DIGITAL SYNCHRONIZATION AND COMMUNICATION TECHNIQUES

William C. Lindsey
Lincom Corporation
Los Angeles, California 90024

RESEARCH IN DIGITAL SYNCHRONIZATION AND COMMUNICATIONS

- DIGITAL CODING/MODULATION UNDER INVESTIGATION
 - MPSK (BPSK, QPSK, OQPSK, MSK) OFFSET VS NON-OFFSET
 - MDPSK (DBPSK, DQPSK, ODQPSK, DMK)
 - CONVOLUTIONAL CODES AND TRELLIS-CODED MODULATION
 - BANDWIDTH EFFICIENT

- CHANNELS UNDER INVESTIGATION
 - AWGN
 - RAYLEIGH/RICE/SCINTILLATION
 - JAMMED

- RESEARCH EMPHASIZES
 ACQ
 - RAPID ACQUISITION WITH HIGH PROBABILITY
 - AVOIDING HANG-UP DURING ACQUISITION
 - AVOIDING CYCLE SLIPPING
 TRACK
 - MINIMIZE TRACKING JITTER
 - ELIMINATE PHASE AMBIGUITIES
 - ACHIEVING PERFORMANCE OF CODED-COHERENT COMMUNICATIONS
DIGITAL SYNCHRONIZATION PROJECT MOTIVATION

- FUTURE COMMUNICATION MODEMS ARE LIKELY TO EMPLOY ALL DIGITAL IMPLEMENTATIONS AS THE DIGITAL SIGNAL PROCESSING SPEED BARRIER BETWEEN DIGITAL AND ANALOG HARDWARE RISES DUE TO EMERGING TECHNOLOGIES, E.G., VLSI.

- COHERENT (C) VS. DIFFERENTIALLY COHERENT (DC) VS. NONCOHERENT (NC) DETECTION IN MODEMS
Desired Modem Implementation

DIGITAL SYNCHRONIZATION PROBLEM SPACE

CM: CONSTANT MODULUS
N-CM: NON-CONSTANT MODULUS
DA: DATA-AIDED
DD: DECISION DIRECTED
N-DD: NON-DECISION DIRECTED

CM: CONSTANT MODULUS
N-CM: NON-CONSTANT MODULUS
DA: DATA-AIDED
DD: DECISION DIRECTED
N-DD: NON-DECISION DIRECTED
SALIENT CHARACTERISTICS OF OPEN LOOP DIGITAL SYNCHRONIZERS

- Derived from adaptive filtering theory
- Do not require locally generated sync reference by means of a VCO or NCO
- Sync reference is non-constant modulus
- Does not require a phase-error measurement to update phase estimate

OPEN LOOP PHASE AND FREQUENCY ESTIMATOR

\[x(n) \rightarrow \text{MATCHED FILTER OUTPUT SAMPLE} \]

\[r(n+1) \rightarrow \text{NOISY REFERENCE SAMPLE} \]

\[RLS \text{ ESTIMATOR OF } k = \exp(j \omega_d) \]

\[\beta - \text{SAMPLE WEIGHTING FACTOR} \]
EXPONENTIALLY WEIGHTED PHASE ESTIMATOR LEARNING CURVES.

\[\beta = 0.875 \]

SYMBOL TO SYMBOL PHASE ROTATION LEARNING CURVE.

\[\omega_0 = 1.0 \text{ radians/symbol} \]
A Digital Receiver Structure Utilizing an Open Loop Estimator in a Decision-Directed Architecture

\[x(n) = d(n)e^{j\theta(n)} + \eta(n) \]
\[r(n) = A(n)e^{j\hat{\theta}(n)} \]

The BER Learning Curve of the Exponentially Weighted Estimator for QPSK Modulation (E_b/N_o=2dB)
SIMULATED STEADY STATE WATERFALL CURVE OF THE EW DD ESTIMATOR FOR SQPSK MODULATION. $\beta = 0.875$

![Diagram showing the probability of bit error against Eb/No, dB for SQPSK and DESQPSK with $\beta = 0.875$.]
SIMULATED STEADY STATE WATERFALL CURVE OF THE EW DD ESTIMATOR FOR QPSK MODULATION. $\beta = 0.875$
PROBABILITY OF REMAINING IN A HANGUP CONDITION FOR BPSK MODULATION. \(R_b = 2\, \text{dB}, \beta = 0.875 \).

PROBABILITY OF REMAINING IN A HANGUP CONDITION FOR QPSK MODULATION. \(R_b = 2\, \text{dB}, \beta = 0.875 \).
'S' CURVE FOR A DECISION-DIRECTED BPSK AND QPSK LOOP EW ESTIMATORS

![Graph showing the 'S' curve for a decision-directed BPSK and QPSK loop EW estimators. The graphs depict the average innovation phase error versus estimator phase error for different Eb/No and Es/No values.](image)

- For Eb/No = 20dB:
 - Average Innovation Phase Error, degrees
 - Estimator Phase Error, degrees

- For Es/No = 20dB:
 - Average Innovation Phase Error, degrees
 - Estimator Phase Error, degrees
Motivation For Research

- Modems used in burst mode communication systems (TDMA or FHSS) or a fading channel typically use noncoherent demodulation techniques
 - PLL structures and fast acquisition with high probability requirements are not compatible
 - Coherent demodulation improves the performance

- Technology advances favor digital receiver structures
 - VLSI or gate array implementations can significantly reduce the cost, size, and possibly power consumption while improving the reliability of modems.