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[1.0 || INTRODUCTION

As part of the continuing effort at NASA/Lewis to improve both the durability and
reliability of hot section Earth-to-Orbit engine components, significant enhancements must
be made in existing finite element and finite difference methods, and advanced techniques,
such as the boundary element method, must be explored. Despite this considerable effort,
the accurate determination of transient thermal stresses in these hot section components
remains one of the most difficult problems facing engine design/analysts. For these prob-
lems, the temperature distribution is strongly influenced by the external hot gas flow,
the internal cooling system, and the structural deformation. Currently, experimentally-
determined film coefficients and ambient temperatures are required for use as boundary
conditions for the thermal stress analysis of the structural component. The determina-
tion of these coefficients is obviously an expensive and time-consuming task. Recently an
attempt was made by Gladden (1989) to use a finite difference-based Navier-Stokes code
to approximate the thermal boundary conditions, and to then input these into a finite
clement structural analysis package. However, the most effective way to deal with this
problem is to develop a completely integrated solid mechanics, fluid mechanics, and heat
transfer approach.

In the present work, the boundary element method (BEM) is chosen as the basic
analysis tool principally because the critical surface variables (i.e., temperature, flux, dis-
placement, traction) can be very precisely determined with a boundary-based discretization
scheme. Additionally, model preparation is considerably simplified compared to the more
familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow
is captured through the use of an analytical fundamental solution, eliminating the depen-
dence of the solution on the discretization pattern. The price that must be paid in order
to realize these advantages is that any BEM formulation requires a considerable amount
of analytical work, which is typically absent in the other numerical methods.

This report details all of the research accomplishments of a multi-year program, com-
mencing in March 1986, aimed toward the development of a boundary element formulation
for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section com-
ponents. It should be noted that this work represents approximately four man-years of
funding from NASA/Lewis. Most of that effort expended under this program has been
directed toward the examination of fluid flow, since boundary element methods for flu-
ids are at a much less developed state. However, significant strides have been made, not
only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure
interaction problem.

Early in the research program, a two-dimensional boundary element formulation was
developed for the time-dependent response of a thermoelastic solid. This effort resulted
in the first time domain, boundary-only implementation for this class of problems. Since
volume discretization is completely eliminated and surface transient thermal stresses can
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be captured very accurately, the new approach provides distinct advantages over standard
finite element methods.

Meanwhile, the initial fluid formulations that were developed, based upon Stokes fun-
damental solutions, provided solutions in the low-to-moderate Reynolds number range,
For creeping flow, these reduce to boundary-only techniques. As the fluid velocities are in-
creased, volume discretization is required, however the solutions are typically very precise,
particularly in the determination of surface quantities. At very high speed, these formu-
lations are less effective, because the Stokes fundamental solutions no longer embody the
character of the flow field which becomes dominated by convection.

This led to the development of convective viscous integral formulations based upon Os-
een fundamental solutions. Since the new convective kernel functions, that were developed
as a part of this effort, contain more of the physics of the problem, boundary element so-
lutions can now be obtained at very high Reynolds number. Flow around obstacles can be
solved approximately with an efficient linearized boundary-only analysis or more exactly
by including all of the nonlinearities present in the neighborhood of the obstacle. This
perhaps represents the major accomplishment of the present program.

The other significant development has been the creation of a comprehensive fluid-
structure interaction capability within a boundary element computer code. This new
facility is implemented in a completely general manner, so that quite arbitrary geometry,
material properties and boundary conditions may be specified. Thus, a single analysis
code can be used to run structures-only problems, fluids-only problems, or the combined
fluid-structure problem. In all three cases, steady or transient conditions can be selected,
with or without thermal effects. Nonlinear analyses can be solved via direct iteration or
by employing a modified Newton-Raphson approach.

Most of the boundary element formulations developed under this grant have been
incorporated in the computer code BEST-FSI {Boundary Element Solution Technique for
Fluid Structure Interaction). A few of the general features of this code are enumerated
in Table 1.1, while Table 1.2 lists some of the major capabilities relating to the analysis
of fluid-structure interaction. An effort has been made to develop a reliable, user-friendly
code. However, it should be emphasized that the current version of BEST-FSI is primarily
a research code. Additional work is needed to produce a practical engineering analysis tool.
In particular, significant improvements could be made regarding computational efficiency,
since the primary emphasis during the grant was on development of new boundary element
capability.

This document is intended to serve multiple purposes. First, it serves as a report
summarizing the work developed under this grant. Section 2 provides all of the relevant
theoretical background, while numerous applications are discussed in Section 3. It should
be noted that all of those examples were run on Sun SPARC workstations. The remainder
of the report focuses on the documentation of the computer code BEST-FSI. Section 4
presents a brief introduction for a first-time boundary element user. Complete details of
the input data required to execute BEST-FSI are contained in Section 5. Each data item
is described individually and examples of use are provided. Then, in Section 6, several
sample problems are examined. After each problem is defined, the entire input dataset is
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presented, along with selected BEST-FSI output. The interface between BEST-FSI and
the graphics package PATRANTM is discussed in Section 7. Finally, all references are

collected in Section 8.

In addition to this User Manual, source code for BEST-FSI has been delivered to
NASA. The code is written in FORTRAN 77 and contains considerable documentation in
the form of comment lines. This version of BEST-FSI is suitable for use on Sun SPARC-
stations. A series of test problems have also been delivered to aid in the verification
process and to provide additional assistance to a user during the preparation of BEST-FSI
datasets. Included are complete input datasets and BEST-FSI output files.
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TABLE 1.1
GENERAL FEATURES OF BEST-FSI

- Two-dimensional problems

- Conforming element approach to provide inter-element continuity of the field vari-
ables, along with efficient solutions

- Substructured regions (super-elements) to permit multiple materials and more ef-
ficient solutions

- Automatic adaptive numerical integration schemes

- Cyclic and planar symmetry

- Local or global boundary condition specification

- Shding, frictional spring and resistance-type interfaces
- Exterior domains

- Block banded solver routines based upon LINPACK

- Restart capability for low cost re-analysis

- Free-format, keyword-driven input

- Automatic error checks of input data

- Automatic check of equilibrium and heat balance

- PATRANTM interfaces for pre- and post-processing
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TABLE 1.2
ANALYSIS CAPABILITIES OF BEST-FSI

Steady thermoelasticity

Transient (quasistatic) thermoelasticity

Steady incompressible thermoviscous flow

- Stokes-based formulations
- Oseen-based formulations
_ Full Navier-Stokes formulations

- Unsteady incompressible thermoviscous flow

- Stokes-based formulations
- Full Navier-Stokes formulations

Convective heat transfer

Buoyancy effects

Fluid-structure Interaction (involving any of the above formulations)
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2.0 || THEORETICAL BACKGROUND

This section contains a detailed presentation of all of the boundary element formu-
lations developed under this grant. First, in Section 2.1 a brief review of the applicable
literature is provided. The remaining sections described the methodology employed for
the analysis of thermoelastic deformation, incompressible thermoviscous flow, convective
incompressible thermoviscous flow, convective potential flow, compressible thermoviscous
flow, and fluid-structure interaction.
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2.1 || LITERATURE REVIEW

Very little has appeared in the literature on the analysis of coupled thermoviscous fluid-
structure problems via the boundary element method. However, a number of publications
have addressed the fluid and structure separately.

In general, the solid portion of the problem has been addressed to a much greater
degree. For example, a boundary-only steady-state thermoelastic formulation was initially
presented by Cruse et al (1977) and Rizzo and Shippy (1977). Recently, the present
authors developed and implemented the quasistatic counterpart (Dargush, 1987; Dargush
and Banerjee, 1989b, 1990a, 1990b), which is presented in detail in Section 2.2. Others,
notably Sharp and Crouch (1986) and Chaudouet (1987), introduce volume integrals, to
represent the equivalent thermal body forces. A similar domain based approach was taken
earlier by Banerjee and Butterfield (1981) in the context of the analogous geomechanical
problem.

An extensive review of the applications of integral formulations to viscous flow prob-
lems was included in a previous annual report (Dargush et al, 1987), and will not be
repeated here. Interestingly, only a few groups of researchers are actively pursuing the
further development of boundary elements for the analysis of viscous fluids. The work re-
ported in Piva and Morino (1987) and Piva et al (1987) focuses heavily on the development
of fundamental solutions and integral formulations with little emphasis on implementation.
On the other hand, Tosaka and Kakuda (1986, 1987), Tosaka and Onishi (1986) have im-
plemented single region boundary element formulations using approximate incompressible
fundamental solutions. This latter group has developed sophisticated non-linear solution
algorithms, and consequently, are able to demonstrate moderately high Reynolds num-
ber solutions. Meanwhile, Dargush and Banerjee (1991a, 1991b) present general purpose
steady and time-dependent boundary element methods for moderate Reynolds number
flows.

The most recent work from the above researchers has been collected into a volume en-
titled Developments in BEM - Volume 6: Nonlinear Problems of Fluid Dynamics, edited
by Banerjee and Morino. Contributions from Wu and Wang, and Bush and Tanner are also
included, along with two chapters from the present co-authors. The volume, published by
Elsevier Applied Science Publishers became available in mid-1990, and provides a state-of-
the-art review of boundary element fluid dynamics. However, it should be noted that the
convective thermoviscous formulations of Section 2.4 are not included. These represent a
significant further advancement which permit solutions for high Reynolds number flows.
Interestingly, the basis for much of this latter development is actually work done early in
this century by Oseen (1911, 1927).

For analysis of the interaction problem, a boundary element thermoelastic solid repre-
sentation must be coupled with a suitable thermoviscous fluid formulation. Only Dargush
and Banerjee (1988,1989a) have tackled this problem. These two papers provide a sum-
mary of the early work performed under this grant.
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2.2 || THERMOELASTIC DEFORMATION

2.2.1 INTRODUCTION

In the current section, a surface-only time-domain boundary element method (BEM)
will be described for a thermoelastic body under quasistatic loading. Thus, transient heat
conduction is included, but inertial effects are ignored. This BEM was first developed as
part of the work performed during the second year (1987) of this grant. Since that time a
number of improvements and extensions have been incorporated. During 1989, the algo-
rithms for numerical integration have been made more efficient as well as more accurate,
and a comprehensive PATRAN interface has been added to aid in the post-processing of
the boundary element results. Additionally, a streamlined approach for uncoupled ther-
moelasticity was introduced (Dargush and Banerjee, 1989b). In 1990, boundary elements
with a quartic variation of the field variables were implemented. These elements are par-
ticularly well suited for problems involving the bending of components (Deb and Banerjee,
1989).

Details of the integral formulation for 2D plane strain is presented below. (Problems
of plane stress can be handled via a simple change in material parameters.) Separate
subsections present the governing differential equations, the integral equations, and an
overview of the numerical implementation. Similar formulations have also been developed
for three-dimensional (Dargush and Banerjee, 1990a) and axisymmetric problems (Dargush
and Banerjee, 1992).

2.2.2 GOVERNING EQUATIONS

With the solid assumed to be a linear thermoelastic medium, the governing differential
equations for transient thermoelasticity can be written

9%y, 8%y, ae
(A+ “)ax,-aij + “ax,-azj -(32+ 2#)OTi =0 (2.2.1a)
a6 a2

(2.2.1)

Pt = ka;,—azj
where
u; displacement vector
¢ temperature
t time
z; Lagrangian coordinate
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k thermal conductivity

p mass density

ce specific heat at constant deformation
A, u Lamé constants

a coefficient of thermal expansion

Standard indicial notation has been employed with summations indicated by repeated
indices. For two-dimensional problems considered herein, the Latin indices i and j vary
from one to two.

Note that (2.2.1b) is the energy equation and that (2.2.1a) represents the momentum
balance in terms of displacements and temperature. The theory portrayed by the above
set of equations, formally labeled uncoupled quasistatic thermoelasticity, can be derived
from thermodynamic principles. (See Boley and Weiner (1960) for details.) In developing
(2.2.1), the dynamic effects of interia have been ignored.

2.2.3 INTEGRAL REPRESENTATIONS

Utilizing equation (2.2.1) for the solid along with a generalized form of the reciprocal
theorem, permits one to develop the following boundary integral equation:

cpa(€)up(l 1) = /S [gﬁa*tﬁ(X,t) - foa * up(X,t)|dS(X). (2.2.2)

where
e, 8 indices varying from 1 to 3
S surface of solid
uq, to generalized displacement and traction
U= [uy uz 87
te=[t: t2 QJT
6,9 temperature, heat flux
9os, fap generalized displacement and traction kernels
cap constants determined by the relative smoothness of $ at ¢

and, for example

t
Gag ¥ta = / Gap(z, &, Tita(z, T)dT
0

denotes a Riemann convolution integral. The kernel functions g5 and fap are derived from
the fundamental infinite space solutions of (2.2.1).

In principle, at each instant of time progressing from time zero, this equation can be
written at every point on the boundary. The collection of the resulting equations could then
be solved simultaneously, producing exact values for all the unknown boundary quantities.
In reality, of course, discretization is needed to limit this process to a finite number of
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equations and unknowns. Techniques useful for the discretization of (2.2.2) are the subject
of the following section.

2.2.4 NUMERICAL IMPLEMENTATION

2.24.1 INTRODUCTION

The boundary integral equation (2.2.2), developed in the last section, is an exact state-
ment. No approximations have been introduced other than those used to formulate the
boundary value problem. However, in order to apply (2.2.2) for the solution of practical
engineering problems, approximations are required in both time and space. In this section,
an overview of a general-purpose, state-of-the-art numerical implementation is presented.
Many of the features and techniques to be discussed, in this section, were developed previ-
ously for elastostatics (e.g., Banerjee et al, 1985, 1988), and elastodynamics {e.g., Banerjee
et al, 1986; Ahmad and Barerjee, 1988), but are here adapted for thermoelastic analysis.

2.2.4.2 TEMPORAL DISCRETIZATION

Consider, first, the time integrals represented in (2.2.2) as convolutions. Clearly, with-
out any loss of precision, the time interval from zero to ¢ can be divided into N equal
increments of duration At.

By assuming that the primary field variables, t; and ug, are constant within each At
time increment, these quantities can be brought outside of the time integral. That is,

N nat
goa+1a(X,1) = 3 13(X) ] palX — €t —T)dr (2.2.3a)
n=1 ( '—I)At
N naAt
fﬁa * uﬁ(X$t) = z ug(x)‘/( Ha fﬁ&(X - t- T)df (223b)
n=1 - L

where the superscript on the generalized tractions and displacements, obviously, represents
the time increment number. Notice, also, that, within an increment, these primary field
variables are now functions of position only. Next, since the integrands remaining in
(2.2.3) are known in explicit form from the fundamental solutions, the required temporal

integration can be performed analytically, and written as
nAt
GEPTMX -8 = /('H)m 9pal(X — & t = T)dr (2.2.4a)
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nat

FiH—n(X - g) = /<,._1)m foalX = &, — )dr. (2.2.48)

These kernel functions, G3,(X -¢) and Fga(X - &), are detailed in Appendix 2.2. Combining
(2.2.3) and (2.2.4) with (2.2.2) produces

N
coal)ug (€)= /5 [G{;:“"(x — ENG(X) = FRF (X - f)u;;(X)} dS(X), (2.2.5)
n=1

which is the boundary integral statement after the application of the temporal discretiza-
tion.

2.2.4.3 SPATIAL DISCRETIZATION

With the use of generalized primary variables and the incorporation of a piecewise
constant time stepping algorithm, the boundary integral equation (2.2.5) begins to show
a strong resemblance to that of elastostatics, particularly for the initial time step (i.e.,
N = 1). In this subsection, those similarities will be exploited to develop the spatial
discretization for the uncoupled quasistatic problem with two-dimensional geometry. This
approximate spatial representation will, subsequently, permit numerical evaluation of the
surface integrals appearing in (2.2.5). The techniques described here, actually, originated
in the finite element literature, but were later applied to boundary elements by Lachat and
Watson (1976).

The process begins by subdividing the entire surface of the body into individual ele-
ments of relatively simple shape. The geometry of each element is, then, completely defined
by the coordinates of the nodal points and associated interpolation functions. That s,

X(¢) = #:(¢) = Nul)ziw (2.2.6)

with
¢ intrinsic coordinates
N, shape functions
z;, nodal coordinates

and where w is an integer varying from one to W, the number of geometric nodes in the
element. Next, the same type of representation is used, within the element, to describe

the primary variables. Thus,
u3(C) = No(Q)uz., (2.2.7a)

ta({) = Nu(OtG. (2.2.76)

in which v}, and ¢, are the nodal values of the generalized displacement and tractions,
respectively, for time step n. Also, in (2.2.7), the integer w varies from one to Q, the total
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number of functional nodes in the element. From the above, note that the same number
of nodes, and consequently shape functions, are not necessarily used to describe both the
geometric and functional variations. Specifically, in the present work, the geometry is
exclusively defined by quadratic shape functions. In two-dimensions, this requires the use
of three-noded line elements. On the other hand, the variation of the primary quantities
can be described, within an element, by linear, quadratic or quartic shape functions. For
each quartic element, two additional quarter-point nodes are automatically generated by
the program. It should be noted that the introduction of quartic elements provides the
foundation for the development of a p-adaptive boundary element capability.

Once the spatial discretization has been accomplished and the body has been subdi-
vided into M elements, the boundary integral equation can be rewritten as

N M
cpal)up (€)= { )3 ] [Gﬁ:""(X(o — )NLtR
n=1 Sm

- (X0 - Nl asCX©))} (2.2.8)

where
M
5= | Sm-
m=1
In the above equation, t3, and uj, are nodal quantities which can be brought outside the
surface integrals. Thus,

N M
o @O = L { 2t [ GEFOKO - ONAOSX Q)
n=1 m=1 m

= AT —s)Nw(c)dS(X(c))} (2.29)

The positioning of the nodal primary variables outside the integrals is, of course, a key
step since now the integrands contain only known functions. However, before discussing
the techniques used to numerically evaluate these integrals, a brief discussion of the sin-
gularities present in the kernels G3, and Fj, is in order.

The fundamental solutions to the uncoupled quasistatic problem contain singularities
when the load point and field point coincide, that is, is when r = 0. The same is true of G3,
and FJ,, since these kernels are derived directly from the fundamental solutions. Series
expansions of terms present in the evolution functions can be used to deduce the level of
singularities existing in the kernels.

A number of observations concerning the results of these expansions should be men-
tioned. First, as would be expected Fl; has a stronger level of singularity than does the
corresponding GL,, since an additional derivative is involved in obtaining Fls; from G,
Second, the coupling terms do not have as a high degree of singularity as do the corre-
sponding non-coupling terms. Third, all of the kernel functions for the first time step could
actually be rewritten as a sum of steady-state and transient components. That is,

G;ﬁ =" Gap +5r GLﬁ
Fis="° Fap+" Fop.
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Then, the singularity is completely contained in the steady-state portion. Furthermore,
the singularity in G}; and Fj, is precisely equal to that for elastostatics, while G}, and Fj,
singularities are identical to those for potential flow. (For two-dimensions, the subscript
¢ equals three.) This observation is critical in the numerical integration of the Fos kernel
to be discussed in the next subsection. However, from a physical standpoint, this means
that, at any time ¢, the nearer one moves toward the load point, the closer the quasistatic
response field corresponds with a steady-state field. Eventually, when the sampling and
load points coincide, the quasistatic and steady-state responses are indistinguishable. As
a final item, after careful examination of Appendix 2.2, it is evident that the steady-state
components in the kernels G7; and FJ;, with n > 1, vanish. In that case, all that remains
is a transient portion that contains no singularities. Thus, all singularities reside in the

*Gqp and **Fop components of G ; and F.;, respectively.

2244 NUMERICAL INTEGRATION

Having clarified the potential singularities present in the coupled kernels, it is now
possible to consider the evaluation of the integrals in equation (2.2.9). That is, for any
element m, the integrals

[ MmO - 9ML@asx() (2.2.100)

A FNHI=2(X(() — E)NL(C)dS(X(O)) (2.2.108)

will be examined. To assist in this endeavor, the following three distinct categories can be
identified.

(1) The point ¢ does not lie on the element m.

(2) The point ¢ lies on the element m, but only non-singular or weakly singular integrals
are involved.

(3) The point ¢ lies on the element m, and the integral is strongly singular.

In practical problems involving many elements, it is evident that most of the inte-
gration occurring in equation (2.2.9) will be of the category (1) variety. In this case,
the integrand is always non-singular, and standard Gaussian quadrature formulas can be
employed. Sophisticated error control routines are needed, however, to minimize the com-
putational effort for a certain level of accuracy. This non-singular integration is the most
expensive part of a boundary element analysis, and, consequently, must be optimized to
achieve an efficient solution. In the present implementation, error estimates, based upon
the work of Stroud and Secrest (1966), are employed to automatically select the proper
order of the quadrature rule. Additionally, to improve accuracy in a cost-effective man-
ner, a graded subdivision of the element is incorporated, especially when ¢ is nearby. For
two-dimensional problems, the integration order varies from two to twelve, within each of
up to four element subdivisions.
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Turning next to category (2), one finds that again Gaussian quadrature is applicable,
however, a somewhat modified scheme must be utilized to evaluate the weakly singular
integrals. This is accomplished in two-dimensional elements via suitable subsegmentation
along the length of the element so that the product of shape function, J acobian and kernel
remains well behaved.

Unfortunately, the remaining strongly singular integrals of category (3) exist only in
the Cauchy principal value sense and cannot, in general, be evaluated numerically, with
sufficient precision. It should be noted that this apparent stumbling block is limited to the
strongly singular portions, **Fi; and * Fgs, of the F; kernel. The remainder of Flg, including
tFL and " Fj, can be computed using the procedures outlined for category (2) However,
as w1ll be discussed in the next subsection, even category (3) **Fi; and **Fgs kernels can be
accurately determined by employing an indirect ‘rigid body’ method originally developed
by Cruse (1974).

2.2.4.5 ASSEMBLY

The complete discretization of the boundary integral equation, in both time and space,
has been described, along with the techniques required for numerical integration of the ker-
nels. Now, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writ-
ing (2.2.9) at each global boundary node. The ensuing nodal collocation process, then,
produces a global set of equations of the form

N
Z ([GN“”"]{t"} - [F”“’"]{u"}) = {0}, (2.2.11)

n=1

where
[GN+1-"] unassembled matrix of size (d +1)P x (d + 1)Q, with coefficients determined
from (2.2.10a)

[FN+1-n] assembled matrix of size (d+1)P x (d+1)P, with coefficients determined from
(2.2.10b) and cg, included in the diagonal blocks

{t"} global generalized nodal traction vector with (d + 1)@ components
{u"} global generalized nodal displacement vector with (d+ 1)P components
{0} null vector with (d + 1)P components
P total number of global functional nodes
Q=S4
A, number of functional nodes in element m

d dimensionality of the problem.
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In the above, recall that the terms generalized displacement and traction refer to the
inclusion of the temperature and flux, respectively, as the (d + 1) component at any point.
Consider, now, the first step. Thus, for N = 1, equation (2.2.11) becomes

[G'){2'} -~ [F'[{u'} = {0}. (2.2.12)

However, at this point the diagonal block of [F!] has not been completely determined due to
the strongly singular nature of *F,; and * Fys. Following Cruse (1974) and, later, Banerjee
et al (1986) in elastodynamics, these diagonal contributions can be calculated indirectly
by imposing a uniform ‘rigid body’ generalized displacement field on the same body, but
under steady-state conditions. Then, obviously, the generalized tractions must be zero,
and

[**FI{1)} = {0}, (2.2.13)

where {1} is a vector symbolizing a unit uniform motion. Using (2.2.13), the desired
diagonal blocks, **F;; and **Fge, can be obtained from the summation of the off-diagonal
terms of [**F]. The remaining transient portion of the diagonal block is non-singular, and
hence can be evaluated to any desired precision. After summing the steady-state and
transient contributions, (2.2.12) is once again written as

[¢'){e'} - [F'{'} = {0}, (2.2.14)

but now the evaluation of [F?] is complete.

In a well-posed problem, at time At, the set of global generalized nodal displacements
and tractions will contain exactly (d + 1)P unknown components. Then, as the final stage
in the assembly process, equation (2.2.14) can be rearranged to form

[A'Hz'} = [B'[{y"}, (2.2.15)

in which
{z!} unknown components of {u!} and {t'}

{v'} known components of {u!} and {'}

[A'],[B!] associated matrices

2.2.4.6 SOLUTION

To obtain a solution of (2.2.15) for the unknown nodal quantities, a decomposition
of matrix [A!] is required. In general, [4!] is a densely populated, unsymmetric matrix.
The out-of-core solver, utilized here, was developed originally for elastostatics from the
LINPACK software package (Dongarra et al, 1979) and operates on a submatrix level.
Within each submatrix, Gaussian elimination with single pivoting reduces the block to
upper triangular form. The final decomposed form of [4!] is stored in a direct-access file
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for reuse in subsequent time steps. Backsubstitution then completes the determination of
{z'}. Additional information on this solver is available in Banerjee et al (1985).

After turning from the solver routines, the entire nodal response vectors, {v'} and
{t'}, at time At are known. For solutions at later times, a simple marching algorithm is
employed. Thus, from (2.2.11) with N =2,

[G'{#'} ~ [F'){a'} + [G'}{*} - [F'H{u?} = {0}. (2:2.16)

Assuming that the same set of nodal components are unknown as in (2.2.14) for the first
time step, equation (2.2.16) is reformulated as

[41){2?} = [B'H¥*} - [GTHE'} + [F7{«"). (2.2.17)

Since, at this point, the right-hand side contains only known quantities, (2.2.17) can be

solved for {z?}. However, the decomposed form of [4'] already exists on a direct-access file,

so only the relatively inexpensive backsubstitution phase is required for the solution.
The generalization of (2.2.17) to any time step N is simply

N-1
[z} = [B'HyV} - 3 ([GN“‘"]{t"} - [FN“'"]{“"}) (22.18)
n=1
in which the summation represents the effect of past events. By systematically storing
all of the matrices and nodal response vectors computed during the marching process,
surprisingly little computing time is required at each new time step. In fact, for any
time step beyond the first, the only major computational task is the integration needed
to form [GV] and [F¥]. Even this process is somewhat simplified, since now the kernels
are non-singular. As a result, reduced subsegmentation and gaussian integration order is
appropriate. Also, as time marches on, the effect of events that occurred during the first
time step diminishes. Consequently, the terms containing [GN] and [FV] will eventually
become insignificant compared to those associated with recent events. Once that point is
reached, further integration is unnecessary, and a significant reduction in the computing
effort per time step can be achieved.

It should be emphasized that the entire boundary element method developed, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear uncoupled quasistatic problem, with homogeneous properties, can be obtained in
terms of the nodal response vectors, without the need for any volume discretization. In
many practical situations, however, additional information, such as, the temperature at
interior locations or the stress at points on the boundary, is required. The next subsection
discusses the calculations of these quantities.

2.2.4.7 INTERIOR QUANTITIES

Once equation (2.2.18) is solved, at any time step, the complete set of primary nodal
quantities, {u”} and {t"}, is known. Subsequently, the response at points within the body

BEST-FSI User Manuai March, 1992 Page 2.11



can be calculated in a straightforward manner. For any point ¢ in the interior, the gener-
alized displacement can be determined from (2.2.9) with ¢g, = é5o. That is,

u3(E) = { [tﬂw / GIH=(X(C) - )NulO)dS(X(C))

—“.@w/ FR (X - E)NL(QdS(X )]} (2.2.19)

Now, all the nodal variables on the right-hand side are known, and, as long as, £ is not on the
boundary, the kernel functions in (2.2.19) remain non-singular. However, when ¢ is on the
boundary, the strong singularity in * Fj, prohibits accurate evaluation of the generalized
displacement via (2.2.19), and an alternate approach is required. The apparent dilemma
is easily resolved by recalling that the variation of surface quantities is completely defined
by the elemental shape functions. Thus, for boundary points, the desired relationship is
simply

ug (§) = No(Qull (2:2.20)
where N, (¢) are the shape functions for the appropriate element and ¢ are the intrinsic
coordinates corresponding to ¢ within that element. Obviously, from (2.2.20), neither
integration nor the explicit contribution of past events are needed to evaluate generalized

boundary displacements.
In many problems, additional quantities, such a heat flux and stress, are also important.
The boundary integral equation for heat flux, can be written

o) = {E[:saw / EXH-(X(C) — £)NoQ)AS(X(C))

~ui, [ DO - oNuas x| (2221)
where
ESai(X(C)%):—kEW : (2.2.21a)
AFZL(X(C) —
DEs(X(¢) —€) = —k—'-—‘”—(———-af(f)——f—) (2.2.21b)

This is valid for interior points, whereas, when ¢ is on the boundary, the shape functions
can again be used. In this latter case,

N = ni©)al (€) (2.2.22a)

an(() N 13:, N
ey = -1 5@, (2.2.228)

which can be solved for boundary flux. Meanwhile, interior stresses can be evaluated from

N M

o= { T & [ B ex© - on@esx o)
n=1 * m=l Sm
—ul, f DN‘“‘"(X(C f)Nu(q)dS(X(q))” (2.2.23)
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in which

2uy .,BGE‘ BGf; BGE; n
- 21’6” aft aEJ + afi ﬂéngﬂa (22230)
. _ ou  OFp, (aFg 8Fp
with v representing the Poisson ratio and 4 = (3 +2u)a. Equation (2.2.23) is, of course, de-
veloped from (2.2.19). Since strong kernel singularities appear when (2.2.23) is written for
boundary points, once again an alternate procedure is needed to determine surface stress.
This alternate scheme exploits the interrelationships between generalized displacement,
traction, and stress and is the straightforward extension of the technique typically used in
elastostatic implementation (Cruse and Van Buren, 1971). Specifically, the following can
be obtained

Efi;(X(Q) - €)= ]

) — B8:; Fge, (2.2.238)

ni(€)ol (€) = Nu(OrLl (2.2.24a)
De.
o) - == (ukN,z(E) + upil€ )) = —B6i; No(Q)upy, (2.2.24b)
0x; N ey = WNu v

Eutd(s) - ac Uy (22'246)

in which uY is obviously the nodal temperatures, and,
ijkl = My + 2ubikbii.

Equations (2.2.24) form an independent set that can be solved numerically for ¢[j(€) and
ul;(€) completely in terms of known nodal quantities uY, and tY,, without the need for kernel
integration nor convolution. Notice, however, that shape function derivatives appear in
(2.2.24c), thus constraining the representation of stress on the surface element to something
less than full quadratic variation. The interior stress kernel functions, defined by (2.2.23),
are also detailed in Appendix 2.2.

2248 ADVANCED FEATURES

The thermoelastic formulation has been implemented as a segment of the general pur-
pose boundary element co