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PREFACE

The Workshop on Squeezed States and Uncertainty Relations was held at the University
of Maryland at College Park on March 28 - 30, 1991. This Workshop was largely supported by
the Goddard Space Flight Center of the National Aeronautics and Space Administration. The
idea to hold the Workshop of this nature was initiated by the Office of Naval Research.

The purpose of this Workshop was to study possible applications of squeezed states of
light. Specifically, the Workshop will be concerned with the following questions.

(1) What physics can we do with squeezed-state lasers?
(2) What impact does the squeezed state give to other branches of physics?

The Workshop brought together active researchers in squeezed states of light and those who may
find the concept of squeezed states useful in their research efforts, particularly in the foundations
of quantum mechanics.

The effort made for this meeting will be continued by the Second International Workshop
on Squeezed States and Uncertainty Relations to be held in Moscow on May 25 - 29, 1992. The
principal organizers for this Moscow meeting are V. I. Man'ko (Lebedev Physical Insitute) and
Y. S. Kim (Univ. of Maryland at College Park). We expect that the Moscow meetin g will attract
many researchers from Europe as well as those from the United States.
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INTRODUCTION

Squeezed states were predicted theoretically in the 1970's. They became a physical
reality during the period 1985-1988. Efforts are being made to produce more efficient squeezed-
state lasers. More refined theoretical tools are being developed for this new physical
phenomenon. One of the pressing questions during the 1990's will be: What should we do with
squeezed states? This is the main question we wanted to address in this Workshop.

There are many who say that the potential for industrial applications is enormous, as the
history of the conventional laser suggests. There are also those who say that the squeezed state
is only a fad and will disappear within two years. In order to find a more accurate answer to the
question, let us make the following observations.

(1) All those who worked so hard to produce squeezed states of light are continuing
their efforts to construct more efficient squeezed-state lasers. Quite naturally, they are looking
for new experiments using these lasers. New experiments often require new ideas from
branches of physics somewhat removed from their own. For instance, the concept of squeezed
states arose in part from the desire to detect gravitational waves.

(2) The physical basis of squeezed states is the uncertainty relation in Fock space,
which is also the basis for the creation and annihilation of particles in quantum field theory.
Indeed, squeezed states provide a unique opportunity for field theoreticians to develop a
measurement theory for quantum field theory. The precondition for formulating field theoretic
measurement theory is a correct understanding of the conventional measurement theory and
related experiments.

(3) The theory of squeezed states shares a common mathematical language with many
other branches of physics. The basic language is the Lorentz group, which plays important roles
in quantum field theory, the phase- space picture of quantum mechanics, relativity, elementary
particle physics, condensed matter physics, canonical transformations in classical mechanics, and
crystal and polarization optics. It is possible for the physicists in these fields to learn new
lessons from the physics of squeezed states.

The Workshop was attended by many of the originators of squeezed states of light as
well as those who spent many years studying the foundations of quantum mechanics and related
problems. There were also many students. The Editors are very happy to present the papers by
those active researchers on squeezed states and related subjects.



I. MEASUREMENT PROBLEMS AND THE EINSTEIN-PODOLSKY-ROSEN PARADOX
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*
NONCLASSICAL AND NONLOCAL EFFECTS IN THE INTERFERENCE OF LIGHT

L. Mandel

Department of Physics and Astronomy
University of Rochester
Rochester, New York 14627

INTRODUCTION

Although we tend to think of
optical interference as a classical
wave phenomenon, recent experiments
have revealed a number of effects that
are not describable in classical
terms. This is particularly true of
interference effects involving the
detection of a photon pair. We shall
refer to them as fourth order inter-
ference, on the grounds that the joint
probability density for the detection
of one photon at r, at time t and
another at r, at time t is propor-
tional to the fourth order correlation
function of the field (Ref. 1)

(2,2)
T (£1t,£2

This probability is readily measured
when two photodetectors are positioned
at r, and r, and the signals from the
two detectors are fed to a coincidence
counter that registers 'simultaneous'
detections by the two detectors in
coincidence,

L'th ORDER INTERFERENCE MEASUREMENTS

In the special case in which the
two points X;:X, 1ie on a line, and

*

This research was supported by the
National Science Foundation and by the
U.S. Office of Naval Research.
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the light is produced by two sources
A,B on a parallel line such that A
emits one photon and B emits one
photon, it can be shown that (Refs.
2,3)

2n(x,-x,)

2,2

F( ) [1+cos ————%——g— R (2)
where L = A/6. 8 is the small angle

Subtended by the two points A,B at X,
or X, and A is the wavelength. L is
the same fringe Spacing that is
encountered in the more usual second
order interference. According to Eq.
(2) the visibility of the fourth order
Interference effect can be 100%,
despite the absence of phase correla-
tion between the two sources. By
contrast a classical field that ex-
hibits 4'th order interference cannot
achieve a visibility higher than 50%.
(Refs. 2-4)

-

Rc/1(x,) (per min)
]

Y s Py
Fosition x, of Detector (mm)

Fig. 1 Experimental
b*th order interference.

[Reproduced
from Ref. 6. ]
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We have observed greater than 50%
visibility in several recent inter-
ference experiments,(Refs. 5,6) in
which the two photons were generated
together in the process of spontaneous
parametric down-conversion in a non-
linear crystal.(Ref. 7) It is
convenient to produce the interference
pattern by mixing the two incoming
photons with the help of a 50%:50%
beam splitter with a photodetector at
each output port. Figure 1 shows the
experimental results when the rate of
coincidence counting, after some
corrections are applied, is plotted
against the position of one detector,
while the other detector remains
fixed. The interference pattern has
the expected periodicity L, and the
observed 75% visibility shows that we
are dealing with a quantum phenomenon,
because there is no classical field
that can give rise to more than 50%
visibility.

The same mixing technique has
been applied to the measurement of the
time separation between the two
photons on a femtosecond time scale,
and to study violations of locality.
In order to understand the principle
of the method, let us consider the
symmetric beam splitter with intensity
transmissivity T and reflecticity R
(R+T = 1), shown in Fig. 2. Let a,8
label the two input ports and u,v the
two output ports. Suppose that the two
photons enter in the state |1a,18>, in
which each photon is in the form of a

P

o «,D

Fig. 2 The beam splitter.

short wave packet and the two wave
packets are identical and overlap
completely in time. In order to arrive
at the output state |wout> we first

note that there are three
possibilities: (a) one photon appears
at each output (|1u’1v>); (b) both

photons appear at output port u
(|2u,0v>); (¢) both photons appear at

output port v (Iou’2v>)' It can be
shown (Ref. 8) that Iwout> is given by
the linear superposition
fv_ > = (T-R)|1u,1v>+i/2RT
2 ,0 >+
x (| 20, |ou,2v>) , (3)

out

from which it follows that when T =
1/2 = R, both photons always appear
together at one or the other output.
If there is a photodetector at each
output, there will be no coincidence
detections (other than accidentals),
because the corresponding two-photon
probability amplitude vanishes by
destructive interference. But if one
photon is delayed slightly relative to
the other one by some amount t, the
destructive interference is no longer
complete, and the coincidence prob-
ability P(t) rises from zero with
increasing 1. When 1 exceeds the
duration of the wave packet and the
two wave packets no longer overlap,
P(t) becomes constant and independent
of t.

€ - 140 [¢) 140 €5

E ) ’ []

(=}

£ 8001

]

5

g 600+

(]

§4oo-

$ 200

-]

2' (] T T T T T T
260 280 300 320 340 360

Position of beam sphtter {u.m}

Fig. 3 Measured coincidence rate as a
function of time delay in fsec between
th? two photons. [Reproduced from Ref.
9.



Figure 3 shows the result of such
a coincidence counting experiment
(Ref. 9) in which each photon wave
packet had a length of about 100 fsec.
It can be seen that the observed
probability P(1) is close to zero for
7 = 0, and rises to become constant
when +1 equals or exceeds about 100
fsec. We therefore have a technique
for measuring the time separation
between two pulses of light and the
length of the pulse, when each pulse
consists of a single photon. The time
resolution achieved in this experiment
was about 3 fsec, which is about a
million times shorter than the resolv-
ing time of the detectors and the
associated electronics. In some later
experiments (Ref. 10) the resolution
was further measured to about 1 fsec,
which is less than half an optical
period.

THE FRANSON EXPERIMENT

A number of experiments have also
been performed for which there is no
adequate classical model to explain
the 4'th order interference.(Refs. 11-
14) Let us consider the experimental
situation illustrated in Fig. 4, which

Fig. 4 The principle of the Franson
Jrth order interference experiment.
[Reproduced from Ref. 13.]

was first proposed and discussed by
Franson.(Ref. 15) A source emits two
photons A and B simultaneously, each
with some center frequency wyrp and

bandwidth Aw. The photons emerge in
two different directions and fall on
two photodetectors DA and DB without

ever coming together. Some beam split-
ters and mirrors forming two similar
interferometers are introduced, so as
to provide two alternative paths for
each photon, as shown: a direct path
and a longer indirect path. Let the
propagation time difference between

the two paths be T+TA in channel A and

T+rB in channel B, with T >> 1/Aw,
TpsTp <K 1/Aw.

Because the path difference in
each of the two interferometers
greatly exceeds the coherence length
¢/Aw of the light, no second order
interference is expected. The prob-

ability that a photon is detected by

DA does not change significantly when

A
for DB' However, if we calculate the

7, 1s changed slightly, and similarly

joint probability P that a photon is

AB

A and by DB in
coincidence, which can be measured
with a coincidence counter, we find
that it exhibits interference of the
form

detected by D

PAB « [1+n cos(wArA+thB+const.)]. (4)

n can be 100% if the coincidence
resolving time TR is sufficiently

short, and it is about 50% when TR >>
T >> 1/Aw.

This result is best understood as
an interference of a photon pair.
There are several different ways in
which a coincidence can occur: (a)both
photons follow the short inter-
ferometer paths and arrive
simultaneously at the two detectors;
(b)both photons follow the long inter-
ferometer paths and arrive
simultaneously at the detectors;
(c)one photon follows the long path
and one follows the short path but the



time difference T+t, (say) lies within
the coincidence resolving time TR’ S0

that the photons are deemed to arrive
'simultaneously'. As these probabil-
ities are intrinsically
indistinguishable, we have to add the
corresponding probability amplitudes
and then square in order to arrive at
the probability PAB' This leads to the

result in Eq. (4). The interference
exhibits non-local features, because
the outcome of a measurement
registered by DA depends not only on

T, but also on Tgy €ven though the

A
interferometer in channel B cannot
influence what happens in channel A,

This interference effect has
recently been observed (Refs. 13,14)
in experiments in which the two
photons were produced by down-
conversion in a non-linear crystal.
Figure 5 shows the results of such an
experiment in which one mirror was
moved piezoelectrically and the two-
photon coincidence rate was measured.
Evidently there is interference
despite the fact that the two photons
never mix and the path difference
exceeds the coherence length of the
light more than 100-fold.
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Fig. 5 Results of the Franson-type
interference experiment. [Reproduced
from Ref. 13.]

The question whether a classical
field can give rise to this kind of
behavior has been discussed.(Refs. 16~

18) Let us attempt to describe the
experimental situation in Fig. 4 in
terms of classical waves. Let
VA(t),VB(t) be the complex analytic

signals representing the stationary
light field leaving the source. Then
the fields at the two detectors DA’DB

can be expressed in the form

Wo(t) = av, (t) + gV,(t+T+1,)

(5)
WB(t)

aVg(t) + BVB(t+T+TB) ,

where a,B are constants characteristic
of the beam splitters and mirrors. The
joint probability that a photoemission

occurs at DA at time t and at DB at

time t+t is proportional to the two-
time correlation

2 2
Pyplt) = <|wA(t)| |WB(t+T)| > . (6)

The integral of PAB(r) with

respect to 1 over the resolving time

TR of the coincidence counter yields

the coincidence counting rate, which
is proportional to

T./2
R =[ R d1<|wA(t)12|wB(t+r)|2>. (7)
¢ J-Tp/2

With the help of Eqs. (5) it may be
shown (Ref. 16) that @C contains an

interference term of the form

- ¥ 2 TR/2
J interfer o B dr
' -T /2
R
* *
x <VA(t)VA(t+T)VB(t+T)VB(t+T+T)>
-i[w T,tw,T )
x e AR BB, c.C., (8)

together with a somewhat similar
interference term involving
exp[i[mBrB-wArA)]. But (RC also con-
tains a non-oscillatory or background
contribution



T, /2
J background ~ I-T /2d1(|a| +[8]7)
R

x <L (E)I (t+T)>+ |a|2|6|2
x (<IA(t)IB(t+T+T)>
+ <L (DI (t+=T)>) , (9)

which represents light background for
the interference. Here IA(t) =

IVA(t)IZ, etc. The presence of the

interference terms suggests that
certain classical fields can exhibit
the observed interference effect.

Let us now examine the
magnitudes. Whereas the integrand in
Eq. (8) tends to zero with increasing
1, that in Eq. (9) does not. We recall
that for any ergodic process correla-
tions must eventually die out. It
follows that for sufficiently long =t
the terms in t are no longer corre-
lated with those without t, and
therefore for a stationary field,

<V:(t)VA(t+T)V;(t+T)VB(t+T+T)>

* *
> <VA(t)VA(t+T)><VB(t)VB(t+T)>
=0 ’ (10)

because T >> 1/Aw. The integrand in
Eq. (9), on the other hand, tends to
the constant value (|a|%|8]2)2<I,><I>

as t *» », Therefore if we integrate
with respect to t over a sufficiently
long resolving time TR’ the background

term will greatly exceed the inter-
ference terms, and the visibility of
the interference will become negli-
gibly small. In ref. 16 it was argued
that the integrand in Eq. (8) has a
range in 1 of order 1/Aw. But even if
it has a longer range, so long as TR

is much longer than this range, the
visibility of the interference given
by Egqs. (8) and (9) would be very
small.

Actually, a classical model of
the light from a parametric down-
converter fails for other, more
compelling reasons. It can be shown
(Ref. 19) that for any classical field
whose correlation time is much shorter
than TR’

< (11)

- ) -
Ryp~ %5 accid. < ®an " Ra aceid.’

where QAB is the coincidence counting

rate when signal light falls on one
detector and idler light on the other,
and @AA is the self-coincidence rate

for the signal. Accidental coincidence
contributions are subtracted on both
sides. In practice, classical ine-
quality (11) is, however, found to be
violated by down-converted light by
several hundred standard
deviations.(Ref. 19)

EXPERIMENTAL TEST OF THE DE BROGLIE
GUIDED WAVE THEORY

Finally, we describe a recent
experiment to test a prediction of the
de Broglie guided wave theory relating
to interference.(Refs. 20,21)
According to this theory, which is a
hybrid of c¢lassical and quantum con-
cepts, there exist both photons and
electromagnetic waves, with the latter
acting as guides for the former. But,
in addition to yielding the probabil-
ity for detecting a photon, the
electromagnetic wave is supposed to
have a physical reality that extends
beyond being a probability wave.

Figure 6 shows the essential
features of the experiment.{Ref. 22)
Three 50%:50% beam splitters
BS,,BS,,BS; form a Michelson type of
interferometer, and BS, can be ad-
justed piezoelectrically to move
through one or two microns. Any light
that penetrates BS, and BS, falls on
detector D, and D,, respectively. The
counting rates R,,R, of the two detec-
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Fig. 6 Outline of the interference
experiment to test the de Broglie
guided wave theory. [Reproduced from
Ref. 22.]

tors are measured as a function of
beam splitter BS, displacement Ax,
together with the coincidence counting
rate R, ,. The interferometer is fed
with the signal (s) and idler (i)
light produced by down-conversion in
the non-linear crystal NLC, as shown,
and it is balanced so that the paths
of i from NLC to BS; and of s from NLC
to BS, to BS, are equal.

Reference to Fig. 6 shows that
the idler can only reach detector D,.
On the other hand, the signal can
reach both detector D, and detector

D,, and moreover it can reach D, via
the two different paths NLC to BS, to
BS, to BS, to D, and NLC to BS, to BS,
to BS, to D,. If the distances BS, to
BS, and BS, to BS, are nearly equal,
these two paths interfere, so that
counting rate R, of D,, which is given
by the expectation of the square of
the wave function §, at D,, depends on
Ax. On the other hand, the counting
rate R, of D,, which is given by
<|w,|?> is independent of Ax.
According to the guided wave theory,
(Ref. 21) the counting rate R,, of D,
and D, in coincidence is proportional
to the expectation <|y,|?|v,|%>, and
since |y,|? is constant and independ-
ent of Ax, whereas [y, |? shows
interference, this would be expected
to exhibit much the same interference
as R,.
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Let us compare that prediction
with the quantum mechanical one. As
there is only one signal and one idler
photon emitted at one time, and be-
cause the idler can only reach D,, it
follows that whenever a coincidence is
registered, D, must have detected the
idler photon and D, the signal photon.
But reference to Fig. 6 shows that, in
that case, there is no ambiguity in
the photon paths, because the wave
function y, collapses along the two
paths s to BS, to BS; to BS, and s to
BS, to BS, to BS, that interfere.
Therefore R,, should exhibit no inter-
ference or dependence on Ax. A similar
conclusion is reached by a mathemati-
cal treatment of the problem.(Ref. 22)

The results of the experiment are
shown in Figs. 7 and 8. Figure 7 gives
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Fig. 7 The measured photon counting

rate R, as a function of the displace~
ment of BS,. [Reproduced from Ref.

22. ]
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Fig. 8 The measured two-photon

coincidence counting rate as a func-
tion of BS, displacement. [Reproduced
from Ref. 22.]



the measured photon counting rate R,
as a function of the displacement Ax
of BS,. As expected, this exhibits
interference attributable to the two
alternative paths of s to D,. But this
I1s predicted by all theories, by
quantum mechanics, by classical wave
theory and by the guided wave theory.

Figure 8 gives the measured two-
photon coincidence rate R,,, after
subtraction of accidental counts, as a
function of BS, displacement. This
time there is no evidence of any
interference, in agreement with quan-
tum mechanies, but in violation of the
guided wave theory. We have therefore
disproved one prediction of the guided
wave theory. Needless to say, this
conclusion applies only to the par-
ticular form of the theory described
above, in which probabilities are
calculated very much as in semiclassi-
cal radiation theory.

The fourth order interference
technique is capable not only of very
high accuracy, such as the measurement
of the time separation between two
photons to 1 fsec accuracy, but it
also lends itself to the exploration
of quite fundamental questions about
our quantum world.
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ABSTRACT

A quantum generalization of rate-distortion theory from standard communication and infor-
mation theory is developed for application to determining the ultimate performance limit of mea-
surement systems in physics. For the estimation of a real or a phase parameter, it is shown that
the root-mean-square error obtained in a measurement with a single-mode photon level N cannot
do better than ~ N~ while ~ ezp{—N} may be obtained for multi-mode fields with the same
photon level N. Possible ways to achieve the remarkable exponential performance are indicated.

INTRODUCTION

Given whatever physical constraints one has to operate with, what is the best possible system
one can build for the measurement or estimation of a physical parameter of interest? It is evident
that a systematic approach to the answer of this class of questions is of great interest in physics,
which is so much concerned with the detection and accurate measurement of various quantities,
from routine temperature gauging to the detection of very weak gravitational radiation. In this
paper, I will describe a systematic theory for answering these questions. Conceptually, this theory
is directly transplanted from ordinary (classical) information and communication theory, although
technically the new quantum issues may greatly complicate the actual workout of a solution. As
illustrations, I will provide the ultimate quantum limits on the accuracy of estimating a phase
parameter, and also an arbitrary real parameter, when an optical field of a given power level is
employed. Let N be the available number of photons of a narrowband optical field. For both
the estimation of a phase parameter and a real amplitude parameter, the following results will be
proved. For a single-mode field, the best root-mean-square error one may obtain is

1 1
~ — t AN ]_

whereas for a multimode field with sufficiently many modes one may achieve

§dp~e N, br~e N, (2)

Moreover, the theory provides various indications on how one may actually approach the problem
of realizing a multimode system that would yield the remarkable exponential performance given by
(2). In the following, the underlying information theoretic results will first be explained before the
quantum situation is discussed. Due to limitations in space-time, everything can only be briefly
outlined. Nevertheless, I hope the discussion is self-contained and comprehensible.

1 This work was supported by the office of Naval Research.
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RATE-DISTORTION LIMIT

The theory of information transmission pioneered by Shannon (refs. 1-3) can be immediately
adapted to provide a systematic answer to the above class of questions. For a system described by
classical physics, the solution goes as follows. First, we assign an a priori probability distribution
p(u) on the parameter u we are interested in estimating. This parameter would modulate a physi-
cal variable in whatever physical system we pick for extracting information about this parameter.
For example, if u is the amplitude of a gravitational wave, the system may be a Michelson in-
terferometer with the physical variable a certain optical phase of an electromagnetic field mode.
Some measurement is to be made on the system, such as a determination of the field strengths
of the mode, to extract information on the physical variable through which an estimate of u is to
be obtained. Let z be the physical variable, and y the measurement variable which is in general
random with conditional probability p(y|z),with z itself a function of u depending on the specific
scheme. Both the cases of discrete and continuous variables will be included throughout with
proper interpretation of the probabilities as a distribution or a density function of the random
quantities under discussion.

The condition probability p(y|z) defines a channel in information theory, with z the channel
input and y the channel output. For any input probability p(z), the joint probability p(y,z) =
p(y|z)p(z) is specified from which one can evaluate the average mutual information between z and

Y,

I(x;y) = /p(fc,y)logp(—xi)dwdy- (3)

|
p(z)
The entropy of a single random variable can be defined as average self-information

H(v) = I(v;v) (4)

in which p(v|v) is to be interpreted as a Kronecker or Dirac delta. The units in 3) and (4) are
given as bits per channel use (per channel input) and bits per source symbol if the log is taken
to be of base 2, and as nats per use if the log is of base e. Shannon’s channel coding theorem
and its converse (ref. 1) state that successive independent samples of a random variable v can
be transmitted over a channel p(y|z) with zero probability of error if and only if H(v) < I(x;y).
However, for a noisy channel, i.e., when y does not specify z uniquely, channel encoding and
decoding are required to get zero error probability which is only obtained in the limit of arbitrarily
long codes. Note that we have deviated somewhat from the standard notations in information
theory to avoid conflict with later quantum notations. Also, the coding theorem is usually stated
in terms of the capacity of the channel, which is defined to be the I(x;y) obtained by maximizing
over p(z) under whatever further constraints one may impose on z. Typically, one assigns a cost
function B(z) and constraint the average cost to be under a given level B. The capacity C(B)
will then be an increasing function of B. Roughly speaking, C(B) is the mazimum number of
information bits one can transmit error-free over a channel with an average resource level B.

The rate-distortion function R(D) of a random variable u is defined to be the minimum 7(u;v)
between u and any another random variable v such that the average distortion between u and v

Eld(u,v)] = / d(u, v)p(u)p(v]u)dudy (5)

is at or below a given level D, where the distortion function d(u,v) is a given measure of the
difference between v and v. When u is a continuous real parameter, d(u,v) is often chosen to be

lu — v|2 or |u — v|. The minimization of I(u;v) is carried over p(v|u) subject to the constraint

Eld(u,v)] < D. (6)

14



One may think of v as a data-compressed version of the source variable u — v represents u with
an average distortion D but it requires less bits to represent v than u. Shannon’s source coding
theorem with a fidelity criterion and its converse (ref. 3) state that a source can be asymptotically
represented with an average distortion D if and only if at least R(D) bits per source symbol is
provided. Again, source encoding and decoding are in general required to achieve such minimum
distortion in the limit of long codes. Nevertheless, this result shows that roughly speaking, R(D) is
the minimum number of information bits required to represent a source with an average distortion

level D.

What is the minimum average distortion D one can get for transmitting a source variable u
over a channel with resource B? The answer is provided by Shannon’s joint source-channel coding
theorem (refs. 4-5) in what is often called the rate-distortion limit or rate-distortion bound. By
combining the source and the channel coding theorems, the bound is

D> R™'C(B) (7)

where R~! is the inverse of the monotone function R(D). Tt is important to emphasize that the
Shannon theorem and its converse state that (7) is the ultimate limit and can be approached by
an actual system that employs source coding and channel coding separately. It does not say that
it can only be approached by separate source and channel coding. In fact, the following example
illustrating the power of the rate-distortion bound also shows that it is sometimes possible to
achieve it (to get the actual minimum) without any coding or nonlinear modulation at all.

Let u be a zero-mean Gaussian random variable with variance 02, and distortion measure the
squared error d(u,v) = |u — v|?. The rate distortion function in this case is well known [refs. 3-5],

R(D) = %log%;’* 0<D<o? (8)
=0 D > o?

Consider an additive Gaussian noise channel

y=z+n (9)
where n is a zero-mean Gaussian noise variable with variance N statistically independent of z.
With a given power level, E[¢?] < S, it is wellknown [refs. 1-2, 4-5] that the capacity is

1 S
C(S) 210g(1+,/\/'0)' (10)
The rate-distortion bound solves the following problem which cannot be solved in any other way, to
my knowledge. Suppose each sample of u matches each use of z, i.e., the rate that u is generated is
equal to the rate that « can be transmitted over the Gaussian channel. We are interested in finding
the best signal processing scheme before transmission over the channel and after transmission in
receiver processing that would yield an estimate of u with minimum mean-square error. From
(7),(8) and (10) one gets

D > o} (1+/\%)—1' (11)

It turns out that the right side of (11) can be obtained by simply letting = = 07152y and

estimating 4(y) = 0,57 1/%y, i.e., direct linear transmission and estimation without coding or
nonlinear modulation is already optimal as verified from the rate-distortion limit. On the other
hand, a direct optimization approach to this or most other comunication problems is very difficult
to just formulate, not to mention writing down the optimization conditions.

Despite the power of rate-distortion theory, we are faced with two complications in its applica-
tion to measurement problems in physics. The first is derived from the fact that in a measurement
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system, one may have very little or no room at all for source coding, basically because the param-
eter u in this case may be entirely out of one’s control for further processing before modulating
onto the physical variable z. Thus, while the bound (7) still remains a limit, one is no longer sure
that the limit can be achieved arbitrarily closely. This problem can be overcome by replacing R(D)
by R(D), which is defined to be the number of bits required to represnet u to a distortion level
D given a specific simple source coding scheme such as uniform quantization, or no coding at all.
The second problem is similarly derived from the fact that no channel coding may be employed. In
the same way, one can replace C(B) by an average mutual information Z(B) which incorporates
whatever constraint one must face, including perhaps some modulation but no coding. In contrast
to the source case R(D), in the evaluation of Z(B) it may be difficult to actually take into account
precisely the constraints one operates with. Anyhow, in a way exactly parallel to the Shannon
joint source-channel coding theorem, the following generalized rate-distortion limit applies with
whatever additional constraints in the present measurement situation,

D > R'I(B). (12)
Depending on the specific case, the limit (12) may be much higher than (7).

In addition to providing an answer on how accurately one may actually perform a measurement
through (7) or (12), this theory also indicates a way to approach the best performance, namely,
through channel coding or modulation to achieve C'(B) or Z(B), assuming source coding cannot
be carried out. Illustrations will be given in the following quantum problems.

MEASUREMENT WITH A QUANTUM SYSTEM

The development of squeezed and nonclassical lights [ref. 6-7] has been strongly motivated by
their possible applications to precision measurements. It is logical, in fact imperative, to ask for
the ultimate limit of measurements in quantum physics; quantum fluctuations, being an intrinsic
feature of nature as we understand it, would have to be taken into account in assessing such
ultimate limits. Contrary to what one may first think, the uncertainty principle does not provide
the answer either by itself or in conjuction with other additional considerations as discussed in
the following two prime cases of continuous parameter estimation. Consider first the case of a
real parameter A defined over the whole real line . For simplicity, let A be a Gaussian random
variable and N be the average available number of photons in a single-mode field that one can
use to capture A. That is, we wish to design the best measurement system, which is represented
by the way A modulates the quantum state p) of the mode and the quantum measurement one
chooses to make on the mode, subject to the constraint

/wprMQMASN' (13)

where p()) is the probability of A, a the model photon annihilation operator, and p) a density
operator on the Hilbert space of quantum states H. To include all possible quantum measurements
such as heterodyning, a general quantum measurement on the system H is represented, as far as
the measurement probability is concerned, by a positive operator-valued measure (POM) [ref. 8-10]
generalizing the usual selfadjoint operator description. In a notation including possible operator-
valued distributions, a POM X with measurement value z € R" is a function z — X(z) such
that each X(z) is a bounded positive semidefinite selfadjoint operator and all the X(z) sum to
the identity operator, i.e.,

X(z) 20, (14)

/X@Mm:L (15)
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When X(z) = |z >< z| are orthogonal projectors, the POM X can be desribed by a unique
selfadjoint operator obeying the functional calculus

F(X) = [ f()X(2)da. (16)

For a general POM, (16) does not hold. When X is measured on a system in state p, the probability
that z is obtained 1s given by tr[pX(z)]. Mathematically, the problem is to find a mapping

A+ pr, A € R, a quantum measurement X, an estimate :\(z) of A, such that the resulting mean-

squared error between A and X is as small as possible subject to the constraint (13). It should be
clear that the uncertainty principle is of little help in solving this problem, although some weaker
conclusion may be obtained with its help [refs. 11-14]. Thus, if one assumes that X is to be a
single field-quadrature operator, and the criterion is changed to average signal-to-noise ratio, then
the uncertainty relation between conjugate quadratures

1
< Adl >< Adl >> 16 (17)

can be used to show that the use of two-photon coherent states (T'CS) or squeezed states in the
narrow sense [refs. 6,15] is optimum. In fact, it yields a mean-square error given by, from (11),
O

2, 18
72N (18)
As will be shown in the next section, this turns out to be very close to the best one can do.

D0=(

In the second case, consider the estimation a real parameter defined over a finite interval,
which for simplicity we take to be a phase parameter ¢ € (—=,7]. Mathematically, the problem
is exactly the same as above except that p(}) is changed. The number-phase uncertainty relation
in whatever form or interpretation,

ANAD > i (19)

is of no help at all here. In contrast to (17), (19) does not even place a limit on how small A®
may get under an average photon number constraint because AN may still be arbitrarily large.
More significantly, in an actual measurement problem it is not the quantum fluctuation alone that
is important in determining the limit. The total quantum state (the full statistics) and the way
energy is distributed could be just as important. We now show how the rate-distortion theory can
be generalized to provide the answers.

ULTIMATE QUANTUM LIMITS

To obtain the ultimate possible performance for the above two problems, we note that with
the mean-square error criterion the rate distortion function R(D) for a Gaussian random variable
A with variance o2 is given by (8) while that for a uniformly distributed ¢ € (—=, ] is difficult
to evaluate exactly. However, the wellknown Shannon upper and lower bounds [ref. 3] on R(D)
gives a very accurate estimate in this case: in nats per symbol

0.419 — logV'D < Ry4(D) < 0.595 — logv/D (20)

If the magnitude distortion function d(u,v) = |u — v| is employed instead, the RSD) for the
uniform phase parameter is known exactly while that of a Gaussian random variable is known
parametrically [ref. 16]. In both cases, they are quite close to that given by the Shannon lower
bound, and are approximately the same as the mean-square case with the natural replacement of
D by v/D. Moreover, for the uniform phase variable the R(D) function obtained from a uniform
quantizer (digitizer) can be easily evaluated. For the mean-square-criterion,
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R4(D) ~ 0.595 — logv'D (21)

which is exactly the upper bound part of (20)! Thus, uniform digitization without coding is
quite close to optimum in this case. For the Gaussian case, uniform quantization also leads to
a R(D) with a similar functional form to R(D), but with a further fixed constant difference. In
fact, it is well known that for a large class of memonylas sources and distortion measures simple
quantization already leads to a performance close to the rate-distortion limit. The upshot of our
discussion is that independently of the exact distortion criterion one chooses and without the need
of coding, the R(D) functions for our two cases can be accurately estimated and they are close to
the rate-distortion limit R(D).

Given R(D) or R(D), the quantum limitation on communication or measurement is deter-
mined by substituting the ultimate quantum information transmission capacity C into C(B) in
the bound (7). For a given system, the ultimate quantum capacity C is the maximum average
mutual information I(x;j) one may obtain by picking an input alphabet J, discrete or continuous,
probability p; on J, a map j — p;,j € J,p; density operators on the system state space H, and
a POM X(z) subject to whatever constraints one may have. It is clear that the channel coding
theorem and its converse hold for this capacity C. The actual evaluation of C can be very com-
plicated due to the added optimization over p; and X which are entirely of quantum mechanical
origin. However, for certain cases including the following ones, the evaluation can be carried out
with the help of an entropy bound [ref. 10]. Thus, for a single-mode optical field with average
photon number constraint N,

> pjtr[pjata] < N, (22)
7

the ultimate quantum capacity is achieved by photon number eigenstates with the result [ref. 10]

C(N) = (N + 1)log(N +1) — NlogN. (23)

For a narrowband optical field with m modes of approximately the same frequency and a constraint
N on the total number of average photons in all m modes, the ultimate capacity is [ref. 10]

C(N) = miog( -+ 1) + Y tog(% +1). (24)

We may also be interested in the capacity of TCS with homodyne detection [ref.17]

CEQY(N) = mlog(2+1) (25)

and the capacity of coherent states with heterodyne detection

CHET(N) = mlog(% +1). (26)

Going back to our single-mode optimal measurement problem, it follows from (8) and (23) that

for a Gaussian parameter 7 with variance o2, the best root-mean-square error ér = v D one may
obtain is

o 1.y ©
= )N~ 2 1
or N+1(1+N) N W N >> (27

The suboptimum TCS and CS performance are close to the optimum (27); from (25)-(26) with
m=1,
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§e7CS — __ 7 cs . _9_ 28
" oN+1 T N+1 (28)

Note that 6775 can be achieved without coding or nonlinear modulation from (18) as discussed in

the previous section, while §r¢S = 71\‘;—-“ without coding or modulation. Thus, the use of TCS can

be viewed as an alternative to coding or nonlinear modulation in at least the single-mode case. For
the phase parameter ¢ with uniform distribution, it follows from (21) and (23) that the ultimate
limit is

1
bp~—, N 2
while with TCS and coherent states
1 1
seTCs o L cs . L1 _
o) 5N 1Yo i N>>1 (30)

Again, it is known that the use of TCS or other phased-squeezed states would lead directly to
b ~ % [ref. 18], while the use of coherant states without coding or modulation yields only

660 ~ L.

Consider now the multimode limit under the constraint of the same number of photons N.

From (8) and (24), we have
NN\ m\ N
ér = — —
r=o (m) (1 + N) (31)

which implies that ér would go to zero at least as quickly as e~V for m > 0.1N. For TCS and
coherent states,

6r76S = o (1 + ﬂ) , r%% =0 (1 + E) (32)
m \ m
which implies that they would go to zero as e for m > N. Similarly for the phase parameter ¢,
NN\ m\~N
(7)) (1+%) ()
6¢TC‘S ~ (1 + @i) , 57,6'5 ~ (1 + ._jY_) . (34)
m m

This multimode behavior as indicated by equ (2) is not unexpected from communication theory, as
a larger number of modes is equivalent to signal space of higher dimension which means that the
different messages can be placed farther apart in signal space to combat the effect of noise [refs.
2,19]. This is familiar in what is called FM quieting in frequency modulation, and is commonly
referred to as the exchange of bandwidth with signal-to-noise ratio. The remarkable feature is that
a large number of modes moves the N=! dependence of the ultimate limit to exp {—N} which is
so much more accelerated!

There are several approaches one may consider for obtaining such exponential performance,
although in a measurement rather than a communication situation one cannot be sure that the
above capacities can be actually obtained. Since the number-states channel is noise-free, its
capacity can be achieved without coding. Indeed it is achieved by a rather simple modulation
scheme and the effect of a small nonideal residue noise is not expected to affect the resulting
performance too much. The problem remains to find a scheme which, for a measurement system,
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would naturally capture the parameter A (either r or ¢) of interest in such a modulation scheme
or another one which is nearly as good. On the other hand, one may consider the use of nonlinear
modulation on TCS or coherent states; different nonlinear modulation schemes are known to get
quite close to the rate-distortion limit in many classical communication situations [ref. 20]. In
particular, if nonlinear modulation or coding is to be employed, one may consider dispensing with
the use of TCS and staying with coherent states, with the resulting loss of a factor of 2 in the
exponent but a tremendous gain in practicality. Many different nonlinear modulation schemes may
be employed. For example, it is wellknown that a simple pulse frequency modulation in which the
modulated signal is given by

s(t,\) = \/%Efsin(wo +B8Mt, 0<t<T (35)

where 3 is a known constant and E the energy of the signal, could lead to an increase in the
signal-to-noise ratio for the estimation of a phase parameter in the presence of additive Gaussian
noise by a fact m?, where m = WT is the total number of modes in s(¢, A) with W the frequency
bandwidth of the signal. While such a simple scheme may not lead to exactly an exponential
performance (2), it may still be a large improvement as the N~ performance of (1) becomes

(mN)~L

In conclusion, the quantum generalized rate-distortion theory and the possible actual systems
it may suggest seem to hold much promise for greatly improved precision measurements in physics,
as our two important examples discussed in this paper amply demonstrate.
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VIOLATIONS OF A NEW INEQUALITY FOR CLASSICAL FIELDS
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ABSTRACT

Two entangled photons incident upon two distant interferometers can give
a coincidence counting rate that depends nonlocally on the sum of the phases
of the two interferometers. It has recently been shown that experiments of
this kind may violate a simple inequality t{at must be satisfied by any
classical or semi-classical field theory. The inequality provides a graphic
illustration of the lack of objective realism of the electric field. The
results of a recent experiment which violates this inequality and in which the
optical path length between the two interferometers was greater than 100 m are
briefly described.

INTRODUCTION

It has been shown!'? that two-photon interferometer experiments can
violate Bell's inequality® and a number of experlments 7 have demonstrated
effects of that kind. Several experiments*'® based upon the two-photon
interferometer of Ref. 1 have not, however, violated Bell'’s inequality due to
the limited visibility (50%) of the interference fringes that results when the
resolving time of the photon detectors and electronics is not sufficiently
fast.

Those experiments may®, however, violate a surprisingly simple
inequality that must be satisfied by any classical or semi-classical field |
theory. The inequality follows directly from the assumption that the classical
field has some well-defined value and thus illustrates the lack of objective
realism exhibited by the quantum-mechanical field.

This paper will briefly review the nature of two-photon interferometry
and then derive the new inequality; the derivation closely follows that of
Ref. 8. Some additional details of the derivation that are not contained in
Ref. 8 but are required for applications to actual experiments are presented
in the Appendix. The results of a recent two-photon interferometer experiment
performed over a distance of 100 meters will be briefly described. Flnally,
some comments will be made with regard to the connection between uncertainty
relations and inequalities of this type.

TWO-PHOTON INTERFEROMETRY

The experiments of interest®:%'7 are outlined in Figure 1. Two
coincident photons are emitted by parametric down-conversion and travel in
different directions toward two identical interferometers. Each interferometer
contains a shorter and a longer path, and the difference AT in transit times
over the two paths is taken to be much larger than the coherence time of the
photons. Nevertheless, interference between the quantum-mechanical amplitudes
for the photons to have both traveled the shorter paths or the 1onger paths
produces a modulation in the coincidence counting rate R, given! by

PRECEDING PAGE BLANK NOT FILMED
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Here R., is the coincidence rate with the beam splitters removed, 6, and 6, are
phase-shifts introduced into the two longer paths, and e, is the frequency of
the pump laser. Eq. (1) violates Bell’s inequality but is only valid if the
resolution of the coincidence measurements is better than AT. The maximum
visibility is 50% for time resolutions much worse than AT.

8 AT
R, = %Rcocosz(el T %2 %o ) (1)

There has been some question as to whether or not the experiments with
visibilities of 50% or less are nevertheless inconsistent with any semi-
classical field theory. Ou and Mandel® have suggested that that is the case
but counter-examples to their argument have been given by Carmichaell® and by
Chiao and Kwiat!!, Although their semi-classical models are able to reproduce
the modulation in the coincidence rate, they are not able to represent the
fact that the photons are known from other experiments!? to be coincident to
within a time interval much smaller than AT. That provides the physical basis
for the inequalities derived below.

BASIC INEQUALITY

The basic inequality that must be satisfied by any classical field is
based on Cauchy'’s inequality!3®, which follows from the fact that

(a-b)2:=20 (2)

where a and b are any two real numbers. Multiplying the two factors and
rearranging gives Cauchy'’s inequality:

3
2ab < a% + b? (3)

When a and b are complex it is still the case that

2 2
lab| = |a| |b| s Jil_;_lﬁl_ (4)

The modulation of the coincidence rate will be found to be proportional
to the quantity Q defined by

O = <|Bf (t) Ej (t) E,(t - AT) E;(t - AT) |> (5)

Here E, and E, refer to the fields at the positions of detectors 1 and 2
(which will be assumed to be equidistant from the source) with the beam
splitters removed and <> denotes an average over a long time interval.

It should be emphasized from the start that the angular brackets denote
an average over time and not an ensemble average. That is what the
experiments actually measure, since the results from a single system are
simply averaged over time. In addition, no assumption of ergodicity is
required in the proof that follows; the average over an ensemble is not
considered and it therefore makes no difference whether or not the time
average is equivalent to an ensemble average. It will also be found that the
proof does not assume stationarity, either.
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The basic inequality can be obtained by choosing

Ey (£)E,(t - AT) (6)

a

b
Inserting eqs. (6) and (7) into eq. (4) gives
EJ(E)E; (E)E,(t - ATV E, (t - AT) |>
< KE{ (t)E;(t - AT)E,(t - AT) E, (t)>/2 (8)
+ <E; (£) Ey (t - AT) E, (t - AT)E,(t)>/2

E; (£)E, (t - AT) (7)

The physical significance of the above inequality can be seen in Figure
2, in which both fields E;(t) and E,(t) correspond to narrow pulses emitted at
the same time. If E; is evaluated at time t and E, is evaluated at time
t + AT, as illustrated by the arrows in the figure, then one or the other of
the fields must be zero and their product vanishes. The right-hand-side of
eq. (8) is then zero, which requires that the left-hand-side also vanish.
Although this inequality may seem trivial in nature, it is a consequence of
the fact that the classical fields are well-defined (complex) numbers and the
inequality is violated by quantum fields, as will be discussed below.

INEQUALITY FOR THE VISIBILITY

The inequality of eq. (8) can be used to set a limit on the amount of
modulation that can occur in a classical treatment of the two-photon
interferometer experiments. Once again, let E;(t) be the classical field that
would arrive at detector 1 in the absence of the two beam splitters and assume
for the moment that the half-width w of the coincidence window is negligibly
smal&. The corresponding coincidence rate as a function of the time offset ¢
is then

R,(t) =n<I, () I,(t + 1)> (9)
= NKE; (E)E, (t + T)E,(t + T)E, (£)>
where I, and I, are the intensities of the two beams and the constant g is

related to the detection efficiencies and w. With the insertion of the two
beam splitters, the total electric field E,(t) at detector 1 becomes

Ep, = %[E’l(t) + e®E (£t - AT)] (10)

A similar expression exists for the total field at detector 2 and the
classical coincidence rate R, with the beam splitters inserted and t = 0 is
given by

(11)

(o4

= =< [E(6) + e™E (¢ - AD] (B (0) + e™E,(t - AD] |

Multiplying out all the factors in eq.(ll) gives a total of sixteen terms:
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R

e = 1—16n<E1'(t) E; (t) E, (t) E, (¢t)

+re’® Bl (t) B () B, (£) E,(t - AT)

+ e E'(t)E; (£) B, (t - AT) E, (¢t)
+ell®* %l pr £y ES () E, (t - AT) E,(t - AT)

+ e g’ (t) By (t - AT) E, (t) E, (¢t)

+E (t) E, (t - AT) E, (t) E,(t - AT)

+ i) gy BY (£ - AT) E,(t - AT) E, (£)

+e B (£) B (t - AT) E (t - AT) E,(t - AT) (12)
+ e Mg (£t -AT) E; () E;(t) E, (¢)

+el® 0l gt (e - AT) B (£) E, () E,(t - AT)

+ By (t - AT)E, (t) E,(t - AT) E,(¢t)
vre’® Egf (6 - AT) E; () E,(t - AT) E,(t - AT)
+ el -8l (t _ AT)ES(t - AT) E, (t) E, (t)

+ e E (t - ATV E; (t - AT E, () E,(t - AT)
+ e ®E*(t - AT)E; (t - AT) E,(t - AT) E, (t)
+Ef (t - AT)E; (t - AT) E;(t - AT) E,(t - AT)>

As suggested by eq. (1), the experiments can be performed in such a way
as to measure the averaged coincidence rate as a function of 6, =6, + 6,

R.(0,) = 2—lﬂf°2"d01f:nd62}2c(61,62)6(61 + 0, -6, (13)

The averages over 8, and 8, were explicitly performed in one of the
experiments®. In the remaining experiments the individual phases were not
directly measured and had essentially random values from one run to the next,
since variations in the temperature of the laboratory would have shifted the
phase of both interferometers by several fringes from one day to the next.
Thermal drifts during the course of an experimental run would have a similar
effect on the individual phases while leaving the modulation of the
coincidence rate unaltered.

In any event, the terms in eq. (12) with phase factors of exp(i6,),
exp(if,), exp[i(8, - 8,)], etc., average to zero, leaving only those terms

with no phase dependence or a dependence on 6, + 8,. The remaining terms can
be written as

c

R = %n(E{(t) E; (t) E, (£)E, (t)>
+%n<E1'(t)E2‘(t—AT)E2(t—AT)E’l(t)> (14)
+ 1—16n[ei°T<Ef(t)E2*(t)E2(t -ATE (t - AT)> + c.c.]

where the average over a long time interval ensures that

<E; (t - ATE, (t - AT)E,(t - AT)E, (t - AT)>

* . (15)
= <ES(£)E; (D) E, () E, (£)>

and the symmetry of the two beams gives
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<E; (t)E, (t - AT)E,(t - AT)E, (t)>

(16)
= KE, ()E/ (t - AT)E,(t - AT)E,(¢t)>

The assumption inherent in eq. (16) is not essential and can be avoided by
simply replacing R.o(AT) with [R.o(AT) + Ro(-AT)]/2 in what follows.

The maximum and minimum coincidence rates from eq. (14) satisfy
R, < %n<E1'(t)E2'(t)E2(t)El(t)>
+%n<E’1‘(t)E2'(t-AT)E2(t—AT)E’l(t)> (17)

+ .]8—‘1]<|Ef(t)E2'(t:)E2(t - AT)E, (t - AD) |>

Rnin 2 %n<E{(t)E;(t) E,(t)E, (t)>
+%n<Ef(t)E2'(t—AT)E2(t—AT)El(l:)> (18)
- %n<|E1'(t)E2"(t)E2(t -ADE (t - AT) |

The visibility is defined as usual by

v = Rmax —Rmin (19)
R%ax + R%in

Using the inequality of eq. (8) and expressing the right-hand-side in terms of
R, (AT) gives

R, (AT)
€ 20
V'S R(0) + R,(AD) (20)

Eq. (20) gives the maximum visibility that can occur in any classical field
theory and gives zero modulation for the case in which the fields correspond
to coincident pulses.

If the experiments are performed using detectors with limited time

responses and large coincidence windows, as is often the case, then the above
inequality can be generalized to

o 1 3AT/2
R (t)dt + = R (1) dt
fAT/Z oo (7) ZfAT/z co (%)

v < (21)

2 f:Rca(r) dr

as is shown in the Appendix. R, is again the coincidence rate that would be
obtained using detectors with a negligible time response and a negligibly-
small window.

COMPARISON WITH EXPERIMENT

Earlier experiments!? have shown that the down-converted photons are
coincident to within a time interval much less than the value of AT in at
least three*'®7 of the two-photon interferometer experiments, in which case
the inequalities of eqs. (20) or (21) show that there is no classical or semi-
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classical field theory consistent with all of the available observations.

The author has recently completed an experiment ® in which the optical
path length between the two interferometers was larger than 100 meters. The
main goal of the experiment was to investigate these effects in the limit of
large distances. Furry has suggested that the collapse of the wavefunction may
be degraded in some way when it occurs over sufficiently large distances,
leading to an eventual modification of the quantum-theory predictions. The
visibility of the interference pattern observed agreed with that expected from
the quantum theory to within the experimental uncertainty of 4% and violated
the inequality of eq. (21) by four standard deviations. This provides some
indication that the collapse of the wavefunction is unaffected even when it
occurs over relatively large optical path lengths.

CLASSICAL MODELS

In the classical models suggested by Carmichael® and by Chiao and
Kwiat!?, the fields E; and E, have well-defined frequencies that sum to the
pump laser frequency for a time interval larger than AT or the time resolution
of the coincidence circuits. In that case the coincidence rate of eq. (14)
simplifies to

5= 1
Rc = ’ZRCO 2

This differs from the quantum-mechanical result by the additional factor of
1/2 and corresponds to a visibility of 50%.

cos? (M) + 1/2] (22)

Such models cannot simultaneously localize the fields into coincident
pulses whose widths are less than AT, however. Any classical model that does
would have the visibility reduced accordingly as required by the inequalities
of eqs. (20) or (21).

VIOLATION OF THE INEQUALITY IN QUANTUM OPTICS

The intensity operator is given by I(t) = E-(t)E*(t), where E* and E-
are the ?ositive and negative-frequency components of the electric field
operator’®. As a result, the quantum-mechanical equivalent of eq. (8) is

|[<E{(EYE, (£)E, (t - AT) E/ (t - AT)>|
S KE[(t)E, (t - AT)E, (t - AT) E; (t)>/2 (23)
+ <E, (E)E[(t - AT)E, (t - AT)E, (t)>/2

It has already been noted! that in experiments of this kind the coincidence of
the photons requires

Ef (t)E, (t + AT) =0 (24)

while conservation of energy in the parametric down-conversion process
requires that

te)AT g () By (£) (25)

where the sum of the two photon frequencies v, and v, is equal to w,. (Eq.
(24) is only valid when AT is small compared to the pump laser coherence
time.) Inserting eq. (24) into the right-hand-side of eq. (23) gives zero,
whereas inserting eq. (25) into the left-hand-side gives

CE (E)E, (£)E; (£)E; (t)>, which is the product of the individual beam

El(t - AT)E; (t - AT) = '™
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intensities and a nonzero quantity. Thus the inequality is violated in
quantum optics.

The quantum-mechanical situation is shown in Figure 3. The field
corresponds to an entangled state in which there is a superposition of times
at which the pair of photons may have been emitted, as indicated by the

existence of both the solid and dotted curves. Although the product of E; and E,
at two different times is zero, that does not imply that the left-hand-side of
eq. (22) must vanish,. Equations (24) and (25) would be logically

inconsistent if the fields were well-defined complex numbers and the violation
of this inequality provides a graphic demonstration of the lack of objective
realism of the electric field.

CONNECTION WITH UNCERTAINTY RELATIONS

The main topics of this conference are squeezing and uncertainty
relations. It may thus be useful to make some general comments about the
connection between the inequality derived above and the uncertainty relations
associated with the quantized field.

The inequality derived above is a result of the fact that the fields are
not just complex numbers and thus have no well-defined value. In particular,
the field operators are non-commuting and satisfy

. (26)
(3,(x), A, (x)] = -ich$,,D(x - x')

A variety of uncertainty relations can be derived from this commutation
relation, which illustrates the fact that the quantized field has no well-
defined value. As a result, there is an unavoidable uncertainty in the left-
hand-side of the classical inequality and this uncertainty is evidently large
enough that the left-hand-side can exceed the right-hand-side. Thus it seems
apparent that the violations of these classical inequalities in quantum optics
are related to the uncertainty relations for the quantized fields. More
detailed uncertainty relations for the actual quantities involved in the
classical inequality could be derived, if desired.

SUMMARY

Two-photon interferometer experiments with a sufficiently large
visibility will violate Bell’s inequality and are thus inconsistent with any
local hidden-variable theory. Those experiments with smaller visibilities may
nevertheless violate an inequality for classical fields if the degree of
coincidence of the photon counts is taken into account. A recent two-photon
interferometer experiment with a large optical path length between the two
interferometers gave a visibility in good agreement with the quantum theory
and also violated the classical inequality, indicating that the effects
observed were quantum-mechanical in nature.

APPENDIX

When finite coincidence windows are used, Eq. (9) must be replaced by
Réo=n’fw<I1(t)Iz(t+r)>dr (27)
-w

The modulation in the coincidence rate then involves
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o' = %n’f_wdt<|E’1'(t)E2'(t+t)E2(t - AT + T)E(t - ATV |>  (28)

The range of the integral can be divided into two regions depending on the

value of |t|. For |t| < AT/2, a and b can be chosen as
a=E1‘(t)E2(t:—AT+1:) (29)
b=E(t +)E(t - AT)

and the analysis proceeds as in the text. For |t| > AT/2, a and b are chosen
instead as

a=E (t)E, (t + 1) (30)
b=E(t- AT+ 1)E (t - AT)

The inequalitK of eq. (21) then results from the use of eq. (8) in the limit
that w is much larger than AT.
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Abstract

Several recent demonstrations of two-particle interferometry are reviewed and shown to be
examples of either color entanglement or beam entanglement. A device, called a number filter, is
described and shown to be of value in preparing beam entanglements. Finally we note that all three
concepts (color and beam entanglement, and number filtering) may be extended to three or more
particles.

Introduction

In recent years there has been a variety of demonstrations of two-particle interferometry.
By a two-particle interferometer we mean an arrangement without polarizers whereby the
coincident count rate in a pair of detectors exhibits sinusoidal oscillations (two-particle fringes) as
some apparatus parameter is uniformly varied, but the singles rate in each detector is constant.

Whereas the earliest demonstrations !+ 2 of two-particle fringes employed pairs of photons from
atomic cascades and employed polarizer orientation as the parameter, the new experiments employ
photon pairs produced by down-conversion and usually employ mirror translation as the
parameter.

Two-particle interference fringes occur only when the quantum mechanical state of the
particles is entangled. By entanglement we mean that the two-particle state does not factor into a
product of single particle states, but is a sum of at least two terms, each of which is a product.
Note that when two-particles are so entangled, neither particle separately has a state. Because
particles in an entanglement do not have states or even some properties, independently of each
other. we will often refer to them not as two particles, but simply as a two-particle, i. e., a single
entity.

The present paper reviews a selection of the recent demonstrations of two-particle
interferometry, in order to point out the central role of entanglement. The experiments are selected
s0 as to especially emphasize two important types of entanglement: color entanglement and beam
entanglement. Although each of these types of entanglement have previously been separately
discussed (but without these names) in earlier papers and conference proceedings, we thought this
an appropriate place for a review. In the course of the review of existing experiments, we also
describe a device. which we call a number filter, that may be of use in experimentally preparing
entanglements in the future. Finally, we note that all three ideas discussed here (color
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entanglement, beam entanglement, and number-filtering) also apply to a three-particle, a four-
particle, etc.

Before starting the review, we emphasize two other aspects of our point of view, both
essential to the way we use entanglement. First, we distinguish beams or paths (labelled A, B,
C,...) from particles or detectors (labelled 1,2,3,...). Second, we apply elementary quantum-
mechanical concepts as follows. Amplitudes and kets will be assigned to the particles and not to
the beams. Total amplitude is the sum over all contributing amplitudes (i.e., the Feynman-Wheeler
rule). Note then that our approach is unorthodox in that quantum optics usually employs a
quantum field theory in which states (e.g., kets) are assigned not to the particles, (i.e., the
photons) but to the beams (i.e., the field modes).

A Color-Entangled Two-Photon

When a single particle decays into two, as for example in a down-conversion of an
ultraviolet photon into a pair of red photons, energy conservation, together with a suitable
apparatus, produce entanglement. Ff (1) depicts an arrangement for producing entanglement in
this way during down conversion.3»4 Suppose, for simplicity that the incident photon is ideally
monochromatic with wavenumber 2K, so that its state is
Suppose that the outgoing pair, 1 and 2, are selected as to direction by the symmetrically placed
slits and as to color by filters of wavenumber width G, centered at ko , and that G is narrower than
any feature in the down-conversion spectrum. Then from eq. (1) and energy conservation, the
state of the down-conversion photons after the filters is

- 1_02 0'2 - z'o2 ?
Dk, k,) = Sk, + k, — 2k;) e * 2T g Rt R )

Because of the §-function, this state cannot be factored, i. e., the two red photons are actually a
color-entangled two-photon.

In general. a state entangled in k-space is also entangled in x-space. For example, eq. 2)
in x-space, with the time dependence included, becomes

iko(x,—ct,) iko(xy—cty) 'j; (x- et (xg-at )}
’

Wx,x,t.t)=¢€ e e (3)
along the outgoing beams. Here it is the real exponential that does not factor, i. e., the photons are
still entangled and with spectacular consequences. If detectors are placed in the beams equally far
from the source (x1=X2),the joint probability density is, from eq. (3),

v * v= e-oz(cf)z/Z' (4)
where T = t2 -t] is the time difference in the arrival of the photons. In short, the color
entanglement implies that the distribution in time separation of the photons is dictated by the filter

width.4

For even more spectacular consequences, consider the expanded arrangement first
proposed by Franson> and shown in Fig. (2). Here each beam of Fig. (1) has been fed into a
single particle interferometer. Kwiat, et al.,6 and Ou, et al.,” have confirmed Franson's prediction
that two-particle fringes can be exhibited with this arrangement. These Franson fringes follow
easily from the color-entangled two-photon state (2) and (3), as has been shown in an earlier
conference proceedings.8 The argument is as follows. For simplicity, suppose that the path
lengths are adjusted so that the two interferometers are identical, with the long path longer by A
than the short path . Place detectors in the corresponding output beams of the interferometer and
monitor for coincidences. From Fig. (2), the state falling on these detectors is

v(0.0,2,2,) + W(A AL L)+ W(A0L,1) +W(0,AL,L,), (5)
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where V is given by eq. (3).

It follows from the state (5) that the coincident count rate is
A(1+cos2k,A)+ Beosk,A+C (6)

where A, B, and C are elementary (error) functions of 6, A, and the coincidence "window" T. In
the ideal limit that

oA >>1 (7a)
and

T << A, (7b)
the third and fourth terms of the state (5) do not contribute and as a consequence, B=C=0 in
expression (6). That is, (6) reveals that under ideal conditions two-particle fringes of visibility
unity can be exhibited by varying A or ko. Although experiments cannot achieve such ideal
contrast, several groups at the present conference report continuing investigation of fringe contrast
in Franson interferometry. We propose that some of the relationships in (6) be compared with
experimental data.

A Beam-entangled Two-photon

The collapse of the state (5) to just two terms, when the conditions of the inequalities (7)
are satisfied. has already produced an example of beam entanglement. That is. the beams taken by
the detected pair of photons were either both short or both long, the other two cases being
impossible because of the choices of filter width o, path difference A, and coincidence window T.
Beam entanglement may also be produced by directly exploiting momentum conservation? during
the decay process. instead of the energy conservation that was built into the color entanglement of
eq. (2). In general, this approach requires that the two beams of Fig. (1) be brought together.
Fringes were first produced in this way by Alley and Shih.10,11 but since their arrangement
involved polarization manipulation, we will review instead the simpler arrangement of Ghosh and

Mandel,12 shown in Fig. (3).

As indicated in that figure, Ghosh and Mandel uncovered some of the fun of two-particle
quantum mechanics in the small region of beam overlap. Consider, as shown in the Fig. (3)
insert. two small detectors placed in this region. When coincident counts occur in these detectors,
the count in detector 1 could have been caused by a photon 1 that took route A, in which case, by
momentum conservation at the source, photon 2 took route B. Equally likely, the routes taken
could have been reversed. Consequently, the state falling on the detectors is the beam-entangled
two-photon state

1)), +[B)a), ] )

where ket |A}, denotes particle 1 in beam A, etc.

Assume, for simplicity, that each beam is monochromatic and monodirectional. Then,
from state (8). the stationary two-particle amplitude at the detectors is proportional to
e:k,\-r‘eni,,‘r2 +e:k.-rlexkAvr2’ (9)
where KA and KB are the wave-vectors of the beams and ry and rp are the positions of the
detectors. It follows from the amplitude (9) that the probability of joint detection is proportional to
1+COS[(kA —kp)(r, -1)l, (10)

as confirmed by Ghosh and Mandel, who varied the separation of the detectors in Fig. (3).
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Note that manipulation of the phases of beams A and B, either by changing their
geometrical lengths with mirror motion or their optical lengths with phase plates, has no effect on
the fringes (10). This is because each term of the entangled state (8) has both an A-beam and a B-
beam factor, and hence the phase manipulations introduce only an unobservable overall phase in
the amplitude (9).

Fig. (4) depicts an extended arrangement of Rarity et all3 that is responsive to such phase
manipulations. Here, by simply relabeling the kets in (8), the state before the first beam splitters

is
T[ D}, +DC). }

C\

! (11)
which evolves into

| ! iol

—};[;A},;A}z +e%| B}JB)J (12)
after the phase plate and before the final beamsplitter. That is, now both particles either take route
A, or both take route B, and hence the phase 2¢ enters. The derivation of (12) from (11) uses
only the elementary rules for transmission and reflection at beam splitters, i. e.,

C), > %(ila), +(B),), 13)

etc. Applying this rule again at the last beam splitter. the state (12) evolves into four terms, but
two of these describe both particles going into the same detector, and hence are of no interestin a
coincidence counting experiment. From either of the other amplitudes, the coincident count rate is
proportional to

1+cos2¢ (14)

i. ., two particle fringes appear when ¢ is varied, as was indeed observed by Rarity et al.13

Fig. (5) proposes another arrangement for preparing the entangled state (12). Here a beam
of wave number k impinges on a beam splitter. Outgoing beam A contains two non-linear crystals
separated by a 2k filter. Clearly the only way k radiation can pass this three-element device is for
an incident two-photon to up-convert in the first crystal to a single 2k photon which , after passing
the filter, downconverts back to a two photon in the second crystal. Consequently, we call the
device a number filter, since only a two-photon can pass. Of course, the two-photon could avoid
the device entirely and take route B, which contains phase shifter ¢. Thus the state (12) is
prepared and the two-particle fringes of (14) can be observed. Although this experiment has not
been performed, we note the similarity of Fig. (5) to an arrangement of Wu, et al.14 It seems that
the only significant difference is that we assume the discrete counting of photons in coincidence,
whereas they continuously monitored the current difference of two photo-diodes. Clearly there
must exist interesting relationships between our point of view (i.e., entanglement of particles) and
theirs (i.e., field quantization with "squeezing").

A Two-Photon in Four-Beam Entanglement

Figs. (6) through (10) depict various performed or proposed experiments for exhibiting
two-particle fringes by manipulating four beams of down-conversion radiation. Fig. (6) is a

proposal of Horne, et al,15 and an actual experiment of Rarity and Tapster16 in which the four
beams are taken directly from the down-conversion crystal. Fig. (7) is a proposal of Reid and

Walls,17 in which only two beams are taken directly from the crystal and each of these is split

before suitable recombining. Fig. (8) is an experiment of Ou et al.18, in which the splitting is
done before the down-conversion. Fig. (9) is a proposal for a four-beam experiment employing

number-filtering. Fig. (10) is (the completion of) a figure in a recent proposal of Tan et al. 9
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The main point we wish to make here is that, from an elementary entanglement point of
view, these five experiments are, essentially. identical. That is, in each case. the arrangement

prepares the four-beam two-photon entangled state
T D T
%UA}xiB): +|A >1iB'/'z_lv (15)

which, in an appropriate pair of the four detectors, produces fringes, as in (14). when the phases
are manipulated. For figs. (6) and (7), the state (15) is an immediate consequence of momentum
conservation at the decay. In Fig. (8), a single photon has its amplitude split at the beam splitter
and then each of these amplitudes down-converts (in different crystals) to produce the state (15).
Note that our description does not employ the "entanglement with the vacuum" description of Ou et

al.18 In Fig. (9), the state (15) is an immediate consequence of the number filter, and Fig. (10), if
one ignores the extra detector marked 3, is identical to Fig. (9).

In Fig. (10), only the portion below and to the right of the dash-dot line appeared in the

figure of Tan, et al.19 The remainder of Fig. (10) is drawn from their verbal description, i.e.,
their text. Itisn't clear from their text whether they propose to monitor for two particles or for
three particles in coincidence. Consequently, we have included the (optional) detector 3 in order to
discuss both cases here. If detector 3 is ignored, and coincidence counts are monitored in various
pairs of detectors at stations 1 and 2, then the state is given by (15), since, just as in Fig. (9), the
particles must either both come through the number filter, or both avoid it. Thus the phases ¢ and
@2 both enter in the second term of (15). and the joint probability of coincidence counts in
appropriate detectors at stations 1 and 2 is proportional to
I +cos(@, +¢,). (16)

On the other hand, if one does record a particle at 3, the other particle coming through the
number filter can either be 1 or 2, but not both. Consequently. the phases @1 and ¢2 enter into
different terms and in fact the state approaching the final beam splitters is now

€A B, +e™ A" B, (a7
instead of (15). Then the fringe pattern
1+cos(p, —9,). (18)

will occur in an appropriate pair of the detectors at 1 and 2. Since the fringes in (18) depend on the
phase difference. as in the fringe equations exhibited by Tan, et al.,it appears that they are
proposing a three-particle coincidence experiment. In either case, it is clear that our elementary
entanglement description is not compatible with their talk of a "single photon": their arrangement
studies at least a two-photon and, if detector 3 is used, a three-photon.

A Three-Photon

Clearly the concepts of color-entanglement, beam entanglement, and number filtering may
be applied to three or more particles. Fig. (11) depicts an arrangement producing a color-entangled
three-photon, i.e.. the generalization of Fig. (1). Here, the analogs to egs. (1) through (3) are

O (k)= 6(k - 3k,), (19)
) q)(kvkz,kg) - 50‘1 +k2 + k3 _ 2k0) e-(kl—ko) Iza‘ze—(k2—k°) e e—(x,-ko) /20’2. (20)
an

2
, ] p _a
WK, X X L 1y, ) = @001 ghoamaa) gltalxo=cto )= s [(2A+ B2+ 130

where {21} = {(x, —ct,) - (x, —ct,)}’, etc. (21)
Note that the real exponential in this last equation implies remarkable space-time correlations
among the three photons.
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Fig. (12) depicts a three particle generalization of the Franson interferometer of Fig. (2).
From eq. (21) and the eight-term three-photon analog of the state (5), one easily finds that the three
photon equivalent of the counting rate (6), in the limit of ideal filters and detectors, is

1+ cos3k,A. (22)

In another paper in these proceedingszo, we also consider other higher-order entanglements: the
three photon generalization of the direct-beam interferometer of fig. (6) and of the number filter
interferometer of Fig. (9).

Some aspects of three particle interferometry have also been explored by Choi.?!

Comments

We conclude with two comments. First, we have not attempted here a comprehensive
review of all of the recent demonstrations of two-particle interferometry but have selected enough
examples to exhibit the usefulness of entanglement. Consequently many beautiful experiments
(and theoretical papers) have not been discussed. However, we have found that our point of view
does provide simple, direct, and yet complete descriptions of all the experiments, either via color
entanglement, beam entanglement, or a combination of the two. For example, one may imagine
that the beams of Fig. (1) are brought together at a beam splitter, that the two filters are not inserted
until downstream of the beam splitter and, moreover, that the filters are now centered on different
colors, k10 and k20. This is the arrangement of the "quantum beating" experiment of Ou and
Mandel.22 Our description consists of two steps. First, generalize state (3) to include two
different filter colors. Second, superpose two of these generalized states to accommodate the beam
entanglement aspect of the arrangement. In this way, one reproduces the key result of Ou and
Mandel (their eq. (10)).

Second, note that a single quantum mechanical particle in an elementary plane-wave state
has only three adjustable properties: wavenumber, propagation direction, and polarization.
Consequently we claim that for two or more particles there are only three basic types of
entanglement: wavenumber, propagation direction, and polarization. Clearly color entanglement is
just the optical realization of wavenumber entanglement and our beam entanglement is intimately
related to propagation direction entanglement. We say "intimately related to" instead of "is"
because one must be on guard when idealizing a beam as monodirectional. A beam, unlike a
spatially unlimited plane wave, has a finite transverse width and hence can't ever be strictly
monodirectional, because of diffraction.
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Fig. (1). An incident monochromatic UV photon of wavenumber 2k, downconverts in a crystal.
Two beams of the downconversion radiation are selected by slits and by filters of center ko

and width ©, thereby preparing the color-entangled two-photon state of egs. (2) and (3).
Consequently, the distribution in time separation, 7, of the two photons is given by eq. (4).

~

Fig. (2). Franson's two particle interferometer. The two beams of Fig. (1) are each fed into a
single-particle interferometer in which one path is A longer than the other and adjustable.
As A is varied in both interferometers, the coincident count rate in two corresponding
outgoing beams (one at station 1 and one at station 2) exhibits the oscillations (two-particle

fringes) given by (6).
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Fig. (3). The crossed-beam two-particle interferometer of Ghosh and Mandel, ref. (12). The
beams of Fig. (1) here intersect so that the two-photon falling on the pair of small
detectors, 1 and 2, is the beam-entangled state (8),1.¢.,a superposition of particle (1) in

beam A and particle 2 in beam B, and vice-versa. Consequently, the coincident count rate
exhibits the two-particle fringes (10); r2 and ry are the positions of the detectors.

Fig. (4). A two-beam two-particle interferometer of Rarity et al., ref. (13). The beams CandD
intersect on the central beam splitter and thereby prepare the beam-entangled state (12).
Consequently, the coincident count rate exhibits the two-particle fringes (14), where @ is

the phase shift imparted by the glass plate in beam B.
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Fig. (5). A two-beam two-particle interferometer employing a number filter. Incident radiation of
wavenumber k can transit beam A only if a two-photon upconverts in the first crystal,
passes the filter as a 2k single photon, and then downconverts in the second crystal.
Alternatively, the two-photon can take route B. Consequently the state 12 is prepared.

Fig. (6). Preparation of the two-particle beam-entangled state (15) by selecting four direct beams
of downconversion radiation.
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Fig. (7). Preparation of state (15) by first downconverting and then beam splitting.

Fig. (8). Preparation of state (15) by first beam splitting and then downconverting.
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Fig. (10). An arrangement proposed by Tan, et al., ref. (19). If detector 3 is ignored, the state
(15) is prepared. If detector 3 is monitored for coincidences with detectors at 1 and 2, the
state (17) is prepared.
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Fig. (11). Three particle downconversion to produce the color-entangled three-photon state (20)
and (21). Each outgoing bearmn contains a filter (not shown) of width ¢ and centered at k.

3k

Fig. (12). A three-particle Franson type interferometer. Under ideal conditions the triple

coincident count rate at corresponding outgoing beams is given by (22), where A is the
path difference in each of the three branches.
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EPR Experiment and Two-Photon Interferometry
—— Report of A Two-Photon Interference Experiment —

Y. H. Shih, M. H. Rubin and A. V. Sergienko
Department of Physics
University of Maryland at Baltimore County

Baltimore, MD 21228
ABSTRACT EPR also suggested the following
criterion for recognizing an element of
After a very brief review of the reality, which seemed to them a
historical EPR experiments, this paper sufficient criterion:
reports a new two-photon interference (2) If, without in any way distur-

type EPR experiment. A two-photon state
was generated by optical parametric down
conversion. Pairs of light quanta with
degenerate frequency but divergent
directions of propagation were sent to
two independent Michelson interferome-
ters. First and second order inter-
ference effects were studied. Different
than other reports, we observed that the
second order interference visibility
vanished when the optical path dif-
ference of the interferometers were much
less then the coherence length of the
pumping laser beam. However, we also
observed that the second order inter-
ference behaved differently depending on
whether the interferometers were set at
equal or different optical path dif-
ferences.

1. Historical EPR Experiments

In May 1935, Einstein, Podolsky and
Rosen published a paper in the form of a
paradox to show quantum mechanics fails
to provide a complete description of
physical reality. They put a question
as the title of the paper: "Can Quantum-
Mechanical Description of Physical
Reality Be Considered Complete? w (1)

It seemed to EPR that a necessary

requirement for a complete physical
theory was the following:
(1) Every element of physical

reality must have a counterpart in a

complete physical theory.
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bing the system, we can predict with
certainty (i.e., with probability equal
to unity) the value of a physical quan-
tity, then there exists an element of
reality corresponding to this physical
quantity.

What EPR wished to do with their
criteria for reality was to show that
the quantum mechanics wavefunction
cannot provide a complete description of
all physically significant factors (or
“elements of reality") existing within a
system.

A clear example of such system %%5
proposed by David Bohm in 1951.
Bohm’s gedankenexperiment concerned a
pair of spatially separated spin-1/2
particles produced somehow in a singlet
state, for example, by disassociation of
the spin-0 system. The spin part of the
state may be written as:

1 At A
= >
| ¥ > Jé[|n1>®ln2
A— At
-In1 >®| n2>] (1)
At
where | nT > quantum mechanically

1
describes a state in which particle 1 or
2 has spin "up" or "doxn" respectively
along the direction n. Since the
singlet sgﬁte | ¥ > 1is spherically
symmetric, n can be specified to be any
direction. Suppose one can set up his




experiment to measure the spin of the
particles in any direction and he wants
to measure the spin of particle 1 along
the X axis. What he can measure is not
predetermined by the quantum state
| ¥ >. However from | ¥ > one can
predict with certainty that if particle
1 is found to have its spin parallel to

the Q axis, then particle 2 will
immediately be found }o have its spiR
antiparallel to the X axis if the X

component of its spin is also measured.
Thus one can arrange his experimental
apparatus in such a way that he can
predict the value of the X component of
spin of particle 2 presumably without
any way disturbing it. According to the
criterion, the 2 component of spin of
particle 2 is an element of reality.
Likewise, one can also arrange his
apparatus so that he can predict any
other component of the spin of particle
2 without interacting with 1&. A Thﬁ
conclusion would be all the X, ¥y, 2z
components of the spin of each particle
are the elements of physical reality,
and of course all the o o;, c;, must

exist without considering which com-
ponent is being measured. But this is
not true in quantum mechanics, the
wavefunction can specify, at most, only
one of the components at a time with
complete precision. The conclusion is
that the wavefunction does not provide a
complete description of all elements of
physical reality.

The existence of an entangled
quantum state is the heart of the E.P.R.
argument. It must be a entangled
pure state . There must be a definite
phase relation among the amplitudes of
the state. Does any such quantum state
exist ? Yes, experiments have demons-
trated the existence of such quantum
states.

(1). Positronium Annihilation

The existence of the pure two photon
singlet state of the positronium annihi-
lation was predicted by J. A. Wheeler in
late 40’s and experimentally prgyed by
C. S. Wu and I. Shaknov in 1950.
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(2). Atomic Cascade Decay

Atomic cascade decay were introduced
to EPR experiments in 1970’s. Several
groups of researchers have demonstrated
the existence of the pure two photon EPR
state from the atomic cascade decay.

Since 1965, when J. Bell provided a
theory to show that the local
deterministic hidden variable theory has
different predictions from those of
quantum mechanics in some special
experimental situations, experiments
have been performed to test his

inequalities using the light quanta pair
prepar?g from the atomic cascade
decay. Even though it 1is hard to
believe that the photon pair emitted
from the atomic cascade decay are phase
correlated when considering the rather
long life time intermediate state of the
atom, the experimental results seemed to
show that the phase correlation is
really there. Bell’s inequalities are
violated in most of the experiments.

However, none of the above experi-
ments has completely satisfied the
serious physics community. One of the
problems is the efficiency "loophole".
The emission of the photon pairs do not
have a defined K vector direction in
both the positronium annihilation and
atomic cascade decay experiments. The
emission is symmetric in 4m solid angle
and the collection angle can not be very
large. The low collection efficiency in
these experiments has been criticized by
dozens of physicists and philosophers.
It was concluded that none of these
experiments was a compelling test of
Bell’'s 1inequality, or in other words
that none of these experiments has
really demonstrated the phase correla-
tion of the EPR state.

(3). Parametric Down Conversion

The first EPR experiment using light
quanta pair generated by optical
parametric down conversion(S) is
illustrated in figure 1. The two quanta
polarization pure quantum state is

prepared with the help of beam splitter.



Parametric down conversion generates
photon pairs with definite K vectors.
The collection efficiency could be 100%.
It is also different than all the other
EPR experiments in that the entangled
pure quantum state is "made" by people
instead of God. The down conversion
state starts from a circular or linear
polarized eigenstate depending on
whether quarter wave plate or half wave
plate are used. It seems like "nothing
hidden" in this experiment. With the
help of a 50-50 beam splitter, the
following quantum states can be "made”,

_ 1 1(a+B)
| ¥ > = 5 e [ R1 >l R2 >
- | L1 > L2 > 1]
+ 1 e‘(a1+31) | R >el L >
2 1 1
_LlerlaB) R se L >
2 2 2
or,
_ 1 i(e+B)
| ¥ > = 5e [ X, >e| Y2 >
+ | Y1 >o| X2 > ]
+ 1 el(a1+31) | X >el Y, >
2 1 1
+ 1 el(a2+82) | Y >8] X >
2 2 2
respectively. For the coincidence
measurement, only the first two terms
contribute. They are the singlet states
needed for the EPR experiments. For the
coincidence measurements, one would
have:
<X Ylw¥>2=1<Y X | ¥>?=50%
1 2 1 2
<X X1 wv>%=1<y Y |l¥>%= 0.
1 T2 1 2

and

2
| < X1(e1) Xa(ez) [ ¥ >

= 1 2 -
= = sin (91+92) =

sin2
3 ®

N |
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The experimental results agreed with
EZTI qg?ﬂ%?m mechanics prediction very

2. Two Photon Interference Experiment

All the above historical EPR
experiments are concerned polarization
correlation measurements. J. D. Franson
proposed a new type EPR experiment
for measurement of position and time
correlation in contrast to the
historical measurement of polarization
correlation. This proposed experiment
is also concerned to be a two-photon
interference experiment. This experi-
ment may be simply illustrated in
Fig. 2: a pair of time and frequency
correlated photons is generated. One
travels to the left, another travels to
the right and both goes through a
independent interferometer. The optical
path difference AL1= Ll— S1 and
AL=L-S to be

2 2 2

can be arranged

shorter or longer then the coherence
length of the down converted field.

Case 1. AL1< coherence length

Both interferometer I and II (or one
of them, if only one interferometer
satisfy the condition) will have
independent first order interference,

R= R cos (3 /2), (2)
1 ol i

where R1 is the counting rate of the ith

)
1

between the Ll and Si optical paths of

detector, is the phase difference

the independent interferometer. The
classical coincidence rate is expected
to be,

R=R cos3(5 /2)cos’(5 /2). (3)
c oc 1 2

The same result comes from quantum

calculation.



Case 2. AL1> coherence length
The first order interference
disappears from both interferometers.

It was suggested by Franson that the
following coincidence detection probabi-
lity amplitudes can be treated coherent-

ly,
(photon #1 travel from path Sl)
® (photon #2 travel from path Sz)
and
(photon #1 travel from path L1)
@ (photon #2 travel from path L2),

if the travel time difference between
the long and short paths of the two
interferometers are equal.

The amplitudes:
(photon #1 travel from path Sl)
@ (photon #2 travel from path L2)

and
{photon #1 travel from path L1)
@ (photon #2 travel from path Sz)

will be cut off by the time window of
the coincidence circuit if the travel
time difference between the long and
short paths is 1larger then the time
window or will contribute to the noise
if the time window of the coincidence
circuit is not short enough.

The coincidence counting rate was
predicted to be

Rbcosz{[(w1+ w2)°AT + ¢1+ ¢2]/2}

0
-

2
Rbcos { 61/2 + 62/2 } (4)

Dl

where AT is the travel time difference
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betwe=n the long and short paths of the
two independent interferometers and ¢1'

any other phase shift. Eq. (4) shows a
100% interference modulation for an
arbitrary time difference of AT, in
other words, the interference pattern
will be the same even when the optical
path difrerence of the interferometer is
much longer (infinite) then the
coherence length of the field. It was
suggested that this prediction leads to
a violation of Bell’s inequality and a
quantum non-local effect. Compared to
the historical E.P.R. experiments, which
used polarization as a measured quan-
tity, this experiment is looking at the
direct phase correlation between the
long-long and short-short path ampli-
tude. Unlike the other second order
interference experiments which superpose
the two photons at a beamsplitter, the
photon pair never "come" together in
this proposed experiment. The "inter-
ference" can not be explained by the
idea of definite field phase relation at
the beamsplitter as usually do. The
experiment simply counts the timing of
the detections and through the timing
analyzer to distinguish the coincidence
detection and the noncoincidence detec-
tion, i.e., the phase relation will be
explored through the timing of detection
and the width of the time window of the
timing analyzer.

Since then, two experiments have
reported the obser%%gigp of the quantum
mechanical effect. ' However, it
seems that these two experiments did not
provide enough data and information to
support the conclusion that the quantum
non-local effect was detected. Both
experiments reported only one visibility
measurement for one setting of the
optical path difference of the inter-
ferometers. More measurements are
required to test Franson’s calculation.
We report a similar two-photon inter-
ference experiment with more measure-
ments and different results.

The experimental arrangement is
shown in Fig. 3. A 351 nm CW Argon
laser line was used to pump a 50 mm long



potassium dihydrogen phosphate (KDP)
nonlinear crystal for optical parametric
down conversion. Nonlinear optical
parametric down <conversion produces
correlated pairs of photons which
satisfy the phase-matching condition:

(8)

Ww=w+w,
1 2

where w and k are the frequency and the
wave vector of the pumping beam, L, v
kx’ k2 are the frequencies and the
wave vectors of the generated 1light
quanta. The KDP crystal was cut at
TYPE I phase-matching angle for degene-
rate frequency but divergent propagation
direction of signal and idler light
quanta. The 702 nm photon pair was
selected by pinholes and traveled to two
independent Michelson interferometers (I

and

and II). Two detectors D1 and 02 with
10 X spectral filters (centered at
702 nm) were placed after the
interferometers. The detectors were

avalanche photodiodes operated in Geiger
mode with less then 1 nonasecond rise
time and less then 50 picosecond time
Jitter. The output pulses from D1 and

D2 were sent to a coincidence counting

circuit which had a 100 picosecond time
window to record Rb, the counting rate

of coincidence and Ri, the counting rate

of single detector.

Before the experiment, we first
measured the coherence 1length of the
down converted field by wusing our
Michelson interferometer. It was
concluded by direct observation with out
any spectral filter that the first order

interference pattern disappeared at
about 50 u  from the white light
condition. The coherence length of the

pump laser beam was measured to be much
much longer than 50 mm (limited by the
interferometer).

The done
steps:

experiment was by two
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First, interferometer II was set
with AL1= S mm from white light
condition and interferometer II was

scanned from the white light condition

to 5 mm. 96% second order and 82% first
order interference visibilities were
observed at the ©beginning of the

scanning (near white light condition),
see Fig. 4 and Fig. 5. The fist order
interference visibility dropped to O at
400 p (with 10 spectral filter). The
second order interference visibility is
reported in Fig. 6. It is important to
mention that the noise counting rate was

not subtracted from the visibility
calculation (the same as the other
reports)
R - Rin
V - max m (B)
R + R
max min

Because the short time window of the
coincidence measurement, the noise
counting rate for the second order
interference measurement was almost
zero. On the other hand, the noise
counting rate from single detector
(first order interference measurement)
was significant. It is clear from
Eq. (6) that the contribution of the
noise counting rate will result a lower
visibility. It can not be concluded
that the "“second order coherence length
is longer than the first order coherence
length", or "the visibility of second
order interference is better than that
of the first order interference" as in
some of the early reports.

The second order visibility was
measured to be zero at AL2= AL1= 5 mm,

this is different than
prediction.

Franson’s

Second step of the experiment,
interferometer II was moved 400 p at a
time from AL2= 400 4 to AL2= 6 mm and

interferometer I was scanned around the
position of equal path difference,



ALzz AL1’ for 50 p and the visibility of

the second order interference was
measured. Fig. (7) reports this
measurement. It is clear that the
second order interference visibility

(for ALé= ALx) did drop to zero at about

4 mm from the white 1light condition
which is much shorter than the coherence

length of the pumping laser beam.
However, it 1is also true that the
visibility for equal optical path

difference measurement did not drop to
zero as quick as that for non-equal
optical path difference measurement
which was reported at step one. It
takes six to seven times longer distance
to approach 10% visibility when the
optical path difference are equal
(compare Fig. (6) and Fig. (7)).

The alignment of the optical system
is important. The alignment of the
interferometers were checked ©before
taking of date. We use He-Ne laser and
sodium discharge 1light to check the
alignment for AL from white 1light
condition to 10 mm.

A classical model predicts that the
visibility of second order interference
in the case of long coincidence time
compared to the coherence time of the
down converted beam approaches

V= % exp -(AL / L) (7)

where AL = AL1 = AL2, and L is a

constant in length which expresses the
precision to which the phase matching
condition in Eq. (5) is satisfied. The
same result may be obtained from a
quantum mechanical model. The details
of these models will be presented later
elsewhere.
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Figure 1. First EPR experiment using parametric down conversion.
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Figure 3. Schematic diagram of the experiment.
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The Energy-Time Uncertainty Principle and the EPR Paradox:
Experiments involving Correlated Two-Photon Emission
in Parametric Down-Conversion”

Raymond Y. Chiao, Paul G. Kwiat, and Aephraim M. Steinberg
Department of Physics, University of California, Berkeley, CA 94720

ABSTRACT

The energy-time uncertainty principle is on a different footing than the momentum-
position uncertainty principle: In contrast to position, time is a c-number parameter, and
not an operator. As Aharonov and Bohm have pointed out, this leads to different
interpretations of the two uncertainty principles. In particular, one must distinguish
between an inner and an outer time in the definition of the spread in time At. It is the
inner time which enters the energy-time uncertainty principle. We have checked this by
means of a correlated two-photon light source in which the individual energies of the two
photons are broad in spectra, but in which their sum is sharp. In other words the pair of
photons is in an entangled state of energy. By passing one member of the photon pair
through a filter with width AE, it is observed that the other member's wave packet
collapses upon coincidence detection to a duration At, such that AEAt=H, where this
duration At is an inner time, in the sense of Aharonov and Bohm. We have measured At
by means of a Michelson interferometer by monitoring the visibility of the fringes seen in
coincidence detection. This is a nonlocal effect, in the sense that the two photons are far
away from each other when the collapse occurs. We have excluded classical-wave
explanations of this effect by means of triple coincidence measurements in conjunction with
a beam splitter which follows the Michelson interferometer. Since Bell's inequalities are
known to be violated, we believe that it is also incorrect to interpret this experimental
outcome as if energy were a local hidden variable, i.e., as if each photon, viewed as a
particle, possessed some definite but unknown energy before its detection.

*This work was supported by ONR under grant N00014-90-J-1259.
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INTRODUCTION
The momentum-position and the energy-time uncertainty principles have very similar forms:
ApAx > h/2, (1)
AEAt> h/2 . 2

One expects this on the basis of relativistic considerations, since both momentum-energy and position-
time form four-vectors. However, in the usual formulation of quantum mechanics, there is an
important difference between the two uncertainty principles, since time is not an operator but a c-
number parameter, in contrast to position. Hence the standard method of derivation of the uncertainty
principle for momentum and position from the fundamental commutator of quantum mechanics,

[p’ X] = h/l ) (3)

does not work for energy and time. Furthermore, in contrast to momentum, energy is a physical
quantity with a definite lower bound. These difficulties are not merely mathematical ones, as pointed
out by Aharonov and Bohm [Ref. 1]. There have also been many recent papers on this subject [Ref.
2].

Aharonov and Bohm made a distinction between inner and outer times. Inner time refers to an
intrinsic time defined by the system itself, whereas outer time refers to a duration of measurement made
by some external apparatus. They showed by construction of an explicit counterexample that the
"usual" statement of the energy-time uncertainty principle in terms of an outer time, such as, "if the
duration of a measurement by an external apparatus on a system is restricted to At, then there exists an
uncontrollable amount of energy AE=h/At imparted to the system by the apparatus,” is incorrect.
However, the standard example of the energy-time uncertainty principle in terms of energy broadening
AE of an atomic energy level due to its finite lifetime T, such that AE=h/z, is correct, but here the
lifetime T refers to an inner time of the system. The latter example of the energy-time uncertainty
principle can be understood in terms of a classical Fourier analysis of a finite wave train of duration 7,
ie., An=1/T.

Here we point out a nonclassical aspect of this uncertainty principle, which arises from the
nonlocal collapse of the wave packet upon coincidence detection of a correlated pair of photons. The
two correlated photons (conventionally called "signal" and "idler" photons) are prepared by
spontaneous parametric down-conversion of a uv photon ina x(2) nonlinear crystal. When one member
of this pair (the "remote” one) is detected through a filter with width Aw, the other member (the
"nearby" one) immediately collapses into a wave packet of duration t=1/Aw. If the remote filter is
broad, the nearby photon wave packet becomes narrow upon collapse; if the remote filter is narrow, the
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nearby wave packet becomes broad, upon coincidence detection. In this sense, there exists a nonlocal
action at a distance. Hence it is closely related to the Einstein-Podolsky-Rosen paradox. The way we
measured T is to pass the nearby wave packet through a Michelson interferometer. If this wave packet
overlaps with itself after reflection from the mirrors of the Michelson onto the recombining beam
splitter, then there will be interference fringes detected in coincidence with the remote photon; otherwise
interference fringes will not be visible. The wave packet duration thus measured is clearly an inner
time of the system, since it is self-referential.

EXPERIMENT

In our experiment the incident light was prepared in an entangled state consisting of a pair of
photons whose energies, E; = fiwg and E; = fiy;, although individually broad in spectrum, sum up to a
sharp quantity Ej, = ho, because they were produced from a single pump photon whose frequency ®p
was sharp. This entangfcd state is given by

|\V> =IdwsA(ws) |1>ms |1>(°p“°s )

where A(ws) = A(p — @) is the complex probability amplitude for finding one photon with a
frequency o, i.e., in the n=1 Fock state l)mS , and one photon with a frequency ®, — o, i.e., in
the n=1 Fock state 1>(,)p_ o, According to the standard Copenhagen interpretation, the meaning of
this entangled state is that when a measurement of the energy of one photon results in a sharp value E,
there is a sudden collapse of the wavefunction such that instantly at a distance, the other photon, no
matter how remote, also possesses a sharp value of energy Ep — Eg. Thus energy is conserved.
Entangled states, i.e., coherent sums of product states, such as the one given by Eq. (4), result in
Einstein-Podolsky-Rosen-like effects which are nonclassical and nonlocal [Refs. 3-4].

We prepared the entangled state of energy, Eq. (4), by means of parametric fluorescence in the x(z)
nonlinear optical crystal potassium dihydrogen phosphate (KDP), excited by a single mode ultraviolet
(uv) argon ion laser operating at A=351.1 nm [Ref. 4]. The uv laser beam was normally incident on the
KDP input face. In this fluorescence process, a single uv photon with a sharp spectrum is
spontaneously converted inside the crystal into two photons with broad, conjugate spectra centered at
half the uv frequency, conserving energy and momentum. We employed type I phase matching, so that
both signal and idler beams were horizontally polarized. The KDP crystal was 10 cm long and cut such
that the c-axis was 50.3° to the normal of its input face. We selected for study idler and signal beams
both centered at A=702.2 nm which emerged at +1.5° and —1.5°, respectively, with respect to the uv
beam. Coincidences in the detection of conjugate photons were then observed.

In Fig. 1, we show a schematic of the experiment. The idler photon (upper beam) was transmitted

through the "remote" filter F1 to the detector D1, which was a cooled RCA C31034A-02
photomultiplier. The signal photon (lower beam) entered a Michelson interferometer, inside one arm of
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which were sequentially placed two zero-order quarter waveplates Q1 and Q2. The fast axis of the first
waveplate Q1 was fixed at 45° to the horizontal, while the fast axis of the second waveplate Q2 was
slowly rotated by a computer-controlled stepping motor. After leaving the Michelson the signal beam
impinged on a second beamsplitter B2, where it was either transmitted to detector D2 through filter F2,
or reflected to detector D3 through filter F3. Filters F2 and F3 were identical: They both had a broad
bandwidth of 10 nm centered at 702 nm. Detectors D2 and D3 were essentially identical to D1.
Coincidences between D1 and D2 and between D1 and D3 were detected by feeding their outputs into
constant fraction discriminators and coincidence detectors after appropriate delay lines. We used EGG
C102B coincidence detectors with coincidence window resolutions of 1.0 ns and 2.5 ns, respectively.
Also, triple coincidences between D1, D2 and D3 were detected by feeding the outputs of the two
coincidence counters into a third coincidence detector (a Tektronix 11302 oscilloscope used in a counter
mode). The various count rates were stored on computer every second.

Our arrangement of quarter waveplates inside the Michelson interferometer generates a geometrical
(Berry-Pancharatnam) phase, proportional to the angle 6 between the fast axes of the quarter wave
plates. We shall not go into detail concerning this phase here, except to say that it affords a convenient
way to see interference fringes without changing the difference in arm lengths of the interferometer
[Ref. 5].

We took data both outside and inside the white light fringe region where the usual interference in
singles detection occurs. We report here only on data taken outside this region, where the optical path
length difference was at a fixed value much greater than the coherence length of the signal photons
determined by the filters F2 and F3. Hence the fringe visibility seen by detectors D2 and D3 in singles
detection was essentially zero.

THEORY

First we present a simplified quantum analysis of this experiment. In the Appendix, we will
present a more comprehensive analysis based on Glauber's correlation functions. The state of the light
after the Michelson interferometer is given by

|W>out = j dws A(ws) | 1>0)s | 1>°>p“(°s Nl—l-f{l + ei‘b(‘”p_(‘)s)) (5)

where q)((o - o) =2rAL/A, _ ¢ + ¢Be is the phase shift arising from the optical path length
difference AL of the chhclgon for the photon with frequency O, — O, plus the Berry's phase
contribution for this photon. The coincidence rate Ny, (N;3) between detectors D1 and D2 (D1 and D3)
is proportional to the probability of finding at the same time t one photon at detector D1 placed at ry, and
one photon at detector D2 (D3) placed at r, (r3). When a narrowband filter F1 centered at frequency
@ is placed in front of the detector D1, N, becomes proportional to

W'out(rl’ T ) I 2= I <rl’ rt | W>'out | 2 o 1+cos o, (6)



where the prime denotes the output state after a von Neumann projection onto the eigenstate associated
with the sharp frequency g upon measurement. Therefore, the phase ¢ is determined at the sharp
frequency @y, — @, or equivalently, the sharp energy Ep — E,. In practice, the energy width depends
on the bandwidth of the filter F1 in front of D1, so that the visibility of the fringes seen in coincidences
should depend on the width of this remote filter. This fringe visibility will be high, provided that the
optical path length difference of the Michelson does not exceed the coherence length of the collapsed
signal photon wave packet, determined by F1. If a sufficiently broadband remote filter F1 is used
instead, such that the optical path length difference is much greater than the coherence length of the
collapsed wave packet, then the coincidence fringes should disappear.

RESULTS

In Fig. 2, we show data which confirm these predictions. In the lower trace (squares) we display
the coincidence count rate between detectors D1 and D3, as a function of the angle 0 between the fast
axes of waveplates Q1 and Q2, when the remote filter F1 was narrow, i.e., with a bandwidth of 0.86
nm. The calculated coherence length of the collapsed signal photon wave packet (570 pm) was greater
than the optical path length difference at which the Michelson was set (220 um). The visibility of the
coincidence fringes was quite high, viz., 60%:+5%." This is in contrast to the low visibility, viz., less
than 2%, of the singles fringes detected by D3 alone (not shown). For comparison, in the upper trace
(triangles) we display the coincidence count rate versus 6 when a broad remote filter F1, i.e., one with
a bandwidth of 10 nm, was substituted for the narrow one. The coherence length of the collapsed
signal photon wave packet was thus only 50 um. The coincidence fringes in this case have indeed
disappeared, as predicted.

DISCUSSION

In light of the observed violations of Bell's inequalities [Ref. 6], it is incorrect to interpret these
results in terms of an ensemble of conjugate signal and idler photons which possess definite, but
unknown, conjugate energies before filtering and detection. Any observable, e.g., energy or
momentum, should not be viewed as a local, realistic property carried by the photon before it is
actually measured.

The function of the second beamsplitter B2 was to verify that the signal beam was composed of
photons in an n=1 Fock state. In such a state, the photon, due to its indivisibility, will be either
transmitted or reflected at the beamsplitter, but not both. Thus coincidences between D2 and D3 should
never occur, except for rare accidental occurrences of two pairs of conjugate photons within the
coincidence window. However, if the signal beam were a classical wave, then one would expect an
equal division of the wave amplitude at the 50% beamsplitter, and hence frequent occurrences of

*The slightly nonsinusoidal component in Fig. 3 (lower trace) can be explained by a slight wedge in
Q2, in conjunction with the fact the signal beam was incident on Q2 off center.
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coincidences. An inequality, which was strongly violated in our experiment, places a lower bound on
this coincidence rate for classical light (see below). This verifies the essentially n=1 Fock state nature
of the light, and confirms the previous result of Hong and Mandel [Ref. 7].

The vertical arrows in Fig. 2 indicate the points at which triple coincidences were measured. Let
us define the anticorrelation parameter [Ref. 8]

a=Npp3 Ny /Ny Nz 7

where N5 is the rate of triple coincidences between detectors D1, D2 and D3, Ny, is the rate of double
coincidences between D1 and D2, N4 is the rate of double coincidences between D1 and D3, and N; is
the rate of singles detections by D1 alone. The inequality a>1 has been shown to hold for any classical
wave theory [Ref. 8]. The equality a=1 holds for coherent states | o, independent of their amplitude
o Since in our experiment the amplitude fluctuations in the double coincidence pulses led to a triple
coincidence detection efficiency 1 less than unity, we should reduce the expected value of a

accordingly. The modified classical inequality is a>n. We calibrated our triple coincidence counting
system by replacing the two-photon light source by an attenuated light bulb, and measured

n=0.70+0.07. During the data run of Fig. 2 (lower trace), we measured values of a shown at the
vertical arrows. The average value of a is 0.08+0.04, which violates by more than thirteen standard
deviations the predictions based on any classical wave theory. Itis therefore incorrect to interpret these
results in terms of a stochastic ensemble of classical waves, in a semiclassical theory of photoelectric
detection [Ref. 9]. Classical waves with conjugate, but random, frequencies could conceivably yield the
observed interference pattern, but they would also yield many more triple coincidences than were
observed.

We have therefore verified the energy-time uncertainty principle for pairs of photons in essentially
n=1 Fock states, in a way which excludes with very high probability any possible classical explanation.
These results can be understood in terms of the nonlocal collapse of the wavefunction.
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APPENDIX

A more rigorous theoretical description of the experiment can be carried out within the Glauber
correlation function formalism [Ref. 10]. We start with the entangled state of the down-converted light

|w> =IdcosA(ms) | D0 | 1Dap-a (A1)
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where A(ws) = A(wp — @) is the complex probability amplitude for finding one photon with a
frequency g and one photon with a frequency o, = Q. For simplicity we have assumed that the
pump photon is monochromatic. The second order correlation function relating the field amplitudes for

the signal and idler modes at the times tg and t;, respectively, is defined as

Gt ) = (v | B EPW BP0 B o | (A2)
In this expression, ﬁg‘@, (ts¢i)) and ﬁ(f(z) (tsi)) are the negative- and positive-frequency parts of the electric

field for the signal (idler) mode. Assuming, as in Fig.1, that the idler photon is directed to detector D1,
the field operators for this mode at the time t; may simply be Fourier expanded in terms of a frequency-

dependent detection efficiency Im((oi)lz, and creation and destruction operators 'éf(mi) and a3;(;):

B = f do; nj(@;) Ay e-iiti (A.22)

B = B ). (A.2b)

The effects of filter F1 are included in the factor . Similarly, the signal mode field operators may be
expanded, but these require an additional factor to account for the interferometer:

B = f ds N5(0s) Ag(0s) e-ists %7 {1 - eiost eitn) (A.3a)

8000 =B ), (A.3b)

where T = AL/c is the optical delay time between the arms of the interferometer, and ¢g is the
geometrical/Berry phase.

The probability of joint detection of a signal-idler pair within the detector resolution window AT,
after a total time 7, is then given by

T2 tg +AT
2
P =f dt; f dt; G@(t, b ti,ts) (A.4)
-1/2 ts —AL

In practice, the duration time 7 of any data point is essentially infinite (with respect to all relevant
time-scales in the problem). In addition, for our experiment AT (=1ns) was much greater than T
(=730fs, for AL=220um) and the reciprocal bandwidths, 1/Aw; and 1/Aw, of the filters F1 and F2.
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Hence, we are justified in setting the limits of integration to infinity:

P= f dt f dt; f do f do' A(@A* (0" j dog f do's I dmifdco'i

X M1(0) N0} N2(0) N(@'s) ei@i- D eil®s—'s)ts
X %(1 — e-inste-itB)(1 — et ei¢B)

X o, oo < 11 | 81(00) B(0) (@) 8@ | 1, 1D 0,0p-0 (A5)

If we assume that the probability amplitude is essentially constant (A(w) = A) over the filter
bandwidths Aw; and Awg, and that Ma(ws) = Moo over the bandwidth Awg >> 1/t (i.e. a broad square
bandpass filter F2 in front of detector D2), then (A.5) simplifies considerably:

P = |Aof? M20f? f do; (@) {1 = cos ((@p - o)+ 08))- (A.6)

We now examine the behavior of this detection probability in two limiting cases of filter F1:
1. If My =Midf 5(0)i - (oio) (i.e. a very narrow filter in front of detector D1), then
P ~ Aol In20f? 10 {1 — cos (@, — wio)t + 0a)} (A7)

It should be clear from (A.6) that in order to observe these fringes, it suffices to have Aw, << 1/1. This
is the situation in the lower trace of Fig. 2.

2. If mi(e)p = m1d? e’(‘”i“”iO)z/ Aot , where Aw; >> 1/t (we have previously stipulated the
experimental condition Awg >> 1/t), then

P =~ |Aq* 2ol 102, (A.8)

a constant, with no fringes. The experimental results (top trace, Fig. 2) corresponding to a broad filter
F1 are in agreement with these predictions.

Note that since the filter F2 is relatively broadband (i.e. Awg >> 1/t ), there are no fringes visible
in the singles rate of detector D2, even though fringes in coincidence may be present.
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Fig. 2: Interference fringes (lower trace, squares) for an unbalanced Michelson with a slowly varying
Berry's phase, observed in coincidences between D3 and D1 with a narrow remote filter F1. With a

disappear (upper trace, triangles). They also disappear when detected by D3

alone. Vertical arrows indicate where the anti-correlation parameter a was measured (see text).

these fringes
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ABSTRACT

In quantum mechanics the general state describing two or more particles is a linear superposition of
product states. Such a superposition is called entangled if it cannot be factored into just one product.
When only two particles are entangled the stage is set for Einstein-Podolsky-Rosen discussions and Bell’s
proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved new
possibilities and phenomena arise. For example the GHZ disproof of EPR applies. Furthermore, as we point

out in this paper, with three or more particles even entanglement itself can be an entangled property.

INTRODUCTION

Of the many conceptual innovations of quantum mechanics the notion of entanglement is gaining
increasing attention over the last few years. This is because entanglement implies the quantum
nonlocality as discussed by Einstein, Podolsky, and Rosen (Ref. 1) and Bell (Ref. 2). The increased
attention has also led to a somewhat loose discussion of these topics, quite often lacking care with
respect to the fundamental issues involved. It is therefore one of the purposes of the present paper to

give a detailed discussion of the notion of entanglement.

The term "Entanglement” (in Schrédinger’s original German "Verschrinkung") in quantum mechanics
goes back to Schrédinger’s famous 1935 paper (Ref. 3) where he gives a general confession, as he calls

it, of his understanding of the situation of quantum mechanics at that time. Most of the analysis of the
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measurement problem presented in Schrédinger’s paper rests on the properties of nonfactorizable states of
two-particle systems as first discussed in the same year by Einstein, Podolsky and Rosen (EPR). Here we
shall first briefly review entanglement for the case of two particles. Then, focussing on situations

where three particles are entangled, we will see that entanglement itself can be an entangled property.

TWO PARTICLES

For two-particle systems the best known entangled states are those which exhibit entanglement of
spin variables, e.g. in the case of two spin-1/2 particles with total spin zero this is the singlet state
(Ref. 4)

> = VI7Z [ 1> |->, - ->[+>1 ()

Here, |+>1 describes particle one with spin up etc. Because of the rotational symmetry of the singlet

state the direction along which the spins are defined in Eq. (1) need not be specified.

As can easily be seen, the state of Eq. (1) does not make any specific predictions for spin
measurement results on either particle, but it makes the definite prediction that, as soon as the spin of
one particle is found to be oriented along one direction, the spin of the other one will be found to be
oriented along the opposite direction should it be measured along that direction. Schrodinger calls this
property "entanglement of predictions” or "entanglement of our knowledge of the two bodies". As in
classical physics, one might draw up before the measurement an expectation catalog which gives the
possible measurement results together with the probabilities of these various results. In quantum

mechanics, the expectation catalog has to be calculated from the quantum state of the system.

While in classical mechanics the combined expectation catalog for two objects (bodies, particles,
pieces...) can always be written as the logical sum of the expectation catalogs of the individual
systems, this is not possible anymore in quantum mechanics for the case of entangled states. Or, in other
words, while in classical physics (and certainly in the case of factorizable quantum states) disjoint
catalogs for two bodies that once did interact exist, in quantum mechanics this is generally not true
anymore. Or, in Schrédinger’s original words: Maximal knowledge of a total system does not necessarily
include total knowledge of all its parts, not even when these are fully separated from each other and at
the moment are not influencing each other at all. This results in the interesting nonlocality questions

in quantum mechanics.

Consider a measurement on particle 1 along some direction. The experimenter is certainly free to

choose this direction at will, call it direction n. The experimental result for particle 1 along that
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direction can either be + ("up") or - ("down"). The entangled state (Eq. 1) implies that particle 2 is
then either in the state l-n>z if particle 1 was found to be up along n, or particle 2 is in the state
|+n>2 if particle 1 was found to be down along n. This is simply a consequence of the von Neumann
reduction of the state vector which is equivalent to the property that, upon measurement of particle 1,
the expectation catalog for particle 2 changes to be in agreement with the result for particle 1 and the

predictions obtained from the entangled state (Eq. 1).

In the case of two particle-entanglement just discussed it is the experimenter’s choice of the
direction along which she measures the spin of particle 1 which determines that particle 2 will be in an
eigenstate along that direction. Which specific eigenstate of the two possible ones it will be is
completely random and outside the influence of the experimenter, it is "Nature’s choice". We might also
express this as the property that after measurement of particle 1, the expectation catalog for particle 2
gives a definite prediction for measurement along the same direction, the specific result being

objectively undefined until the measurement on particle 1 is actually performed.

To summarize, for two particles, entanglement implies that no disjoint catalogs for all observable
properties of the two particles exist and that the specific result of the measurement of an entangled
quantity instantly permits prediction with certainty of the result of a measurement of the related

quantity on the other particle.

THREE PARTICLES, TWO TERMS

All the discussion on entanglement in quantum mechanics until recently exclusively focused on
two-particle states only. Yet it is evident that correlations between three and more particles provide a
richer abundance of new quantum phenomena. For example, while any entangled state of two particles can
always be written as a sum of just two terms (see e.g. Eq. 1) this in general is not true anymore for
three particles. Specifically, there may be experimental situations where the state of the three-particle
system consists of two terms or maybe even one term only, while in other situations three or more product
terms are necessary for a complete description. Here we shall first analyze a specific case of a

three-particle experiment where the state contains two terms.

The introduction of three-particle correlations into discussions of the EPR-paradox (Refs. 5 - 7)
and related questions not only did lead to more stringent contradictions between local realistic models
and quantum mechanics than in two-particle situations, it also provides qualitatively new entanglement
phenomena. Let us consider a three-particle interferometer experiment of the type recently proposed
(Ref. 7). A suitable source, say a nonlinear crystal exploiting a second-order nonlinearity of the
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electric polarizability, emits three photons in the entangled state
1 /A ’ 9 9
> =+1/2 [|A>1|B>2|C>3 +]A >1|B >2|C >s]' 2)

Here, e.g., |A>1 describes photon one in beam A etc. (see Figure 1). We now consider two possible choices
the experimenter has:

(a) She might determine which path photon 1 takes by placing detectors into beam path A and beam
path A’. As soon as one of these detectors fires, the state of the system collapses due to von Neumann
wave packet reduction. This implies that depending on whether the detector in beam path A fires or the
one in beam path A’ the state of the remaining two particles is different. If detector A registers photon
1 (we assume, as is customary in photon experiments, that the photon is absorbed by a detector

registering it) that state is

¥’ = |B>2|C>3. 3)
But, if detector A’ registers photon 1 the state of the remaining two photons is

¥>" = B’ |C">.. 4)

In either case, after registration of photon 1 the remaining two photons are left in a product state,
i.e. they are not entangled. In other words, registering photon 1 in either beam A or A’ did untanglesythe
other two photons. From a complementarity point of view this might readily be understood on basis of the
fact that registering any of the photons in a beam path before it encounters the recombining beam
splitter instantaneously provides information not only in this photon’s path but, because of the momentum
correlations implied in state (2), also on the paths taken by the other two photons.

(b) The experimenter might alternatively decide not to insert detectors into any of the beam paths
before the recombining beam splitter but measure the interference fringes instead. In order to simplify

the analysis we assume that the phase shifter phases (Fig. 1) are all chosen to obey the condition

b+, + 8, =12 )

Let us now call D (E) the beam path of particle 1 leading to detector R1 (Ll) and likewise F (G) and H
(J) the beam paths of particles 2 and 3 leading to their detectors. Without loss of generality we assume

that photon 1 is registered in detector D: The state of the remaining 2 photons is then (see Ref. 7)
> = 1/2 [|E>2|F>3 - |E >2|F >3]. 6)

Thus photon 2 and photon 3 are clearly in an entangled state now. This holds always for the remaining two
photons if a photon was registered after any of the other beam splitters. In other words, registering a
photon in a detector behind its recombining beam splitter does not untangle the other two photons.
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Clearly, the experiment can be set up in such a way that the detection events for the three photons
occur at spacelike separation. Nevertheless, the experimenter’s decision as to which measurement is to be
performed at one of the photons determines - upon registration of the measurement result - whether or not

the other two photons are left in an entangled state.

In Schrédinger’s terms this means that the experimenter, simply by deciding whether to measure
photon 1 before or after its recombining beam splitter, also decides whether or not the other two photons
each enjoy their own disjoint expectation catalog, no matter how far these other photons might be away at
the time that decision is made or at the instant of registration of photon 1. For completeness we simply
remark here that, as in two-particle entanglement, the detection events of the three photons might be

arranged in any time order.

A THREE-TERM STATE

For three or more particles with each particle enjoying its own two-dimensional Hilbert space there
are evidently a number of different three-term states. Clearly the details of the experimental situation
determine which state is present. To be specific, let us analyze the experiment represented in Figure 2.
There, the incident beam A bearing radiation with wave number k = 2x/) is split by a series of successive
partially reflecting mirrors into the beams B, C, and D and a through going beam. This latter one is
assumed to enter a nonlinear crystal where it is upconverted into radiation with wavenumber 3k and then
passes a filter set at the wavelength X’= 27/3k. Afterwards it is downconverted again. We shall call such
a device consisting of an upconverter, a monochromatic filter and a downconverter a "number filter"
because it lets only pass states with a certain number of photons, in our case three. This beam
subsequently encounters a partially reflecting mirror again where some of it is deflected into a beam
which we call A’ towards a detector set to count a particle, call it particle 1. Registration of particle
1 in that detector acts as a trigger signal to indicate that a three-particle state has passed the number

filter.

The transmitted beam again encounters some mirrors such that the beams B’, C’, and D’ result as
indicated in Figure 2. These latter beams are then superposed at a set of three semireflecting mirrors
with the corresponding beams B, C, and D and we assume that detectors are placed into the outgoing beams
of these semireflecting mirrors. We arrange the experiment such that the amplitudes incident on either
port of any recombining mirror are equal and we look only for such events where in one and only one of
the outgoing beams of each semireflecting mirror a photon is found (assuming 100% efficient detectors).
Let us call these photons by their numbers 2, 3, and 4 respectively and let us agree to look only at the

detectors if particle 1 has been registered in its detector.
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The state of these photon quadruples is
W>=+1/3|A > I:IB >2|C >3|D>‘1 +|B >2IC>3|D >+ |B>2|C >le >4] @)

because this describes exactly the situation where photon 1 triggers the detector in beam path A’ thus
indicating that a three-photon has passed the number filter and one of these is photon 1. The other two
photons coming through the filter might either be photon 2 and 3, or photon 2 and 4, or photon 3 and‘4 as
indicated by the primes in the terms above. For each term one other photon must have used the unprimed

beam completing the quadruple.

We immediately note that in the state (7) photons 2, 3, and 4 are entangled with each other, while
photon 1 is not entangled with any of the others, it enjoys its own disjoint catalog of predictions. More
importantly, let us now consider what happens if we place a detector into any of the primed beam paths of
photon 2, 3, or 4. Suppose explicitly and without loss of generality that a detector is placed into path
B’ of photon 2. Still we assume that we only look at such cases where the detector in beam A’ has
registered photon 1. Then two different possibilities arise: Either the detector in beam path B’ fires or

it does not fire. If it fires, the state of the remaining two photons, the photons 3 and 4, is
> = 1/2 [|C’>3|D>4 + |C>3|D’>4] (8)

which is clearly an entangled state for these two photons. On the other hand detector B’ might not fire.

In that case the predictions for the quadruple of photons can be described by the last term of Eq. (8)
> = |A >1|B>2|C >3|D >, 9)

which now implies that none of the photons is entangled with any of the other photons. Most remarkably,
if the detector inserted into the beam path B’ of photon 2 fires, photon 3 and 4 are entangled. If that
detector does not fire, photon 3 and 4 are not entangled anymore! The absence of a registration event of
the detector in beam B’ untangles the other two photons. Whether or not such a registration event happens
is completely and objectively random, at least within the standard interpretation of quantum
probabilities. In this situation it is therefore a totally random event happening to photon 2 which

determines whether or not photons 3 and 4 are entangled.

We point out here too that the apparatus might easily be arranged in such a way that the detection
events on particles 2, 3 and 4 are spacelike separated from each other. Again we might call the specific
random event "Nature’s choice" and we find it quite remarkable that a spacelike separated random event

happening to particle 2 decides whether or not particle 3 and 4 are entangled with each other.

78



CONCLUDING COMMENTS

Several comments might be in order. Firstly we remark that the analysis given above is not
restricted to multiparticle interferometry. In fact, it is rather straightforward to give an example in
terms of spin correlations. We might also point out that such experiments, though they have not been
performed yet, should be feasible given further development in our knowledge of the nonlinear conversion
processes in quantum optics. Furthermore, it was implicitly assumed that the incident radiation is rich
enough to contain the multiparticle states exploited in the various experiments. Finally, entangled
entanglement also is consistent with special relativity in the sense that it does not permit information

to be transmitted with a speed larger than that of light.

This work was supported by the Austrian Fonds zur Forderung der wiss. Forschung projects No.
S 42-01 and P 6635 and by the US NSF grants No. DMR-87-13559 and INT-87-13341.
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Fig. 1. Principle of a 3-particle interferometer experiment.
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Fig. 2: Principle of an interferometer experiment exhibiting entanglement of more than two terms.
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Algorithmic Information Theory and the Hidden Variable Question
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Abstract

This note explores, via information theory,
the admissibility of certain nonlocal hidden-variable
theories. Consider a pair of Stern-Gerlach devices
with fixed nonparallel orientations that periodically
perform spin measurements on identically prepared
pairs of electrons in the singlet spin state. Suppose
the outcomes are recorded as binary strings I and r
(with {,, and r,, denoting their n-length prefixes). The
hidden-variable theories considered here require that
there exists a recursive function which may be used to
transform [, into r, for any n. This note demon-
strates that such a theory cannot reproduce all the
statistical predictions of quantum mechanics. Specifi-
cally, consider an ensemble of outcome pairs (lr).
From the associated probability measure, the Shannon
entropies H,, and H , for strings I,, and pairs (I,,,r),)
may be formed. It is shown that such a theory re-
quires that | H ,— H, | be bounded — contrasting the
quantum mechanical prediction that it grow with n.

I. Introduction

The class of inequalities initiated by Bell! do
not absolutely exclude the possibility of hidden vari-
ables underlying the phenomena statistically described
by quantum mechanics. Hidden-variable theories of
the so-called nonlocal variety are not constrained by
Bell’s theorem. Although there is no pressing theo-
retical reason for taking the existence of such a theory
seriously, it is clear that one can only truly begin to
understand quantum mechanics when one first under-
stands what it is not. This note will attempt to make
a contribution to this end. Here a seemingly not- a
priori unreasonable class of nonlocal hidden-variable
theories called the “computable hidden-variable theo-
ries” (CHV’s) will first be defined for a particular
thought experiment and then shown to be inconsistent
with certain statistical requirements of quantum me-
chanics. The reason for this procedure is to make ex-
plicit, through the language of algorithmic informa-
tion theory, >3 an aspect of quantum theory hitherto
seldom discussed and then demonstrate the practical
use of this aspect in answering foundational questions.
This aspect is that the data obtained from identical
measurements performed on identically prepared sys-
tems is generally “algorithmically incompressible.”
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II. The Thought Experiment and the Result

The thought experiment described is a modifi-
cation of the standard one used for discussions of
Bell’s theorem. Consider a pair of distantly separat-
ed Stern-Gerlach (SG) devices situated so to (flaw-
lessly) measure the spins of a pair of correlated elec-
trons. These are called the left and right devices, re-
spectively. For definiteness, suppose that the corre-
lated electrons are in the singlet spin state

19) = S(10ebr = 1Weite) @)

Assume that the left and right SG devices, respec-
tively, are oriented so that they invariably measure
spin along Z and an axis that differs from Z by a com-
putable angle 6. “0 computable” simply means that
there is an algorithm for generating the decimal ex-
pansion of . E.g., 0= 7/6 is clearly computable.
Suppose that at periodic time intervals these devices
are supplied with identically prepared pairs of corre-
lated electrons. (This would allow the measurement
outcomes to serve as a “window” into the “hidden”
dynamics of the devices, if such a dynamics did indeed
exist.) Finally, imagine that each SG device is en-
dowed with the capability of recording its measure-
ment outcomes as a string of binary digits — 0 and 1
denoting down and up outcomes, respectively. Denote
the left and right strings, respectively, by [ and r, and
their n-length prefixes by I, and r,. E.g., a typical
run of the devices might give [=01101011... and
r=10110100...; the length-4 prefixes for these
strings are I, = 0110 and r, = 1011 To cap off the
description of the thought experiment, assume that
there is in fact an ensemble of such devices: each
macroscopically identical to the next, each with its
own supply of electrons, and each performing the op-
eration described. Associated with this ensemble will
be an ensemble of ordered pairs (I,r) and consequently
ensembles of pairs (I,,7,,)-

With this as a scaffold, the CHV notion can
be formalized. Simply put, a CHV is said to be re-
sponsible for the measurement outcomes if for every
pair (I,r) in the ensemble, there is at least one of a fi-
nite set of computer programs (more formally recur-
sive functions) that, for any n, produces the string r,
as output whenever given [, as input. Note that each
string | can have as its origin any process whatsoever:
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deterministic or indeterministic. This definition only
requires that a rigid, mechanistic relation between !
and r be maintained. Furthermore, such a theory is
inherently nonlocal; the program provides the “medi-
um” for the instantaneous action of the one string on
the other. The finiteness of the set of programs is
meant to allow for the possibility that the SG devices
in the ensemble might have differing microscopic
initial conditions.

The main result may now be stated. Because
a CHV provides a compression scheme for the mea-
surement data, it must contradict the statistical pre-
dictions of quantum mechanics. Suppose the proba-
bility distributions for the ensembles of strings l,, and
pairs (I,r.) are p () and gq,(l,,r,), respectively.
The Shannon entropies for these distributions are:

Hn =- Z ’n pn(ln)log [pn(ln)]
- and (2)
Hn == Eln Z ™ qn(ln’ rn) log [qn(ln’ rn)]a

where log denotes the base-2 logarithm. Consider the
quantity | H,,— H,_|. Standard quantum theory re-
quires that this be proportional to n. For CHV'’s,
however, this quantity is necessarily bound by a con-
stant independent of n. The remainder of this section
will be devoted to justifying the quantum mechanical
result; the corresponding result for a CHV will be
derived in the next two sections.

Suppose that standard quantum theory does
indeed hold in the thought experiment. In that case,
the required Shannon entropies are straightforward to
derive. The essential ingredient in this derivation is
simply noted: quantum theory declares that the only
condition determining the measurement outcomes is
the probability distribution derivable from (1).
Hence, the probability of a 0 or a 1 occurring in the
E’th place of a string I, must be independent of k.
Furthermore, this probability is independent of which
left-hand SG device in the ensemble produced .
Analogous results hold for any string r,, and for the
correlation probabilities between the k’th places of I,
and r,. With these considerations, it is a simple
exercise in quantum mechanics to show that

I}—Iﬂ — H,| = —f(#)n, where
f(o)z(sm2%109[5i"2g] + 0032g109[cos2g]),

Therefore, for any 6 other than # =0 or § = 7,

II_I,-."H"I x n. (3)

IV. Algorithmic Information Theory

This section introduces enough of the appara-
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tus of algorithmic information theory that the main
result can be proven. It does not purport to be a gen-
eral introduction to the subject. The notion of a “re-
cursive function” is taken as primitive. For the most
part, this section follows the development of algo-
rithmic information theory found in Ref. 3.

Notation and Definitions:

Let X ={A,0,1,00,01,...} be the set of fi-
nite binary strings in lexicographic order, where A is
the empty string. Elements of X may be thought of
dually as strings and natural numbers. Let X,, be the
set of n-length strings. O(1) denotes a bounded func-
tion. The variables s, ¢, v, z, and y denote elements
of X. The length, n-length prefix, and k’th digit of s
are denoted by |s|, s,, and s(k), respectively. A set
S C X is called an instantaneous code if for any z,y in
S, neither z nor y is a prefix of the other. Elements of
S (denoted generally by r) are called programs. A
computer C is.a recursive function C: SxX—X. A
computer U is said to be universal iff for each com-
puter C there is a constant k, such that: if C(r,v) is
defined, then there exists a program r’ € § such that
U(r'yv) =C(r,v) and |r'| < |r| +kg. Let a partic-
ular countably infinite instantaneous code $ and uni-
versal computer U be chosen as standard. Finally, let
(,):XxX—X be a recursive bijection with the prope:-
ty that if | s| = [¢[, then (s,t) = s(1)¢(1)s(2)t(2)....
E.g., if s =011 and ¢ = 101, then (s,t) = 011011.

The algorithmic complezities are defined by:

Kg(s/t) = min{|r]| : C(r,t) =5}

Kc(s) = Kg(s/A)

Kols,) = Kol(s,1))

K(s/t) = Ky(s/t)
The canonical program s* for s is defined by s* =
min{r : U(r,A) =s}. Clearly |s*| = K(s).

Now let p:X—[0,1] and let p, denote the
restriction of p to X,. p is said to be a probability
measure for a stochastic process if it satisfies:

E p(z)=1 &
|zl =n
for any n and any y € X, _ 1- If p is recursive, then p
is said to be a computable measure. In this section,
only computable measures are considered. The Shan-
non entropy H  for p over n-length strings is:

Pr—1(¥) = p(¥0) + p,,(y1)

Hn = - Z pn(z) Iog [pn(z)]’
lz} =n
Finally, with the measure p, the average complezities
(K/y)p and (K)3 for n-length strings are defined by:

(K/y)a=Y_ pu(z)K(z/y)

[z] =n

& (K= (K/A),



Theorems:

Theorems (a)-(f), from Ref. 3, are listed so
that the present treatment will be self-contained.
Theorem (i), from Ref. 4, provides the link relating
complexity to entropy. Theorems (g), (h), and (j) are
simple results due to the author. When crucial, rather
than relegating bounded terms to a term written as
0(1), a constant written in the form D__, where the
ellipsis symbolizes a set of subscripts, will be used so
that all dependencies are clear. (E.g., D, denotes a
constant that depends only on the measure p.)

(a) For any computer C, K(s/t) < Ko(s/t)+ ko

(b) K(s) < K(s,t)+0(1).

(c) K(s/t) < K(s)+0(1).

@) K(s,t) = K(t,5)+0(1).

(e) K(s,t) = K(s)+ K(t/s")+0(1). ('To make the
O(1) term’s dependence on U explicit, this can be
written as | K(s,t) — K(s)— K(t/s*)| <Dy.)

(f) If f:N - N is a recursive function and 2(%)1(")
converges, then K(n) < f(n)+0(1).

(g) K(t/s") < K(t/s)+0(1).

Proof: Consider a computer C such that C(r,v)=

U(r,U(v,A)). Then C(r,s%) =U(r,s). Hence it must

be the case that K (t/s*)= K(t/s) for any t.

By (a) then, K(t/s*) < K(t/s)+0(1).0

(h) —Dy < K(s)—K(s/|s|") < 2log|s| +Dy-

Proof: A similar result is derived in Ref. 4. The left-

hand inequality is a consequence of (c). By (f), there

is a constant Dy such that K(n) < 2log(n) + Dy, for

all n. The right-hand inequality then follows from
successive applications of (b), (d), and (e). O

i) There is a constant D such that, for all n,
“\1n Usp
OS(K/n )P—HNSDU,})'

(j) There are constants Dy and Dy ,, such that, for
alln, -Dy < (K)p —H, < 2logn + Dy p-

Proof: This is a simple consequence of (h) and (i). O

V. Computable Hidden-Variable Theories

Armed with the last section’s tools, a precise
definition of a CHV can now be formed. Let 36 de-
note the set of all possible pairs (I,7) in the ensemble
of strings produced by the thought experiment.

Def: A CHV V is said to be responsible for
the measurement outcomes if there is a finite subset
V C S such that for each (I,r) € 3 there exists a v€ 'V
for which it is the case that U(v,l,)) = r,, for every n.
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Notice immediately that if V is responsible for the
outcome strings, then for each (I,r) €3 it follows
that K(r,/l,) < max{|v|:v €V} for all n. But then
by (g), K(r,/1;) <Dy y for all n. This, coupled
with (e), leads to the folfowing conclusion.

Thm 1: If V is responsible for the mea-
surement outcomes, then for each (I,r) € 3, it follows
that | K(I,,r,) — K(I,)| <Dy v for all n.

Now consider the probability measures for the
outcome strings using the notation introduced in Sec-
tion 1I. It is assumed that these measures are com-
putable. (This will be the case if standard quantum
theory is valid since 0 is required to be computable.
If it were not the case here, by being noncomputable,
p and ¢ would trivially differ from the values pre-
dicted by quantum mechanics and there would be no
need for further discussion.) For these measures:
S, 0,0 = pp(ly,) for all n. An important
fact™ to note is that g,(s,,t,) vanishes iff (s,t) ¢ Jb.
Hence from Theorem 1 it follows that, if V generates
the measurement outcomes, for all n, the quantity

I E In’rnqn(ln’ rn) K(In’ rn) - 2 Iﬂpn(ln) K(In)

will be bounded by a constant DU,V . Now because of
the form of the bijection (I,,r,), the double sum in
this expression may be construed as a single sum over
strings of length 2n. This fact leads to the following:

Thm 2: If V is responsible for the outcome
strings, | (K)3"—(K)3| < Dy,y for all n.
Combining Theorems 2 and (j), the following emerges:

Thm 3: IfV is responsible for the outcome
strings, |H, — H,| < Dy v, p ¢ for all n.

This is the sought after identity; for, although
U,V,pq erends on the. tl}e pHV explicitly (through
V and possibly p and g¢), it is independent of n.
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ABSTRACT

We have defined a photon
polarization analog of the GHZ
experiment that was initially
proposed for spin-1/2 quanta.
Analogs of the ket states and Pauli
spin matrix operators are presented.

DISCUSSION

We have developed an explicit
photon polarization version of the
three-quanta GHZ experiment (Ref. 1)
discussed by Mermin (Ref. 2). We
define operators, eigenkets, and
measurements in the two-dimensional
space of photon polarization that
map directly onto the Paull spin
matrix representation of a spin-1/2
system. This construction enables
us to represent the GHZ experiment
in terms of photon polarization
measurements on a three-photon
quantum state.

This photon analog of the
spin-1/2 counterparts is developed
by using retardation plates, which
rotate the polarization of an
incident photon by producing an
associated change of phase. A A/4
retardation plate with optic axis at
45° to an imposed X-Y coordinate
system will act analogously to o

up to a phase representing a
polarization-independent
translation. A A/4 plate with optic
axis parallel to one of the X-Y axes
produces the o, operation, again up

to an inessential phase factor. The
product operation defined by both

retardation plates accomplishes the
operation cy=1¢z-0x.

The polarization states that
represent eigenkets of o, are | X>

and |Y>, measured by using a
birefringent polarization analyzer
(e. g. a Wollaston prism) oriented
to send each of these polarizations
into a distinct direction, en route
to one of two separate
photomultiplier tube detectors. The
polarization states that represent
eigenkets of o are defined

similarly, to be light linearly
polarized at 45° and 135° to the
X-axis. These polarizations are
measured by rotating the analyzer at
45°to its o, orientation, and

recording which of the two
phototubes generated an output
pulse. Finally, the eigenkets of cy

are found to be left- and right-
circularly polarized light in this
representation. These are measured
(i. e. *1 is determined) by
inserting a quarter-wave plate in
front of the previously-defined
analyzer, to generate in one output
direction light that was originally
left circular polarized, and in the
other direction the originally right
circular polarization.

The experiment consists of
first verifying that the
three-photon state being studied is
a +1 eigenstate of each of the

2 3
operators A= o 0 O B= o Gy o

X
1 2
and C= o 0 Uy. A measurement of
X X
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operator 0 = A-B-C represents the
decisive test between quantum
mechanics and local reality
theories. The quantum mechanical
prediction for the observed
eigenvalue of 0 is -1, whereas the
local reality prediction can be
easily shown to be +1.

The most difficult element of
any non-gedanken experiment similar
to the one presented here is the
construction of the three-photon
quantum state. The requisite state
vector is a perfectly
anti-ferromagnetic "entangled” ket
proportional to
[1X>1X>1X>-1Y>1Y>1Y>] which is

1273 1 2 '3

difficult to manufacture (Ref. 3) by
any physical process, such as a
three-photon emission of an excited
species. We have proposed a method
of creating this state by hand, a
task not obviously possible because
most operators on optical photons do
not restrict themselves to the
Hilbert space of any one photon
exclusive of the others.

We assemble the needed
three-photon ket by sending a
mbmmt]XﬂxyxgoftM%e

one-photon number states (obtainable
by using an attenuated Glauber state
for each one) onto an array of beam
sti'tters and interferometers
(cither Mach-Zehnder or Michelson
will work here) to achieve a
summation of correlated amplitudes
at the end of the apparatus (see
Figure). The total apparatus is a
three-tiered structure, with one
tier for each photon. For clarity,
only one tier is shown in the
figure. The boxed interferometers
are specific to each tier; all other
optical components (beamsplitters
and mirrors) are common to all three
tiers, a requirement that can be
satisfied for sufficiently large
components. The entangled state is
obtained by using phases in the
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2. Mermin, N. D.,

apparatus to cause the amplitudes of
some components of the total ket to
sum to zero. This cancellation of
undesired "cross terms" produces the
anti-ferromagnetic state needed in
the GHZ test.
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| = beamsplitter

| = half wave plate

| = mirror

D2 = phototube

Apparatus Defining the Three-Photon State
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A scheme is proposed for experimentally realizing the famous two-slit
gedéanken experiment using photons. As elegantly discussed for electrons by
Feynman, a particle's quantum pathways interfere to produce fringes in the
probability density for the particle to be found at a particular location. If the
path taken by the particle is experimentally determined, the complementarity
principle says that the fringes must disappear. To carry out this experiment
with photons is difficult because normally the act of determining a photon's
location destroys it.

We propose to overcome this difficulty by putting a type-ll optical
parametric amplifier (OPA) in each arm of a Mach-Zehnder interferometer, and
observing fringes at the output, as shown in Fig.1. An OPA responds to an input
photon by increasing its probability to produce a pair of photons, one having
(vertical) polarization orthogonal to the (horizontal) polarization of the input
photon. A polarizing beam splitter is used to eject only those photons with
polarization orthogonal to the input, the detection of which allows partial
inference about the path taken by the input photon without destroying it. The
measurement is thus of the quantum nondemolition (QND) type.

1 Photon Input Q

— d‘
D
Pumping .
I BT W s TN

.......... .
Vacuum PBS
OPA AI » - —
C) + 50/50 BS
Detector

Fig.1 Apparatus for which-path measurement.
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The price paid for this inference is at least one noise photon in the
interferometer, which degrades the fringe visibility, in accordance with the
complementarity principle. Information theory is used to show that the
visibility is connected to the amount of information available to be collected,
regardless of whether or not anyone looks at it. In this sense information
should perhaps be regarded as a physical quantity, rather than a subjective
concept.

The calculation treats the signal (horizontal polarization) and idler
(vertical polarization) modes of the OPA quantum mechanically and the pump
mode as a given classical field. The one-photon input state is transformed on
the 50/50 beam splitter by a unitary transformation (Ref.1), and then is acted
upon by a factorized two-mode squeezing operator (Ref.2) for each OPA crystal.
From the resulting probabilities for mode occupation, Bayes theorem is used to
infer the probabilities P(upper | ny,my) and P(lower | ny,my) for each path (upper
or lower) that the input photon may have taken. This inference is possible
because the probability distributions for numbers of generated idler photons,
ny,my, depend on the number of photons (0 or 1) entering each OPA.

Information gain is defined in the following way knowing the prior
probabilities (1/2,1/2) and the final probabilities inferred from Bayes theorem:
Al=1,,, =14, where I, =1 Dbit is the initially missing information, and the
final information after the measurement is

I fnat = P(upperin,,m, )log, P(upperin,,m,) +

P(lowerln,,m,)log, P(lowerln,, m,).

For a given sub-ensemble of trials in which nv (my) idler photons are generated
in the upper (lower) arm, the fringe visibility is found to be

an.m, =2(m, +1)(n, +1)/[(m, +n, +1)(m, +n, +2)].

The sub-ensemble fringe visibility and information gain are plotted in
Fig.2 for different values of ny, and my, When ny=my the information gain is zero,
and the visibility approaches unity for small nv and my. For larger values of n,
and my the noise in the OPA degrades the visibility even though no information
is imparted. For ny=0 and my >>1, the information increases and the visibility
decreases, in accordance with the complementarity principle. See related
discussions ( Refs.3-5).
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Fig.2 Information gain and fringe visibility versus measured photon numbers.

Thus, partial measurements of the photon path can be made, but noise is
added, degrading the visibility, and thereby enforcing the complementarity
principle. If ny and my are not measured, and the total ensemble is used to
calculate visibility, it can be shown that there is still an inverse relation
between average information gain and visibility. Thus, it is not necessary to
collect the information, only that it be "out there" available to be collected.
This suggests that information has an objective, rather than a subjective,
physical reality. It should be considered whether information plays a2
unrecognized role in physical processes, and as such should be incorporated in a
more explicit, dynamical way into the theory of quantum mechanics.
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LOCALIZATION OF ONE-PHOTON STATE IN SPACE AND
EINSTEIN-PODOLSKY-ROSEN PARADOX IN SPONTANEOUS
PARAMETRIC DOWN CONVERSION

A.N.Penin, T.A.Reutova, *)A.V.Sergienko

Department of Physics, Moscow State University,
Moscow 119899, USSR
*)present address: Department of Physics and Astronomy,
University of Maryland, College Park, MD 20742

An experiment on one-photon state localization in space using a
correlation technique in Spontaneous Parametric Down Conversion
(SPDC) process is discussed. Results of measurements demonstrate
an idea of the Einstein-Podolsky-Rosen (EPR) paradox for coordinate
and momentum variables of photon states. Results of the experiment
can be explaned with the help of the advanced wave technique
developed by D.N.Klyshko /1,2/.

The experiment is based on the idea that two-photon states of
optical electromagnetic fields arising in the nonlinear process of the
spontaneous parametric down conversion (spontaneous parametric
light scattering) can be explained by quantum mechanical theory
with the help of a single wave function.  The interaction of
monochromatic laser radiation with a nonlinear crystal without a

center of symmetry results in the spontaneous emergance of two-
photon states with a broad set of different coordinate-momentum

and energy-time pairs of variables. The radiation after the nonlinear
crystal has a continuous distribution of wavevectors in space
depending on the nonlinear properties of crystal and phase matching
conditions w)+®2=0L, ki+ka=kp. This forms the main reason why we
can easily measure coordinates or wavevectors of photons. The
typical experimental setup for the measurement of the distribution
of scattered radiation in space as a function frequency that have
being used in our earlier works /3-5/ is illustrated in Fig.1.
Ultraviolet radiation at 2=325 nm from a He-Cd laser interacted with
a 2 cm long nonlinear LilO3 crystal and created broad band scattered
radiation centered at A=650 nm. The radii of rings in the focal plane
of the collecting lens are defined by phase matching conditions. The
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Fig.l. Outline of the experimental setup for the investigation of
correlation properties of radiation in the spontaneous parametric
down conversion process. 1- nonlinear LilO3 crystal, 2- collecting
lens, 3-spectral device, 4- photodetectors, 5- coincident circuit, 6-

counters.
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Fig.2. Frequency-angular dependence of scattered radiation.  the
symbols e and o denote the photons conjugated by phase matching
conditions.
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thickness of rings of different frequency depends on the parameters
of spacial coherency and the focal length of collecting lens 2.

The frequency-angular dependence of scattered radiation for
the different orientations of the optical axis (z) of the crystal with
respect to the laser beam wavevector kL is shown in Fig.2. This
dependence was measured with the help of a spectral device placed
in the focal plane of the collecting lens.

The region of one-photon state localization was determined
from measurements of the fourth-order space correlation function
GEO(rDEC(r2)E®(r1)E®)(r2)).  The three-dimentional shape of
that function was measured by scanning in space using micro holes
(see Fig.3). The micro holes had a diameter much smaller than the
space coherence area of radiation and were connected with
photodetectors by fibers. The point of maximum probability of one-
photon state localization along the z-direction was calculated by
using a Gaussian approximation to the shape of the space correlation
function and projecting the half-width dependence onto the Xx-z
coordinate plane (see Fig.4).

It was found in our first experiment that the location of the
point giving the maximum probability of one-photon state
localization dependeds on the location of the reference photodetector
in space. This result demonstrates the EPR paradox conditions for
coordinate and momentum variables. We note here that the indirect
measurement technique used here gave only a qualitative result.
The accuracy of the first experiments was about 30-40%. We had to
use a method of interpolation of the space correlation function shape
because the time resolution of our electronics correlation circuit (T =
1ns) could not allow us to make a direct measurement of the precise
space point of photon localisation.

The result of the experiment could be easily interpreted with
the help of the theory of hypothetical advanced Green functions
/1,2/ and classical lens equations if the nonlinear crystal is
considered as a mirror. However, it does not mean that real
advanced electromagnetic waves exist.

We look forward to improvements of time parameters of our
experimental apparatus to provide a quantitive result in the
measurement of coordinate and momentum variables of optical fields
generated in the SPDC process. Such work is in progress.
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Fig.3. Outline of measurement of fourth-order space correlation
function G(2)(r;,r2).
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Fig.4. Result of the G(2)(ry,rz) space distribution measurement. The
point of maximum probability of photon localization was calculated
by interpolation of projection of half-width of correlation function
value in a Gaussian shape approach on the x-z- plane.
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ABSTRACT

A new field of multi-particle interferometry is
introduced using a nonlinear optical spontaneous
parametric down conversion (SPDC) of a photon
into more than two photons. The study of SPDC
using a realistic Hamiltonian in a multi-mode
shows that at least low conversion rate limit is
possible. The down converted field exhibits many
stronger nonclassical phenomena than the usual
two photon parametric down conversion.
Application of the multi-particle interferometry
to a recently proposed many particle Bell'’s

theorem on Einstein-Podolsky-Rosen problem is

given.
INTRODUCTION
A two photon spontaneous parametric down

conversion (SPDC)1 has been known to be an
effective source of highly correlated photon
pairs that exhibit many interesting nonclassical
properties, such as squeezed states,
antibunching, violation of classical
inequalities, etc. Qur study, which starts with a
realistic Hamiltonian not only shows that the

2'3, which occured in the usual

divergence problem
parametric approximation, does not occur when the
pump is quantized, but also shows that the phase
matching problem, in principle, doesn’t prohibit
the phenomena to occur.

It is possible4 to have the phenomenon at least
in the low conversion rate limit. Since we know
that quantum interferometers do not require a
high coversion rate (indeed we like to have only
one set of photons in the entire setup at any
time), we can introduce a multi-particle guantum
optical interferometry in which one measures the
quantum correlation properties among more than
two particles. One can construct three-photon
coherent state interferometers in the form of a

generalized momentum-position interferometry, a

generalized form of a Franson-type position-time
interferometry, and a generalized polarization
correlation experiments, and look for their
nonclassical behaviors.

I. GENERALIZED PARAMETRIC DOWN CONVERSION

Starting with an interaction Hamiltonian for
three photon SPDC in the parametric approximation

which allows multiple mode down conversion from
the pump with wavevector ko and frequency @,:

Hy = fdv %TT K {8,8,85071A KiTHIWGE

t, t, t A ker-iwgt
+8; 8, 85 o' K'T-100y (@3]
we obtain the expressions for the time

+
development of the operators A, a4

By, = -10) 8y, -1 Z2K 8,78, e 1ot
*(kg-k-k;-Kj) (2a)

', - 1oy a'y, +i 3K 88501 %ot
*8(kg-k-k;~k3) (2b)

A major difference between Eqs.(2) and the
equivalent two photon case is that in this case
the 8 function at the end of Egs.(2) cannot
eliminate the summations (or integrals, for a
continuum) over k;, k, unless we have a special
selection mechanism such as ideal phase matching,
or photon resonances, for the specific down
converted frequencies.

But in any case, the equations can be
solved and yield the same type of curves for the
photon number, although in non-ideal phase
matched cases, we have much smaller values. For
example, for the 3 photon degenerate case we
have

o

N = 18K%+ (3N%43N+2) , etc. (3)
Except for the two photon case, which has a well
known analytic solution N . sinh®Kt that diverges
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it can be shown that in all higher
order cases the photon number diverges at a

finite time. On the other hand, if we quantize
the pump field, the interaction Hamiltonian HIQ

at infinity,

becomes

Hiq ° Jldv 5000 RTW W WIS LI

+ + + i .
e 0yt 0 050 010K Ty (4

where KQ is a quantum pump equivalent to K in

parametric approximation.

From this we have a time development of
the down converted photon number for the three
photon degenerate SPDC:

N = 18K:{(3N203N02)No(t)-N305N+2)}, (5)

where No(t} gives the expression for the depleted

pump beam and is related to the down converted
beam as <Np(t)>=<Ng(0)>-<N(t)>. The extra term
with a negative sign in Eq.(5) will slow down the
change of the slope of the curve when the pump
depletion becomes significant. Notice that the
expression in the quantum pump reduces to the

parametric approximation for No(t)>>N. The photon

number will eventually oscillate greatly for

large Kt. This is true even in the case when we

don’t have an ideal phase matching.

I1. MULTIPARTICLE INTERFEROMETRY

Two fundamental relations for a mwmulti-photon
spontaneous parametric down conversion, i.e.

(6)

(7)
along with the facts that the pump beam with ko
and W, is a coherent one and that the n-photon

kg = kytkpt °°" +kp,

Wy = Wi+Wy+ 0 ot

down converted state is
product of the individual photon states,
that each individual down

doesn’t have a definite phase,

inforsation.

represented by the
tell us
converted photon

while the total
system carries the phase This n-
photon correlation property opens a new field of
asulti-photon interferometry in which one measures
the joint detection probability of n photons.

Our scheme for multi-photon interferometry

starts with forming a quantum mechanically
entangled state.
I¥> = 2-1/2 { lege e 0
.i(¢10¢20- .+¢n) |"1'2""n’ }, (8)

where Ifi> and I—1> refer to the two different
possible states of photon i and ‘Pi represents
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the phase difference between those two states. It
is a matter of indifference whether |1'1) and I-i>

states are switched for any particle(s) i.

Now if our measurement M on the system
i.e., a
mixing of the two possible states, then the
quantum mechanical expectation value <¥| M |¥>

involves off-diagonal matrix elements,

for the measurement will generally contain terms
that oscillate sinusoidally with Qlod’zw"«rd’n.

These off diagonal elements or the mixing of the
states may be achieved by making use of beam
splitters or a polarization analyzer whose axis
lies in between the two orthogonal polarization
axes. We stay with three particle systeas
because we would have an extremely small chance
of getting a right set of correlated photons in
higher order.

(1) Generalized Horne-Shimony-Z2eilinger
interferometer: This two-photon momentum-
position interferometer was implemented by Rarity

5

and Tnbaters. Recently, a three-particle version
of the experiment was proposed by Greenberger
et.a17 to test against a family of local realisa.
Their gedanken particle setup " be
realized through the three photon SPDC which we
described in the previous section. One would have
an expectation value for the three photon joint

three can

detection that oscillates sinusoidally with
4’1“"2’03'
(2) Generalized Franson Interferometer:
T MSi
¢ AX1
D1 —

MS3

7 AX2

Pig.1 Three arm Franson interferometer



!'ranson8 devised a two particle gedanken
interferometor that usea the interference between
two possible states each of which belongs to a
different emission time.

9 and

The experiment was implemented by Ou et al.
by Kwiat et al.10 A generalized three-photon
Franson interferometry may use the Ou et al.-type
of setup with three Michelson interferometers as
in Fig.1l., The same analysis should go through as
in the two photon case and the expectation value
for the coincidence counting rate of three
photons will exhibit a sinusoidal oscillation
that depends upon the accumulated optical path
differences between two possible paths.

(3) Polarization Interferometer: Finally,
construct a third type of entangled state formed
by two orthogonal polarizations of photons for a
three photon polarization interferometer. Suppose
all three down converted photons are x-polarized.
(one can in principle enforce this by placing x-
filters after the apertures) In one set of paths
(primed ones) we place half wave plates and in

the other set of paths (unprimed ones) we place
compensators and the variable phase shifters dbi.

ve

Then we combine the beams on the beam splitters
80 that the polarization states may be mixed
before they are registered by two channel linear
polarization analyzers. If we count a detection
of an x-polarized photon as +1 and a y-polarized
photon as -1, using two channel analyzers, then

we would have a three-photon joint detection
probability:11

B(P,,D,, P3) = 7% cos(Py+P,+Py). (9)

AND MORE

III. BELL’S THEOREM

In general, the many particle correlated system
we discussed here is not a mere generalization of
two particle correlated system. It exhibits much
stronger nonclassical effects than the usual two
particle correlated system through its additional
degree of freedom. found a stronger
squeezing3 and a more proainent ﬁltibunchinglz.
Ve violation of classical
generalized inequality by a

Some

found a stronger

Cauchy-Schwartg
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factor of (n-1)/n in a simple higher order system
which can be easily generalized to other systeas.
We also found that in a Franson-type time-energy
interferometer classical stochastic
electrodynamics fails rapidly to reproduce
quantum mechanical result in visibility by a
factor of 1/2 for each additional order.

Pinally, we saw the dramatic breakdown
of local realism in many particle system due to
Greenberger et.al (GHZ)7. It has shown that any
local theories that is based on EPR type realisam

faces contradiction as it tries to immitate
quantum wechanical results in a many particle
correlated system. This theorem can be

implemented by multiphoton interferometries which
ve diascribed in Section II. Merminl3 also has
shown that the violation of Bell type inequality
in a many particle system increases

exponentially as it goes to a higher order. This
is just an another example of a strong violation
of classical limits by a many particle system
through its additional quantum degree of freedom.
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Abstract

Phase measurements on a single-mode
radiation field are examined from a
system-theoretic viewpoint.  Quantum
estimation theory is used to establish
the primacy of the Susskind-Glogower
(SG) phase operator; its phase eigen-
kets generate the probability operator
measure (POM) for maximum-likelihood
phase estimation. A commuting observ-
ables description for the SG-POM on a
signal x apparatus state space is derived.
It is analogous to the signal-band ximage-
band formulation for optical heterodyne
detection. Because heterodyning realizes
the annihilation operator POM, this anal-
ogy may help realize the SG-POM. The
wave function representation associated
with the SG-POM is then used to prove
the duality between the phase measure-
ment and the number operator measure-
ment, from which a number-phase uncer-
tainty principle is obtained, via Fourier
theory, without recourse to linearization.
Fourier theory is also employed to estab-
lish the principle of number-ket causal-
ity, leading to a Paley-Wiener condi-
tion that must be satisfied by the phase-
measurement probability density function
(PDF) for a single-mode field in an ar-
bitrary quantum state. Finally, a two-
mode phase measurement is shown to af-
ford phase-conjugate quantum communi-
cation at zero error probability with finite
average photon number. Application of
this construct to interferometric precision
measurements is briefly discussed.

1. INTRODUCTION

A classical single-mode radiation field
is characterized by a spatial-mode pattern
£ (7), an oscillation frequency w in rad/s,
and a c-number phasor a. The latter spec-
ifies both the energy and the initial phase

shift of the field—we can take H = Nhw
to be the mode energy, and ¢ to be the
mode phase, where

a=VNe', 1)

is the polar decomposition of a. When
the single-mode classical field is quantized,
its mode pattern and frequency are un-
changed, but a is replaced by the anni-
hilation operator a. The phase problem,
for this singlemode quantum field, has
long been taken to mean finding a satis-
factory quantum version of Eq. 1.1 How-
ever, owing to the noncommutative nature
of the quantum theory’s operator algebra,
no such decomposition exists, i.e., there is

no observable q3 such that?

a=/Neid. @

One may quibble about the order of the
amplitude and phase terms on the right-
side of Eq. 2, or prefer the use of N +
I = aat in lieu of N = a'a, etc., but the
essential issue is the nonexistence of the
observable ¢.

Until recently the Susskind-Glogower
(SG) phase operator,?

&% = (aat)~1/%a, (3)
has seemed to provide the best quantum

description of phase. The SG operator is
non-Hermitian, and its quadratures,

co/s/(\:f)) = Re(ej?), and (4)
sin(¢) = Im(e'?), (5)

are noncommuting observables which fail
certain reasonable conditions that the co-
sine and sine of a phase should meet. For
example, it turns out that

(Wleos(d)” 1¥) + (wlsin(@) ¥) <1, (6)
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unless the state |¢) is orthogonal to the
vacuum, |0). On the other hand, the SG-
based commutator

[N , siﬁ@))] = icos (), (M

does lead to the oft-employed number
phase uncertainty principle, ANA¢ >
1/2, under a high-mean-field linearization.

Lately, there has been intense renewed
interest in the quantum phase problem. In
what follows we will review some of the
recent quantum phase work of Shapiro,
Shepard, and Wong,? 4 and present some
new results. Because the effort of Shapiro
et al. originates from a quantum esti-
mation theory viewpoint, that tack will
taken here as well. Because the formal-
ism of Shapiro et al. relies on the prob-
ability operator measure (POM) descrip-
tion of quantum measurement—a general-
ization of observables not well known in
the physics literature—we will begin with
a brief tutorial on POM’s.

2. POM REVIEW

The textbook approach to quantum
measurement is through observables.® For
example, consider the quadrature compo-
nents of the single-mode field’s annihila-
tion operator, i.e.,

é1 Re(a),
Im(a).

(8)
(9)
These are continuous-spectrum observ-

ables. In other words, they are Hermitian
operators

and

At _ A
a; = aj,

1 (10)

for j =1,2,

with complete orthonormal (CON) eigen-
kets,

ajlas); = ajlaj);,
for —00 < a; < 00,(11)
j(ag-la_,-)j = 6((19 - aj), (12)
N o o)
i = /_wdaj laj) 5 {a],(13)

where I is the identity operator, and 6(:)
is the Dirac delta function.

Measurement of a quadrature operator,
when the system is in state |¢), gives a

continuous-valued, classical random vari-
able with PDF

plaj | [¥)) = |i{as1w)?,
for —oo < aj < 00, j =1,2. (14)

For this classical probability density to be
correct, for all possible |1}, it must satisfy

p(aj|[¥)) 20,
for —0o < aj < 00,5 =1,2, (15)

and

[ dagpta; 1 19)) =1,

forj=1,2. (16)
These conditions are ensured by Eq. 13,
which leads to the familiar quadrature
representations—essentially the position
and momentum wave functions—given by

W = T = [ daijau(aly)
= [Cdmvelan, (D)
and
W = I = [ dazlashs(oaly)

- /_ :dag\l!(az)lm)z, (18)

with the obvious identifications for ¥(a;)
and ¥(az). Of course, the quadratures are
noncommuting observables,

[a1,82] = =1, (19)

N e,

so they cannot be measured simultane-
ously.®

The preceding review demonstrates that
the full specification of observables, i.e.,
Hermitian operators with CON eigenkets,
is not needed to produce a consistent
statistical characterization of a quantum
measurement. For an arbitrary quan-
tum state, a resolution of the identity—an
outer-product sum like Eq. 13—generates
a proper classical-probability description
of a quantum measurement. This is the
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essence of the POM concept. Our princi-
pal purpose for introducing POM’s is to
accommodate measurements that are not
observables on the state space, H, of the
a-mode. The best way to introduce such
nonobservable POM’s is through an exam-
ple. It is well known that the annihila-
tion operator, &, is not an observable—it
is non-Hermitian,

al #a. (20)
Furthermore, its real and imaginary
parts, &; and ap, are noncommuting

observables—a cannot be measured in the
usual textbook sense. However, the anni-
hilation operator does have eigenkets—the

coherent states,5

ala),
fora € C,

gla) =
(21)

where C is the complex plane. These states
are not orthonormal, i.e.,

(o'|a) =

1 1
exp(—§|a'|2 ~ 3ol + a"a) (22)

which is a consequence of the nonvanishing
commutator

[a,a] =1, (23)
implied by Eq. 19. Nevertheless, the
coherent states are complete, in fact

, overcomplete—they form a resolution of
the identity

i=l/ Pala)al,
a€cC

- (24

which defines the -POM. The outcome of
the a-POM is a complex-valued, continu-
ous classical random variable with PDF

1
pally)) = lalp)?
foraeC, (25)
when the field state is |¢). Because of
Eq. 24, it follows that
plall$)) 20, foraeC,  (26)
and
[ dap(aliv)) =1, (@
acC

hold, for all |¢).

The preceding POM has long been
known.” 8 9 It represents a measure-
ment, in the POM sense, of the annihi-
lation operator a: the a-eigenkets gener-
ate the measurement statistics, and the a-
eigenvalues are the resulting observation
values. This parallels the usual observ-
ables description: the observable’s eigen-
kets generate the measurement statistics,
and the associated eigenvalues are the ob-
servation values, cf. Eq. 14.

The POM formulation is not in conflict
with the conventional dictum that only ob-
servables can be measured. Any nonob-
servable POM on H can be represented as
a collection of commuting observables on
some larger state space which describes
the original system interacting with an
appropriate apparatus.” The most famil-
jar example of this genre is optical het-
erodyne detection of a single-mode signal
field, which provides both a commuting-
observables description and a physical re-
alization for the 4-POM.

In optical heterodyne detection,® % 10
a signal field of frequency v is mixed with
a strong local-oscillator (LO) field of fre-
quency v — vyr on the surface of a pho-
todetector. With a unity-quantum ef-
ficiency detector, and two-channel lock-
in amplification at the intermediate fre-
quency (vrr), this arrangement produces
a complex-valued, classical random vari-
able, y, whose measurement statistics are

i;iﬁtical to those of the operator®

g=(as®l)+(Is®a}).  (28)

Here &; and I;, for j = S, I, are the annihi-
lation and identity operators for the signal
mode (frequency v), and the image mode
(frequency v — 2vrF), respectively. Both
of these modes beat with the LO to pro-
duce IF waveforms, just as is the case in
classical superheterodyne radio reception.
It is easily verified that the real and imagi-
nary parts of § are commuting observables
on the joint state space, Hs ® Hy, and
so are simultaneously measurable in the
usual sense. Ordinarily, only the signal
mode carries information, i.e., the image
mode is unexcited. Under these circum-
stances, the PDF for the observed y-value
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reduces to® 9

1
pyll¥)s) = ;Is(yltﬂ)slz,
for y € C, (29)

where |y)s is the signal-mode coherent
state with eigenvalue y, and |¢)g is an
arbitrary signal-mode state. Comparison
of Eqs. 29 and 25 completes the demon-
stration that heterodyning—a pair of com-
muting observables on an extended state
space with an unexcited image mode—
realizes the gs-POM.

3. PHASE ESTIMATION

Rather than seeking a quantum for-
malism for phase by pursuing a quantum
version of Eq. 1, Shapiro, Shepard, and
Wong?» 4 approached the problem from
the estimation theory viewpoint. Con-
sider the following abstract quantum esti-
mation problem. A single-mode input field
of annihilation operator é;y and quantum
state |1)rn undergoes an unknown, non-
random, c-number phase shift ®, yielding
a single-mode output field of annihilation
operator

a=e®arn, (30)

in state
) = exp(i®afyarw) l¥)in.  (31)

By making an appropriate quantum mea-
surement on the a mode, and knowing the
input state |)7n, we are to estimate the
phase shift ®. An interferometric phase
measurement can be embedded into this
scheme by placing appropriate constraints
on the allowable quantum measurement.
Optimizing a phase measurement within
this more restricted environment cannot
outperform the behavior obtained from
an unfettered measurement optimization.
Indeed, we should expect that joint op-
timization of the quantum measurement
and the input state will yield superior
phase estimation performance.

Without loss of generality, we can con-
fine the phase shift to a 2m-rad interval,
i.e., we can assume that —7 < & < w. The
class of POM’s we must optimize over, in
order to find the best phase measurement,

can be taken to be {dil(¢) : -7 < ¢ <
7 }, where

dil(¢) = dil(¢)", (32)

and

i=£ﬁw, (33)

on the state space of the output mode, a.
The conditional probability density, given
&, for obtaining a phase value ¢ from this

POM is

o] 0) = LAIOW)

for —-r<¢,®<m, (34)

where ) is the state of the a-mode.

In classical estimation theory, the
maximum-likelihood (ML) estimate ® sy
of an unknown, nonrandom, phase shift ®,
based on a noisy phase-shift observation ¢,
of known PDF p(¢ | ®), is the phase shift
which maximizes the likelihood of getting
the observed datum, i.e.,

®umi(9) =arg_max p(¢]0). (35)

Often, the ML phase estimate equals the
observed phase shift, because p(¢ | ) has
its peak at 8 = ¢, for -7 < ¢ < 7. Such
is the case for phase estimation in additive
white Gaussian noise.!! It then follows the
p(@ | ¢), the peak likelihood, is a simple,
but meaningful, performance measure for
® prr. Indeed, its reciprocal,

_ 1
“p(ol o)

is the PDF’s width for the case of a uni-
form distribution; if the distribution is
Gaussian, then we have §¢ = V2rAg,
where A¢ is the root-mean-square (RMS)
erTor.

¢ (36)

Our problem is one of quantum estima-
tion theory, namely, choosing the POM,

dlI(¢), and the input state, |¢) sy, to opti-
mize our estimate of the phase shift ¢. For
a given POM and input state, Eq. 34 sup-
plies the PDF needed to perform classical
ML estimation. In this quantum setting,
however, the observed phase value ¢ is, by
presumption, our estimate of ®. Thus, in
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order for this estimate to be one of maxi-
mum likelihood, we can restrict our atten-
tion to POM’s satisfying

¢ =arg_max p(¢|0),

for-r<¢<m, (37)

and optimize our estimate over dlII
and |¢);y by maximizing the peak
likelihood—minimizing §¢—averaged over
all possible & values. Here it is known
that, for the input state whose number
representation, ¥, = (n|¢), is

Y = [Ynle*", forn=0,1,2,..., (38)
6¢ is minimized by the following POM,”
~ . . d
di() = le4,v)e vigt,
for -t <¢p<m (39)

where
. w -
e, ) = 3 enéxn)in), (40)
n=0

Moreover, the reciprocal peak-likelihood
that results when we use this optimum
POM to estimate & is easily shown to be

. -2
66 = 2r|(*, viv)|
oo -2
= o (lenl) . (4)
n=0

which is independent of the phases {Xn}.
In fact, p(¢ | ®) is independent of the

{xn}-

We can exploit the {xn} independence
to good purposes by assuming, without
loss of generality, that the input state has
positive real ¥,. Equation 40 then reduces
to

00
48 = le9) =Y eln),
n=0

for —r<¢<m (42)

which is the number-ket expansion of
the SG phase operator’s (infinite-energy)
eigenkets, viz.

ety = e?|e’?),
for —m < ¢ < . (43)

This says that the SG-POM is the quan-
tum measurement for ML phase estima-
tion in the general measurement configu-
ration when the input state has a posi-
tive real number representation. In other
words, the phase eigenkets of the SG oper-
ator generate the resolution of the identity,

s 1 7 i\ id
=g [ dolenel, (40
needed for ML quantum phase estimation
in this case. For an arbitrary input state,
the optimum POM from Eq. 39 is equiva-
lent to performing the unitary state trans-
formation

U=3 eXn)inl,  (45)
n=0

followed by the SG-POM.

To achieve the goal of jointly optimizing
phase-estimation performance over both
the measurement and the input state, it
only remains for us to minimize ¢, from
Eq. 41, by appropriate choice of |¥)In.
This problem has been addressed,® 4 and
the state

A

¢n=m1

forn=0,1,2,...,M < 00, (46)

where A is a normalization constant and
M is a truncation parameter, has been
shown to achieve

8¢ ~ 1/N?, (47)
in terms of its average photon number,
N = (ata). This performance is far supe-
rior to the §¢ ~ 1/N reciprocal peak like-
lihood capability of optimized squeezed-
state interferometry. However, the phase
measurement PDF for the Eq. 46 state
is a heavy-tailed distribution, viz., its
RMS phase error, A¢, is essentially in-
dependent of N. Thus, the degree to
which this reciprocal peak likelihood ad-
vantage can be usefully exploited has
yet to be established.!? In what follows,
therefore, we will concentrate on the SG-
POM, in that it constitutes the maximum-
likelihood quantum phase measurement
for all quantum states.
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4. SG POM

The Susskind-Glogower operator,? 13

¢ = (aat)~1/2, (48)
affords a well-defined polar decomposition

of a,
a=1\N+Ie, (49)

in terms of energy (number) and phase op-
erators. Using the number-ket expansions

of N and & we have that

&=+l (50

n=0

from which it follows that

et = e/"?”t
= S In+1)nl £ a9, (51)

n=0

and o
[e%,e=%] = [o)0l.  (52)

In words, the SG phase operator is not
Hermitian, and does not commute with its
adjoint. Thus, as was seen earlier for a it-
self, the quadrature components of the SG
operator,

co’s-(\(b) = Re(e/‘;’), and (53)
sin(p) = Im(e'?), (54)

are noncommuting observables,

[eos(@), sin(@)] = 210)(0].  (55)

__The SG-POM derives from the fact that

e'% has an overcomplete set of eigenkets,
cf. the Sect. 2 discussion of the a-POM.
By direct substitution of Eq. 50, we can
verify that

eBle’?) = ele’?),
for —-m < ¢ <7, (56)

where |e*4) has the number-ket represen-
tation given in Eq. 42. That these kets

resolve the identity is also easily shown,
v . I3
[ agletye)
o oo 00 x )
= > % [ aseminym|
n

n=0m=0""

2T i In)(n| = 2n1. (57)

n=0

That they are not orthonormal can be
demonstrated from some simple Fourier

transform manipulations,!4

[ o)
(e"" |e’¢) — Z e~ in(¢ —¢)
=0

= %( i e—in(4'-9)
n

=—00

Y sm(n)en¢9 4 1)

n=—o00

= n5(¢' - ¢)

Cle($59)4) @

Here, 6(-) is the Dirac delta function, and

-1, n<0(,
sgn(n) = { (1), n : 8, (59)
) n bl

is the signum function.

5. COMMUTING OBSERVABLES

Recall that a POM on H which is not
an observable on that space can be repre-
sented as a collection of commuting ob-
servables on a larger, signalxapparatus
state space, H ® H 4, with the apparatus
placed in some appropriate state. We now
develop such a representation for the SG-
POM. Aside from alleviating the qualms
of those who believe only in observables,
this representation may guide us to a real-
ization of the SG-POM—the commuting-
observables description of the a-POM is
intimately connected with its heterodyne-
detection realization.

Let a4 be the annihilation operator of
an apparatus mode, whose state space,
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H 4, is spanned by its number kets, { |n)4 :
n=0,1,2,...}. The non-Hermitian oper-
ator

~

Y = (e?»mom(m)
+ (l0)o|®e%4), (60)
where
e 4 = aly(aaal) V% (61)

is easily shown to commute with its ad-
joint. Here, Y is an operator on the joint

state space H ® H4, and ei®4 is the ap-
paratus mode’s SG'phase operator.

Because [f/,f’j] = 0, the quadrature
components of Y—denoted Y; and Yo—
are commuting observables, which can be

measured simultaneously, i.e.,Y =Y +Y>
can be measured in the usual sense. Solv-
ing for the eigenkets and eigenvalues of Y
we find that signal x apparatus number ket

IY) = |n)|m)a, fornm >0, (62)
is a Y-eigenket with zero eigenvalue, and
1
— (]0)|0
= (0104

+ 3 (emln)l0)a +e-*‘"¢|o>|n>A)) ,

n=1

for —-r<¢p<m, (63)

lY)=

is a Y-eigenket whose associated eigen-

value is e'®. Collectively, these com-
priss a CON set from which we have

that measurement of Y, when the
signal x apparatus state is |[¢))sx4 € H®
H 4, yields a mized classical random vari-
able, Y, which takes on either the discrete
value 0, or a value from the continuum
{e*® : -7 < ¢ < m}. The former occurs
with discrete probability

Pr(0] [¥)sxa) = 3 3 [aml%s (64)

n=1m=1

the probability density for the latter is

p(#] [Wsxa) = oo oo+
oo 2
5 (¢ ovma + e ouon)|

n=1

for -t < ¢ < m, (65)

where Ynm = a{m|(n|sxa). These two
are properly normalized in that for all
|¥)sx A we have that

Pr(0 | |¢)sxa)
+ [ d4bp(4 ] [W)sxa) =1, (66)

as required by classical probability theory.

Now, the commuting-observables repre-
sentation of the SG-POM is at hand. Sup-

pose we measure Y when the apparatus
mode is unexcited, i.e., [¥)sxa = [¥}|0) 4,
where |¢) € H is an arbitrary signal-mode
state and |0)4 is the apparatus mode’s
vacuum state. Then the discrete value
zero is never obtained, and the PDF for

obtaining Y = e*¢ reduces to

p(¢|1¥)0)a)

1 = —in

'2_1r' Zoe 4,1/}1;

S TR TINAN

= ol )P,
for ~-r < ¢ <, (67)

2

realizing the SG-POM statistics for an ar-
bitrary state of the a-mode.

_ The equivalence of the SG-POM to the
Y measurement with an unexcited appa-
ratus mode allows us to clarify some ba-
sic points. First, because the SG oper-
ator does not commute with its adjoint,
it is really the operator analog of the c-

number e'® from the classical single-mode
field. In other words, there is no Hermi-
tian phase operator, ¢, on ‘H such that
exp(ip) = (aat)~!/2a. Restated in terms
of the quadratures of the SG operator, this
means that cos(¢) # cos(¢), and sin(@) #

sin(@). As a result, the classical trigono-
metric identity,

cos(¢)? + sin(¢)? =1,
for —m < ¢ < m, (68)

does not apply to the quadratures of the
SG phase operator, e.g., because

wos(@) + sin@) =1 - 1 (e9)
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any |¢) with ¢ # 0 gives

(Wloos(#) 1¥) + (wlsin(p) ) < 1. (70)

However, the outcome of the SG-POM is
a phasor e’¥—the Y measurement with
a vacuum-state apparatus mode yields a
complex-valued, continuous classical ran-
dom variable Y = €', where —7 < ¢ < .
Thus, we have that |Y|? = 1, with proba-
bility one.

The second point to note regarding the
SG-POM is the relation of its mean value
to those of the SG quadratures. Using

-

V1 = (conls) ®10)aa0l)
+ (100l ®cos(9),), (71)
and
Y = (Sim)®|0>AA(0|)
— (lo)o|@sin(®)4), (72)

and assuming an unexcited apparatus
mode, we find that

A(01(¥IY1[$)[0) 4 = (Wlcos(B) (%), (73)

and

A{0/(|Y2[%)|0) 4 = (Wisin(®)|¥), (74)

for all a-mode states, |¢). What this says
is that averages of the classical cos(¢$) and
sin(¢) random variables obtained from the
SG-POM coincide with averages of the
SG phase operator’s quadratures. To the
extent that the quadrature mean values
comprise the information of interest, we
can conclude that the SG-POM provides a
proper quantum measurement description
for simultaneous extraction of this infor-
mation from both quadratures.

6. UNCERTAINTY PRINCIPLE

Number-ket expansions of the quadra-

ture operators co’s@) and si;(\d)) lead to
the commutator

[N, sim)] = icos(¢), (75)

and the associated uncertainty principle
- —~2 1), —_ 2
(AN?)(Asin(9) ) 2 5 |(cos@)| - (76)

Equation 76 is valid for arbitrary states,
but its utility, in this general form, is
somewhat limited. First, the minimum
uncertainty product is state dependent—
a consequence of Eq. 75 not being a o
number commutator. Second, the princi-
ple does not directly address the variance

of a phase measurement—it is the sin(¢)
operator whose variance appears.

It is common practice to use the lin-
earized form of Eq. 76,

ANBG> 3, (77)

which applies for states meeting the high-
mean-field condition,

(N) =~ |{a)|? > 1. (78)

The linearized result, while useful, can be
abused. Number kets have zero number-
measurement uncertainty, and (@) = 0,

(co/saﬁ)) = 0, hence the general result
leads to the correct number-ket limit,

(AN?)(Asin() ) >0,  (79)

whereas the linearized form is inapplica-
ble.

Although the SG-POM does not allevi-
ate the state-dependent nature of number-
phase uncertainty limits, it does lead to
an uncertainty principle which directly
addresses phase variance. Our route to
this principle—through Fourier theory—
has the following motivation. The
time-bandwidth uncertainty principle for
the continuous-time Fourier transform
(CTFT)! can be applied to the normal-
ized position and momentum wave func-
tions, ¥(a1), and ¥(as), because they sat-
isfy the Fourier transform relations®

¥(az) =
o dal —i2aj1a3
| wlanee, (s0)
and
Y(ay) =
/ wii\;'—; ¥(ag)e?@re, (81)
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The result of this procedure can be re-
duced to

TEN I PN )
which is the Heisenberg uncertainty

principle for the annihilation operator’s
quadratures.

Because of Eq. 44, any state |¢) has a
phase representation

¥(e?) = (”lv),
for -t < p <, (83)
such that
W) = Il
1 [ o
- id\| 3¢
o [ dsw(E)e). (69
The phase representation of [¢) is inti-
mately related to its number-ket represen-

tation, ¥n = (n|y)—they are a Fourier
transform pair

V() = 3 e (85)
n=0
and
Yo = 5 [ deUE)E ()

as can be seen from Eqgs. 83 and 42. In
other words, ¥(e'®) and ¥n constitute
phase and number wave functions, which
are capable of representing arbitrary
states. The complementarity of the num-
ber operator measummeqt—whose proba-
bility distribution is Pr(N =n) = |¥n|?—
and the SG POM—whose probability den-
sity function is p(¢) = |¥(e'?)|?/2r—then
follows from the Fourier relations, Eq. 85
and 86. Thus, to obtain a number-phase
uncertainty principle for the product of
the number-operator variance and the SG-
POM variance, we shall exploit this com-
plementarity by paralleling the standard
Fourier derivation of Eq. 82.

With (AN?) denoting the number-

measurement variance and (A¢?) the SG-
POM variance, when the field is in an ar-
bitrary state |¢), we have that

(AN?)(Ag)

= 3 (n—@lnl?

n=0
Ao 22inidy (2
x [ S @- @) @D
- [ gfare)
T Jx2n do

« [ 2 s- o 6

> |[ Z@-aveE
1( ity |2
X d—%ﬁ (89)
> {re[[ F 0~V

1{ 10 2
= Ap(rip-1® OD

In this development: 7 and ¢ are the
mean values of the number and SG-POM
measurements, respectively, on the state
lw); W'(e?) = ¥ (e'?)ei™®; the Schwarz
inequality has been used in Eq. 89; and
the integration necessary to obtain Eq. 91
follows from the SG-POM’s PDF, p(¢ |

) = ¥ (e*)?/2m.

Unlike the usual number-phase uncer-
tainty principle, i.e., Eq. 76, our result
does not require any linearization before
it can be applied to phase variance. Equa-
tion 91 is still state dependent, but this is
unavoidable. When |) is a number state,
we have

poIn) =5, for~m< <, (90)

a uniform distribution, which is maxi-
mally random, but still has finite variance.
There is no contradiction with Eq. 91 in
this case, even though AN = 0 for a num-
ber ket; the uniform PDF causes the right
member of Eq. 91 to vanish. On the other
hand, when |¢) is a high-mean-field state,
we will have p(7 | |[¥)) < 1, so that
Eq. 91 reproduces the standard linearized

formula, Eq. 77. Indeed, for any state
satisfying p(7 | J¢)) < 1, we have that
Eq. 77 holds. This makes the SG-POM
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derivation of Eq. 77 more robust than lin-
earization of Eq. 76.

7. Number-Ket Causality

The SG-POM underlies maximum-
likelihood quantum phase measurement
for all quantum states. Given the prob-
lems associated with minimizing the SG-
POM'’s reciprocal peak-likelihood 8¢, by
choice of input state,® 4 12 a different
state-selection criterion may be worth con-
sidering. In this vein, it is germane to ask
the following question. What SG-POM
phase PDF’s can be realized by choice of
input state |)? It turns out that linear
system theory has the answer.

The Susskind-Glogower probability op-
erator measurement on a state |) results
in a classical random variable ¢ with prob-
ability density function

aollwy) = N

for - < ¢ < m. (93)

Here, \Il(e"ﬁ{ is the phase representation
of the state |i). According to Eq. 86, the
phase representation is the Fourier trans-
form of the number representation. The
latter is a one-sided, discrete-parameter
sequence that is the inverse Fourier trans-

form of ¥(e'?), i.e.,
1 Ll A .
- 1d\ ing
Yn o .[_Wd‘ﬁ\l’(e Je
{ (n|y), for integer n > 0,

_ (94)
0, for integer n < 0.

In system-theory parlance, the Fourier
pair ¢¥n «— U(e'?) is analogous to
that for a discrete-time waveform on
an unbounded interval and its periodic,
continuous-frequency Fourier transform,
i.e.,, the discrete-time Fourier transform
(DTFT).!* More importantly, saying that
¥n is one-sided is equivalent to saying that
a discrete-time waveform is causal, viz. it
could be the impulse response of a causal,
linear time-invariant system. Determin-
ing what p(¢ | |¢)) are possible from
Eq. 93 is then the same as determining
what |¥(e*®)| are Fourier-transform mag-
nitudes of one-sided {n,}. To emphasize

the connection with causal waveforms, we
introduce the term number-ket causality
for the condition Eq. 94. This is a well-
studied problem in linear systems, so re-
sults are immediately available.!4: 15

From Eq. 93 and the Paley-Wiener
theorem'® we have that p(¢ | 1)) must
satisfy

[ dsimip(s )l <o, (99)

for all number-ket causal ¥(e*?). From
this condition, it follows that no state can
confine the phase-measurement PDF to a
subinterval of (—=, ], e.g., the uniform
density,

P(o110) = 35

for |¢| < 6¢/2 < , (96)
is tmpossible. The Paley-Wiener condition
is both necessary and sufficient, i.e., if a
PDF obeys Eq. 95, then there is a state
which gives this density through Eq. 93.
Indeed, there are an infinite number of
such states, because Eq. 93 only constrains
the magnitude of the phase representation.
One such state can be obtained explicitly
via the discrete-parameter Hilbert trans-
form. The procedure is as follows. For a
PDF obeying Eq. 95, set

[W(e)| = y/2np(g | [9)),

for -7 < ¢ < 7. (97)

Next, find the discrete-parameter Hilbert
transform, 14

wg@(e)] = P L imjue)

xcot(¢,2_¢),
for —m < ¢ < 7, (98)

where P denotes Cauchy principal value.
Equations 97 and 98 then comprise the
magnitude and phase—the polar form—
of a properly-normalized phase represen-
tation ¥(e*®) with the prescribed phase-
measurement statistics and a number-ket
causal inverse Fourier transform.
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The preceding phase representation
construction for a state with prescribed
SG-POM statistics is by no means unique.
Equation 97 constrains | ¥(e*®)|, but no re-
striction is placed on arg[¥(e*#)]. Con-
sider a number-ket causal function, { hy :
n=0,1,2,...}, whose Fourier transform
has unity magnitude, viz.

H(e'?) = i hpe™ '™,
"=;:)r -r<¢<m (99
obeys
|H(e*®)| =1, for -m<¢<m. (100)

Such a function is known in digital-filter
theory as an all-pass filter; were {h, :
n=012,.. ]» the impulse response of a
discrete-time, linear, time-invariant filter,
the associated frequency response would
pass all frequencies with neither attenu-
ation nor gain. The prototypical exam-
ple of an all-pass filter is obtained—in the
z-transform domain—by balancing H(z)-
poles within the unit circle with H(z)-
zeros outside the unit circle to achievel4
) K _—i¢ _ »*

HEeW) = ] ——25,

k=1 1 — Pxe

for - < ¢ <m,

where |pi| < 1,

fork=1,2,... K.(101)

Now, suppose we assemble the phase rep-
resentation

V(') = U(e?)H(e?),
for -7 < ¢ < m, (102)

where W(e'?) is constructed according
to Eqs. 97 and 98 for a desired phase-
measurement PDF, and H(e'?) is an all-
pass phase representation from Eq. 101.
The convolution-multiplication theorem of
Fourier analysis, plus the fact that con-
volving two causal functions produces a
causal function,'® guarantees that ¥’(e*?)
is a properly normalized, number-ket
causal phase representation; the all-pass
nature of H(e'%) implies that ¥’'(e*#) has
the desired SG-POM statistics. Because
this process holds for all K > 1 and for
all pole locations within the unit circle,

there is an uncountable infinity of states
which have the same SG-POM statistics.
Nevertheless, the state constructed via the
discrete-parameter Hilbert transform has
a unique advantage—it is the minimum
average photon-number state with the pre-
scribed phase-measurement PDF.

The proof of the minimum average
photon-number property follows almost
immediately from available linear-system
results. Let {¥(e*®) : -7 < ¢ < 7}
and {¢¥n : n = 0,1,2,...} be the phase
and number representations of the state
[), obtained via Egs. 97, 98, and 94,
that realizes a particular phase PDF. Sim-
ilarly, let {¥/(e**) : -7 < ¢ < 7w} and
{¢, :n=0,1,2,...} be the phase and
number representations of any other state,
[4'), with the same SG-POM statistics.

Then, we have that!4

M-

(Ivnl? = I¥nl?) 20,

for M =1,2,3,...

1
n=0
(103)

Physically, this says that, of all states with
the desired phase behavior, the Hilbert-
transform generated state concentrates its
number-ket content closest to the vacuum.
Because both kp) and |¢’) are normalized,
i.e., unit-length, states, Eq. 103 is equiva-
lent to

AME

S (lenl? - L) <0,

n=M
for M =0,1,2,... (104)

Proving the minimum average photon-
number property is now straightforward:

(W|Ny) — (&' | Ny
> n(lwnl? - l¥nl?)
n=0

= Z Ay <0.
M=1

(105)

Thus, Eqs. 97 and 98 provide the means
for choosing a state of minimum average
energy and prescribed phase-measurement
PDF.
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8. PHASE COMMUNICATION

Sections 1-7 constitute an abridged ver-
sion of Shapiro and Shepard.* That pa-
per presents additional details regard-
ing the state that achieves 6¢ ~ 1/N?Z,
as well as substantial material on new
classes of quantum states—coherent phase
states, squeezed phase states, rational
phase states—that are closely associated
with the SG-POM. Furthermore, it proves
that the Pegg-Barnett Hermitian phase
operator!® 1"—which exists on a trun-
cated state space and provides phase-
measurement statistics on the full state
space through a limiting procedure—is
included within the SG-POM formalism,
i.e.,, these two schema produce identi-
cal phase measurement statistics for all
quantum states. Neither of these top-
ics will be considered herein. Instead,
we shall move away from the single-
mode case and develop new results for
two-mode quantum phase measurement.
Our objective will be to exploit the Y-
measurement—developed en route to the
commuting observables form of the SG-
POM—when the signal and apparatus
modes are quantum-mechanically corre-
lated and a phase-conjugate modulation is
applied to them.

Consider the phase-conjugate quantum
measurement setup shown in Fig. 1. This
is a phase-conjugate system because what-
ever c-number phase shift ® is applied to
the signal mode, leading to the annihila-
tion operator transformation

ag¥ — el (106)

the conjugate phase shift, —® is applied to
the apparatus mode, viz.

aly — e 51N (107)

cf. Eq. 30. If we take the signal and
apparatus modes to be the appropriate
linear polarizations, a transverse electro-
optic modulator can be used to induce
the necessary conjugate phase shifts.!8
Phase-conjugate shifts also appear, pro-
totypically, in gravity-wave detecting in-
terferometers. In fact, there are funda-
mental advantages to operating a phase-
sensing interferometer in phase-conjugate
fashion.'® OQur work does not depend ex-
plicitly on the means by which this mod-
ulation is accomplished. Its principal

motivation is to circumvent the Paley-
Wiener restriction that encumbers phase-
measurement PDF’s for single-mode fields.
As we shall see, some startling new possi-
bilities arise with two modes.

The Paley-Wiener condition applies to a
single-mode phase PDF because this den-
sity is proportional to the squared magni-
tude of the Fourier transform, { ¥(e*) :
-t < ¢ < 7}, of a one-sided sequence,
{¢n : n =0,1,2,..., }. We shall break
out of this limit, in the two-mode case,
through quantum correlation. On Hg ®
‘H 4, the joint state space of the signal and
apparatus input modes, we can construct
number-product vacuum states of the form

W = Yol0)sl0a + 3 (Unln)si0)a

n=1
+ ¥-al0)sin)a), (108)
where o
Z |¢n|2 =1 (109)

The term number-product vacuum is ap-
propriate for such |¢);n because, when
the signal xapparatus state is of this class,
a measurement of the number-operator

product—Ng ® N 4—yields outcome zero
with probability one. Thus, for |¢)rn
a number-product vacuum state, Eqs. 62
and 63 imply that measurement of Y
yields a classical phasor €', with —7 <
¢ < 7. Moreover, ¢ in this case has PDF

I\p(ei(¢—¢))|2
pol@) =1L,
for -1 < ¢, <m (110)

in terms of

. w .
\I,(eid’) = Z "pne—md,;
n=—o0

for - < ¢ < w. (111)

Note that {¥p : |n|] = 0,1,2,...,}
and {¥(e*®) : -7 < ¢ < w} are
not the number and phase representa-
tions, respectively, of any single-mode
field state. They are, however, the nurnber
and phase representations, respectively,
for a two-mode, number-product vacuum
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state. The {¢n, ¥(e'#)} notation is con-
venient because, as shown by Eq. 111 and
its inverse,

~ d o
G
for |n| =0,1,2,..., (112)

Yn

these functions are a Fourier transform
pair. More importantly, this notation
makes clear the fact that number-ket
causality does not restrict the possible
two-mode phase PDF’s. In particular,
there are number-product vacuum states
that satisfy

[w(e)| = 0, for ¢l 2 ¢,

with ¢, < .

(113)

i.e., two-mode phase PDF’s can be con-
fined to subintervals of (—m, 7], a situation
that is forbidden to the single-mode case,
cf. Eq. 96. This possibility is of great sig-
nificance for phase-based digital communi-
cation and phase-based precision measure-
ment, as we shall see.

To cast the Fig. 1 structure into a dig-
ital communication mold, let us assume
that transverse electro-optic modulation is
used to transmit a randomly-selected digit
k, satisfying 1 < k < K, by using ® = ¥,
where

2k — )7
T+ K .

Our objective is to make a minimum er-
ror probability decision as to which @
was sent, based on the result of the Y-
measurement when the signal xapparatus
state is a number-product vacuum, char-

acterized by {¥n, ¥(e'?)}.

&) = — (114)

Hall and Fuss have considered the
single-mode version of this K-ary dig-
ital communication problem?°,  They
optimized a single-mode state—in con-
junction with the SG-POM—to obtain
a phase-based quantum communication
setup whose error probability vs. average
photon number is significantly better than
that for optical heterodyne detection. Hall
and Fuss found a nonzero error probability
at finite average photon number, N, which
approached zero as N — o00. Surpris-
ingly, in our two-mode problem, zero error

probability can be achieved at finite root-
mean-square (RMS) photon number.2!

In order to achieve zero error probability
in phase-conjugate quantum communica-
tion, we need only use a number-product
vacuum state which enforces Eq. 96, with
¢c < /K. Under this condition, we have
that the observed phase, ¢, satisfies

Pr(ld)—(I)kI <X ;q>=q>k) -1
(115)
We also have that |®, — ®;| > 27/K, for
j # k. So, for any observed ¢ in the inter-
val (—=.7|, we know that

Pr(<1>=<1>,~ | |6 — Bkl < %) = 0
for all j # k. (116)

This means we can unambiguously deter-
mine which digit was sent by choosing the
index associated with the unique $-value
that is within 7/Krad of the observed
phase. Via this procedure we decode k
from ¢ with zero probability of being in-
correct.

To make this technique for zero error
probability communication more explicit,
we shall introduce a specific input state
which has the desired property. The num-
ber representation we shall presume is

1+K

1= 2)

)
2 K
for |n| =0,1,2,...,
and K =2,3,4,... (117)

The associated phase representation for
this state is easily computed to be

\Il(ei"s) =
V2K cos(£¢) | for |¢| < &
(%) R (118)
0, for & < |¢| < 7.

In Fig. 2 we have plotted p(¢ | ® =0) vs.
¢ for this state when K = 4; we see that

119



the nonzero support of this PDF is the in-
terval (-n/4,n/4). In Fig. 3 we indicate
how this PDF leads to zero error probabil-
ity phase-conjugate communication; this
figure plots the four conditional PDF’s,
{p(¢ | ®) :1 < k < 4}, which apply
when K = 4. For any observed ¢-value
we must have that p(¢ | ®) > 0, other-
wise that ¢-value could not have occurred.
Figure 3 shows that, for any given ¢,
there is only one possible ®x-value which
satisfies the nonzero PDF requirement—
zero error probability communication re-
sults from deciding that this value was the
transmitted phase.

The next question to address is the pho-
ton number statistics associated with our
phase-conjugate communication scheme.
For the general number-product vacuum
state we have that the total—signal plus
apparatus—photon number measurement
has the following probability distribution,

Pr(ﬂs + NA = n)
|4ol?,
(119)
|-nl? + [¥n|?, forn=1,2,3,...

For the particular state given by Eq. 117,
it is then a simple matter to show that

(Ns+Na) < {(Ns+Na)?2)

K (120)

for n =0,

5
In other words, we can achieve zero error
probability K-ary phase-conjugate quan-
tum communication with an RMS total
photon number of K/2. Figure 4 is a plot
of Eq. 119 for the K = 4 case.

The preceding quantum communica-
tion result is, of course, idealized. We
have presumed a state generator—to pro-
duce a specific number-product vacuum
state—that as yet has no explicit realiza-

tion. Likewise, our scheme uses the Y-
measurement; again, no explicit realiza-
tion is yet available. At least we can say
that electro-optic modulation will impress
the phase information on the input state,
once that state can be produced. On the
other hand, we have implicitly assumed
lossless transmission; inclusion of loss will
inevitably lead to nonzero error probabil-
ity.

Our main purpose in going to the two-
mode construct was to develop poten-
tial quantum-phase measurement schemes
that promise substantial benefits, i.e., ben-
efits that warrant the effort to bring
them to fruition. This motivation is
very much in line with the starting point
for squeezed-state research.?? In this re-
gard, it is instructive to compare our
phase-based scheme for zero error prob-
ability quantum communication with a
more well-known approach based on num-
ber kets. For a singlemode field with
annihilation operator a, lossless transmis-
sion of one of the number kets { |k — 1) :
1 < k £ K} followed by ideal direct de-

tection, viz. the N = a'a measurement,
also yields K-ary digital communication
without error. For k equally likely to be
any digit between 1 and K, the average-
energy efficiency of such a single-mode,
number-ket system is roughly the same
as that of our two-mode, phase-conjugate
system, i.e., both need slightly less than
K /2 photons on average. The number-
ket system has the advantage that its state
generator may be approximated via feed-
forward control using photon-twin beams,
and its measurement only requires a high
quantum-efficiency photon counter. Also,
the number-ket approach uses less band-
width; only one mode is needed. Alter-
natively, number-ket direct detection on
a two-mode field can be used for error-
free K-ary communication at significantly
less than K /2 photons on average. How-
ever, if we shift our attention from phase-
based communication, to phase-based pre-
cision measurements, the Fig. 1 arrange-
ment has a capability that number kets
cannot match—phase sensing with con-
trolled precision.

Suppose that we use the Fig. 1 ar-
rangement for phase-conjugate precision
measurement. Specifically, let us use the
number-product vacuum state Eq. 117 in
conjunction with a phase-conjugate in-
terferometer (see, e.g., Bondurant and

Shapiro!®) and the Y measurement. Now,
the phase shift ® takes on any value from
the continuum (-, 7]. Nevertheless, ex-
cept for 2m-modularity effects which come
into play when @ is within /K of +m,
the observed phase will lie within /K rad
of the true phase with probability one.
Thus, using less than K/2 photons on av-
erage, we can guarantee a phase measure-

120



ment which is within 7/ K rad of the exact
value. In other words, unlike more con-
ventional schemes—which only ensure an
acceptable RMS phase-estimation error—
our phase-conjugate interferometer pro-
vides ezact phase determination to a pre-
scribed number of decimal places.
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Figure 2: Conditional phase-measurement PDF, given ® = 0, for the state Eq. 118

when K = 4.
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QUADRATIC SQUEEZING: AN OVERVIEW"

by M. Hillery, D. Yu, and J. Bergou
Dept. of Physics and Astronomy
Hunter College of CUNY
695 Park Ave
New York, NY10021

[. Introduction

The amplitude of the electric field of a mode of the electromagnetic field is not a
fixed quantity, there are always quantum mechanical fluctuations. The amplitude,
having both a magnitude and a phase, is a complex number and is described by the
mode annihilation operator a. It is also possible to characterize the amplitude by its
real and imaginary parts which correspond to the Hermitian and anti-Hermitian parts of

a,
Xi=5{a*+a) Xo=2(a*a) (1.1)

respectively. These operators do not commute and, as a result, obey the uncertainty
relation (h=1)

AX1AX, 2 (1.2)

-

From this relation we see that the amplitude fluctuates within an "error box" in the
complex plane whose area is at least 1/4. Coherent states, among them the vacuum

state, are minimum uncertainty states with AX; = AX; = 1/2 . A squeezed state,

squeezed in the X direction, has the property that AX; < 1/2 (Refs.1-3). A squeezed
state need not be a minimum uncertainty state, but those that are can be obtained by

applying the squeeze operator

S(C) =e" aZ_Ca+2 , (13)

to a coherent state(Ref.1). The phase of the complex parameter determines the

*This work is supported by National Science Foundation under Grant No. PHY-900173 and by a
grant from the City University of New York.
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direction of squeezing and its magnitude determines the extent of the squeezing.

Squeezed states are examples of nonclassical states, that is they cannot be
described in terms of a nonnegative definite P representation(Ref.3). This means that a
field in a squeezed state cannot be modeled as a classical stochastic field. It should be
noted that even though a squeezed state is nonclassical it can have a large number of
photons. In fact, a highly squeezed state must have a large number of photons(Ref.4).
Thus we see that the usual association of large photon number with classical behavior
is not correct.

It is possible to generalize the idea of squeezing by looking at fluctuations in
variables more complicated than the mode amplitude. The simplest generalization
involves variables quadratic, rather than linear, in the amplitude. In the case of a single
mode the square of the amplitude, which corresponds to a2, is one such observable. If
one considers two modes with annihilation operators a and b, then products such as
ab and a*b can be considered. At first glance this procedure appears more
mathematically than physically inspired. However, fluctuations in these quadratic
quantities can be converted into fluctuations of a single mode amplitude by certain
nonlinear optical processes after which they can be measured by standard
techniques. We shall now disscuss the kinds of higher-order squeezing to which
consideration of these quadratic variables leads and the properties they possess.

Il. Amplitude-Squared Squeezing
This is perhaps the simplest example of quadratic squeezing, i.e. squeezing in

a variable quadratic in the mode amplitudes. It describes the fluctuations in the square
of the amplitude of a single mode, a? (Refs.5,6). Following the example of standard

squeezing we break this variable into its real and imaginary parts

Y1=%(a+2+a2) Y2=%(a+2-a2) : (2.1)

The commutator of these operatorsis [Yi, Y] =i(2N+1), where N=ata, and this leads
to the uncertainty relation

AY1AY, 2 <N+%> . (2.2)

A state is amplitude-squared squeezed in the Y, direction if (AY;)? < <N+1/2>.
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States with this property are nonclassical. This follows from the fact that (AY;)?
can be written as

<:(Yp-<Y)?:> = (AY])?- <N+%> , (2.3)

where the double dots indicate normal ordering. For a classical state the normally
ordered term is always nonnegative so one can see that the onset of amplitude-
squared squeezing corresponds to the onset of nonclassical behavior.

Amplitude-squared squeezing was first disscussed in a paper by Wodkiewicz
and Eberly under the name SU(1,1) squeezing (Retf.7). The reason for this name is
that commutation relations of the operators Y;, Y2, and N are closely related to
those of the Lie algebra SU(1,1). In particular this Lie algebra is described by three
operators K;,K;, and K3, whose commutation relations are given by

Ky, Kol =-iKz  [Kp, K3l =iK;  [K3, Ki]=iKy . (2.4)
If one makes the identification Ki= Y1/2, Ko=-Y22 and Ki3= (N+1/2)/2, the above
commutation relations are satisfied. This means that the representations of Su(1,1)

can be used to study higher-order squeezing and this has been done by a number of
authors(Refs.8-10).

It is possible to find minimum uncertainty states for amplitude-squared
squeezing, i.e. states for which the inequality in Eq.(2.2) is replaced by an
equality(Ref.11). This is done by solving the eigenvalue equation

(Y1 +iAY) > =B I¥> , (2.5)

where A is real and positive, and B is complex. The states I'¥> which satisfy this
equation have the property that

(AY;)2= A <WI N-% >  (AY;)?= i <P N+% > .  (2.6)

From these equations it is clear that A plays the role of a squeezing parameter. If
0<A<1,then Y; is squeezed and if A>1, then Y3 is squeezed. The real and
imaginary parts of B are related to the mean values of Y; and Y, respectively.

A particularly simple subset of these minimum uncertainty states occurs when 8
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and A are related. If A>1 and B = (AZ- 1)12 (m+1/2) , where m is a nonnegative integer,
then the minimum uncertainty states are of the form

I¥'> = Cu(L) S(E) Hn( 1Y) a*) 10> (2.7)

Here C()) is a normalization constant, S({) is a squeeze operator where the squeeze

parameter { depends on A, H, is the mth Hermite polynomial and (&) = [(A*- 1)1 ]'2.
The cases m=0 and m=1 correspond to the squeezed vacuum and squeezed one-
photon states, respectively. Note that this implies that the squeezed vacuum state is a
minimum uncertainty state for both normal squeezing and for amplitude-squared
squeezing.

A second kind of minimum uncertainty state is the amplitude-squared squeezed

vacuum 10,A>. These states satisfy Eq.(2.5) with B=0 which implies that they have the
property that <Y, >=<Y,>=0. Such states are superpositions of photon number states
whose numbers are multiples of 4.

We now come to the conversion of fluctuations in a2 into fluctuations of the mode
amplitude of a second mode, b. This is accomplished by means of second harmonic
generation(Ref.5). If the mode described by a has frequency w and that described by b
has frequency 2w then the Hamiltonian which corresponds to this process is

H = wa*a + 20b*b + ky(a*?b + a2b*) . (2.8)

From this Hamiltonian, using perturbation theory, one can find how fluctuations are
transferred from mode a to mode b. First define the slowly varying operators

A(t) = ei®a(t) B(t) = eZioth(r) (2.9)
and
X1p(1) = %[ B*(®)+B(®)]  Xop(t) = 21[ B*(t) - B(t) ]
(2.10)

YiA() = %[ AT+ AME] YD) = 21[ A* (D)2 - A()?]

We then find, if the b mode is initially in a coherent state, that after a time t
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(AX1p(0)%= ;11- + (kot)’[ (AY24)? - <Na + —;->1
(2.11)
(AX2p(0)?= % + (kat)2[ (AY14)? - <Na + %>1 ,

where quantities without a time argument, e.g. (AY;4)?, are assumed to be evaluated
at t=0. What these equations tell us is that if the a mode is initially amplitude-squared
squeezed in the Y, direction then the b mode will become squeezed in the normal
sense in the X direction. Similarly, if the a mode is amplitude-squared squeezed in
the Y, direction the b mode will become squeezed in the X direction. Therefore, the
second harmonic generation process converts amplitude-squared squeezing into
normal squeezing.

Because normal squeezing can be measured via homodyne detection the
preceding results suggests how amplitude-squared squeezing can be detected. One
first sends the signal into a frequency doubler and then measures the squeezing of the
second harmonic. If it is squeezed, then the original signal was amplitude-squared
squeezed.

Finally, let us see how amplitude-squared squeezed states can be produced.
The fact that the squeezed vacuum state is also amplitude-squared squeezed shows
that a degenerate parametric amplifier can produce amplitude-squared squeezed
states. As one of us (D. Yu) has shown, a degenerate parametric oscillator can as
well(Ref.12). Well above threshold the field inside the cavity can reach a maximum
level of amplitude-squared squeezing given by (AY1)? /<N +1/2>=1/2, but just below
threshold the amount of amplitude-squared squeezing in the output field can, in
principle, be arbitrarily large. The fourth subharmonic generation process, which has
been studied in connection with generalized squeezed states(Ret.13), can also
produce amplitude-squared squeezing(Ref.6).

[Il. Sum Squeezing

Sum squeezing, as opposed to amplitude-squared squeezing, is a two mode
effect(Ref.14). In fact, amplitude-squared squeezing is the degenerate limit of sum
squeezing. Let us consider two modes with annihilation operators a and b and

frequencies w, and wy,. The variables involved in sum squeezing are the real and
imaginary parts of the product ab, i.e.

Vi=1 @b +ab) Va=1(ab*-ab) . (3.1)
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The commutator of these operators is [ V1, V2] = %( Na + Ng+ 1), where Np =a*a and
Ng = b*b, which yields the uncertainty relation

AV{AV, 2 L<Np+Ng+1> . (32)

-

A state is said to be sum squeezed in the V; direction if
(AVy)? < %<NA+ Np+1> . (3.3)

Such a state is nonclassical.

The commutation relations of the operators Vi, V, amd N + N +1 are also
closely related to those of the SU(1,1) Lie algebra. In fact if one sets K; = V|, K, =-V;
and K3 = %(NA-» Ng +1) one obtains the SU(1,1) commutation relations given in

Eq.(2.4).
The name, sum squeezing, comes from the fact that this kind of squeezing is

converted into normal squeezing by the process of sum frequency generation. Sum

frequency generation is a three-mode process which is described by the Hamiltonian

H = m,ata + wpb*b + w.ctc + kg (ca*b* +ctab) (3.4)

where coc=ma¥mb. As before we define the slowly varying operator A(t)=ei®ta(t), and
similarly for B(t) and C(t). We also define

Vi) = %(A*B* + AB) Xcp = 2l(c+ -0 . (3.5)
If the ¢ mode is initially in a coherent state then to second order in ks we find
(AXco(0)? = i + (ket)2 [ (AV))? - %<NA +Np+15] , (3.6)
where, as before, quantities without a time argument are evaluated at t=0. Comparing
this equation to Eq.(3.3) we see that the c mode will be squeezed in the X, direction if

the a and b modes are sum squeezed in the V; direction.

If the a and b modes are uncorrelated, then there is a connection between
squeezing in the individual modes and sum squeezing. In particular, if neither mode is
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squeezed, then the state is not sum squeezed. If one of the two modes is squeezed
and the other is in a coherent state, then the state is sum squeezed. Finally, if both
modes are squeezed, then the resulting state may or may not be sum squeezed.

This connection disappears if the modes are correlated. This can be seen by
considering the state produced from the vacuum by a parametric amplifier. This system
is described by the Hamiltonian

H = w,ata + Opb*b + g (e-i™tatb* + ei®tab) (3.7)
where, again, o, = ®, + wp. This Hamiltonian is an approximation to that in Eq.(3.4)

when the ¢ mode is in a highly excited coherent state. Using this Hamiltonian we find
that if both the a and b modes are originally in the vacuum state, then

AV ()2 - 211-<NA(0 +Np(t) + 1> =~ %—sinhz @) . (3.8)
Therefore, the amount of sum squeezing increases with time and this device is a
possible source of sum squeezed light. A further calculation shows that neither of the
two modes is squeezed in the normal sense. Therefore, for correlated modes normal
squeezing is not a prerequisite for sum squeezing.

V. Difference Squeezing

Difference squeezing is also a two-mode effect(Ref.14). Its name comes from its

close connection to difference-frequency generation. We again describe the modes by
annihilation operators a and b , and we assume that @, > @,. The observables which

describe it are
W, = %(ab* +a*b) W, = —2i—(ab+ -a*th) . (4.1)
Their commutator is given by
[W1, W2l =2(NA-Np) (4.2)
which yields the uncertainty relation

AW, AW, Zi-l<NA - Np>| . (4.3)
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A state is said to be difference squeezed in the W, direction if
(AW;)? < 211—<NA-NB> . (4.4)

Note that for a state to be difference squeezed we must have <N,> > <Np>.

Difference squeezed states are nonclassical but there is a difference in this
regard between them and sum or amplitude-squared squeezed states. For both of the
latter, the condition for squeezing and the condition for being nonclassical are the
same. For difference squeezing this is not true. A state is nonclassical if

(AW )? < }1—<NA+NB> , (4.5)

which is not the same as the squeezing condition Eq.(4.4). Therefore, difference
squeezed states are well within the nonclassical regime.

Difference squeezing is also related to a Lie algebra but this time it is SU(2)
instead of SU(1,1). In fact, the operators which describe difference squeezing are
those used in the Schwinger representation of the angular momentum operators
(Ref.15). The SU(2) Lie algebra consists of three operators J;, J, and J3 whose
commutation relations are

U, 1l = i€imIm (4.6)

where all indices run from 1 to 3 and e, is the completely antisymmetric tensor of
rank 3.

If the modes are uncorrelated, then at least one of them must be squeezed for
difference squeezing to be present. If the b mode is squeezed and the a mode is in a
coherent state lo>, the state wil be difference squeezed but only if |« |? is large enough.
A necessary, but not sufficient condition is that <Ng> < 12—|a|2. If the modes are

correlated, then it is no longer true that squeezing in the individual modes is required
for difference squeezing.

Finally, as might be suspected from the name, difference squeezing is turned

into normal squeezing by difference frequency generation. The Hamiltonian
describing this process is

132



H = w,a*a + wpb*b + wc*c + ky(atbet + ab*c) (4.7)

where o, = @, - ®,. We define slowly varying A(), B(t), and C(t) as in the previous
section and then set

Wit) = %( ADB*D+A*®BB)) X = % (Ctv-Cv) . (4.8)

Using perturbation theory we find that if the c mode is originally in a coherent state,
then

(AX D) = % + (kgt)2[(AW)? - le <Na-Np>] . (4.9)

This equation shows us that X¢, becomes squeezed if W, is difference squeezed.
Therefore, difference frequency generation can be used to detect difference squeezed
light.

V. Amplification of Higher-Order Squeezing

An amplifier consists of a collection of two-level atoms N; of which are in their
ground states and N, of which are in their excited states where N, is greater than N;.
We shall assume that we are in the linear regime of this system. An input signal is put
into the amplifier at t=0 and emerges at the output at time t. The signal amplitudes at
the input and the output are related by <a(t)> =G <a(0)> where G is the amplitude gain.
This system was analyzed rather thoroughly by Carusotto(Ref.16).

Hong, Friberg, and Mandel examined the effect of amplification on sub-
Poissonian photon statistics and normal squeezing(Ref.17). They found that both of
these effects disappear at the output, no matter what the input state is, if the intensity
gain, |G[2, is greater than two. The gain|G[*= 2 is known as the photon cloning limit
because one gets two photons out for every one that goes in. This gain has stood as
an upper limit for the amplification of nonclassical behavior.

Recently two of us looked at the situation for amplitude-squared squeezing

(Ref.18). We found that it can survive amplification for gains slightly greater than two. In
particular, amplitude-squared squeezing will be present at the output if

2 1
|GJ* < 2+——<N0>+1/2 , (5.1)
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where <N,> is the photon number of the input state. Because the right-hand side is
greater than two this suggests that there are states which will still be amplitude-
squared squeezed at the output if |G[? is slightly greater than two. Further investigation

shows that the amplitude-squared squeezed vacuum, 10,A>, with A<<1 is such a state.
Therefore, the photon cloning limit does not, at least in principle, represent a barrier to
nonclassical behavior. It would be of considerable interest to know if there are
nonclassical states which can remain nonclassical when they are amplified at gains
substantially larger than two.

Vi. Conclusion

Quadratic squeezing represents a new class of nonclassical effects. States with
this property have fluctuations smaller than is possible for classical light in a variable
which is quadratic in mode creation and annihilation operators. As we have seen,
quadratic squeezing can be converted into normal squeezing by %@ type nonlinear

interactions.
A direction for further investigations into quadratic squeezing is its connection to

interferometry. Interferometers, both with and without nonlinear elements, can be
described in a natural fashion in terms of the variables which describe quadratic
squeezing(Ref.19). This suggests that interferometers can be used to measure
quadratic squeeezing and that quadratic squeezed states may be of use in
interferometric measurements. We are currently studying these issues.
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Abstract

Differential equations which describe the steady state spatial evolution of nonclassical light are
established using standard quantum field theoretic techniques. A Schrodinger equation for the state
vector of the optical field is derived using the quantum analog of the slowly varying envelope
approximation (SVEA). The steady state solutions are those that satisfy the time independent
Schrodinger equation. The resulting eigenvalue problem then leads to the spatial propagation
equations. For the degenerate parametric amplifier this method shows that the squeezed state is the
ground state of the squeezing Hamiltonian. The magnitude and phase of the squeezing parameter
obey nonlinear differential equations coupled by the amplifier gain constant and phase mismatch. The
solution to these differential equations is equivalent to one obtained from the classical three wave
mixing steady state solution to the parametric amplifier with a nondepleted pump.

1. Introduction

The standard approach in quantum optics for dealing with nonclassical light is to introduce a
normal mode expansion for the field. This naturally leads to time evolution equations for the mode
amplitudes (creation and annihilation operators) which satisfy the canonical equal time commutation
relations. Such an approach is well suited for dealing with systems in optical cavities, such as an
optical parametric oscillator, but is not appropriate for open systems such as a parametric amplifier.
For the amplifier we are usually interested in the spatial dependence of temporally steady state fields.
This problem has been treated for quantum fields either by identifying spatial evolution with temporal
evolution for an interaction time set by the effective interaction length [1-4], or through the use of new
quantization methods which require nonconventional commutation relations that are generally
inconsistent with the fundamental equal time commutators for interacting fields [5-9]. In addition, the
problem has recently been studied using the positive-P representation and stochastic differential
equations [10]. In this letter we propose an alternative scheme which employs only standard quantum
field theoretic techniques, and apply this analysis to the degenerate parametric amplifier (DPA) in
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order to study the spatial evolution of squeezed light.

In the classical three wave mixing analysis of the DPA, the positive frequency component of the
electric field is written as a slowly varying time independent envelope multiplying a carrier plane
wave. Such an ansatz physically represents steady state propagation and leads to spatial differential
equations for the envelope. Quantum mechanically, this ansatz cannot hold as an operator identity in
the Heisenberg picture. Upon closer inspection, we see that the requirement of steady state
propagation is enforced through the choice of state vector for the field. More precisely, steady state
fields are the stationary states of the appropriate Hamiltonian. The resulting eigenvalue problem is
then a time independent Schrodinger equation, and leads to spatial differential equations for the
functions which parameterize the global state vector. We will apply this technique to the DPA in one
dimension with a classical nondepleted pump. The stationary state solutions are squeezed states
specified by a set of coupled nonlinear differential equations for the magnitude and phase of the
squeezing parameter driven by the coupling constant of the three wave mixing.

2 a Pr ion Condition

Using the classical wave mixing analysis as our guide, we formulate the quantum theory in terms
of the SVEA. The positive frequency electric field operator is written as an envelope field modulating
a carrier plane wave of a given polarization €. For systems in which the medium has no transverse
dependence over the beam diameter and is longitudinally short compared to the Raleigh range, the
theory becomes essentially one dimensional so that,

2nfio
A n?(w)

ES(x,t) = € ¥ (z,1) eitkz-on) | (1)

where A is the beam area, and n() is the linear index of refraction. The effective field theory in the
SVEA formally resembles a nonrelativistic many body theory for a complex scalar field ¥ [12],

(¥, ¥ @ 0] = 8(z-2). @
The Hamiltonian (in the Heisenberg picture) can be written as,

H = H¢ + Henv +Hin (3a)
H. = ho f aBxv 'y (3b)
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- i
Lﬁ_ o (\p*a_\.y_ . ai\y) (3¢)

Henv = 2 n(m) dz oz
Hi = 1_21‘1[1_(;)_) j dz (k" @eion W(z,t) - k(@eiony2(z,0) (3d)

where we have decomposed the "free” field Hamiltonian into the carrier wave Hamiltonian H_, and
the Hamiltonian governing the free (plus linear) evolution of the envelope H,,. The effective
interaction Hamiltonian for the DPA is given by H,  [14] representing the mixing through the
nonlinear susceptibility, with pump frequency ®,. The interaction coupling is determined by

K(2) =%g0(z)ei¢(z), (4a)
20(2) =I—14(—§)‘;%Ix<2><z>| lep(z) (4b)
&(z) = - % + Ak z + ¥z) (4¢)

where go(z) is the standard power gain coupling constant [13] (allowing for possible z-dependence),
Ak is the phase mismatch at the degenerate frequency, and ¥(z) is the remaining phase stemming from
the pump and %®.

We seek the quantum field state vector corresponding to steady state propagation. Maintaining
our close analogy with the classical analysis, we remove the carrier wave oscillation from the
dynamics of this state. Quantum mechanically we use the envelope picture (E.P.) originally
introduced by Caves [11], in which the dynamics of the operators are dictated by the carrier wave
Hamiltonian, and the states evolve by a Schrodinger equation with the Hamiltonian H__, + H, . If
we denote objects in this picture by the superscript (E), then the dynamical equations in this picture
are

®

iﬁag_t =[a® , H®)] (52)
®)

iha'q);t = HE, + HEYo)®, (5b)

For steady-state applications there will be exact frequency matching between the carrier frequencies of
the various waves which mix through the nonlinear interaction, so that the Hamiltonian in Eq. (5b)
will be independent of time. The steady state (ss) solutions are thus identified with the stationary
solutions to Eq. (5b),

H® + HD)iod® - wad®. (6)

env int
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Henceforth, the labels (E) and (ss) will be omitted. Eq. (6) is the key result of our analysis which we
now apply to the parametric amplifier.
. Pri ion Solution to the DPA
It is well known that the output produced during a parametric interaction is a squeezed vacuum
state [11]. In an oscillator configuration one can restrict attention solely to a single mode of the cavity
(for a doubly degenerate oscillator). In the amplifier configuration under consideration here, we must

generalize the squeezing operator to take into account the many modes associated with the envelope
field. We define a functional squeezing operator,

ﬂﬂﬂmgfﬂwa%%Qﬁﬁ%ﬂ M

with z-dependent squeezing parameter {(z) = r(z)ei®®@. One can easily show that the Bogoliubov
transformation generalizes to

"I\;(z) = STE1¥(2)S[{] = cosh(1(z)) ¥(z) - €®@ sinh(r(z)) ‘I’T(z). (8)
The squeezed vacuum,

(L)) = S[L1I0D, 9)

satisfies the well known eigenvalue equation [15],

¥(2HL)> =0, (10a)
¥(z) = S[{]¥(2)ST[L] = cosh(r(z)) ¥(z) + €®®@ sinh(1(z)) ¥v'(2). (10b)
Using the formalism developed in Section 2, we deduce the steady steady solutions by solving

the time independent Schrodinger equation (6). We take as our ansatz for the eigenvector a squeezed
vacuum state Eq. (9), i.e.

(Henv + Hin {$}D> =A{L}D . (11)

Our goal is to prove Eq. (11) and thereby obtain differential equations for the spatial squeezing
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parameter {(z). Together, Egs. (10a) and (11) imply

[Henv + Hint , ‘;(z)] I{{}> =0. (12)

Substituting Eqs. (3) and (10b) into Eq. (12), using Eq. (8), and the relation (4a) for the polar
decomposition of K gives,

[(é‘i ; —;—gocos (e-¢)) + -21-(%% sinh(2r) + go cosh(2r) sin(e-cp)) }\P*!O> =0. (13)

Thus, the eigenvalue condition requires the real and imaginary parts of the coefficient of ‘I’Jr to vanish,
yielding the desired propagation equations:

élzl = 380C0S (0-9) (14a)
%29_ = - go coth(2r) sin(8-¢). (14b)

The solution to (14) produces a relation for the squeezing parameters {r(z), 8(z)} in terms of the
experimental parameters {gy(z) , $(z)}. In the next section we give an interpretation of the meaning
of these equations and analyze their solutions.

4. Solutions and Interpretation of Propagation Equations

In solving Egs. (14) we take as our boundary conditions,

r(0) =0 (152)
8(0) = ¢6(0) (15b)

to ensure the continuity of the squeezing parameter. In order to get a better understanding of the
nature of the equations we examine them for various regimes. Consider first the situation in which

the phase of x, Eq. (4c), is a constant ¢(z) = ¢o (i.e exact phase matching). With boundary
conditions (15), the solution to (14) is immediately seen to be

1(z) = f dz’ 5802, (162)

8(z) = o. (16b)
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For a uniform crystal with plane wave pump, this yields the expected result oy = %goL (for z2L),

where L is the length of the crystal.
In limit of short crystals, Egs. (14) can be expanded for small r to yield

dr_1 0-
oy = 80c0s (6-0) }ﬁg_r;:m)_ (17)

dé __80 -
i or sin(6-¢)
Thus, in this limit the complex squeezing parameter is just the integral of the interaction coupling

constant. Henceforth we consider crystals with uniform nonlinearity and a plane wave pump, so that

gp is a constant and ¢(z) = - 129 + Akz. The solution to Eq. (17) for z2L is of a familiar form,

Tout = EgOL @LAM (18a)
(AkL/2)
Bouc = - &+ AKL/2. (18b)

If in addition Ak<<1/L the amplitude and phase essentially decouple. However, as the phase
mismatch increases, the magnitude of the squeezing decreases. Physically, large phase mismatch
would cause squeezing along wildly different quadratures as the beam propagates through the crystal,
thereby degrading the net squeezing.

For crystals containing many gain lengths, we expect strong sensitivity to the phase mismatch
since the nonlinear coupling between r and 6 causes rapid oscillations that destroy the magnitude of
the squeezing at some value of Ak. To see this we numerically integrate Eq. (14). In presenting the
data, we measure all distances in units of the natural length scale 1/g,. Fig.(1) shows the magnitude
of the squeezing parameter as a function of z for various phase mismatches. Fig. (2) shows the
squeezing parameter of downconverted light as function of phase mismatch for various values of the
crystal length L, plotted simultaneously with the small r expression, Eq. (18a). For short lengths,
Eq. (18a) is an excellent approximation. However, for crystals many gain lengths long (as can be
obtained using intense pumps [16]) we see a sharp cutoff in the squeezing at the critical value Ak/g,
=1. The sharp transition in output when Ak=g, is also characteristic of the classical three wave
mixing solution to the parametric amplifier. This leads us to hypothesize that the solution to Egs.
(14) can be obtained from the classical propagation equations.

The classical solution for the envelope in a DPA is [13]

A(2) =(L(@)A(0) +iv(2)A*(0)Jeitkz/2 (19a)
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w(z) = cosh(%gz) - iAgl(—sinh(:,ll-gz) V@) =V1-|u@p = —gggsinh(%gz) (19b)

g=Vgj- (Ak)%. (19¢)

If we replace the c-number fields with creation/annihilation operators A’ (0)—af, A(z)—>b
representing "in" and "out" fields respectively, we recover the solution obtained by Caves and Crouch
[5], and Huttner et. al. [6],

b = ((2)a + iv(z)at)eidkz/2, (20)
The unitary operator relating ato b, b = UfaU, is a generalized squeezing operator
U= RT(%(Arg(u) + Akz)) S(-isinh"1(v)), Q1)

where S is the standard squeezing operator and R is the phase rotation operator [11]. This unitary
operator transforms the vacuum into a squeezed state with squeezing parameter = rei® given by,

1(z) = sinh"}(v(2)) (22a)
0(z) =- % + Arg(i(z)) +Akz. (22b)

Figs. (1) and (2) are now easily understood in terms of limiting cases of (22a). In fact, direct
substitution reveals that (22) is indeed the analytic solution to Eq. (14).

To understand the meaning of this result consider the nature of the interaction more carefully.
Because we have assumed a classical nondepleted pump, the propagation equations are linear in the
signal and idler amplitudes . In such a situation one expects the g-number and c-number solutions to
be equivalent, i.e., the quantum fluctuations should propagate like a classical signal. This provides a
substantial test on our formalism. The successful use of nonconventional commutation relations by
previous workers is explained by a combination of good physical intuition and the special linear
character of this problem. Indeed, Huttner et. al. showed that for this particular interaction the equal-z
commutation relations are consistent with the fundamental equal-t commutators. However, for a
general interaction in which the wave mixing equations are truly nonlinear we expect this method to
fail. For example, if the pump is treated as a quantum mechanical field, then we find that the equal-z
commutation relations are no longer consistent with the fundamental equal-t commutators. Thus, for
more complex systems there will be qualitative differences between the classical and quantum
propagation solutions. The formalism we have presented here is sufficiently general to handle these
situations.
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Fig 1. Squeezing magnitude as a function of propagation distance z measured in gain lengths g,

for different values of phase mismatch Ak: (a) Ak=0.1g, , (b) Ak=g, , (c) Ak=2g.
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(b)

- 5 4
Fig 2. Squeezing at the output face as a function of Ak: (a) L=2g,,(b) L=10g,, (¢ L=50g, The
solid curve is the solution to Eq. (14), the dotted curve is given by the asymptotic result Eq. (18a).
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ABSTRACT

Observation of squeezed noise, 5£0.3 dB below the shot noise level, generated
with pulses in a fiber ring interferometer is reported. The interferometric geometry is used
to separate the pump pulse from the squeezed vacuum radiation. A portion of the pump is
reused as the local oscillator in a homodyne detection. The pump fluctuations are
successfully subtracted and shot noise limited performance is achieved at low frequencies
(35-85 KHz). A possible utilization of the generated squeezed vacuum in improving a fiber
gyro’s signal to noise ratio is discussed.

INTRODUCTION

Squeezing in a fiber was first demonstrated by Shelby et al. [1] who showed that

the fiber’s x(3) nonlinearity could be used to shape the field’s fluctuations through self
phase modulation. The group’s experimental results were, however, severely limited by
acoustic and thermal noise processes. First, the low Stimulated Brillouin Scattering (SBS)
threshold in fibers forced the IBM group to separate their CW pump into 25 frequency
components. The second noise source, more difficult to avoid, was the so called GAWBS
(Guided Acoustic Wave Brillouin Scattering) excitations [2]. GAWBS is caused by
thermal fluctuations that modulate the fiber’s refractive index at high frequencies
(approximately between 20 MHz and 10 GHz) and thereby scatter acoustic waves which
are guided in the forward direction. Because the experiment was performed in a traveling
wave geometry, it was necessary to detect the squeezing at high frequencies (50-100 MHz)
where the laser noise is negligible. The measurement center frequency was within the
frequency range of GAWBS, and only about 12% of noise reduction was thus observed.

To improve upon these earlier results, we used short pulses in a fiber interferometer

configuration. Large nonlinear phase shifts of the order of several &t are easily achieved
with short pulses of high peak power, while the SBS threshold is avoided. The fiber ring
geometry is used to separate the pump from the squeezed vacuum fluctuations. Subsequent
detection with a balanced detector permitted complete cancellation of the pump fluctuations
at frequencies as low as 35-85 KHz. Although the GAWRBS noise can be frequency
down-converted into the detection "window" when pulses are used [3], it did not seem to
prevent the noise reduction in our experiment. The investigation of the down-conversion
of GAWBS requires further study.



The experimental results reported in this paper have been recently published [4].
This paper begins with a brief review of the broadband squeezing process in a fiber.
Following the approach of Shirasaki and Haus [5], we then show how the pump is
separated from the squeezed vacuum when the squeezing is performed within a Mach-
Zehnder interferometer. The squeezed vacuum is observed with the aid of a local oscillator )
derived from the pump. We describe some of the theoretical limitations on the observed
squeezing using homodyne detection and a gaussian shaped local oscillator. The
experiment and results are then described in detail.

SQUEEZING IN THE NONLINEAR MACH-ZEHNDER

We consider the simple propagation equation for the field operator, d(z), in a
nonlinear Kerr medium. Assuming no dispersion this equation becomes:

D) _igat (2)ilicz) (M)

where x is the Kerr nonlinearity. The Kerr nonlinearity is calculated as follows,

P
x:ﬁnz_L 2)
2 " Ay,

where 4 is the wavelength, n) the nonlinear index, Pp the peak power, and A?ﬁ’ the
effective coupling area. Equation (1) may be integrated directly, yielding a solution for the

field operator, d(z), after a propagation distance, L:

G(L) = 47 (0)a(0)z) (3)

The effect of the Kerr medium is to add a nonlinear phase shift proportional to the photon
number, propagation distance, and Kerr coefficient. The mean square fluctuations of the

field are shaped by this nonlinear process as shown in figure 1. The x(3) process couples
the amplitude and the phase fluctuations, causing the phase insensitive mean square
fluctuations of the incoming field, represented by a circle, to stretch into an ellipse along the
amplitude tangents. The area of the resulting squeezed noise ellipse is equal to the area of
the initial circle.

Next, we place two equal lengths of Kerr media symmetrically in the two arms of a
Mach-Zehnder interferometer, as was analyzed in reference [5]. The input field and its
associated fluctuations enter one input port of the interferometer’s first beam splitter in
figure 2. Into the second, unexcited port enter the zero point fluctuations of the vacuum
field. The field’s amplitude split coherently in two by the 50/50 beam splitter. The
fluctuations add and subtract incoherently.

As each field-half propagates through its Mach-Zehnder arm, it accumulates a
nonlinear phase shift (not shown on the phasors in figure 2) and its fluctuation circles are
stretched into ellipses. At the second beam splitter, the two half-field amplitudes interfere
coherently. Under a linearized first order analysis, the squeezed fluctuations will again add
and subtract incoherently. As illustrated with the phasors in figure 2, the original mean
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field amplitude emerges from the constructive interference port, and the squeezed vacuum
exits from the destructive interference port. The interferometer has made possible this
isolation of the squeezed vacuum.

The above explanation for a single frequency phasor (CW pump) also holds for the
case of a pulsed pump, as long as dispersion may be neglected. Without dispersion the
pulse may be divided into short time segments and each segment analyzed independently.
At the output the segments are superimposed to reconstruct the pulse.

DETECTION

The function of homodyne detection is to measure one quadrature of the incoming
signal, amplified by the local oscillator. This detection technique is used to observe the
phase sensitive fluctuations of the squeezed vacuum signal. If the local oscillator phase is
properly adjusted, the squeezed (reduced noise) quadrature is measured. The fluctuations
accompanying the pump are completely subtracted by the balanced detection. When the
signal arm is blocked, the homodyne detection measures the vacuum state noise. Thisisa
part of the experimental shot noise calibration.

In the Mach-Zehnder squeezing geometry, the exiting pump, shown in figure 2,
may be reused as the local oscillator. In this way, the local oscillator pulse shape matches
the squeezed vacuum pulse. However, to detect the full pulsed squeezing magnitude a
finer matching of the local oscillator phase is required since the squeezing direction as well
as magnitude will vary along the pulse duration. Thus, under ideal conditions the local
oscillator should be phase shifted in one direction at the pulse center but in a different
direction at the pulse wings. Experimentally the local oscillator is shifted by one constant
phase leading to a nonideal measured noise reduction magnitude. We have plotted the
expected noise reduction for the ideal and single phase adjusted gaussian pulse cases in
figure 3 (a). In figure 3(b) we show that for the gaussian pulse case, the amplified noise
amplitude is larger than the attenuated noise amplitude for the same peak nonlinear phase
level.

EXPERIMENT

The experiment was implemented by replacing the Mach-Zehnder with a fiber ring
interferometer, to take advantage of the ring's stability to vibrational and thermal
disturbances. Figure 4 is a schematic of the experimental arrangement. A mode-locked

1.3um Nd:YAG producing 100 psec pulses at a repetition rate of 100 MHz was used as the
pump. This pulse train pump is coupled into the fiber ring reflector composed of 50 m of
PM (polarization maintaining) fiber which is spliced to the two pigtails of a 3 dB PM fiber
coupler. The coupler's splitting ratio was variable, and was carefully adjusted to 50/50
within 1 part in 500. The pump pulses are thus completely reflected from the ring. A
90/10 beam splitter picks off a portion of the reflected pump to be reused as the local
olfcil}ator. The squeezed vacuum signal emerges from the unexcited transmission port of
the ring.

The local oscillator and the squeezed signal are then mixed in a 50/50 beam splitter

(BS2), and detected with a balanced dual detector receiver. The output difference current is
directly fed into a spectrum analyzer. The Power Spectral Density (PSD) reading
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corresponds to a measure of the fluctuations magnitude along one quadrature of the
squeezed vacuum. The amplified and reduced noise quadratures may now be measured by
adjusting the relative phase of the local oscillator and squeezed signal.

The reduced noise will increase with the pulse peak nonlinear phase shift, which
can be estimated from the following CW equation,

P
Dy =3’5n2L—L (4)

where n, is the nonlinear index, L the fiber length, P, the pulse peak power, and A.g the

effective coupling area. In this experiment, a peak nonlinear phase shift of 1.4 radians
corresponds to approximately 100 mW of average power in each ring direction. The PSD
measurements were performed at a narrow low frequency window between 39 and 41
KHz. Data was taken with an integration time of 400 msec and a frequency resolution of
2.5 Hz. Before discussing the results, we describe the methods used to calibrate the shot
noise level.

v SHOT NOISE CALIBRATION

The shot noise level was calibrated in order to confirm that the reduced quadrature
fluctuations of the squeezed vacuum dropped below the zero point fluctuations level. Two
methods were used. First, direct excitation from the laser was sent through the homodyne
detection system and the detector current along with a corresponding PSD level were
recorded for a range of input power levels. To cross check this calibration, two white light
sources were used to generate detector current levels similar to those obtained with the laser
excitation. Again, the PSD levels were recorded along with the current readings for the
same range of power levels. The spectrum analyzer's noise floor was measured at -155
dBm/Hz and typical shot noise levels ranged from -120 to -125 dBm/Hz, so that electrical
noise was not a factor. The two curves plotted on a dB scale in figure 5 overlapped well
with a 45 degree slope. Thus, the laser noise has been successfully subtracted and the
detection’s response has been shown linear within the measurement current range.

\% EXPERIMENTAL RESULTS

Having accurately established a shot noise level, we proceed with the squeezing
measurement. The local oscillator pulse and the squeezed vacuum pulse are aligned to
overlap spatially and temporally at the detection beam splitter (BS2). For alignment
purposes only, the signal magnitude may be temporarily increased by changing the
coupler's splitting ratio. The coupler is adjusted back to 50/50 and the relative phase
between the local oscillator and squeezed signal is allowed to drift. While the phase is
drifting, PSD measurements are taken continuously with an automated data acquisition
system.
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The PSD level, a measurement of the squeezed noise will vary from some
maximum value to some minimum value corresponding to the amplified and attenuated
quadratures of the squeezed vacuum. The resulting histograms from these measurements
taken at three separate pump power levels: 60, 85, and 110 mW (in each fiber ring
direction) are shown in figure 6 (a), (b), and (c) respectively. In the figure, the black bars
are PSD readings taken with the squeezed vacuum arm blocked, and are thus the shot noise
calibration for the specific power level. The white bars are a collection of PSD readings
taken after the mixing of the local oscillator and squeezed vacuum. The reduced noise level
or squeezing magnitude is defined as the distance between the black bars distribution center
and the left edge of the white bars distribution. We note that as previously predicted for the
case of a gaussian local oscillator, the amplified quadrature noise is larger than the reduced
quadrature for the same power level.

In figure 7 we plot the experimental maximum and minimum PSD readings (in dot
scatter format) obtained for a collection of power levels, on top of the theoretically
predicted limits for the gaussian local oscillator case. The experimental point plot was
adjusted horizontally, along the peak nonlinear phase axis for a best fit. This fitting
compensates for coupling losses, detector quantum efficiencies, and nonlinear phase
estimation.

VI SQUEEZED VACUUM IN A FIBER GYRO

It has been shown both theoretically [6,7,8], and experimentally [9,10], that the
sensitivity of a phase measurement device can be improved with the injection of squeezed
vacuum into the unexcited port. Normally, zero point fluctuations enter this unexcited port.
We briefly consider the circumstances of utilizing the squeezed vacuum generated by the
interferometric fiber ring to improve the performance of a second fiber ring functioning as a
fiber gyro. In principle, all of the pump power reflected from the ring may be reused in the

gyro.

If the same power levels and fiber lengths that are used in the squeezer ring are also
used in the gyro, nonlinear effects in the gyro must be considered. We have explored this
issue in detail in a separate paper [11]. Here we shall merely point out that the nonlinearity
in the fiber gyro will cause additional squeezing but in an opposite direction. The
squeezing that occurs in the gyro will undo some of the squeezing initially injected.

The analysis is shown diagrammatically in figure 8, using a Mach-Zehnder
configuration. If the gyro is linear (figure 8(a)), it is clear that the squeezed vacuum should
be oriented along the horizontal direction. In this way, at the gyro's output signal port, the
reduced quadrature is along the signal direction.

For a nonlinear gyro, the effect of the x(3) nonlinearity will be to pull the elliptical
locus of fluctuations toward a circular shape, thereby destroying the squeezing. As shown
in the inset of figure 8(b), one must prepare the squeezed vacuum to counterbalance some
of the effect of the gyro nonlinearity. The gyro's signal to noise ratio improvement will
then be diminished, but not destroyed complietely. In fact, much of the noise reduction
advantages may be regained by properly designing the relative nonlinearity of the gyro and

squeezer rings. For example, if we set the squeezer's nonlinear phase at & the ideal noise
reduction will be approximately -15 dB. If the gyro's nonlinearity is then half of the
squeezer's, the noise improvement will reduce to -6 dB.
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VIIT. CONCLUSIONS

We described the successful observation of squeezed pulsed vacuum, 5+0.3 dB
below the shot noise level, generated from a fiber ring interferometer. Noise generated
from GAWBS excitations did not appear to damage the squeezing measurements at low
frequencies. Further study should determine the exact GAWBS spectra and magnitude for
our experimental configuration. If the squeezed vacuum, properly oriented, is injected into
a lossless linear interferometer, the interferometer's signal to noise ratio will improve by the
noise reduction factor. We considered the utilization of squeezed vacuum in the
improvement of the sensitivity of a shot noise limited fiber gyro. In this case the gyro's
nonlinearity must be reduced in proportion to the squeezer's nonlinearity.
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Figure 1 The field's phase insensitive quantum fluctuations are elongated into an ellipse of

squeezed noise by the self phase modulation process.
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Figure 3  (a) Expected noise reduction for the ideal and single phase adjusted gaussian pulse
cases. (b) Predicted maximum and minimum noise amplitudes for the gaussian
local oscillator case, plotted on a dB scale.
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Figure 6 Histograms of PSD readings taken at three separate power levels (a) 60, (b) 85, and
(c) 110 mW in each ring direction. The black bars are counts taken with the
squeezed signal arm blocked. The white bars are the squeezing PSD
measurements.
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1
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ABSTRACT:

It is shown that by squeezing the vacuum fluctuations of the electromagnetic field the
quantum fluctuations of the optical forces exerted on laser cooled two-level atoms, can be
dramatically modified. Under certain conditions, this modification in concert with the enhanced
average forces can lead to equilibrium temperatures below those attained under normal vacuum
fluctuations.

INTRODUCTION:
Laser cooling of atoms in a quasi-resonant standing laser wave has been attracting

considerable attention during the past few yearsl. Another exciting subject has been the
modification of the statistical properties of the vacuum fluctuations of the electromagnetic field.
Reduction of these fluctuations in one quadrature phase of the field by almost an order of
magnitude has been already realized in the laboratory. It is well accepted that the minimum
equilibrium temperature of laser cooled two level atoms is determined by the interaction with the
vacuum fluctuations of the electromagnetic field. This raises the question whether the equilibrium
temperature of two level atoms in squeezed vacuum can be lowered below the normal vacuum level

and in particular below the so called “Doppler limit” of K, T= #2172 for two level atoms.

In the following, the physical origin of the optical forces in a standing laser wave is
described and an intuitive model of the effects in a squeezed vacuum is offered, the modified force
in squeezed vacuum is presented and compared to the force in a normal vacuum. In order to find
the equilibrium temperature the modification of the fluctuations of these forces in squeezed vacuum
is calculated. This calculation show, under certain conditions, a dramatic modification of these
fluctuations relative to the normal vacuum state. it is found that, in an intense standing wave, the
reduced fluctuations in concert with the enhanced average cooling force can lead to equilibrium
temperatures below those obtained under normal vacuum fluctuations. Moreover, under certain
ideal conditions even sub-Doppler temperatures may be reached. In the running wave case,
however, the temperature can not be lowered below the normal vacuum level. In addition to being
of potential use for laser cooling, these results offer an interesting glimpse into the quantum nature
of the momentum exchanges between the atoms and the field.
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A slowly moving atom (kv<I" ) in a low intensity standing laser light wave experiences a
velocity dependent force. This "radiation pressure” force is well understood in terms of absorption
and spontaneous emission. As first envisioned by Hansch and Schawlow?, the atom experiences
an increased absorption of photons from the laser beam which is shifted closer to resonance due to
the Doppler effect. This velocity dependent differential absorption can provide a cooling force for
laser detuning to the red side of the atomic transition or a heating force for blue detuning. At high
intensity, however, stimulated emission can change the sign of the force to a heating force at red

detuning and to a cooling force at the blue side of resonance3,

0.005

0.004 -

0.003

0.002

0.001+

PROBE ABSORPTION (Arb. Units)

0
PROBE DETUNING (1/T)

Figure 1: Probe absorption as a function of its detuning from a pump tuned 20T to the red of an atomic
transition.A)at low pump intensity the probe sees higher absorption at positive detuning closer to the atomic
transition B)In normal vacuum at high pump intensity the TWM process is induced leading to less absorption for

frequency shifts closer to the atomic transition . C) At the same high intensity as in trace B but in squeezed vacuum
the TWM process can change its lineshape leading to an additional cooling force.(Ref. 8 eq. 12 with N =0.1,
M=0.33, ¢= n and Q=8T").

This stimulated force(or "dipole force") has been explained within the framework of the
dressed atom model 3 and equivalently as resulting from Two Wave Mixing® (TWM). The TWM
resonance appears in pump-probe spectra as a dispersive lineshape (as a function of the probe’s
detuning from the pump). This feature has a width of the excited state decay rate, I', and shows

decreased absorption at probe detuning from the pump closer to the atomic transition (see figure
1b). In this process the atom absorbs one photon from one wave and emits a photon into the
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counter- propagating wave, thus acquiring a momentum kick of 2Ak. This process usually requires
high laser intensity ; however, it has been shown to occur at lower intensity when the normal

relation between the dipole decay rate I’y and the excited state decay I' ( I',=0.5 I' ) is modified by
the inclusion of phase interrupting events ( I',>0.5 T ). This effect is due to the appearance of a

TWM term at lower order in laser intensity proportional to [I'5/T- 0.5]P where P is the saturation

parameter. This phenomenon is closely related to the dephasing induced extra resonances in Four
Wave Mixing. These resonances , which originally have been studied by Bloembergen and co-
workers, are induced whenever the normal decay rates of the the atom are modified. Their
relevance to the stimulated force is discussed in more detail in reference 6.

Armed with this insight into the connection between TWM and the stimulated force, it is

instructive to find the effect of squeezing on the TWM process. Gardiner’ has shown that in
general squeezing the vacuum fluctuations results in two different decay rates for the two

quadratures of the atomic dipole, one of which is larger and the other smaller than the normal I'/2
value in ordinary vacuum. Hence, after the decay of the fast decaying quadrature component of the

atomic dipole one is left with the slowly decaying component which means that I’y can be much
smaller than 0.5 I". One can therefore immediately see that the “extra resonant” TWM process can

also be induced in squeezed vacuum. Calculation of the lineshape8? of this process shows that

indeed the TWM lineshape becomes phase dependent and can even change to a "dispersive"
lineshape with opposite sign (larger absorption closer to the atomic transition) as demonstrated in
figure 1c . This indicates that in squeezed vacuum the stimulated force can be induced at low laser
intensity . Moreover, it can change sign to provide an additional cooling force instead of heating
for red laser detuning from resonance.

THE AVERAGE OPTICAL FORCES IN SQUEEZED VACUUM

The physical system under investigation is a slowly moving two level atom (k v<<I’)in

either a standing or a running wave (a motionless atom is considered in the fluctuations analysis).
The atom is embedded in a broad band squeezed light, so that all of the modes coupled to the

atoms are squeezed. The bandwidth of the squeezing is broad enough to appear to the atom as a &
correlated squeezed white noise. The correlation functions for the multi-mode squeezed field can

then be written as

<bFT(®)b(t’)>=TNs(t-t") . <b®bt(t’)>=TN+1)d(t-t") Eq.1

<b®b(t")>=<bF(t)bF(t")>* = TMe(-2ia0t + 2ik-r) §({_ 1)
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Where b,bt are the operators defined in terms of the positive and the negative frequency parts of
this field, N and M are the squeezing parameters, N is proportional to the number of photons in the
squeezed vacuum, while M< N(N+1) signifies the amount of correlation between the sidebands
and the equality maximum squeezing. In the following we will choose M to be real and positive .

The Hamiltonian describing the interaction of the atom with the quantized multimode
radiation field and a classical coherent field is given in the electric-dipole and rotating-wave

approximation by 10. Eq.2

1 o e 4
H =Eho)oo'22 +H - (uEOe 10lG" + ol Eoe““") + h(o b+ ch)

where @y is the atomic resonance frequency, ©,, , 6=0;, and ot=0,, are the atomic operators , |

is the atomic dipole moment , H is the free Hamiltonian of the field, and E is the amplitude of the
coherent field. One can then find the master equation for an atom in squeezed vacuum and derive

equations of motion for the atomic operators whose expectation value is given by:
<0'12>=-y<o'12>-I‘M<c512>*+Q<D> eq.3
< 15 > =-T(@2N +1)< D >+ T - 2[Q*< 0}, >+Q<0, >¥]
The average force can now be found by calculating, the expectation value of the atomic variables
and subsequently the first order corrections due to the atomic motion 3. This gives rise to the
following cxpressionsll for the expectation value of the optical forces acting on the atom in the
running<F> and standing wave<Fs> :

nkI'P 22N+1)A
= 1+ k-
) 2(2N+1+P) ¥ (2N+14P) (

V)
Eq.4

AP 4xMcos( 20)P + I‘12<D_(2N+1—P) - 2yP2

—— |1- (0t v)
® (2N+1+P) Tyd (2N+1+P)

<Fs> =

where P is the modified saturation parameter in squeezed vacuum given by P= 2|QP®_/y ,
Q=ei®uE/h and the other quantities are defined by: I'j=2N+1I", ®_=2N+1-2Mcos(29), %
=2 -I?M2, y=T',/2-1A, A=A+ TMsin(20), where A is the laser detuning from the atomic

resonance.
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It is instructive to examine the new expression of the force in the standing wave by
comparing it to the force in ordinary vacuum. In this limit (N =M=0) the force is reduced to the
well known expression of the force (ref.3 eq.18) given by:

- I'%(1-P) - 2jy?P2 —~ ~
)= ona B | 20D 2hp =~ -
1+P T(1+P)22

eq.5

Note that in this limit the first term in the numerator of the velocity dependent part of €q.4 is zero
while the other two terms are reduced to those of eq.5. The striking appearance of the additional
term in squeezed vacuum is analogous to the result of ref.6. In this case, the introduction of

classical phase noise results in the appearance of an extra term -41Y2[I"2/T- 0.5]P , (T,=I72+I¢
where T is the rate of the phase interrupting events).This term can give the stimulated force at
lower intensity when I'y / I'>0.5 as phase noise is added.

Notice that in the case of T, /I'< 0.5, this term can also be induced but with opposite

sign. This is indeed the case with quadrature squeezing, which can result in either larger or smaller
phase noise than the vacuum level. This in turn introduces two different decay rates for the two

quadratures of the atomic dipole.One of these, T, = I'(N+M+0.5), is larger and the other, I,
=I'(N-M+0.5), is smaller than the normal I',=I'/2 value. Therefore, the sign of the extra term in

eq.2 4[|y|2-1"2M2]M cos(2¢) P can be controlled by the relative phase ¢ of the driving field with

respect to the squeezed vacuum. Hence, the stimulated force can not only occur at lower laser
intensity, it can change sign to provide an additional cooling force at red laser detuning from
resonance. This modification of the force can be further correlated with the TWM lineshape which
becomes strongly dependent on the laser phase ¢ and can even change sign as indicated by our
intuitive analysis .

Other important modifications of the force in squeezed vacuum are described by the term,

A+T'Msin2¢. This term gives rise to a force at zero detuning as well as strong variations of the

force at small detuning ( A<I'Msin2¢). These effects can be understood by noting that the

dephasing induced lineshape of TWM at resonance is absorptive in normal vacuum, but it can be
transformed to a dispersive lineshape in squeezed vacuum, giving rise to a force at resonance . In

addition it has been shown that the TWM can have sub-natural linewidth at small detuning 710,
This indicates that one can obtain arbitrarily large cooling forces at small detuning as the number of
photons in the squeezed vacuum N, and therefore the amount of squeezing , is increased. This

can be understood by noting that 1"2y=F (N - M+0.5) in the limit of N>>1 becomes arbitrarily
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small, I‘2y= I'/ 8N.
In the analytic solution shown above the force is calculated only to first order in velocity
(i.e a linear velocity dependence is assumed), this is correct only for small velocities kv<<T".

Numerical solution of the OBE, however, can provide the full velocity dependence of the force.
This solution is shown in figure 2 for ordinary (trace A)and squeezed vacuum (trace B) . This
figure demonstrates that the stimulated force which gives a heating force in normal vacuum for

velocities in the order of kv<I/2 (as expected from the TWM lineshape, fig.1b), can be

transformed to a cooling force in squeezed vacuum. The dashed lines in the figure are the results of
the spatially averaged analytic solution which show good agreement with the numerical solution at
small velocities.

[ 3
N
an_

(=]

COOLING FORCE (hI'k/?)

o 100 200 300 400

Figure 2: The velocity dependence of the spatially averaged force, in normal vacuum trace A and squeezed vacuum
trace B, obtained by numerical solution of the OBE. The dashed lines are the result of the analytic solution. The

parameters used for this figure are: A=-3T", Q=1. 36T, I'=107 Hz and A=5890 A for both traces and N=1., M=V2
and ¢ =0 for trace B.

Figure 3 demonstrate the interesting dependence of the force on the driving laser phase ¢

(using the analytic solution eq.2 with kv=I7/2 ).This is shown for a constant number of photons in

the squeezed vacuum, N=1, but for various values of the squeezing parameter M. Trace A plots the
force for thermal light M=0 (i.e no correlation between the sidebands) with no variation on the
phase, as expected. Traces B-D , however, show large variations of the force for increasing
degree of squeezing up to the maximum value of M, (M2=N[N+1]). This dependence is due to the
different amount of noise that the induced dipole sees at different quadrature phase. Figure 3 also
shows that even a modest amount of squeezing induce large effects on the force.
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COOLING FORCE (hI'k/R)

LASER PHASE ( Rad./n )

Figure 3: The spatially averaged force as a function of the laser phase ¢ for increasing amount of correlation between
the sidebands A)M=0 (thermal light no correlation), B) M=0.5 , C)M=1 and D)M=V2 (maximum squeezing). Other
common parameters used are: A=—3I", Q=1. 5T" and N=1.

THE QUANTUM FLUCTUATIONS
It was recognized by Einstein 12 a5 early as 1917 that the fluctuations of the optical force,

originating from both spontaneous and induced absorption and emission processes, are important
in determining the Maxwellian distribution of the atomic velocity in thermal equilibrium. A simple
momentum diffusion process which comes readily to mind is due to the random direction of the
spontaneous emission recoils . In addition to this geometrical source of fluctuations one should
also consider the fluctuations in the number of photons emitted in a unit time . However, this

process can have sub Poisson statistics, as shown by Mandel 13 i1 resonance fluorescence, and
give rise to an anomalous contribution 3,14 which can decrease the momentum spread, as
discussed by Cook 14 An additional momentum diffusion mechanism becomes dominant at high
intensities in a standing wave due to fluctuations in the stimulated emission process between the
counter-propagating waves 3,145 This photon exchange between the waves, results in a random
transfer of 24K units of momentum to the atom. Finally as shown by Gordon and Ashkin 3an
atom even in its ground state can have random recoils due to the zero point vacuum fluctuations.

In the following it will be shown that the dynamics in squeezed vacuum modifies the fluctuations
of all of these processes.

We are now interested in finding the force fluctuations on a stationary atom which are
given by the diffusion constant , 2Dp :
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2D, =2 ReJ' dt [<F(0) F()> - <F>? ]
0 Eq6

Insertion of F(t) =—-10VG + H.c. for the force (where G is the freely propagating field), using

the correlation functions for squeezed vacuum,<G>=Q (since<b>=0) and the commutation relation

oij okI=0il 8(j,k) for the atomic operators gives :

EOF®) =10t 0)00 + 5O @) IVl - (otO0kVR)’ - c@o)Va ]  gq7

+#k)q TN (011 +022)+ T022)] 8(t)

Consider first the last terms which depend directly on the quantum fluctuations of the field. These
terms in the limit of normal vacuum(N=0) can be transparently modeled 3 as the random
instantaneous emissions of momenta Ak at an average rate of I'<c,,>. In the squeezed vacuum
case, this effect is enhanced, by the absorption of squeezed photons I'N<G; ;> and spontaneous

emission I'N<G,,> due to the larger number of photons in the squeezed vacuum .
In order to evaluate the remaining terms , which describe the effects of the interaction of the
coherent field gradient with the atomic dipole fluctuations,we need to find the integral of the atomic

dipole autocorrelation functions which after some algebra leads to the following expression for
the diffusion in squeezed vacuum:

r
2My= Dori2p-t 2 (141 + a2 P _[14D} + D} +Df]
2 (2N+1+4P) 20. (2N+1+P) Eq.8

Where a=0 , B=K in a running wave; and o=-ktan(k x) , PB=0 in a standing wave while the

other terms are defined by : @+ =2N+1 + 2M cos(2¢) .

r o, rlr}

Dy=ticl 2N+P or

— P —
(2N+14P) +2N] , - (2N+1+P)2|:(2N+1)<D- X

and the standing wave terms;
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Do 4P @1y A2 T SR 2 A
(QN+1+P)200,| T2 IT; 1« 27 (ON+1+P20.0, |2 TTYO.
s _ 4X P3
IT; .0+ (2N+1+P)2

In the limit of normal vacuum ( N=M=0) Eq.8 corresponds to the the results of ref.3 eq. 30

2D,=h2p? 2(1+P){ (lfp)z (1' ﬁ;ﬂ " h2a2r2(1P+P){1 +(1;)2[]3 } (125:)2 rf(li)J

P
2(14p)

+ h2k2T"

Let us first examine the terms in the running wave case by associating them with the normal
vacuum limit. As we discussed previously spontaneous emission in squeezed vacuum, represented
by the diffusion term Dyj, gives rise to increased fluctuations as a consequence of the increased
number of photons in this state. However, as can be clearly seen, the D induced absorption
contribution, even in the normal vacuum limit, can reduce the spread. This term has been shown
to originate from sub Poisson statistics of the emitted photons. In fact in the normal vacuum limit

D coincides exactly with Mandel’s Q parameter 13,14 .

Q=§(An):}> - @)

Q=0 indicates a variance of <n>1/2 in the number of the emitted photons(i.e no correlation between
the photons) and negative Q sub-Poisson statistics. Figure 4 plots Dy as a function of the laser
detuning. In squeezed vacuum , with an appropriate phase between the laser and the squeezed
vacuum, Dy can reach a value of -1, whereas in normal vacuum the maximum effect gives D= -
3/4. This indicates that in squeezed vacuum the photons can be emitted in an orderly manner,thus
eliminating this source of fluctuations. Unfortunately, in the traveling wave case, one can not take
advantage of this phenomenon due to the increased spontaneous emission term D). This is
demonstrated in figure 5a, which shows that the equilibrium temperature, given by

KbT= Dp/(-0v<F>), increases with the amount of squeezing.

We now turn our attention to the more complicated case of the standing wave, as in the
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running wave case, we still have enhanced fluctuations due to the larger spontaneous emission
term, D. However, the much larger average cooling force, in conjunction with the smaller
fluctuations, of the higher order terms, make it possible to reach temperatures lower than otherwise
obtained in normal vacuum. Unfortunately, one can not take full advantage of both of these effects

0.2

-----------

0.0

Q PARAMETER

T T

DETUNING ( I')

Figure 4: The deviation from Poisson statistics as a function of the laser detuning from resonance.The dashed line
shows the maximum effect in normal vacuum , while the solid line indicates that almost no spread in the number of
photons emitted in a unit time in squeezed vacuum can be achieved. The parameters used are €2=0.35T" in the normal

vacuum while Q=0.26T", N=2, M2=N(N+1) and ¢ = 0.5 = in the squeezed vacuum.

10

TEMPERATURE (4 F/Kb)

SQUEEZING PARAMETER (N)

Figure 5: The equilibrium temperature as a function of the squeezing parameter N in: a) running coherent laser
cooling wave with A=0.5T", Q=T", ¢ = 0.25 . b) a standing wave with A=0, Q=5T", ¢ = 0.6 & .The dashed line is

the Doppler limit temperature in normal vacuum.

at the same laser phase. Nevertheless, one can choose a particular phase which will minimize the
temperature as the squeezing increases. Figure 5b demonstrates the lowering of the equilibrium
temperature below the normal vacuum level (N=0) as the amount of squeezing increases.
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Moreover, the temperature can be decreased to values slightly below the Doppler limit (which in
normal vacuum is achieved at low intensity). Lowering the equilibrium temperature is not the only
benefit of squeezing, in the above example, the average force becomes larger than the maximum
value in the normal vacuum giving rise to a shorter equilibrium time. Notice, however, that high
degree of squeezing is needed in order to reach sub-Doppler temperature, in addition , de gradation
from ideal squeezing (M2<N(N+1)) results in a temperatures higher than the Doppler limit. This
unfortunately makes the experimental demonstration of this effect rather difficult.

A few words are now in order to get some insight into the modification of the fluctuations
in the standing wave case. We first discuss the various terms in the normal vacuum case. The most
notable difference from the running wave is the appearance of higher order terms in P. These terms

were interpreted as resulting from the fluctuations of the dipole force 3,5, 14and become important

at high laser intensity. In particular the P3 term is the only term that does not saturate at high P.

Hence, although one can use the stimulated force in normal vacuum at the blue side of resonance to
give a very large average cooling force(with the advantage of very short equilibrium time) the large

fluctuations make the equilibrium temperature much higher than the Doppler limit 3,
With regard to the modification of these processes in squeeze vacuum, we begin by

comparing the D;$ term to its counterpart in normal vacuum. As discussed in the running wave
case, this term can be interpreted as the deviation of the fluctuations from Poisson statistics. We

found that the modified D,$ in squeezed vacuum can reach values close to -1. However, the
behavior in a standing wave is quite different from the running wave, as is the case in the normal
vacuum .

The next term, D,3 , is not present in a running wave and we assume that it describes the

fluctuations of the lower order stimulated force. In a previous publication 6, it was shown that

while the velocity dependent stimulated force does not usually occur at low intensity, the inclusion
of phase interrupting events (which increase the dipole decay rate), gives rise to a stimulated force
term at lower order in laser intensity. In order to show that this identification is correct and to get

some insight into this term D, was calculated in normal vacuum but with increased dipole decay

I'2=I‘/2+I’¢, where I, is the rate of phase interrupting events, which gives:
2| (2I7
D;:-———ZP' _2 -1 A + 2}:?.
(1+pP)2 |l T 1P r

As can be seen an additional diffusion occurs as phase noise is added , I', >I'/2. Note, that

when T,<I7/2, this term becomes negative. Analogously, D,® in squeezed vacuum may be

associated with the fluctuations of the extra stimulated force in squeezed vacuum (the first term in
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the average force in squeezed vacuum , <FS>. Moreover, the fact that one of the dipole’s

quadrature components can decay at a rate smaller than I'/2 suggests that D,% in squeezed vacuum
can become negative, as indeed is the case.

Finally we turn our attention to the highest order termin P, D43, which is associated with
the fluctuations of the normal stimulated force.The modification of this diffusion term is critical for
achieving lower temperature at high laser intensity where the stimulated force becomes dominant.
Figure 6 shows the spatially averaged total diffusion constant 2Dp, in a high intensity standing
wave, as a function of the laser phase, in normal and squeezed vacuum.This comparison
demonstrates the dramatically reduced fluctuations in a high intensity standing wave under
squeezed vacuum conditions.

200

150

100

50

DIFFUSION CONSTANT 2Dp (h k)?

0.0 0.2 0.4 0.6 0.8 1.0
LASER PHASE (11 rad)

Figure 6: The diffusion constant in a high intensity standing wave as a function of the laser phase in the case of
normal vacuum (dashed line) and squeezed vacuum(solid line) .The parameters used are: A=0, Q=5T", N=5.

As to the experimental verification of these interesting phenomena. Although 90% squeezing has
already been achieved in the laboratory, it is important to note, that the calculation presented here is
carried out with the assumption that the atom is embedded in squeezed vacuum. In practice, the
output of present sources of squeezed light (degenerate parametric oscillators) can couple only to
part of the 4n steradians enveloping the atom. A possible solution to this problem has been

proposed by Gardiner who suggested coupling the squeezed modes to the atom in a micro cavity.
The other important assumption here is that the spectrum of the squeezing is much broader than

that of the atomic transition . Theories which include finite bandwidth of squeezing !5 have shown

that the essential features due to squeezing are preserved, even for a bandwidth of squeezing only a
few times larger than the width of the atomic transition. It should also be noted that it will be

interesting to develop the theory with bandwidth of squeezing larger than I" but smaller than the
Mollow sidebands separation . This can introduce the possibility of controlling all three of the
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decay rates of the atom and therefore might reduce the problem the diffusion due to of the higher
rate of spontaneous emission in a broad band squeezed light 16,
In conclusion, this paper demonstrates a dramatic modification of the quantum fluctuations

of the mechanical effects of light on atoms which are also embedded in squeezed vacuum. In the
running wave case the temperature can not be lowered below the normal vacuum level. However,
in conjunction with the modified average cooling force even sub-Doppler temperatures may be
reached, under ideal conditions, for atoms cooled in a standing wave. These interesting results, in
addition for being of potential use, offer some insight into the quantum statistics of the photon
exchanges between the atom and the field under squeezed vacuum conditions. Further investigation
of other schemes of cooling with squeezed light might also be beneficial
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On the Measurement of Time for the Quantum Harmonic Oscillator CZ$,5Z
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Abstract

A generalization of previous treatments

of quantum phasell] is presented. Restric-
tions on the class of realizable phase statis-
tics are thereby removed, thus permitting
“phase wavefunction collapse” (and other
advantages). This is accomplished by ex-
citing the auxilary mode of the measure-
ment apparatus in a time-reversed fashion.
The mathematical properties of this aux-
ilary mode are studied in the hope that
they will lead to an identification of a
physical apparatus which can realize the
quantum phase measurement.

1. The SG phase statistics

A satisfactory description of the phase
of the quantum harmonic oscillator has
recently been achieved by considering
the realizable measurement(! of the non-
Hermitian Susskind-Glogower (SG) phase

operatorl?
6d = (n+1)"%. (1)

Although it is not Hermitian, the SG
operator does correspond to a realizable
quantum measurement. It’s measure-
ment statistics, however, can not be cal-
culated from the familiar Hermitian oper-
ator rules (e.g. moments calculated via

(¥l(ei®)|¢),k = 1,2,... do not corre-
spond to the SG operator’s realizable mea-
surement statistics). We have demon-
strated a variety of ways in which the mea-
surement statistics of the SG operator can
be accessed (1M3], Perhaps the simplest of
these is to form the phase wavefunction

¥(¢) = (l¥)s (2)

from which the phase probability distri-
bution, p(¢) = |¢(¢)|?/27, and it’s associ-
ated moments follow directly. This procee-
dure is justified formally by the fact that
the infinite energy eigenkets of the SG op-

erator

16) = 3 e™n) 3)

n=0

resolve the identity, i.e. 1 = [T, g%l:b)(dtl.
This permits the extremely useful phase
representation of an arbitrary quantum
state:
*d
0= ZLawien @)

—x 27

analogous to the familiar number repre-
sentation of a state:

oo

[¥) = D (n|$)In). (5)

n=0

The number-ket expansion coefficients,
Yo = (n|y), may be viewed as a wave-
function in discrete n-space. The Fourier
transform relationship of the number and
phase wavefunctions

Y(P) = D Yne™"? (6)
n=0
dn= [ v

demonstrates the complementarity of pho-
ton number and quantum phase.

Position and momentum are famil-
jar examples of complementary quanti-
ties, whose wavefunction representations,
¥(z) = (z|$) and &(p) = (pl¢), are
also related via Fourier transform. In-
deed, several relations among ¥, and ¥(¢)
are reminiscient of those encountered in
Schrodinger’s wave mechanics. Analogous
to the position representation of the mo-
mentum operator, p — —ihj‘;, for exam-
ple, we have a phase representation of the
number operator, # — ij‘g, viz;

(Yl(A)*|p) = (8)

" i?w'w)(id%)*sbw) (9)

—x 27
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(where k = 0,1,2...). These relations yield
the correct form of the number/phase un-

certainty principle!3:
(An?)(A¢%) 2 $(1 - 2rp(m)%  (10)

Since we are dealing with a single har-
monic oscillator (of frequency w), phase
is related to time (¢ = wt) in a mod-2x
sense, and number is directly related to en-
ergy (. = H/hw — 1/2). In this sense, the
above constitutes a rigorous energy/time
uncertainty principle for the quantum har-
monic oscillator.

The class of realizable SG phase statis-
tics, however, is restricted (by a Paley-
Wiener theorem) due to the fact that ¢(¢)
is a one-sided Fourier series, i.e. this re-
striction stems from the absence of “nega-
tive number states” (¥, = 0 ¥Yn < 0). One
aspect of this restriction is that y(¢) is
prohibited from identicaly vanishing over
anon-zero interval — thus, delta-functions
in phase are not allowed. In as much as we
may desire a “wavefunction collapse” view
of a phase measurement, the SG statis-
tics appear to be incomplete. This dilema,
however, can be resolved by generalizing
an alternate route (the product space for-
malism) to the SG statistics.

Fundamental to the realizable measure-
ment of any non-Hermitian operator is
the existance of an auxilary noise source.
Zero-point fluctuations from this auxi-
lary mode prevent a simultaneous, per-
fectly precise, measurement of the non-
commuting real and imaginary parts of the
non-Hermitian operator (so that the un-
certainty principle is not violated). We
can study the interaction of our original
system of interest (Hilbert space ,) with
this auxilary system (Hilbert space )
by working in the product space H =
M, ® M,- The eztension of the SG op-

erator onto ¥ is [3
f=?),e0.+7 0@, (1)

where V¥ = [0}(0]. This extension
has eigenkets (of non-zero eigenvalue),

¥4)' = €|g)’, given by

16) = [0,10)a+ 3 €™9ln0)e (12)

n,=1

+ f: e="%|0),Ing)e. (13)

ne=1

These reside on a subset, ', of % which is
defined by the property n,n, = 0. When
the auxilary mode is in the vacuum state
gn. = 0), the ¥ measurement yields the

G statistics and their attendant Paley-
Wiener restriction.

2. Beyond the SG statistics

We can go beyond the SG statistics by
exciting the auxilary mode to create an

arbitrary state on M ':

W’)' = E ¥n,.0[14)410)a (14)

n,=0

+ D Yon.l0)lna)a. (15)

neg=1

For simplicity, let N = n, — n,, Yy =
Yno (VN 2> 0), and Y = ¢o,_N (VN <
0). The generalized phase wavefunction,

Y@= @) = S wne-N (16)

N=-oo

is a two-sided Fourier series. The the
Paley-Wiener restriction is removed and
¥'(¢) can “collapse” to a delta-function.
The fact that the class of y'(¢) is more
general than (and includes) the class of
¥(¢) should prove useful for various opti-

mizations. Indeed, Shapirol4] has pointed
out that error-free communication could
in principle be achieved by exploiting the
newly aquired generality described herein.

Provided that niether of our two modes
is purely in the vacuum state, the ex-
citation which creates a state on M is
not arbitrary in that the n,n, = 0 prop-
erty creates an entanglement. Thus, in
general, the original system and auxilary
modes are not statistically independent
on M, ie. |¢p) # [¥4)s|¥a)a. Denot-
ing the probability that a measurement
of fi, yields the outcome n by |¢2|?, we
see that [2]? = [n0]? (Vn > 1), whereas

1812 = [¥0,01>+ 21 [,nl? (similarly for

-3



|¥2|?). In spite of the lack of statistical
independence, we can therefore assign any
individual probability distributions for n,
and n, that we wish, provided that

lbo,0/2 = (19812 + 951> - 1) 20 (17)
is satisfied.

The auxilary mode can be interpreted
as a time-reversed mode in the following
sense. Consider the case of the auxilary
mode being in the vacuum state (ng = 0).
Denote the initial state by |¢p)’. The
state (in the Schrodinger picture) after
time evolution of an amount 7 is

|¢1-)' — e-iﬁ,w7|¢o)l, (18)

so that the relation of the phase represen-
tations of the initial and delayed states is
simply

$i(9) = Yo(d +wT) (e =0). (19)

Now consider the case of the original sys-
tem being in the vacuum state (n, = 0).
The Schrodinger picture of the delayed
version of an initial state [ip) is

hbr)' — e—iﬁ,wr|_¢'0>l. (20)

The initial and delayed phase representa-
tions for this case are related by

V() = dol¢ — wr) (n, =0). (21)

Thus the two modes are time-reversed in
that, under time evolution, the n, > 1
portion of the generalized phase wavefunc-
tion “moves backwards” with respect to
the n, > 1 portion.

Consistent with the time-reversal prop-
erty, the auxilary mode serves the topo-
logical role of a “negative energy” mode in
Hilbert space. The SG operator is a pure
lowering operator which stops at the vac-
uum:

¢dn)=[n-1) (n21) (22)

€i%(0) = 0. (23)
It cannot lower below the vacuum since we

have not allowed negative number (nega-
tive energy) states for the quantum har-

monic oscillator. It’s extension, Y, how-
ever, lowers the original system mode
number

Y 5)s]0)a = [ns—1)4/0)a (ns 2 1), (24)

then continues through the vacuum
710),[0)a = [0),[1)as  (25)

and raises the auxilary mode number
?w)aIna)a = |0),/na + 1)a- (26)

Topologicaly, it is as if ¥ continues to lower
below the vacuum into the auxilary (“neg-
ative energy”) mode. The visualization of
this behavioral aspect can be facilitated
by simply relabeling the H' number states
according to the value of N = n, — n,.

The auxilary mode has to be an irrevo-
cable part of the physical apparatus which
realizes the quantum phase measurement
(so that the uncertainty principle is sat-
isfied and so that the phase wavefunction
can collapse). All of the aforementioned
mathematical properties must be physi-
caly realized in the measurement appara-
tus. These restrictions should prove useful
in determining an apparatus which will re-
alize the quantum phase measurement.
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Abstract

We investigate the nature of the quantum fluctuations
in a light field created by the superposition of coherent
fields. We give a physical explanation (in terms of
Wigner functions and phase-space interference) why
the one-dimensional superposition of coherent states in
the direction of the z-quadrature leads to the squeezing
of fluctuations in the y-direction, and show that such
a superposition can generate the squeezed vacuum and

squeezed coherent states.

1 Introduction

The coherent states are always associated with the
“most” classical states one can imagine in the frame-
work of quantum theory [1]. In the present Lecture
we will study the quantum interference between co-
herent states and how such interference leads to gen-
eration of states whose properties are as far as one

can imagine from “classical” states. In particular a

one-dimensional superposition of coherent states can
exhibit sub-Poissonian photon statistics or squeezing.
In our Lecture we will concentrate mainly on squeezing
which appears as a consequence of quantum interfer-

ence between coherent states.

Light squeezing (for recent reviews see (2] as well as
topical issues of JOSA B [3] and J. Mod. Opt. [4))
remains a central topic in quantum optics. Generation
of squeezed light has been reported by various groups
[5-11] and offers new opportunities for the utilization of
light with reduced quadrature noise in interferometry,
fiber optics communications and high-precision exper-
iments. Most studies of squeezed states have concen-
trated on those states generated by quadratic field in-
teraction (e.g. parametric amplification). Recently it
has been shown by Wédkiewicz and coworkers [12] that
a superposition of two number states (for instance, the
vacuum state and the one- or two-photon states) of
a single mode electromagnetic field exhibits interest-
ing non-classical properties. In particular, squeezing
of the variances of the quadrature operators can be
seen (although not necessarily of the quadratic, mini-

mum uncertainty state quality). A superposition of a
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finite number of coherent states has also been stud-
ied [13-17). In particular, Hillery [13] has studied
the superposition of two coherent states |a) + | — a)
(the so-called “even coherent state” [14]) in connection
with amplitude-squared squeezing. Yurke and Stoler
[15) have shown that such a superposition of coherent
states can arise as a consequence of propagation of co-
herent light through an amplitude-dispersive medium.
It has been shown that the even coherent states exhibit
ordinary (second order) squeezing as well as fourth or-
der squeezing [16]. In a recent paper, Janszky and
Vinogradov [17] extended the idea of superposition of
coherent states and investigated the quadrature vari-
ances of a continuous one-dimensional superposition
of coherent states. They have shown that such a su-
perposition of coherent states can lead to significant

reduction of fluctuations in one of the quadratures.

At first sight, the result of Janszky and Vinogradov
seems quite remarkable, when reinterpreted in terms
of interference in phase space: a superposition of co-
herent states in the direction of the z-quadrature leads
to a suppression in the fluctuations in the y-direction,
whereas naively one would expect that the quantum
interference relevant to this superposition would mod-

ify the fluctuations in the original z-direction.

In the present Lecture we give a physical explanation
(in terms of the Wigner function and a phase-space for-
malism [18-20]) of the origin of this noise suppression
and squeezing for a one-dimensional superposition of
coherent states. We further demonstrate that a suit-
able Gaussian superposition of coherent states not only
can be squeezed, but is actually a representation of the

minimum-uncertainty squeezed vacuum state.

2 Simple example

We start our Lecture with a simple example consid-

ering a superposition of two coherent states |a;) and
|az)

W) = AY2 {Ja1) + |a2)}, (1)
where A is a normalization constant
A~ = 2(1 + Re{ai|az)).

The coherent state |a) can be obtained by shifting the
vacuum state |0) by the displacement operator D(a) =

exp(aal — a*a):
o) = D(e)[0),

where a! (@) is the creation (annihilation) operator of

a photon.

The density matrix corresponding to the superpo-
sition of coherent states (1) is given by the following

expression

p = Alla1)(1] + |az)(az] + |aa){az| + |az){es ), (2)

while the density matrix describing statistical mixture

of two coherent states |a;) and |ay) is

pm = pilan)(a| + p2|az){aq] (3)

where p; is the probability to find the system in the

state |a;). These probabilities are normalized to 1.

2.1 Wigner functions

Now we introduce the notion of the Wigner function

through the characteristic function C(W)(¢), which is
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associated with the symmetrical order of the bosonic

(photon) operators and is given by the relation [21]
CcW)(€) = Tr [pexp(i€a’ +i€*a)] . (4)

The Wigner function is defined as the Fourier trans-

form of the characteristic function C(W)(§):

W(g) =7~ / @ exp[—i(8" + € BICME). (5)

The Wigner function corresponding to the superpo-

sition of two coherent states (1) can be written in the

form
W(B) = A(Wy + Wy + Wi») (6.a)
where
Wi = 2 exp(~2las - B%); (6.4
and

2 1
Wiz = —exp [—-2‘ (Joa | + |012|2)]
x {exp [aza] — 2(B — a2)(8" — ai)] (6.c)
+ exp [m a3 — 2(8 — a1)(8* - a3)]}
The terms W; are the Wigner functions correspond-
ing to the coherent states |a;), while the term W,

arises due to the quantum interference between coher-

ent states under consideration.

The Wigner function for the statistical mixture (3)

is given by the relation
Wuy = pi Wi + p2Wo (7)

and it does not contain the term describing the quan-

tum interfence between coherent states.

2.2 Even coherent states

To simplify our task we will suppose that ay = —a3 =

a, where a is a real parameter. In this case we obtain

0.07

F(x, y)

0.01

—0.04

Figure 1: Wigner function corresponding to the even
coherent state (8) with a = 2. The role of the inter-

ference term is transparent.

from (1) the following state

|¥) = AV {|a) + | = @)}, (8)
with the normalization constant

A~1 = 2[1 4 exp(—2a?)].

The state (8) is called [13,14] the even coherent state.
The Wigner function corresponding to this state can be
found using the general expression (6) and is presented
in Figure 1, where z = Ref and y = Im3. If we
compare this function with the Wigner function (see
Figure 2) corresponding to the statistical mixture of

states |a) and | — «) described by the density matrix
. 1
pu =3 (la)el +1-a)-al) ()

we can directly observe that the term W, correspond-
ing to the quantum interference between states |a) and
| - @) should play an important rdle in statistical prop-

erties of superpositions of coherent states.
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Figure 2: Wigner function corresponding to the statis-

tical mixture (9) with a = 2 and p; = p; = 1/2

2.3 Quadrature squeezing

The quadrature operators @; and @, corresponding to
the creation and annihilation operators a! and a are
defined as:

a+at N

a; = 5 ; Gy =

2i (10)

We can easily find that variances of these operators

((Aa;)) (11)

in the statistical mixture (9) are:
A 1
(AarVu = 5 + o,

and

(Bd))m = 5.
From above it follows that the fluctuations in the a;
quadrature are larger in the case of the statistical mix-
ture compared to the vacuum-state (or the coherent-
state) value, which is equal to 1/4. Fluctuations in s
remain the same for both the statistical mixture (9) as

well as for the coherent state |a) (or | — a)).

o o o o
N (7] [(#7] >
8] o (3] Q
J 1 1 13 3
\

-

QUADRATURE VARIANCES
R

0.15
0.10 4
4
0.05
0.00 “Frrrrere e SR S e N .
0.00 050 1.00 1.50 2.00 250  3.00
ALPHA

Figure 3: Quadrature variances given by equations
(12) versus parameter a. The dashed line corresponds

to {(Aa,)?) and the solid line corresponds to ((Adz)?).

On the other hand, for the even coherent state (8)
we find the reduction of fluctuations in @, quadrature

(i.e. in the y-direction in the phase space — see Figure

1):

1 a?exp(—2a?)

S \2y - @Texpi—eat)
((AGQ) ) 3 l+exp(—2a2)' (12(1)
Simultaneously fluctuations in a; are enhanced:
1 a?
i)y = — . b
((Aar)%) it 1+ exp(—2a?) (12.6)

Variances ((Ad;)?) versus the parameter o (which is
related to the intensity of the even coherent state) are
plotted in Figure 3. We see that the maximum reduc-
tion in the fluctuations can be obtained for quite small
values of «. Reduction of fluctions below the vacuum-
state (or coherent-state) level is called quadrature
squeezing. From the above it follows that quadrature
squeezing can emerge as a consequence of the quantum
interference between coherent states. We should note
that even coherent states (8) exhibit not only quadra-
ture squeezing, but also higher-order squeezing as well

as amplitude squared squeezing [13,16].
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Figure 4: Photon number distribution for a superposi-
tion of two coherent states (8) with amplitude a = 2.
The dashed line is the distribution of the correspond-

ing statistical mixture (9).

2.4 Photon number distribution

Here we discuss briefly properties of the photon num-
ber distribution of the statistical mixture (3) as well
as the superposition (2) of two coherent states. The

photon number distribution is defined as

Pa = (nlln). (13)

and can be evaluated easily for both the statistical

mixture (3)

1
pM = i {p1|01|2"e""’"2 +p2|02|2"e-|a°|2} (14)

and for the superposition of coherent states (2):
P, = ﬁ' {|011|2"f="|°"|2 + |012|2"e'|°"|2
n!

+[(@105)" + (e lexpl-g(laal + oz} (19)

In the case of the statistical mixture the photon num-

ber distribution (14) is just the sum of two Poissonian

distributions corresponding to two independent coher-
ent states |a;) and |az). On the other hand, in the case
of a superposition of coherent states |a) and |a) the
term corresponding to the quantum interference plays
an important réle. To see this clearly we wil! assume
that @y = —az = a. In this case the statistical .nixture

(9) has just the Poissonian photon number distribution

aZn —lal?
P,f‘:l—r%—e”. (16)

The superposition of coherent states under consider-
ation (i.e. the even coherent state) has the following
photon number distribution:

2exp(=|a}?) |o|?"
P, = 1+exp(—|al?) n!
n =
0

if n=2m
(17)
if n=2m+1,

The oscillations in P, are very similar to those in the
case of the squeezed vacuum discussed by Schleich and
Wheeler [18]. Generally, these oscillations are due to

quantum interference in the phase space.

3 Continuous superposition of

CS

Now we will discuss the properties of one-dimensional
continuous superposition of coherent states. Recently
Janszky and Vinogradov [17] defined the continuous
superposition |€) of coherent states |@) in the following
way

I€) = Cr / (e, 6)la)da, (18)

—00
where the coherent state amplitude a is supposed to

be real. The normalization constant Cr is defined as:

Cr? =//_°o F(a,f)F(a’,f)exp[—(a—a')2/2]da(dlc;').
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With the superposition state |£) given by equation (18)
one can find expressions for the mean values of prod-
ucts of the creation a! and the annihilation & operators

of the field mode in the following form:
@rey= [ [~ Faore.o

x exp[—(a — a’)%/2]a™(a’)"dada’. (20)

In particular, if F(a,£) is taken to be the Gaussian

function
F(a,§) = exp [—(12—_££)a2] (21)
with £ € (0,1) and
CE - W-l/z(l_—é_ﬂ (22)

(26)r/2
then one can find for the variances of the quadrature

operators @, a; given by eq. (10) the following ex-

pressions
@i =(5) 4 @
(Adg)?) = ( ) 8+g (23.5)

From this one can conclude that the states |¢): i) be-
long to the class of the minimum uncertainty states;
i1) the fluctuations in the “second” quadrature are re-

duced below the shot noise limit.

We see, therefore, that the one-dimensional superpo-
sition (with Gaussian distribution) of coherent states
leads to states exhibiting a large degree of squeezing
(in the limit £ — 1). We now demonstrate by direct
calculations that if F(a,§{) is the Gaussian function
(21), then the state |€) is equal to the squeezed vacuum
state generated by the action of the squeeze operator
S(at,a,¢):

r.

$(at,a,€) = exp [7a")? - 247

¢ = tanhr, (24)

on the vacuum state |0) of the field mode. To do so
we decompose the coherent state |a) in equation (18)

into number states:

| )—exp(—02/2)z\/—

and exchange the order of integration and summation

procedures, i.e. we rewrite equation (18) in the form

CFZ \/—ln)

° 1
X da a” exp [—-—-az] .
/_oo 2£

After performing the integration on the r.h.s of equa-

tion (25) we find

(25)

) = ‘“Z oL enpomy,  (26)

from which it follows that the one-dimensional super-
position of coherent states (18) with the distribution

function (21) is identical to the squeezed vacuum state:

e =cr [ " P, €)daD(a)|0) = $©))0).  (27)

We should stress here that the last equation describes
the relation between the states, but not between the

displacement and the squeeze operators themselves.

3.1 Origin of squeezing

We next provide a physical explanation of the origin
of the squeezing generated by such a superposition.
We address the question of how the one-dimensional
superposition of coherent states in direction of the z-
quadrature (corresponding to the operator a;) leads to
squeezing of the fluctuations in y-direction (associated
with the quadrature operator @;). To do so we use
the Wigner-function phase-space formalism: we define

the Wigner function W(g) in the following way. First,
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we introduce a “generalized” characteristic function

CW)(a, o, ():
CW)(a,o',) = (| D))
= exp [—% 2+ iCo’ +iC*a — %(a - a')f] . (28)
and the “generalized” Wigner function W(a, &, §):
W(a,o',8) = 1r"2/d2(
x exp[—i(¢* B + (A )NCM)(a, o' ,()

= %exp [%(ﬂ‘ —ﬂ—a'+a)2]

(29)

1
X exp [—a(ﬁ +8° —a—-a')? - %(a - a’)z] .
The Wigner function W () can now be expressed in a

very simple form:

W(B) = C% / /_ Z dada'F(a)F (o')W (a, o', B).
(30)

To make our discussion more transparent we will
first analyze in detail the simple superposition of two
coherent states |a) and | — a) and the vacuum state

0), i.e. we will study the state [17]
1€} = Cr {la) + pl0) + | — @)}, (31)

which can be obtained from equation (18) with a
weight function F(z) = §(z — a) + pé(z) + 6(z + a).
The normalization constant in this case is given by the

relation:
Cp? =2+ p*+4pexp(—a?/2) + 2exp(—2a?). (32)

One can easily find the variance of the quadrature op-

erator as for the state (31):
- vay 1 2.2
((Aa2)%) = 4 {1-4Cka

x[2exp(=20) + pexp(—ad)]},  (33)

from which it follows that a high degree of squeezing
(up to 74%) can be obtained for the optimum case,

a = 1.57 and p = 1.35.

The Wigner function of the state (31) can be ex-

pressed as the sum of two terms:

W(B) = Wa(B) + Wuant(B), (34)

where

2
2CF {expl-2(z - a)* = 297]

Wcl(ﬂ) :

+ exp[-2(z + @)? — 24°] + p° exp[—2z% — 2¢%]}
(35)

and
2C% 2 9
Wouant(8) = —= {2 cos(4ay) exp[—22? — 27

+p cos(2ay) [exp (-2(z - af2)? - 2y?)

+ exp (-2(z +/2)* — 24°)] } - (36)

The normalization constant Cr in this case is given
by equation (32) and z = Ref; y = ImpA. The function
Wa(B) is equal (up to normalization factors) to the
sum of the independent Wigner functions of the vac-

uum state and two coherent states and can be identi-
fied with the Wigner function of the statistical mixture
of coherent states and the vacuum state described by

the density matrix

pu = p110){0] + p2la)(al + pal —a)(—al  (37)

with properly chosen parameters p;.

This function is plotted in Figure 5a, from which it
is obvious that W (B) is positive for any value of z
and y. The phase-space contour lines of this function

are plotted in Figure 5b. In contrast to the function
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Figure 5: Function W, (z,y) given by Equation (35)
representing the part of the Wigner function of the
superposition state (31) is plotted for & = 1.57 and
p = 1.35 (a). In Figure 5b the phase-space contours

corresponding to this function are plotted.

Wei(B), the function Wyyant(B) can be negative. This
function describes in phase-space the quantum inter-
ference effects between the states |a), | — a) and |0).
The quantum interference is responsible the appear-
ance of the cosine terms in the y-direction, and these
oscillating terms are responsible for: 1) negative val-
ues of the function Wyyan:(B) (see Figure 6a) as well
as the total Wigner function W(B8) (Figure 7a); 2)
squeezing of the variance of the quadrature operator
in the y-direction, which is clearly seen in Figures 6b

and 7b.

This simple example helps us to understand the na-
ture of squeezing in the one-dimensional superposition

of coherent states. The squeezing arises as a conse-

quence of quantum interference between the macro-
scopically distinguishable states. Generally, if more
states are involved in the superposition, a higher de-
gree of squeezing (depending on the appropriate shape
of the distribution F(a)) can be obtained for the same

mean value of photons in the mode.

Now we turn our attention to the displacement of
the superposition state such that there is a mean field
amplitude. We show that a one-dimensional superpo-
sition of coherent states with the distribution function
F(a,&, B) centered at a non-zero value of a is equal to
the squeezed coherent state. We take for our distribu-

tion function F(a,§, 3) the displaced form
1-—-
( 255)(0’ - z")z] !

with the normalization constant Cr given by equation

F(a,¢,8) =exp [— (38)

(22) and with a displacement

1/2
e (129"

In this case from equation (18) we obtain for the state
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interference between states in phase space is plotted
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|€) the following expression:

€)= (1 - €)1 exp [—(1 - f)z?)]

2

x 3 V) = €)zo]”

lIn/2)) ] ¢ N
X ,{% (n — 2k)'k! (2(1 _5)233) [n), (39)

where ||z|| denotes the greatest integer less than or

equal to z. Using the new parametrization:

1 —£
Peamen S g O

with u2~»? = 1 and || > |v|, we can rewrite equation

(39) in the form:

1€) = w1/ exp [_(_1—2M ﬂz}

v n/2
z \/(?<2ﬂ> Ha(B/\/Zw)ln),  (41)

where H,,(:c) is the Hermite polynomial. It is obvious
that the last expression obtained describes precisely
the squeezed coherent state as defined by Yuen [22],

i.e., we have explicitly proved that

3©)DB)0) = Cr / " da Fa &, B)D(@))0). (42)

In other words, we can construct, through a one-
dimensional superposition of coherent states with a
properly chosen distribution function, the squeezed co-
herent state. Obviously, the physical reason for squeez-
ing is the same as for the case of squeezed vacuum
state discussed earlier. It is amusing that a superposi-
tion of the most classical of field states, the coherent
states, can through the action of quantum interference,
generate the archetypal nonclassical field states — the

squeezed vacuum and the squeezed coherent state.

It can also be shown that the squeezed number state
(23] defined as a result of a action of the squeezing op-

erator $(£) on the number state |n) can be constructed

as a one-dimensional superposition of displaced num-
ber states [24], the states obtained through the action
of the displacement operator on the number state, that
is

5(&)|n) = CF /_ ” F(a,€&)daD(a)|n), (43)

00

where function F(a,£) and the normalization constant
CF are given by the Equations (21) and (22), respec-
tively.

4 Discussion

In our Lecture we discussed the réle of the quan-
tum interference in the origin of squeezing in the one-
dimensional superposition of coherent states. With
the aim to make the discussion as clear as possible
we started our Lecture with a simple example of su-
perposition of just two coherent states |a) and | — o).
Finishing the Lecture we return to this simple example
but we take into account the relative phase between the
coherent states under consideration, i.e. we will study

the following superposition
¥)= 412 {|a) + ¥ —a)},  (44)
with the normalization constant
471 =21+ cos pe2").

We will show that the phase ¢ plays a crucial réle
in the character of the quantum interference between

coherent states.

First of all we write down the corresponding Wigner
function for the state (44). This function can be ex-

pressed as a sum of two terms:

W(,B) = Wcl(,B) + unant(ﬂ), (45)
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Figure 8: Wigner function corresponding to the super-
position (44) of two coherent states with the relative

phase ¢ equal to 0 (a); 7 (b) and 7/2 (¢); & = 2.

where

4A
Wa(f) = == {em2eme’ 2"

+e-2(z+a)°—2y’} (46)

and

4A 2_gy2
Wouans(8) = °= cos(day+¢)e™2" =" (47)

As earlier we use the notation z = Ref; y = Imp.

To investigate the dependence of the quantum in-
terference on the value of the parameter ¢ we will em-
ploy two parameters describing nonclassical properties
of light fields. Namely, we will study the Mandel Q@
parameter, defined as
_ (a0 - (3)

(n)

which is related to the degree of sub-Poissonian pho-

Q (48)

ton statistics. In particular, if @ = 0 the state has
Poissonian photon statistics, while for @ < 0 (Q > 0)
the state has sub-Poissonian (super-Poissonian) pho-
ton statistics. The second parameter we will study is

the squeezing parameter

Si = 4((Afi,’)2) -1 (49)

describing the degree of quadrature squeezing. A state
is said to be squeezed if S or S is less than zero. In

what follows we will suppose three values of ¢.

1) Let the phase ¢ be equal to zero. In this case the
state (44) is equal to the even coherent state (8) and

we find
_ 4a?exp(—2a?)

= T exp(—de?) (50)
4a?
= ; 1
51 1 + exp(—2a?) >0 (51)
2 oy (—9a?
Sy = 4a? exp(—2a?) <0 (52)

"1+ exp(—2a2)
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from which it follows that the even coherent state has
super-Poissonian photon statistics and simultaneously

is squeezed in the a, quadrature.

2) If ¢ = = then the state (44) is an odd coher-
ent state [14]. This state has sub-Poissonian photon

statistics, i.e.

_4a?exp(—2a?)

Q= 1 — exp(~4a?) <9 (33)
but is not squeezed
4a?
2 —9n2
S, = —doZexp(z2a%) (55)

T1- exp(—2a?)

3) Finally, if ¢ = 0, then the state (44) has Poisso-

nian photon statistics

Q =0, (56)

and simultaneously we can observe squeezing in the a,
quadrature

Sy = 4a?; (57)

S» = —4a?exp(—4a?) < 0. (58)

The dependence of the statistical properties of su-
perpositions of coherent states on the value of the rel-
ative phase is caused by the character of the quan-
tum interference, that is whether this interference is
constructive or destructive in various regions of phase
spaée. This can be clearly seen from Figure 8 in which
the Wigner function corresponding to the state (44) is
plotted for ¢ = 0;7 and n/2. We see significant dif-
ferences in the shape of Wigner functions for various
values of ¢, which is related to the completely different

statistical properties of the corresponding states.

5 Conclusion

The main information carried in this Lecture is: A su-
perposition of the most classical of field states
can through the action of quantum interfer-
ence, generate the archetypal nonclassical field
states: the squeezed vacuum and the squeezed

coherent state.
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LIMITATIONS ON SQUEEZING AND FORMATION OF THE SUPERPOSITION OF TWO
MACROSCOPICALLY DISTINGUISHABLE STATES AT FUNDAMENTAL FREQUENCY IN THE
PROCESS OF SECOND HARMONIC GENERATION.

Nikitin S.P., Masalov A.V.
Lebedev Physical Institute

Moscow, USSR

In this paper the results of numerical simulations of quantum state
evolution in the process of second harmonic generation (SHG) are discussed.
It is shown that at a particular moment of time in the fundamental mode
initially coherent state turns into a superposition of two macroscopically
distinguishable states. The question if this superposition exhibits quantum
interference is analyzed.

To describe the SHG we use the following Hamiltonian:
H=toa'a+ 2hwb*b + gh(afa*b + aab*)
Here a, a*, b, b* are annihilation and creation operators of the fundamental
mode and harmonic mode respectively, and g is a coupling constant
proportional to the nonlinearity of the medium. The nonlinear interaction is
described by the last term in the Hamiltonian. This Hamiltonian corresponds
to the case when there is no absorption loss in the medium. The initial
quantum state was taken to be a coherent state in the fundamental mode and
vacuum state in the harmonic mode.

In our calculations we have used a number-state basis in which a quantum
state is Jjust a vector and operators are matrices of c-numbers. Details of
our calculations are described in Ref. 1. Earlier similar calculations have
been made by Walls and Barakat. It is known that squeezing in the SHG has a
minimum. It is shown in Ref. 1 that this minimum appears due to the formation
at the fundamental frequency of the superposition of macroscopically
distinguishable states. It is the formation of this superposition that is the
limiting factor of the largest squeezing achievable in the process.

Fig.1 represents the dependence of amplitude squeezing in the
fundamental mode versus the dimensionless time t=gtV§N. N is the initial
average number of photons in the fundamental mode. Fig 2 represents the
quasiprobability distribution for the fundamental mode Q(a)=<a|p|a>/n when
this superposition is formed. Here p is the density matrix of the quantum
state and ]a> is a coherent state described by a c-number a«. Earlier, in
Ref.2 it was shown that superposition of two coherent states can be obtained
using Kerr nonlinearity. The SHG process appears to be alternative nonlinear
process in which the superposition can be obtained.

The question of the origin of this superposition is discussed in Ref. 1
where this phenomenon is attributed to the instability of the SHG process
with respect to the initial harmonic phase which is completely uncertain for
the 1initial vacuum state in the harmonic mode. This instability was
illustrated by a classical equation solution where quantum uncertainty of the
harmonic state and the fundamental state was imitated by randomized initial
conditions distributed by the normal law with the same dispersion as quantum
states.
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Here we would like to pay more attention to the question of whether the
superposition is coherent, that is, a pure quantum state, or whether it is a
statistical mixture of two coherent states. In order to angwer this question
one usually uses simple numerical criteria such as T = Trp~ For a pure state
T = 1 while for a statistical mixture T < 1. The dependence of T versus T is
shown on the Fig. 3. If N=10 the superposition appears at Tt = 4. It is
clearly seen on Fig. 3 that T at this time is very far from parameter
specific to the pure state. So, one can expect that no quantum interference
effects could be seen in this state. However, we may check it directly using
the density matrix.

To see quantum interference we may consider the function P(x)=<x p|x>.
Here |[x> 1is an eigenstate of a quadrature operator x = (a+a )/V2.
Experimentally this function P(x) can be obtained wusing homodyne
measurements. It is known that for a coherent state this function is a
gaussian. If we calculate this function for a statistical mixture of two
coherent states then we get the sum of two gaussians and no quantum
interference. For a quantum superposition of two macroscopically
distinguishable state this function exhibits an interference pattern. It is
therefore interesting to check if the superposition formed in the process of
the SHG exhibits quantum interference pattern in P(x).

Fig. 4 represents P(x) calculated from the density matrix of the
superposition at 7v=4 and N=10. This function obviously exhibits quantum
interference, though visibility of the interference pattern is less than for
a pure superposition of two coherent states. This result could be explained
if we assume that the main portion of the statistical mixture, which in fact
the above-mentioned superposition 1is, 1is a quantum superposition of two
coherent states. Other states which the mixture contains reduce visibility of
the interference but can not destroy it completely. Thus the superposition
formed in the process of the SHG can exhibit quantum interference though,
generally speaking this superposition is a statistical mixture rather than a
pure state.

Conclusions

Squeezing in the process of the SHG is limited because of the formation
of the superposition of macroscopically distinguishable states at the
fundamental frequency. This superposition forms because of the quantum phase
uncertainty of the initial harmonic state. Though this superposition is not a
pure quantum state, it does exhibit quantum interference in P(x). This fact
illustrates that analysis of simple numerical criteria such as Tr p2 is not
enough to decide whether quantum interference appears or not.

REFERENCES:
1 Nikitin S.P.,Masalov A.V.,1991 accepted for publication in Quantum Optics.
2.Yurke B. and Stoler D., 1986, “Generating Quantum Mechanical

Superpositions of Macroscopically Distinguishable States via Amplitude
Dispersion," Phys. Rev. Lett., 57(1), pp.13-16
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Fig. 4 Quantum interference in P(x) = <x|p|x> for the fundamental mode at
T = 4. Average photon number N = 10.
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FIELD QUANTIZATION _ AND  SQUEEZED STATES
GENERATION IN RESONATORS WITH TIME-DEPENDENT
PARAMETERS

V.V.Dodonov, A.B.Klimov, D.E.Nikonov

Moscow Physics Technical Institute,

{6, Gagarin St., Zhukovsky 140160

Lebedev Ph%SLCS Institute, :

53, Leninsky Prospect, Moscow 117924 USSR

The problem of electromggnetic field quantization is usually
considered in text-books under the assumption that the field oc—
cupies some empty box. The case when the box is filled with a
uniform dielectric medium was considered in (Refs.1,2). The quan-
tization of the field in the medium consisting of two untform
dielectrics with different permittivities was studied  in
(Refs.3-5). The case of an arbitrary inhomogenious dielectric
medium was investigated in (Refs.6,7)” and especially in (Refs.
8,9). However, in all mentioned papers the properties of the me-
dium were believed time-independent. Here we want to consider the
most %Qneral case of non-uniform and time-dependent media. Earli-
er this problem was investigated in (Ref.10), but its authors
considered only approximate solutions of the Heisenberg equations
for field operators in the case of small polarization of the me-
dium. Our approach differs_from that of (Ref.10) and enables to
study the case when non-uniform time—dependent dielectric medium

is confined in some space region with time-dependent boundaries.

The basis of the subsequent consideration is the system of
Maxwell’s equations in_ linear passive time-dependent dielectric
and magnetic medium without sources:

rot E = -1/c 9aB/dt, rot H = 1/c aD/at,

div D =0 div B =0

D = e(r,tiE, B = n(r,th. | (1)
Introducing the vector potential according to the relations:

B = rot A, E = -1/c 0A/ot (2)
and imposing gauge conditions

div(edAd/ot) = 0, ¢ =0 (3)

we can replace the system of the first-order equations (1) with
the single second-order one:

rot(1/p rotd) = -1/c? 8/0t(edA/at) = 1/c 0D/ot. (4)

One can check that the vector equation (4) coincides with the set
of Euler’s equations
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3/0t 0L/3(d,A,) + 8/0x; 0L/3(0,4p) — 3L/0A, = 0 (5)
for the Lagrangian density

L=172 [ e(r,8)(2473t)%/c? - (rotA)?/p(r,t) 1 (6)
in the case of quite arbitrargtitime and ?%ace dependences of the

dielectric and magnetic permittivities. en introducing the ca-
nonically conjugated variable

P = 3L/3(3.A) = e(r,t)/c? 0A/dt = -1/c D (7
one can construct the Hamiltonian density
H=Po3A/dt - L =1/2 [ D*/e(r,t) + B*/n(r,t) 1] (8)

which leads again to eq.(4). But in the general case the expres-
sion (8) is by no means the energy of the system due to possible
time-dependences of the_coefficients. This fact complicates the
quantization procedure. The usual procedure consists in introdu-
cing the field expansion over mode functions

D(r,t) = Zgy(luy(r), B(r,t) = Zpy(tuy(r. (9

Substituting. these expansions into the Hamiltonian density (8)
and integrating it over the space variables one gets usually (due
to certain orthogonality properties of functions uy and vy) @ sum
of independent oscillator-like Hamiltonians

H=§ HGr,0)d% = 172 T(uepa2 + Mg D). (10)

After this the coefficients py and gy are proclaimed operators
satisfying canonical commutation relations, so that the JFields
become gqantzzed. But this sketch of standard gquantization scheme
shows distinctly that it can be used onég in the case when the
solutions of Maxwell's equations can be Factorised into the pro-
ducts of two functions: one dependent only of time, and another
dependent on space coordinates only. In the general case of non-
uniform and ‘time-dependent medium such solutions do not exist,
and the usual scheme of quantization is impossible. This means in
particular, that we cannot obtain any Hamiltonian and, con-
sequently, any unitary evolution operator. Therefore the GSchro-
dinger pucture does not exist in the general case. But the He-
isenberg description is still pessible. It can be introduced as a
eneralisotion of the approach used earlier by Moore (Ref.11) for
the field quantization in the empiy space region confined with
moving boundaries.

First of all we notice the important property of equation
(4): it admits a time-independent scalar product of any two dif-
ferent solutions in the following form:

((A,B)) = -1/2 i §d®r e(r,t)[AdB"/0t - B 0A/at]. (11)
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It is essential that the dielectric permittivity is a real
function, i.e. the medium is assumed lossless. Besides, the vec-
tor potential has to_turn_into zero at the surfaces confining
the integration domain. The case of mqung.boundartes_(consade—
red in Ref.11) is included to general situation automatically.

Suppose that before some instant of time (let it be_t=0) both
the medium and the boundaries were time-independent. Then solu-
tions of (4) could be factorized:

A(r,t) = g(r)exp(~iwt), (12)
rotl1/p(r) rotgl - w?/c? e(r)g = 0. (13)

ghetscalar product (11) was proportional to the usual scalar pro-
uct:

((A4,B)) = 1/2(w, + wplexpli(wy—w,)t1(gys,94), (14)
(gy,gq) = §d°r e(r)gy"ga- (15)

But it is known that solutions of eq.(13) form the complete
orthogonal with respect to scalar product (13) set of vector
functions. Therefore any real vector field can be decomposed
over this set of functions:

A(r,t) = Zla,gy(rexp(-iwgt) + ay"gy " (Pexp(ioyt)l.  (16)

Comparing (14) and (15) we_can see that the basis functions can
be normalised in such way that they will satisfy the relations

((An,A")) = 6"", ((AN,A"”)) = 0. (1?)

After the instant when the properties of the medium became time-
dependent the basis functions change their explicil expressions

but the scalar products (17) will not change, and instead of (16)
we can write the decomposition

ACr,t) = ZlaAy(r, t) + a, A" (r, B)]. (18)

Then we proclaim the (time—independent) coefficients of this ex-
pansion operators satiséying bosonic commutation relations and
thus obtain the quantized field from a classical one.

If in some time the medium will become again time-independent
then the physical states will be  described with monochromatic
mode functions of the tgpe (12), which will not coincide in gene-
ral with the basis functions of expansion (18). Therefore we will
have two different expansions of the field operator: expansion
(18) over the states corresponding to the ghysacaé photons in re-
mote past and expansion Like (16) over the physical states ari-
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sing in future. Designating the "physical" states with the super-
script "zero", we can expand each set of basis functions into
a series with respect to another one:

Ay - Flawudn® + Bywdy® "], (19)

The correspondinz expansion of "new" creation and annihilation
operators over the set of "old" ones is as follows:

2,* = Flayaww + ayBun"l. (20)

The initial state of the ?uantized field was determined with res-
pect to the set of "old" operators ( without the superscript
'zero™ ). Then using expansion (20) we can calculate all quantum
statistical characteristics of the field in the final state. Tak-
ing into account conditions (17) and the evident properties of
the scalar product (11)

((4,B)) = ((B, A" = -((B",A™)) (21)

one can express the coefficients of expansions (19) or (20) as
follows:

Gy = ((AuvAn(O))). Bun = ((An”pAn(O)))“- (22)

The quantization scheme sketched above can be applied to the
most general situation of an arbttrar% space—-time nonuniform me-—
dium and moving boundaries. However, the explicit calculation of
the mode functions and coefficients of the canonical transforma-
tion (20) can be performed only for rather simple special cases.
The first of them corresponds to the media with factorized elect-
ric and magnetic permittivities:

e(r,t) = e(r)y(t), u(r,t) = plr)v(t) (23)

( the boundaries do not move). Then mode functions can be also
sought for in a factorized form:

Alr,t) = g(r)tE(t) D(r,t) = e(r)g(rin(t). (24)
Let us demand the function g(r) to satisfy the following equation
rot(1/p rotg) = k¥ (r)g, k = const. (25)

Then eqs.(2) and (4) result in the following ordinary differenti-
al equations for time-dependent factors of the vector potential
and electric displacement:.

n = k2cE/v(t) € = —cn/y(t) (26)

Egs.(26) resemble equations of motion of an oscillator with time-
dependent mass and frequencies. The role of generalized coordi-
nate is played by the electric displacement time-dependent fac-
tor, while ~the vector potential time-dependent factor plays the
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role of generalised momentum. Eqs. (26) can be replaced by the
following second-order differential equation:

N+ 7N + QAR =0, §=v/v, Q2= k2c?/v(t)y(t). (27)

We shall consider the field inside a resonator. Then solutions of

eq.(25) can be chosen real vector functions satisfying the ortho-
gonality conditions:

§d®r e(r)ge(r)g (r) = k%6,,. (28)

Complex solutions of eq.(27) can be normalized as follows:

v(t) [nn" - a*nl = -2i. (29)

This means that we choose the solution of eq.(27) in the statio-
nary case in the form of

No(t) = (voQo) '/ 2exp(-iQ,t). (30)

_ Due to (28) coefficients (22) are not equal to zero only for
coinciding indices (intermode interactions are agbsent), so we can
omit the indices. Taking into account eqs.(ii),(26),(36) one can
represent these coefficients as follows:

o = 1/2(ve/Q) 1 2(Qn + in)ezp(iQt) (31)
B = 1/2(vy/Q) 1 2(Qon - in)exp(iQyt). (32)

Let us introduce the quadrature components and their variances as
follows:

X, = (2712, +a,") X, = i(2)712a," - a,) (33
Ory = 1/2<)?,)?J +§3§,> - <§,><§3>. (34)
Suppose for simplicity that initially the field was in the cohe-

rent quantum state. “Taking into account eq.(20) one can easily
obtain the following expressions:

Ogq = 1/7210+B12 = 1/2v,Q, 1012, (35)
Ogp = 1/21a-B1? = 1/29Q,” 1 In12, (36)
0y, = Im(aB™) = 1/2v,Re(nn™). (37)

We see that time-dependent medium transforms an initially cohe—
rent state to a “correlated quantum state" characterized by
a nonzero covariance (37) and unequal variances (33) and (36).

This state minimizes the generalized uncertainty relation by
Schrodinger and Robertson (Refs.12,13):
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015022 - 0122 ) 1/4 (38)

g the equalit% takes place _in the case under study due to eq.
29)). For the detailed review of various forms of uncertainty
relations see (Ref.14). Properties of correlated and squeezed
quantum states were investigated in (Refs.15-19).

Let us consider as an example the case of a parametric exci-
tation when the properties of the medium harmonically oscillate
with twace_freguency with respect to some (resonance) mode. This
can be achieved, for example, by means of changing the density of
thgtmedzum. Since the magnetic effects are extremely weak, we can
write

Q2(t) = Q,2 (1 + 2c052Q,t), { = 0. (39)
We look for the solution of eq.(27) in the form

N(E) = (veR) 172 [ul(t)exp(iQpt) + v(t)exp(-iQyt)] (40)
with sldwly varying time dependent amplitudes. Substituting (39)
and (40) 1into (27) and performing averaging over fast oscillati-

ons we arrive at the equations.(ngglecttng he second order deri-
vatives of slowly varying amplitudes)

u = iQuev/4, v = —iQqeu/4 (41)
whose solutions are
u(t) = cosh(Qq2t/4), v(t) = -i sinh(Qqet/4). (42)

The variances (35),(36) oscillate with the twice resonance fre-
quency, but their ratio (the so called squeezing coefficient) is
confined at every instant between the values

exp(—Qoet) € Qu2044/0,, < exp(Qo2t). (43)

Certain inequalities for the s?ueezing coefficients can be found

for arbitrary time dependence of the frequency in eq.(27). Consi-

?ﬁr;ngiggggg nonmagnetic medium one can prove the unequalities
efs. 19,

[(1-RT/2)/(1+RY/2)1? g Q,2044/05, < [(1+RY/2)/(41-R'/?)]1? (44)

where R is the energy reflection coefficient from the effective
potential barrier corresponding to eq.(27)

We would Like to emphasize once again that we have used the
Heisenberg picture for the description of the quantized electro-
magnetic Field. However, since for a factorizable medium (23)
Mazwell’s equations can be derived_ from the Hamiltonian (8) or
(10), the Schrodinger description is also possible in this case.
We shall illustrate it for the most simple case when
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v(t) =1, y = x(ht), x(0) = 1. (45)
Here h is a_characteristic freguency of the medium properties
changing. The method used below can be easily applied to_a more

%eneral case. Let ¢ = 1 and the dimensionless iime t, = kt. So
27) results in

n + w(atydn = 0, (46)

where
wl(aty) = w2(ht) = 1/y(ht), 2 = h/k. (47)

The quantization of a harmonic oscillator with a variable fre-
?gsqcy is done by introducing integrals of motion operators (Ref.

Alty) = (2742 (Yt )E - §ltIN), a'(ty) = [a(t)1 .  (48)

Here y(t,) is a "ruling solution" of eq.(46) satisfying the time-
independent condition

Yty () - ¥ " (tdy(ty) = 2i (49)
to ensure the following commutation relation
[a(ty),a’(ts)] = 1. (50)

We want to stress the difference in signs of right-hand sides of
(29) and (49) due to the difference between Heisenberg and Schro-
dgnger pictures. For the integrals of motion to coincide at t, =0
with creation and annihilation operators, it is necessary (in ac-
cordance with (49)) to choose the initial conditions

y(0) =1, y(0) = i. (51)
After the instant t, = t., when the medium properties stop chang-

ing, "new" creation and annihilation operators are to be introdu-
ced:

Boy = iC200E)7H2 (E - inolte)). (52)
Then the expansion of "new" operators over "old" ones is

Qeo, = aalts) + pa’(ty) (53)
and we can get

B(tr) = 1/2 (w(te)) 12 (ultdy(ty) + iy(te)). (54)

Creation and annihilation operators mizing results in a change of
occupation numbers in a given mode. Generation of photons from
vacuum due to the medium properties change is worlh considering.
If at t, = 0 the number of photons was zero then at an instant t,
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>0 the average number of photons is
n= ﬁ.'(to)B(to)- (55)

Yablonovitch (Ref.21) stated that photons will have a thermal
distribution at a temperature proportional to the rate of the me-
dium properties change , i.e. proportional to h. Then for high
photon energies (proportional to k) there will be

n ~ exp(-const k/h). (56)

The solution of (39) at a little t, can be found for an arbitrary
law of change of y(t). At t, = 0 we shall have

d/dt, ((@)'/? B) = 1/2 dw((at,))/dt, (57)

B ~ to/2 dlw(at,y))/dt, ‘o (58)
->

n~ (t/2 d(w(ht))/dt). (59)

For any instant t a decomposition of the solution can be found in
the limit 2 —> 0 ( for high photon frequencies ) by means of the
method of mult#—scale asymptotic decompositions (Ref.22) for an
arbitrary law of change:

y = (oaty)) 12 { exp(is) + & [E(at,)exp(is) +
+ F(aty)exp(-is)] + ... } (60)

where
s = 2/2 [exp(aty/2) - 1] (61)

and functions E and F are determined by
F = const
dE/d(aty) = -i/(4w?) d?w/d(2ty)? +
+ 13/(80®) [dw/d(zty)]?
with initial conditions
E(0) + F(0) =0, i (EC0) - F(0)) = 1/2 dw/d(at,). (63)
For the case ¥ = exp(-ht), which approximately describes dielect-

ric permittivity falling achievable in experiments (Ref.21), one
can find the exact solution — a linear combination of two Han-

kel's functions H,‘'’[2/2 exp(aty/2)] and H,'?’[2/2 exp(aty/2)].
Nevertheless an asymptotic decomposition is still more useful and
can be expressed in an explicit form:

(62)

y = exp(-aty/4)exp(is) + 2 exp(-ety/4) { (-i/16) x
x [1 + exp(-=aty/2)lexp(is) + i/8 exp(-is) } + ...  (65)
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Now we have

B = i@/8 [exp(-is) - exp(-at,/2)exp(is)] (66)
and the number of photons
n = 22/64 [1 + exp(-at,) - 2cos(2s)exp(-zt,/2)] (67)

This number oscillates with a growing frequency and a decreasing
amplitude and in the limit t, —> » tends to a constant

n -> h?/64k?.

As we can see it is not in agreement with the statement (38) from
(Ref.21). The energy of photons in the mode is

nwk —> h?/64k exp(ht/2), t > w» (69)

and it ?rows without a limit. Also at any time the sum of ener-
gtes of all modes diverges. This can be explained bg the fact
hat it is impossible to decrease dielectric permittivity to zero
for nondispersive media; thus the assumption that it does not de-
pend on_a frequency is not valid for high frequencies. In the
other limit 2 = h/k -> « we introduce another dumensionless time
t, = at,. The solution ezxpansion over 8 = 1/& ( not valid for
large t; ) is

y=1+08it,/2 + 0%/4 [t, + 1 - expt ] + ... (70)

and the first term for the number of photons does not depend on
the mode frequency:

B =exp(t,/2) — 1 + 0i/2 [t,exp(t,/2) + 1 - expt,] (71)
n = 1/2 [cosh(ht/2) - 1]. (72)

Another example of time dependent resonator which can be sol-
ved is an em t% resonator with a movang ideal wall. Moore (Ref.
11) gropose_ the following complete orthonormal set of solutions
(in the special case of a sunile space dimension, i.e. confining
?Lth)the modes with linear polarisation parallel to the wall sur-

ace):

Ay (
(&

s

,fg = (4W) "'/ 2 exp[-inNR(t-z)] - exp[-iTWR(t+x)1} (73)

These functions depend on the solution of the functional equation
gL(g) tg thetQOSLtton of the moving wall, another wall is assumed
o be at res

R(t+L(t)) = R(t-L(1)) +2. (74)
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An approximate solution of this equation in the case of the small
velocities _of the wall was found Moore (Ref.11) and later used
in (Refs.23,24). However, that solution is not valid in the case
of parametric resonance, when

L(t) = Lol1 + a sin(2t)], lal<<t, Q, = /L, (75)

(the resonance at the lowest resonator eigenfrequency). The cor-
respondtgg_solutzon for small values of the percentage modulation
was found in (Ref.25):

R(E) = £/L, {1 - in(2Q,E) 2[sin?(Q,8)
+E1/QQ§E Sin(22,6)] + ..?%. +atlsint(Re8) + (76)

Eqs.(11),(22),(45) result in the following expressions for the
transformation coefficients (21):

Oy x /L,+1
}-= 1/2 (M/N)1/? i/L exp{in[-NR(L,zx)+Mx])dx. (77)

0

The calculations are rather simple for not yery large values of

time, when the second-order correction in_(?Sg remains small.

{ge? Zg?e following simple formula for variances can be found
ef. :

(o]
’{%= 1/2ezp(£1/2 maN), N>>1, laNl<<1 (78)
O22

where N is the number of semiperiods of wall’s vibrations. One
can check that the maximum squeezing coefficients given by egs.
(43) and (78) coincide for equal values of percentage modulati-
on in two different methods of exciting the field via the para-
metric resonance.

. Now let us consider the long-time asymptotics for the R-func-
tion under the condition e/Ly << 1, et >> L,° for an arbitrary
periodic motion of the wall L(t) ='L, + =f(¢). "We shall choose
the solution of eq.(?4) in the following form:

4

R(t) = % Ry (2). (79)
Substituting ex;ansion (79) to eq.(74) we attain

% Oe"R"[t+L0+ef(t)] = % MR, (t-Lo-ef(£)] + 2.

Developiag both sides of this ;quation tnto power series we have

© 0o <«

eNRy N (#+L ) eX FR () /K = % % eMRy K (E-Ly) x
=0K=0 =0K=
x (1) XK + 2.

It is convenient to use another summation index M=N+K:
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Z_og_oe"[Rn-x‘“’(t+Lo) = (-1 Ry O (L) IR /KY = 2.

From this equation we obtain the following system of equations
for the functions R,(t) (M=0,1,...):

gﬁo[R“-K“’(t+L°)—(—1)‘R,-K‘"(t—Lo)]f‘(t)/K! = 284,. (80)
Further we consider the simplest law of motion (75) with € = al,
and the frequency wg = Xly. Be use the Fourier-transformation me-—
thod to solve eq.(88):
F(w) = fexp(iwt)f(t)dt, £(t) = Sexp(-iwt)T(w)dw/2m,
1/2n (exp(iwt)dt = 8(w),
fexp(iwt) fF(t+Ly)dt = exp(~iwly)F(w),
fexpCint) FN ()dt = (i) F(w).

Then wegget from (80) the following integral equation:

(81)

1/N! §adu(-iv) Ry -y (u) [exp(-iuly)-(-1)*exp(ivLy)] x

X QQ-D(SinN((&)Qt)) = 27‘[6((&))6"0 (82)
b, (sinYwot) = Sexp(int)sin®(wet)dt =
= 1/(2m)""! §~ Cy’ (~1)I8(w+(N-20)0wg) . (83)

Substituting expresgion (83) to eq.(82) we can easily make inte-
gration over v and arrive at the equation

~Ry()2isin(wly) = 264,8(w) - g g_o(—i)"’J/Z“ Cy’ x

x [+(N-27)wg]" Ry-ylw+r(N-2T)wg] x
x [exp(~iwly)-(-1)Yexp(iwLy)] (-1)°N. (84)

Taking into account the formula for derivatives of 8-function
§M(x) = NS N1 (2)/x,

one can easily find the expression for R,(w)

Ro(w) = 2m8" (w)/il,. (85)
Then making inverse Fourier-transformation we have
R (t) = t/L,. (86)

To find the long-time asymptotics we will seek for the solution
of eq.(84) in the form of a sum over 8-functions
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Ry(w) = g_oat"é‘"’(w+(ﬂ-2K)wo) (87)

This choice corresponds to the representation of the function
R(t) in the form of a power series with respect to the parameter

(et/L?) and neglecting terms Like € t" with J>N. Then only terms
corresponding to N=1 are significant in eq.(84):

-Ry(@)2isin(uly) = 28448(w) + (-1)%os(wl,, x
x [(0+og)Ry-q (WHwg) = (0wg)Ry .4 (0wg)]. (88)
Taking into account the expression for R,(w) (85) we get
Ry(w) = 2n(-1)%/2Ly cotan(wly) [(w+wg)d” (wwg) -
= (0wg)6 (wwg)] = 2(-1)° [8" (wtwg) - 8" (wwg)1/2L,%. (89)
With respect to expansion (87) we have
a,’ = 2n/ilL,, a,' = -a,' = 2n(-1)%72L,2.

Substituting expansion (87) we obtain the following recurrence
relation for N32

ac® = (~1)%0g /WL, [(N-2K-1)a ™t ~ (N=2k+1)a,_ "~ *1.(90)
Let us introduce the notation a ®" = ia,", @ "*'! = a,*"*!, then

Na M = (-DNala Mt N-20-1) - G VT WN-28+1) T,

a= (-1)%q/2L,. (91)
Making inverse Fourier-transformation of (87) we get (N32):

Ry(t) = 1/2n g_oax" (it)Yexp(it(N-2K)wy)

Then it is easy to see that we have got the same expression for
R (t) that was given in eq.(76). Now we consider the sum

o4

{ eVR,(t) = ¥ e"(it)"g acMexp(itwg (N-2K))p~/2n (92)

N=2 N=2 K=0 _
for p=1. Taking into account the evident symmetry condition a " =

$(t)

N we obtain

& =2 z"(—i)"g acVsinlw, (N-2K)t)p*/2n, z = et, (93)

= —Qy-x

where n=[N/2] and [ ] is the entire part of a number. Taking into

account that (-1)" = (=1)¥N"1'2 ye introduce the notation ¢ =
=-2ImF. With the help of the recurrence relation (91) we get the
differential equation for the function F

0F/0z = alpexp(-iwgt) — exp(iwgt)1[z0F/3z - 2pdF/op +
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+ (za/m@)exp(iwgt)] (94)
with the initial condition F(z=0,p) = 0. Its solution is

F = —(za/m@) exp(iwgt) + V¥,
where ¥ satisfies the equation

0¥/9z = alpexp(-iwgt) — exp(iwgt)1[2z0¥/0z -
- 2pa¥/dp] + (o/n@)exp(iwgt). (95)

The particular solution of this equation is as follows:

¥, = —(1/2nQ) lnlpexp(-iwgt)/(pexp(-iwgt) -
—exp(iwgt))]. (96)
Then the general solution of eq.(95) is the sum of ¥, and an ar-
bitrary solution of the uniform equation (95) with b=0. The uni-
form equation has the first integral:
C = exp(-iwgt/2) {zp'/? - 1/2x Inl(p' ?exp(-iwgt/2)~
—exp(iwgt/Z))/(p"Zerp(—iwot/2)+exp(iwgt/Z))]}.
Then we get the general solution of eq.(93) in the form of ¥ =
=V, + f(U), where £(C) is an arbitrary function of the first in-
tegral. From the condition ¥(z=0) =0 we can determine the form
of the function f:
) = (1/721Q) In{[i+exp(-2cexp(iwgt/2)x)1?/
/4exp(-20exp(iwgt/2)x)}.

After some algebraic transformations we find the function V¥

¥ = —(1/2nQ) Ln{4pexp(-iwgt)ezp(-2az)/[cos(wat/2) +
+ 2isin(wgt/2)exp(-20z)1%}.

Taking into account the first and the second terms of the expan-
sion of R(t) in a set of €t we obtain the final expression:

R(t) = t/Ly - (2/7Q@) Im In[1 + & + exp(iogt)(1-§)1,  (97)

where a notation E = expl(=1)""'wget/L,] is introduced. Now we
can compute some characteristics, of the electromagnetic field in
a cavity in the presumption et/L,">>1, e<<L,. Let us evaluate the
number of photons which will be generated in_the resonator with
moving walls in the %ggg time Limit. For this purpose we must

evaluate the integral )
+
Byw = 172 (/M7 %efp[—in((M+N)r+Nf(r))],
where the function f(x) is given by (97):
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f(z) = -2/mQ Im lnl1+E+exp(inQzr) (1-E)].

Let us consider the case when Q=2p is an even number, then §<<1.
Due to ex/Ly<<i we can consider f(x) as a periodical Ffunction
with the period of oscillations T=2/Q. Then 1+2/0

- —1+

i
5""?: (M/N)1/2 expl-im(N+M) 2K/Q] g exp[-im x

Yy -
x ((N+M)z+Nf(zx))ldx. (98)

Analyzing the structure of f(z) we can approximate it by three
lLinear functions as follows:

-(1-6Q) (z-N+1), N-1 <r < N-1+1/Q-6
f(x) = (1/Q=28) (x-N+1-1/Q) /8, N-1+1/G-6 < x < N-1+1/Q+6|
~-(1-8@) (z-N+1-2/Q), N-1+1/Q+8 < x < N-1+2/Q,

§ = 28"/ /nq.

Then one can easily calculate integrals in (98) and obtain the
general expression for the coefficients oy, and Py

Oy = 2(M/N)T/2(=1) NN ST (SNQ-M) ] sinl (SNQ-M)T/Q] x
x explin(N-M)(Q-1)/Q]) sinln(N-M)1/sin[n(N-M)/Q], 99)

Buw = 2QM/N)T/2(~1) M0 N [ (sNQ+M) ] sin[ (SNQ+M)n/Q] x
x explim(N+M) (Q-1)/Q) sinlm(N+M) 1/sin[miN+M)/Q].

Hereafter we consider only the main resonance of Q=2. After

some algebragc_transformgttons we get the following expression
for the coefficient IByy!*:

1Bunl® = 4/ (Nm?) [1-(-1)"cos(2NEm) ] [1+(=1D"* N1/
/(M+2N§) 2, (100)
To find the total number of photons in the mode with number M we

need to calculate the sum over N. First, let us evaluate the fol-
lowing auxiliary sum:

S(z,x) = ;_gos(xN)/[N(z+N)2], (101)

where r=28n<<{ ana z=M/28>>1.Then we have

[+ ]

S(z,z) = 3 y g_fos(Nr)exp[—y(z+N) 1/N dy

=1/2% -1/2 8 yexp(-zy)in(2coshy-2cosx) dy. (102)
Since r<<1 and the main region of integration y§1/2<<1 we can
expand coshy and cosx into power series of y and x. Thus up to

the second order terms we have
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S(z,x) = 1/2% -1/2 8 yerp(-zy)In(y?+z?) ay. (103)

The last integral can be easily evaluated, if one takes into ac-
count the inequalities ygl/z<<x<<i. Therefore

S(z,x) = -lnz/z? + 0(z7%). (104)
The similar sum (see (100))
%_cos(Nr)/[N(z+N)] (-4)"

can be obtained from (102) by means of the replacement r —> I+m.
Then we have in (103) In(4+y*-x*) < Inlz®l for z<<l and y<<i, so
that the corresponding terms can be omitted. The main contribu-
tion_to the sum due to the first term ( with unity in the numera-
tor ) in expression (100) is proportional to

$(z,0) = —E yexp(-yz)lnl1-exp(~y)] = lnz/z*. (105)
Thus the number of photons generated in the M-th mode is
Py = %l%,,lz = 4[Ln(M/28)-(-1)"In(1/267) 1/ (Mn?) . (106)

Since in the considered case (Q=2) 6(t)=exp(—ﬂet4L°2)/n, we get
the following rate of photon generation for et/L,">>1:

dP,/dt = 4aQo[1-(-1)"1/(n?M). | (107)

Here Q, =m/L, is the main.eigenfrequenc% of the resonator, g=e/L
is the dimensionless amplitude of osciltations of.the_wall (which
vibrates at the frequency 2Q,). E?. (107) is valid in fact only
for not very large numbers of excited modes M (due to limitations
arising in approrimations made before). Besides, in real situa-
tion we should Limit the time t by the relaxation time of the re-
sonator t (due to the dLSSépatton on the walls). Then the maxtimum
number of photons generated in the M-th mode equals approximately

P « 4/(nM) [2aQ(M)/M + OCln(M+1))], (108)

where Q(M) is the guality factor of the resonator’s M-th mode.
This formula is valid provided aQ/M>>Iin(M+1).
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ABSTRACT

We consider the radiation pressure microscopically.  Two perfectly
conducting plates are parallelly placed in vacuum. As the vacuum field hits the plates they
get pressure from the vacuum. The excessive outside modes of the vacuum field push the
plates together, which is known as the Casimir force. We investigate the quantization of
the standgmg wave between the plates to study the interaction between this wave and the
atoms on the plates or between the plates. We show that even the vacuum field pushes the
atom to place it at nodes of the standing wave.

INTRODUCTION

Casimir showed that when two perfectly conducting plates are parallelly

laced in the vacuum they attract each other ()1] Although there has been considerable
interest in the Casimir effect within the field of quantum electrodynamics [2a], it was.
Milonni et al. who introduced the concept of the radiation pressure from the vacuum field
to interpret the Casimir effect [3]. When there is a field of a mode separated by a
conducting plate the radiation pressure exerted by the field is same both sides. When the
distance between the plates is d, the mode separation is proportional to 1/d. Since less
number of modes are accommodated between the plates than outside of the plates the
excessive outside modes of the vacuum field push the plates together.

Milonni et al. calculate the vacuum radiation pressure intuitively. In this
paper we study the vacuum radiation pressure in a microscopical view point. We briefly
review previous works on the Casimir effect followed by a classical study of radiation force
exerted by standing waves.

Quantum theory has given various applicabilities of the radiation pressure.
Laser trapping and cooling and isotope separation have been realized based on radiation
pressure. The radiation pressure can increase, decrease or deflect atomic velocities.
Different isotopes of the same atom generally have slightly different electronic transition
frequencies. The radiation pressure can be tuned to deflect only one kind of isotope in a
mixture. Atoms can be slowed down by radiation pressure of counter propagating laser
and the velocity distribution of the atoms is narrowed. This process cools down the atomic
kinetic energy. Orthogonal pairs of counter—propagating laser beams are used to trap
atoms for long periods of time [2b].

We investigate quantization of standing waves between the plates and find
the quantum mechanical form of the Maxwell stress tensor. We then check the principle of
momentum conservation in quantum physics. When the field interacts with a two—level
atom in the cavity the atom is forced to be placed at nodes of the field. We calculated the
size of the vacuum force exerted on the atom.
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THE CASIMIR FORCE

This section reviews the work of Milonni et al with appropriate extensions.
As shown in Fig. 1, the perfectly conducting plates are parallelly placed in the vacuum.
We take the z—axis normal to the plates. When the radiation field strikes the plates with
the angle of incidence 6, the pressure exerted by the radiation is the force, which -is
projected on the plate, divided by the area of incidence. Applying Gauss's law we find that
the normal component of force per area is the energy per volume of the incident field. The
radiation field is totally reflected by the perfectly conducting plates. The field between the
plates propagates either to or from the plate so that the photon pressure on the plate is a
half the photon energy. Thus the radiation pressure from a mode of the vacuum field is

P =%{;cos29 (1)

where w is the frequency of the mode and V the quantization volume. When the plates are
large enough x— and y—components of the wavevector k take continuous values while
k; = n7/d, where d is the separation of the plates and n integer. The total outward
pressure is the sum of pressure exerted by each mode.

he nr/d)?
P, =m2J:dkx deyi—é—_ (%)

where the magnitude of the wavevector

1
k= [kxﬂ + ky2 + (nx/d)?]2. (3)
Considering the modes outside the plates, all the components including the z—component of
the wavevector take continuous values so that the total inward pressure is

he k;2?
Po= 2% ok [a, [ty (4)

1
The wave vector is now k = [ks2 + ky2 + k;?|7. The difference between the inward and
outward pressure is physically meaningful:
Py — Py = 7hc/480d4. (5)
The attractive force is inversely—proportional to the fourth order of the separation of the
plates. This is the Casimir force in agreement with Power [4].

N

)

d >

Fig.1 Electromagnetic field incident on one of two perfectly conducting plates separated by
distance d.
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RADIATION PRESSURE OF CLASSICAL FIELD

We consider the classical field for the quasimicroscopic study of the
field—conductor interaction £5] As shown in Fig.2 the classical electromagnetic field strikes
the conducting plate with the angle of incidence 9. Taking the polarization of the electric

field on the x—z plane. We write the incident electric field
E = Bo(x,2,t)cos8 x — Eo(x,2,t)sinf 2 (6)
and the incident magnetic field

H= Ho(x,z,t) Y (7)

The electric field on the x—y plane of the conducting plate is zero thus the x
aﬂd yl components of the electric field is zero while the z—component of the total field on
the plate

» E; = — 2 Eo(x,2=0,t)siné. (8)
The total magnetic field is then
Hy = 2 HO(X,O,t). (9)

When normal incidence is concerned, E; = 0 and Hy = 2Ho. This is obvious from the
property of the standing wave that the electric field meets the conducting plate at its node
while the magnetic field sees the plate at its peak.

The z—component of the electric field attracts electric charges which causes
the surface charge density

€0 - 2B siné. 310)
In the interior of the conductor there is certain charge flow due to the magnetic field. The
current density is
VxH (11)
The charge and current cause the Lorentz force from the radiation field on the plate. The
force per area on charges
Pe = —2¢0E¢2sin260 (12)
and that on current
Pi = [*dal(¥ = H) x Bl (19

plate
EMrefl,

EMinci.

x

Fig.2 Electromagnetic field reflected by the conducting plate.
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The intensity of the current decays exponentially so that
P; = 2u0H? = 2¢0E? (14)
where we have used the relation between the electric and the magnetic field which is
obtained from the Maxwell equations and eopo = 1/c2. The total radiation pressure is then
P = Pe 4+ Pj = 2¢0E? cos?d. (15)
For normal incidence, ie § = 0, the total radiation pressure is 2¢0E¢? which is solely from
the magnetic field.

The radiation pressure on the conducting plate is the normal component of
the Maxwell stress tensor [6]. The normal component of the Maxwell stress tensor is

Tzz = %Eo(Exz'*'EyLEzz) + %ﬂO(Hx2+Hy2—Hz2)o (16)
Substituting the total field we have in egs.(8, 9) we find
Tz2 = 2€0E0? cos?6 (17)

which agrees with the result (15) obtained using the quasimicroscopical interaction theory.

QUANTUM MAXWELL STRESS TENSOR

To simplify the problem we consider normal incidence on the plate. The
electric field polarized along the x—axis propagates through the z—axis in fig.2. "If the field
1s a travelling wave the vector potential operator for a mode k of frequency wis known as

[7a]

1
) b h
A= [2‘ f’:V w] i(ae luttikz o Tolot lkz) (18)

where i is the unit vector along the x—axis and the caret is to denote the operator. The

operator a and-al are respectively the field annihilation and creation operators. The cavity
composed of the two parallel conducting plates accommodate standing waves rather than
travelling waves. With a similar analogy to find the vector potential in eq.(18) we obtain
the vector potential for the standing wave [7b]

-

i . ay
A= [%7:] li coskz(a,e_lwt + aTeWt) (19)
where k=n7/d, n=135--- and d is the length of the cavity. From the

one—dimensional potential vector we obtain the electric E and magnetic B field operators

as
1

E=-gti=i[2¢] i coshataeT™ —ale) (20)
and ‘
B = -g%l= —% %‘; ;'lsinkz(a;e_“‘}t + aTeWt) (21)

From eq.(16) we may write the Maxwell stress tensor for the quantized field
in the cavity.

Tr= 7 (coEx? + o B,?). (22)
With the use of eqs.(20, 21)
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’i‘zz = g{‘; {a,Ta. + o (aTaT R + aa e—QWt)costz}. (23)
If the number state |n > resides in the cavity the radiation pressure on the conducting
plates is
. hw ;
P=<Tzz>=gv(n+1). (24)

For the vacuum state, ie n =0, the radiation pressure in eq.(24) becomes P = hw/2V
which is in agreement with eq.(lﬁ for normal incidence. When the cavity is prepared with
the squeezed vacuum the radiation pressure on the cavity wall is

P = g-'{‘; (cosh2r + sinh2r coskz cos2ut) (25)

where r is the real squeeze parameter [8]. The second term in the curly bracket
fast—oscillates around zero. Taking the time average of the radiation pressure we get

P = ¥ coshor (26)

As squeezing gets severe, the radiation pressure increases exponentially. The time average
radiation pressure for the coherent state of amplitude ais

=¥ (a2+1). (27)

The momentum density of the electromagnetic field is proportional to the

Poynting vector 3. While the Poynting vector is clearly defined in classical theory as
E x H, that is not the case in quantum theory because the operator—ordering problem
arises. When the Poynting vector is concerned in calculation of the intensity of a field we

have the normal ordering of the field operators, ie § « ata [7). For the problem in hand we
define the Poynting vector with the usual quantum mechanical symmetrization:

S,=XExH-H<E). (28)

RADIATION FORCE ON AN ATOM

If a twolevel atom is isolated in the cavity composed of two parallel
conducting plates the atom is subject to the radiation pressure from the standing wave. To
simplify the problem we assume that the field propagation is along the z—axis 1n Fig.2. We
consider the two—level atom with ground state |g > and excited state |e > in interaction
with the radiation field of frequency w. The atom of total mass M has the atomic centre—of

mass momentum

P = —ih¥. (29)
The total Hamiltonian of the coupled system is[9] )
H= Hatom(t) + Hfield(t) + P_(t)2/2M + Hi(t) (30)
where under the electric—dipole approximation the interaction Hamiltonian
Hi(t) = ihg coska {a(t) —a (O} {(t) + 71(£)} (31)
with the coupling constant )
g=e [ﬁ_v‘:o ] D (32)

- -

The operators =, WT are the atomic tranﬂsition operators.
The radiation force is dP/dt. Using the Heisenberg equation of motion for
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the momentum operator

- P

F) = B0 = by, ) = - FL0 (33)

To calculate the time—dependent interaction Hamiltonian we need find the
time—dependence of operators. With the use of the Heisenberg equation of motion

~ind3t) - huga(t) + ihgeoske {x(t) + #1(t)). (34)

The.equation is formally integrated to give [7]
. . e t . . .
a(t) = e lut [a —gcosszo{r(t') + rT(t')} ethdt'] (35)
where a = a(O) Similarly for the transition operator
- . - t - - - - .
A(t)me et [x-gcoskzjo[gxf(t-)a(t')-l][a(t')-aT(t')]e‘”t'dt']
o (36)
where 7 = 7(0) and huwy is the energy difference between the excited and the ground states.

The operators a(t) and (t) in egs.(35, 36) still have integration to carry out. It is not
simple to solve the iterative integral equations. For the weak coupling between the field
and the atom we calculate the first—order perturbative solution

a(t) = e a4 ar —pxT) (37)
()= 9 5 4 (22T r = 1)( 62— ¢aT)] (38)

a= f%if;;k—zu_ﬁ {exp[—i(wo — w)t] =1}

p= 1 :zs-l:zw {expli(we + w)t] —1}

£ = —f% {exp[i(wp — w)t] — 1}

(= Z(;S_I:_zw {exp[i( ws + w)t] —1}.

We are interested in the radiation force on the atom when the cavitv is
initially prepared with the vacuum state which is a limiting case of number states. We
substitute eqgs.(37, 38) and their Hermitian conjugates into eq.(31) to find the radiation
force on the atom with the use of eq.(33)

F(t) = —2hkglsin2kz {[(27 7 — 1)aal + =r1]A

where

e r=1)ata— 7By (39)
where the first term in the curly bracket varies slowly with the parameter
_1 — cos{wg — wit \
A= (40)
wo - W
while the second term varies fast with the parameter
Bzl — cos(wp + W)t (41)
Wo + w

The second term is so called the counter—rotating term which is often neglected when the
field frequency is near resonant with the atomic frequency.

If the field is initially prepared with the number state |n > and the atom in
its ground state the radiation force is



F(t) = 2hkg2sin2kz {nA + (o + 1)B}. (42)

Neglecting the fast oscillating term (n + 1)B, which is so called the rotating wave
approximation, we write

< F(t) > = 2nRkgtsin2ks L= cos(wo = wlt (43)

W - W
For the vacuum field, n = 0. While the slowly varying contribution is zero, we have the
radiation force from the counter—rotating term

< Iz‘(t) > = 2hkg2sin2kz 1 - Zf:s_g_wz + wlt (14)

The time—average force is thus

<F>= 2hkg7-sin2kz m (45)

Eq.(47g shows that the time—average force is zero when the electric field is not only at its
nodes but also at its peaks. This reflects the fact that the radiation field exerts the force
proportional to the gradient of the intensity.

CONCLUSIONS

We have studied the radiation pressure from the field between the
conducting plates. We quantized the standing wave and introduced the Maxwell stress
tensor in the quantum mechanical form. The Maxwell stress tensor is calculated for the
radiation pressure on the plates. For the special case of the vacuum field the radiation
pressure shows the Casimir force which pushes the plates together.

When the atom interacts with the travelling wave the time—average
radiation force on the atom is zero [10]. The standing wave on the other hand exerts force
on the atom to push the atom to a node of the field. Since the force depends on the

adient of the intensity, that is the electric field squared, the force is zero at the nodes and

peaks of the field.
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Abstract

We have calculated the amplitude squeezing in
the output of several conventionally pumped
multi-level lasers. We present results which
show that standard laser models can produce
significantly squeezed outputs in certain
parameter ranges.

Introduction

Production of non-classical light by lasers is an
active field both theoretically and
experimentally. Sub-Poissonian output has
been predicted and observed from lasers in
which a regular pumping mechanism reduces
the population fluctuations in the lasing levels
(Ref.1-4).

Recently we have found that rigorous solutions
of conventionally pumped 3 and 4-level lasers
predict amplitude squeezing in their output
(Ref.5). This is contrary to standard laser
theory which predicts Poissonian output far
above threshold when the pumping is
conventional (Ref.6,7). Our results are in
agreement with those of Khazanov et al
(Ref.8).

The basic requirement for sub-Poissonian
output, without regular pumping, is that the
sequence of levels involved in moving an
electron from the lower lasing level to the upper
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lasing level contains at least two steps with
approximately equal rates. One of these steps may
be the pump itself. Any other rates must be faster.
In previous multi-level treatments solutions have
been obtained by assuming the pump rate is much
slower than all other rates (Ref.6,7). Squeezing
will not be seen under these conditions.

We present here results of squeezing spectra
calculations for incoherently pumped 3-level and
4-level lasers and a coherently pumped 4-level
laser (figl). The results highlight the basic effect
and how it varies between the models. We also
discuss a simple statistical model which
illustrates the physical mechanism behind the
squeezing.

T |3> ? ] | 4>
le3 g | P4 3>
4 4, ElnTy ]

!
!
!
|
!
1

| 7 | 8

I 23
|y‘2 |-L|—Jy H2>
{ |4

[1>

Fig.1 Laser atomic level schemes. Incoherently
pumped 3-level on the left and incoherently
(E=0) or coherently (I'=0) 4-level on the right.
The yjj are spontaneous decay rates. g is the

dipole coupling strength.



Squeezing Results

Using standard techniques (Ref.6,7) a master
equation for the reduced density operator p of
the atoms and cavity is derived. We solve for the
full quantum mechanics of the master equation
by transforming it into an equivalent partial
differential equation for the generalized P-
function of Drummond and Gardiner (Ref.9).
We make the usual approximation that the
quantum fluctuations are small perturbations on
the semiclassical steady state (Ref.2,9,10). The
amplitude squeezing spectrum, V, of the laser
output field is calculated in the usual way
(Ref.10).

In Figure 2 we plot the spectral variance at the
zero frequency local minimum of the spectrum

as a function of pump rate for the three cases.
The full spectra are approximately Lorentzians
(in the region shown) with linewidths
corresponding to that of the laser cavity. Laser
phase diffusion has been ignored. Parameters
have been chosen to show maximum squeezing.
0 is perfect squeezing and 1 is the coherent state
spectral variance.

Squeezing is improved both by increasing the
number of levels with similar rates and by using
a coherent pump. The 3-level laser has
maximum squeezing of 50% when the
spontaneous decay rate 12 is double the pump
rate (I). The incoherently pumped 4-level laser
has maximum squeezing of 66% when
I' = ¥34 = 0.5712. The improvement due to the
coherent pump is more significant. If
V8E = y34 =0.5y12, where E is proportional
to the coherent field strength, 80% squeezing is
predicted.
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Fig.2 The zero frequency minimum of the

amplitude squeezing spectral variance versus
pump rate for the incoherently pumped 3-level

(dotted line) and 4-level (dashed line) and
coherently pumped 4-level (solid line) lasers.
For the incoherently pumped case P=TI and for
the coherently pumped case P=E .
Parameters in units of 7yjp are:

¥23=1070, y34=0.5,5=1,x=0.01. x is the
cavity decay rate and g is the scaled dipole
coupling constant (Ref.5).

Discussion
The origin of the squeezing can be understood in
terms of the temporal behaviour of the electrons

in individual atoms . The variance in the time

the pump cycle takes to place an electron in the

upper lasing level of an individual atom, Atz,

and the spectral variance at zero frequency,
Vnin » are related by?2

1H.Ritsch, P.Zoller, C.W.Gardiner and D.F.Walls,

to be published, (1991).
2T.C.Ralph and C.M.Savage, to be published,
(1991).
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Vmin =

M
A2
where 7 is the mean time it takes for the electron
to arrive in the upper lasing level, An is the

photon number variance of the output and 7 is
the mean number of photons. To obtain this

result we have assumed the laser is well above
threshold and has a strong enough dipole
coupling such that the lasing transition time can
be considered to have zero variance. Also we
assume spontaneous emission out of the upper
lasing level is negligible.

The right-hand side of (1) can be evaluated
exactlyz. For an (r+3)-level incoherently
pumped laser the independence of the noise
introduced in each step leads to the following
expression

=

Vmin ; p)
(2/yL+V 71+ Y Yr+1YT)
where 7y, is the decay rate out of the lower

lasing level, I' is the pump rate and ¥
are the rates of the intermediate steps. The rates
are matched for optimum noise reduction when

......

I'=y1=.....=7,=0.5y . The minimum value of
Vmin 18 then 1/(r + 2). If the pump rate is much
slower than all the other rates then Vipin->1, ie
Poissonian. This is the limit in which previous
calculations were carried out.

For a certain range of pump rates a coherent step
introduces less noise into the pump cycle than an
incoherent stepz. This leads to superior
squeezing in the coherently pumped laser.

Summary
We have presented a brief report of results we
have obtained from rigorous solutions of
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conventionally pumped standard laser models.
Contrary to established theory we find amplitude
squeezing of the output beam is possible in certain
parameter ranges. Physically we find the noise
suppression is due to the independence of the
noise introduced in the various steps involved in
inverting the atoms.

We see no fundamental reason why lasers could
not be built which operate in regimes meeting the
requirement for squeezing.
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ABSTRACT

Fluctuation properties of squeezed photon beams gener-
ated in three wave mixing processes such as second har-
monic generation, degenerate and nondegenerate para-
metric oscillations, and homodyne detection are studied
in terms of photon sequences recorded by a photode-
tector.

Photon number fluctuations and photon number
correlations are fundamental properties of a light beam.
These properties are different for different light sources
and can be used to characterize photon beams. In this
short communication we discuss our work on statisti-
cal properties of squeezed photon beams generated in
three wave interaction processes in terms of counting
and waiting time distributions. We summarize some of
the interesting results obtained for these systems. Pro-
cesses that we consider here include second harmonic
generation, and degenerate and nondegenerate paramet-
ric down conversion (DPO and NDPO). Squeezed state
of light have been realized in these systems experi-
mentally (Ref.1). Homodyne statistics when squeezed
light produced by the DPO is mixed with coherent light
from a local oscillator are also discussed. A dynamical
model for these beams is used and photon sequences
recorded by a photodetector are calculated.

We use positive-P representation (Ref.2) to map
quantum mechanical equations of motion for the anni-
hilation and creation operators onto a sct of C-number
stochastic equations for the complex field amplitudes.
Using simple transformation of field variables it can
be shown that the field produced in these processes
can be described in terms of independent real Gaussian
stochastic processes (Ref.3-4).

We use a generating function technique to ob-
tain the statistics of the photons emitted by these light
sources. The generating function G(s, ¢, T') for the pho-
ton statistics measured by a detector with a parameter

s is given by (Ref.5)
t+T
—sn/ Ithdt
(e t ). 1

Here 7 is detector efficiency and I(¢) is photon flux
emitted by the source. Generating function G(1,¢,7T)

G(s,t,T) =
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is simply the probability of detecting no photon in the
time interval ¢ to ¢ + 7. In order to obtain generating
function we express I(t) in terms of the c-number field
variables. Statistical averaging is performed by mak-
ing Karhunen Loéve expansion of the field variables in
terms of a set of orthogonal functions. Following the
method developed in our earlier investigations (Ref.3)
we derive an analytical expression for the generating
function G(s,t,T) for the photon statistics. From this
generating function various statistical quantities such as
factorial moments, photon counting and waiting time
distributions can be obtained.

The photon counting distribution p(m,t,T) is
the probability of counting m photons in the time in-
terval ¢ to £+7. It can be obtained from the generating
function by using the relationship

=n"

m!

@

p(m.,T) = [im-c(s,t,T)]
ds™

s=1
The waiting time distribution w(t, T') is the probability
density for two successive photoelectrons to be sepa-
rated by the time interval T' and it is given by

d2
dtdt’

In the stationary regime these quantities are indepen-
dent of initial time ¢. Here we only summarize photon
statistics only in the steady state regime. The field from
the DPO can be expressed in terms of two independent
Gaussian random variables with mean zero and differ-
ent variances

w(t, T=t'—t)=—(nlt)! G, t,t' —t). (3)

1|ke|
-
4 )
Here « is the mode coupling constant, and ¢ is the
dimensionless amplitude of the pump beam incident on
the cavity. The decay constants A, and A, are given

by

-\T

<y +T) >= ij )

Av=(y—|rel), ()

Here (1/27) is the cavity lifetime. Below threshold
A1 and A, are always positive. Using the properties
of field variables u; and u; we obtain the generating
function for the DPO as (Ref.3)

G(S,T) = Ql(sv T)QZ(SI T)a

Aa=(y+|ke]).

©)
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where
eA.T ¢
Qils,t, T) = [[COSh(ZiT)+fi(t)Sinh(ZiT)]] 0
i, d
fi(t) = E (Z + x) y (8)
and 2 /\2 2
= + )
22 =M+ 2smyme ©

zg = A2 — 2smyke.

Mean photon number inside the cavity is given by

1

5 .
For the DPO / is equal to half. Once the generating
function is known photon counting and waiting time
distributions are obtained from Egs. (2) and (3). For

small mean photon number and short counting time
p(m, T) decreases monotonically.

xel?

il (10)

72— kel

8_
c R = 095
T = 4.63
&
£
<Y
]
o 1 T T 1
0 15 30 45 60
m

Figure la. Photon counting probability distribution for
the DPO for R = 0.95, unit efficiency, and counting
time interval 247 = 20.

For long counting times p(m,T) shows sharp
even-odd oscillations implying that the probability of
detecting odd number of photons is much smaller than
the probability of detecting even number of photons.
As the mean photon number 7 is increased these even-
odd oscillations become smaller. Figure (la) shows
p(m,T) for R = K¢/ = 0.95 near threshold corre-
sponding to 7 = 4.63. These curves are meaningful
only for integer values of m. We see that near thresh-
old even-odd oscillations become less pronounced and
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p(m,T) develops a long tail. We have also studied
photon statistics for the DPO in the transient regime,
that is, during its evolution from vacuum state to the
steady state (Ref.4). For small transient time even-odd
oscillations in photon counting distributions are even
sharper than the even-odd oscillations in the stationary
regime.

With the degenerate modes of a parametric 0s-
cillator, nondegenerate modes are also present. We
consider the nondegenerate modes of parametric 0s-
cillator for which two nondegenerate photons have the
same frequencies. These fields can be expressed in
terms of four real random Gaussian variables. Here
we discuss two cases, one in which amplitudes of the
two nondegenerate modes are homodyned and second
in which intensities of the two modes are added to-
gether. For a given pump strength the NDPO the mean
photon number is much smaller than the mean photon
number for the DPO. Mathematical expression for the
generating function for the first case is similar to the
generating function for the DPO. Thus p(m, T)) for the
NDPO also shows even-odd oscillations. However, for
the same pump strength, even-odd oscillations in the
NDPO are sharper then the oscillations for the DPO.
They are centered towards smaller values of m. The
difference between the DPO and the NDPO lies mainly
in the value of the mean photon number.

]
S
R =095
n = 0291
B
=
e T T T 1
0 5 10 15 20
m

Figure 1b. Photon counting probability distribution for
the NDPO for R = 0.95, efficiency n = 1, and counting
time interval 297 = 20.

The second case that we consider is when inten-
sities of the two modes are added together. In this case
the power £ appearing in Eq. (7) is one (Ref.6). In this
case the expression for Q1 (s, T’) is similar to the gener-
ating function for thermal light (Ref.5). The counting



distribution for NDPO, however, is very different from
that for the thermal light. It shows even-odd oscilla-
tions as a function of m whereas such oscillations are
not seen for thermal light. Figure (1b) shows even-
odd oscillations in p(m,t) for R = k¢/vy = .95 for the
second case.

Next we discuss photon statistics of the funda-
mental beam from an intracavity second harmonic gen-
eration (SHG). Field for this system can be expressed
in terms of two real Gaussian random variables and a
coherent component (Ref.7). These results are obtained
by linearizing the field amplitude equations around the
deterministic steady state values. The generating func-
tion for the SHG can be written as (Ref.6)

G(s,T) = Qi(5, T)Q2(s, TN e/ T) . (10)

Here
f(s,T)=—=2spanT /\—% 1+—2-—
B = Tesnnot | 2 2+nD)
_ 2snpnv(zy) 2 an
2 (1+20) @+ 0T (14252T) ’
with
1+ (&i-—*;,—T—) tanh(z, T/2)
v(z)) = (12)

1+ 2 tanh(z; T/2)

Here Q(s,T) and Q,(s, T are given by equation (7 )
with [ = 0.5 and

A =(1+3n), Az =(1+7), (12)

For the SHG 2; and z, are given by

23 = A2 — 26min, a3

22 = A2 + 2sn.

Here # and no are the average and threshold pho-
ton numbers, respectively. From this generating func-
tion various statistical quantities of interest can be cal-
culated. Photon sequences in the SHG can be an-
tibunched. Although the antibunching effect is very
small riding on an intense coherent background it is
clearly reflected in the behavior of the waiting time
distribution for the SHG.

Using similar techniques we also obtain the gen-
erating function when light from the DPO is homo-
dyned with coherent light from a local oscillator. De-
pending upon the relative phase between coherent light
from the local oscillator and squeezed light from the
DPO we can see sub-Poissonian or super-Poissonian

statistics for the homodyned photon beam. Figure (2)
shows waiting time distribution when the relative phase
is 0° and 90°. We see bunched light when coherent
component is added to the unsqueezed component and
antibunched light when coherent component is added
to the squeezed component.

=)
o

3 3

= 02
=20

0

w(T)
1.0 1.5

05

0.0

Figure 2. Waiting time distribution for DPO mean pho-
ton number 72 = 0.2 and local oscillator mean photon
number n, = 2. Dashed curve is for coherent light
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Results of nondestructive measurements of intensity (photons
per mode) of light from different sources are discussed. The
procedure of measurement does not destroy the state of the optical
field. The method is based on using the second order nonlinearity of
crystal media lacking a center of symmetry and the nonclassical
properties of the process of Spontaneous Parametric Down
Conversion (SPDC).

The interaction of laser radiation with nonlinear crystal leads
to the spontaneous emerging of correlated photons in two modes (i
and w;) of the optical field connected by phase matching conditions
w;+ w2 =0wL, k1 + k2=KkL. The quantum theory of the parametric
amplification process /1-4/ shows that if all initial modes of
radiation are in the vacuum state (except the pump radiation), then
photon flux after the nonlinear interaction in mode with , for
example, frequency m; (Fig.1) is:

N1'(t) = sinh2(gt) ()

Where g=(2n/h)yx(2Eg, x@ = an effective value of second order
susceptibility, and Eg = amplitude of pump radiation. If we have
initial radiation from an external source S producing an intensity n20
in the mode of frequency wj, then after the nonlinear crystal the
intensity of radiation in mode of frequency w;is given by:

N1"= (1 + n0) sinh2(gt) 2)

Thus the value of the intensity np0 of the initial radiation can be
easily calculated without destruction of initial optical state after two
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measurements of average intensity n; of radiation in the
parametrically conjugated mode of frequency oi:

ml="57-1 3)

This result is a reflection of the intrinsically quantum character of
the SPDC process. The main point of this method is the use of
universal properties of electromagnetic vacuum fluctuations, i.e. that
the brightness is equal to one photon per mode. This explanation
reflects the phenomenological approach in an effective treatment
/5/. Detailed quantum description of nondestructive measurement
of parameters of optical fields using third-order Kerr nonlinearity
was made in /6/. That results could be easily transformed for the
case of second order nonlinear susceptibility x(2).

The outline of the experimental setup for the nondestructive
measurement of intensity of optical fields is shown in Fig.1. The

radiation of argon ion laser A = 488.8 nm interacts with a LilO3
nonlinear crystal. The scattered (spontaneously generated) radiation
of frequency o is registered by a photomultiplier tube. The

radiation from the external source S falls on the crystal in the
direction defined by phase matching conditions. The position of the
chopper disc divides the process of measurement into two stages:
measurement of nj and njp’ values. After the propagation inside the
crystal the external radiation of frequency w;can be used for other
purposes. In the visible region of the spectrum we can neglect
absorption of radiation inside the nonlinear crystal and consider this
kind of measurement as nondestructive.

The accuracy of this method improves the closer the brightness
of the measured radiation is to the brightness of electromagnetic
vacuum fluctuations of the same frequency. It has advantages in
measurements of laser radiation and radiation from other bright
(high effective temperature) sources of light such as plasmas, high
voltage discharges etc.

For our first measurements we used an infrared region of
radiation from a high temperature tungsten spiral incandescent lamp
as a source of external radiation. In the IR region this thermal
radiation has an intensity of about 10-2 photons per mode ( in the
visible region in accordance with Planck formula Niherm = 10-4
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Fig.1. The quth’ne of the experiment for nondestructive measurement
of the intensity nz0 of light from an external source §.

Photons
mode”  g0oL
0.01+

0 1 1
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F =

Fig.2. Result of measurement of intensity of thermal radiation source
(tungsten spiral incandescent lamp) in the IR region of spectrum.
Solid line corresponds to the calculation by Planck formula intensity
distribution for the temperature measured by pyrometric technique.
All results include correction on crystal absorption coefficient.
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photons/mode). The results of measurement are presented in Fig.2.
The solid line corresponds to the result calculated by the Planck
formula for the temperature measured by a pyrometric technique.
The accuracy of these measurements was about 5-20%. Fresnel
reflection of radiation on the crystal borders gives an additional
source of systematical error in this measurement. This effect could
be eliminated by using of a correction coefficient.

The laser (in our case a CW He-Ne laser at A=3.39 p) has a much
higher spectral density of radiation (109 photons/mode) and can be
measured with better accuracy. However, in this case a special
procedure of matching external and internal radiation space modes
inside the crystal is needed.

The same problem arises in measurements of intensity of
second harmonic radiation generated in a KDP crystal by a Nd:YAG
pulsed laser. For the radiation at A =532 nm the measured intensity
was 4-103 photons/mode.
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SHORT-CAVITY SQUEEZING IN BARIUM
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Abstract

Broadband phase sensitive noise and squeezing
have been observed experimentally in a system of
barium atoms interacting with a single mode of a
short optical cavity. Squeezing of 13+3% was
observed. A maximum possible squeezing of
45+8% could be inferred for our experimental
conditions, after correction for measured loss
factors. Noise reductions below the quantum limit
were found over a range of detection frequencies
60-170 MHz and were best for high cavity
transmission and large optical depths. The amount
of squeezing observed is consistent with
theoretical predictions from a full quantum-
statistical model of the system.

Introduction

The model of the interaction between a cavity
mode and an ensemble of two level atoms is of
fundamental importance in quantum optics (Ref.
1). Theory (Refs. 2-4) and experiment (Refs. 5-6)

indicate that a particularly favorable configuration
for squeezing in this model exists where decay
rates of the atomic polarization and the cavity
mode are approximately matched. To achieve the
matching of rates without degrading the cavity
finesse the cavity length must generally be reduced
to a few millimetres; hence the term 'short-cavity
squeezing Orozco et al. observed 30%
squeezing in atomic sodium in this rcglme (Refs.
5-6). The J=0 — 1 553 nm transition of 13 8Baisa
suitable medium to test detailed theoretical
predictions of the dynamics of the cavity-atom
interaction. Its simple structure allows us to avoid
the complications of optical pre-pumping,
necessary to restrict alkali atoms to two-level
behaviour.

Experiment

A schematic diagram of the experimental
arrangement is shown in Figure 1. A cw ring dye
laser supplies 300 mW of light at 553 nm. The
laser is frequency stabilized to 1 MHz. The first -

Cw ring dye laser

Intensity AOM
_— stabilization Mode-
a vop ate tchin
Data Local oscillator mlz::nsejs 8
Acquisition
System PD M2 K
l é Signal

Spectrum B
Analyzer aovenl

Figure 1. Experimental arrangement



order diffracted beam from an acousto-optic
modulator (AOM) passes through a pair of mode-
matching lenses and is divided into local osillator
and signal beams with a 50% beamsplitter. The
AOM serves to isolate the laser from cavity
feedback, and is also operated as an intensity
stabilizer. The phase of the local oscillator (LO)
with respect to the signal beam phase may be
varied with a scanning galvoplate, and the LO and
cavity output beams are combined on a 50%
beamsplitter. The output ports of the beamplitter
are focused on to photodiodes PD1 and PD2 in the
balanced homodyne detection system. Typically
the detector gives 2 dB of quantum noise above
amplifier noise at 130 MHz for 1 mA of current.
The noise spectrum is displayed on a spectrum
analyzer and recorded on a computer.

The optical cavity is comprised of two dielectric
mirrors mounted on piezoelectric stacks separated
by 4.3 mm. It is held in a stainless steel chamber
evacuated to 10-0 torr. The input coupler M1 has
transmission coefficient T1 < 0.001and a radius of
curvature Rz1 of 1 meter. The output coupler M2
has T2 = 0.036 and Rz2 =2 m. The cavity finesse
is measured as F=150 10 and the throughput on
resonance as 1.3%. The cavity beam waist is
calculated to be 92 um.

A high-density collimated beam of barium is
generated and injected perpendicularly to the cavity
mode. Optical depths of up to ol =3.5 can be
achieved for a beam of dxameter 2.3 mm.The
FWHM of the absorption peak is 44 MHz for
0gl=3.5, where these values are measured usmg a
momtor beam perpendicular to both cavity axis
and atomic beam. The natural linewidth of the
atomic line is Y=20MHz. The additional width can
be attributed to residual Doppler broadening. We
have vy ,/x=0.08 for this experimental
conflguratlon where v, =27 is the transverse
atomic decay rate for purely radiative decay, and k
is the decay rate of the cavity mode.

Results

Figure 2 shows a spectrum analyzer trace with
13+3 % squeezing, after corrections are made for
the electronic noise contribution. It was observed
for a cavity input intensity of 14 mW, atomic beam
optical depth 0l = 2.7 and an atomic detuning
of 600 MHz below the 553 nm transition. The
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Figure 2. Noise power (a) and cavity transmission
(b) recorded for optical depth «ayl=2.7, atomic

detuning 600 MHz below the transition, cavity
input power 14 mW, detection frequency 147 MHz.

detection frequency was 147 MHz. A 4-second
quantum noise recording was taken while
scanning the phase of the local oscillator and
simultaneously sweeping through the -cavity
resonance. The modulated signal in Fig. 2a is the
noise power. The quantum noise limit (equivalent
to 1 Vacuum Noise Unit , or 1 VNU) is given by
the center of the solid bar. It is obtained by
recording a noise trace with cavity output blocked,
under the same experimental conditions. The
width of the bar represents the rms fluctuations of
the noise trace. The quantum noise limit trace has
been corrected for the non-negligible amount of
power in the cavity output (0.18 mW compared to
1.1 mW in the LO beam). Figure 2b shows cavity
transmission plotted in units of cavity linewidths
from the resonance peak.

We see large amounts of phase sensitive noise
near the peak of cavity transmission, together with
clear reductions below the quantum noise limit,
with both noise and squeezing decreasing with the
sweep though the cavity. Other data reveal that
squeezing exists for a broad range of frequencies
60-170 MHz, and for a bistable cavity. In the
bistable regime phase sensitive noise and
squeezing are seen predominantly on the upper
branch.



Figure 3 simulates the experiment, using a plane
wave ring-cavity quantum theory of squeezing in
optical bistability (Refs. 3-4). The cooperativity,
cavity characteristics and atomic detuning are those
of the results in Figure 2, within experimental
uncertainties; cooperativity C=0olF/(21) = 64,
atomic detuning A=(w,4-0p)/Y ;=50 and
¥ 1 /x=0.08, where w, and @ are the frequencies
of the atomic transition and the signal laser
respectively. Other parameters are optimized for
best squeezing. Cavity detuning is measured from
the peak transmission in units of cavity linewidth
and is incremented through the cavity resonance.
The parameter corresponding to LO phase is
varied at approximately the rate used in the
experiment. Trace (a) is the squeezing spectrum
plotted on a logarithmic scale against the left
vertical axis, where a variance V of unity
corresponds to the quantum noise limit and zero
corresponds to perfect squeezing. Trace (b) is the
intracavity photon number (proportional to cavity
transmission), plotted on the right vertical axis and
given in units of the saturation intensity on
resonance (Ref. 3).

Figure 3 shows good qualitative agreement with
experiment. Maximum squeezing is located near
the peak of cavity resonance, and the squeezing
decreases for decreasing transmission. The best
squeezing at these parameters is 55%. Loss factors
that reduce the amount of observed squeezing
have been measured individually, as follows;

10 3000

2000

-1000

Variance V
Intracavity photon number

-1 0 1 2 3
Cavity detuning

Figure 3: Theoretical modelling of experiment
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cavity escape efficiency p = 0.88, detector
quantum efficiency a=0.65, mode matching
efficiency n2=0.56, propagation efficiency
T=0.86, where these quantities are defined as in
Refs. 6-7. We calculate that for ideal propagation
and detection efficiencies the observed squeezing
would equal 45+8%. This is in reasonable
agreement with the theoretical prediction of 55%.

Conclusion

It was found that the interaction of a barium beam
with a single mode of a short optical cavity
generated reductions below the quantum noise
limit of 13%+3%. We infer that in the absence of
loss factors 45+8% squeezing would have been
observable. This is consistent with the amount of
squeezing (about 55%) predicted from a quantum
theory of optical bistability.
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I. Introduction

Intensity squeezed light has been successfully generated using semiconductor lasers with sub-poissonian
pumping.l Control of the pumping statistics is crucial and is achieved by a large series resistor which regulates
the pump current; its sub-poissonian statistics are then transferred to the laser output. The sub-poissonian
pumping of other laser systems is not so simple however, and their potential as squeezed state sources is
apparently diminished. Here we consider a conventional laser incoherently pumped well above threshold, and
allow for pump depletion of the ground state. In this regime subpoissonian photon statistics and squeezed

amplitude fluctuations are produced.
IL. Theoretical model
The atomic level scheme for the laser is indicated in fig. 1. We follow the notation of Lax and

A A
Louisell,2 where Nj (i = 0,1,2 ) are the atomic population operators and n the laser mode photon number

operator. The quantum Langevin rate equations are given by

d A A A A A
a——tN() = -wooNg + I'1{N1+wgaN2 + G

d A A A A A A
HNI = -(I'1 + [In)N7 + (w12 + IIn)N2 + Gq
d A A AA A A A
d_tN2 = wooNQ + IInNp - ("2 + [In)Ny + G2
4

A A A A A A
n = -yn+ IIn (N2 - Nj )+ Gp,

(=9

t

Above threshold the mean inversion D = N9 - N1, is fixed at a constant value independent of pumping.
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The calculation of the quantum noise properties proceeds by linearizing the equations of motion about
the semiclassical steady states to calculate the variance 62in photon number, about the steady state mean value
n . The Mandel Q-parameter, and amplitude squeezing spectrum normalized to unit shot noise can then be

constucted from the mean and variance>

62-n 1
Q = ;. V) =1+ 2Q
n 1+ (9/y?

where Q > 0, = 0, and < 0, correspond to superpoissonian, poissonian and subpoissonian photon statistics,
respectively, and o is the spectral offset from the laser frequency. Subpoissonian photon statistics, and
concomitant intensity squeezing ( V < 1) in the output are signatures of the quantum mechanical nature of the

electromagnetic field.

For the case where all spontaneous emission from the excited state goes to ground (w12 = 0 ) adiabatic
elimination of the atomic fluctuations leads to the equation for photon number fluctuations, for n >> ng (the

saturation photon number), and dropping carets for notational simplicity

iAn = -YAn + G(1),

dt
where
w02  2w2Q
1 SIS
G(t) = 2 G2 - 3 G1 + Gp .
1o W02, 2w2077 | w02 2w)Q
I | I' In
We then find
2w)()
2 L
= n - n + O(ng)

(l + “%12 +2——\I—V:%Q)Z
so that the intracavity photon statistics are sub-poissonian, with intensity squeezing ( V < 1) in the output.
Fig. 2 shows the intensity squeezing at the laser frequency ( @ = 0, in the rotating frame of reference ), as a
function of pump rate, for three different values of the stimulated emission coefficient IT. With increase in IT,

the degree of squeezing saturates at around 45% below shot noise level. Analysis of this result indicates that the

predicted subpoissonian photon statistics and squeezing are due to a reduction in the role of pump noise and
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spontaneous emission from the upper atomic level, when wp( is increased from the undepleted pump regime (
where the photon statistics are poissonian and the output is shot noise limited ), towards I'1. For larger pump
rates these noise terms continue to decrease, and one might expect the degree of squeezing to increase. However
spontaneous emission from the lower lasing level, which has little effect on squeezing in the undepleted pump
regime provided only that I'] >> I'2, becomes increasingly important as the pump rate is increased ( even for I"y
>> 7 ), and this random noise causes the degree of squeezing to be reduced with yet further increase in pump
power. The two opposing tendencies may be seen by inspection of the pump rate dependence of the coefficients
of the noise terms in the equation for G(t).

The results presented are consisitent with fully numerical solutions of a three level laser obtained by
Ralph and Savage. Note that the squeezing properties of the laser were also recently considered in ref. 5.

After our conference presentation we received a preprint by Ritsch et al.® which contains closely related results.

2> ;
w12

w02 -

> ‘
>
rl
o> ! ! " es 1 1s 2 25 2
Pump Rate (w, /T )

Fig.1: Atomic level scheme Fig.2: Amplitude squeezing versus pumping
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ABSTRACT
The continuous-time regularization scheme for defining phase-space path integrals is
briefly reviewed as a method to define a quantization procedure that is completely covariant
under all smooth canonical coordinate transformations. As an illustration of this method,
a limited set of transformations is discussed that have an image in the set of the usual
squeezed states. It is noteworthy that even this limited set of transformations offers new
possibilities for stationary phase approximations to quantum mechanical propagators.

1. INTRODUCTION

For many years now it has been customary to define path integrals with the aid of
coherent states [1]. Such formulations have been developed not only for the canonical
coherent states suitable for the Weyl group (i.e., the Heisenberg algebra), but for coherent
states based on other groups as well, notably the unitary and orthogonal groups with
(in)definite signature, the affine group, etc. However, for the sake of convenience and to
focus on the relation with standard squeezed states, attention in this paper will be confined
to path integrals constructed with the aid of canonical coherent states. The construction
of coherent state path integrals is generally carried out in one of two standard procedures
[2]. To illustrate these two procedures let us first introduce a few standard definitions
involving coherent states [2]:

1= / Ip, 4)(p, q| dpdq/ 2T,

H (p,q) = (p,q|H|p, q),
H (p2, q2;p1,01) = (P2, ©2|H|p1, q1)/ (P2, ©2lp1, 01),

H= / h(p,q) [p,q)(p, q| dpdq/2r,
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where |p,q), (p,q) eIR?, denotes one of a collection of coherent states defined by
p,g) = e 1PeP0),  (Q,P]=4, (Q+iP)|0)=0,

all of which are normalized, (p, q|p, ¢) = 1. In addition, we have introduced two “symbols”
associated with a fairly general operator H, namely H and  as functions on phase space.
In terms of these quantities, the propagator form time # to time ¢ = ¢ + T, T > 0, is
given by either of the two expressions

: lim
nom_—iHT, 0 N .
O ) = [ [
n=N . n=N
H (Pn+1a Qn+1|pna Qn) e—-zeH(pn+1,qn+1;pn,qn) H dp”({(]n/Qﬂ'.

n=0 n=1

_; lim
(p”,q”le 'HTlp',q’) —_ / . -/x

N — x
n=N

n=N
H (Pn+1aQn+llpnsQn> H e_wh(pmqn)dpndQn/zﬂ',
n=0

n=1
where we have introduced the notation ¢ = T/(N+1), p",¢" = pyy1, aN+1,
and p',q¢' = pp,qp. In a formal limit, in which the order of integration and the limit
are interchanged and the integrand is evaluated for continuous and differential paths, the
formal result emerges, respectively, that

(p",q”]e_iHTlp’, ql) — M‘/e”[p‘?“ﬂ(p’q)]dtDqu,
<p//’ qnle—iHTlpl, q/) _ ,/\/l/cif[pd—h(p’q)]dt'Dqu,

where, as conventional, we use a single standard integral sign here to represent a (formal)
functional integration. Since, in the general case, H (p,q) # h(p, q), we are seemingly
led to a paradox, namely that two generally different expressions can be given for the same
quantity. That these two expressions are different is just a dramatic reflection of the very
formal nature of such “equations” in the first place; each is correct if interpreted in the
manner indicated in the lattice regularized form given above.

In recent years, a very different regularization and formulation of coherent state path
integrals has been developed that is both rigorous in construction and does not exhibit the
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paradox outlined above [3]. In this formulation, a continuous-time regularization scheme
is found that takes the form

wom—iHT(s g\ _ M o2 [ i flp(t)dg(t)~h(p(1)a(t))dt] g, v
""" gy = 2 /6 i : dpyy (P,9)
where uf;, denotes a planar two-dimensional Wiener measure with diffusion constant
v that is pinned so that p(t'),q(t') = p/,¢' and p(t"),q(t") = p",q". Since p(t)
and ¢ (t) are (independent) Brownian motion paths, the integral [ p(t)dq(t) is properly
understood as a well-defined stochastic integral [4]. In the present form the Ito and
Stratonovich formulations yield the same result; however, under coordinate transformations
the Stratonovich form is chosen and so it is convenient to adopt the Stratonovich form
from the outset. It must be appreciated that the expression above involving the Wiener
measure is rigorous and unambiguous; the marvel is that this genuine, i.e., continuous time,
path integral formulation actually provides the correct propagator for the Hamiltonian
H provided one adopts the symbol h(p,q) to use as the classical Hamiltonian in the
action even though it may, in general, contain a nonzero %. In a formal, but nevertheless
suggestive language, one may also say that

<pll’ q"le_iHT|p', q/> — lim M /eif[Pq—h(P»Q)]dte_% f[ﬁ2+d2]dtl)p7)q,
Vv — o

which shows the continuous-time regulatory nature of the indicated expression inasmuch
as the v—dependent factor in the integrand formally goes to unity as ¥ — oc. Although
formal in nature, the last equation may be understood as a short hand expression for the
former one when it is accepted that the various terms do not have independent meaning
but only in combination with one another. Thus they may be recombined into the proper
mathematical form at any time. (This is similar to how the “quotient” dy/dx should be
understood for the derivative.)

The expression for the propagator given above is not only well defined mathematically,
but it also enjoys a covariance under generally time-dependent canonical coordinate
transformations. Let two canonical coordinate systems be related according to the equation

pdq — h(p,q) =P dg+dG (p,q,t) — k (P, T, 1)

that not only holds in the classical case but for Brownian motion paths as well thanks to the
choice of the Stratonovich rule [4]. Under the same canonical coordinate transformation,
the metric on flat space that supports the two-dimensional Brownian motion changes to

dp? + dg® = do® (p,3,t) = A(5,q,t)dpdP+B (5,4, t)dpdT+C (P, 7,1) d7dq
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and as a consequence the propagator takes on the form in the new coordinates, which for
convenience we relabel p,q again,

fim o ier-) / i [lpd=klp.g.0)dt, 35 [[do* (p.0) )bty
Vv —0C

This formula expresses —for the first time and after over sixty years of the theory of
quantum mechanics—a fully canonically coordinate covariant formulation of the process
of quantization [5]. This expression clarifies the role of the Schroedinger quantization rule
in which coordinates act as multiplication while momenta act as derivatives; this rule of
quantization is valid in and only in Cartesian coordinates as often noted, but Cartesian
coordinates in phase space rather than in p-space and ¢-space separately as commonly
stated [6]. Of course, the arena for classical mechanics resides in a symplectic manifold and
it does not employ a (Riemannian) metric in its formulation. On the other hand, quantum
mechanics has a different and richer basis in which a metric structure appears. Indeed,
it is not unreasonable from a classical viewpoint that a metric structure is appended to
the classical phase-space manifold, not for purposes of defining the Hamiltonian equations
of motion, but rather to keep track of just what physics a given system refers to. For
example, an harmonic oscillator (centered at the origin) appears as an harmonic oscillator,
e.g., with a Hamiltonian given by % ((1.[)2 + 2bpg + (:(12) ,a>0,b>0, ac> b? only in
Cartesian coordinates in phase space. In non-Cartesian coordinates an harmonic oscillator
assumes a different form from that indicated. Just what system actually corresponds to an
harmonic oscillator (or free particle, or quartic anharmonic oscillator, etc.) is coded into
the classical scheme by the implicit use of an auxiliary flat metric on the two-dimensional
phase space, and its expression in Cartesian coordinates. This same flat metric space
actually enters the formulation of the quantization procedure as described in the present
article through its use as a carrier for the Brownian motion. Once it is decided which sets
of canonical coordinates are the Cartesian ones, so that the expression for a system which
represents (say) an harmonic oscillator is unambiguous, then the quantization procedure
itself is unambiguous in the approach advocated here. After the well-defined path integral
is set up, then one is free to make a variety of coordinate changes within that integral,
among which possibly time dependent canonical transformations are to be distinguished.
Indeed, one can go so far as to introduce a Hamilton-Jacobi transformation so that the new
Hamiltonian vanishes. This puts all the dynamics into the curvilinear coordinate system
that is used to track the two-dimensional planar Brownian motion. As a consequence, the
overall level of difficulties is conserved, as one would expect to be the case.

It is hard to illustrate this program in its full potential, but it can be shown in a sort
of small scale fashion. Indeed, it is squeezed states that can be used to provide a limited
illustration of this overall program, and it is this “miniature” illustration to which we now
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turn our attention. A convenient place to start the investigation is with the kinematics
rather than the dynamics, and this in turn can be done simply by looking at the propagator
for vanishing Hamiltonian.

2. CHANGE OF VARIABLES IN THE PATH INTEGRAL:
CONSTANT « TRANSFORMATIONS

KINEMATICS

If the Hamiltonian vanishes, or in the limit that ' — 0, the “propagator” reduces to the
reproducing kernel, an integral kernel representing a projection operator onto the relevant
subspace of all square integrable functions on phase space as given by

lim 4 o
Whd5 g )= M / et Pidte=35 [(F+4)4DpDg,

which may be explicitly evaluated as
W g 100, g3 1) = R e 0 Uit Do (G DI CAL O
In these expressions we have added a “1” to the label to emphasize that the coherent states

are those based on an harmonic oscillator ground state with a unit angular frequency,
w = 1. In particular, for a general value of w, the configuration space representation of

the coherent states reads

l -
(z|p, q;w) = (—‘7‘?) 1~ w(z—q)+in(z-q)

and it follows that the overlap of two such states for the same value of w is given by
(", q"swlp’, ¢ sw) = / (p",¢"swlz)(zlp’ ¢’ w)dz
e {407+ ("~ ) -} [0 0" =) o -]}
It is clear therefore that the coherent state overlap obeys the identity
W dswlps g w) = (w3 Wi i Wi 1)

which relates dilation of the angular frequency to a corresponding dilation of the coherent
state labels, i.e., an expansion of one phase space coordinate and a contraction of the other.

This relation may be codified another way as well. Let

D=3(PQ+QP)
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denote the self-adjoint dilation operator with commutation properties [@Q,D] =
iQ, [P,D] = —iP, then it follows that coherent states for different angular frequen-
cies are connected by

Ip, g w) = 3B@DP1=3p 3g:1).

Thus the unitary transformation generated by D is nothing other than the squeeze operator
relating coherent states and squeezed states, or relating two sets of squeezed states with
different squeezing values. In forming the overlap illustrated above, the squeezing operator
drops out leading to the indicated relation.

A path integral expression for the coherent state overlap at angular frequency « can
be readily obtained just by a coordinate change of the path integral appropriate for a unit
angular frequency. In particular, if one makes the change of integration variables given by

1 1
p(t) = w™2p(1), q(t) = wzq(?),
then it immediately follows that
lim : . A —1,2 ]
" g5l dsw) = M / et [Piltemar [P DpDy

showing quite clearly the connection of the relative scale factor in the two-dimensional
Brownian motion and the parametric dependence in the coherent state representation. All
this has assumed that w has been constant throughout; next we take up the case of a time
variable w.

3. CHANGE OF VARIABLES IN THE PATH INTEGRAL:
NONCONSTANT « TRANSFORMATIONS

The overlap of two coherent states for two different values of w is given by
", q" ", ¢ W) = / ", 4" ") (zlp, s o )da

2
", +plwll) (q” _ q/) ~ (p" _ p’) ! (q” _ q/)2

= V2 exp i(p —
\/ g{i + \/z, wll + wl 2 (wll + wl) 2 ((.4.)” + u}’) *
w! w’
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This expression also exhibits an alternative form given by

non,o ot g n=t w wt oy y—itln(L)D) =1 4 41
(", ¢";" P, qs0') = (W' 2", g e (&) P11y, o'2q'; 1)
1 1 _ifdep, s-1 1
— (w”"?p”,w"‘lq";1|e ’IWD[w’ 2pl,w12ql;1)
1 1 i _1 1
— <w"_2p",w"2q";1]€ zf;;dtD|wl 2p',w'2q';l)
where we have introduced a smooth but otherwise arbitrary function w (), t <t<
¢ which interpolates between w” = w (¢") and o’ = w(t'). Of course, this expression

holds as well even in the special case that w” = ' in which case w (t) goes smoothly
between equal initial and final values, but is otherwise arbitrary.

In the latter form the overlap of two coherent states for differing angular frequencies
has been expressed in terms of the matrix element of a kind of propagator between coherent
states of the same angular frequency. But the latter form admits a path integral expression.
In particular, it follows that

W' q"; lle—i'['?%Ddtlp',q’; 1)

_ lim Jw/eif[pti—;%l’q:ldte*%f[b"’-ktj?]dtpppq.

Vv — oo

Now, much as was the case earlier when w was constant, we next make a time-dependent
change of variables of the form

p(t) — w(t)'ﬁpm,
g(t) = w(t)2q(t),

where w" = w(t"), ' = w(¢'). In making a time-dependent substitution of variables,
additional terms will arise in the path integral integrand on the right hand side. In particular,
the term

[lpg — £paldt — [[pdldt,
the formal flat measure remains unchanged,
DpDq — DpDg,
while the all important formal weighting factor

o [[P+dt _, =5 [l +w@]at
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Other terms might be contemplated in the exponent of the final expression such as those
involving time derivatives of w (¢); however all of these will be negligible in the limit that
v — oc since they are not as singular as the indicated terms. While we prefer this heuristic
characterization of the transformed Wiener process one should bear in mind that only the
coordinate description of the planar two-dimensional Brownian motion is being changed
and the process itself is in no way effected. We are encoding this change of coordinates
by means of the change of coordinates of the metric on the plane. (A rigorous analysis of
such transformed Wiener processes is in progress by the present authors.) Thus it follows
after such a substitution of variables that

(p",q";w”lp',q';w') _ (w” 2p ,w 2q// 1|e itfe Ddtlw 2]) w';q',l)

= v limool\/t/ eiqudte 2w I[w(t) +w(t)qz]dtDqu'

Consequently, the introduction of a smooth, time-dependent angular frequency that
interpolates between the initial and final values in the Wiener measure provides just the
right ingredient to yield the overlap between two different coherent states based on two
different angular frequencies. This expression yields a simple but nontheless bona fide
example of how the classical Hamiltonian — here just w (¢) p (¢) ¢ (¢) /2w () — may be
eliminated in favor of a change of coordinates with which to describe the two-dimensional
Brownian motion on the phase space plane. Such an elimination additionally involves a
change of coordinates at the endpoints, as illustrated in the central equation, but in the case
of squeezed states, there is an alternative interpretation involving coherent states based on
differing angular frequencies as embodied in the first part of the equation. We now turn
our attention to the inclusion of dynamics in this example through the presence of a rather
general nonvanishing Hamiltonian.

4. CHANGE OF VARIABLES IN THE PATH INTEGRAL: NONCONSTANT
«w TRANSFORMATIONS AND A GENERAL HAMILTONIAN

INTRODUCTION OF GENERAL DYNAMICS

Based on the earlier discussion it is quite straightforward to include a rather general
Hamiltonian % (p,q) into the problem. In particular, based on the initial discussion, let
us consider

W q"; 1|Te—if[H+%D]dt ', q; 1)

= M / i [ [pd—h(p.a) -2 pqdt .~ % = [P +@dtpypg

Vv —OoC
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which after a change of integration variables becomes

lim

v — 00

where

M / oi [pi—k(p.at)ldt o= [[w(t) B +0(0F)dt DDy

-1 1 -1 +2 -4 1
( " 3 ”’ ”2 ”; ].lT tf[H 2 D]dtl / 2pl, ’2 ’; 1)
1 1 —i —i[H i ' -1 1
( "n-3 ll, "z ";1| 21nw"DT3 sz(t)dt52lnw DI ! 2111, /3 ;,/;1>

= (pll, qll; wlllTe_if’H'(t)dt Ip’, q/; wl)’

Fe®),91),0)=h (v Fp(),w®),

which contains an explicit time dependence from the angular frequency as well as an
implicit dependence just from the time dependence of p and ¢ themselves, and in addition

where

HI (f) — ei% In %;lDtHe—ilgln wwt D

The basic significance of the preceding equations can be summarized as follows:

"N

(" q";w"|Te IO, ¢ )

1

_ (w"—%p”,w”%q”;1|Te‘”[H+?%D]dt|w'“%p',w'?q’;1)

p(t)-*W(i)_%p(i)

1
a(t)—w(t) 2 (2)

[ lim / ez’f[pq'—h(p,q)—,%pq]dte—g—,f[p=+q'°1dtpppq]

vV — 00

lim M / ot Ipi—k(p,g,t)ldt .25 [w(t)_’l?+w(t)q°’]dt1)ppq.

v —OoQ

This is the most general form we are able to offer using squeezed states, and it shows, in the
first of the equalities, how part of the Hamiltonian can be absorbed quantum mechanically
by a change of the fiducial vectors — indeed just like going to the interaction picture in
ordinary quantum mechanics, which is then responsible for the introduction of the time-
dependent “interaction” picture Hamiltonian H' (). The second pair of equalities just uses
the original form of the path integral as modified by a change of variables that effects
the end point conditions as well. The final equality just accounts for that very change of
variables as requested in the line above.
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5. EQUAL END POINT ANGULAR FREQUENCIES

Let us return to the path integrals discussed at the beginning of this article, namely
to those for which the initial and final angular frequencies are the same. For the sake
of convenience, let us choose that value to be unity, i.e., w”’ = ' = 1, and return to
the original notation for the coherent states with unit w, namely that |p,q) = |p,q;1).
However, this time we will retain the option of using a time-dependent angular frequency
w (t) to interpolate smoothly between the original and final values of unity. In this case
the formulas developed above simplify to become

(// ”ITe z['H'(t)dilp q)

= (p", ¢"|Te /M+SDH Y, o)

M / et [[Pi-h(p.9)—Zpgldt .~ 2 | W +&d DD q]

-1
() —w(t)” 2p(1)

9(t)—w(t) 2 4(t)

[V—+oo

[

./M/ t [lpg— L(pqt)]dte + [w(f) 1p’-i-w(t)q"]dt DpDyq.

vV — 0OC

With a slight generalization, we can now turn this equation around to read

®".q"le” M|y, ¢

lm JM / Zf[Pq h(p’q)]dte 2v f[p’-{-q’]dt Dqu

vV — 0C

M / i [lpg—h(p.g)ldt ,— % f[p°+q‘=]dtDqu]
p(t)—w(r)"l’}p(:)

g(t)—w(t)?2 Q(t)“

[V——*OO

— M / i [[pa=k(p.at)+35pgldt g =35 [ [w(t) 7 P +w(2)d?]dt ppbq

vV — OC

In this expression the third line holds because it simply corresponds to a change of
integration variables that does not have any effect on the values of the boundary labels
since w” = w’ = 1. The last line represents, just as before, the consequences of that very

change of variables.
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Now observe that on the left side of this equation there is no reference to the function
w(t), <t <t w(t") = w() =1, while on the right side of the equation, in
the last part of the equation in particular, the function w (t) enters in a prominent way.
This becomes especially significant when an approximate evaluation of the path integral
is admitted, such as that which arises from a stationary phase approximation. Stationary
phase approximations for coherent state path integrals with Wiener measure regularization
of the kind considered here have been worked out previously [7] and we do not repeat
that discussion here. The point we wish to emphasize, however, is that the choice of the
angular frequency w (¢) will enter most probably in the form of the approximate solution,
and naturally some expressions will be better approximations to the real answer than other
expressions will. Just which will be the best approximation is, of course, not too easy to
establish. Perhaps one scheme is to ask that the result be stationary with respect to small
changes of the functional form of w (). In practice one might want to let w (t) depend on
just a few discrete parameters and to seek stationary variations with respect to just these
few parameters. This certainly seems easier to do than to ask for an extremal variation

with respect to the entire function w (2).

One can actually see a miniature working of ¢his general kind of procedure in comparing
the usual and the Maslov stationary phase approximations to the sharp position propagator;
see, e.8., [7]. As given earlier, the configuration-space form of the coherent states given by

1
w\s _1 N2 _
(zlp, g3 w) = (;r—)“e jw(z—a)'+ip(z—q),
i 1
makes clear that wlew ()1 (zlp,gw) = (= —q) which converts the coher-

ent state representation to the sharp position or configuration representation, while
. 1 .

lim (1)1 (2]p, qw) = 712—“6'1’(""‘1) which converts it to the dual or momentum rep-

resentation (up to an unimportant phase factor). These features can also be seen in the

relation
{p”,q”;W"Ip',q';w') — /(p",q";w"lm)(xlpl, q';w’)dx

2 2
.(p”w’ +p’w”) (qn _ q/) ~ (p” _p/) ~ ! (q// _ q/)

_ \/§ ]
= \/ - , exp|? 7] ] 2( " | ,/) 2(( , | ,) .
/ I "
V w v w

that gives the overlap of two coherent states based on differing angular frequencies.
Consider the limiting situation in which both w” — oo, w’ — 0. In that case it follows that
1
lim w'" I T R I 1 "¢
. oy = P'(¢"-4)
_ w w)= e .
w“’)"_)%o (167('2(4)' (p ' Ip,q, ) \/é}
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Thus it should be no surprise that the two standard stationary-phase type approximations are
actually contained in the coherent state approach in the form of suitable limits. In a manner
of speaking, the usual configuration space approach just involves choosing a constant and
very large value of the angular frequency parameter w (taken to infinity at the end of the
calculation) and making a stationary phase approximation to the resulting path integral.
On the other hand, the Maslov approach takes the propagator from a sharp configuration
initially to a sharp momentum finally, approximates that path integral by a stationary phase
approximation, and then returns the end point to configuration space by a Fourier transform.
This approach can be approximated in our method by taking an angular frequency history
w (t) that is initially huge (tending toward infinity) and finally very small (tending toward
zero), approximating that path integral by a stationary phase approximation, and finally
making a change from coherent states based on a very small angular frequency to one based
on a huge angular frequency just by the kinematical factor given above. The coherent
state approximation developed in particular in reference [7] proceeds in yet another way,
namely, starting with a sharp configuration initially, propagating to a coherent state with
a finite nonzero value of the angular frequency, i.e., w = O (1), approximating that path
integral by a stationary phase approximation, and then passing from the final coherent state
representation to a sharp configuration one. This approach can also be approximated in our
scheme by having an w (¢) that initially is huge, and finally is finite and nonzero [ O (1) ],
approximating, in turn, that path integral by a stationary phase approximation, and then
passing back to a coherent state based on a huge angular frequency at the final point.

6. CONCLUSIONS

In this article we have attempted to show the reader what the authors believe is
the “latest” in path integral construction — the state of the art — and illustrate how
variable changes can be rigorously carried out within the path integral formulation itself.
Squeezed coherent states have been used as convenient bases throughout in the illustration
of the general program by a “miniature” subprogram involving a fairly limited change of
integration variables. The resultant formalism is able to express a path integral in terms
of an essentially arbitrary function, the time varying angular frequency, w (¢), which lends
itself to various selections in case an approximation scheme is invoked. By illustrating
that the usual and the Maslov approaches are but two small examples of how such an
optimization can be used, it becomes clear that there are hidden in these formulas a whole
host of differing approximation schemes some of which, in certain applications at least,
may well be better than the schemes currently in use. It is left to the future to see just
how to exploit the vast number of possibilities that have been opened up here.
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A method is developed for obtaining coherent states of a system admitting a
supersymmetry. These states are called supercoherent states. The approach
presented in this talk is based on an extension to supergroups of the usual
group-theoretic approach. The example of the supersymmetric harmonic
oscillator is discussed, thereby illustrating some of the attractive features
of the method. Supercoherent states of an electron moving in a constant
magnetic field are also described.

1. Introduction

Over the past three decades, the notion of coherent state [1-6] has enjoyed a
significant role in diverse areas of physics. Several basic definitions are in use [7].
For example, among the possibilities for the simple harmonic oscillator are the
definition as eigenstates of the annihilation operator, the one as states having and
preserving minimum uncertainty, and the one via the displacement operator. All
these yield the same harmonic-oscillator coherent states, representing a gaussian
wavepacket preserving its shape while executing the classical motion.

This talk describes a generalization of the concept of coherent states to that
of supercoherent states, relevant for systems admitting one or more supersym-
’ metries. A supersymmetry involves both bosonic and fermionic states, and the

* Speaker
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corresponding symmetry generators close under a combination of commutation
and anticommutation relations into a superalgebra. The additional structure this
entails means that the physically appropriate generalization of coherent states to
supercoherent states is not immediately apparent.

Our solution to this problem involves a extension to supergroups of a gen-
eralized method [6] for ordinary coherent states that is based on Lie groups and
involves use of the Baker-Campbell-Hausdorff (BCH) relations [8-13] connecting
different group parametrizations. Supergroups can be viewed as extensions of
Lie groups with Grassmann-valued parameters. The theory of supergroups con-
sidered both as abstract groups and as superanalytic supermanifolds has been
developed [14-16], and methods for obtaining BCH relations for supergroups are
known [17-19]. A summary of our methods is provided in section 2.

As an example of the method, the supercoherent states for the supersymmet-
ric harmonic oscillator are considered in section 3. The supersymmetry for this
case is generated by the super Heisenberg-Weyl algebra, containing the identity
and bosonic and fermionic creation and annihilation operators. It is closely re-
lated to supersymmetric quantum mechanics [20-29], which is applicable in several
physical situations. An example with relevance to the quantum Hall effect is the
case of an electron moving in a constant magnetic field [28,29]. This situation is
considered in section 4.

The reader is referred to [30], on which this talk is based, for more information
about our general construction of supercoherent states, about its relation to other
approaches [31-33], and about applications in various physical situations.

2. Method

There is a close connection between group theory and coherent states. To
see this for the simple harmonic oscillator, consider the usual approach via the
displacement operator D, given by D(a) = exp(aal —@a). This displaces the
annihilation operator a by a complex constant a: D~!(a)aD(a) = a + a. The
operator D is a unitary element of the harmonic-oscillator symmetry group, called
the Heisenberg-Weyl group, for which the associated algebra is [a,a'] = 1. By
definition, the coherent state parametrized by a is given by the action of D(a)
on the ground state |0). The correct normalization of |a) is fixed by the unitarity
of D. The form of |a) can then be explicitly exhibited using the BCH relation
eAeB = e(A+B+1[4,B]) yalid for any two operators A and B both commuting with
(A, B].

For a general system with an arbitrary Lie group G as symmetry group,
coherent states can be defined as follows [3,6]. Given a unitary irreducible repre-
sentation T(g) of G acting in a Hilbert space H, set |¥p) as some given element
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in H. The coherent states are then the set {|¥,)} = {T(g9)|¥o)}. This definition
is parallel to the displacement-operator approach for the harmonic oscillator.

For systems admitting supersymmetry, we extend this method to supergroups
using the construction of refs. [14-16]. In this approach, supergroups are defined in
analogy with the definition of Lie groups via analytic manifolds, using Grassmann-
valued parameters instead of real or complex ones. The resulting supergroup
coordinates include both commuting and anticommuting variables. We refer the
reader to refs. [14-16] for details of the construction. A summary of the essential
points is contained in the paper [30] on which this talk is based.

To find supercoherent states via the group-theoretic method requires the
use of unitary supergroup representations. Introduce the supergroup generators
Bj;, F,, where the corresponding superalgebra* involves commutators among the
B; and anticommutators among the F,,. Choose a superhermitian basis [31], i.e.,
set B; = B;j and F} = —F,. Then, a general unitary supergroup element is
T(g9) = exp(AjB;j + 6, Fy), where A; is real Grassmann commuting and 6, is real
Grassmann anticommuting.

Supercoherent states are found by applying T(g) to an extremal state in
the (super) Hilbert space. To find explicit expressions requires the use of BCH
relations for the supergroup. A general method for determining these and specific
formulae for some frequently used supergroups may be found in refs. [17-19].

3. The Supersymmetric Harmonic Oscillator

By definition, the hamiltonian H of a supersymmetric quantum-mechanical
system [20-23] commutes with N supersymmetry operators Q; of which it is a
quadratic function: §;3H = {Q;,Qr}. The superalgebra generated by H and
Qj is called sgm(N). Choosing N = 2 gives sgqm(2), which appears in several
physical contexts [24-29]. Defining Q = (Q; +1Q)/v2 and Q! = (Q; —iQ2)/V?2,
the superalgebra sqm(2) is H = {Q,Q'}, [H,Q] = [H, Q'] = 0.

The supersymmetric quantum harmonic oscillator can be defined in terms
of annihilation and creation operators a, a'; b, b' generating a supersymmetric
extension of the usual Heisenberg-Weyl algebra: [a,al] = {b,b'} = I. The corre-
sponding super Hilbert space is spanned by states |n,v), wheren = 0,1,2... and
v = 0,1. States with v = 0 are called bosonic and those with v = 1 are called
fermionic.

The sqm(2) superalgebra is generated by the oscillator hamiltonian H =
ata+ btb and by the supersymmetry operators Q = abt, Qt = a'b. It follows from

* For an overview of superalgebras, see ref. [34]
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H|n,v) = (n + v)|n,v) that |n,0) and |n — 1,1) are degenerate states for all n
except n = 0. The ground state |0,0) is thus unique. Unbroken supersymmetry,
Q|0,0) = @*]0,0) = 0, implies that the ground state has energy eigenvalue zero.
The generator Q' takes bosonic states into fermionic ones, while Q' takes fermionic
states into bosonic ones.

Following the method described in section 2, supercoherent states for the
supersymmetric oscillator are given in terms of a unitary representation T(g) of
the super Heisenberg-Weyl group. The supergroup element of relevance may be
taken as T(g) = exp(—Aa + Aa' + bt + 6b) where A is complex Grassmann
commuting and 8 is complex Grassmann anticommuting. The necessary BCH
relation for the super Heisenberg-Weyl group, needed for explicit calculation of
the supercoherent states, is found using Lemma 1 of ref. [17]. The result is

T(g) = ea:p(%ea _ %|A|2)exp(Aaf)exp(ab*)exp(—Za)exp(ab) . (3.1)

The supercoherent states |Z) are obtained by applying T(g) to the ground
state |0,0). They are given by

1Z) = (1 + %Gﬁ)lA,O) +6l4,1) | (3.2)

where for convenience we have defined |4, v) = exp(—|A|?/2)exp(4at)|0, v).

The supercoherent states |Z) have the following attractive properties, all
of which are natural generalizations of the correesponding features of ordinary
harmonic-oscillator coherent states.

o They are defined via a natural extension of the usual displacement operator
approach.

e They are eigenstates of the annihilation operators a and b: a|Z) = A|Z),
b|Z) = -0|2).

¢ They maintain the minimum-uncertainty value AgAp = % in time.

o They are unity normalized, (Z|Z) = 1.

e They are not orthogonal and form an (over)complete set. The identity is
resolved by [|Z)(Z|d8dfdA = =1.

e They yield the usual harmonic-oscillator coherent states |A) when 6 = 0.

e They contain as the subset A = 0 the usual fermionic coherent states [35] for

a single anticommuting fermionic degree of freedom.

4. A Physical Example

The quantum system consisting of a nonrelativistic electron of mass M and
charge e moving in a constant uniform magnetic field B = BZ provides a physical

264



realization of supersymmetric quantum mechanics [28,29]. The wavefunctions
e~ Bty () for this system obey the two-component Pauli equation, which reduces
to HyY = Ey with H = ﬁ [&' (g - e/—l’)]2. The use of cylindrical coordinates
is natural, as is the choice of cylindrical gauge A, = —1By, A, = ;Bz. For
simplicity, we restrict the analysis to the two-dimensional problem, so that p, = 0.

The explicit realization of the super Heisenberg-Weyl algebra is as follows.
Define the dimensionless quantities H = M H/eB, E = MFE/eB, and introduce
the annihilation operators

1 i 1
a=——¢"$(0, + -0, + —eBr 4.1
V2¢B ( R0 T o ) (4.1)
and
0 1
[0 1]. "
Then, the Pauli equation takes the manifestly supersymmetric form
Hy = (ata+ b0y = Ey . (4.3)

All the features of the supersymmetric harmonic oscillator discussed in section 3
are reproduced. Note that the fermion annihilation operator b acts to reverse the
electron spin, and therefore the sqgm(2) generator @ does also.

Equation (4.3) is equivalent to a confluent hypergeometric equation with two-
component solutions labeled by two quantum numbers, one related to the energy
eigenvalue £ and one labeling degenerate eigenstates. The explicit solution is
given in our paper [30]. We write ¢ = |n,m;v), where the upper and lower
components of ¥ are labeled by v = 0 and v = 1, respectively. The operators a
and a' act as canonical lowering and raising operators on the quantum number n,
while b and b' act on v. To form a complete set, introduce

1 - ? 1
ct = ———€'" (0, + -0, — —eBr) 4.4
V2¢B ( %75 ) (4.4)
acting as a canonical lowering operator on m and satisfying [c, c'] = 1. The full su-
pergroup for this physical system is therefore the product of the super Heisenberg-
Weyl group (generated by a, b, and conjugates) with another Heisenberg-Weyl
group (generated by ¢ and conjugate).

The supercoherent states can now be constructed via the method of section
2. Their explicit form is quickly found from eq. (3.2) by noting that coherent
states with respect to ¢ and ¢ are the usual harmonic-oscillator coherent states
and that ¢ and ¢t commute with all other generators. The result is

12) = cap(30)eap(~5) eap(-155) 3 L (In,mi0) + 6l min))
" (4.5)
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These supercoherent states depend on three Grassmann-valued variables, A, C,
and 6. It can be shown that all the attractive features of the oscillator superco-
herent states discussed in section 3 are reproduced.

The expectation values of the hamiltonian H, (Z|H|Z) = %(AZ — 66),
and of the magnetic-moment interaction energy U = —eBo,/2M, (Z|U|Z) =
—g%(l + 295), provide insight into the role of the Grassmann-valued variables
in Eq. (4.5). The difference (Z|H — U|Z) = $2(AA + 1) represents the energy
expectation in the absence of the magnetic moment. It is independent of 66 and
the value of AA is shifted by one half. Since the magnetic moment U distinguishes
between eigenstates with v = 0 and v = 1, it follows that the term with 68 contains
the information about the energy splitting between the two sets of eigenstates.

As we have seen, the supersymmetry present in this physical system ensures
a group-theoretical and natural incorporation of the electron spin. This feature
of supersymmetry is manifest in other physical systems. For instance, one key
aspect of atomic and ionic supersymmetry [25] is the natural appearance of the
Pauli principle.
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Abstract

Two illustrative examples are given for Feynman’s rest of the universe. The first example
is the two-mode squeezed state of light where no measurement is taken for one of the modes.
The second example is the relativistic quark model where no measurement is possible for the
time-like separation of quarks confined in a hadron. It is possible to illustrate these examples
using the covariant oscillator formalism. It is shown that the lack of symmetry between the
position-momentum and time-energy uncertainty relations leads to an increase in entropy
when the system is measured in different Lorentz frames.

1. Introduction

In his book on statistical mechanics [1], Feynman makes the following statement on the density
matrix. When we solve a quantum-mechanical problem, what we really do is divide the universe
into two parts - the system in which we are interested and the rest of the universe. We then usually
act as if the system in which we are interested comprised the entire universe. To motivate the use
of density matrices, let us see what happens when we include the part of the universe outside the
system.

The purpose of this paper is to discuss two physical examples of Feynman’s rest of the universe.
We shall consider first the case of the two-mode squeezed state. In 1987, Yurke and Potasek
observed that the failure to make measurements on one of the two modes will lead to non-coherent
excitation of the first mode, as in the case of Einstein’s calculation of specific heat in the harmonic
oscillator model [2]. They observed further that this excitation is just like the thermal excitation
of the ground-state harmonic oscillator. From the measurement theoretic point of view, this
non-coherent excitation corresponds to an increase in entropy (3].

Let us next consider the quark model in which two quarks are bound together inside a hadron
[4]. This system has a time-like separation between quarks as well as a spatial separation between
them([5]. While there is no place for the time-separation variable in nonrelativistic quantum
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mechanics, it plays an essential role when observations are made in different Lorentz frames. For
this time-like separation, there is a time-energy uncertainty relation. It is of interest to see how
this uncertainty relation is combined with the position-momentum to an observer in a different
Lorentz frame.

We show in this paper that the longitudinal and time-like excitations in the relativistic quark
model are exactly like two photon modes in a two-mode squeezed state [6]. We shall study how the
non-measurement of the time-separation variable affects measurements along other coordinates.

In Sec. 2, we study the statistical effect on measurement and density matrices. In Sec. 3, we
derive the result of Sec. 3 using the shadow coordinate system commonly used in thermo-field-
dynamics {7]. In Sec. 4, the concept of entropy is introduced as a measure of our ignorance [3]
[8]. In Sec. 5, the formalism of Sec. 4 is applied to the two-mode squeezed state of light.

The rest of this paper consists of the application of the concept of entropy to the relativis-
tic quantum system in which the time-energy uncertainty relation is coupled covariantly to the
position-momentum uncertainty, using the same mathematical formalism developed in Secs. 3,
4, and 5. We start this discussion in Sec. 6 by studying the time-energy uncertainty relation
applicable to the time separation variable in the relativistic quark model. In this connection,
the covariant harmonic oscillator formalism is presented. In Sec. 7, Lorentz-squeezed hadrons
are discussed in terms of the covariant oscillator formalism. Finally, in Sec. 8, we note that the
present form of quantum measurement theory does not measure the time separation variable. This
incompleteness in measurement leads to an increase in entropy.

2. Statistical Decoherence

In measuring physical quantities, the accuracy of the measuring device is very important.
Often, we have to face the situation where the measurement is taken on many different objects.
For instance, in the case of the one-dimensional harmonic oscillator, the most general form of

normalized solution is
1/)(1‘,t) — e—iut/Zche—inwtd)n(aj)’ (21)

where ,(z) is the solution of the time-independent oscillator equation with the energy level
w(n + 1/2). The wave function (z,t) is normalized:

(¥(z,t), (. 1)) = Y 1Cu|* = 1. (22)

n

The expectation value <A>= (¢(z,t), Ayp(z,t)) of an operator A(x) can be written as

<A>= " |CulP(¥n(@), A(2)tha(2)) + Y CrCae ™ (Y (2), A(T)thn()). (2.3)

n n#Em

If we take the ensemble average for many oscillators prepared independently with different
initial times, the net effect is same as that of taking the time average, and the second term in the
above expression vanishes. As a consequence, the ensemble average is

<A>= ) [Cal*($n(2), A(2)¥n(2)). (24)
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We use the word “mixed” or “non-pure” in order to describe this ensemble average.
It is very convenient to treat this problem if we introduce the density matrix defined as [1] [6]

p(z,z') =Y |Cul ()97 (27), (2.5)
and

<A>= / dz’ / A, 2)p(z, ') dz, (2.6)

with
A(z' z) = 6(z' — x)A(z).

The above expression is then the trace of the matrix A(z',z)p(z,2’) often written as
<A>= Tr(pA). (2.7)

If C, = 6., for a given value of m, we say that the system is in a pure state. Otherwise, the
system is in a mixed state. The information from the interference terms contained in Eq.(2.3) is
lost during the process of taking the ensemble average. This information lies in Feynman’s rest of
the universe.

The best-known example is the thermally excited harmonic oscillator which was used by Ein-
stein in his calculation of the specific heat of a solid. The density matrix takes the form [1]

[6]
pr(z,2') = Y (1 — e™/*)e™H i, (2)91(a"). (2.8)

In the zero-temperature limit, the system is purely in the ground state. As the temperature
increases, |C,|?> becomes (1 — e=“/¥T)e=mw/*T but the above expression does not tell us anything
about the phase of C,,. The density matrix does not give any information about the coherence of
the system. In Sec. 4, we shall study how this ignorance is translated into entropy.

3. Shadow Coordinates

We discuss in this section a method of deriving the density matrix, without taking the ensemble
average, by introducing an auxiliary Hilbert space consisting of 1,(Z) and attach it to Cn [1] [7].
Let us consider the wave function of the form

(2, &) = Y _(Catpn())thn(2)- (3.1)

n

The auxiliary coordinate Z is called the “shadow” coordinate in the literature [7]. It is possible
to derive the result of Eq.(2.4) by treating 3(z, %) as a pure-state wave function defined in the
total Hilbert space consisting both of 1,(z) and ¥,(2). Because of the orthogonality relation for
¥n(%), the expectation value of A(x):

<A>= Y CrCo($m(E), ¥n(2))(¥m(2), Alz)tbn(2)), (3.2)
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is the same as the ensemble average <A> given in Eq.(2.4). It is possible to obtain the density
matrix by integrating i (z,Z)¥*(z’, ) over the z variable:

plz,2') = /d'(ar,‘i)d:*(m',ir)dif. (3.3)

The evaluation of this integral leads to the expression for p(z,z') given in Eq.(2.5). The shadow
coordinate plays the role of taking the ensemble average discussed in Sec. 2.
Let us illustrate this again using the ground-state harmonic oscillator wave function

3 ) 1 1/2 1 i
ol ) = Yoo = (=) exp {5 (% +3)], (34)
where z is measured in units of 1/y/mw, and let us now make the coordinate transformation:
'\ _ [coshn sinhp T
(i’>_<sinhn coshn) (j)’ (35)
where
coshn =1/(1 — e'“’/kT)l/Q, sinhy = e™/%T /(1 — ¢=w/kT)1/2, (3.6)

which shares the same mathematics as a Lorentz boost as we shall see in Secs. 7 and 8. Then this
coordinate transformation leads to the wave function of the form

171/ 1
r(z, &) = H exp {—Z[(tanh )@+ )+ (coth =) (& :2)2]} . (3.7)
The wave function of the two variables can be expanded as [6]
vr(e,&) = [1 — exp(—w/kT)]'/? 3~ exp(~nw/2kT )ipn ()ibn(Z). (3.8)

The evaluation of the density matrix given in Eq.(3.3) with this form of the wave function
leads to the density matrix of the form of Eq.(2.8). The same evaluation with the wave function
of the form of Eq.(3.7) gives [6]

' 1 w 1V 1 "2 w "2 w
pr(z,z') = [— tanh } exp{——z [(:U+x) tanhQ—kT— + (z — 2')* coth m]} (3.9)

Then the probability distribution pr(z) = pr(z,z) becomes

1 w 112 w 2
pr(z) = [;r— tanh ~2k—T] exp {— [tanh ﬁ] T } . (3.10)

This expression is normalized. In the T' = 0 limit, the probability distribution becomes

po(z) = (1/7)"/? exp(—2?). (3.11)
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The increase of temperature broadens the probability distribution. It is possible to carry out
the same analysis for the momentum variable. The momentum distribution will also become
widespread. The net result is the increase in uncertainty. This increase is due to our ignorance
about the shadow coordinate system. Feynman’s rest of the universe consists of the shadow
coordinate.

4. Entropy and Ignorance

The interpretation in terms of thermal excitation was possible because the expansion coincides
with the thermally excited oscillator state. There are, however, cases where the density matrix
: does not correspond to any state in thermal equilibrium. For instance, if we start from one of
the excited harmonic oscillator states [9], the density matrix does not correspond to a thermally
excited state. What then will be the variable which measures our ignorance about the second
| coordinate variable?
| The answer to this question is the entropy defined as (8]

S=—3 paln(pn). (4.1)

In general, the density matrix is Hermitian and can be diagonalized. p, in the above expression is

the diagonal element. If the system is in a pure state, the entropy is zero. If the system is not in

a pure state, the entropy is positive. This definition of entropy does not depend on the question

of whether the system is in thermal equilibrium. The definition given in Eq.(4.1) does not depend
on temperature.

On the other hand, the above definition does not exclude a system in thermal equilibrium. In

| the case of a thermally excited harmonic oscillator, the density matrix of Eq.(2.8) is diagonal and
| its elements are

P = (1 _ e—w/kT)e—nw/kT. (42)

Thus, according to the definition given in Eq.(4.1),
S = w/kT(e“/¥T — 1) —In(1 — e~*/*T). (4.3)

This expression is the same as the one available from textbocks on statistical mechanics.

In Secs. 5 and 8, we shall study the examples which are not thermal excitations, but share the
same mathematical formalism. The concept of temperature is convenient but not essential in the
examples to be discussed in the following sections.

5. Entropy and Two-Mode Squeezed States of Light

As is well known, the mathematics of harmonic oscillators is the standard language for the
photon-number space. The energy level in a given oscillator system corresponds to the number of
photons, and the ground state corresponds to the vacuum or zero-photon state. The step-up and
step-down operators in the oscillator formalism are given by

0
at=—\}—§(x—5;), a=—1—2-(:c+aéx-), (5.1)
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respectively. These are now the creation and annihilation operators. Let us consider two sets of
these operators: at,a and &f,& for the first and second modes of photons respectively. We are
interested in the state of these photons where those created and annihilated by al and @ are not

observed.
We construct the two-mode state by applying to the vacuum state the operator exp(—unG),

where [6] [10]

G= —% <afaf - a&) : (5.2)
where the subscripts 1 and 2 are for photons of the first and second kinds respectively. The
two-mode squeezed state constructed from

ln>= e 9|0, 0>, (5.3)

where |n, 7> is the state with n photons of the first kind and 7 for the second kind. According to
this definition, |0,0> is the vacuum state. The power-series expansion of the exponential factor
leads to

[n>= (1/ coshn) > (tanhn)"|n,n> . (5.4)

n

In order to distinguish the photons of the first and second kinds, we write the above expression as

[n>= (1/ coshn) > (tanhn)"8,n|n, > . (5.5)

n,n

The mathematics which led to the above expression is exactly the same as that for the harmonic
oscillator with a shadow coordinate given in Sec. 3. From the mathematical point of view, this
form is the same as the expansion given in Eq.(2.8), and they become identical if we use the
correspondence between T and 7 given in Eq.(3.6). In terms of the n parameter, an element of
the diagonal density matrix is

pn = (tanh)?*/(cosh n)?, (5.6)

which leads to the entropy:
S = In(coshn)? — (sinh )% In(tanh 7). (5.7)

This form of entropy is determined directly from the squeeze parameter 7, and it is not
necessary to introduce the concept of temperature. The fact is that the measurement or non-
measurement of photons of one kind affects the measurement of photons of the other kind. In
the present case, the non-measurement of the photon of the second kind increases the degree of
ignorance of photons of the first kind, and this degree of ignorance is measured in terms of the
entropy. The system of photons of the second kind is Feynman’s rest of the world.

There are however special cases where the entropy can be associated with temperature. This
is one of those cases. As Yurke and Potasek observed [2], it is possible to define the temperature
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of this system by using the connection between the squeeze parameter and temperature. The
temperature T is related to the squeeze parameter by

tanhn = e~«/2T, (5.8)

If T approaches zero, the squeeze parameter also becomes zero. As the temperature becomes very
high, the squeeze parameter becomes very large.

6. Time-energy Uncertainty Relation and Relativistic Quark Model

In order to study the role of the time-energy uncertainty relation in relativistic quantum
mechanics and relativistic measurement theory, we consider here a concrete physical example
which gives observable effects in high-energy laboratories. Let us consider a hadron consisting of
two quarks. If the space-time position of the two quarks is specified by z, and z; respectively, the
system can be described by the variables:

X = (2a+a)/2, = (za—2)[2V2 (6.1)

The four-vector X specifies where the hadron is located in space and time, while the variable
measures the space-time separation between the quarks. As for the four-momenta of the quarks p,
and py, we can combine them into the total hadronic four-momentum and the momentum-energy
separation between the quarks [4]:

P=pat+p  q=V2pa—ps), (6.2)

where P is the hadronic four-momentum conjugate to X. The internal momentum-energy separa-
tion is conjugate to X.

In the convention of Feynman et al. [4], the internal motion of the quarks can be described by
the Lorentz-invariant oscillator equation:

2
L {2 - —0—-} P(z) = Mp(z), (6.3)

2 Ox?

where we use the space-favored metric: * = (z,y, z,t). The four-dimensional covariant oscillator
wave functions are Hermite polynomials multiplied by a Gaussian factor, which dictates the space-
time localization property of the wave function. The Gaussian factor takes the form

exp{—é—(mz +9° +z2+t2)}. (6.4)

We are accustomed to the polynomial (2% + y* + 22 — t*), but not with +t2. What is the
physics of the Gaussian factor of Eq.(6.4)7 If the hadron is at rest, it is possible to construct
three-dimensional harmonic oscillator wave functions with excited energy levels. This would be a
multiplication of the appropriate Laguerre polynomial with the Gaussian factor exp{—(z* + y* +
2?)/2}. As for the time-like separation, Eq.(6.4) contains the factor exp(—t2/2). However, unlike
the position coordinates, there is no excitation along this axis, since the time variable is a c-number
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[5]. The fact that the time-energy uncertainty relation is a c-number relation is well-known and
well-established. Figure 1 illustrates these features of the uncertainty relations.

t t

~—Dirac: Uncertainty
without Excitations

N
L/

Heisenberg: Uncertainty
with Excitations

A=4 uv
=2 (1223

FIG. 1. Quantum mechanics and relativity. The left part of this figure illustrates
that the position-momentum uncertainty relation with excitations and the time-energy
uncertainty relation without excitations, as the time is a c-number variable. The right
part is special relativity. In the light-cone system, it is transparent that the Lorentz
boost is a squeeze transformation. One way to combine quantum mechanics with
special relativity is to superimpose these two figures, as is done in Fig. 2.

Since the three-dimensional oscillator differential equation is separable in both spherical and
Cartesian coordinate systems, ¥(z,y,z) consists of Hermite polynomials of z,y, and 2. If the
Lorentz boost is made along the z direction, the z and y coordinates are not affected, and can be
dropped from the wave function. The wave function of interest can be written as

1/4
V(2 t) = (l) exp(—t2/2)y™(2), (6.5)

s
with

W (z) = (#)/ Ha(z) exp(~22/2),

where ¢"(z) is for the n'* excited oscillator state. The full wave function YP"(z,t) is

0= () Haew{-3 (7 +2)}. (6.6)
The subscript o means that the wave function is for the hadron at rest. The above expression is
not, Lorentz-invariant, and its localization undergoes a Lorentz squeeze as the hadron moves along
the z direction [5].

7. Lorentz-squeezed Oscillator Wave Functions

Let us next consider special relativity and Lorentz transformations. It is important to note
that the Lorentz boost is a squeeze transformation in the zt coordinate system if the boost is
made along the z axis. In order to see this point, let us use the light-cone variables, which are
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defined as

u=(z48)/V2  v=(z—t)/V2 (7.1)

The u and v axes are perpendicular to each other. In terms of these variables, the Lorentz boost

along the z direction,
z'\ _ (coshp sinhn)(z)
( t ) - (sinh n coshnp/ \t/’ (7:2)

takes the simple form

. (7.3)

This transformation is illustrated in Fig. 2. This is an area preserving transformation where
one side becomes contracted while the other side is expanded in a manner that their product is
constant. This is a squeeze transformation.

QUARKS —— PARTONS

D
T
NP____

> —l b
=t I I
z | . |
< SPACE-TIME Weaker spring —
E ORMATION —':( constant ) :
b1 DEF | Quarks become |
z i (almost) free !
S
>
[
o
H
o % L
w
2
- 20 ————R8:08 | g —F—
£=0 BOOST B0 I|
I &
| 4. BE
92 ™% 23
| < T
! “a
: =
7o L
| |
MOMENTUM-ENERGY | (Pﬂv'on momen'fum)'
DEFORMATION | distribution /)
|

: becomes wider

FIG. 2. Lorentz-squeezed space-time and momentum-energy wave functions. This
figure is a result of combining quantum mechanics and special relativity described in
Fig. 1. The physical significance is that this figure gives a unified picture of the quark
model for slow hadrons and the parton model for rapid hadrons. This figure is from
Refs. [5] and [6].
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In the light-cone coordinate system, the oscillator wave function in the rest frame takes the
form

1
m(n!)2n

1/2 |
00 = [ Bl 0 VR)exp (=50 ). (14)

If the system is boosted, the wave function becomes

1

1/2 1
Yn(z,t) = [Wl H,o((e ™ + €"v)/V/2) exp {—5(6_27711,2 + eznvz)} . (7.5)

This wave function can be expanded as [5]
¥y (2,t) = (1/ coshn)™** 3 3(Cox)!/(tanh n) 47 +¥(2)95 (1), (76)
k
where |
Cog = (n+k)!/n'kl.

Since the space-time localization property is dictated by the Gaussian factor, let us study in
detail the ground state with n = 0. In this case, the boosted wave function is

Py(z,t) = (%)1/2 exp {—%(e'”zﬁ + ez"vz)} : (7.7)

The quantum space-time distribution of Fig. 1 is squeezed to an ellipse described in the upper
half of Fig. 2.

Let us next consider the momentum-energy wave function, which is the Fourier transform of

Yy(z,t):
60(a2:00) = — [ ¥n(st) exp {i(p.z — pot)) ddt, (73)

where ¢, and ¢, are defined in Eq.(6.2). Since the integration measure is invariant under the boost,
the evaluation of the integral is straight-forward, and the momentum-energy wave function takes
the form

1 Me 1 2n 2 —2n 2
(@) = () exp {5 + e} (79)

with
g = (g: — qo)/\/i’ ¢ = (g: + Qo)/\/i-

The Lorentz-squeeze property of the momentum-energy wave function is the same as that of
the space-time wave function, as is illustrated in the lower half of Fig. 2. The significance of
the Lorentz-squeeze property is that it gives observable consequences in high-energy laboratories.
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By now the quark model for hadrons is firmly established. The proton consists of three quarks
bound together by a oscillator-like force, according to an observer in the Lorentz frame in which
the hadron is at rest. On the other hand, to an observer in a moving frame, the wave function
appears squeezed. If the frame moves with a speed close to that of light, the hadron appears as a
collection of an infinite number of partons [5] [11]. This is called Feynman’s parton picture. This
phenomenon is now universally observed in high-energy laboratories, and the squeezed picture of
Fig. 2 gives an explanation of Feynamn’s parton picture.

One of the most uncomfortable aspects of the present discussion is the time-separation variable.
Without this variable, it is not possible to perform Lorentz boosts. On the other hand, there is
no time-separation variable in any of the existing measurement theories of quantum mechanics.
In order to reconcile this difference, we have to conclude that the time-separation exists, but is
not a measurable variable. This variable is in Feynman’s rest of the universe.

8. Entropy and Lorentz Transformations

Entropy is a measure of our ignorance and is computed from the density matrix, as was noted
in Sec. 4. The density matrix is needed when the experimental procedure does not analyze all
relevant variables to the maximum extent consistent with quantum mechanics. For the bound
state of two particles, the present form of quantum mechanics does not tell us how to measure the
time-separation variable, as is illustrated in Fig. 3.

Not Measurable

Measurable

FIG. 3. Localization property in the zt plane. When the hadron is at rest, the
Gaussian form is concentrated within a circular region specified by (z41)2+(2—t)* = L.
As the hadron gains speed, the region becomes deformed to e~z +t) 2 +e¥(z—t)* = 1.
Since it is not possible to make measurements along the ¢ direction, we have to deal with
information that is less than complete. The time-separation variable lies in Feynman’s
rest of the universe.

If the time-separation were a measurable variable, the pure-state density matrix would be
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p:;(z,t; 2 ) = d)s(z,t)[d)g(z',t')]*, (8.1)
which satisfies the condition p? = p:
pr(z,t;2',t) = /p;‘(z,t; 2t (27,1 2 ) d2" dt (8.2)

This pure-state density matrix is possible only if both the z and t coordinates are measurable
space-time variables. On the other hand, there are at present no measurement theories which ac-
commodate the time-separation variable t. Indeed, this time separation variable is the coordinate
in the part of the universe outside the system. We do not observe the distribution outside the
system. What we do then is to take the trace of the p matrix with respect to the t variable. The
resulting density matrix is

pr(z,2") /pnz,t,ztdt /d)"zt[wzt)]dt

= (1/ coshn)*"*V 3" C,, x(tanh n) 9tk (2) [r R ()] (8.3)
k

The trace of this density matrix is one, but the trace of p* is less than one, as
Tr(p*) = /p;‘(z,z')p;‘(z',z)dz'dz

= (1/ cosh p)*™* D $7(C,, 4 )*(tanh n)*, (8.4)
k

which is less than one. This is due to the fact that we do not know how to deal with the time-like
separation which lies in Feynman’s rest of the universe. Our knowledge is less than complete.
We can now go back to Sec. 4 on entropy, and write Eq.(4.1) as

S = —Tr[pln(p)). (8.5)
If we pretend to know the distribution along, the time-like direction and use the pure-state density
matrix given in Eq.(8.1), the entropy is zer.. However, if we do not know how to deal with the

distribution along ¢, then we should use the density matrix of Eq.(8.3) to calculate the entropy,
and the result is

S=2(n+1) {(cosh 1)? In(cosh ) — (sinh 5)? In(sinh 17)}

—(1/ cosh ) 2(”“)2 ok In(C,, 1)](tanh p)%. (86)
In terms of the velocity v of the hadron, where v/c = tanhn,

S = —(Tl + 1) {In[l - (v/c)2] + (0/6)2 ln[%}
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—[1 = (v/e)J ™D ST (Crk In(Cr )] (v ). (8.7)
k

Here again, entropy is derived as a measure of ignorance. It does not depend on the question
of whether or not the system is in thermal equilibriu m. The expression for S in Eq.(8.7) does
not depend on temperature.

It was noted in Sec. 7 that the ground-state wave function occupies an important place in the
oscillator formalism, and it will undoubtedly give a simpler and more transparent expression for
the entropy. In terms of the z and ¢ variables, the Lorentz-boosted wave function of Eq.(7.7) takes
the form

1\'? L .
n(z,1) = (;) exp {—Z[e"ln(z F 1) 4 (s — t)?]} , (8.8)
which can be expanded as
Polz1) = (1/ cosh ) S (tanh n)"u ()" (1), (8.9)
The density matrix is
1\ 1
! — . _ [AVA AV h2 } .
pn(z,2") (——-——Trcoshgn> exp{ 4[(z+z) | cosh 2n + (z — 2')? cosh 2] ¢ , (8.10)
and the entropy becomes
S = In(cosh )? — (sinh p)? In(tanh n)*. (8.11)

As a consequence of Eq.(8.10), the quark distribution p(z, z) becomes

1 1/ —z?
plz) = <7r cosh 21]) xp (cosh 21}) ' (8.12)

The width of the distribution becomes (cosh 2n)'/2, and becomes wide-spread as the hadronic speed
increases. Likewise, the momentum distribution becomes wide-spread [5] [11]. This simultaneous
increase in the momentum and position distribution widths is called the parton phenomenon in
high-energy physics [11]. The position-momentum uncertainty becomes coshn. This increase in
uncertainty is due to our ignorance about the physical but unmeasurable time-separation variable.

For the special case of the ground state, it is possible to convert the entropy into the temper-
ature scale, exactly as we did for the case of two-mode squeezed states in Sec. 5. The squeeze
parameter 7 used in Sec. 5 is now the boost parameter. We can use Eq.(5.8) to establish the
correspondence between the temperature and squeeze parameter [12].
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ABSTRACT

Wavelets are new mathematical objects which act as “designer trig functions.” To
obtain a wavelet, the original function space of finite energy signals is generalized to a
phase-space, and the translation operator in the original space has a scale change in the
new variable adjoined to the translation. Localization properties in the phase-space can
be improved and unconditional bases are obtained for a broad class of function and distri-
bution spaces. Operators in phase space are “almost diagonal” instead of the traditional
condition of being diagonal in the original function space. These wavelets are applied to
the squeezed states of quantum optics. The scale change required for a quantum wavelet
is shown, with Prof. G.M. D’Ariano, to be a Yuen squeeze operator acting on an arbitrary
density operator.

1. INTRODUCTION

Wavelets were created in France less than a decade ago' ~® when J. Morlet'* gener-
alized the phase-space of Gabor® by adding a scale change to the frequency (wavenumber)
axis for applications to geophysical exploration. Grossmann®® and Meyer®® " immediately
saw the importance of wavelets for mathematical physics and to deep questions in har-
monic analysis, respectively. There are a number of review articles®®7~12 available today,
each specializing in different aspects of wavelets.

In terms of this paper, which applies wavelets to the squeezed states of quantum
optics, two long mathematics papers are the most important. The author is convinced
that they will also be the most important for physics, applied mathematics, engineering
and industrial problems. The two key papers are those of Daubechies!®, and Frazier and
Jawerth.'* Daubechies!® first constructed a large family of orthonormal bases of compactly
supported wavelets in LZ(R"™). Frazier and J awerth!? gave a thorough, complete treatment
of sampled wavelets which is valid both in the classical function spaces and in the modern
distributional spaces.

The approach to squeezed states and quantum optics!®~22 will be through the coherent
states.23=25 The three main approaches to coherent states are those due to Klauder,?*22°
to Perelomov,?® and to Onofrio.?° The Klauder construction starts with an arbitrary rep-
resentation of a Lie group G on a complex separable Hilbert space H and induces a repre-
sentation of G on itself with H as a closed subspace of LZ(R?,du) This yields a subrepre-
sentation of the regular representation in the sense of Mackey.3? It works equally well with
states or frames. The approach of Perelomov starts with a “Little vector” and requires a
multiplier to add enough structure to force projective representation to be unitary. There
is additional subtlety in obtaining an invariant measure on the coset spaces used to reduce
G in that G/H; can have an invariant measure du; whereas G/H, may not. Thus, the
choice of a “Little group” or “stability subgroup” is a sensitive issue in the Perelomov ap-
proach. The Onofrio construction yields a holomorphic representation of the Lie group. At

* Supported in part by AFOSR grant 90-307
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least in simple cases it gives a complexification of the real homogeneous space M = G/H,
of Perelomov. For additional structure and the proofs see the nice new monograph of

Kaiser.%!

2. SQUEEZED STATES OF QUANTUM OPTICS

The coherent states for each complex number a are generated from the unique, trans-
lationally invariant Fock vacuum | 0 > using a unitary displacement operator D(«) which
is defined below. Let a,a’ be the Bose destruction and creation operator which satisfy
the canonical commutation relations

[a,at]=1 |,
[a,0] = [a*,a*] =0 , (1)
and define D as a Weyl-Heisenberg operator,
D(a): = exp(aat — a*a) . (2)
Then
|« >=D(a)|0 > (3)

is the ordinary coherent state. In terms of an additional complex parameter ¢, the two-
photon squeezed states | {,a > of Stoler!® and Yuen!® can be generated using the squeezing

operator S(¢)
S(¢) : = exp(¢a™? — ¢*a?) (4)

through the action
| ¢,a>=5(¢) | a>

=5(()D(a) | 0> . (5)

The states generated in Eq. (5) will be called amplitude squeezed states. These coherent
states satisfy the uncertainty principle but squeeze one side, say time or frequency,

exponentially. Naively, it would seem that higher order squeezed operators S®) k > 2,
can be defined through the definition

S®Y: = exp(Cat* — ¢*a¥) (6)
but a neat paper by Fisher, Nieto and Sundberg?? has shown the matrix element divergence
<01SP(Q0>= 00 (7)

for all k£ > 2! This can be interpreted as either non-analyticity of the vacuum or as operator
domain problems. The task of defining k-photon squeezed wavelets will be relegated to
future works. Here a new quantum or operator-valued wavelet of D’Ariano and the

author®® will be presented. Let A be an observable
A |la>=a|a> (8)

where the states | a > give a resolution of the identity

1=/dp(a)|a><a| , (9)
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where du(a) is the invariant measure. The generating function of moments of the observ-
able A in a state whose density operator is p is given by

i dg (10)

The probability distribution function P(p,a) is defined as

< et >:=Trle

P(p,a): =Tr[la><a| A

and is the Fourier transform of the generating function of moments with respect to the
measure du(a)

< el 5o /du(a)ei"“P(ﬁ, a) . (11)

A filtered Fourier transform with window function v(a) for Eq. (11) can be defined natu-
rally as

(¢4) = [au@eems@Ppa) - (12)
v
A c-number wavelet transform analogous to Eq. (12) is given by

Wip,n,6): = 17z [ OX(THPGa) (13)

| € ll /2
In the next section, additional discussions of wavelets will be given.

3. WAVELETS

For simplicity of exposition, let f eL*(R') be a real or complex-valued finite energy

A

signal and denote its Fourier transform by f(k). In L%, f is guaranteed to exist and by
Parseval’s theorem |f|? = |f|? with proper normalization. Choose conventions s.t.

f(k) = /_ ~ f(z)e*™F2de | (14)
and

o= [~ dwreea oo
If supp(f) C (—1/2,1/2) and feL*(R')

_ sin(w(z — k)
(z) = ;{f(k)—————,r(x ot (16)
Inverting Eq. (16) yields

F(k) = {Z f(r)e“‘*"}x(_l,u,,)(r) , (17)
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where x, is the characteristic function of the interval A C R!. With discretization the
mn' coefficient of f (m, n integers) with “window function” g(z —nz,), which is one when
(r — nzy) is positive, is given by

oo

Con(f) = [ emimbossg(s —nao)f()ds (18)

— 00

Observe that the n-index is a spatial translation of units of zo and the m-index is a wave-
number translation in units of kg. The joint appearance of (m,n) indicates that C,,,
lives in Z¢ ® Z¢, a phase-space. The scale change z — « /2Y plays an important role in
the Calderén complex interpolation approach. A dilation is a translation in z (space)
with a scale change in Fourier transform variable k. Calderén®® published his famous
reproducing formula in 1964. The conditions required are the following: (i) Let ¥ and

¢ be radial, smooth L%(R?) functions whose Fourier transforms % and @ in L?(&?) with
support in a set A,

A:=supp(z/3,¢):{k|0<01 <|k|L Cz<oo} . (19)
(ii) For each | k |# 0
S e IkDBE kD=1 . (20)
Let feL?(R?) with f(0) = 0 and then
fk)y =3 f(R)p(2" | K D$(2” | K]) (21)
Let AV
9,(k) = f(k)2(2" | K |) (22)

which implies that rearrangement of Eq. (21) into

Z co(k)e2mi2" (23)

8

has an obvious parallel to Eqs. (14-18). Define the quantities

Gur(x) i =2""2p(2 7z — 1) | (24)
by o(z): =272 e — 1) (25)

. z
pu(z) =2 /2<P<§) (26)
and use these with Eq. (23) to obtain

cs(k) =+ f(s-25): =< fipon, > . (27)
Now
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(@) =33 < fr0rs > ¥r(2) (28)
k 8

is a continuous wavelet expansion with wavelet coefficients given by the cs(k)’s of Eq. (27).
The mathematical importance of the wavelet expansion over the Fourier method, is that 1t
generalizes to many function and distribution spaces where Fourier analysis is inapplicable.
The potential physical importance of wavelet methods is to make possible new formulations
and calculations of physical models. For computation or for experimental signal processing
the discrete wavelet transform of Frazier-Jawerth called the p-transformation is required.
The @-transform of f is

(frpsth) — 3> < fr 0k, > Prso (29)
k 8

and holds in general function and distribution spaces. The requirements on the L? function
which ¢ must satisfy are:

O [ @a=0 (30)
(id) so(x)=sor,s(x)=so(”;s) , (31)
(i) cnsle) =27 |

e dk
| p(k) |* k] < (32)

The inverse problem of reconstructing f(z) from coefficients! 24512 can then be reduced
to the matrix problem

e = [eeato)]  [ensth)] H(22) (3)

Observe the correspondence of 2¥ with a scale change and r(r/s) with a spatial transla-
tion. A major improvement of wavelets over Fourier methods is apparent from Eq. (16).

Whereas, f (k) has great localization with compact support, f(z) has terrible localization
properties in x since as £ — o0

sin(7z) . __1_| . (34)

T |

The Frazier-Jawerth improvement in localization via the ¢-transform is easily seen for
¥(k)eCi(R), where the integration by parts

. = (of —2rik-z
(2miz) - f(z) = — % (ke dk (35)
can be repeated r-times to obtain

(omiz) f(z) = (-1)" /_ Z(gkf )(k)e“z”“”dk . (36)
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Hence, as 2 — oo

1@ 1=0(2=) - (37)

|2 |

The size of cs(f,¢) depends largely on f in a neighborhood of the point (0, %) with a

spread (277) and far from this point the coefficient decays as | z | 7. The simplest way to
obtain wavelets is to decompose the space of interest V; into a closed subspace V, and its
orthogonal complement Wy according to the direct sum

Vi=VooW, (38)
or schematically

W

7N
Voo Wo

In order to maintain simplicity let V; denote either L? or ¢2. Let ¢ be a given function in
V1 which satisfies the relation

o(z) = ¥ h(n)2"/%p(2c —n) (39)

where the set of coefficients {h(n)}}_, are a collection of constants, called “masking coef-
ficients” and the 21/2 factor in front of p is for L? normalization. If V; is the closed, linear
span of all functions {2!/2 . p(2z — n)} ,

Vi =Va{21/2p(2 - —n} (40)

and Vi ~ £; and is a (useful) special case of Frazier-Jawerth.

Proposition: If the masking coefficients satisfy the condition

sgp{; Wk —2m) P} < 4 o (1)

for 0 < A < 0o and AeR' then the space V; of Eq. (39) is given by
Vo = Vag(: - n) (42)

with Vo ~ €5 and Vy C V4.
Proof: Any f(z)eV; can be expanded in ¢(- — n)’s

@)= 3 eapla — n)
=21/2 Z Z cnh(m)p(2(z — n) —m)

= 21/2 Z Z cnh(m)p(2e —m —2n) . (43)
Let
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k=m+2n
fe) =2"/2 brp(2z — k) (44)
k

where

bk =Y cah(k—2n) , (45)

n

and take

Yook = Z[;Cnh(k - Zn)r

k k

<33 e Pl Ak —20) (46)
k n
The requirement in Eq. (42) suffices for

LTS A(E ol (47)

for every @eVi. In the event that {h(n)}.=1€ 2, eq. (42) is automatically satisfied and Vo
is a closed subspace of V.

Question: Does a function eVg! exist s.t.
(i) Wo = Vit = V(- — n) and
(i) {¥(- —n)}3%, is an orthonormal basis.

Answer: Yes; Daubechies!® in L?, by Frazier and Jawerth!4 in £2, Besov spaces, Sobolev
spaces, bounded mean oscillation (BMO) spaces and Triebel-Lizorkin spaces. Such a func-
tion v is a wavelet and

{2¢/%¢(2" - —n) : v,neZ} (48)

is an orthonormal basis for L?(R). This reduces the problem to that of finding a finite set

of masking coefficients {h(n)}_;. The easiest method for finding these coefficients is due
to Daubechies in Ref. (13). Assume that the set of non-zero masking coefficients is a finite

set and let peL? s.t.
¢(0)=1 . (49)

Given the wavelet expansion

o(z) = Z h(n)2!/%p(2z —n)
take its Fourier transform to obtain

o(k) = S h(n)e2™ ™ 2p(k/2) /22
= m(k/2)p(k/2) . (50)
It is now necessary to show that

N ] N
60 = im { [T m(k/2) - (k72 )}
= [[ m(x/2%) (51)
J=1
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The second, fourth, sixth and seventh iteration of the Box function for ¢(z).

makes sense in L? (or V7). This suggests a method of finite approximation providing the
masking coefficients are known. Let no(z)eL?(V}) s.t.

() = [ T @)z =1

— o0

(52)

and iterate

me(2) = 3 ()22, _y(2c —n) (53)

to generate ¢ which is a wavelet, but is not the wavelet ¢ of Eq. (25), but rather is that of
¢ in Eq. (24) instead. In Daubechies nomenclature ¢ is called a father wavelet and if « is
identified as a “time” variable the dilations (= scale changes and translations) of ¢ span Vj
which acts as the high frequency, k¥ = w, content of the full space V;. The function ¢ can
be thought of as a “pixel shape” in V; as pointed out by Kaiser.*! Similarly, # is called the
mother wavelet and the dilations of ¥ span Wy, which contains the low frequency content
of V;. In Figs. 1, and 2 a mother and father wavelet generated by the choice no(z) = b(z),
the Box function

b(z) = {é 1/2<z<1/2

otherwise (54)
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The father wavelet ¢(z) and the mother wavelet Y(z) for no equal to the Box function.

Since YveW, C Vi,
$() = 3 h(n)2 (20 — )
P(k) = m(k/2) - p(k) (55)

where {h(n)})_, is a set of masking coefficients for Wy and 7(:) is a function analogous
to m(-) in Eq. (47). Let 7 = 7 be a translation parameter and observe that finding ¢ and
1 is equivalent to finding two trigonometric polynomials s.t. the 2 x 2 matrix

m(k) (k)
= (ihsry alhom) &

is unitary. It is useful to consider m(k) as a phase function which partitions by translations,
m(B)* + m(k+ )P =1 . (57)

To solve for |m(k)|> = P(|sinz|?, |cosz|?) treat P as the probability of a binomial process
with possible outcomes

p1 = |sinz|?
p2 = |cos:1:[2 . (58)
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Then m(k) is the square root of P. There are many solutions since P is an even, positive
polynomial but only one is needed. Then using m, it is straightforward to find /2. This
completes the discussion of simple wavelets.

For mathematical physics, operators and their expectations are the objects of interest.
The spectra of operators give infinite dimensional “diagonalizations” in terms of generalized
eigenfunctions. In a wavelet basis an operator is “almost diagonal” in a sense discussed
next.

Let T be an operator, f a function in a normed space which is in the dense domain

of T,

T:f—Tf
(T1)@) = [ Kz, fw)dy (59
s.t.
() Kl (600)
and
(i%) 'aKéz’y) (aKé;’y) S|x_cy|2 (600)
Let

f@) = cirpir(2) (61)

3,k
where the 1;x(z)’s are a wavelet basis. Then the kernel of T can be written as
K(z,y) =Y ejntie()bk(y) (62)
ik

where the 1;i’s satisfy the estimate

1 .
Wik(@)l < g (1 + 127 -2 — ) (63)

In order to prove that K satisfies the conditions (i) and (ii) split the sum according to
2=+ (64)
Bk §<jo.k  j>jok

with jo chosen so that . ‘
200 < |z —y| <20t (65)

Using the decomposition of Eq. (64), the estimate of Eq. (63) and geometrical sums, it
follows that

|K(z,y)| < (66)

|z -yl
The same techniques yield
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OK(z,y) c
e (67)
and
0K (z,y) c
oy |ST-oP %)

There are several consequences of conditions (i), (ii) and Eq. (63). One is that such
operators map LP — L? for all 1 < p < oo, solving deep, old problems. Another is
that {¥;x} are an unconditional basis for L?,1 < p < oco. The proofs work because of
phase-space localization; if two frequencies are well separated their wavelet coefficients
are small and if two times are well separated their wavelet coefficients are small. The
localization structure in Eq. (64) is the reason that the disadvantages of “almost diagonal”
are outweighed by the advantages.

4. WAVELETS FOR SQUEEZED STATES

It is clear that in order to define a wavelet for the squeezed states of quantum optics,
it is necessary to define an operator which changes the scale. This has been accomplished
in Ref. (33) in a project with G.M. D’Ariano which was initiated at this workshop.

Let x(-) be an analytic function of the observable A defined s.t.

x(A)|a >= ala > (69)
and

x(A) : = /d,u(a)a:la ><al . (70)
This function satisfies the relation

< x(&) > =Tr[x(&)p]

= / du(a)x(a)P(p,a) . (71)

A dilation operator in the Heisenberg picture is defined on an observable A as

A—nq

€

Dpe(A) :=

(72)

The time picture is suppressed since no other picture will be used here although Schrédinger
picture operators are given in Ref. (17). For some observables, A, the dilation operator

is unitary but D’Ariano?!:3* has shown that there are important operators of quantum
optics that are completely positive maps, abbreviated CP, and are non-unitary. In the
unitary case, which is the only case discussed here, all products of operators are preserved
and

D"IG(A) = X{Dne(“i)}
= x (A - ’7) . (73)
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Using Eq. (73), the operator-valued wavelet transform can now be written as
A 1 N A
W(pin,€) : = WT’”{Dne(A)P}

_ Ieli . <D,,E(x(/i))> . (74)

Thus, the dilation operator squeezes any state described by a density operator 4. In Ref.
(34) two examples are presented:

(i) The unitary dilation of one quadrature of the electric field. This case is applicable to
a phase sensitive amplification.

(ii) The CP dilation map of the particle number which is applicable to improving noise
sensitivity in squeezed light signals.

and analogies of these have been obtained for a quantum wavelet in Ref. (33) with Prof.
G.M. D’Ariano.

5. CONCLUSIONS AND OUTLOOK

The scale change part of the wavelet dilation is accomplished by the Yuen!® squeeze
operator. The application of wavelets to quantum optics is an idea with some potential.
For example, nonlinear modes and mode-coupling using wavelets should prove useful. The
quantum squeezed wavelet with D’Ariano should be a good candidate for highly dispersive
biological media. Future work will focus on these ideas.
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It is well known (Refs. 1,2) that Parafermi and Parabose statistics are natural extensions of the
usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones.
Due to this generalization, positive parameters appear : the so-called orders of paraquantization
p(=123, . )and h¢o(=1/2,1,3/2.. - -), respectively, the first value leading in each case to the usual
statistics. The superposition of the parabosonic and parafermionic operators gives rise to
parasupermultiplets (Refs. 3-5) for which mixed trilinear relations have to be envisaged. In the
particular case of quantas of the same order (p =2h ) . these relations have already been studied
(Ref. 6) leading to two (non equivalent) sets : the relative Parabose and the relative Parafermi ones.
For the specific values p = 1 = 2h . these sets reduce to the well known supersymmetry (Refs. 7.8).

Coherent states associated with this last model have been recently put in evidence through the
annihilation operator point of view (Ref. 9) and the group theoretical approach or displacement
operator context (Refs. 10-12). We propose here to realize the corresponding studies within the new
context p =2 =2h . being then directly extended to any order of paraquantization. Even if we have
to take account of the two relative sets separately, the arguments are so similar in both cases that we
just concentrate on the Parabose set in the following . Within the relations characterizing such a
model, it is easy to prove that the operator A = a+ ; at bT 2 [a.af ( b.,b") are the usual bosonic
(fermionic) annihilation and creation operators] exactly plays the role of a generalized annihilation
operator i.e. satisfying the expected commutation relation with the hamiltonian and displaying the
right action on the state basis of the Hilbert space (Refs. 13,14). Parasupercoherent states (Refs.

13.14) |z > are then defined as eigenstates of this operator A with eigenvalues being arbitrary

complex numbers. The corresponding uncertainty relation is found to be nearly 1 ( h=1).

The group theoretical approach asks for the consideration of a specific representation of the
para-operators : the Green-Cusson Ansitze (Refs. 1,15) in which each operator is decomposed into a
sum of two other ones related to the usual bosonic scaling operators and the Pauli matrices. By
introducing parameters realized through two by two matrices with Grassmannian elements, we are led
to the corresponding color supergroups (Ref. 16) and we are thus able to define the associated
coherent states by a unitary representation of these groups. Convenient Baker-Campbell-Hausdorff
relations (Ref. 12) are of particular interest in this study. Moreover the states obtained in this way are
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effective eigenstates of the operator A introduced before. The three usual definitions of ordinary

coherent states are thus satisfied in this parasupersymmetric context.
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ABSTRACT

We study the width of the semiclassical
phase distribution of a quantum state in its
dependence on the average number of photons
(m) in this state. As a measure of phase
noise, we choose the width Ag of the best
Gaussian approximation to the dominant
peak of this probability curve. For a coherent
state this width decreases with the square root
of {m) , whereas for a truncated phase state it
decreases linearly with increasing (m). For
an optimal phase state, A¢ decreases
exponentially — but so does the area “caught”
underneath the peak: All the probability is
stored in the broad wings of the distribution.

I. INTRODUCTION

The ultimate quantum limit in the goal of
optically detecting gravitational waves is to
operate a Michelson interferometer with light
in a quantum state that minimizes the phase
noise at a given mean number of photons
(Ref. 1). But what is a good measure for phase
noise? Should we consider the inverse peak
height of the probability distribution (Ref. 2)
— the so-called reciprocal likelihood — or
perhaps the second moment of the phase
distribution (Ref. 3) or even the periodic
measure advocated in Refs. 4 and 57 These
are all based on the idea of a phase
distribution — but we recall that this in itself
is not a trivial construction since the concept
of a Hermitian phase operator is not without
complications (Ref. 6).
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In the present paper we therefore start
from the semiclassical phase distribution
Wolly)] of a quantum state ly) (Refs. 7 and
8). We consider states that have a single
pronounced maximum of W¢ at a phase value
that, without loss of generality, we take at ¢ =
0. We approximate (Ref. 9) this peak by a
Gaussian distribution with an identical
height of Wg=0. The distribution's width A¢
is determined by the curvature of Wy at ¢=0,
together with Wge=0. The examples of a
coherent state |ycoh) and a truncated phase
state |yp) will illustrate this scheme: Their
widths A@ [ycon)] and A@ [lyp)] decrease as
the square root and linearly with increasing
average photon number (m), respectively. In
the case of the optimal phase state — the state
(Ref. 2) that minimizes the reciprocal
likelihood — we find (Ref. 9) even an
exponential decay for Agp. However, in
contrast to the coherent or the truncated phase
state, the area underneath this maximum is
not normalized but decays as well (Ref. 10).

* Also at: Max-Planck-Institut fir
Quantenoptik, D-8046 Garching bei Miinchen,
Germany.

t National Research Council Associate.



II. FROM PHASE FUNCTIONAL TO
GAUSSIAN-APPROXIMATED
PHASE DISTRIBUTION

In this section we start from the
semiclassical phase amplitude functional
wo [1y)] of a quantum state |y) and derive a
Gaussian approximation to the dominant
maximum of this probability curve.

In the semiclassical limit the phase
distribution Wg [I1y)] of a quantum state

) = A i L
m=0

(2.1)

represented as a superposition of photon
number states Im), with expansion
coefficients y = (m | y) and the

normalization A such that (y|y) = 1, follows
from the phase functional

w‘p[ lw)] = jz% ng)wmeim‘” (2.22)
via
w(p[ ] = Iw
= ﬁ (2.2b)

N 1 (m—n)p
§= :

For the sake of simplicity, we consider in this
article only quantum states such that vy =

*
W, 2 0. Hence, for the phase value ¢ = 0 the

terms in the sum of Eq. (2.2b) add
constructively, whereas for ¢ # 0
cancellations occur. This results in a
maximum at ¢ = 0.

An approximate analytical expression for
W [Iy)] in the neighborhood of the origin

follows from an expansion of Wy into a
Taylor series around ¢ = 0, that is

2
W =W +aWe @ +.
® @= 0 2
’” (2W ) 2
=W 1+ W .
(P:o + (p:o (p=0 (p

(2.3)

Here primes denote differentiation with
respect to ¢ and we have used the property

’

w Nz 2 1(m—n)\y v =0,

(FO 21tmn0

following from Eq. (2.2b).
Eq. (2.3), we arrive at

With the help of

Ao

2
(peak) _ - s
W(p —exp(an(p)_W(p=0exp|: ( ) ]

(2.4a)

where the width A¢@ of this Gaussian is given
by

o=0

i mzwm

m=0

2 my,
m=0
(2.4b)

We emphasize that this procedure is valid for
any state whose phase probability Wg [1y)]

enjoys a maximum at ¢ = 0.

The area underneath this Gaussian-
approximated peak reads as
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o0

AGauss = I d(pW(P=0

—o0

2
o (@/89)

=J—A w . (2.5)
n A¢ =0

This clearly demonstrates that the Gaussian
fit of the peak, Eq. (2.4), is different from the
properly normalized Gaussian G(¢) = n-1/2

k
(A@)~1 exp [(¢/A@)2]. Whereas W(q;:ea ) is
tailored to have a height identical to
Wo=0 [!y)] , the height of G, that is, n~1/2
(A@)-1, adjusts itself to the width of the
Gaussian, so as to keep the area normalized.

III. PHASE NOISE AND AVERAGE
NUMBER OF PHOTONS

In this section we apply the Gaussian
approximation, Eq. (2.4a), in order to discuss
the width A¢ , Eq. (2.4b) of the phase
distribution of:

(i) a coherent state of large displacement
a>>1,

Im) ,

2
( ma )
_ _ = 2a
I‘Vcoh>= (2m) 1/40‘ V2 2 e
m=0
3.1)

(ii) a truncated phase state

m
vy = (mo+ 1)"1/2 Zo Im) , (3.2)

m=0

and

(iii) the optimal phase state

m

0

1

ly,) = A 20 —— Im) 3.3)
m=

recently proposed in Ref. 2.

These states are normalized to unity.
For a coherent state, Eq. (3.1), we arrive at

( 2)2
_ m-o
-1/2 1% 20
Wy W) =20 a1 ) e
m=0
o -2
= n_l/z J‘ dme ™
=1 (3.9

where we have replaced the summation by an
integration. For the truncated phase state
lyp) we find directly

1 o

(Wpiwp) = (mo+1) 26 1 =1,
ms=

whereas for the optimal state |yg), Eq. (3.3),
the normalization constant A/ is given
implicitly by

wlvy) = 28 Y, Lem) 2
m=0

that is, (Ref. 11)
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and the width A¢ , given by Eq. (2.4b) reduces

1=9@(7‘6—2—§(2;m0+2)} to
1t2 1 -2 A [Iwcoh)
s E e G ) G

&‘-—-»s

Here,
.
_.s o0
((s,0) = ), (+k)
k=0 dmm ¥Ym J.dm ™ ¥m
denotes the generalized Riemann zeta
function (Ref. 12). (3.6)

A. Coherent State
Here, we have once again replaced
For the coherent state, Eq. (3.1), the summations over m by integrations. We
expansion coefficients read evaluate the Gaussian integrals most
economically by applging the symmetry of
Vo with respect to o“ before performing the

2
_ a2 integrals. This yields
- (en) 1/4(1_1/2 exp| - m—a Bgr y
m 20
2 r 52 2T 2 4 T 22 4l
Jdmrn v, = dm (m-o<) \ym+2a dm (m-a )wm+a dm\|1m = J dm (m-a°) v, +a Jdm v,
and

P oo

¢ 2
J.dmmwmzj'dm(m—-az)wm+ a2 J‘dmwm =« jdmwm-

—o0 —c0 —o0 —o0

This result reduces Eq. (3.6) to
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= — (3.7a)

The average number of photons (m)
follows from the normalization condition,
Eq. (3.4), as

(m) = j:odmmwrzn

=Tdm(m_a2) vlfn+oc2 fdm \vzm

—o0 —oo

and hence

(3.70)

A‘P[ h"coh>] =
2 (m)

for large (m). Asymptotically, the width
Ag [y )] of the phase distribution of a

coherent state decreases inversely as the
square root of the average photon number.
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We now evaluate the area underneath
the Gaussian approximation, Eq. (2.5), for
the coherent state, Eq. (3.1). The maximum
value of the phase distribution reads

2
2
=_J=«a
'3
- |2 m) 3.8)
n

and hence the area of the Gaussian is

AGauss[ I‘Vcoh)] p A‘P[ l"’coh)]
.wq,:o[ lwcoh>] = 1. (39

Thus the Gaussian approximation, Eq. (2.4)
for a coherent state is properly normalized.
Its width A@ [lycon)] decreases linearly with

a but its height Wy-o [y )] increases

linearly with a ~ V(m) to leave the area
AGauss constant.

B. Truncated Phase State

We now turn to the discussion of the
truncated phase state lyp) , Eq. (3.2).

According to this equation, the expansion
coefficients read

1, for OSmSmo

\'] =
m 0,farm>rno

which reduces A¢ [lyp)] to




m
0
1
2 i m=0
ae [ WP):I: 2
m, m m,
Zmz 2 194 Zm
m=0 m=0 m=0
2
(mo+l

(8.10)

Here, we have made use of the summation
formulae (Ref. 11)

S Lo (mgr1)(mort). i

m=1

When we express m, in terms of the

average number of photons
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, (3.12)

again for large (m). The width A¢ [pr)] of

the phase distribution of the truncated phase
state decreases linearly with the average
photon number {m) .

The value of Wy, at ¢=0 reads

(3.13)

and yields for the area underneath the
Gaussian approximation, Eq. (2.4), of the
truncated phase state, Eq. (3.2),

AGauss[ lwp)] Vx oA(p[ l\vp>] . w(p=0[ I\vp)]
(3.14)

i.e., almost perfect normalization. Again, we
note from Eqgs. (3.10) and (3.13) that the width
A@ decreases with m, in the same manner

as the maximum height We=0 increases —
keeping the area AGayss normalized and,

more importantly, keeping it independent of
mg .



C. Optimal Phase State

We conclude our illustration of the
Gaussian-approximated phase distribution by
applying it to the optimal phase state Iy ),

Eq. (3.3), which enjoys the expansion
coefficients

(1+m)_1 , for 0sm< m

0 s form>mo.

The width A¢ [1y)], Eq. (2.4), then reads

A(pz[ I‘-l’s)] =

2
m
[}
1
m=0 1+m
3
m m m
[s] 2 [o] [+
2 m 1 _ z m
m=0 1+m m=0 1+m =01+m

m 9
A(p2[|\|/s>] = fz(mo) f(mo) 2 (m+1)" - 2(m+1)+1 _

m=0 m+1

m

2
=f (mo)
m=0

When we use the summation formulae, (Ref.
11)

mo )
fomg) = n?_:ol—m
- C+1n(m°+1) +O[(mo+1)_1], (3.15)

where

=1

s
C = lim (2 %—lns)

= 0.577215 ...

is Euler's constant, and from Eq. (3.11)
mO
1
20(1+m) = (m0+1) +Emo(mo + 1)
m=

1 (mye)(mg3).

we find

m+1-1
m+1

-1
2

zo(m+1)— 2(m0+1) +f(mo) f(mo)—[(mo+1)—f(mo)]

-1
=f2 (mo) [%(mo+1)(mo+2)f(mo) - (m0+1)2] .

In the large m, limit we arrive at
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-1
2f(m ) 1 2
A<P2['ws>] =-—°[“m 1 f(mo)]

(mo+1)2 °
2f(m) -
g el
0

and with Eq. (3.15) we then have

A Lt
mO

The average number of photons in this state
reads

m
(]
msly =A% m) Yy —

m=0 m+1

=9\L2(mo) C+1n(mo+1)++ (—)

1
+0 )
2(m0+1) m

=%[C+ln(mo+1)]+0 M ’
T

m + 1
(3.17a)

that is,

2
m0+1 = 'y—l exp l:n?(m +1)], (3.17b)

o2

5/2 - I (m+1) - (m+1)
AGauss[ I\Vs>] = X (m+1)5/2 e 6 + 0 ((m +1)3/2 e 6

1243

where we have defined y=eC in a standard
notation. In determining the remainder, we
have applied in the last step of Eq. (3.17a) the
asymptotic expression for A(, Eq. (3.5). With

the help of Eqs. (3.17a) and (3.17b), Eq. (3.16)
reads

2
11
- (m+1)
Aq,[ I\Vs)]= AJ% m+1y2e 6

2
—%—(m+l)
+ 0| m+1y" V2 o , (3.18)

which shows that the Gaussian-approximated
width A¢ of the phase state lyg) decreases

exponentially with the average number of
photons. The height

2

-1 m,
Vom0~ (2" 2 ) 2 mz=0(1+m)—1

-1
~(2n) (mery?
= ll2 (m+1) 2 (3.19)

of the distribution increases only
quadratically. Here, we have also made use
of Eq. (3.17a). Hence, the phase probability or
area caught underneath the peak,
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decreases rapidly to zero with increasing identical to unity, Eqs. (3.9) and (3.14), and
average photon number. All the probability is independent of {(m).
stored in the broad wings of the distribution.
The situation is quite different for the
optimal phase state |yg). Here, A¢ [Iyg)], Eq.
IV. SUMMARY AND OUTLOOK: A NEW (3.18), decreases exponentially with (m), but
VARIATIONAL PROBLEM the maximum We=o [I¥s)], Eq. (3.19),

increases only quadratically with (m),

. . leading to vanishing probability in the peak.

Gaussil;n t:lsr:;itrl:zlaiio:et(}u:}‘;i &1:;?:;%1 0‘} All probability in this case is in the broad

the semiclgspsical phase distribution of an g]? g.? .Ofé}e‘f? glstnbutlon, as is discussed in
etail in . 9.

arbitrary quantum state. We have illustrated

this scheme using the example of a coherent We conclude by noting that the
state, a trunpatcid }Il)hase state,oand the Gaussian approximation might lead to
intriguing optimal phase state. ~Qur main insight into questions such as the existence of
results are summarized in Table 1. The a lower bound of A@ for a given fixed
Gaussian-approximated width A9 [1ycoh)), Eq. number of photons (m). For that purpose we
(3.7), of the coherent state |ycoh) decreases would like all the probability to reside in the
as the square root of the average number of peak, that is, AGauss = 1. From Eg. (2.5), we
photons, whereas for a truncated phase state find

yp) the width A¢ [lyp)] , Eq. (3.12), decreases

linearly with (m). In both cases the Gaussian 12 . -1

is properly normalized, that is, the probability w =0 =T Ap

caught underneath the peak is almost

which, when substituted into Eq. (2.4b), yields

-1

-1
T m=0 m=0 m=0
-1
= OO
= 44= 9[2 z (m—n)z YmVn . 4.1)
m,n=0
Two strategies offer themselves: (i) Use One of us (JPD) acknowledges H. Walther
appropriate inequalities to rewrite the and the Max-Planck-Institut fiir Quantenoptik
expression in square brackets in Eq. (4.1) in for hospitality and support. We also would
terms of the average number of photons and like to express our deepest appreciation to D.
its variance. This might lead to a lower Han, Y. S. Kim, and W. W. Zachary for
bound of A¢@ . (ii) Minimize A@3, that is, organizing a most splendid conference.
maximize the expression in square brackets,
Eq. (4.1), under the constraint of constant (m) REFERENCES

and phase state normalized to unity.
1. Caves, C. M., 1981, "Quantum-

ACKNOWLEDGEMENTS mechanical noise in an interferometer,”
Phys. Rev. D, 23 (8), p. 1693.

We would like to thank R. E. Slusher and

B. Yurke for drawing this problem to our 2. Shapiro, J. H., Shepard, S. R., and Wong,
attention. In particular, we thank V. Akulin, N., 1989, "Ultimate Quantum Limits on
R. Bruch, C. M. Caves, R. Hellwarth, and Y. Phase Measurement,” Phys. Rev. Lett., 62
Yamamoto for many fruitful discussions. (20), p. 2377; Shapiro, J. H. and Shepard,

307



S. R., 1991, "Quantum phase
measurement: A system-theory
perspective,” Phys. Rev. D, 43 (7), p. 3795;
for a detailed discussion of related
problems, see the articles:
Shapiro, J. H., Shepard, S. R., and Wong,
N., 1989, "A New Number-Phase
Uncertainty Principle” and "Coherent
Phase States and Squeezed Phase States,"
in Quantum Optics VI, J. H. Eberly, L.
Mandel, and E. Wolf, eds., Plenum, New
York, p. 1071 and 1077; Shapiro, J. H.,
"Going Through a Quantum Phase,"
Workshop on Squeezed States and
Uncertainty Relations, NASA CP- ,
1991. (Paper of this compilation).

Summy, G. S. and Pegg, D. T., 1990,
"Phase Optimized Quantum States of
Light," Opt. Commun. 77 (1), p. 75.

Bandilla, A. and Paul, H., 1969, "Laser-
Verstdrker und Phasenunschirfe,” Ann.
Phys. (Leipzig), 23 (7), p. 323; Paul, H.,
1966, "Ein Beitrag Zur Quantentheorie
der Optischen Kohirenz,” Fortschr.
Phys., 14, p. 141,

Bandilla, A., Paul, H., and Ritze, W. R.,
"Realistic Quantum States of Light with
Minimum Phase Uncertainty,” to be
published.

For a review, see: Pegg, D. and Barnett,
S., 1986, "Phase in quantum optics," J.
Phys. A, 19, p. 3849.

Schleich, W., Horowicz, R. J., and Varro,
S., 1989, "Bifurcation in the phase
probability distribution of a highly
squeezed state,” Phys. Rev. A, 40 (12), p.
7405; also, 1989, "A Bifurcation in
Squeezed State Physics: But How?" in
Quantum Optics V, D. F. Walls and J.
Harvey, eds., Springer, Heidelberg;
Schleich, W. P., Dowling, J. P,
Horowicz, R. J., and Varro, S., 1990,
"Asymptotology in Quantum Optics," in
New Frontiers in QED and Quantum
Optics, A. O. Barut, ed., Plenum Press,
New York.

The phase distribution resulting from the
newly proposed phase operator [Pegg,
D.T. and Barnett, S. M., 1988, "Unitary
Phase Operator in Quantum Mechanics,"
Europhys. Lett., 6 (6), p. 483; 1989, "Phase
properties of the quantized single-mode
electromagnetic field," Phys. Rev. A, 39
(4), p. 1665.] yields results identical to

308

10.

11

those obtained from semiclassical
quantum mechanics, as in Ref. 7.

Schleich, W. P., Dowling, J. P. and
Horowicz, R. J., 1991, "Exponential
decrease in phase uncertainty,” Phys.
Rev. A, to be published. )

Similar results have been reported by
Caves, C. M., Lane, A. S.,, and
Braunstein, S. L., "Maximum-Likelihood
Statistics of Multiple Quantum Phase
Measurements,” Workshop on Squeezed
States and Uncertainty Relations, NASA
CP- , 1991. (Paper ____ of this
compilation). Moreover, simulations of a
sequence of phase measurements based
on the scheme of Ref. 2 have been
reported by, Caves, C. M., Lane, A. S.,
and Braunstein, A. S., 1991, "Maximum-
likelihood Statistics of Multiple Quantum
Phase Measurements," Proceedings of
NATO Advanced Research Workshop on
Quantum Measurements in Optics, Cortina
d’'Ampezzo, 1991, P. Tombesi and D. F.
Walls, eds., Plenum Press, New York.

Hansen, E. R., 1975, A Table of Series
and Products, Prentice-Hall, Englewood
Cliffs.

Magnus, W., Oberhettinger, F., and Soni,
R. P, 1966, Formulas and Theorems for
the Special Functions, Springer Verlag,
Heidelberg.



Table 1. Gaussian approximation Wg = We=0 exp [- (¢/A@)2] for dominant maximum of the phase
distribution W¢ = 2n)-1 a2 I Z:l:o V., exp (img) | 2 for a coherent state IWeon? » @

truncated phase state |yp) and an optimal phase state |yg) .

Coherent Truncated Optimal

State Phase State Phase State
Width = Ag 2-1/2 (m)-1/2 V3 (m)! (yn/N 3) (m+1)Y2 exp [-n2 (m+1)/6]
Maximum = Wg=0 >\j2/1t (m)1/2 1 (m) -1% (m+1)2

5/2 5/2
L (m+l) exp [-n2 (m+1)/6]

Area = V4 A¢ Wo=0 1 Vaim = 098 |

Py

—0

(m > )
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IDEAL PHOTON NUMBER AMPLIFIER AND DUPLICATOR

G. M. D’Ariano

Dipartimento di Fisica ‘Alessandro Volta’, via Bassi 6, [-27100 Pavia, Italy

ABSTRACT: The photon number-amplification and number-duplication mechanisms are
analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-
deamplification mechanism, the symmetry between amplification and deamplification being
broken by the integer-valued nature of the number operator. Both transformations—
amplification and duplication—need an auxiliary field which, in the case of amplification,
turns out to be amplified in the inverse way. Input-output energy conservation is accounted
for using a classical pump or through frequency-conversion of the fields. Ignoring one of the
fields is equivalent to consider the amplifier as an open system involving entropy production.
The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

1. INTRODUCTION

Squeezing and amplification are two intimately related concepts. A scaling of the quantum
fluctuations (A0?) — G%(A0?), independently on the state of the field, corresponds to the
amplification of the fluctuating observable O — GO. Such kind of ideal quantum amplification
rescales all the moments of O simultaneously, leaving the signal-to-noise ratio (SNR) unchanged
when detecting O.

Ideal quantum amplifiers are key-devices in quantum optical applications, where, depending on
the particular circumstances, one would possibly change the levels of both signal and fluctuations
without degrading the SNR. For example, in local-area network (LAN) communications, strongly
subpoissonian fields with limited average number of photons are needed to exploit the ultimate
channel capacity of the field (which is constrained in the total power and the bandwidth). On
the other hand, a large signal is preferred just before the detection stage, in order to minimize all
the subsequent sources of disturbance. In both cases an ideal photon number-amplifier (O =n)
would allow to change signal and fluctuations as desired, leading to significant improvements of
the network performance.

Another point which should be considered in any quantum amplification process is the role
played by the Heisenberg principle in defining the ideal behaviour of the amplifier. In fact, the
ampliﬁcation of the observable O affects the statistics of the observables which do not commute
with O. For a couple of conjugated variables (01,02), analogous to the momentum and the
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position of a particle, the quantum fluctuations are constrained by the uncertainty relation

(A0P)A03) 2 {104,0.))7 (1)

N

according to which, when the O; fluctuations are rescaled as (AO?) — G*(AO?); the
corresponding O, fluctuations become G~?(AO%) or larger. An ideal O; amplifier, namely
an amplifier performing at best, should preserve the minimum uncertainty product and, as a

consequence, it should simultaneously attain the two opposite amplifications
01 - GO1 ) Oz — G—IOZ . (2)

Depending on the conjugated pair (01, 02) one has different kind of amplifiers and related different
kind of squeezing. For example, when the conjugated variables are two quadrature of a field
mode (G1,az)—a; + 1d; = a being the annihilation operator—the rescaling (2) defines the phase
sensitive linear amplifier (PSA). The ideal PSA (essentially a parametric amplifier) preserves the

homodyne SNR= (a,)/1/(Aa?) and produces the squeezing in a quadrature of the field. In this

case the transformation (2) is realized by the Yuen’s! unitary evolution Utall = pa + V(ZT, with
p=(G+G')/2and v= (G- G')/2, U representing the usual squeezing operator.

The photon number-amplifier (PNA) is another example of ideal amplifier, which would
transform ideally n into G7, preserving the direct detection SNR and the number-phase
uncertainty product. The corresponding kind of squeezing is the number-phase squeezing? (or
amplitude squeezing), in which the quantum noise is shared between the number # and the
phase &. This kind of amplifier is a relatively new concept and is probably not simple to realize
concretely: it has been proposed by Yuen®~®, who also suggested physically viable approximate
schemes based on resonance fluorescence. PNA’s would be particularly useful in direct-detection
receiver and transceiver in a LAN environment, where, as already mentioned, number states are
preferred to coherent or squeezed states, in order to achieve the ultimate channel capacity of the
field. Furthermore, a PNA (but also a PSA) can be used to realize a lossless optical tap, which,
in a LAN would enable a very large number of users to obtain the same performance as the first
user.®

In this paper the number-phase amplification mechanism is analyzed in detail, in order to
find physical schemes for an ideal PNA. It is shown that, due to the peculiar role of the two
conjugated variables (72, ®) in the Fock representation, the requirement of a unitary transformation
leads to consider a second field in addition to the amplified one, the two fields being inversely
amplified by the transformation. Input-output energy conservation can be accounted for either
by adding a suited classical pump or by locking the frequencies of the two fields, attaining
simultaneously number-amplification and frequency-conversion. The obvious constraint of integer
gain G (preserving the integer-valued nature of 7) must be relaxed, to consider the deamplification
case: as a consequence, the abstract amplifying transformation |n) — |Gn) is replaced by
[n) — [[Gn] + no), [z] denoting the integer part of z, and ng being a constant as a function
of n and depending on the input state of the other field. The general Schrédinger evolution of
the two fields is

Uie-nln,m) = |[Gn] + G(G™'m), [G~'m] + G~ (Gn) ), (3)
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() = z — [z] denoting the fractional part of x and the gain G being restricted to be either
integer or the inverse of an integer. Eq.(3) can be attained by means of a unitary transformation
involving a classical pump operating at the frequency @ = G 'w, — wy, w, and wp being the
frequencies of the G-amplified and G-deamplified fields respectively. In the case of simultaneous
amplification/frequency-conversion one has the resonance condition wy = G 'w,, and the two
fields are intertwined in (3) in order to preserve the total input energy E = (n + G 'm)w,.

In Sect.2 I derive the transformation (3) and the related Hamiltonian. Apart from the eventual
classical pump, the ideal PNA in the present framework is a four-port nonlinear device (see Fig.1).
However, it can be regarded as a two port device by fixing one input port state (for example,

In) ———] ——— |[Gn] + G(G7'm))
PNA
Im) ——— [[G™'m] + G~' (Gn))
(pump)

Figure 1: Scheme of the ideal PNA.

using the vacuum) or by totally ignoring one field. In the last case the PNA should be regarded as
an open quantum system which changes the entropy of the input state of the field: the particular
case of coherent inputs will be examined in this respect.

In Sect.3 another device analogous to the PNA is analyzed, namely the ideal photon number-
duplicator (PND). Instead of amplifying the number of photons, the ideal PND produces two
copies of the same input state for eigenstates of the number operator. Such a device would be
extremely useful in LAN applications, because it provides a convenient realization of the quantum
nondemolition measurement of the photon number, beside itself realizing lossless optical taps
superior to the amplifier tap® (both applications make possible sharing of information in a LAN).
Arguments related to unitarity—similar to those used for the ideal PNA-—lead to the need of a
third auxiliary field, whereas input-output energy conservation can be taken into account either
by means of a classical pump or through frequency-conversion, in a way completely analogous to
the case of the ideal PNA.

In the last section I make some preliminary comparisons between the Hamiltonians of the
ideal devices and those of realistic systems, focusing attention on the gain-2 amplifier, in some
respects very similar to the duplicating device.

2. IDEAL PHOTON NUMBER-AMPLIFIER

2.1 The unitary transformation
In the Heisenberg picture the ideal PNA corresponds to a multiplication of the number operator

7 by the amplification factor G

A —s G . (4)



The requirement of an ideal—i.e. minimum-uncertainty preserving—behaviour reflects on the
Heisenberg transformations for the phase operator ®, which should be the inverse of (4), namely

d —G'e. (5)

For highly excited states (i.e. states approximately orthogonal to the vacuum |0)) and for small
phase uncertainties (A®?) < 1 the following simple definition for the phase can be adopted”

~

Ei = e$i& ’ (6)

A

E; denoting the shift operators F_ = (aTa +1) V2, B, = (E'_)T (Etln) = [n £ 1)). Eq.(6)
shows how the integer-valued nature of # reflects on the phase operator ®: the amplification (5)
can simply be attained for G™! = r integer, raising the shift operators to the power r, whereas,
for the number operator, preservation of its integer-valued nature requires G itself to be integer.
For noninteger G, the transformation (4) can be substituted with the following

n — [G7] , (7)

which coincides with (4) for integer G. For the moment, I focus attention on the deamplification
case (G~! = r integer), the integer-G case being naturally contained in the following framework.

Denoting by S},’) the Heisenberg transformation corresponding to Eqgs.(7) and (5), for integer
G~! = r one has

S§(Es) = (Ex) (8)

(E+)" now being represented on the Fock space as follows:
(E+)'In) = In ). (9)

From Eqs.(8) and (9) it turns out that the Sg) acting on a generic operator O has the general
form

r—-1 o0
$§(0) = (1050, 50 =4 S n)inr + Al (10)
A=0 n=0

and the phase factors, being totally ineffective in the action (10), will be dropped in the following.
One can check that the Heisenberg transformation (8) attains the number-amplification (7)

SP(R) = [a/r] (11)

and, formally, S}}’ achieves the phase amplification (5) according to Eq.(6). The transformation
(8) is not unitary and, as a consequence, there is no Hamiltonian producing it. The operators
Sy) in the definition of the map (10) satisfy the following relations

r—1

(SIS =1, (12)

A=0
SOSNT = 6, (13)
S50 = 800 (14)
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Despite the map Sﬁ;) is not unitary, the completeness relation (12) and the orthogonality
conditions (13) allow one to recover a unitary evolution on an enlarged quantum system. I
postpone for the moment the construction of the corresponding unitary evolution and the related
Hamiltonians, to continue the discussion on the properties of the map.

Eq.(14) leads to semigroup composition of the maps Sg)

SPsi = Si” (15)

corresponding to the amplification of PNA’s in series. On the other hand, as a consequence of the
completeness and orthogonality relations (12) and (13), S};) preserves the operator products and
the adjoint operation, thus transforming consistently the whole operator algebra. When applied
on the particle operator a the transformation Sg) gives the result

haid n/r] )n! 1/2
Sg)(a) = 2—:1 |n — 1)y/[n/r] (n] = [M] a" =ag), (16)

(R +r)!

and for the creation operator one has Sg)(at) = a(Tr). Eq.(16) shows that the transformed particle
operator S};)(a) coincides with the r-boson operator a,) introduced by Brandt and Greenberg:°

ar) and azfr) annihilate and create » photons simultaneously and satisfy the commutation relations
[a(,),al)] = 1, [A,a¢)) = —ra(). The preservation of the operator product implies that the
transformation S};) applied to a generic operator 0 = O(a, at) (Hermitian analytic function of a
and aT) can simply be obtained substituting a and af with a(r) and al,), i.e. S},”(O') = O(a(,), azr)).
Therefore, 8§’ corresponds to the construction of the r-photon observables of D’Ariano.!!?

The completeness and orthogonality relations (12) and (13) are preserved by similarity

transformations
0 = VEOW (a7

V and W being unitary operators. A general transformation (17), however, would destroy, the
ideal behaviour of the PNA: the only similarity transformations which preserve the Heisenberg
evolutions (7) and (5) are the permutations of the A’s

507 = PSP = 56 (18)

where P denotes the operator representing a permutation of the X's, namely Plnr + )) =
nr -+ P(V).

I return now to the construction of the unitary evolution corresponding to Sg) . From the
definition (10) and the completeness relation (12) it follows that Sﬁ;) is a completely positive map
(shortly CP map):®® this is physically relevant, because the subdynamics of the open systems
are CP maps, the set of CP maps being closed under partial trace. Here I recall that a unit-

A

preserving CP map has the general form T(0) = Xa I“JOVQ, where 3, VjVa = 1. The space
of the unit-preserving CP maps is closed under: i) convex combination }; p;T;; ii) composition
T, Ty; iii) tensor product 7; ® Tp; iv) partial trace: namely, if 7 is CP on F; ® F; and i is a
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density operator on F, then T;(0) = Tr,[47(0 @ 1)] is CP on F;. The last point means that
if we have a unitary evolution in a closed system and if subdynamics on a (open) subsystem can
be defined—i.e. partial trace on the subsystem degrees of freedom—then these subdynamics are
CP maps. However, the converse is not true in general (namely not every CP map corresponds
to a unitary evolution on an enlarged system) and the additional orthogonality constraints (13)
are essential in guaranteeing also the converse assertion

The unitary evolution corresponding to S can be constructed by using two different photon
fields in the amplification process and considering the following operator U(,) acting on the Fock
space of the composite system F @ F

Uy = 350 & (RO)T, (19)

where R{" are similar to ${" in the sense of Eq.(17). U)-unitarity follows from Egs.(12), (13)
and (17). The subdynamics of the first photon field correspond to Sg)

(U'(t)01ﬁ(,)) =Tr [(ﬁl ® ﬁz)U(t)(Ol ® i)Uav(r)] =Tn [ﬁng)(Ol )] ] (20)

where the uncorrelated pair of states (p; ® ;) has been considered as the input of the amplifier.
The semigroup property (14) reflects on the composition law for the operators U(,

Un\Uts) =p Uprs) (21)

the symbol ~~p denoting similarity under permutations (18).
Among all operators U, the case of RE\') = 5'&” is particularly interesting, because the second
field undergoes the transposed transformation of S';)

r—1
Upy =3 50 @ (ST (22)
A=0

One should notice, however, that (ﬁ(‘:)ézﬁ(,)) depends on the first input state j, in general. In

fact, the action of the operator ﬁ(,) in Eq.(22) on a number eigenstate is
U(r)ln’m) = |[TL/7'] ymT + (n/r) ) ) (23)

and the second field undergoes an exact number-amplification only if the first field is in a r-
photon state, (namely it contains only number of photons multiple of ), in particular if it is in
the vacuum state. Eq.(23) can be rewritten in the following more symmetrical form

Ug-1yln,m) = |[Gn] + G(G™'m), [G"'m] + G~ (Gn) ) , (24)

which coincides with Eq.(23) for G™! = r integer, whereas, for G integer, corresponds to (23) but

with the roles of the two fields interchanged, as a consequence of the identity U G = U(G U(G-x)
(notice that Eq.(24) leads to integer valued number of photons only if either G or G7! is integer).

2.2 The Hamiltonian
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I consider the operator l':f(g-x) in Eq.(23) only for the case G~! = r integer, the integer-G case

0((;) corresponding to the inverse operator U'(J[G_,). I denote by al and bt the particle operators
of the two fields, namely

(af)r (aF)m
In,m) = Jnl W'Oam . (25)

Comparing the transformation (24) with the action of the multiboson operator of Eq. (16)

a(Tr)In> =/[n/r] +1In+7), (26)

one can see that the ideal amplification (23) can be attained by interchanging al with b(t) and

then permuting al with b7 modes. The operator permuting al and bf (apart from a sign) has the
form

V = exp [% (aTb - bTa)] (27)
and, as a consequence, the operator U'(,) is given by
. ™ ™
U(r) = exp [—2~ (aTb — bTa)] exp [—5 (a(r)b — bta(,))] . (28)

The representation (23) of the operator U(,.) in Eq. (28) can directly be checked using Eqs.(25)
and (26). From Eq.(28) one can see that, apart from a permutation of the form (27) (which could
be attained by means of beam splitters), the ideal PNA is described by an interaction Hamiltonian
in the Dirac picture

AP = —ik (a(t)b - bTa(,)> , (29)
and an interaction length L given by

kL = (30)

’

b

k being the interaction coupling per unit length. Using Eq.(16) the Hamiltonian (29) can be
rewritten in terms of the a and b particle operators

AP = —ik ((al) fo(ata)p — ot fitala)a’)
(31)

aTa T 1/2
f(r)(aTa) = L+ [ee/) )] :

(aTa+1)...(aTa+r

Regarding the energy conservation during the amplification process, one can now thinks to
the four-port device as a globally inelastic process in the time domain (Dirac picture), with the
free Hamiltonian

Hy, = waata + wbbTb . (32)
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The interaction Hamiltonian AP has the form (29) when in the Schrédinger picture reads
Ay = =ik (of pe i - bl ™) (33)

with ) = rw, —wy. As for the usual parametric frequency-converter the phase factor oscillating at
frequency €2 can be attained by considering an additional classical (i.e. highly excited) pumping
field. On the other hand, also the first permuting operator in (28) requires a classical pump (at
frequency ' = w, — w;) and it can be attained by means of beam splitters if w, = wy, otherwise
it corresponds to a parametric frequency-converter.

The case wy = rw, requires no pump at the second step in (28). In this case, the second
operator in (28) can be reviewed as a PNA/frequency-converter (PNAFC) described by the
equations

|n> - I[G—lm] + G (Gn)) ) (w = wa) )
(34)
im) = |[Gn] + G(G'm)), (v =w =rw,),

The PNAFC conserves the total input-output energy E = (n 4 rm)w,, as it follows from Eq.(34).
On the other hand, for w, = rw, the first permuting operator in Eq.(28) needs a pump at frequency
' = (r — 1)w, and represents now a parametric frequency-converter (FC) intertwining the two
amplified modes. In this fashion the ideal PNA can be viewed as the cascade of an ideal PNAFC
(an energy preserving four-port device) followed by an ideal FC (a four port device with pump).

2.3 The PNA as an open system: the amplification entropy
In practical applications it is useful to consider the ideal PNA as a two-port device, actually
ignoring not only the pumping field, but also one of the two amplified fields. This description
is equivalent to consider the PNA as an open quantum system, which no longer preserves both
the energy and the entropy of the input field. However, the amplification and the deamplification
cases now become quite different. This follows from the unitary transformation (24) where, despite
the apparent symmetrical roles of the two fields, the state of the amplified one depends on the
state of the other, whereas the deamplified field is always independent on the amplified one. This
strange unilateral dependence is due to the integer-valued nature of n, that breaks the symmetry
between amplification and deamplification. In the following I examine the two cases separately.
The number-amplification—ignoring the deamplified field—corresponds to the partial trace

~ -~ ~ -~ ~ r_l ~ ~ ~
(02> = TI‘ [(ﬁl ®;52)U(t)(1 ® Oz)U(,.)J = TI‘g (ﬁz Z(V/\(T))TOZV)‘(T)) , (35)
A=0
where
. . . 1z
50 1 st} 0t &

Therefore, the amplification corresponds to the CP map

r—1
S$/M(0) = S (M)tov (37)
A=0
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which, due to the form of operators VA(') in Eq.(36), depends on the state ; of the other field,
(namely on the ‘temperature’ of the PNA). The case of p, equal to the vacuum state (‘zero
temperature’ ) is particularly simple

SAM6) = (PINTOV, ¥ = (85T = T fen(nl (38)
n=0

and corresponds to the exact number-amplification
s5(f(R) = f(rA) (39)
In the Schrodinger picture one has
S¢M(p) = VRV (40)

Despite the evolution (40) is not unitary (it is only an isometry), it preserves the Newmann-
Shannon entropy

S(p) = ~Trplog . (41)

The entropy conservation follows from the orthogonality conditions (13) which imply that
(17(,(’))1'%(') = 1 (but Vo(r)(Vo(r))T # 1). Thus, the physical picture of the abstract number-
amplification [n) — |rn) corresponds to an ideal PNA operating with the auxiliary field in the
vacuum (namely a PNA at zero temperature). As long as the number-amplification is attained
exactly, no entropy change of the field occurs.

©
~

P(n)

L L — T T 1 T -
: gg i 1o
© — - _l\'
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N | 1 0 1
£ > - | | 1s
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Figure 2: Q-function and number distribution of a coherent state having (n) = 10 photons after
number-amplification with G = 10. The final moments are (7t) = 100 and (AR?)Y/? = 31.52.
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In Fig.2 the effect of exact number-amplification on an input coherent state is illustrated in
both the Q-function and number representations. The amplified coherent state

n

)y = e Ho 3 i (42)

n=0

has a Poisson distribution of multiples of r photons. In the phase space the exact number-
amplification corresponds to a symmetrical split of the quantum distribution into r identical
replicas having fluctuations enhanced in the number and reduced in the phase (the quantum
distribution becomes longer in the radial direction and narrower in the tangential one).

I now examine the case of number-deamplification. Ignoring the amplified field corresponds
to the partial trace

r-1
(01) = Tr |(p1 ® ﬁz)U(Tr)(Ol ® 1)U(,)] = Tr, (,31 Z(sg'))’folsﬁ’)) . (43)

A=0

The deamplification thus corresponds to the CP map (10)

—

55(0) = (505, (44)
0

and is totally independent on the state of the amplified field. In the Schrédinger picture one has

r—1

8() = T 8065, (45)

namely, the number-deamplification corresponds to an isometric evolution which does not preserve
the entropy (41) in general. The entropy change depends only on the gain G~! = r and on
the input state of the deamplified field (and not on the other field). It is worth noticing that
the entropy during deamplification can either increase or decrease as a function of ». As the
photon number-deamplification leads to the vacuum state for r = G~! — oo, the entropy is
asymptotically a decreasing function of r for large r. On the other hand, the evolution (45) would
in general transform a pure state into a mixed one (the only state which are left pure being the
number eigenstates and the r-photon states), and thus leads to an increase of entropy in this case.
Therefore, when a pure state is number-deamplified, the entropy exhibits at least one maximum
as a function of the inverse gain r. In Fig.3 the Newmann-Shannon entropy (41) is plotted as a
function of r, for two different input coherent states. One can see that for small average number
of input photons the entropy has only one maximum, whereas for intense input fields several
maxima appear and local very low minima can occur (corresponding to almost pure states). As
a rule, for coherent inputs the maxima are located approximately at r ~ |a|?/l—|a|? being the
average number of input photons and ! = 1,2,...—the maxima weakening for increasing [ and
the entropy S being always smaller than log 2, which is the entropy of two pure states mixing.
In Fig.4 the Q-function and the number distribution of a strongly deamplified coherent state
are reported, in order to illustrate the number-phase squeezing related to number-deamplification.
In a fashion which is exactly the opposite of that depicted in Fig.2 the number-deamplification
leads to spreading in the phase and narrowing in the number, thus converting highly excited
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Figure 3: Deamplification Newmann-Shannon entropy versus the inverse gain r = G~! for a

coherent state with (A) = 10 photons (figure on the left) and (7) = 100 photons.

states into nearly Fock states. Asymptotic evaluations!? for G — 0, keeping constant the average
number of output photons, leads to () ~ Gl|a|* and (AR?) ~ G?*|a|?. Therefore, the gain G
corresponds to the Fano factor F = (f)/(A#n?) of the output distribution, as long as the input
state is excited before amplification in order to keep constant the intensity at the output: in this
way the PNA works as a device converting coherent states in nearly-number eigenstates.

3. IDEAL PHOTON NUMBER-DUPLICATOR

A photon number-duplicator (PND) is a device which, upon acting on a input field in a certain
number eigenstate, produces two output fields both of which are in the same number eigenstate
as the input. Such a device can be realized in principle, whereas a ‘cloning’ device producing
multiple copies of a (generally not orthogonal) input set of states would violate unitarity.*!® For
the ideal PNA the unitary transformation has been obtained starting from the amplifying CP
map defined by the relation

S(Es) = (Bs) (46)

The case of the ideal PND can be obtained in strict analogy with Eq.(46) by means of the
duplicating CP map

Su(Ey)=E+®E. . (47)

The general transformation attaining the duplication of the shift operators (47) has the form

sa(0)= 3 5104, (48)
A=—00
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Figure 4: Q-function and number distribution of a coherent state having (72) = 5000 photons, after
strong number-deamplification G = .005. The final moments are (72) = 25 and (An2?)V/2 = 1.186.

where the nonunitary operators S, (S'A : F®F — F) are given by

oo

Sx= Y bmnirlmin{n,m})(m,n|, (49)

n,m=0

and satisfy the orthogonality and completeness relations

581 = 6,1, (50)
Y 48 =igi. (51)
A=—o0

By adding a third photon field we can write a unitary operator U (U FRFQF - FOFQF)

as follows

D=3 58l > Y Spmibdnn) X
A=—o00 A=-00 nj3,n3,m;,my=0
Imin{n;, m; })(min{ny, ms}| ® |ns)(n1| ® |ms)(m,] . (52)

The operator U is involutive (ie. U? = 1) and produces the intertwining

U(E:0i0l)l =10 E,®E.,

(53)
Ui®E.@E )N =E,01®1,
which corresponds to the Fock representation
N _JmLl+n—m) n>m,
Ull,m,n)—{ Im,l—n+m,l) n<m. (54)

322



In particular, one has U|l,n,n) = |n,l,1), and for the practically interesting case of the second
and third fields in the vacuum state one obtains

Uln,0,0) = |0,n,n) , (55)

which is the required duplication. The scheme of the ideal PND is depicted in Fig.(5). As the
ideal PNA corresponds to intertwining the one-particle operator al with the r-particle operator

b:[r), the PND performs a change between the one-mode operator al and the two-mode operator

b(Tl.l)

b(Tl.l) AR (max{btb,cTc} + 1>_1/2 , (56)

which satisfies the commutation relations [b(1,1),b:[1,1)] = 1 and [bTb + ctc,b(m)] = —2bu,). It
follows that the Hamiltonian in the Dirac picture is

HP = —ik (“fb(l.l) - b(Tlvl)“> ’ (57)

with the same interaction length as in (30). Conservation of energy now requires a classical pump
at frequency = w, — wy — w,, apart from the case of frequency matching w, = wp + w., which
preserves the input energy E = w,l + wym + w.n. The PND described in the present context is
more precisely a PNDFC (frequency-converter): in order to keep the frequency constant during
the duplication one can choose wy, = w, and put a parametric frequency-converter acting on the
input field a.

In conclusion of this section I remark that the ideal PND produces the same effect of a gain-2
PNA when the total number of photons of the two replica outputs is detected. In fact, one has

an(alfTb+ cle)la)a) = @ (elf(ela)a)e) = (alf(2aTa)la) (58)
where
)y = 3 anl2n) (59)
n=0

denotes the gain-2 PNA output state and

[o o]

@) 1,0) = D anln,n) (60)

n=0

the PND output state corresponding to input
@) = Y anln), D lanl*=1. (61)
n=0 n=0

Moreover, one has

anlalfT0)a)wn = anlelfele)la)w) = (alf(ala)la) (62)

323



) ——— PND |——— |n)
0) ——— —— [n)
(pump)

Figure 5: Scheme of the ideal PND.

and the SNR in detecting bTb, cfe (or their sum) remains the same as at the input of the PND:
in this sense the PND can be regarded an ideal amplifier.

4. COMPARISON WITH REAL SYSTEMS

The Hamiltonians (31) and (57) are quite complicated, due to the presence of an interaction
strength which depends on the input number of photons of one field. For high average number of

photons (aTa> > r the interaction strength in (31) behaves asymptotically as follows

~r-1)

fiala) ~ (afa) ™ (63)
’r

Alternatively, one can look directly at the asymptotic behaviour of the multiboson operator agy:

N 1/2
i { [afa/ﬂ(n—r)!} (aly =

% = Y -

[afa/r]l/z(ﬁ —r+ 1)“1/27‘%14,(&))(1]L ~ fc,(<i>)a't , (64)

where «,(®) denotes the function of the phase

~

ko (D) = rm7em D (65)

Taking into account also the pumping field, the phase-number amplifier would require a medium
with a x(?) susceptibility and an interaction Hamiltonian of the form

Hi ~ /\n,(fi)a)afbc + h.c., (66)

¢ denoting the annihilator of the pumping field. From Eq.(66) it follows that in order to attain
phase-number amplification one should use a x(?) medium having polarization which depends on
the phase of the field according to (65) only in a limited frequency range. The amplifier gain r is
involved only in the phase factor (65), and the interaction length has to be tuned at the complete
conversion value L = =n/[2AI}/?], I. being the average power flux of the (classical undepleted)
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pump, and A « x(?). For r = 2 one has mz(‘i)) =2"te® = (21’1)“%at. This case is approximated
by the usual degenerate four-wave mixing medium having Hamiltonian

Hi x(s)(at)zbc + h.c.. (67)

For A o x®I}/? this medium attains gain-2 number amplification approximately in the average
values.

The ideal PND is quite similar to the gain-2 ideal PNA, the main difference being that the field
in the phase-dependent frequency range now splits into the two nondegenerate modes bearing the
replica-states (actually one can analogously define G-‘multiplicator’ devices, which then compares
to gain-G PNA’s). When operating on two vacuua as in Fig.5, one can substitute the function

max{bTb,cTc} in the Hamiltonian with either b{b or ctc, without changing the output.

In conclusion, some remarks are in order, regarding the possibility of attaining the amplifying
CP maps (37) and (44) through interaction with atomic—instead of electromagnetic—fields. In
this case the nonunitary operators in Eqs.(37) and (44) should be regarded as partial trace
of the interaction over the atomic degrees of freedom. The relations (12-14) have no faithful
representation on a finite-dimensional Hilbert space, and one cannot realize them using atoms
with a finite number of levels. However, some similarities can be recognized between this case
and the PNA mechanism. For example, in the high-Q micromaser Fock state generation, the
role of the auxiliary field is played by an inverted two-level atom entering the cavity with a well
defined velocity:!* the nonunitary reduction of the signal field is obtained by means of nonselective
measurements of the atomic variables. The CP map experimented by the electromagnetic field is

S0(5) = Z sVt (68)
Vi = (alexp (<iIPY) 1), (69)
where r = 2, I;IP denotes the usual Jaynes-Cummings Hamiltonian, and | T) represents the

inverted state of the atom. As a matter of fact, the high-Q micromaser works as a ‘number-phase

squeezer’ (in this fashion the micromaser is a sort of PNA and the successive atomic passages
correspond to gain-2 open PNA’s in series). One should notice, however, that the number-phase
squeezing in the micromaser strongly depends on the initial state of the field (which should have
less photons then the asymptotic ‘trapping’ state) and this feature does not depend on the
particular form of the interaction Hamiltonian HP T, as long as a finite number of the atomic levels
is concerned.

5. ACKNOWLEDGMENTS

I am grateful to V. Annovazzi-Lodi and S. Merlo for discussions and suggestions. This work has
been supported by the Ministero dell’Universita e della Ricerca Scientifica e Tecnologica.

6. REFERENCES
1 H. P. Yuen, Phys. Rev. A13 2226 (1976)

325



2 Y.

3 H.
4 H.
5 H.

6 H.

Yamamoto, S. Machida, N. Imoto, M. Kitagawa and G. Bjork, J. Opt. Soc. Am. B 4 1645
(1987)

P. Yuen, Phys. Rev. Lett. 56 2176 (1986)
P. Yuen, Phys. Lett. A113 405 (1986)
P. Yuen, Opt. Lett. 12 789 (1987)

P. Yuen, in Quantum Aspects of Optical Communications, Ed. by C. Bendjaballah, O.
Hirota and S. Reynaud, Lecture Notes in Physics 378, Springer, Berlin-New York (1991)
(in press)

7 Strictly speaking, according to Eq. (6) $ is not Hermitian (Ei are not unitary); one should use

8 K.
9 G.

the Hermitian operators sin® and cos ®. However, for states apprommately orthogonal to
the vacuum and for small phase uncertainties (such that sind ~ &), $ is apprommately
Hermitian: the asymptotic commutation relation [7, &) ~ i holds, assuring that (7, $) can
be treated as a conjugated pair (see R. Loudon The Quantum Theory of Light, Clarendon
Press, Oxford (1983)

Kraus States, effects and Operations, Lecture Notes in Physics 190, Springer (1983)

Lindblad in Quantum Aspects of Optical Communications, Ed. by C. Bendjaballah, O.
Hirota and S. Reynaud, Lecture Notes in Physics 378, Springer, Berlin-New York (1991)

(in press)

10 R. A. Brandt and O. W. Greenberg J. Math. Phys. 10 1168 (1969)

11 G. M. D’Ariano and N. Sterpi Phys. Rev. A 39 1860 (1989)

12 G. M. D’Ariano Phys. Rev. A 41 2636 (1990)

13 W. K. Wootters, W. H. Zurek, Nature 299 802 (1982)

14 P. Filipowicz, J. Javanainen, and P. Meystre, J. Opt. Soc. Am. B 3, 906 (1986)

326



N92-22080

DECOHERENCE IN QUANTUM MECHANICS
AND QUANTUM COSMOLOGY

James B. Hartle
Department of Physics, University of California
Santa Barbara, CA 93106

ABSTRACT

In the search for a theory of the initial
condition of the universe, quantum mechan-
ics must be applied to the universe as a whole.
For this the “Copenhagen interpretations”
of quantum mechanics are insufficiently gen-
eral. Characteristically these interpretations
assumed that there was a division of the uni-
verse into “observers” and “observed”, that
the outcomes of “measurements” were the
primary focus of scientific statement, and, in
effect, posited the existence outside of quan-
tum mechanics of the quasiclassical domain
of familiar experience. However, in a theory
of the whole thing there can be no funda-
mental division into observers and observed.
Measurements and observers cannot be fun-
damental notions in a theory that seeks to
describe the early universe where neither ex-
isted. In a unified theory of cosmology there
is no fundamental basis for a separate classi-
cal physics. Copenhagen quantum mechanics
must, therefore, be generalized to apply to
cosmology.

This talk sketched a quantum mechan-
ics for closed systems adequate for cosmol-
ogy developed in joint work with Murray
Gell-Mann.!2:® This framework is an exten-
sion and clarification of that of Everett? and
builds on several aspects of the post-Everett
development. It builds especially the work of
Zeh®, Zurek®, Joos and Zeh?, and others on
the interactions of quantum system with the

larger universe and on the ideas of Griffiths?,

Omneésl?, and others on the requirements for
consistent probabilities for histories.

Three forms of information are necessary
for prediction in the quantum mechanics of a
closed system. In an approximation in which
quantum spacetime is ignored, these are the
Hamiltonian, the initial density matrix of the
universe, and the information specifying par-
ticular histories. The most general objec-
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tive of quantum theory is the prediction of
the probabilities of the individual histories
in a set of alternative histories for the uni-
verse. However, the characteristic feature of
a quantum theory is that not every set of
histories that may be described can be as-
signed probabilities bzcause of quantum in-
terference. Probabilities can be assigned only
to sets of histories for which there is negligi-
ble interference between the individual histo-
ries in the set as a consequence of the initial
density matrix of the universe and the Hamil-
tonian governing its dynamics. Such sets of
histories are said to decohere.

Histories described at an arbitrarily fine-
grained level do not decohere; some coarse
graining is necessary for decoherence. Coarse-
graining was described in the talk and the de-
coherence functional that measures the level
of decoherence for sets of alternative coarse-
grained histories was introduced. Mecha-
nisms for decoherence were reviewed in sim-
ple models. Habitual decoherence was argued
to be widespread in the universe for coarse-
grained histories defined by certain quasiclas-
sical variables.

A quasiclassical domain is roughly a set
of alternative coarse-grained histories that is
as refined as possible consistent with decoher-
ence and has individual branches that are de-
fined by quantities that are similar from one
time to the next correlated in time mostly ac-
cording to classical deterministic laws. The
problem of precisely defining quasiclassical
domains was discussed. The question of
whether or not the universe exhibits a qua-
siclassical domain like the one of familiar ex-
perience is a calculable one in quantum cos-
mology given a suitably precise definition, the
Hamiltonian of the elementary particles and
the initial density matrix of the universe. In
particular, the variables that describe classi-
cal physics and the form of its phenomeno-
logical equations of motion should be deriv-
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able from that Hamiltonian and the initial
condition.1?

A measurement situation is one in which
a variable becomes correlated with a quasi-
classical operator of the “quasiclassical do-
main”. The theory of measurements in quan-
tum mechanics was discussed from this point
of view. The recovery of the Copenhagen
formulation of quantum mechanics as an ap-
proximation to the more general framework
appropriate in measurement situations was
described. An “observer” (or information
gathering and utilizing system, IGUS) was
treated as a complex adaptive system that
evolves to utilize the relative predictability of
a “quasiclassical domain”.

The talk concluded that resolution of
many of the problems of interpretation pre-
sented by quantum mechanics is not to be

found within the theory in general but rather
through an examination of the universe’s ini-
tial condition and the emergent features that
it, together with the Hamiltonian of the el-
ementary particles, implies. Quantum me-
chanics may be best and most fundamentally
understood in the context of quantum cos-
mology.
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ABSTRACT

It is shown that squeezed states of primordial gravitational waves are inevitably produced in the
course of cosmological evolution. The theory of squeezed gravitons is very similar to the theory of
squeezed light. Squeeze parameters and statistical properties of the expected relic gravity-wave radia-
tion are described.

INTRODUCTION

Squeezed quantum states of light have been successfully generated and detected under laboratory
conditions. It is known how much skill and effort by our experimentalist colleagues it requires to
achieve even a modest amount of squeezing, that is, to obtain the squeeze parameter r of order of 1.
The main purpose of my talk is to show that, in the cosmos, squeezed quantum states of gravitational
waves are produced inevitably and with a much much larger amount of squeezing, simply as a result
of expansion of the Universe.

In the context of gravity-wave research, the notion of squeezed quantum states has been often
referred to. However, what was always meant was the squeezing of a quantized vibrational mode of a
detecting device that could be implemented for a better detection of a classical gravitational wave. For
instance, it was shown (Ref. 1) that the performance of a laser interferometer gravity-wave detector
can be improved by using squeezed light. In another paper (Ref. 2) it was argued that any detector-
oscillator can be specially “prepared” in a squeezed state and used for gravity-wave detection during
some interval of time before the thermal noise destroys squeezing and degrades the detector’s sensitivity.

However, it is the squeezing of the gravitational waves themselves that will be discussed in my
talk today. I will show that the production of squeezed relic gravitational waves is an inescapable
consequence of the variability of cosmological gravitational field and the existence of zero-point quantum
fluctuations.

The mathematical theories of relic graviton production and squeezing of light are very similar. To
make this similarity especially transparent, I will begin by presenting Einstein’s general relativity in the
form of a traditional field theory, such as the theory of classical electromagnetic fields. Those of you who
may feel uncomfortable, or even intimidated, with the notion of curved space-time, will, perhaps, find
it easier to deal with the concept of a gravitational field given in the usual flat Minkowski space-time.
(More details about this “field-theoretical” formulation of general relativity are presented in Ref. 3; it
is important to emphasize that we are dealing with a different mathematical formulation of general-

*1990-91 Visiting Fellow, Joint Institute for Laboratory Astrophysics of the National Institute of Standards and
Technology and University of Colorado.
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relativity, not with some alternate physical theory, see Ref. 4.) This approach leads to manifestly
nonlinear field equations. In contrast to quantum optics based on the laws of linear electrodynamics,
in the case of a gravitational field one does not need any material medium in order to couple a “pump”
field with the “signal” waves; for gravity this is achieved automatically due to the nonlinearity of the
gravitational field itself. As is often done, we will present the total gravitational field in the form
of an approximate sum of a large “classical” contribution and a small quantized perturbation. This
approach will be applied to the cosmological gravitational field of the expanding Universe acting upon
zero-point quantum fluctuations of the gravitational waves. I hate to call the variable gravitational field
of the expanding Universe —the most grandiose and magnificent phenomenon we are aware of — just a
“pump” field, but, technically speaking, it plays precisely this role. As a result, the initial vacuum state
of gravitational waves will evolve into a strongly squeezed vacuum state with very specific statistical
properties.

We will discuss the expected characteristics of the relic gravity-wave background radiation and the
problem of its detection.

FIELD-THEORETICAL APPROACH TO GENERAL RELATIVITY

A gravitational field is fully described by a symmetric second-rank tensor A, (note that the gravita-
tional field variables have just one extra index as compared with the electromagnetic 4-vector potential
A,, not a big difference!). For writing down the Lagrangian of the gravitational field it is convenient
to use also an additional set of variables: the tensor field P°,,, symmetric with respect to the last two
indices. However, P, is not a new physical field but rather a combination of the first derivatives of
h,., as follows from the field equations.

Gravitational field potentials h,,(z,y,2,t) are mathematically treated as components of one of
many physical fields immersed in the ordinary Minkowski space-time:

do? = c*dt?* — dz? — dy? — d2? . (1)

The metric tensor of Minkowski space-time will be denoted by 7v,,. With respect to this metric tensor
all covariant differentiations (denoted by the symbol “;”) and lowerings or raisings of indices are to be
performed. In the Lorentzian coordinates, like the ones implied in eq. (1) and which we will be using
in practical calculations below, 7,, acquires especially simple values: Y00 = 1, Y11 = Y22 = 733 = —1,
with the rest of v,, being equal to zero.

The gravitational part of the total action § = §9 + §™ is

1 8rG
9 = 4, 19 =2
59 = 2“/de, K

where the gravitational Lagrangian L9 has the form
v x v 1
L5 = (—7)1/2 [h“ ;aP pv (h“ + 7‘“’) (Pauﬁpﬁva - EPaauPppu)] .
The nongravitational sources and fields and their interaction with the gravitational field are described

by
S"‘:%/d“xL"‘.
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The energy-momentum tensor t,, of the gravitational field itself and the energy-momentum tensor
7, of the nongravitational matter and fields interacting with gravity are defined in the usual manner:

1 s _ 2 bLm
V=7 by wy V=7 by

The precise expression for xt,, is as follows:

Kty, =

. 1, 1 1
Klyy = P uﬂPﬂua - §7uu7 pPaaﬂPﬁpa - § (Pqu - §7IIVPUPU) + Quv (2)

where P, = P%,,, Qu = Q%,,,, and

Q" = %Paap ['ﬁwhaﬁ&; +77° (7auh€ + ’Yauhﬁ) ~h"? (537011 + 5570;4) -6 (63"5 + 63hﬁ)] .

By varying the action S with respect to h*” and P, one can derive the following gravitational

field equations: G
167
i (s +70) ®)

where the comma means an ordinary derivative (o = 8/3z%) and 7,, is assumed to be in the simplest
form corresponding to eq. (1). For reference purposes we will also write down the relationship between
the first derivatives of h,, and P°,,:

huV ’?a + Tuv haﬁ NN hau,a,u - hau,a,u

v 1 v o o o v va vo 1 o v va va
—h* ;p_ihu Y o 7aﬂyﬂ+(7u +h“ )P ap+(7 +h )P“ap_gpa [(7# +h“a)6p +(7 +h )6;:] =0.

The theory possesses a gauge freedom quite similar to the gauge freedom of classical electrodynam-
ics. One can apply the gauge transformations to the gravitational variables h,, and matter variables
without changing the field equations. At the expense of the gauge freedom one can impose some gauge

conditions which are normally used for diminishing the number of variables and simplifying the field
equations.

The transition to the usual “geometrical” formulation of general relativity is established by intro-
ducing the new functions g,, according to the rule

V=99* == (" + ) (4)
and by identifying the g,, with the metric tensor of the curved space-time: ds? = JopdzdaP.

GRAVITATIONAL FIELD OF THE EXPANDING UNIVERSE

Let us apply the developed formalism for description of the gravitational field of the homogeneous
isotropic Universe. From our new point of view this is just a specific gravitational field h,,(t,z,y,2)
given in Minkowski space-time (1). Let us take the nonvanishing gravitational potentials in the form

hoo = as(t) -1 , hu = h22 = h33 =1- a(t) (5)
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where a(t) is, as yet unspecified, function of time. One can calculate the gravitational energy-
momentum tensor t,,, eq. (2), and find that the nonvanishing components of xt,, are

3a 2 -2
Ktoo —2a(a -1)-3a

Kln = Kty2 = Kizz = —-%(3(13 —a’+a-3)-d*(3a-1) (6)

where the dot means the time derivative (for simplicity we choose the units where the velocity of light
c=1).

The nongravitational sources are assumed to be in the form of hydrodynamical matter with the
Lagrangian

1
L™ = 5v/=g le+3p = (¢ + P)gu v o]

where g, is defined by eq. (4). One can find the nonvanishing components of the energy-momentum
tensor 7,,:

3 2
T00 €+ Z(a - 1)(e~p)

1
Tl = T2 =T33 p- Z(a2 —1)(e-p)- (7)
By substituting expressions (5), (6), and (7) into the field equations (3) one can derive equations
governing the function a(t) and, hence, the gravitational field (5):

a 4G a\? 8rG
T=-Ferm, (5) =5

(In “geometrical” language, these are, of course, the Einstein equations for a spatially flat cosmological
model: ds? = dt? — a?(t) (dz? + dy? + dz%).) By specifying the relationship between € and p (“the
equation of state”) one can solve these equations and find a concrete function a(t).

AMPLIFICATION OF GRAVITATIONAL WAVES

Gravitational field (5) is just a main term of a more complicated and realistic cosmological gravi-
tational field which includes the gravity-wave perturbations. Let us present the total field hy, in the
form

h;.w = h,(_ﬁ,) + hﬂ)(t,z, y,z) ’ (8)

where hfﬁ,) is given by eq. (5). At the expense of gauge freedom one can always satisfy the conditions
h(l)ff," = (). Moreover, in the case of gravitational waves, the perturbations of €, p, and u* are equal to
zero and one can, in addition, satisfy the requirements hf,}) =0, hf}u)‘y‘“’ = 0, so that one is left with
(1)
uy

only two independent polarization components (designated by a = 1, 2 ) of huy. For a wave with the

wave vector n one can write down the nonzero components of the field:
B (4 = (48 ()e™* 1 9% (1)e— DX po.
1 ( ,z»yaz) - “n( )e +ll'n ( )6 pz] (9)

where the constant polarization tensors pf; fulfill the conditions p?kn" =0,plt=0.
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Now one should substitute (8) into the field equations (3) and linearize them with respect to h,(-;).
It is clear that the left-hand side of eq. (3) is simply the usual D’ Alembert differential operator applied

to h,(-Jl-). At the same time, the right-hand side of eq. (3) will contain the products of hfﬁ,) and hf,l,,) since
all the nonlinearities are collected there.

For a given perturbation with the wave vector n and for each of the two polarization components,
the field equations reduce to a single equation for the time-dependent function u(t) (indices n and a

are omitted):
2 2 .- . 2 .
., oo |ni(a"-1) @ (g) _a.
u+nu—[—a2 t—t+(2) |p- ok (10)

where n2 = n!” 4 n?* + n% . If there is no “pump” field (5), that is a(t) = 1, the right-hand side of eq.
(10) vanishes. It is worth noting that in the gravitational case, in contrast to electrodynamics, there
is not any dimensional coupling constant between the “pump” and “wave” fields, the strength of the
coupling is regulated by the rate of variability of the “pump” field.

It is convenient to introduce a new time coordinate 7 related to t by dn = a(t)~'dt, and to denote
the n-time derivative by prime. Equation (10) gets an especially simple form (Ref. 5):

" 2 a”
W+ - — p=0 (11)

which makes it possible to treat the problem as a problem for a parametrically excited oscillator. The
notion of squeezing appears quite naturally.

SQUEEZED VACUUM STATES OF RELIC GRAVITONS

In some cosmologically interesting and realistic situations, the function a”/a goes asymptotically
to zero for n - —oo and n — +00. In the asymptotic regions 7 — —oo and 7 — +o0, solutions to eq.
(11) are very simple: pu(n) ~ e*'™" The general complex solution to eq. (11) can be presented in the
form

#(n) = a€(n) + b+ €*(n) (12)

where £(n) and £*(n) are complex-conjugated normalized base functions. The same general solution
can be decomposed over other base functions x(n) and x*(7):

p#(n) = ex(n) + d*x*(n) - (13)
One can choose the base functions in such a way that
inn

1
£(m) - Tt for 7 — —o0

and )
—e=e™"" :
x(n) — \/’2—ne or n-— +00
Since (12) and (13) describe the same solution, their coefficients are related:
a=uc+vdt, bt =v'c+u'd, (14)

where |u|? — |v]? = 1.
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For a quantized field, the coefficients a, b*, ¢, d* have the meaning of the creation and annihilation
operators and the relations (14) are called the Bogoliubov transformations.

Complex numbers u,v can be parameterized by the three real numbers r, 8, ¢, r > 0:
u=e" chr, v=—e*+)shr. (15)
The transformations (14) can also be presented in the form:
a=R*S*c¢SR, bt =R*StdtSR, (16)
where S(r,¢) and R(#) are unitary operators:

S(r,p) = exp[r(e¥cd — e¥?ctdt)]
R(8) = exp[—ifctc—ifdtd].

In the theory of squeezed quantum states, the operator 5(r, ) is called the two-mode squeeze operator,
the operator R(#) is the two-mode rotation operator, r is the squeeze parameter and ¢ is the squeeze
angle (see, for instance, Ref. 6).

As a result of evolution, the two-mode vacuum state |0,0) transforms into a two-mode squeezed
vacuum state:

155)2 = 5(r,9)(0,0) .

The two modes under discussion are two waves with the same frequency but propagating in opposite
directions. In the field of quantum optics, one is usually interested in the temporal fluctuations of the
light field, so that the spatial distribution of the field is not always important. However, in cosmology,
we need to know the complete space-time distribution of the gravity-wave field. For this aim we augment
the time-dependent functions p(n) with the spatial functions U(x). For every n-mode contribution and
a given polarization component, one has:

hn = pin,1 Una + pin2Unz -

One can work, for example, with complex functions Un1 = K ™, Unz = K e~"™* (and complex
conjugated pi: pin2 = pi,) or with real functions Uny = K cosnx, Un, = Ksinnx (and real p),
where K is a normalization constant. Classically, this corresponds to the decomposition of the field
over traveling or standing waves. For the field operators, one writes

ho = (a€ +b64€7) K ™ + (a*¢" +56) K e™™
in the first case, and
hn = (b€ + 61 €") V2K cosnx + (bat + b§€") V2K sinnx, (17)
in the second case. Transition between the two descriptions is fulfilled by the transformation

at+b i(a — b)

V2 V2

In terms of the theory of squeezed states, it means that, in the second case, one will be dealing with a
pair of one-mode squeezed states instead of a single two-mode state. Indeed, under the transformation

b , =b;. (18)
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(18) the two-mode squeeze operator factorizes into a product of the two one-mode squeeze operators
S1(r,¢) , so that instead of (16) one will have

b1 = RTSTC]S]R]

where S;(r,¢) is the one-mode squeeze operator
$1(r,¢) = exp [g(e‘mﬁ - ez“’CT’]

and R;(0) is the one-mode rotation operator

R1(8) = exp(—ibcf 1) -

The operator b, transforms in precisely the same manner and is associated with the other squeezed
mode.

As a result of evolution, the one-mode vacuum state transforms into a one-mode squeezed state.

In what follows, we will base our analysis on the representation (17) and on the one-mode squeezed
states. The annihilation and creation operators will be denoted by b and bt.

The classical equations of motion (11) can be derived from the Hamiltonian

1 a
H=3 [p2 + —(up +p1) + n2u2]

where p is the momentum, canonically conjugated to the coordinate p, p = p’ - z—'p. In a standard
manner, by introducing the annihilation and creation operators b, b*:

- /? A N S L ) 4
b—\/;(uﬂn)’b \/g(“ zn)’

one can present the Hamiltonian in the form
H = nb*b+ o(n)b*” + o™ (n)b? (19)

where the coupling function o(n) is g(n) = ia’/2a, and the Planck constant & = 1. Note that the
Hamiltonian (19) belongs to the class of Hamiltonians that characterize a number of physical processes
(Ref. 7). However, in most of them the function o(t) has a specific form o(t) = oe~ ! where o is a
constant, albeit in our case o(7) is a more general function of time.

The Heisenberg equations of motion, following from this Hamiltonian, have the form
.a .dbt a

i— =nb+i—b", —i— =nbt —i—b.
a dn a

Their solution is
b(n) = u(n)bo + v(mbg , b*(n) = w*(n)bg + v*(n)bo ,
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where by, by are the initial values of 5(n), b*(n) (Schrodinger operators) and the complex functions
u(n) and v(n) satisfy the equations

a ’ a
w =nu+ti—v*, v =nv* - i;u, u(0)=1, v(0)=0. (20)
a

It follows from these equations that u + v* satisfies the equation identical to eq. (11):
a"
(") +(n - —)(u+2") = 0.
As for the function u — v*, it can be found from the relation
al
—in(u—v*) = (u+v*) - a—(u +v%).

By substituting eq. (15) into eq. (20) one can find equations for the time-dependent parameters r(7),
8(n), ¢(n):

/
, a
= —Lcos2
r —Cos2¢
¢ = n a—,sin2 th
al
¢ = —n—--a—sin2<p cth2r . (21)

Solutions to these equations determine the precise form of evolution of the initial vacuum state into
a one-mode squeezed vacuum state. Statistical properties of the final state depend on the numerical
values of r and ¢ in a well-known way (see, for instance, Refs. 6,7).

A possible way of calculating r(7) and ¢(n) (Ref. 8) for a given gravitational field a(n) relies on
the observation that the complex function B(n), where

(u - v‘)" _ chr + e¥shr _ 2

wutv) — chr—eB¥shr ;B(n) ’ (22)

satisfies the equation

n?

7 : a ‘2
B ' =i— -2—B - 2B
2 a

with the solution [ (u/aY
- e

where u(7n) obeys eq. (11). The properly chosen solutions to eq. (11) define B(n) and allow one to find
r(n) and ¢(n) from eq. (22). The meaning of the function B(#) is that it determines the Gaussian wave
function ¥(u,n) ~ exp(—B(n)u?) which is a solution to the Schrodinger equation in the coordinate
representation.

The parameters 7(7), ¢(n) can be calculated (Ref. 8) for a cosmological model which includes
three sequential stages of expansion: inflationary (a(t) ~ effot), radiation-dominated (a(t) ~ t'/2) and
matter-dominated (a(t) ~ t¥3). It can be shown that the present-day values of the squeeze parameter
r range from r = 1, for frequencies v = 10® Hz, up to r = 120, for frequencies v ~ 107!® Hz. In the
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frequency interval v ~ 101 — 10~2 Hz, accessible for the planned Laser Interferometer Gravitational-
Wave Observatory in Space (Ref. 9), the squeeze parameter 7 reaches large values of order 40-50.

As for the parameter ¢(7), it can be shown to have the form ¢ & —nn+ ¢o, where ¢p is a constant.
This behaviour can already be envisaged from eq. (21) for ¢/, since, in the asymptotic region 7 — +o0,
one has |2| € n and cth2r = 1.

RELIC GRAVITONS: A STOCHASTIC COLLECTION OF STANDING WAVES

As we see, the cos nx and sin nx modes in the representation (17), evolve into a strongly squeezed
vacuum state. The mean number of quanta (N) and its variance ((AN)?) are determined by the
squeeze parameter r:

(N) = sh?r, ((ANY) = %sh22r :

The mean values of i1 and p are equal to zero, but their variances do not vanish:

(AR)?) = 2—lﬁ(ch2r — sh2rcos2¢), ((Ap)?) = —g(ch2r + sh2r cos 2¢p).

In order to relate the rigorous quantum-mechanical treatment, described above, with the notions
of random classical waves, one can use the Wigner function formalism. It allows one to derive the
distributions of the random variables A and ¢ entering the classical expression for u:

u = Asin(-nn+¢) . (23)

It can be shown (see Ref. 8) that, in the limit of large r, the Gaussian distribution for ¢ is very
narrow, like a §-function. It is concentrated near the values

where o is a constant, the same for all unit vectors n/n, and £ = 0, %1, ....

A similar conclusion can be reached in a simpler, though perhaps less rigorous way. Let us consider
the ratio ((Af2)?)/((Ap)?). For large r, this number is approximated by

(BRD(BFV) ~ — tae

For a classical expression (23), this ratio corresponds to the number n~? tg?(—nn + ¢). From their
comparison, and taking into account the fact that ¢ x —n7 + o, one can derive eq. (24). The very

small variance of the phase, A¢, is, of course, consistent with the large variance of the number of
quanta, ((AN)?).

The negligibly small variance of the phase distribution leads to an important result: every pair
of cosnx, sinnx modes forms together a standing wave. Indeed, let us consider a given n. The
corresponding terms, contributing to the total wave-field h(7,z,y,2), can be written in the general
form:

hn = A; sin(—nn + ¢1) cos nx + Az sin(—n7n + ¢;)sinnx . (25)
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The amplitudes A; and A, are taken from a broad Gaussian distribution and are, in general, different.
However, the phases ¢; and ¢ are taken from a very narrow Gaussian distribution and are essentially
fixed and equal up to +x. Because of that, expression (25) can be written as a product of a function
of time and a function of spatial coordinates:

hn = £ sin(—nn + ¢o)(A1 cos nx + Az sin nx) . (26)

In other words, expression (26) describes a standing wave. A characteristic feature of a standing wave
pattern is that the field vanishes all over the space at every half of the period. The randomness of the
wave-field is displayed in its spatial functions A; cos nx + Ajsin nx. This is why we say that the relic
gravitational waves are present now in the cosmos in the form of a stochastic collection of standing
waves.

The total field h(7,x) is obtained by summing over all n-mode contributions (26). Of course, the
total field loses the property of vanishing at some moments of time, because the various sin(—n7n +
o) factors have different arguments. However, the difference in the arguments is not random, but
deterministic. For instance, if at some moment of time 1 = 7o the component h,(n,x) vanishes, the
same will be true for all other components hp,(7,x), where m = n(1 + k/f) and k/¢ is an arbitrary
rational number. Hopefully, this property can somehow be used in a specific strategy of observational

discrimination of relic gravitational waves from stochastic gravitational waves of a different origin. I
think that the inevitable “squeezing” of relic gravitational waves (and other primordial fluctuations

of quantum-mechanical origin) can manifest itself in a variety of circumstances, not all of which are
foreseeable at the moment.
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ABSTRACT

A general definition of squeezed states is
proposed and its main features are illustrated
through a discussion of the standard optical
coherent states represented by '"Gaussian pure
states" (Ref. 1).

The set—up involves representations of
groups on Hilbert spaces over homogeneous
spaces of the group, and relies upon the
construction of a square integrable (coherent
state) group representation modulo a subgroup
(Ref.” 2). This construction depends upon a
choice of a Borel section which has a certain
permissible arbitrariness in its selection; this
freedom is attributable to a squeezing of the
defining coherent states of the representation,
and corresponds in this way to a sort of gauging.

AN EXAMPLE: GAUSSIAN PURE STATES

Gaussian pure states (GPS’s), as defined
by Schumaker (Ref. 3) and elaborated by Simon,
Sudarshan and Mukunda (Ref. 1), are functions:

%(X) = (const) exp[P(X)] (1)

where % ¢ R" and P(X) is a quadratic

*S.T.A. and J-A.B. gratefully acknowledge partial
support from NSERC.

polynomial in X with complex coefficients:
— . — e
P(x) = /2 XZx +iw - X + W (2)

with Z a symmetric (Zt =7) complex nxn

. — n .
matrix, wel, W, € ¢, and where, if

7 =V —iU is the decomposition into real and
imaginary parts, then U is positive definite
(U > 0).

Let G denote the semi—direct product of
the Weyl—Heisenberg group H(2n + 1) with the
symplectic group Sp(2m;R) of symplectic linear

maps of R n

G = H(2n + 1) @ Sp(2n;R). (3)

Multiplication in G is as follows:

818y = (¢CoexPiR(Qy81Qy)/2],Q +8) Q95 55)
(4)

where g = (c,Q,s) denotes a general element of

G; (c,Q) e H(2n + 1) where |c| =1, Qe len;
s ¢ Sp(2n;R); © is the symplectic structure on

R defined for Q_=(d.B) r=12 by
Q(Q]_;QQ) = Bl : 62 —52 * al-

Let U(g), geG, denote the irreducible
unitary representation of G on the Hilbert
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space K= L2(1Rn) whose restrictions to

H(2n + 1) and Sp(2n;R) are:

[U(e,Q)¥](%) ¢ expli(p-X—p-d/ 2)]1085)—?1’)

and

[U(s)¥) = (2m) ™ %(deta)™1/2

PN

x jRnexp[iS(Q,T(')]MK)dT{' (6)
where
S(%,K) = —1/2%CA™I% + RA7I¥ + 1/2EA7IBE,

¥ is the Fourier transform of 4, and we assume
det A#0 if s= [é g] ¢ Sp(2n;R). Actually,
U defines a double—valued representation of
Sp(2n;R), i.e.,, a representation of the
metaplectic group, but this subtlety will be
ignored here.

Some facts (see Refs. 1 and 4):

(i) Let gy, = 7r—n/4exp[—§ - X/2] be the special
. — -

GPS with U=In,V=On,W=0, W, =0,

and suppose Y 1S any GPS. Then

Y= (const)U(g)d)o for some g e G; moreover if

g eG also satisfies this
g = gk, for some ke K.

condition then

K

o = Sp(2n;R) N O(2n;R) ¥ U(n)

(7)

which is a maximal compact subgroup of
Sp(2n;R), and conversely.

(i1) Sp(2n;R) has a '"block Iwasawa"
decomposition:
Sp(2n;R) = NAK | (8)
I O
_ n 1
where N = { VoI V= VJ,

[U(s(U, V), JR)
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A On t
A= 1 A=A > 04,
o, A
K, = [_% 2] ata + blb = L, a'h = bta}.
Moreover, defining U = A2 and
n On v/ On
s(UV)=|v 1 1/2)"
n On U
we have for ¢ ¢ J%:
[U(s(U,V))9]() =
(detU)/ 2explizv/2u(ul/2) (9)

and if ¢ = 1/10 in (i), Z =V —iU then:

0/ Ll((l%e)tU)l/ 4exp [—iXZx/2]

(iii) A maximal compact subgroup K of G is:

K=0(1) K 2 U(1) x U(n) (11)
where U(1) = {(¢,0) e H(2n + 1)}, and with
the same meaning for U(1) define also:

H = U(1) = Sp(2n;R). (12)
By Y we mean the homogeneous space:
Y=H/K= Sp(2n;lR)/Ko (13)

which may be regarded as the set of positive
symplectic matrices; these are uniquely

t
expressible in the form s(U,V)_1 s(U,V)_1
thereby establishing an identification of Y with
the collection of GPS’s centered at
Q=03 e®R’™ By X
homogeneous space:

we mean the

X = G/H x R*" (14)

the identification being through the map sending
(¢,Q8) € G to Q e R°™. In this way X inherits
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the symplectic structure €  which happens

therefore to be G—invariant.

SQUEEZED COHERENT STATES

The theory of square integrable
representations modulo a subgroup (Ref. 2) is
immediately applicable in the present situation,
and together with the notion of squeezing, to be
outlined below, provides a convenient picture of
GPS’s. In what follows, a general discussion
(example of which is the case of GPS’s, same
notation) will be given.

Let H be a closed subgroup of a Lie group
G. Let X = G/H and suppose du(x) is a left
G-—invariant measure on X (in genmeral, dv
need only be quasi—invariant); let GX-G
denote a Borel section. Now suppose U(g),
g ¢ G, is an irreducible unitary representation
on %, and suppose there exists an admissible
vector n € & such that, as a weak integral:

x| 5> <ngld(x) = Ag (15)

defines a bounded, positive operator Aﬂ with
(possibly unbounded) inverse; 18 x denotes the

vector  U(f(x))n (example: notation as before
with n=1,, x= Q, Ax)=(1,Q]1), dy(x) =
QQAQQI\--- AQQ (n factors), Aﬂ is a

multiple of the identity on ). In this case U
is square integrable mod (H,), and {nﬁ o 18
)

a family of coherent states for U.

Let K be a closed subgroup of H of k’s:

U(k)n = p(k)n (16)

where p is a 1—dimensional unitary
representation of K (]ok)] =1). Let
vY =H/K ~+H denote a Borel section, and
define:

oX x Y = G, o(x,y) = B(x)(y) (17)
For fixed y e Y, o(-,y):X - G is a Borel section
and letting No(. y)x = U(o(x,y))n it is easy to

b

verify  that U is square integrable
mod (H,o(-,y)) for each y ¢ Y; in fact:

341

A .
?(18’)},)

defines a bounded, positive invertible operator
(which coincides with A ; here). The collection
{na(_ ,y),x}’ for y fixed, is a family of squeezed
{nﬂ,x}; one

interprets U(7(y)) as the squeezing operator
defining a change of section ﬂ(-)—»ﬁg(-)'y(y)
(example: k=(c,0,k)), p(k) =c,

y=2Z=V-iU, 1y) = (1,0,5(U,V))).

jxl na( - aY)’x> <770-( * aY)xldV(X)

coherent states associated to

In this manner, squeezing in its general
setting is describable in terms of changes of
Borel section of the associated coherent state

representation. Details of this general
construction  with examples will appear
elsewhere.
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ABSTRACT

Minkowski-signature wormhole solutions of the Einstein field equations require the existence of
negative energy density in the vicinity of their throats. In this note, we point out that the
gravitational interaction automatically generates squeezed vacuum states of matter, which by
thier nature, entail negative energy and thus provide a natural source for maintaining this class
of wormholes.
1. Introduction

Wormbholes are handles in the spacetime topology linking widely seperated regions of the Uni-
verse. Major insights have been made in the past few years in understanding general properties
and physical consequences of Minkowski-signature wormholes [1-3]. A key aspect of wormholes
discovered in [1] has to do with the type of matter and energy needed to thread the wormhole
throat: it must violate the weak energy hypothesis. Although no known form of classical matter
violates this energy condition, the squeezed vacuum does, and moreover, the coupling of matter to
gravity leads automatically to the production of squeezed vacuum states [4]. The negative energy
of the squeezed vacuum can be understood in simple terms. Consider a single mode oscillator. Its
vacuum state is represented in phase space (from the Wigner distribution) by a circle centered at
the origin. The squeezed vacuum state, by contrast, leads to an elliptical region. As this ellipse
rotates (with the angular frequency of the mode), its periodic profile exhibits quantum fluctua-
tions both larger and smaller than the uniform profile characteristic of the unsqueezed vacuum
state. In field theory, the energy of the unsqueezed vacuum gets renormalized to zero. Thus, any
state having lower fluctuations than the ordinary vacuum must have a negative (renormalized)
energy.
2. Quantized scalar in a uniform gravitational field

We make these concepts explicit by showing that the interaction between matter and gravity
leads to a squeeze operator acting on the Fock space of particle states, which includes the vacuum.
We consider a scalar under the influence of a uniform background gravitational field. From the
equivalence principle, this can be handled by transforming to a uniformly accelerating frame (i.e.,
Rindler space). Take the background field pointing in the z-direction. The transformation from
Minkowski (¢,z) to Rindler (T,X) is z = X cosh(T) and ¢t = X sinh(T), and the scalar equation
to be solved is

0% + m*® = 0. (1)
The normalized solution is given by
&y (T, X;x1) = 7~ '[sinh(m)] /2Ky ((m? + K} )2 X )T e, (2)
343
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where K is a modified Bessel function of imaginary order, m is the scalar mass, k; = (k,, k)
refers to the transverse momentum and j > 0. Contrast these Rindler modes with the familiar
plane wave solutions of (1) for Minkowski space:

ei(k-x—wkt) 3
OB, @)

where wy = (m? + k?)Y/2. The complete solution of (1) in Rindler or Minkowski space can be

Uk =

expanded in terms of the sets (2) and (3), respectively. The expansion coefficients become, after
canonical quantization, operators satisfying the algebras [a(j, k. ),a'(;’,pL)] = 6(4,7')é6(kL — pL)
and [a(k),a’(k)] = §(k — p) The Rindler and Minkowski vacua are defined by @0 >= 0 and
al0 >= 0. Completeness of the two sets of modes (2) and (3) leads to nontrivial relations among
the Minkowski and Rindler creation/annihilation operators:

a(k) = [ did*py a(j,p[K)alj, p) + 6, b K)a' (7, pu), (4)

together with the Hermitian conjugate. The Bogolyubov coefficients in (4) are computed from the
inner product and measure the overlap between the Rindler and Minkowski modes: a = (®y, ;|Up)
and B = —(%x, ;|Up). A most important consequence of (4) is the inequivalence of the vacuum
states |0 > and |0 >, and the Fock spaces built up from them. This inequivalence shows up
physically as squeezing.
3. The Squeezed Vacuum

The free Hamiltonian for a massive scalar in Minkowski space is

H= / &k wy a'(k)a(k), (5)

where wx = (m? + k?)/2. From the point of view of the Rindler modes, (5) is a quasiparticle
hamiltonian, and so the canonical transformation in (4) allows one to derive the exact interaction
hamiltonian acting on Rindler states. One can also start from the exact Rindler hamiltonian,
which has the same form as (5) when expressed in terms of the Rindler operators, and applying
(4) leads to the exact Minkowski interaction hamiltonian. Since the intermediate momentum
integrations are easier to carry out in the Minkowski picture, we derive the squeeze operator for
Rindler states, but the equivalence principle guarantees the existence of an identical operator
(expressed in Minkowski momenta) acting on the Minkowski modes. Using (4) and performing
the intermediate integrations over the Minkowski momenta yields [4] H = H, + H' where

Ho = /d] d2p_]_ LUpJ_hl(j)aT(j’pJ.)a(j7p.L)7 (6)

and
H' = | didi' d*pywp, (k. 7")[a(", pL)ali, ~p.) +3'(7', p1)al (G, —pu)]
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+ha(5,5)60 — ') + 6" — §)a' (5, pL)a(i" PL)) (7)

where

(. 57) = SohirG +30/20+ G = 397 —e P21 4 (4 §))

27 [sinh(mj) sinh(7j’)]*/2 4x[sinh(mj)sinh(mj")]H/2 (8)

are functions computed from the Bogolyubov coefficients [4]. We begin to see the operator struc-
ture characteristic of squeezing. To make this precise, consider the Schrodinger equation for a
state of the scalar formulated in terms of the interaction picture. The above splitting of the Hamil-
tonian suggests writing the full time evolution operator as U = U°U' where U°(T) = e *HeT. The
interaction Hamiltonian in the interaction picture is computed from H(T) = UNT)H' U(T)
[4]. Then, the state of the scalar at any time T is simply given by

) and h2(j)j’) =

1&(T) >;= Texp (—i I /T T H}(T’)dT’) 1B(T,) >, (9)

where the time evolution operator is a (multi-mode) squeeze operator, by virtue of (6) and (7).
This is the main result. If we now identify the initial state with the Rindler vacuum, |®(T,) >=
|0 >, the final state is precisely the gravitationally squeezed vacuum. Since every quantum field is
equivalent to an infinite collection of (coupled) harmonic oscillators, it should come as no surprise
that the evolution operator for ® is just a multi-mode generalization of the single mode squeeze
operator. If we specialize to two scalar modes having equal but opposite values of the transverse
momentum and with j = 5/, then the evolution operator in (9) reduces to

S(Z) = erp (?Z[za(j’ p.L)a(j, _pl) - Z*a'T(j7 pl)af(j, —pl)]> ) (10)
where z = i%[e'ziwlﬂhl(jw — 1] is the squeeze parameter for these modes. Apart from the
bounded T-dependent factor, we see that appreciable squeezing obtains for j — 0. Expressing j
back in terms of physical quantities, we have j = i’%-l, where ) is the mode wavlength and r; is the
Schwarzschild radius of the equivalent gravitational mass giving rise to the constant acceleration
at the point r, [4]. Thus, the interaction between matter and gravity leads to squeezed states
of matter, and these provide a natural source of negative energy for supporting wormholes in

Lorentzian spacetime.
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The Schrédinger equation is used to exactly evaluate the propagator, wave
function, energy expectation values, uncertainty values and coherent state for a
harmonic oscillator with a time-dependent frequency and an external driving time-
dependent force. These quantities represent the solution of the classical equation

of motion for the time-dependent harmonic oscillator.

I. Introduction

It is well known that an exact solution of the Schrédinger equation is
possible only for special cases. For this reason, approximate methods are needed.
Exact solutions provide important tests for these approximate methods and for
various models of physical phenomena. In general, the solution of the Schrédinger
equation for explicit time-dependent systems has met with limited success because
of analytical difficulties, although progress has been made during the past three
decades.l'5 Camiz et al6 have obtained the wave functions of a time-dependent
harmonic oscillator perturbed by an inverse quadratic potential, using the
Schrédinger formalism and a generating function. Further, Khandekar and Lawande’
have evaluated the exact propagator and wave function for a time-dependent harmonic
oscillator, both with and without an inverse quadratic potential, using Feynman
path integrals. In addition, Jannussis et a18 have calculated the propagator for
several quantum mechanical systems with friction.

In a previous paper,9 we have evaluated the propagator, wave function, energy
expectation values, uncertainty values and transition amplitudes for a quantum
damped driven harmonic oscillator by using path integral methods. Also, we have
obtained the coherent state for the damped harmonic oscillatorlo and calculated the

propagator for coupled driven harmonic oscillators.11

, 347
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In this paper we discuss the exact quantum theory of a forced harmonic
oscillator with a time-dependent frequency. In Sec. II we evaluate the propagator
using the Schrédinger equation and path integral methods, and in Sec. III we
calculate the wave functions using the propagator. In Sec. IV we define the energy
operator and calculate energy expectation values. In Sec. V we obtain the
uncertainty values. 1In Sec. IV we determine the coherent state and its properties.

Finally, in Sec. VII we present results and a discussion.

II. Propagator
We consider a system whose classical Hamiltonian is of the form

H=2op? v B2 o? - eox (2.1)

where x is a canonical coordinate, p 1s its conjugate momentum, w(t) is a frequency
as a function of time, M is a positive real mass, and f(t) is an external driving
force. The Lagrangian corresponding to the Hamiltonian (2.1) is

L= u - Tmlox? ¢ Eox . (2.2)
Here, the Hamiltonian H and Lagrangian L depend on time. The classical equation of
motion for our system is

2

Q_E X + wz(t)x -1 f(e) . (2.3)
dt M

For the case where w(t) = v, (constant), the solution of Eq. (2.3) represents
harmonic motion; otherwise, it is difficult to evaluate the exact solution.

The path integral formulation of Feynman provides an alternate approach to
solving dynamical problems in quantum mechanics.12 In this approach, the usual

Schrédinger equation is replaced by the integral equation
¥(x,t) = J dx’ K(x,t;xt’) $(x’,t’) (t>t') (2.4)

with the initial condition $(x,t) = ¥(x',t). Here, ¥(x,t) is a wave function and

K(x,t; x',t') is a propagator. The propagator K(x,t; x',t') 1is defined by the path

integral12

(x,t) N-1 i
K(x,t; x',t') = lim j II dxj exp[i S(x,t; x',t")) . (2.5)
(x',t') j=1
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where the integration is over all possible paths from the point (x',t') to the

point (x,t), and S(x,t; x’',t’) is the action defined as

t
S(x,t; x',t') = I dr L(x,x,7) . (2.6)
t'
For a short time interval ¢, substitution of Eqs. (2.2) and (2.6) into Eq. (2.5)

gives the normalizing factor A, and the usual Schrddinger equation:

J
Aj - (ZiweM/M)k 2.7)
2 .2
ip %E Y- - L Q‘E ¥+ % sz(t) x2 ¥ - £(t)y x ¥ . (2.8)
2M ax )

Since K(x,t; x't') can be thought of as a function of the variables (x,t) or of

(x',t'), it is a special wave function, and it satisfies Eq. (2.8):

2,2
a_ s et ety o B2 " 1
i at K(x,t; x',t") - on 2 K{x,t;x’',t') + 2

ax

sz(t) x2 K(x,t; x',t’)
- f(t) x K(x,t;x',t"), (t>t") (2.9)

2 .2
-'Q— -Il__Li— e ol l ’ ,2
if ac’ K(x,t;x’',t") M ax'2 K(x,t; x't') + 2 Mw(t’) x

x K(x,t;x',t') - £(t') x' K(x,t;x",t") ,
(' >t) . (2.10)

12,13
Because the Lagrangian is quadratic, the propagator has the form

2
K(x,t; x't') = exp[a(t,t')x2 + b(t,t)xx’ + c(t,t)x'" + g(t,t')x
+ h(t,t")x' + d(t,t")] ., (2.11)
where from Eqs. (2.9) and (2.10) we can easily deduce that the coefficient of the
third and higher powers in x is zero.

Substituting‘Eq. (2.11) into Eqs. (2.9) and (2.10), we obtain the differential

equations
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a2, (2.12)
& oxep) - 2 abxeg) + ﬁ £(t) (2.13)
L B +a) = v B g (2.14)
5%7 o = i% 2. %% w(t’)? (2.15)
& ooy = B oony « 12 (2.16)
?1% (ax2+gx+d) - E%ﬁ (bx+h)2 + 5—1' c . (2.17)

Equations (2.12) and (2.15) are nonlinear equaticnc.

(D)

or the cacs where w(t) = Wo
a solution is easily found, but in other cases it 1is difficult to find an exact
solution. If q(t) obeys the differential equation

d2

=7 a(e) + w2(e) q(t) =0, (2.18)
dt

then the solutions of Eqs. (2.12)-(2.14) are

2K q(t) (2.19)
i1 [°
b(e)x' + g(t) = 1 ¢ [I ds £(s)q(s) + b_] (2.20)
2
b t b ot
2 -3 o) ds o ds
c(6)x 2+ h(t)x’ + d(t) = Inq ® + j ds  _o J ds
21M} ()2 q(s)z
s 1 [ ds s S
X j dp f£(p)q(p) + 21 > I dp f(p)q(p) j dr £(x)q(r) +d_ (2.21)
q(s)

where bo and do are constants of integration and do not depend on t, and the

solutions of Eqs. (2.15)-(2.17) are

. M g(e’)
e(t) = 3i% q(en) (2.22)
1 (Y
b(e)x + h(e') = 7= {I ds f(s)a(s) + b}] (2.23)
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2 . ib’ ib) ot 4
a(t)x" + g(t')x + d(t') = Inq(t') Mﬁ 2
q(s)
S 1 S S
X J dp £(P)alP) + quu dp £(p)a(p) I dr f(r)q(x) + 4, . (2.24)
where b' and d' are constants of integration and independent of t’. Since only t

is a variable in Eqs. (2.19)-(2.21), we have suppressed t’' 1in a(t,t’'), b(t,t"),
etc., and we have similarly suppressed t in Egs. (2.22)-(2.24).

In polar form we may write

a(t) = n(e)el?®) (2.25)

where n(t) and vy(t) are real quantities. From Eqs. (2.18) and (2.25) we note that

W) - n(e) Y2(e) + w(t) n(t) = 0 (2.26)
20(E)¥(t) + n(t) ¥(t) = 0 (2.27)
.2 . ’
n (t)y(t) = Q (2.27")

where the constant 0 is a time-variant quantity. From Egs. (2.26) and (2.27), we

find another form for the solution of Eq. (2.18) as
q(t) = n(t) sin(y-7') (2.28)
q(t') = n(t') sin(y-v') , (2.29)

where v = y(t) and v’ = y(t’).
Substitution of Eq. (2.28) into Egqs. (2.19) and (2.21) gives

a(t) = [!1 + 7 cot(y-7")) (2.30)

ﬂ

ib 1 t
I ds n(s)f(s) sin[y(s)-7v'] (2.31)

. (o]
b(e)x' + g(t) = L (y-7) ¥ Hnsin(y-1")

ib2

c(t)x'2 + h(t)x’ + d(t) = ln[rp';i sin-k(v-v')] + 2M8M cot(y-7")
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b
(o]

t
* 1W Siﬂ(’y--y') J- ds f(s)q(s) Sin['y(s)_.yl)]

t t
1
* 21ipaM sin(y-v") J ds J dp £(s)f(p)n(s)n(p)

x sin{vy(s)-v']sin[v(p)-7") (2.32)

Furthermore, substitution of Eq. (2.29) into Eqs. (2.22) and (2.24) gives

c(ery - o5

2 cot(y-v")] (2.33)
b(’) 1 t'
b(t')x + h(t') = iHn ' sin(y-1') * Yinsin(r') j ds f{s}i{s)sin[vy-v(s)]
(2.34)
2 o, ok tb,”
a(t’)x” + g(t')x + d(t') = In[n’ " sin (y-7")] + gy cot(y-7")
ib(’) t!
T FQMsin(y-v') ds f(s)n(s) sin[vy-v(s)]
1 L
* 2iaMMsin(y-v") J ds J dp £(s)£(p)n(s)n(p)
x sin[y(s)-vlsin[y(p)-7] . (2.35)

From Eqs. (2.31), (2.32), (2.34) and (2.35), we deduce that the constants bo

and bé are given as
b, = -MY'n'x’ (2.36)
bl = Mynx . (2.37)

Also, from the normalization condition,

a, - Iyt

2n)h (2.38)

From Eqs. (2.30)-(2.37) and (2.27'), we find that
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a(t,t') = == [? + 7 cot

e(t,tr) = o0 (L4

oy o ANy
b(x,e) K sin(y-7')

{ F

gle.e?) = K sin(y-v")

i

REEED = sinGrr)

d(t,t’) = -

x sin[v(p)-v']

Inserting Egs. (2.39)-(2.44)

time-dependent harmonic osci

2MH sin(v v

(v-71")1] (2.39)
cot(y-v’)] (2.40)
(2.41)
ds £ Sin(y(s) -] (2.42)
Jy(s)
s £ Sin(y-v(s)] (2.43)
J1(S)
5 j L) Sin[y-v(s)] J dp -L(22
Jr(s) JY(p)
(2.44)

in Eq. (2.11),

llator as

K(x,t;x't") = [21'1)" sin

x exp[zu (ﬂ

X exp {F;—-_-:—

tl

M
., t
+ 21ﬁ_ " I gs L)

t
ds—'f—‘(‘—)'__s.

M (3t ]
(v-7")

2 ' 2
n * )|

iM
in(y-v")

Jy(s)

sin

t’ Jy(s)

we obtain the propagator for the forced

[<§x2 + 372y cos(r-v') - 2/9¥' xx

sin{y(s)-v']}

[v-v(s)]

t t
- la J ds ?gégl sin[vy-v(s)] I dp _%LE) sin[v(p)-7’]]} '
M® et fy(s) t'

Jr(p)
(2.45)

where the unprimed and the primed variables denote the quantities which are

functions of time t and t',

respectively.

It may be easily verified that for the

case where w(t) 1s a real positive constant w . we have n(t) = 1 and y(t) = wot,
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and the propagator of Eq. (2.45) reduces to the usual expression for a forced

harmonic oscillator.12

III. Wave function

We now rewrite the propagator in another form in order to derive the wave

function:

M (3t ]a

K(x,t: xe) = [2:1M sin(v-7")

X exp [iﬂ {[ x" + MJ1 X J ds ;%i§l °°s[7'7(s)1]
v(s)

’

. ’ ._ t v
- [37 x'2 + %/7' x' J ds L) cos[7’-7(s)]]}]

Jv(s)
- t
x exp[i—’; co:(v-v'){[/& x - ﬁj as —H82 sin[7-7(5)1]2

Jr(s)

—_— t’
+ [J;' x' - i J ds fCs) sin[vy’ 7(5)]] }
Jy(s)

m;{[f lr ) . ]
- — Y x - ds — sin{y-v(s)]
#osin(y-v") " Jr(s)

’

x [J?x' . ﬁft as L8 gy 7<s)1]}]

J(s)
X exp[;iﬁ {cot(y v') [I ds —Lls) sin[~vy- 1(s)]]
Jr(s)
't () 2
+ cot(x-v')[ dp == sin[v'-v(p)l]
Jr(p)
t t!
2 £ _. '
+ sin(-y-'y’) ] ds 81n(7'7s) .[ dP j..y(p) 31n[7 "Y(P)]
ot
S S _f(s) _f(p)
- ) ds sin[vy-v(s)] J
sinCr-2") ), Jr(s) /7(p)
X Sinlv(P)-v']}] (3.1)
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. . “1(y-v")
Gy —=2

- G L. o2l

— t
o RSRE WY O
2K M Jr(s)

., t
; [ﬂ7 x? 4 ﬁ Jv'x! J as L) cos{v'-7(5)]]}]

" Jv(s)
- t
X exp[;%{[/& x - i ds ‘%iél sin['y-'y(s)]]2
Jr(s)
— t!
+ [/7'x' - ﬁ I ds —%L—l sin(y’ 7(5)]] ]
Jr(s)
-M . 1 f(s) . 2
X exp [ YWY {[Jv x - 51n[7-7(s)]]
H1-e 2HCTYN), “J J3(s)
J— t'
o [Am g [ as 2 sy v)1]?
Jr(s)
_— t —_—
2[/% x - J as 8 i, 7<s)1] [/%'x'
Jy(s)

t’ .
j ds _§i§l Sin[7’-7(5)]]}] e 10(R) 10(E")
Jy(s)

where

6(t') - 6(t) = m« {cot(7 y >U as £ yn(,. 1(5)]]

Jr(s)
_f(s) . 2 1
+ cot(y-v )[[ ds o) sin(y 7(5)]] +2 sin(y-v')

t
X J ds ‘%iﬁl sin{vy-v(s)] I dp £ sin{vy'-v(p)]
Jr(s) J1(p)

t
- I ds L) sin[v-v(s)] J ) sin[y(p)-v']
' Jys) Jv(p)

Let us introduce Mehler's formula,14
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@«

2 .2 2 2 .2 n
eXD['(j + Y iZXY)/(l-Z ) - e‘(x +Y7) } i Hn(x)Hn(Y) (3.4)
1 -2 2 n!
n=0
where
- t
x-AlAxal [ s Ed staly-7()1] (3.5)
Jr(s)
-— ——— t'
Y - J% [/Q'X’ - i I as -2l Sin[v'-v(S)l] : (3.6)
Jr(s)
z = e 10y (3.7)

Substituting Eqs. (3.4)-(3.7) in Eq. (3.2), we obtain

@«

K(x,t; x',t) = } ¢:(x,t) ¢n(x',t’) , (3.8)
n=0

where

1 My k4 {1_M[n 2 2 g r _f(s) ]}
) = - d -
b ®) = [ G 1" exp{ay|r x - g /7 % | ds e cos[y-7(s)]

- t
X exp {%V [/; X - i J as —£L51 sih[y-y(s)]]z}

Jx(s)
Yol t
X Hn {/%; [x - —-%‘ I ds —§i§l sin[y-y(s]]}
M/ Jr(s)
1
1{8(t) - (n+3)v(8)]
X e . (3.9)
Moreover, we may write
B_(x,8) = exp(i[6(t) - (#D)v(D)]) 4 (x,8) (3.10)

where

1 My.h.k iM[n . 2 o (5, _f(s)
$_(x,t) = [ (Gev) I exv{ [ x- 5 Jyx I ds = c05[1-7(5)]]}
n 2% M 2Hn ~ H J7(s)
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- t
X exp %ﬁ[/; X - ﬁ J ds —%Lil sin[y-y(s)]]z}
Ja(s)

=y — t
X H [ 5 Jyx - i I ds -%iél sin[v-v(S)]}] . (3.11)
n Jr(s)

In Eq. (3.10), the wave function ¢n(x,t) is merely a unitary transformation of

¢n(x,t), and thus ¢n(x,t) satisfies all the properties associated with ¢n(x,t):

de ¢§¢n-m|m-de $*p =&

2,0 (3.12)
The expectation value of a given operator O is
- * - *
<m|0|n> J dx ¥* 0y J dx ¢*04 . (3.13)

IV. Energy expectation values

For the forced time-dependent harmonic oscillator system, both the Hamiltonian
and Lagrangian have the units of energy but depend on time. We must therefore find

a time-invariant energy operator. If B(t) is a particular solution of Eq. (2.3),

we have

2
e (xB) + 02(D) (xB) =0 (4.1)
dt

and from Eqs. (2.26) and (2.27') we note that

m o+ 0i(t) no=aim . (4.2)
From Eqs. (4.1) and (4.2), we get the following expression for the energy:

E =35 (M0 + (Mix-np) (BhenB) + S(Bh-ab)® + § a? D2 (4.3)

Because Eq. (4.3) is time invariant, we can use it for the quantum mechanical

energy operator,

2.2 ,2 .
Wons 82, M e2, 220 2 mn 3
Eop - oM ax2 + z(q Yy )R - 2 (2xax + 1)
+ (Bn-aB) (= + wn) + wnpx + B 03267+ Regn-np? (4.4)
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where

2" a1 /m
5 3 Ax2+Bx
- [—;—————] e Hn[S(x-ﬂ)] . (4.
2"t /n
5 - G/ .
MOES 5 (4.
— t
soy = % 3 [ as 2 cosyoca)) “.
Jr(s)
t
gty = 1= f as =22 sin[y-v(s)] (4
M/y Jr(s)
A -1 - 6202 4.
B = ix + p52 (4.

Equation (3.11) now simplifies to the expression

2 2 2
b (x,0) - [___ﬁ__;)k JRIT Qe et e-k& (x-8) Hn[S(X'ﬂ)]

Here, B(t) is a particular solution of Eq. (2.3).

follo

In order to evaluate the energy expectation Em n

wing calculations:

x|n> - 7%3 [/n+l|n+1> + /n|n-1>]

x2|n> - ‘li [J/(o+2) (n+D) |n+2> + (2n+1) [n> + /n(n-1) |n-2>]
2§

pln> - %‘;ﬁ 2(n+l) o> + % Bln> + %(H%) J2n|n-1>

- <m|E__|n>, we perform
op

(4.

2 2
p2ln> = K2 (B DD |ne2> + 2/2 §8 foFT|o> + 2(a+85) (2041) >
5 5

AB 2 2
+2/2 88 4 5By /ln-1> + 2(B-s2ne6%) A@T) | n>)
5
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6)

7)

8)

.9)

10)

11)

the

12)

13)

14)

15)



xp|o> - E (A—z JGor2y (el |n+2> + j%a /ot |n+l> + [%(2n+1)+n] |n>
5 5
+ 2= fAln-1> + Al A |n-2>) (4.16)
J25 52
px|n> = xp|n> + |[n> . (4.17)

Substituting Eqs. (4.6)-(4.17) into Eq. (4.4), we directly obtain the energy

expectation values as

H o,
En,n - En - E(n ¥) (2n+l)

- 0M(n+%) . (4.18)
This energy expectation value is a time-invariant quantity.

V. Uncertainty values

The uncertainty product defined as

(axap) = ([(<m|x2|n> - <m|x|n>2)*(<m|x2|n> - <m|xln>2)];1

x [(<a|p?|n> - <a|p|n?)*(<a|p?|w> - <a|p|n>®)]H? . (5.1)

Inserting Eqs. (4.12)-(4.15) into Eq. (5.1), we obtain

-2

(axap) = (1 + T3 2);i (n+‘;’)}{ (5.2)
’ rn
2 i
(8x8p) |, p o = (L + 725)" J(2) (n#l) M (5.3)
' Tn
n?
(8xap) | o= (1 + 5 /n(a-T) K. (5.4)
' TN

VI. Coherent states of the time-dependent harmonic oscillator

First, we construct the creation operator at and destruction operator a. For
a forced time-dependent harmonic oscillator, it is not possible to construct a and
at, but we can construct a and a1

Eqs. (4.12) and (4.14), we obtain

for the time dependent harmonic oscillator. From
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ale @ (a4 By x - iR

(6.1)
2 nY My
a = (%1)” (1 - i) x + 12 (6.2)
K . .
ny My
From Eqs. (6.1) and (6.2), we can represent (x,p) in terms of (aT,a) as
x = (% (atva) (6.3)
2My
p - LT Ay gy &t v (Z - na) (6.4)
ny nvy
Also from Eqs. (6.1) and (6.2), if [x,p] = il we see that
(af,a] -1 . (6.5)

Conversely, from Egs. (6.3) and (6.4), if [at,a] = 1 we note that [x,p] = iH.

The coherent state can be defined by the eigenstate of the nonhermitian

. 15
operator a,

ala> = ala> . (6.6)

Let us find the coordinate representation of the coherent state. From Eqs. (6.2)

and (6.3), we have

(%ﬁ)k (1 - in:) X + ﬁ? 5%7] <x’la> - a<x'|a> . (6.7)

ny My

We solve this equation and change the variable x’' into x for convenience,

<x|a> = N exp [%;(-1 17 < e (Zﬁl)H o x] . (6.8)
ny

We choose the constant of integration N such that
2
dx |<x]e>|® =1 . (6.9)

Then, we find the eigenvector of the operator a in the coordinate representation

|x> as
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<x|a> = (fﬁ)* exp[%ﬁ(-l v 1) x4 (2’7;1)H ax - %Ialz - %azl : (6.10)

ny

Next, we show that a coherent state is a minimum uncertainty state. From Egs.
(6.3), (6.4) and (6.6) and their adjoints, we evaluate the expectation values of x,
P, x% and p2 in the state |a>:

<alx|e> = () (") (6.11)
2My
wlplo> = EHY (-4 1a” + s - Da (6.12)
Y ny

<a|x2|a> - ’ﬁj <a|a+2+a2+aa++a+a|a>
2My

- 1 (" %ati2aa’i1) (6.13)
2My

<a|p’a> = ﬁ%l (= + 2™ (- pl?
ny ny

12+ 1) 20a" ) . (6.14)
nvy

The uncertainty value is

AxAp = [(<a|x2|a> - <a|x|a>)(<a|p2|a> - <a|p|a>)]k

- w2 (At (6.15)
v

which is the minimum value allowed by Eq. (5.2).

VII. Results and discussion

In the previous sections, we have obtained the propagator, wave function,
energy expectation values, uncertainty values and coherent state for a quantum
forced time-dependent harmonic oscillator. These quantities represent the solution
of the classical equation of motion for the time-dependent harmonic oscillator. If
we set f(t) equal to zero, then our solution is correct for the time-dependent

harmonic oscillator. Setting w(t) = w, gives results for the forced harmonic
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oscillator. For the case where f(t) = 0 and w(t) = W our results are those of
the simple harmonic oscillator.

For the explicit time-dependent system, we need to consider the quantum
mechanical operator. In our work, the Hamiltonian, Lagrangian and mechanical
energy have the units of energy, but these are not time Invariant. Yet, in order
to solve macroscopic physical problems, we use time-invariant operators. For this
reason, we have derived the energy operator from the classical equation of motion
and used it to calculate energy expectation values. Our energy operator is similar

to the Ermakov-Lewis invariant operator. Our quantum energy expectation vlaues
are time-independent quantities, and our uncertainty values are consistent with
Heisenberg’s uncertainty principle. Yet, our uncertainty values are time
dependent, in contrast to those of time-independent systems.

Since it is not possible to construct a coherent state for the forced time-
dependent harmonic oscillator, we have constructed it for the time-dependent
harmonic oscillator. In general, the coherent state is a minimum uncertainty
state, which is also true for our system.

Time-dependent systems are observed in various physical experiments. Two
general types of such systems are: that which is formed through its own
envi;onmental conditions, and that which is formed when external forces are added.
In regard to the second type, various experiments are being carried out to see how
an applied, time-dependent electric, magnetic orf:other field can alter the physical
properties of materials such as semiconductors and superconductors. Experiments
show that a system becomes time dependent when a time-dependent electric or
magnetic field (such as a.c.) is applied. .However, obtaining the quantum
mechanical solution by a direct method is not easy mathematically. One way of
obtaining a solution is to use the propagator method as indicated in this paper,
where the relevant equations are those of a time-dependent harmonic oscillator.

Our results, which are exact for one dimension, can be extended to two or more
dimensions, and they can also be applied to time-dependent macroscopic systems.
One example of an extension to two dimensions would be to solve the motion of a

quantum electron in a time-dependent magnetic field.
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N92-22085
Nonclassical Depth of a Quantum State* 2 §/17

Ching Tsung Lee L{ 67
Department of Physics, Alabama A & M University, Normal, Alabama 35762

A measure is defined for how nonclassical a quantum state is, with values ranging
from O to 1. When it is applied to the photon-number states, the calculated value
is 1, the maximum possible. For squeezed states, it is a monotonically increasing
function of the squeeze parameter with values varying from O to 1/2. The physical
meaning of the nonclassical depth is found to be just the number of thermal photons
necessary to ruin the nonclassical nature of the quantum state.

In the coherent-state description of radiation fields, initiated by Glauber (Ref. 1) and
Sudarshan (Ref. 2) in 1963, there are P and Q representations corresponding to the normal and
antinormal ordering, respectively, of the creation and annihilation operators. Their distribution, or
quasi-distribution, functions in the complex plane are related to each other through the following
convolution transform (Ref. 3):

0() = [ E¥e-t-w p(w), M

us

where z and w are complex variables. We can introduce a continuous parameter 7 and define
a general distribution function as

R(z,7) = % %U—exp <—%|z - w|2> P(w). 2)

We shall call R(z,7) the R function from now on. The original P and Q functions are two
limiting cases of the R function with 7 = 0 and 1, respectively.

Our motivation for introducing the 7 parameter is to define a measure of how nonclassical
quantum states are. It is well known that the origin of the nonclassical effects is that the P
functions of all pure quantum states are singular and not positive definite, as shown by Hillery
(Ref. 4); hence it is called quasi-distribution function. On the other hand, the Q function is
always a positive definite regular function. The smoothing effect of the convolution transform
of Eq. (2) is enhanced as 7 increases. If 7 is large enough so that the R function becomes
acceptable as a classical distribution function, i.e., it is a positive definite regular function, then
we say that the smoothing operation is complete. Let C denote the set of all the 7 that will
complete the smoothing of the P function of a quantum state and let the greatest lower bound,
or infimum, of all the 7 in C be denoted by

T = 11-16% (7). (3)
We propose to adopt 7,, as the nonclassical depth of the quantum state.

According to this definition, we have 7., = 0 for an arbitrary coherent state la) since its P
function is of the form of a delta function, 76%*(z — a). On the other hand, for 7 = 1 we have
R(z,1) = Q(z), which is always acceptable as a classical distribution function for any quantum
state; hence, 1 is an upper bound for 7,,. Therefore, we can specify the range of 7, to be

0< 7, <1 4
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We shall try this definition on two of the most familiar types of nonclassical radiation states:
the photon-number (Fock) states and the squeezed states.

For a photon-number state |n), we obtain

Ro(z,7) = }(—1 - T)nexp (—@) L, (;(1'21—70 5)

where L, is the Laguerre polynomial. From Eq. (5), we see that, for 0 < 7 < 1, R,(z,7) is not
positive definite since the Laguerre polynomial has n real positive roots. However, for 7 > 1,
the argument of the Laguerre polynomial is negative and R,(z,7) becomes positive definite.
So we have 7,, = 1, which reconfirms our belief that the photon-number states are the most
nonclassical quantum states.

For the squeezed state generated from the vacuum state by the well-known squeeze operator
S(¢) with the complex parameter ( = re*, we obtain the Gaussian function

(sechr) { 1, 2}
R(z,7)= exp ¢ ——laz® + 2bzy + bz 6
with
a=7+(1-7)tanh®r — cos @ tanhr, b=sinftanhr,
c=7+(1—7)tanh’r + cosftanhr, D =7%—(1—7)*tanh’r. €))

For R (z,7) to be normalizable we must have

ac—b>0 and D >0.
(8

Both conditions lead to the same conclusion that
T,» = tanh /(1 + tanh r). 9
This nonclassical depth can be expressed as a function of the squeeze parameter, s = ¢, as

follows:
Tm(s) = (s* — 1)/25°. (10)

From Eq. (10) we see that 7, is a monotonically increasing function of s; it varies from 0 to 1/2
as s varies from 1 to oo.

In the first example, 7,, is determined by the requirement that R, (z, 7) be positive definite;
while in the second example, it is determined by the condition that R.(z,7) be normalizable.
Is there a more systematic way to determine 7,,? To answer this question, we need to study
more examples.

As a by-product of such calculations, we will also obtain new expressions for the P functions
as follows:

P(z) = lim R(z, 7). (11)

T7—0

Since the P function of a quantum state is typically highly singular, it is usually very difficulty
to visualize in its original form. Now we can visualize it as the limit of the regular R function
as 7 — 0.
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On the other hand, we consider the superposition of two quantum states with P;(z) and P»(z)
as their P functions. According to Glauber (Ref. 5) the P function for the superposed state is
the convolution product of P;(z) and P,(z); namely,

d*z
P,.(z)= TPl(z — w)Py(w) (12)
It is well known that the P function for a single-mode thermal radiation is (Ref. 5)
Pa(z) = oy e (—lel*/ (0, (13)

where (n,,) = (¢"™/*T —1)7" is the average photon number in the thermal radiation.

We now consider the superposition of the thermal radiation with an arbitrary state of single-
mode radiation with P(z) as its P function. Then the P function of this quantum state with
thermal noise can be expressed as

P, (z) = (nlu,) Eljr—wexp (—Iz - w|2/(nth))P(w) (14)

Comparing Egs. (1) and (14) we see that the superposed P function, P,,(z), is identical to
the Q function when (n,;,) = 1.The implication of this coincidence can be stated as follows:
One thermal photon is always sufficient to destroy whatever nonclassical effects any single-mode
radiation might have.

The R function for the superposed state of Eq. (14) can be obtained as

e [ e ul o+ ]P0y 09

R,.(z,7) =

Therefore, we have
T = 1 — (nen); (16)

m
which means that the reduction in the nonclassical depth of a quantum state in the presence
of thermal noise is exactly equal to the average number of thermal photons present. This also
gives the following physical meaning to the nonclassical depth we have defined previously: The
nonclassical depth of a quantum state is the minimum number of thermal photons necessary to
destroy any of its nonclassical characteristics.

We have previously calculated the nonclassical depth of a Fock state to be exactly 1, so it
takes one thermal photon to ruin the nonclassical nature of a Fock state. We have also calculated
the nonclassical depth of a squeezed state to varies from 0 to 1/2 as s varies from 1 to co; s0 it
never takes more than 1/2 of a thermal photon to ruin a squeezed state.

*This work was supported by the U.S. Navy, Office of Naval Research, under Grant #N00014-
89-J-1050.

Glauber, R. J., 1963, “Photon Correlations,” Phys. Rev. Lett., 10(3), p. 84.

Sudarshan, E. C. G., 1963, “Equivalence of Semiclassical and Quantum mechanical Descrip-
tions of Statistical Light Beams,” Phys. Rev. Lett., 10(7), p. 277.
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TOWARDS A WAVE THEORY OF CHARGED BEAM TRANSPORT:
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P.O. Box 65 - 00044 Frascati, Rome, Italy

ABSTRACT

In this paper we formulate in a rigorous way a wave theory of charged
beam linear transport. The Wigner distribution function is introduced
and provides the link with classical mechanics. Finally the Von-Neumann
equation is shown to coincide with the Liouville equation for the linear
transport.

INTRODUCTION

A formal "quantum" theory of charged beam transport has been recently
proposed. (Ref. 1) Within such a context the possibility of viewing the
beam emittance as a kind of quantization constant has been considered
on the basis of some strong conceptual similarities existing with the

so-called "quantum" theory of light rays. (Ref. 2)

The proposed quantization procedure (described in some detail below)
cannot be thought as fully satisfactory and in particular the role played
by the "beam wave function" (b.w.f.) and its link with classical dynamics
have not ben thoroughly investigated and clarified.

In this paper we develop, in a more rigorous way, the fundamental
steps towards a "quantum" theory of beam transport through linear elements,
showing the relation with classical mechanics and discussing the con-
nections with the Liouville equation which describes the time evolution
of non-interacting classical ensembles. We will show that classical
dynamics and the Courant-Snyder theory (Ref. 3) can be recovered by using
the formalism of the Wigner phase-space function, (Ref. 4) which therefore
can be seen as the natural framework to study the evolution of charged
beam transport through linear magnetic systems.

The paper is organized as follows. In Sect. 1 we review some aspects
of symplectic mechanics (Ref. 5) and introduce some definitions which
will be useful in Sect. 2 where the "quantum" theory of charged linear
transport will be completely developed in terms of the Wigner phase-space
function. Some comments and final remarks on the "quantum" theory of
nonlinear charged transport conclude this paper.
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1. SYMPLECTIC MECHANICS OF QUADRATIC HAMILTONIANS

The most general time dependent quadratic Hamiltonian in one degree
of freedom can be written as

_1 2,1 2,
—2a(t)q 2b(t)p c(t)gp (1.1)

or in a matrix form as

1oy
H=5z"Az (1.2)
where

_(q ~ _fa(t)y c(t)
3‘(;3)' H°"(c(t> b(t)) (1.3)

and the superscript " 7" denotes transpose.

The equations of motion for the vector z are obtained from the Poisson

Brackets (P.B.) with the Hamiltonian (1.1). The relevant rules are easily
derived. It is quite straightforward to realize that

- 0 1
T = =
(2.27y=$ (_1 o) (1.4a)
and that
{z,2"Bz}=28Bz * (1.4b)

where S is the unit symplectic matrix in two dimensions. According to
the above rules the equations of motion of 2 are easily written, namely,

z={z,2"Hz)=SHz (1.5)

and therefore immediately integrated, thus yielding
z(t)=U(t)z(0) (1.6)

where

* Note that {ET »2}=0and therefore the above product cannot be, strictly
speaking, considered a conventional P.B. In the case that the second
term in the {,} -product is a scalar function [as in Eq. (1.4b)] then
the {,} is a conventional P.B.
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U(t)={exp[3ftl—7(t')dt'}} (1.7)
0 +

and {,)}. denotes time ordering for the classical evolution operator which
is necessary when the commutator [SF(t),5HA(t")] is different from zero.

The above formalism is particularly useful to introduce the
fluctuation tensor and its dynamical features, namely, let us pose

S(ty=<z()z"(t)>-<z><z"> (1.8)

where <, > denotes ensemble average.

In a matrix form we recover the usual expression
2 2

. o o
Z(t)=(2q "2") (1.9)

OPQ op
The equation of motion of $ follows from Eq. (1.5) and reads
de o e, ept
—X(t)y=Vi+2lV (1.10)
dt
where V=8H, and can be immediately integrated in terms of the above
evolution operator U thus getting
S(H=U)E0)TT () (1.11)
Within this formalism it is easy to recover the well-known gquadratic

invariant of Courant-Snyder, namely, let us write the most general
quadratic (time dependent) expression in z

[=2"T(t)z (1.12)

where

T(t)=(v 0‘) (1.13)
a 3

Then we impose that / is a "time-dependent" invariant, i.e.,

dl ol
—=_+{],H}Y=0 1.14
FTRETRR ) ( )

thus obtaining the following equations specifying a,f,v
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B=-2ba+2cB R(0)=B,
Y=2aa-2cy v(0)=y, (1.15)

a=aB-By a(0)=a,
from which it is easy to verify that
By=1+a? (1.16)
The Courant-Snyder invariant reads explicitly as
I=vyq®+2apg+Bp? (1.17)

and it is widely used in the theory of linear transport.
2. TOWARDS A QUANTIZED THEORY

In the previous section we introduced the necessary background to
derive a kind of uncertainty principle in the theory of linear transport.
From Eq. (1.11]) we get the relevant result

detS(t)=det$(0) ' (2.1)

i.e., detf is an invariant quantity and the emittance A of the systenm

1/2

A()=[<g*><p?>-<qgp>?] (2.2)
is preserved in time.

Furthermore this means that
0,0,2 A4

which represents a kind of uncertainty principle in the canonical variables
q.p and can be used as the starting point of our quantization procedure.

The rules are simple, the beam momentum is replaced by an operator
specified by

A 53
P ioq (2.3)

where.A-is the beam reduced emittance and the following rule of commutation
is also assumed:

[p.q)=-iA" (2.4)
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A "Hamiltonian" operator is finally associated to the longitudinal
coordinate of propagation s

. 3
H=iA— (2.5)
os

so that the "Schrédinger" equation for a beam passing through a quadrupole
of strength k(s) reads

0 A< 0
'wra—w(q,s)=[-——2+—k(s)q2}w(q,s) (2.6)
S q

where Y(q,s) denotes the beam wave function (b.w.f.). Clearly the b.w.f.
Y(qg,s) must be related in some way to the "classical" beam distribution
p(q,p,s) satisfying the Liouville equation for the time evolution of an
ensemble of single-particle systems. The link is not obvious since ¥
depends only on g and eventually on s while p is a function of g,p and
s.The answer is given by the Wigner distribution function which is defined
as follows:

17 1 1 i
W(q,p,s)=Rfdyw*(q+§y,8)w(q-5y.8)e"”* (2.7)

and satisfies the Von-Neumann equation for a generic potential V(q) (Ref.
6)

o o -1 i 0 i 9
| —+p— W(g,p,s)=A | V| g+=A— |-V g-zA— | |W(q,D.,s 2.8
‘[as paq} (q.p,s) [ (q > bp) (q > ap)] (q.p.s) (2.8)
In the above-considered case of propagation through a quadrupole of
strength k(s) i.e., for an elastic potential VV(q)= %k(s)qz, the Von-~-Nuemann
equation reduces to

p) P P)
a—sW(q,p,s)=—[pgw(s)q%}w(q,p:s) (2.9)

which is equivalent to the Liouville classical equation. In this simple
case we can identify the classical distribution density p with the Wigner

distribution function W thus providing a completely consistent quan-
tization scheme. Within this framework the physically meaningful quantity

is not |v(q.s)|?dq but W(q,p;s)dqgdp which ensures the consistency of
our procedure.

As a simple exercise it is straightforward to see that
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2, + 2
W, pis)= ¥(s)g®+2a(s)qp B(S)p} (2.10)

1
(Zn)@AVZ)eXp[_E (A72)

is a solution of (2.9) if and only if the "time-dependent" parameters
(a,B,y) satisfy the following system of differential equations:

B '=-2a
a’ =k(s)B-v (2.11)
Y =2k(s)a

which are the well-known equations defining the evolution of the Twiss
parameters in quadrupole lenses [see Eq. (1.15)].

3. CONCLUDING REMARKS

The extension of the developed theory to the case of nonlinear
transport of charged beams is not straightforward and the problems involved
can be illustrated in a simple example.

A sextupole term introduces, in the single-particle Hamiltonian, a
contribution of the type

Vig.)=2 g

3 (3.1)

Inserting the above potential in the Von-Neumann equation (2.8) we easily
get the following evolution equation for the Wigner distribution function:

aw . —_[ i_K 2._‘)_}[4/ .
P (q.p:s)= paq (s)q >p (g.p;s)

L

A(s) ., d°

B 4%23;3h/(q,p;s) (3.2)

where [ denotes the Liouville operator associated to the potential (3.1)
and given by L= -p:-q+ )\qza—a;. The extra term in Eq. (3.2) is a purely
"quantum" contribution and it is not present in the classical Liouville
equation for p(q, p;s).From this point of view W and p cannot be identified
and since they coincide in the 1imit.A—> 0, p may be viewed as the "classical®
counterpart of the Wigner distribution function W.
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The uncertainty relation associated with the measurements of a generic noncommutative pair of observ-
ables (A, B) in a normalized state |3) is usually expressed as

AA-AB > 3| (I[4 BlIY). (1)

For a canonically conjugate pair, the position and momentum of a particle (X, P), this equation gives the
original Heisenberg uncertainty relation AX-AP > %, (h = 1). On the other hand, if the commutator (A, B]
remains as a g-number, the r.h.s. depends on the state |¢) and can be made arbitrarily small. For example,
if |3) is chosen as an eigenstate of 4, then Eq.(1) becomes trivial and no information can be extracted on

AB. Thus this formulation of the uncertainty principle has no practical meanings in general.
To improve the situation, the information-theoretic formulation of the uncertainty principle has been

repeatedly studied in the recent literature. Deutsch'' and Partovi'” discussed that the sum of entropies,

U[Aa B: ¢] = 54[1/}] + SB[‘»&]: (2)
has an irreducible lower bound independent of the choice of |). Here, the information entropy associated
with the measurement of A is defined by

Sal¥] = - Sallal¥)*Inl(al9)*, (4la) = ala)), (3)

where G, stands for the summation (integration) over the discrete (continuous) spectra. This is a quantity
dependent on the choice of the representation |a) in general and is not expressed as a quantum mechanical
expectation value of a certain operator.

Prior to the authors of Refs.[1, 2], Bialynicki-Birula and Mycielski[’l discussed the sum (2) for the pair

(X, P) and proved the optimal relation
UX,P:9y]>1+In~. (4)
Here we discuss that how much information loses when a particle is in equilibrium with the thermal

reservoir of temperature T'(= 1/0) "' The universal temperature correction to the r.h.s. of Eq.(4) is deter-

mined.
For this purpose, it is convenient to employ the framework of thermo field dynamics (TFD) formulated

by Takahashi and Umezawa'®. This formulation of finite-temperature (T # 0) quantum theory utilizes the
doubled Hilbert space HOHM m, the normal operator (A4) acting on the objective space  and its corresponding

tildian operator (li) on the fictitious space H.
A thermal state |, ¥; 8) in % ® 7 is not a physical state. The physical probability density associated
with the measurement of the normal operator A is given by the reduced one

pr(e) = Salla, &9, ¥;8)1%, (5)

where |a, &) is the complete eigenbasis of A and A. With this quantity, we define the information entropy
at T # 0 as follows:

Sal¥,9; 8] = - Sapr(a)Inpr(a). (6)
Now we wish to find the stationary value of the functional
ULX, P: 9, 9%;8] = Sx[¥, 98] + Sp[¥, ¥; 6, (7)

at given T. In what follows, we propose a variational approach.

We are not concerned with the whole system including the tildian but only with the reduced one.
Therefore, the minimum value of the functional U at given T can be determined completely within the
reduced subsystem. This philosophy should be also respected by the variational operation itself. The
operation proposed here is as follows:
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1%, 9;8) = [, 9; 6) + €lé, ¥ ), (8)
where ¢ and £ denote an infinitesimal variation parameter and an arbitrary deformation of_the H component,
respectively. Under this operation, the functional U of the normalized thermal state |4, ¢; 8) varies as

UIX,P:9,%;0) = U[X,P:9,%;08) + T + ofe?), (9)

r=| / dzpn(z)in pr(z) + / dppr(p) In pr(p))(%, $; BI€, ¥ )
(10)
- / / dz di In [or(2)](¥, ¥ Ble, )z, 3¢, #: B) — / f dp djn [or(p)] (4, ¥; Blp, 7)(p, 5I€, ¥; ).

We do not know how to solve generally the equation I' = 0 with respect to the unknown state |4, 12:;{3).
Here, instead, we examine the thermal coherent state (TCS)M, which is the oscillator coherent state at
T # 0. This is based on the following viewpoints; (i) the information entropy is the measure of uncertainty,
and (ii) at T = 0, the coherent state saturates the Heisenberg uncertainty (AX - AP = ).

Let us consider a harmonic oscillator with a frequency w in TFD. The thermal vacuum state is generated
from the T = 0 Fock vacuum state lO, 6) by the Bogoliubov transformation

0(8)) = exp (—iG) [0,0), —iG(B) = 8(B)(a'a! — aa), (11)

cosh 8(8) = [1 — exp (—Bw)]~ /2, (12)
provided that the creation and annihilation operators satisfy [a,a!] = [4,a!] = 1, [a,&] = 0, and so on. With
this state, the TCS is defined as follows:

|2, %;8) = exp [za'(8) - z7a(B) + &' (8) - 7a(8)] [0(8)) , (13)
a(f)|z, £ 8) = z|2,%8), a(B)lz, % B) = %"z, %; B), (14)

where the operators at T # 0 are given by
a(B) = exp (—iG)aexp (iG) = acosh (8) — &' sinh 6(3), (15a)
d(B) = exp (~iG)dexp (iG) = dcosh §(8) — a' sinh 8(3), (15b)

and so on. The self-tildian condition'” states z = 3.
One can find that the TCS actually gives the desired result I'TS = 0, and, therefore, Eq.(9) becomes

U[X,P:2,%8] - 1+In7 +In[cosh 26(3)] + o(e?). (16)
Thus we have the thermal information-entropic uncertainty relation tel
UX,P:9,%;8] >1+Inx +In[cosh 26(8)). (17

The third term in the r.h.s. determines the minimum loss of measurement information due to the thermal
disturbance effects.

The Heisenberg uncertainty relation at T # 0 can be derived from Eq.(17). To see this, let us find the
maximum value of the concave entropy functional Sy with fixing the variance (X — (X))?) = (AX)2. ({)

denotes the expectation value with respect to the normalized probability density pn(z)/(nb,vl;;ﬁlgb,li;ﬁ).)
This is just the constrained variational problem characterized by the functional

8(v, ¥ 8] = Sx[¥, $; 8] - AU(X - (X))?) - (AX)?), (18)
where ) is Lagrange’s multiplier. Applying again the variational operation (8), we can find the maximum
value

Sx™ [, %; 8] = %m [2re(A X)), (19)

Therefore we have an inequality

Sx[4,96) < 5 In 2re(A X)) (20)

Repeating a similar discussion for the momentum P, we also get

378



- 1
Sp(¥,¥; 0] < 5111 [2re(AP)?). (21)
The combination of Egs.(20) and (21) leads to
2(AP)2 > exp(~1—1Inm+25p[9, 113;[9])
> exp (1 + In 7 + 2In {cosh[26(8)]} — 25x (¥, ¥; B]) (22)
> %cosh’[26(ﬂ)](AX)”.
Thus we obtain the thermal Heisenberg uncertainty relation
AX AP > —;-cosh 26(3)]. (23)

We have used Eq.(17) in the second inequality of Eq.(22). This shows that the information-entropic uncer-

tainty relation is stronger than Heisenberg uncertainty relation e

Finally, we comment on squeezing of the thermal uncertainty relation. The thermal squeezed state is
defined by

|z, Z : , 7; B) = exp [za!(8) — z"a(B) + £*&"(B) — 24(B)]

 exp 3 {nat?(8) ~ n"a*(B) + 7°a'*(8) ~ 7a*()}] D(B)) (24)
Straightforward calculation gives
Sxlz 3 n, 78] = %(1 +In 7+ In {cosh [26(8)]} + In [cosh (2r) + sinh (2r) cos ()]), (25a)
Splz, 5 : m ;8] = %(1 +1n 7 + In {cosh [26(8)]} + In [cosh (2r) — sinh (2r) cos (¢)]), (255)
U[X,P:2,%:7,#8) =1+Inm+In{cosh(26(8)]} +In[1+ sinh?(2r)sin? ()] %, (26)
AX = {% cosh [26(8)](cosh (2r) + sinh (2r) cos (¢))}}, (27a)
AP = {% cosh [26(8)](cosh (2r) — sinh (2r) cos (¢))}}, (27b)
AX-AP= % cosh [26(8)](1 + sinh?(2r)sin? (¢)) (28)

where we have employed the self-tildian condition for a squeeze factor (ie., n = ), and n = rexp (ip).
These results describe how the thermal disturbance effects in Sx or Sp (AX or AP) can be suppressed by
squeezing with keeping U = Sx + Sp (AX - AP) its minimum value.

One of us (S.A.) acknowledges the Alexander von Humboldt Foundation for support. Another author
(N.S.) acknowledges Profs. J. Hiifner and H. A. Weidenmiiller, and Max-Planck-Institute for Nuclear Physics
for the hospitality extended to him.
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ABSTRACT

Currently there is some interest in studying the tensor
forms of the Dirac equation to elucidate the possibility
of the constrained tensor fields admitting Fermi quan-
tization. In this paper, we demonstrate that the bis-
pinor and tensor Hamiltonian systems have equivalent
Fermi quantizations. Although the tensor Hamiltonian
system is noncanonical, representing the tensor Pois-
son brackets as commutators for the Heisenberg op-
erators directly leads to Fermi quantization without
the use of bispinors.

I. CLASSICAL DERIVATION

We apply the double covering map from bispinors to
their tensor equivalents. This map', an extension of
Cartan’s spinor map [Ref. 4], maps the bispinor y to
a constrained set of SL(2,C) x U(1) gauge potentials Aff
and a complex scalar field p, where a. =0, 1, 2, 3 is a
Lorentz index and K =0, 1, 2, 3. Since the Lie algebra
of SL(2, C) is regarded as the complexification of the
Lie algebra of SU(2), the gauge potentials A for j=1,
2, 3 are complex, while the U(1) gauge potential Ag is
real. AX and p satisfy the following constraint:

A¥ Agp=—1p!%2up (1)
where K is contracted using the SU(2) X U(1) Killing

metric and gqg is the space-time metric.

With this constraint, the Dirac bispinor Lagrangian
comes from the following Yang-Mills tensor Lagran-
gian L, in the limit of a large Yang-Mills coupling
constant g;

1 The Cartan map [Refs. 1, 2] maps the bispinor y to a triplet of
complex antisymmetric tensors F;‘ﬂ {where j = 1,2,3) of Carmeli
class G [Ref. 3]. Such Fj"ﬂ can be expressed as F}‘p= p(AgA?—A;‘Ag
+i8jkmAﬁA?n) where p is a complex scalar and Ak for K =0,1,2,3 are
SL(2,C) X U(1) gauge potentials satisfying (1). (gkm forj,k, m=1,
2, 3 is the permutation symbol.)
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where m denotes mass, D, denotes the Yang-Mills
covariant derivative with connection coefficients A,
and A,'fﬁ is the Yang-Mills curvature tensor associated
with the gauge potentials AKX The indices are con-
tracted using the Killing metric as well as the space-
time metric. All bispinor observables can be derived
from L using Yang-Mills formulas. Although previous
authors [Refs. 5, 2] derived the tensor form of the
Dirac Lagrangian. they did not put it in the gauge
symmetric Yang-Mills form (2).

L=—}Re[A® AK

The Dirac equation can be derived from the Lagran-
gian L by ascribing to the Yang-Mills field AX a large
self-coupling constant g. To be consistent with obser-
vation, the fields AX and p must couple more weakly
(by the factor 1/g) with other fields. In particular, Ein-
stein’s equation becomes Gug = kT, Where Gog is the
Einstein tensor, k is the gravitation constant, and Teg
is the energy-momentum tensor derived from the La-
grangian L. In the limit of large self-coupling g (ne-
glecting terms in T,g not containing g) we have Tes=
g T’yp where T'gg is exactly the usual Dirac energy-
momentum tensor [Ref. 5]. Hence k’ = kg is the ob-
served gravitational constant, not k. Note also that in
the Lagrangian L, the observed mass is m’ = mg, not
m. Then, as g tends to infinity, the Lagrangian kL is
independent of g. In this limit. which we henceforth
assume, we have:
Lim kL=k'L’ 3)
g—-’d:
where L’ is exactly equal to Dirac’s bispinor Lagran-
gian [Ref. 5]. Thus, as previously stated, Dirac’s bis-
pinor Lagrangian is a limiting case of the Yang-Mills
Lagrangian (2), in which the self-coupling constant g
tends to infinity.

I1. FERMI QUANTIZATION

We quantize AX and p by defining the classical Hamil-
tonian to be: (Let SCR? be a large cube.)
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H= j; Te° dx 4)
where T is the energy-momentum tensor derived
from the fermion tensor Lagrangian (3). We make a
classical change of variables that simplifies H. The
resulting Hamiltonian equations are then formulated
as Heisenberg operator equations.

Because the SL(2, C) X U(1) gauge group is not com-
pact, H is not bounded from below. This has the con-
sequence that any quantization of the fields Aff and p
must obey the exclusion principle; otherwise fermions
descend forever to lower energy states.

By the Cartan map [Refs. 1, 5] the energy-momentum
tensor has an expansion of the form:

T*(x,t) = pz qz Tf,‘g (X) apq(t) (5)
where the sum is over all pairs of fermion modes p and
g, and where ng (x) are fixed functions of x ¢S, and
ap(t) are complex functions of time t satisfying apg =
3, The bimodal expansion (5) is irreducible because
it cannot be expressed in tensor terms as a sum over
products of single modes, as is the case with bosons.
The Hamiltonian (4) can be written in terms of the
amplitudes ap(t) as follows:

H=pz ©p app

where , is the frequency of the mode p. Note that for
simplicity, the amplitudes a,4(t) are defined to be con-
sistent with the hole theory.

(6)

The classical Hamiltonian equations (which are equiv-
alent to the constrained Euler-Lagrange equations for
AXand p) are given by:

daye _

{ape, H}
Tt pq

where the Poisson brackets { , } are defined for the
classical amplitudes a,4(t) as follows:

(7

{apgs Bprqr} = i (apg Bpiq — apq Spq) 8)

where 3, equals one if p = q and zero otherwise.

Formulas (6), (7), and (8) are noncanonical tensor
Hamiltonian equations which cannot be formulated as
canonical equations in tensor terms. Nevertheless,
they are easily quantized by replacing the classical
amplitudes a,(t) with Heisenberg operators, denoted
asd,y(t), and the Poisson brackets (8) with (equal time)
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commutators [ , ] as follows:

[8pq) Bprqr] = Apgr Bprq — Aprg Bpq ©)
The Heisenberg equations become:

—_ = 1 [a ’ H] (10)

m pq

where H is the operator version of the Hamiltonian (6).

To further simplify these equations, we attempt to
factor 4,,(t) into a product of operators:

fpq(t) = (1) E(t) (11)
where the dagger (1) signifies adjoint. Since they do not
occur explicitly in the Hamiltonian H, the new oper-
ators €,(t) a priori could satisfy any relations consis-
tent with the commutation relations (9). We exploit
this arbitrariness in order to satisfy the exclusion prin-
ciple, previously discussed. At time t we define:

at a A At —

¢} Cq T E4Cp = 85 (12)
All other equal time anti-commutators of ¢(t) are de-
fined to be zero. Formulas (11) and (12) are consistent
with the commutation relations (9) as required.

It is clear that equations (9), (10), (11), and (12), while
derived from the tensor Hamiltonian equations, are
equivalent to Fermi quantization via bispinors. Thus,
the tensor Lagrangian (3) leads to Fermi quantization
without the use of bispinors.

Again, without the use of bispinors, we may extend the
tensor Lagrangian (3) to include the electromagnetic
field. Quantization is straight forward due to the fact
that the interaction term is a function of the fermion
amplitudes a,,(t), as well as boson amplitudes b,(t).

III. QUANTUM GRAVITY

Spinor structure can be defined on a noncompact
space-time manifold M by specifying, at each point
xeM, a set of Pauli spin-half matrices 6% 5.(x) satisfying
[Ref. 3]:
chpoltt =g (13)
Formula (13) has a topological as well as a metric
consequence. The topological consequence of (13) is
that M must be parallelizable [Ref. 6]. The metric
consequence is that g,g is constrained as in formula (1).
Since, for noncompact parallelizable space-times for-



mulas (1) and (13) are equivalent, spinor structure is
nothing but an indirect way of constraining the metric
gqp ON such space-times. However, the tensor fields AX
and p satisfying the constraint (1) are more general
than (13), since they can be defined on general space-
times.

Formula (13) presents a dilemma [Ref. 7] for quan-
tizing both gravity and the Dirac field, since the def-
inition of the Pauli matrices 6% g depends on the grav-
itational field g,5. The problem is resolved by
identifying the degrees of freedom in the constraint (1)
as follows.

Consider a fixed metric §,3 on M and define Pauli
matrices 3% with respect to §,s. The metric g,gon M
is expressed by:

gaﬁ = gaﬁ + haB (14)
We also express the gauge potentials AK by:
A¥ =18 A¥ (15)

where AK satisfies the constraint (1) with respect to the
fixed metric §,. The dynamical fields are then AK p,
and h,g provided that the matrix f=f? can be uniquely
solved as a function of h,g. Since AKX and p have bis-
pinor coordinates with respect to the fixed spinor
structure on M, the fields Aff, p, and h,g can be quan-
tized as in Section II.

It remains to solve for the matrix f in formula (15)
using the constraint (1). Since

Aggxp =—|p|? Bap (16)
formulas (14) and (15) give:
gyc fZ. fg = gaﬂ + haﬂ (17)
- The solution of (17) is given by:
f= Z Cl2 h» (18)

n=0
where C™ denote the binomial coefficients, and the
matrix h is defined by:

h=hl=g"h, (19)
where g is the inverse matrix of §,p.

For the power series (18) to converge, the eigenvalues
of h must lie within the unit circle. This restricts the
validity of quantum gravity to small fluctuations of gog

#U.S. COVERNMENT PRINTING OFFICE: 1992 .627-0644 6013

383

about the fixed metric §,p.

IV. CONCLUSIONS

In this paper we have adhered to the program of first
defining all fields, Bose and Fermi, as classical tensor
fields, and then quantizing them using Hamilton equa-
tions and Poisson brackets. From this vantage point,
the Dirac equation becomes a classical tensor equation
on the same level as the electromagnetic and gravita-
tion tensor equations. Fermions, photons, and gravi-
tons are obtained by quantizing the degrees of freedom
allowed by the tensor constraint (1). We have shown in
Section I1I that the constraint (1) implies that we can-
not, in general, separate fermion and graviton degrees
of freedom, except when the power series (18) con-
verges.

We also found that the fermion degrees of freedom
require the use of noncanonical Hamilton equations
(6), (7), and (8). Since the free Dirac tensor equation is
completely integrable, we have shown that current us-
age of only canonical Hamilton equations is too re-
strictive for ?uantizing integrable tensor fields.
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