term is the dynamic response due to the harmonic transient. This second term would
damp out if damping were included in the problem.

In regard to the generalized accelerations, one can see that 41 is the generalized rigid

body acceleration due to the applied force and that g2 is the harmonic transient acceleration
of the two masses relative to one another.

Now, the physical displacements and accelerations, X1, X2, ¥1,and X3, can be
recovered by multiplying the modal displacements and accelerations by the eigenvectors.

I A R o 1}
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From these, it can be seen that the displacements, like the generalized displacements
are made up of rigid-body, steady-state, and transient terms. In fact, the rigid body terms for
x; and x, are identical, which they should be since the body is moving as a whole. It can also
be seen that the steady-state acceleration term is the classic force divided by mass and is

the same for ¥; and ¥, since it is a rigid-body acceleration.
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These then are the basic equations for the response of a single 2-DOF system. When
the physical displacements computed this way are used in loads recovery, the method is
called the displacement method.

ITII. ACCELERATION METHOD

As seen in the previous section, the displacement method uses the eigenvectors to
compute the physical displacements. Another way to compute the physical displacements is
to use the physical accelerations computed above and to re-solve the system equations for
the physical displacements. Reiterating the system equation:

[ m 0 } Jr'l + k -k {xl }: F(r)
0 my l\X2] |-k k [{x2 0 |-
Solving for the displacements:

T ]

. . k —ki. . . . o . .
Now, inverting [—k leS impossible, since it is free-free and the determinate is Zero,

(1)

X2 (8)

however, it is realized that the accelerations were computed free-free and that any time the
applied forces are in equilibrium with the inertia forces. Thus, one should be able to ground
the system determinately, invert the stiffness matrix, and not induce any additional forces.
The 2-DOF system can be grounded determinately at mass 1 by adding a small stiffness (ky)
to the Ky, term of stiffness matrix. The displacements calculated in this way will be called y,
and y, to differentiate the two methods. Doing this, the following is obtained:
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From this it can be seen that displacement y; is equal to 0 which indicates that the
ground spring that was added has not deflected, so the assumption of no added forces was
correct. Also, it can be seen that the rigid body term is gone. This is understandable since the
system was grounded, and it does not affect loads calculations since new forces were not
added and rigid-body displacements caused no internal forces. One can also see that y; is
exactly equal to the difference between x, and x; calculated from the displacement method.
For loads calculations, it is the relative displacements which are important so y, suits the

purpose adequately. And finally, y still contains the steady-state and transient terms.

This is the heart of the acceleration method. The displacements are found in terms of
the accelerations.

IV. EFFECTS OF MODAL TRUNCATION

At first glance, the benefit of the acceleration method is hidden, since the same results
have been obtained with much more effort. However, the benefit becomes apparent when
modes are truncated. If, as above, all modes are used, the two methods are identical.
Suppose the elastic mode is truncated from the 2-DOF problem, from equations (5), (6), and
(7):

3 2
X1 =[Fs6t +EC—2t-—+C1t+ Cs

1
mi+my ’ (12a)

3 2
x2=[F5t +E—‘72—t—+C1t+C2} 1 ,

6 mp+ms (12b)
=D
(my+m3) (12¢)
Xp = —————F(t) .
(my+m3) (124d)

5



And, if the new X, and ¥, are substituted into th

e equations for y; and y2 (equations (9),
(10), and (11);
»=0, (13a)
F(t) nmy
Y25 -
k (mi+mjy) (13b)

Now, it can be seen that x; and x, have retained only the rigid-body displacement
terms which have been noted to be of

little use in loads calculations. However, y2 has
retained the steady-state term which can be a major load contributor. So, it

is the accuracy of
the steady-state displacement term which is the benefit of the acceleration method.

V. GENERALIZATION OF RESULTS

If one looks closely at the results from the 2-DOF problem in the previous section,
some generalizations can be made to multi-DOF probl

ems. First, ignoring rigid-body
displacement, the modal displacements are:
n
Djernsic = % ij Fi(t) + A sin (wj;t) + B cos (wyt)
@ i=1 (14)
where:
J = mode number
i = physical force DOF number
n = number of physical DOF’s.
The modal accelerations are:
n
an'gid = Z ¢ij Fi(n) ,
i=1 (15a)
Gjoasic =~ O} A sin (@;1) - @} B cos (wjt) . (15b)
The detailed steps for these solutions are shown in appendix C.
Now, the physical displacements are:
_ i ) ) n n
=223 g, L3 64 Fi) + Asin (@) + Bcos ()|,
& TR (16)



where:
j = mode number
i = physical force DOF number
p = physical displacement DOF number
m = number of elastic modes.
The physical accelerations are:

Kp= Y, Op) [2 ®ij F,-(t)} +Y, 9[- 0} A sin (0;) - of B cos (wn)]
j=t L=l j=1 (17)

where:
j = mode number
i = physical force DOF number
p = physical displacement DOF number
m = number of elastic modes
r = number of rigid body modes.

Since it has been determined that it is only the steady-state terms which the
acceleration method helps, these terms can be isolated as follows:

m

_1_ n
Xpsicady suate = 2 ¢Pj 2 ¢l_] Fl(t) .

j= 2 =
= of = (18)

r n

-X:ps\eady state 2 ¢P1[2 ¢l} Ft(t)] .
j=1 i=1 (19)

So, one can see that the steady-state displacement is determined by the summation

of contributions from each elastic mode. As modes are truncated, this summation will contain
more error. However, the steady-state acceleration term which causes this displacement is
dependent only on the summation of rigid-body modal contributions. These rigid-body modes
are rarely truncated. Therefore, no matler how many elastic modes are truncated, steady-
state displacements computed in terms of this acceleration will contain no error. Of course the
transient term of the acceleration is still a summation, so the error introduced to the transient

displacements by model truncation is unaftected by solution in terms of acceleration.



VL. IMPACT ON COMPUTATION OF FORCES

As has been shown, the truncation of mode shapes of the boundary can lead to errors
in the displacements computed by the displacement method. The error to the displacement
vector {x} can be called {e¢}. Then one can find the error in the forces computed from these
displacements since:

{F} =1K] {x} , (20)
SO,
{Flemor = [K] {e} . 2D

For a simple 3-DOF problem, if the interface is determinate, then the DOF’s are
relatively uncoupled:

k —k 0 €l ke -k e; \
-k k+ko k> €2 1={-ke + (k+k2) ex —kye3
0 —ky ko e3 -k ez +k €3 ’ (22)

If they were indeterminate or coupled then:

k —k ‘. k €1 —k (%)) + l

—k k+k2 —k2 {3212 —k €1 + (k+k2) (4] —k;)_ €3 I .
€3

—k2 k2 —k2 €7 + k2 €3

So, as shown by these additional terms, the more coupled or indeterminate the system
the more a force computed for 1 DOF is affected by error in the displacements at other
DOF’s. It should also be noted that because of the nature of the stiffness matrix these
magnification effects on the displacement error can be quite large, thus producing large force
errors from seemingly insignificant displacement errors. The acceleration method produces
extremely accurate displacements which overcomes this problem.

(23)

VII. APPLICATION TO A SIMPLE BEAM

A somewhat more complicated problem can now be defined for investigation. Take a
simple two-dimensional beam with element nodes having translational and rotational DOF’s
(fig. 2). Two of these discrete physical models can be coupled together. Thus, as shown in
figures 3 and 4, each model can be divided into interior and boundary DOF’s, coupled together
at either 2 or 4 translational DOF’s and driven by a force.

The equations of motion for these beams and system can be written:



1 11 21 31 41 51 61 ral 81
2 12 22 32 42 52 62 12 82
Figure 2. Simple beam DOF’s.
BEAM B
1 11 21 31 141 51 61 ral 81
= - = = = = = — u
= - = = = - = u
11 21 31 4 31 61 71 81
BEAM R
F(t)
Figure 3. Two beams coupled at 2 DOF’s.
BEAM B
1 11 21 31 41 51 61 71 81
= = - » - = = - ]
» = = = = -
1 11 21 31 4 51 61 71 81
BEAM A
F(Y)

Figure 4. Two beams coupled at 4 DOF’s.



[Mii Mib}‘X"\l +[ K Kib} X; ={O}
Mp; Mpp \j('be Kpi Kpp |\Xslp \Fp| "’ (24)
[Mbb Mbi] Xb [Kbb Ky be} =:Fb}
My Mii 15[, ! K KillXila \F ’ (25)
31001
[M] Xb +[K] Xb ’=\Ol ’
.. X; F
\ XA A (26)
here:
i = interior DOF
b = boundary DOF.
Equation (26) can then be coupled by a eigenvalue problem.
[ X8|
X, (=[ol{q} .
| xa | @n
r 0
(114} +[0?tg)=[8]{ 0 } -
F (28)

These uncoupled equations can then be solved for {g} and {g}.

The physical displacements can then be recovered by the displacement or acceleration
method. Equation (27) is the displacement method, and the acceleration method is shown in
equation (29). The displacements from the acceleration method will again be called Y to
differentiate them.

Yy }=[K*]-1 0 }-[M] X,
Y; F ..
A XiA (29)

Here, an adjustment must be made so that a comparison can be made between the two
methods. In the acceleration method, because the stiffness matrix is grounded, the
displacement of the ground DOF is zero and all other displacements are relative to it. In the
displacement method, assuming rigid body displacements are zeroed, all displacements are
relative to the center of gravity. Therefore, a correction is made to the displacement method
displacements. If the displacement method displacement of the acceleration method grounded
DOF is distributed by a rigid-body transformation and then subtracted from the displacement
method displacements, a one-to-one comparison can be made between the two methods.

10



Now, as has already been noted, the acceleration method is only useful in gaining
accuracy in the displacements caused by the steady-state accelerations. Therefore, it is
desirable to isolate this displacement to eliminate confusion with other effects. As seen in the
acceleration method, it is easy to separate the steady-state, rigid-body accelerations, and

therefore displacements, from the transients by simply partitioning {¢}. This separation is not
possible in the displacement method. However, it has been shown that if both methods are
truncated the same, then the transient portions are equal. Therefore, the steady-state and
transient portions of the displacements can be computed by the acceleration method. This
transient portion can then be subtracted from the displacement method solution to obtain a
displacement method steady-state solution. The two methods can then be compared without
confusion by truncation effects on the transient portions.

VIII. RESULTS FOR THE SIMPLE BEAM PROBLEM

For the problem of two discrete physical beam models coupled together as described
in section VII, the effect of truncation in the system eigenvalue problem, equation (27), was
investigated. The particular aspect investigated was that of interface forces between the
substructures or beams as computed by equations (24) and (25). The results were compared
for both the acceleration and displacement methods and for severely truncated modes (all
rotational modes truncated) and no modal truncation. These results are tabulated in table 1.
Keep in mind that only the steady-state response is compared and that the only truncation is
at the system eigenvalue level.

As can be seen, and expected, there is excellent comparison between the two
methods when all the modes are used. The acceleration method also agrees exactly whether
modes are truncated or not. However, the displacement method with truncated modes is
greatly in error. In fact, the error in the applied force on beam A is 90 to 95 percent.

IX. CRAIG-BAMPTON REDUCTION

An investigation of what happens if beam B is reduced by the Craig-Bampton method
is shown in the following. The coordinate transformation for this reduction is:

bR
Xp 0 1 Xp| (30)
Equation (24) can then be replaced by:

e ZIT e

My My |\Kols L 0 Ky [1XelE {Fb 31
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Table 1. Effect of acceleration versus displacement methods on steady-state
boundary forces.

BEAM A ERROR REFERENCE
abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000001 0.00000000 0.02689317| -0.16666667
DOF 41 0.00000000 0.00000005 0.00000000 0.47039463 0.49999997
DOF 81 0.00000000 0.00000001 0.00000000 0.02689319| -0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000019 0.00000000 0.00602957| -0.00722064
DOF 21 0.00000000 0.00000011 0.00000000 0.02826142] -0.15944602
DOF 41 0.00000000 0.00000000 0.00000000 0.44786349 0.50000000
DOF 61 0.00000000 0.00000000 0.00000000 0.02826125| -0.15944602
DOF 81 0.00000000 0.00000000 0.00000000 0.00602981 -0.00722064
BEAM B ERROR REFERENCE
abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration | displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.01147362 0.16666667
DOF 41 0.00000000 0.00000004 0.00000000 0.00540434 0.00000000
DOF 81 0.00000000 0.00000001 0.00000000 0.01147363 0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000030 0.00000000 0.00057095 0.00722064
DOF 21 0.00000000 0.00000063 0.00000000 0.02842032 0.15944602
DOF 41 0.00000000 0.00000004 0.00000000 0.00320943 0.00000000
DOF 61 0.00000000 0.170001000 0.00000000 0.02841970 0.15944602
DOF 81 0.00000000 0.00000000 0.00000000 0.00057068 0.00722064
The coupled system is then:
[ QB ’ OB l 0
1
(M) %, +[Iﬂ\ Xy 1={0
. XA ’ F
‘ XA (32)
QB
The displacements l Xp can be determined by the same methods as equations
XiA

(27), (28), and (29). The interface forces for beam B are computed from equation (31).

In this study, four different Craig-Bampton boundary conditions were considered. The
first two were an over-constrained case where all translational DOF’s of beam B were

12



retained as boundary DOF’s; one was for no Craig-Bampton modal truncation and another for
severely truncated Craig-Bampton modes. The third case considered was a Craig-Bampton
reduction from the physical model down to the coupling DOF’s. Craig-Bampton modes were
truncated. And finally, the fourth case was a two-step reduction first to the translational
DOF’s with truncation and then to the boundary DOF’s.

X. RESULTS OF CRAIG-BAMPTON REDUCTION SCHEMES

For all four Craig-Bampton cases described in section IX, it was, again, the interface
forces that were studied. The acceleration method with and without system modal truncation
and the displacement method using all modes showed excellent agreement. This data is
presented in appendix D.

For all four cases, the only method that indicated error was the displacement method
using truncated system modes. These results are tabulated in table 2. Keep in mind that this
data is only for the displacement method using truncated system modes, and that only the
steady-state response is considered. The following conclusions can be drawn from this data:

The severity of truncation of the Craig-Bampton modes does not affect steady-state
interface force error. It is the truncation of modes describing the motion across the boundary
(i.e., system modes) that causes the error.

Over-constrained Craig-Bampton models, when used with the displacement method,
introduce sizeable error in the steady-state interface forces.

Boundary-constrained Craig-Bampton models, when used with the displacement
method, provide accurate steady-state interface forces. It is noted that they are not as
accurate as those computed by the acceleration method.

For boundary-constrained Craig-Bampton models, the error for indeterminate
interfaces is greater than for determinate interfaces.

A two-step reduction to the boundary provides just as accurate steady-state interface
forces as a single-step reduction.

Finally, a discrete physical model is the limit in over constraint. A discrete physical

model can be considered to be over constrained by retaining all DOF’s. The error due to

system mode truncation is substantial since more information is truncated than in Craig-
Bampton models.

13



Table 2. Effect of Craig-Bampton reduction schemes on steady-state boundary
forces (truncated displacement method).

BEAM A ERROR REFERENCE
Physical abs(abs(REFERENCE)-abs) VALUE
Physical Beam A
Beam B Beam B Beam B Beam B
over over 1-step to 2-step to acceleration
constrained constrained boundary boundary method
no truncation truncated truncated truncated all modes
2 coupled DOF's
DOF 1 0.02689333 0.02689277 0.02689245 0.02689188| -0.16666667
DOF 41 0.47039469 0.47039462| 0.47039451 0.47039449 0.49999097
DOF 81 0.02689316| 0.02689277| 0.02689206 0.02689189 -0.16666665
4 coupled DOF's
DOF 1 0.00602957f  0.00602840 0.00602595 0.00602551 -0.00722064
DOF 21 0.02826125 0.02826261 0.02825282 0.02825380[ -0.15944602
DOF 41 0.44786349 0.44786334 0.44786317 0.44786309 0.50000000
DOF 61 0.02826125| 0.02826261 0.02825274 0.02825380{ -0.15944602
DOF 81 0.00602962|  0.00602892| 0.00602571 0.00602551 -0.00722064
BEAM B ERROR REFERENCE
Craig-Bampton abs(abs(REFERENCE)-abs) VALUE
Physical Beam A
Beam B Beam B Beam B Beam B
over over 1-step to 2-step to acceleration
constrained constrained boundary boundary method
no truncation truncated truncated truncated all modes
2 coupled DOF's
DOF 1 0.01335352 0.01335329]  0.00000000 0.00000000 0.16666667
DOF 41 0.00547892 0.00547904 n/a n/a 0.00000000
DOF 81 0.01335353 0.01335329  0.00000001 0.00000002 0.16666665
4 coupled DOF's
DOF 1 0.00046798 0.00046793 0.00001097 0.00001097 0.00722064
DOF 21 0.02862931 0.02863001 0.00001101 0.00001103 0.15944602
DOF 41 0.00327701 0.00327707 n/a n/‘a 0.00000000
DOF 61 0.02862883 0.02862996{  0.00001098 0.00001099 0.15944602
DOF 81 0.00046812]  0.00046814 0.00001095]  0.00001097 0.00722064

14




XI. CONCLUSIONS AND RECOMMENDATIONS

This study has described the acceleration and displacement methods for use in the
recovery of coupled-system boundary forces. A simple 2-DOF system has been used for
illustration. The effect of the choice of method for use with indeterminate or over-constrained
boundaries has been investigated. It has specifically Jooked at results from a simple two-
dimensional beam problem using both methods.

In the space shuttle payload community, there has been an increase in the use of
over-constrained payload models. Much work has been done on the effects of Craig-Bampton
modal truncation on system displacements and forces, however little work has been done on
system-level modal truncation (ie., modes across the boundary). The findings of this study
indicate that the effect of this system-level truncation is significant. This may be particularly
true for the 35-Hz system cutoff frequency that is required by the space shuttle. From this
study’s findings, the following recommendations can be made:

The effect of using displacement method recovery for over-constrained payload models
with the space shuttle directed 35-Hz system cutoff needs to be studied.

Until this recommended study is conducted, either the acceleration method should be

used or a secondary Craig-Bampton reduction to only the attaching interfaces should be done
for payload-coupled loads analyses.

15
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APPENDIX A

Eigenvalues and Eigenvectors of a 2-DOF System

The homogeneous equation of motion for a 2-DOF system is:

[ m 0 ] 31 +[k—k] m-(0).
0 my J{X2 —k k [\X2 0 (A-1)
Assuming a sinusoidal response:
x; = A cos (wt—0ox) xy = A cos (wt-o)
(A-2)

X = -w? A cos (wt-) ¥y = -w? A cos (wt-o)

Substituting into equation (A-1):

L T L TR g A R

Equation (A-3) has a nontrivial solution only if the determinate is zero, i.e.,

k—w2m1 —k
= (k—w2m1) (k—O)ZIn2) - (—k) (—k) = (02 (Cl)2 mlmz—k(m1+m2)) =0 .
-k k—-w2m;
(A-4)
The roots of equation (A-4) are:
wi=0
1 ’ (A-5a)
w2 = Kumitma)
27 mmy (A-5b)
To define the eigenvectors, the top half of equation (A-3) is:
(k—w2m)A-kB=0 .
Defining:
Czﬁ_zw_ 1—w2™L
A k k (A-6)
Cy=1-0=1 (A-Ta)
C _k(my+ma) my _—my
2 mimy g my (A-7b)
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Therefore, the eigenvectors:

[¢J=[‘ _,1,1} .
Ty

These eigenvectors are then normalized such that ¢TM ¢ equals unity:

| / ma
ymi+m; my(my+m;)

1 —m m
ymi+m; my my(my+m;)

(¢ normalized =

(A-8)

(A-9)



APPENDIX B

Solution of Uncoupled Equations of Motion of a 2-DOF System

The uncoupled equations of motion for a 2-DOF system are:

.. F(t
G40 g1 = e = (Fut+F) s

o+ @2qy = (Fst+FQ) o] ——2— .
mi(m+m2)

The solutions to these equations will take the form:
g = C1t3+Cat*+C31+C4+Cs sin wt+Ce 08 01
g = 3C1124+2Ca1+C3+wCs cos wt-wCe sin @1
g = 6C1t+2C-w? Cs sin wt—w?Cg cos @t .
In equation (B-1) @ = 0, therefore:

6C 1+2Cy = (Fot+ Fo) —k

4m1+m2 ’
¢ =E 1
6 vmi¥my '
Cy=Le_1
2 Ymit+mz

Therefore:

3 3
EEL+_I%_+C3+C4}_L_

"= vy

Substituting equations (B-3) into equation (B-2):

02C113 +@2Co1* +(02C3+6Ct+(02C4+2C)) = (Ft+Fe) N L S
mi(m+m2)

(B-1)

(B-2)

(B-3a)

(B-3b)

(B-3¢)

(B-4)

(B-5a)

(B-5Db)

(B-6)

(B-7)
(B-8a)

(B-8b)
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W2C3t+w2Cy = (Fot+F) o/ — T2
mi(m+mjy)
Cs “E [Tmp ,
w? ¥V miy(my+my)
Cy _Fe [Tmy ,
@2 V mi(mi+my)

therefore:

gs = £ + (A cos wyr+B sin wyr) ,\/_I .
w3 my(my+my)

(B-9)

(B-10a)

(B-10b)

(B-11)

Constants A and B in equation (B-11) and constants C3 and Cy4 in equation (B-6) are

determined from the initial conditions.
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APPENDIX C

Solution of Uncoupled Equations of Motion of a General System

The uncoupled equation of motion for a general system is:

n

girolq;= D 0y Filr)
i=1 (C-1)
where:

j = mode number
i = physical DOF number
n = number of physical DOF’s.

If linear forces are assumed, then the solution to this equation will take the form:

g = C112+Ct*+C3t+C4+Cs sin wr+C cos 01 (C-2a)
g = 3C112+2C1+C3+0Cs cos wt-0C sin 01 (C-2b)
§ = 6C11+2C,-w2 Cs sin wt-w?Ce COS I . (C-2¢)

For rigid-body modes wjz = 0, therefore:

Z ¢UF z ¢l}(F51thz) = 6C1t+2C2 ,
= i=1 (C-3)

=1 (C-4a)

- ' (C-4b)

So, for rigid-body motion:

3 & 2 &
q]npd L—z ¢I_]F i LE C,+C3I+C4 R
6 ° 2 1 (C-5)

Gjngia = tZ 0i;Fsi + 2 0iFei= 2 0iiFiD) .
i=1 i=1 (C-6)
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For elastic-body modes:

n
g+ ofgi= 3, ¢iF; .
i=1 (C-7)

Substituting equations (C-2) into equation (C-7):

n
of C18° +@0f Cot* + (0 C3+6C1) 1 + (0} Cs+2Cy) = Y, ¢ij(Foit+Fe)) |

i=1 (C-8)
¢, =0, (C-9a)
Cy=0, (C-9b)

n
0)2C3t+ 602C4=2 ¢ij(Fsit+Fci) ’
i=1 (C-10)

05 =1 (C-11a)

o} i (C-11b)

So, for elastic motion:

n
Gjasc === 3, $i;Fi() + A sin (wjt) + B cos ()
“ (C-12)

Gonste = —w} A sin (@jt) - w} B cos (wjt) . (C-13)

Constants A and B in equations (C-12) and (C-13) and constants C3 and C4 in equation
(C-5) are determined from the initial conditions.
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APPENDIX D

Analysis Results

EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - over constrained - no truncation)

BEAM A ERROR REFERENCE
Physical abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration | displacement acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000]  0.00000016|  0.00000000| 0.02689333| -0.1 6666667
DOF 41 0.00000000,  0.00000001 0.00000000| 0.47039469|  0.49999997
DOF 81 0.00000000]  0.00000002|  0.00000000{ 0.02689316| -0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000042|  0.00000000| 0.00602957| -0.00722064
DOF 21 0.00000000 0.00000000|  0.00000000] 0.02826125| -0.15944602
DOF 41 0.00000000{  0.00000000{  0.00000000|  0.44786349 0.50000000
DOF 61 0.00000000!  0.00000000]  0.00000000| 0.02826125| -0.15944602
DOF 81 0.00000000 0.00000000|  0.00000000] 0.00602962] -0.00722064
BEAM B ERROR REFERENCE
Craig-Bampton abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration | displacement acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000|  0.00000001 0.00000000| 0.01335352{ 0.16666667
DOF 41 0.00000000]  ©0.00000003]  0.00000000[ 0.00547892|  0.00000000
DOF 81 0.00000000|  0.00000002] ©0.00000000{ 0.01335353|  0.16666665
4 coupled DOF's
DOF 1 0.00000000]  0.00000030]  0.00000000{ 0.00046798]  0.00722064
DOF 21 0.00000000|  0.00000049|  0.00000000|  0.02862931 0.15944602
DOF 41 0.00000000|  0.00000003|  0.00000000|  0.00327701 0.00000000
DOF 61 0.00000000f  0.00000000 0.00000000| 0.02862883 0.15944602
DOF 81 0.00000000|  0.00000000]  0.00000000|  0.00046812|  0.00722064
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EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - over constrained - truncated)

BEAM A ERROR REFERENCE
Physical abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.02689278( -0.16666667
DOF 41 0.00000000 0.00000004 0.00000000 0.47039459 0.49999997
DOF 81 0.00000000 0.00000001 0.00000000 0.02683277| -0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000045 0.00000000 0.00602840| -0.00722064
DOF 21 0.00000000 0.00000000 0.00000000 0.02826261 -0.15944602
DOF 41 0.00000000 0.00000000 0.00000000 0.44786334 0.50000000
DOF 61 0.00000000 0.00000000 0.00000000 0.02826261| -0.15944602
DOF 81 0.00000000 0.00000000 0.00000000 0.00602892| -0.00722064
BEAM B ERROR REFERENCE
Craig-Bampton abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.01335330 0.16666667
DOF 41 0.00000000 0.00000005 0.00000000 0.00547904 0.00000000
DOF 81 0.00000000 0.00000000 0.00000000 0.01335329 0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000014 0.00000000 0.00046793 0.007220864
DOF 21 0.00000000 0.00000005|  0.00000000 0.02863001 0.15944602
DOF 41 0.00000000 0.00000003 0.00000000 0.00327707 0.00000000
DOF 61 0.00000000 0.00000000 0.00000000 0.02862996 0.15944602
DOF 81 0.00000000 0.00000000 0.00000000 0.00046814 0.00722064
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EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - 1 step to boundary - truncated)

BEAMA ERROR REFERENCE
Physical abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000043 0.00000000 0.02689245| -0.16666667
DOF 41 0.00000000 0.00000003 0.00000000 0.47039448 0.49999997
DOF 81 0.00000000 0.00000003 0.00000000 0.02689207| -0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.00602595| -0.00722064
DOF 21 0.00000000 0.00000006 0.00000000 0.02825282| -0.15944602
DOF 41 0.00000000 0.00000000 0.00000000 0.44786317 0.50000000
DOF 61 0.00000000 0.00000000 0.00000000 0.02825274| -0.15944602
DOF 81 0.00000000 0.00000008 0.00000000 0.00602571] -0.00722064
BEAM B ERROR REFERENCE
Craig-Bampton abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.00000000 0.16666667
DOF 41 n/a n/a n/a n/a 0.00000000
DOF 81 0.00000000 0.00000000 0.00000000 0.00000000 0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.00001097 0.00722064
DOF 21 0.00000000 0.00000004 0.00000000 0.00001101 0.15944602
DOF 41 n/a n/a n/a n/a 0.00000000
DOF 61 0.00000000 0.00000000 0.00000000 0.00001098 0.15944602
DOF 81 0.00000000 0.00000003 0.00000000 0.00001095 0.00722064

25




EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - 2 step to boundary - truncated)

BEAM A ERROR REFERENCE
Physical abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.02689188| -0.16666667
DOF 41 0.00000000 0.00000004 0.00000000 0.47039445 0.49999997
DOF 81 0.00000000 0.00000003 0.00000000 0.02689191] -0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.00602551| -0.00722064
DOF 21 0.00000000 0.00000000 0.00000000 0.02825380f -0.15944602
DOF 41 0.00000000 0.00000000 0.00000000 0.44786309 0.50000000
DOF 61 0.00000000 0.00000000 0.00000000 0.02825380| -0.15944602
DOF 81 0.00000000 0.00000000 0.00000000 0.00602551{ -0.00722064
BEAM B ERROR REFERENCE
Craig-Bampton abs(abs(REFERENCE)-abs) VALUE
acceleration | displacement | acceleration displacement | acceleration
method method method method method
all modes all modes truncated truncated all modes
2 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.00000000 0.16666667
DOF 41 n/a n/a n/a n/a 0.00000000
DOF 81 0.00000000 0.00000000 0.00000000 0.00000000 0.16666665
4 coupled DOF's
DOF 1 0.00000000 0.00000000 0.00000000 0.00001097 0.00722064
DOF 21 0.00000000 0.00000006 0.00000000 0.00001103 0.15944602
DOF 41 n/a n/a n/a n/a 0.00000000
DOF 61 0.00000000 0.00000002 0.00000000 0.00001099 0.15944602
DOF 81 0.00000000 0.00000000 0.00000000 0.00001097 0.00722064
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