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SUMMARY

Highly convective scalar transport involving near-discontinuities and strong streamline
curvature was addressed in a paper by Smith and Hutton in 1982, comparing several differ-

ent convection schemes applied to a specially devised test problem. First-order methods

showed significant artificial diffusion, whereas higher-order methods gave less smearing but

had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more

obvious than unphysical smearing, the intervening period has seen a rise in popularity of

low-order artificially diffusive schemes, especially in the numerical heat-transfer industry.

The present report describes an alternative strategy of using non-artificially diffusive higher-

order methods, while maintaining strictly monotonic transitions through the use of simple

flux-limiter constraints. Limited third-order upwinding is usually found to be the most cost-

effective basic convection scheme. Tighter resolution of discontinuities can be obtained at

little additional cost by using automatic adaptive stencil expansion to higher order in local

regions, as needed.

1. INTRODUCTION

In a well-known paper published in 1982, Smith and Hutton presented results of several

authors' attempts to numerically solve a specially devised test problem involving streamline

curvature typical of recirculating flows and steep variations in the transported scalar _. Most

schemes were able to handle the diffusion-dominated low-Peclet-number regime adequately;

but in the important high-convection regime, Smith and Hutton concluded that convection

modelling "remains the art of compromise between diffusive and oscillatory errors." In the

intervening period, it seems that artifically diffusive low-order (blended first/second-order)

convection schemes have become more popular than higher-order potentially oscillatory

methods. Perhaps this is because the overshoot (or undershoot) problems associated with

higher-order methods can lead to obviously unphysical results such as locally negative

densities or absolute temperatures, for example. But the low-order methods' results are also

usually highly unphysical -- although perhaps not always obviously so.

Convection-diffusion schemes that revert to first-order upwinding for convection (while

physical diffusion is ignored) under high-convection conditions achieve (plausible looking)

nonoscillatory results by replacing the high-convection physical problem, with an artifically

*Work funded by Space Act Agreement C-99066-G.



diffusive (and anisotropic) low-convection numerical problem. Blended first/second-order

schemes of this type, such as Spalding's "Hybrid" method 2 and Patankar's "Power-Law

Difference Scheme" (PLDS) 3 seem to have gained in popularity in recent years, especially

in the numerical convective heat-transfer industry 4. This is puzzling, because there have

been several studies showing the artificially diffusive nature of such schemes 51° over the past

decade or more. Even more puzzling is the fact that many authors use Hybrid, PLDS or

similar exponential-based schemes 1_ in combination with sophisticated (and expensive)

multiple-equation turbulence models -- apparently not realizing that the turbulence model

is being used throughout most of the flow-field merely as an expensive diagnostic to switch-

offthe physical (turbulent plus laminar) diffusion terms in the governing equations, replacing

them with (anisotropic) artificial numerical diffusion. It is perhaps not surprising that the

results of such computations are typically very insensitive to the turbulence model being

used. Most puzzling of all is that some researchers continue to use first-order-based

convection schemes to actually develop and "tune" new turbulence models.

The usual "justification" for this approach seems to be based on grid-refinement

studies, i.e., the grid is refined to a point where the results do not seem to be changing very

much. But, for first-order methods, the approach to true grid-independence is a notoriously

slow process. One cannot claim reasonable accuracy (or proper use of the turbulence model)

until the grid is refined to a point where the component grid Peclet (or Reynolds) numbers

are everywhere O(1) or less -- in which case Hybrid and PLDS are operating as second-

order central differencing. The massive grid refinement that this would call for under high-

convection conditions is clearly impracticable.

There is a strong need for a conceptually simple (and computationally inexpensive) con-

vection scheme giving highly accurate non-artificially diffusive and non-oscillatory results

on practical grids under high-convection conditions; i.e., for grid Peclet (or Reynolds)

numbers arbitrarily large. The same scheme should, of course, be able to handle the low-

Peclet-number diffusion-dominated regime, as well. As will be shown in this report, these

apparently conflicting requirements are not incompatible. Third-order upwinding is the

lowest-order convection scheme for which the leading truncation error is dissipative (involv-

ing even-order spatial derivatives) but not "diffusive" (i.e., second-order derivatives) -- by

definition, leading truncation error in this case involves fourth-order spatial derivatives. As

is well known, however, third-order upwinding in its basic form can give rise to unphysical

overshoots or undershoots near regions involving rapid changes in the transported variable.

But it is a relatively simple matter to incorporate universal limiter constraints (appli-

cable to any order of accuracy) giving tight monotonic resolution of near-discontinuities

without corrupting the accuracy of the underlying scheme. This universal limiter for tight

resolution and accuracy implemented via a simple high-accuracy resolution program consti-

tutes the ULTRA-SHARP strategy for high-convection modelling. The recommended

method uses limited third-order upwinding (ULTRA-QUICK) as the basic convection-

diffusion scheme; then, in local regions requiring even higher-order resolution, the algorithm

automatically branches to a limited higher-order scheme (ULTRA-5th or ULTRA-7th

upwind, for example) using adaptive stencil expansion, locally, controlled by a simple non-

smoothness monitor. In terms of achieving a desired accuracy (compared with a known
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exact solution, for example), this strategy is optimal in terms of requiring the lowest

computer cost as the grid is refined. In other words, although low-order methods are less

expensive per grid point, they require an exorbitantly fine grid to achieve a prescribed

accuracy; by contrast, the higher cost (per grid point) of very high-order methods used

globally is not completely offset by the lower cost of a concomitantly coarser grid.

In the following sections the Smith-Hutton test problem is briefly described. Then, for

reference, results are shown for a number of well-known convection-diffusion schemes; in

particular: PLDS (representative of exponential-based schemes), second-order upwinding,

and third-order upwinding (QUICK), using a conservative control-volume time-marching

formulation. Fifth- and seventh-order upwinding are also briefly discussed; as is typical of

unlimited higher-order schemes, tighter resolution in this case is offset by stronger

oscillations. The concept of the universal limiter, based on normalized variables, is then

briefly reviewed. Results are shown for limited third-order (ULTRA-QUICK) and an
ULTRA-3rd/5th/7th-order scheme using local adaptive stencil expansion. Finally, a cost-

effectiveness study shows the optimality of the third-order-based ULTRA-SHARP schemes.

2. TEST PROBLEM

The two-dimensional test problem devised by Smith and Hutton is concerned with steady-
state convection and diffusion of a scalar field such as temperature, T, for example, in a

prescribed velocity field, v(x, y), with a known constant diffusivity, D. The nondimen-

sional governing equation is

1 V2 T (1)v.VT =
Pe

introducing the (macroscopic) Peclet number

Vref Lref (2)Pe - = const
D

using appropriate reference velocity and length scales. The flow domain considered is a

rectangle: -1 <x< 1, 0<y< 1. And the velocity field is given by

u = 2y (1 - x z)
(3)

and

V - 2x (1 - y2)
(4)



corresponding to a streamfunction

(1 -x 2) (1 -y2) (5)

Figure 1 shows the streamline pattern for this flow-field.

The inlet temperature profile is specified as

Tin(x) = 1 + tanh[a(1 + 2x)] (6)

for y =0 and -l_x<0. This is also shown in Figure 1. For x = -1,

boundary condition becomes

the left-hand

T_ = T_(-1) = 1 - tanh c_ (7)

This is used as the boundary condition along the boundary streamline _bb = 0; i.e., at

x = -I- 1 (for 0<y<l) and at y = 1 (for -l<x<l). For ot greater than about 3, this

means that the boundary temperature is essentially zero, whereas the top of the inlet profile

is very close to 2 as x --, 0. Smith and Hutton proposed ot = 10 as representative of a

relatively sharp transition. In the present paper, two other values of ot are used: _ = 100
(representative of a very sharp transition) and ot = 5 (representing a relatively smooth

transition). Note that no physical boundary conditions are specified at the outlet boundary,

y = 0 (0<x< 1). Numerical boundary conditions equivalent to

[a__]r=o_ 0 for 0 <x < 1 (8)

are described below.

In the case of purely convective flow, Pe --, 00,
since T = const along streamlines; i.e., T = T (_b).

the exact solution is easily obtained,

For example, at the inlet,

x -- -g +¢ , - 1 < x _ 0 (9)

so, throughout the flow domain when there is no diffusion,

r(_b) = 1 + tanh[c_(1 - 2 _ + _b )] = T(x,y) (10)
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using Equation (5). In particular, this gives an outlet profile as the mirror-image of the inlet

profile

Tout(x ) = 1 + tanh[o_(1 - 2x)] (11)

for y = 0 and 0 < x < 1. Figure 2 shows a three-dimensional portrayal of Equation (10)

on a 40x20 uniform mesh (41x21 grid-points, with Ax = Ay). In Figure 2(a), ot = 100;

whereas in 2(b), ot = 5.

Figure 3 shows portions of a typical staggered mesh used in the present analysis. Note

that T-nodes are placed at boundaries. Boundary nodes shown as dots within squares

correspond to specified boundary conditions; solid dots represent interior computed T-nodes;

exterior pseudo-T-nodes (triangles) are also shown for use with higher order methods.

Hollow circles represent _b-nodes; these occur at the corners of temperature control-volume

cells. This is shown in more detail in Figure 4. This is a convenient arrangement, since

average cell-face convecting velocities are then available by simple subtraction of stream-

function values; e.g., referring to Figure 4,

U!
_brL - fibs. (12)

ay

so that the average left-face Courant number is

CXL(i, j)
(_bn. - _nL) At (13)

axay

Computation of interior node values of T follows a simple time-marching procedure.

One first computes the left and bottom face fluxes

FLUXL(i,j) = CXL.Tt- ]CXL] Ax [aT] (14)
PXL [ j_ t

and

FLUXB(i' J) = CYB" Tb - ]CYBIpYBAY [0__]b (15)
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introducing local component cell face Peclet numbers

PXL = lu, I Pe _x

and

PYB = Iv l Pc Ay

(16)

(17)

The new values of T are then updated by a simple assignment statement,

Set: T (i, j) = T(i, j) + FLUXL(i, j) - FLUXL(i+I, j')

+ FLUXB(i, j) - FLUXB(i, j+l)

(18)

where flux conservation has been observed at each face. This is repeated until a converged

steady state has been achieved.

The treatment of the outflow numerical boundary condition is shown in Figure 5.

Assume that T(y) follows a parabola near the outlet for y > 0, with three conditions

T(2ziy) = T2 (19)

and

T(Ay) = T i (20)

[0_if_rio = 0 (21)

Then, it is not hard to show that the corresponding value of T at the boundary is

To 4 1 (22)

The corresponding pseudonode values of T-1 and

upwinding) are taken to be simply

T_2 (used for fifth- and seventh-order

1" 1 = T_ 2 = To (23)

as shown in the figure. Pseudonode values along the other boundaries are set equal to their

adjacent boundary values in a normal direction.



3. EXPONENTIAL-BASED SCHEMES

Exponential-based convection-diffusion schemes were first introduced into computational

fluid dynamics by Allen and Southwell! 2, and have been "rediscovered" in various

equivalent or approximate formulations by several people in the past thirty-five years.

Spalding's Hybrid scheme 2, Patankar's PLDS 3, and the algebraic approximation of Raithby

and Schneider H can be interpreted as various levels of approximation to the exponential

differencing scheme (EDS). It is fairly easy to show _3 that EDS is equivalent to using

second-order central differencing for both convective and diffusive fluxes while replacing

the actual grid Peclet (or Reynolds) number, P,,, with an effective value, P_, that is itself

a function of the physical Pa. The functional relationship is _3

P; = 2 tanh(Pa/2) (24)

Spalding's Hybrid scheme can be interpreted as a very rough approximation to this, given

by

P_. = Pa for 0 < P,x < 2 }Pa - 2 for Pa > 2

(25)

Patankar's power-law difference scheme represents a much more accurate approximation of

the hyperbolic-tangent function

3

p2 = 2P_ for 0 < Pa < 10 [

P,, + 2(1 - 0.1 pa)5 l (26)P2 -- 2 for PA > 10

The algebraic formulation of Raithby and Schneider can be interpreted as

2(5 + P_)

(1 + 0.005 P_)] -_÷ (27)

JPa(1 + 0.05 P_)

Note that here, too, P2 --, 2 for large values of PA. In fact, for EDS itself, Equation (24),

P2 _ 2 for Pa > 6 (since tanh 3 = 0.995... ). All three approximations are shown in

relation to the hyperbolic-tangent curve in Figure 6.



For exponential-basedschemes,the left-face flux, for example, is given by

Icxtl (T,,j T,_,,j) (28)CXL (T, + T__,,j)- PXL"FLUXL(i, j) - 2 ' j

where PXL ° is the effective local x-component grid Peclet number at the left face.

that for PXL" = 2, the flux becomes

Note

FLUXL(i, j) = CXL. T__,.j for CXL > 0 (29)

or

FLUXL(i, j') = CXL. T_.j for CXL < 0 (30)

This, of course, corresponds to first-order upwinding for convection, with physical diffusion

(computed but) ignored. This is what occurs in the Hybrid scheme for Pa > 2, and in the

other schemes (including EDS) for Pa greater than about 6.

Figure 7 shows 40 x20 results for Pe = o. ; in this case the scheme is operating

everywhere as first-order upwinding. By comparison with Figure 2, these are seen to be

very artificially diffusive results. This is typical of exponential-based schemes. Figure 8

gives inlet and outlet profiles using ot = 100 for Pe = _ , 500, and 10, showing com-

puted solutions on 20x 10, 40x20, and 80×40 grids in each case, using PLDS. The refer-

ence finite-Peclet-number results have been obtained using the ULTRA-3/5/7 upwind scheme

(described later) on a very fine (160 × 80) grid. For the larger-Pc cases, the gross artificial

diffusion of the exponential-based scheme is clear. In the case of Pe = 10, local grid Peclet

numbers are small and the scheme is equivalent to second-order central differencing. The

error reported in the figure captions is computed using

1 _ IL_p - T, al (31)

where the summation is over all interior grid-points plus the outlet boundary, and N is the

total number of grid-points involved, excluding pseudonodes (i. e., N = 21 × 11, 41 x 21, or

81 x41).



4. SECOND-ORDER UPWINDING

When second-order upwinding is used for convection, it is conventional to use second-order

central differencing for diffusion. In this case, the left-face flux, for example, is given by

FLUXL(i,j') = CXL.T t -ICXLI (T, -T,_I,j) (32)
PXL ' j

where the left-face convected value is

3 T,, 1 T_2 for CXL > 0 (33)
2 - 'j 2 - 'j

or

3 1 Ti._ ' for CXL < 0 (34)r, = -_r,,j-_ j

Similar formulas are easily obtained for the bottom-face flux. Equations (33) and (34) can

be combined into a single form valid for positive and negative convecting velocities by

writing

1 1

T, = -_ (r,,j + r,_,,j) - ._ Cr0RVNL
(35)

defining the "normal curvature" at the left face as

CURVNL = CRVAVL - SGN(CXL) THIRDL (36)
2

where (suppressing the j-index, for convenience) the average (symmetric) second-difference

across the left face is

1 (T.t _ Ti _ Ti_1 + Ti__ )
CRVAVL = ._

(37)
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and the third-difference across the face is

THIRDL = Tm - 3T, + 3T__: - T__2 (38)

The infinite-Pc results for second-order upwinding are shown in Figure 9 -- as usual,

for ot = 100 and 5. In this case, the smooth-inlet-transition results are quite good, with

only a little numerical spreading and a very slight overshoot near the outlet; but note the

significant overshoots and undershoots in the sharp-transition case. Figure 10 shows grid-

dependence results for Pe = oo , 500, and 10, for ot = 100.

5. THIRD-ORDER UPWINDING (QUICK)

The QUICK scheme (quadratic upstream interpolation for convective kinematics) is the

canonical third-order-upwind scheme for steady-state flow _4. In this case, the left-face flux,

for example, has the same form as Equation (32); however, for consistency, the convected
face value includes both normal and transverse curvature effects _4 and the normal-curvature

coefficient is much smaller

I (T_ + T,__,/)- I iTt = : ,j _ CURVNL + --24 CURVTL (39)

where CURVNL is given by Equation (36) and the upwind-weighted transverse-curvature
term is

CURVTL = T___,j.l - 2T_-1, j + T/_I, j_l for CXL > 0 (40)

or

CURVTL = T_.j., -2T_,j + Ti, j_: for CXL < 0 (41)

Note that, consistent with bi-quadratic interpolation in the vicinity of the left face, the

diffusive flux is identical to that obtained by central-differencing _4.

The QUICK results for Pe = oo are shown in Figure 11. The smooth-transition case

is very well modelled; but, as with second-order upwinding, overshoots and undershoots

occur in the sharp-transition simulation, although the computed transition itself is noticeably

sharper in this case. Grid-dependence results are seen in Figure 12.
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6. FIFTH- AND SEVENTH-ORDER UPWINDING

The fifth-order upwind algorithm used in this paper again takes the form of Equation (32),
but in this case

1 1 3 1
T, = _ (T_,j + T,_,,i) - _ CRVAVL + 128 FORTHL + --24 CURVTL (42)

where (again suppressing j's for convenience) the upwind-weighted fourth difference is

FORTHL = T_+,- 4T_ + 6T__,- 4T__2 + T__3 for CXL > 0 (43)

or

FORTHL = T_.2 - 4T,..x + 6T_ - 4T,._, + T__2 for CXL < 0 (44)

Three points should be mentioned:

(i) Higher-order terms are not used in the diffusive flux. This is appropriate

because, when diffusion is large (small Pe), modelled profiles are smooth and

the second-order form is entirely adequate; whereas, under high-convection

conditions, the form of the small diffusion terms is not very important.

(ii) Higher-order transverse terms are not used in the convective flux. Although the

third-order transverse curvature term is significant, numerical experimentation

has shown that higher-order transverse terms have an almost negligible effect on

results; but inclusion would add significantly to the cost of the calculation.

(iii) The coefficient of the normal-curvature term (1/6, rather than the theoretical

value of 1/8) has been found to give slightly more accurate results in cases of

scalar convection and diffusion, where exact solutions are available _3. This was

not found to be the case with third-order upwinding -- where 1/8 seems to be

optimal in all cases tested.

Figure 13 gives the fifth-order results for Pe = oo As perhaps expected, the large-c_

transition is sharper (than third-order) but generates significantly more overshoots, under-

shoots, and secondary ripples. The smooth transition is graphically indistinguishable from

the exact result. Grid-dependence studies are again predictable and need not be shown here.

Higher (for example, seventh) order upwinding merely accentuates the trends seen with fifth-
order.
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The seventh-order formula used in this study takes the form

= 2"-_--¢TY+1 T___,j) - -_1 CRVAVL + _1283 FTHAVLT,

1 SIXTHL + 1 CURVTL
100 24

(45)

where (suppressing j's, as usual) the average (symmetric) fourth-difference across the left-

face is

1 (T m _ 3T._ + 2T i + 2T__, - 3__ 2 + T__,)
FTHAVL =

(46)

and SIXTHL is the upwind-weighted sixth-difference

SIXTHL = Tm - 6Ti. l + 15T, - 20T__, + 15Tt_ 2 - 6Ti_ 3 + Ti_4 (47)

for CXL > 0; all indexes in SIXTHL are increased by 1 for CXL < 0.

7. UNIVERSAL LIMITER

The universal limiter is most easily described in terms of normalized variables. Let TI

represent the value of the convected scalar at any control-volume face; call the adjacent

downstream node value To, the adjacent upstream node value Tc, and the next upstream

node value (in a direction normal to the face) Tt,. Figure 14 sketches the definition of these

terms; as seen, node C lies between nodes U and D. Note, however, that the nodes in-

volved are dependent on the sign of the normal convecting velocity component, un, at the

CV face. Now define, anywhere in the vicinity of the face, a normalized variable

T(x, y) = T(x, y) - T v (48)
r,,- G

In particular,

Ty- T u (49)
t:- ro_r 
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and

tc - rc- (50)

Note also that 7'v = 0, whereas i"D = 1.

The universal limiter can be portrayed in the (:r c , g) plane 13. Figure 15 shows the

constraint boundaries. Note that first-order upwinding (_ = _c ) marginally satisfies the
limiter constraints. Use of the universal limiter proceeds as follows:

(i) First compute some (in general, high-order) estimate for the face value, Ty, and
find the corresponding normalized values of _ and 7_c.

(ii) If the point (_c, _ ) satisfies the limiter constraints, proceed to step (iii); if

not, reset _ to the nearest limiter-constraint at the same _c value.

(iii) Reconstruct the unnormalized face value

T: = _ ( To - Tu) + TU (51)

(iv) Use this value in combination with second-order diffusion in computing the total

flux at the CV face; as, for example, in Equation (32) for the left face.

ULTRA-QUICK Results

When the universal limiter (for tight resolution and accuracy) is applied to the QUICK
scheme (giving ULTRA-QUICK), overshoots and undershoots are automatically suppressed

without additional smearing of the transition region. This is seen in Figures 16 and 17 --

which should be compared with Figures 11 and 12, and with Figure 2. Note the clean
monotonic transition in the high-Pe large-c_ cases, as compared with the unlimited scheme.

Smooth-region behaviour remains very good, reflecting the uniformly third-order accuracy
of the basic algorithm.

Artificial Compression

Figure 18 portrays a second-order convection scheme in the normalized-variable

diagram, conforming to universal limiter constraints. The unconstrained portion of the

scheme (DCB) consists of second-order central-differencing (DC) for 2rc < 0.5

I (I + i'¢) (52)

13



and second-order upwinding (CB) for Tc --- 0.5.

= _3 tc (53)
2

The upper constraint boundary (BA) can be interpreted as first-order downwinding

= 1 (54)

This convection scheme has a tendency to introduce negative artificial diffusion into

3ortions of simulated profiles. This can (artificially) enhance resolution of near-

discontinuities -- a phenomenon sometimes known as "artificial compression." The scheme

was originally introduced by Roe 15and named "Ultra-B"; it is related to Roe's better-known

"Super-B" scheme, which is also artificially compressive. In terms of simulating near-

discontinuities, Ultra-B is indeed quite impressive for a second-order scheme. This is clearly

seen in Figure 19(a) for the infinite-Pe sharp-transition case (c_ = 100) ; but note the dis-

tortion of the initially smooth profile (a = 5) in Figure 19(b). As the profile is convected

downstream, it becomes more and more step-like. This is due to the negative artificial diffu-

sion inherent in artificially compressive schemes. Similar artificial steepening effects occur

with the finite-Pe simulations, as well. This is a serious draw-back of artificial-compression

methods. The phenomenon can be avoided by using higher-order ULTRA-SHARP tech-

niques, as described in the next section.

8. ADAPTIVE STENCIL EXPANSION

Higher-order monotonic resolution of very sharp transitions could be obtained by using

ULTRA-5th or ULTRA-7th globally. But in most of the flow domain, such high accuracy

(and concomitant cost) is not called for. It is of interest, from a cost-effectiveness viewpoint

to construct an algorithm that would use ULTRA-QUICK in "smooth" regions and auto-

matically branch to a higher-order scheme locally, as needed. The need for the higher-order

calculation -- and correspondingly expanded stencil -- can be determined by monitoring

some suitable "non-smoothness" parameter. One such quantity that comes to mind

immediately is the local first-difference (proportional to the gradient) across a given CV

face. For the left face, this would be

GRADL = Tt, j - T,._I,j (55)

One also needs to detect local changes in gradient; the symmetrically placed average second-

difference, defined in Equation (37) for the left face, is suitable for this.

In smooth regions, both GRADL and CRVAVL will lie below certain pre-assigned

thresholds; in this case, the basic ULTRA-QUICK algorithm is used -- this will take care

14



of the bulk of the flow domain since sharp transitions occur in narrow isolated regions, by

definition. If CRVAVL exceeds the first threshold, THC1 (= 0.1 in the present study),

the algorithm branches to ULTRA-5th locally; if it also exceeds THC2 (= 0.7), it branches

further to ULTRA-7th. If GRADL exceeds THG (= 0.35), ULTRA-7th is used immedi-

ately. Clearly, other threshold strategies could be used; the procedure adopted here has

evolved through computational experimentation over several test problems. It should be

noted that the threshold constants are dimensional; i.e., a change in scale, for example,

would require a corresponding change in threshold values. This problem can be avoided by

rescaling the threshold constants with respect to an anticipated maximum absolute value of

the convected variable occurring within the flow-field of interest (in the Smith-Hutton

problem I T[m.x = 2).

Figures 20 and 21 show results for the ULTRA-3rd/5th/7th scheme described above.

Clearly, these are highly accurate results, even on the coarsest grid. As seen in the next

section, the cost is only slightly more than the basic ULTRA-QUICK scheme -- but the cost-

effectiveness (computational efficiency) is greatly enhanced.

9. OPTIMAL COST-EFFECTIVENESS

When dealing with higher-order convection schemes, one obvious question that comes to

mind is: is it better (in terms of total cost) to use a low-order scheme on a very fine grid

or a higher-order scheme on a coarser grid? Low-order schemes are relatively inexpensive

per grid-point, but (as seen in the cases shown in this paper) require extremely fine grids for

reasonable accuracy. On the other hand the added expense (again, per grid-point) of very-

high-order schemes may not be totally offset by a concomitant coarsening of the grid. To

be more precise, assume that a desired level of accuracy has been preassigned for a problem

that has a known exact solution -- such as the infinite-Pe Smith-Hutton problem. Take any

given convection scheme and solve on successively finer and finer grids until the desired

level of accuracy has been achieved; simultaneously keep note of the CPU time (representing

cost) at successive grid refinements. Repeat this process with other convection schemes.

In this way, the cost for a prescribed global accuracy can be assigned to each scheme.

Alternatively, one could specify an available computational budget and compute the corre-

sponding accuracy of each scheme as the grid is refined.

Figure 22 gives the relevant information for the infinite-Pe Smith-Hutton problem with

c_ = 100. In part (a) of the figure, the error, given by Equation (31), is plotted versus N,

on a log-log scale, for first-order upwinding, ULTRA-second-order upwinding (equivalent

to the Chakravarthy-Osher scheme described by Swebyt6), ULTRA-QUICK, ULTRA-5th,

and ULTRA-7th upwind schemes, together with the ULTRA-3rd/5th/7th upwind scheme.

Desired accuracy is shown by a dashed line; for each scheme, the corresponding grid refine-

ment can be found by interpolation. This is cross-plotted onto part (b) of the figure which

gives CPU-time as a function of N for each scheme. Part (c) of the figure shows the error

incurred by each method corresponding to a prescribed CPU-time in part (b). Alternatively,

part (d) of the figure gives the CPU-time for each method corresponding to the prescribed

error in part (a).
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From theseresults, oneseesimmediately that first-order upwinding is extremely ineffi-
cient. Among the global higher-order methods,either ULTRA-QUICK or ULTRA-5th is
seento be optimal; the 7th-order schemeis significantly less efficient. The most cost-
effective strategyof all, though, is to useadaptivestencil expansionover thebasethird-order
scheme. This is becausethe wider-stencil (more expensive)higher-order computation is
automatically used very sparingly -- only where needed: in isolated narrow regions

involving a relatively few number of grid points. For flows involving only relatively smooth

profiles (such as the a = 5 infinite-Pe case), ULTRA-QUICK is again found to be optimal;

in this case, the higher-order wider stencil is not called for.

10. CONCLUSION

The Smith-Hutton problem is an excellent test of a numerical convection-diffusion scheme,

especially in the high-convection regime. Strong streamline curvature and rapid local

variation of the convected variable represent serious challenges to any numerical scheme.

The availability of exact analytical solutions in the infinite-Pe case is very useful for a

comparative error analysis. By choosing small values of or, the test-problem can be used

for simulating smooth-function behaviour, as well. The present formulation of the problem

uses a staggered grid, interleaving streamfunction and scalar nodes. Particular attention is

paid to the outflow boundary condition, assuring (aT/ay)o = 0, consistent with local

parabolic behaviour. The solution algorithm is based on explicit time-marching until a

steady state is reached, although ADI tridiagonal solution of the steady equations can also
be used 13.

Exponential-based schemes such as Spalding's Hybrid 2, Patankar's PLDS 3, or the

algebraic approximation of Raithby and Schneider n, all revert to first-order upwinding for

convection with modelled physical diffusion (computed but) ignored or suppressed wherever

the local component grid Peclet number exceeds 2 (Hybrid) or about 6 (for the other

schemes, including EDS itself). For most flows of practical interest, the grid Peclet number

is likely to be far greater than 2 or 6 throughout most of the flow-field; under these

conditions, exponential-based schemes are functioning as first-order upwinding almost every-

where. The inherent artificial diffusion of such schemes is clearly evident, especially in the

large-Pe cases. Slow grid-refinement convergence is also observed; this raises serious ques-

tions regarding grid-refinement claims made in support of exponential-based schemes. Such

methods should be viewed as of historical interest only -- and should not be used for serious

practical applications.

Second-, third-, and higher-order upwind methods share a number of similar properties:

as the order is increased, transition resolution becomes sharper, but overshoots and under-

shoots become more pronounced, with secondary ripples forming in the case of very-high-

order schemes. Smooth function and low-Pc performance was seen to be generally very

good, with error decreasing with order. The two-dimensional third-order (QUICK) scheme
introduces transverse-curvature terms into the convective fluxes. Other calculations have

shown that omission of these terms can incur significant error unless the grid is extremely

fine. As used in this study, higher-order schemes retain the third-order transverse curvature

terms but omit higher-order transverse and other cross-difference terms; these are costly,
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algorithmically complex, and seem to have very little effect on the solution. It was also
found unnecessary to extend diffusion modelling beyond second order.

The main draw-back of higher-order schemes is the generation of spurious unphysical

overshoots and undershoots each side of sharp transition regions. This appears to be the
main reason for a lack of interest in such methods as compared with essentially first-order

schemes that produce monotonic, albeit extremely artificially diffusive, results. But it is a

relatively straight-forward task to incorporate monotonizing flux-limiters into higher-order

schemes, using the concept of a universal limiter, as described in § 7. In terms of locally

normalized variables, the universal limiter diagram is a simple triangular region with linear

extensions on each side. When applied to higher-order convective fluxes, the universal

limiter produces strictly monotonic results without introducing artificial diffusion and

concomitant numerical spreading of (what should be sharp) transition regions. The tightness

of the transition resolution increases as the order of the underlying scheme is increased.

Using a higher-order ULTRA scheme was seen to be a better strategy than relying on arti-
ficial compression. The negative artificial diffusion inherent in second-order artificial-

compression methods such as Ultra-B is responsible for extremely tight resolution of near-
discontinuities; however, as was seen, it tends to distort smooth profiles into a series of

ramps and plateaus. In a recent paper, Tzanos t7 has also solved the Smith-Hutton problem

using a third-order convection scheme with a simple limiting strategy essentially equivalent

to ULTRA-QUICK (but without transverse curvature terms). Tzanos' paper also gives

formulas for a variable (adaptive) grid. The results (for t_ = 10 and Pe = 1000 or 10) are

very similar to ULTRA-QUICK results for the same parameter values (slight differences are

due to transverse-curvature terms and different treatment of numerical boundary conditions).

Among higher-order ULTRA schemes used globally, ULTRA-QUICK and ULTRA-5th
were seen to be the best schemes in terms of cost-effectiveness: either lowest cost for a

prescribed accuracy or lowest error for a prescribed cost, as the grid is refined. Adaptive

stencil expansion -- using ULTRA-QUICK as the base scheme and automatically expanding

the computational stencil to a higher-order ULTRA scheme locally (as needed) -- was seen

to be an extremely cost-effective technique, giving between fifth- and seventh-order accuracy

for little more cost than that of the underlying third-order scheme. Optimal setting of the

non-smoothness monitor thresholds requires some experimentation for each new problem;

but it appears likely that a more general strategy will evolve as experience is gained with this
new technique.

The ULTRA-SHARP strategy is ideally suited to steady-state Navier-Stokes calcula-
tions, as well is. If a turbulence model is used, the physics of the model is faithfully

represented. Very narrow shear-layers can be accurately simulated without fear of artificial

smearing or oscillation. It is a straight-forward exercise to extend the algorithms to three

dimensions; and because of the high accuracy obtainable on very coarse grids, reliable three-

dimensional simulations should soon become practicable for routine engineering calculations.
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Figure 1.mStreamline pattern and inlet temperature profile.
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(a) a = 100.

i /

Co) a=5.

Figure 2.--Three-dimensional portrayal of T(x_) for the infinite-Pe solution.
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(a) _ = 100, % = 0.135.

(b) o== 5, _; = 0.073.

Figure 7.--Infinite-Pe results for exponential-based schemes (equivalent to
first-order upwinding) on a 40x20 mesh.
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Figure 8.--Inlet and outlet temperature
profiles for ,1,-- 100 using PLDS.
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(a) _ = 100, % = 0.062.

(b) a = 5, % = 0.014.

Figure 9.--Infinite-Pe results for second-order upwinding on a 40x20 mesh.
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Figure lO.--Inlet and outlet profiles for

= 100 using second-order upwinding.
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(a) c_= 100, % = 0.045.

(b) a = 5, % = 0.005.

Figure 1l.mlnfinite-Pe results using the QUICK scheme on a 40x20 mesh.
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Figure 12.--Inlet and outlet profiles for

= 100 using the QUICK scheme.
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i
(a) a -- 100, % = 0.036.

(b) a = 5, % = 0.003.

Figure 13.mlnfinite-Pe results using fifth-order upwinding on a 40x20 mesh.
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Figure 15.nPortmyal of the universal-limiter constraints in the normalized-
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(a)a = 100, % = 0.034.

(b) _ - 5, % = 0.005.

Figure 16.--Infinite-Pe results using ULTRA-QUICK on a 40x20 mesh.
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scheme.
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(a) a = 100, % = 0.024.

(b) a = 5, _; = 0.013.

Figure 19.--Infinite-Pe results using the Ultra-B scheme on a 40x20 mesh.
Note the artificial steepening and clipping in case (b).
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(a) a = 100, % = 0.024.

(b) o== 5, % = 0.004.

Figure 20.--Infinite-Pe results using the ULTRA-3/5/7 adaptive-stencil-
expansion method on a 40x20 mesh.
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