SQUEEZED STATES: A GEOMETRIC FRAMEWORK

S. T. Alia, J. A. Brookeb, J.-P. Gazeauc

a Department of Mathematics and Statistics
Concordia University
Montreal, Canada H4B 1R6

b Department of Mathematics
Florida Atlantic University
Boca Raton, FL 33431, USA
and
University of Saskatchewan
Saskatoon, Canada S7N 0W0

c Laboratoire de Physique Théorique et Mathématique
Université Paris 7, F–75251 Paris Cedex 05, France

\textbf{ABSTRACT}

A general definition of squeezed states is proposed and its main features are illustrated through a discussion of the standard optical coherent states represented by "Gaussian pure states" (Ref. 1).

The set-up involves representations of groups on Hilbert spaces over homogeneous spaces of the group, and relies upon the construction of a square integrable (coherent state) group representation modulo a subgroup (Ref. 2). This construction depends upon a choice of a Borel section which has a certain permissible arbitrariness in its selection; this freedom is attributable to a squeezing of the defining coherent states of the representation, and corresponds in this way to a sort of gauging.

AN EXAMPLE: GAUSSIAN PURE STATES

Gaussian pure states (GPS's), as defined by Schumaker (Ref. 3) and elaborated by Simon, Sudarshan and Mukunda (Ref. 1), are functions:

\[\psi(\vec{x}) = (\text{const}) \exp[P(\vec{x})] \]

where \(\vec{x} \in \mathbb{R}^n \) and \(P(\vec{x}) \) is a quadratic polynomial in \(\vec{x} \) with complex coefficients:

\[P(\vec{x}) = -i/2 \vec{z}^T \vec{x} + i\vec{w} \cdot \vec{x} + w_0 \]

with \(\vec{z} \) a symmetric (\(\vec{z}^T = \vec{z} \)) complex \(n \times n \) matrix, \(\vec{w} \in \mathbb{C}^n \), \(w_0 \in \mathbb{C} \), and where, if \(\vec{Z} = V - iU \) is the decomposition into real and imaginary parts, then \(U \) is positive definite (\(U > 0 \)).

Let \(G \) denote the semi-direct product of the Weyl–Heisenberg group \(H(2n + 1) \) with the symplectic group \(\text{Sp}(2n;\mathbb{R}) \) of symplectic linear maps of \(\mathbb{R}^{2n} \).

\[G = H(2n + 1) \circ \text{Sp}(2n;\mathbb{R}). \]

Multiplication in \(G \) is as follows:

\[g_1 g_2 = (c_1 c_2 \exp[i\Omega(Q_1 s_1 Q_2)/2], Q_1 + s_1 Q_2, s_1 s_2) \]

where \(g = (c, Q, s) \) denotes a general element of \(G \); \((c, Q) \in H(2n + 1) \) where \(|c| = 1 \), \(Q \in \mathbb{R}^{2n} \); \(s \in \text{Sp}(2n;\mathbb{R}) \); \(\Omega \) is the symplectic structure on \(\mathbb{R}^{2n} \) defined for \(Q_r = \overrightarrow{q_r}, r = 1, 2 \), by

\[\Omega(Q_1, Q_2) = \overrightarrow{p_1} \cdot \overrightarrow{q_2} - \overrightarrow{p_2} \cdot \overrightarrow{q_1}. \]

Let \(U(g), g \in G \), denote the irreducible unitary representation of \(G \) on the Hilbert
SQUEEZED STATES: A GEOMETRIC FRAMEWORK

\[\mathcal{H} = L^2(\mathbb{R}^n) \]
whose restrictions to \(H(2n + 1) \) and \(\text{Sp}(2n; \mathbb{R}) \) are:

\[[U(c, Q)\psi](\vec{x}) = c \exp[i(\vec{p} \cdot \vec{x} - \vec{p} \cdot \vec{q}/2)] \psi(\vec{x} - \vec{q}) \]

and

\[[U(s)\psi](\vec{x}) = (2\pi)^{-n/2}(\det A)^{-1/2} \times \int_{\mathbb{R}^n} \exp[iS(\vec{x}, \vec{k})] \psi(\vec{k}) d\vec{k} \]

where

\[S(\vec{x}, \vec{k}) = \frac{1}{2} \vec{x} \cdot \vec{A}^{-1} \vec{x} + \vec{k} \cdot \vec{A}^{-1} \vec{x} + \frac{1}{2} \vec{k} \cdot \vec{A}^{-1} \vec{k}, \]

\(\psi \) is the Fourier transform of \(\psi \), and we assume \(\det A \neq 0 \) if \(s = [A \ B] \in \text{Sp}(2n; \mathbb{R}) \). Actually, \(U \) defines a double-valued representation of \(\text{Sp}(2n; \mathbb{R}) \), i.e., a representation of the metaplectic group, but this subtlety will be ignored here.

Some facts (see Refs. 1 and 4):

(i) Let \(\psi_o = \pi^{-n/4} \exp[-\frac{1}{2} \vec{x} \cdot \vec{x}/2] \) be the special GPS with \(U = I_n \), \(V = O_n \), \(\vec{w} = \vec{0} \), \(w_o = 0 \), and suppose \(\psi \) is any GPS. Then \(\psi = (\text{const})U(g)\psi_o \) for some \(g \in G \); moreover if \(g' \in G \) also satisfies this condition then \(g' = gk_o \) for some \(k_o \in K_o \):

\[K_o = \text{Sp}(2n; \mathbb{R}) \cap O(2n; \mathbb{R}) \cong U(n) \]

which is a maximal compact subgroup of \(\text{Sp}(2n; \mathbb{R}) \), and conversely.

(ii) \(\text{Sp}(2n; \mathbb{R}) \) has a "block Iwasawa" decomposition:

\[\text{Sp}(2n; \mathbb{R}) = NAK_o \]

where

\[N = \left\{ \begin{bmatrix} I_n & O \\ -V & I_n \end{bmatrix} : V^t = V \right\}, \]

\[A = \left\{ \begin{bmatrix} \Delta & O_n \\ O_n & \Delta^{-1} \end{bmatrix} : \Delta^t = \Delta > 0 \right\}, \]

\[K_o = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a^t a + b^t b = I_n, \quad a^t b = b^t a \right\} \]

Moreover, defining \(U = \Delta^{-2} \) and

\[s(U, V) = \begin{bmatrix} I_n & O_n \\ V & I_n \end{bmatrix} \begin{bmatrix} U^{-1/2} & O_n \\ O_n & U^{1/2} \end{bmatrix} \]

we have for \(\psi \in \mathcal{H} \):

\[[U(s(U, V))\psi](\vec{x}) = \frac{(\det U)^{1/4}}{(2\pi)^n} \exp[i\vec{x} V \vec{x}/2] \psi(U^{1/2} \vec{x}) \]

and if \(\psi = \psi_o \) in (i), \(Z = V - iU \) then:

\[[U(s(U, V))\psi_o](\vec{x}) = \pi^{-n/4}(\det U)^{1/4} \exp[-i\vec{Z} \vec{x}/2] \]

(iii) A maximal compact subgroup \(K \) of \(G \) is:

\[K = U(1) \times K_o \cong U(1) \times U(n) \]

where \(U(1) = \{(c, \vec{0}) \in \mathbb{H}(2n + 1)\} \), and with the same meaning for \(U(1) \) define also:

\[H = U(1) \times \text{Sp}(2n; \mathbb{R}) \]

By \(Y \) we mean the homogeneous space:

\[Y = H/K \cong \text{Sp}(2n; \mathbb{R})/K_o \]

which may be regarded as the set of positive symplectic matrices; these are uniquely expressible in the form \(s(U, V)^{-1} s(U, V)^{-1} \) thereby establishing an identification of \(Y \) with the collection of GPS's centered at \(\vec{Q} = (\vec{a}, \vec{0}) \in \mathbb{R}^{2n} \). By \(X \) we mean the homogeneous space:

\[X = G/H \cong \mathbb{R}^{2n} \]

the identification being through the map sending \((c, Q, s) \in G \) to \(Q \in \mathbb{R}^{2n} \). In this way \(X \) inherits
the symplectic structure Ω which happens therefore to be G-invariant.

SQUEEZED COHERENT STATES

The theory of square integrable representations modulo a subgroup (Ref. 2) is immediately applicable in the present situation, and together with the notion of squeezing, to be outlined below, provides a convenient picture of GPS's. In what follows, a general discussion (example of which is the case of GPS's, same notation) will be given.

Let H be a closed subgroup of a Lie group G. Let $X = G/H$ and suppose $d\nu(x)$ is a left G-invariant measure on X (in general, $d\nu$ need only be quasi-invariant); let $\beta(x) = \gamma(y)$ denote a Borel section. Now suppose $U(g)$, $g \in G$, is an irreducible unitary representation on \mathcal{H}, and suppose there exists an admissible vector $\eta \in \mathcal{H}$ such that, as a weak integral:

$$\int_X |\eta_{\beta,x} \rangle < \eta_{\beta,x} \rangle d\nu(x) = A_{\beta}$$

(15)

defines a bounded, positive operator A_{β} with (possibly unbounded) inverse; $\eta_{\beta,x}$ denotes the vector $U(\beta(x))\eta$ (example: notation as before with $\eta = \psi_0$, $x = Q$, $\beta(x) = (1,Q,I)$, $d\nu(x) = \Omega \wedge \Omega \wedge \cdots \wedge \Omega$ (n factors), A_{β} is a multiple of the identity on \mathcal{H}). In this case U is square integrable mod (H,β), and $\{\eta_{\beta,x}\}$ is a family of coherent states for U.

Let K be a closed subgroup of H of k's:

$$U(k)\eta = \rho(k)\eta$$

(16)

where ρ is a 1-dimensional unitary representation of K ($|\rho(k)| = 1$). Let $\gamma: H/K \to H$ denote a Borel section, and define:

$$\sigma: X \times Y \to G, \sigma(x,y) = \beta(x)\gamma(y)$$

(17)

For fixed $y \in Y$, $\sigma(\cdot,y): X \to G$ is a Borel section and letting $\eta_{\sigma(\cdot,y)} x = U(\sigma(x,y))\eta$ it is easy to verify that U is square integrable mod $(H,\sigma(\cdot,y))$ for each $y \in Y$; in fact:

$$\int_X |\eta_{\sigma(\cdot,y)} x \rangle < \eta_{\sigma(\cdot,y)} x \rangle d\nu(x) = A_{\sigma(\cdot,y)}$$

(18)

defines a bounded, positive invertible operator (which coincides with A_{β} here). The collection $\{\eta_{\sigma(\cdot,y)} x\}$, for y fixed, is a family of squeezed coherent states associated to $\{\eta_{\beta,x}\}$; one interprets $U(\gamma(y))$ as the squeezing operator defining a change of section $\beta(\cdot) \to \beta(\cdot)\gamma(y)$ (example: $k = (c,O,k_0)$, $\rho(k) = c$, $y = Z = V^{-1}U$, $\gamma(y) = (1,O,s(U,V))$).

In this manner, squeezing in its general setting is describable in terms of changes of Borel section of the associated coherent state representation. Details of this general construction with examples will appear elsewhere.

REFERENCES

