DEVELOPMENT OF TEST-ANALYSIS MODELS (TAM) FOR CORRELATION OF DYNAMIC TEST AND ANALYSIS RESULTS

Filippo Angelucci, Mehzad Javeed, and Paul McGowan

February 1992
Table of contents

Acknowledgements ... 3

1. Introduction .. 5

2. Reduction methods .. 7
 2a. Guyan Reduction ... 9
 2b. IRS Reduction ... 9
 2c. Hybrid Reduction ... 10

3. Correlation Criteria ... 11

4. MSC/NASTRAN TAM Creation/Verification Process 13
 a) Solution of the FEM - (Solution 63 with Alter) 14
 b) Creation and solution of the TAM - (Solution 63 with Alter) 15
 c) Write the TAM mass and mode shape matrices - (DMAP) 15
 d) Partition FEM mass and mode shape matrices - (DMAP) 15
 e) Correlation between modal parameters of the TAM and the FEM - (DMAP and FORTRAN program) 16
 f) Correlation between modal parameters of the TAM and the test model - (DMAP and FORTRAN program) 16

5. Case Study - Ten-bay Truss Structure 18

5.1 Truss structure description .. 18

5.2 Test-analysis correlation process ... 20
 a) Solution of the FEM - (Solution 63 with Alter) 21
 b) Creation and solution of the TAM - (Solution 63 with Alter) 21
 c) Write the TAM mass and mode shape matrices - (DMAP) 22
 d) Partition FEM mass and mode shape matrices - (DMAP) 23
 e) Correlation between modal parameters of the TAM and the
ACKNOWLEDGEMENTS

The DMAP sequences that are utilized in this work were provided by the Structural Dynamics Research Corporation, Engineering Services Division, San Diego, California.
1. Introduction

The primary objective of structural analysis for aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be then used to perform loads analysis, evaluate structural modifications or design control systems. The most general approach to obtain a verified FEM involves testing a structure to create a "test model", then, correlating the test and finite element models to assess the fidelity of the FEM representation. If necessary, an update of the finite element model to better represent the test model can be performed. In this paper only the correlation of test and finite element models will be addressed.

The test-analysis correlation involves comparison of structural and modal properties derived from the test and finite element models. Since the number of Degrees-Of-Freedom (DOF) in the FEM is usually much larger than the number of DOF measured in the test, there is a need to adopt one of the following two approaches:

1) reduce the finite element model to the size of test model, or
2) expand the test mode shapes to the size of the FEM mode shapes.

A reduced finite element model with the same DOF as the test model, is called a Test-Analysis Model (TAM). In addition to providing a one-to-one basis correlation of analysis and test data, there are several reasons for developing a reduced TAM as opposed to expanding the test mode shapes. For example, reduced models have a smaller number of DOF and are, therefore, easier to handle computationally. Also, pre-test analysis can be performed using the reduced model to select sensor and excitation locations for the test. The relationships among the FEM, the TAM, and the test model concepts are shown in Figure 1.
A TAM must represent, as closely as possible, the dynamic characteristics of the FEM. To evaluate the fidelity of the FEM, the TAM modal parameters are compared with those measured in the test. The objective of this paper is to give a brief overview of the methods and procedures used to obtain the TAM and to correlate the modal parameters of the reduced systems to results obtained by both the FEM analysis and the test. First, a description of the characteristics of three reduction methods used to develop a TAM will be given. Some of the most common correlation criteria used to evaluate the accuracy of the TAM will then be described. Next, the procedures used for the creation and the verification of the different TAM's using MSC/NASTRAN will be described, along with a practical application on a laboratory truss structure. Finally, documentation on the availability of the software tools to create the TAM for each of the methods mentioned above will be presented.
2. Reduction methods

Several different reduction methods to create a TAM have been developed and reported in the literature [1-11]. A general classification that is often used, identifies two main groups, static and dynamic, depending on the kind of information used to develop the reduced model. The static methods utilize information directly from the FEM mass and stiffness matrices to develop the TAM, and, therefore, do not need any information from the eigenvalue solution of the FEM. The Guyan [1,2] and the Improved Reduced System (IRS) [3,4] reduction methods are included in this category. The dynamic methods, on the other hand, require knowledge of the eigenvalues/eigenvectors of the FEM to develop the TAM. The Dynamic [6,7,8], the Modal [9], the Hybrid [5], and the System Equivalent Reduction Expansion Process (SEREP) [10] formulations belong to this group.

To develop a TAM, reduced mass and stiffness matrices must be created (for simplicity damping is ignored). This is accomplished through the utilization of a transformation matrix, D, which relates the DOF retained in the analysis set to those DOF omitted. Each reduction method uses a different transformation matrix D, thus distributing the mass and stiffness information of the omitted DOF in different ways. However, the solution procedure for the reduced systems is identical for each method after D has been developed. This is illustrated in Figure 2, where the M_{FEM} and K_{FEM} are the $n\times n$ system mass and stiffness matrices respectively, M_{TAM} and K_{TAM} are the corresponding $r\times r$ matrices for the TAM, and U is a vector of physical DOF of length n or r.
FEM EQUATION OF MOTION:
\[M_{FEM} \ddot{U}_{FEM} + K_{FEM} U_{FEM} = 0 \]

PARTITION FEM DOF
\[U_{FEM} = \begin{bmatrix} U_{TAM} \\ U_o \end{bmatrix} \]
\[K_{FEM} = \begin{bmatrix} K_{aa} & K_{ao} \\ K_{oa} & K_{oo} \end{bmatrix} \]
\[M_{FEM} = \begin{bmatrix} M_{aa} & M_{ao} \\ M_{oa} & M_{oo} \end{bmatrix} \]

RELATE OMITTED DOF TO TAM DOF
\[U_o = TU_{TAM} \]

DEVELOP TRANSFORMATION MATRIX FOR TAM
\[T = \begin{bmatrix} I \\ D \end{bmatrix} \]
\[U_{FEM} = TU_{TAM} \]
\[\begin{bmatrix} U_{TAM} \\ U_o \end{bmatrix} = \begin{bmatrix} I \\ D \end{bmatrix} U_{TAM} \]

CREATE TAM MATRICES
\[M_{TAM} = T^T M_{FEM} T = M_{aa} + D^T M_{ao} + M_{oo} D + D^T M_{ao} D \]
\[K_{TAM} = T^T K_{FEM} T = K_{aa} + D^T K_{ao} + K_{oo} D + D^T K_{ao} D \]

TAM EQUATION OF MOTION
\[M_{TAM} \ddot{U}_{TAM} + K_{TAM} U_{TAM} = 0 \]

Note: \(a = \) TAM DOF
\(o = \) Omitted DOF

Figure 2 - Development of TAM from FEM.

Among the reduction methods previously described, this document will address three: the Guyan [1,2], the IRS [3,4], the Hybrid [5]. The following sections briefly describe each method, however, for an in-depth study of the mathematics of these methods and of other available reduction methods, the references [1-11] at the end of this document should be consulted.
2a. Guyan Reduction

The most commonly used static reduction method is the Guyan reduction. This method is attributed to Guyan (1965)[1] and Irons (1965)[2]. This formulation assumes that the displacements of the omitted DOF can be represented, in terms of DOF of the TAM, entirely by static information contained in the stiffness matrix. This is meant to preserve the strain energy distribution of the full system, thus yielding an exact reduction for statics. However, it neglects the inertial effects of the omitted DOF, thus it is only approximate for dynamics. Another simplifying assumption of this method is the fact that both the stiffness and the mass matrices use the same transformation. Nonetheless, the Guyan method is used extensively and is commonly found in finite element codes such as MSC/NASTRAN [11]. The reduction equations derived from Guyan are:

\[D_s = -K_{ao}^{-1} K_{aa} \]

\[K_{TAMS} = K_{aa} + K_{ao} D_s \]

\[M_{TAMS} = M_{aa} + M_{ao} D_s + D_s^T [M_{oa} + M_{oo} D_s] \]

where, \(D_s \) is the Guyan transformation matrix, and \(K_{TAMS} \) and \(M_{TAMS} \) are the reduced stiffness and mass matrices derived from using the Guyan reduction method.

2b. IRS Reduction

The Improved Reduced System (IRS) method is attributed to O'Callahan (1989) and was developed as an improvement over the Guyan method since it accounts for mass effects of the omitted DOF [3,4]. Essentially, the IRS method first uses Guyan reduction to develop an initial approximation of the reduced system, and then adds a correction factor to account for inertial effects of the omitted DOF. This method aims to preserve the strain and kinetic energy distribution of the full system. The following are the basic equations of the IRS method:
\[D_{IRS} = D_s + K_{oo}^{-1}(M_{ao} + M_{oo}D_s)M_{TAMS}K_{TAMS} \]

\[K_{TAM_{IRS}} = K_{oo} + D_{IRS}^T K_{oo} + K_{ao}D_{IRS} + D_{IRS}^T K_{oo} D_{IRS} \]

\[M_{TAM_{IRS}} = M_{ao} + M_{oo}D_{IRS} + D_{IRS}^T M_{ao} + M_{oo} D_{IRS} \]

where, \(D_{IRS} \) is the reduced IRS transformation matrix, \(K_{TAM_{IRS}} \) and \(M_{TAM_{IRS}} \) are the TAM stiffness and mass matrices of the IRS reduction method. Note that the IRS transformation matrix reduces to the Guyan transformation matrix when mass terms are neglected.

2c. Hybrid Reduction

The Hybrid method was developed by Kammer (1991)[5] as an improvement of the previously developed modal reduction method also by Kammer (1987)[9]. This method utilizes eigenvectors of the original FEM to create the transformation matrix. This reduced model represents exactly the eigenvalues/eigenvectors of the FEM for those modes that are included in the transformation matrix. Hence a drawback of this method is the eigensolution of the FEM must be known in advance. The characteristic equations of this method are:

\[D_M = D_s + [D_M - D_s][\phi_a \phi_a^T M_M] \]

where

\[D_M = \phi_a \phi_a^T \]

and,

\[M_M = M_{aa} + D_M^T M_{ao} + M_{ao} D_M + D_M^T M_{oo} D_M \]

from which:
\[
K_{\text{TAM}_H} = K_{ao} + D_{II}^{T}K_{ao} + K_{ao}D_{II} + D_{II}^{T}K_{ao}D_{II}
\]
\[
M_{\text{TAM}_H} = M_{ao} + D_{II}^{T}M_{ao} + M_{ao}D_{II} + D_{II}^{T}M_{ao}D_{II}
\]

where, \(D_{II}\) is the Hybrid transformation matrix, \(K_{\text{TAM}_H}\) and \(M_{\text{TAM}_H}\) are, respectively, the stiffness and the mass matrices (of dimension \(r \times r\)) for the Hybrid reduction method; \(\phi_s\) and \(\phi_o\) are the partitions of the FEM mode shapes corresponding to the TAM and omitted DOF.

3. Correlation Criteria

The correlation process involves a mathematical comparison of modal properties from the reduced models with those from the full FEM or from the tests. There are several parameters used for correlation [12,13,14]. Herein, four of these criteria have been selected for evaluation: 1) frequency error, 2) modal assurance criterion, 3) cross-orthogonality, and 4) orthogonality. In the following, these criteria are presented for the correlation of the FEM and the TAM models, however, they are also valid for correlating the TAM and the test models (in this case the subscript "FEM" should be replaced with "TEST").

1. **Percent frequency error**, \(F_{\text{error}}\), between the FEM and the TAM modes,

\[
F_{\text{error}} = \left(\frac{F_{\text{FEM}} - F_{\text{TAM}}}{F_{\text{FEM}}}\right) \times 100\%
\]

where,

- \(F_{\text{FEM}}\) = FEM system mode frequency, (Hz)
- \(F_{\text{TAM}}\) = TAM system mode frequency, (Hz)

The frequency error is a primary indicator used to establish the accuracy of the TAM in predicting the FEM system modes.
(2) **Modal Assurance Criterion (MAC):** spatial correlation of the TAM mode shapes and the partitioned FEM mode shapes. From [15],

\[
MAC = \frac{(\phi_{FEM}^T \phi_{TAM})^2}{(\phi_{FEM}^T \phi_{FEM})(\phi_{TAM}^T \phi_{TAM})}
\]

where,

\[
\phi_{FEM} = \text{FEM mode shapes corresponding to the TAM DOF} \\
\phi_{TAM} = \text{TAM mode shapes}
\]

The **MAC** is used to evaluate the similarity of the FEM and the TAM mode shapes. A **MAC** value of zero indicates that two modes are orthogonal, whereas a **MAC** value of one indicates that the mode shapes are identical within a scale factor.

(3) **Cross-orthogonality (XO)** between the TAM modes and the FEM modes corresponding to the TAM DOF:

\[
XO = \phi_{FEM}^T M_{TAM} \phi_{TAM}
\]

where,

\[
\phi_{FEM} = \text{FEM mode shapes corresponding to the TAM DOF} \\
M_{TAM} = \text{TAM mass matrix} \\
\phi_{TAM} = \text{TAM mode shapes}
\]

The **XO** provides a mass weighted correlation of the TAM and the FEM mode shapes. This indicates whether the reduced system accurately predicts the shape of a mode as well as the relative motion of the various masses on the structure. The mass weighting is provided by the reduced TAM mass matrix, thus any errors due to the reduction process will be magnified since they will appear in both \(\phi_{TAM} \) and \(M_{TAM} \).
(4) Orthogonality (ORTHO): provides a correlation of the partitioned FEM
modes weighted by the TAM mass matrix. This indicates whether the
FEM modes remain orthogonal with respect to the TAM mass matrix,

\[ORTHO = \phi_{FEM}^T M_{TAM} \phi_{FEM} \]

where,

\[\phi_{FEM} = \text{FEM mode shapes corresponding to the TAM DOF} \]
\[M_{FEM} = \text{TAM mass matrix} \]

If the eigenvectors are normalized with respect to the full system mass matrix,
the XO and ORTHO criteria should yield diagonal matrices with all diagonal
elements equal to one. Accordingly, for the reduced system any deviation of the
diagonal elements from unity indicates an inaccuracy resulting from the
reduction process.

4. MSC/NASTRAN TAM Creation/Verification Process

The following paragraphs describe the implementation, in MSC/NASTRAN
(V65C) of the creation and verification process of the TAM using the three
reduction methods described previously. The process has been divided into a
series of six steps which will be examined in detail one at a time. The
NASTRAN model file for each reduction method includes several DMAP alters
and instructions (for a non-superelement model). A complete listing of them can
be found in Appendix II. Several utility programs are also available for post
processing the intermediate and final results.

Each of the six steps, constituting the overall TAM creation/verification process,
is briefly listed below, with a detailed explanation of each following.

a) Determine the modal parameters of the structure by solving the FEM
representation.
b) Select the TAM DOF to be retained; create the TAM; and determine the modal parameters of the reduced model.

c) Write the mass and mode shape matrices of the TAM.

d) Partition the FEM mode shape matrix to match the degrees of freedom retained in the TAM.

e) Perform correlation analysis between the modal parameters obtained from the TAM and from the FEM.

f) Perform correlation analysis between the modal parameters obtained from the TAM and the Test model.

This process is described in detail in the flow chart included in Appendix I. Also included in Appendix I is a list of commands required to execute the various steps.

a) Solution of the FEM - (Solution 63 with Alter)

The first step of the TAM creation/verification process is to obtain the eigenvalue and eigenvector solution of the complete FEM (Solution 63 of MSC/NASTRAN 65C). The FEM mode shapes that result from this run must be stored in two NASTRAN files that are created by the DMAP alter RF63D307.DAT, which assigns the two OUTPUT2 files to units 11 and 12. The OUTPUT2 file assigned to unit 11 contains the mode shapes in the global coordinate system while unit 12 stores them in the displacement coordinate system. Upon successful completion of this run, the OUTPUT2 file assigned to unit 12 must be converted to an OUTPUT4 file format for latter use in step d (note: the TAM derived from the Hybrid reduction does not require the execution of steps c, d, and e because the alter for step b computes the correlation matrices directly). The utility program that converts the NASTRAN OUTPUT2 file to an OUTPUT4 file format is SEMCOMB, which also combines the mode shape coefficients into a single set.
b) Creation and solution of the TAM - (Solution 63 with Alter)

In order to create and solve the TAM, the retained DOF must first be identified and then specified using ASET cards in the NASTRAN bulk data deck. The same ASET cards can be used independent of the reduction method employed. Since the default reduction method in NASTRAN is Guyan, the specification of TAM DOF on the ASET cards along with the Solution 63 run is all that is needed to create and solve the Guyan-reduced model. The IRS and the Hybrid reduction methods require the IRSRED63.ALT alter, and the HRED63.ALT alter, respectively for Solution 63. Since the Hybrid method utilizes the FEM mode shapes to create the transformation matrix, the FEM mode shapes computed as part of step a must also be included in this process. These mode shapes are stored in an OUTPUT4 file that is assigned to unit 11. The OUTPUT4 mode shape file is available as the result of running the SEMCOMB utility program mentioned in step a. As mentioned above in the case of Hybrid TAM all the required mass and mode shape matrices are already available, therefore the correlation analysis is performed as part of step b.

c) Write the TAM mass and mode shape matrices - (DMAP)

Upon successful completion of the TAM solution, the TAM mass and mode shape matrices are extracted from the NASTRAN database (created in step b) and stored in utility files to perform the correlation analysis. Once the WTTAM.DMP DMAP has been executed, these matrices will be retrieved and stored in two OUTPUT4 files. The mass matrix is stored in the file assigned to unit 11, while the mode shapes are stored in the file assigned to unit 12. As previously explained this step does not apply to the TAM obtained from the Hybrid reduction method.

d) Partition FEM mass and mode shape matrices - (DMAP)

The partitioning of the original FEM mode shape matrix to include only the DOF of the TAM is necessary for the correlation analysis of the next two steps. This is
performed running the PARTNMODX.DMP NASTRAN DMAP instruction set. This DMAP sequence operates on the mode shapes of the original FEM by selecting the TAM DOF previously chosen in the original FEM bulk data using the ASET cards. The original FEM mode shapes are stored in the OUTPUT4 file assigned to unit 11 that was created in step a as the result of running the SEMCOMB program. The partitioned FEM mode shapes are stored in OUTPUT4 file format in the file assigned to unit 12. As for the preceding step neither does this one have to be applied to the TAM obtained from the Hybrid reduction method.

e) Correlation between modal parameters of the TAM and the FEM - (DMAP and FORTRAN program)

This step requires as an input the TAM mass and mode shape matrices and the partitioned FEM mode shape matrices. The CORL8X.DMP NASTRAN DMAP sequence computes the Modal Assurance Criterion (MAC), the cross-orthogonality, and the orthogonality matrices used in the correlation. Upon successful completion of the correlation run the NASTRAN output results can be reformatted with the NASTABLE utility program for a more acceptable appearance. Also the correlation analysis associated with the Hybrid TAM, performed as part of the solution of step b can be given a more readable format with the NASTABLE utility program.

f) Correlation between modal parameters of the TAM and the test model - (DMAP and FORTRAN program)

The correlation of the TAM and test models is the same as the correlation of the TAM and the FEM with one exception: the partitioned FEM mode shapes are replaced by the test mode shapes. Therefore, a NASTRAN OUTPUT4 file that contains the test mode shapes must be created. First, the test mode shapes must be stored in an SDRC Universal file [16] named TEST_ORIG.UNV. Then an ASCII file (called UNVRNM.INP), that shows the relationship between the test GRID labels and analysis GRID labels, must be created. Each line of this file contains a test GRID label in column one followed by a space and the corresponding TAM GRID label in column two. If a corresponding TAM
GRID label does not exist, a value of -1 must be entered in the analysis column. The \texttt{UNVRNM.INP} file is used as an input file, together with the \texttt{TEST_ORIG.UNV} file, for the \texttt{UNVRNM} utility program. This utility program renames the GRID labels in the \texttt{TEST_ORIG.UNV} file, according to the relationship specified in \texttt{UNVRNM.INP}. The program also creates \texttt{TEST.UNV} a Universal file which contains test mode shapes whose DOF correspond to the TAM DOF.

Next, a file that contains the test DOF in NASTRAN Direct Matrix Input (DMI) format must be created by the utility program \texttt{UNVDNI}. The inputs required for \texttt{UNVDNI} are the test mode shapes, the coordinate systems, and the GRID label cards of the FEM (including the TAM DOF specified in the ASET cards). The test mode shapes are contained in the \texttt{TEST.UNV} file, while the coordinate and grid cards must be stored in a user-supplied file called \texttt{GRIDS.BLK}. The output file that contains the Direct Matrix Input data must be named \texttt{TEST.DMI}.

It is now possible to run NASTRAN so that the test DOF that are in Direct Matrix Input format are converted to an OUTPUT4 file. However, the NASTRAN input file must contain the DMAP instruction set \texttt{PHIATEST.DMP} along with the information in \texttt{TEST.DMI}. Also the NASTRAN database (TAM.D01), that was created as the result of the TAM solution run, must be assigned in this run to database file 2 (DB02). Upon completion of this run the test mode shapes are stored in an OUTPUT4 file called \texttt{TEST.OP4}. The last step, the correlation between the TAM and the test models, is performed following the same procedure described in step e with the changes listed below:

1) the test mode shapes must be normalized with respect to the TAM mass matrix (set param \texttt{normtest} to 1 in the bulk data cards),

2) the \texttt{TEST.OP4} (assigned to unit 13) must be substituted for the \texttt{FEM_PARTNA.OP4} file created above.
5. Case Study - Ten-bay Truss Structure

5.1 Truss structure description

In the following paragraphs a laboratory ten-bay truss structure is used as an example for the application of the test-analysis correlation process. This structure consists of ten, four-longeron truss bays, constructed of erectable aluminum joints and truss members. Various studies on this truss are being conducted in the Dynamic Scale Model Technology (DSMT) research program at NASA Langley Research Center where the structure was tested [17,18]. The ten-bay structure is cantilevered at one end and has two steel plates attached to the free end. Each bay of the truss is a cube with side dimensions of 1.64 feet. The total weight of the structure is 147.4 lbs including the weight of the end plates, 86.25 lbs. The structure that results possesses dynamic characteristics that represent those of a large space structure with low frequency, closely spaced modes and light damping. The first 9 modes of the structure, as predicted by analysis (see Figure 3), illustrate some of these features.
Figure 3. - Ten-bay truss modes.
5.2 Test-analysis correlation process

In this section the TAM creation/verification process for the ten-bay truss structure model will be presented for each of the three reduction methods described previously. The associated model files, procedures and special comments are documented for each of the steps and for each data file in Section 4. The listings of these data files for the ten-bay truss are contained in Appendix III. It should noted that the associated data files were created for NASTRAN V65C running in a VAX/VMS environment.

In the example that will be illustrated, only 14 of 360 DOF of the complete FEM (see figure 4) were selected to represent the behavior of the whole structure. This choice was made to simulate the effects of an insufficiently instrumented structure such as a large space structure, which has a limited number of sensors due to cost or damage.

![Diagram of ten-bay truss]

Note: FEM DOF = 360

Figure 4. - Ten-bay truss TAM DOF.
a) Solution of the FEM - (Solution 63 with Alter)

The complete listing of the NASTRAN input file for the ten-bay truss FEM (TENBAYFEM.DAT) is shown in Files 8 and 9 of Appendix II. File 8 contains the standard NASTRAN cards for the Executive, and Case Control, and File 9 contains the Bulk Data deck. A line-by-line description of the main additions and modifications required for File 8 are listed below:

Line 26 - The DMAP Alter RF63D307.DAT should replace line 26 of this file. These instructions are shown in File 1 of Appendix II.

Line 66 - The Bulk Data cards of File 9 should replace line 66.

The assignment file for this run (TENBAYFEM.COM) is shown in File 10 of Appendix III and the key instructions are listed below:

Line 4 - The database DB01 is assigned to file TENBAYFEM.D01.

Line 7 - FORTRAN unit 11 is assigned to file TENBAYFEM.U11, where the mode shapes in the basic coordinate system are stored in OUTPUT2 format. This file is not needed if you do not plan to use SDRC/IDEAS to plot mode shapes.

Line 10 - Likewise, unit 12 is assigned to file TENBAYFEM.U12 where the mode shapes in the displacement coordinate system are stored in OUTPUT2 format.

b) Creation and solution of the TAM - (Solution 63 with Alter)

The file that creates and solves the TAM has the same format as the file that solves the FEM. However, this NASTRAN model file, TENBAY14.DAT (File 11 of Appendix III) must include the following instructions that differ from those in the FEM data file described in the previous step.

Line 19 - This line must include the contents of the IRSRED63.ALT, this alter (File 2 of Appendix II) must be present only when using the IRS reduction.
Line 20 - The contents of HRED63.ALT (File 3 of Appendix II) must replace this line, only when the TAM is created with the Hybrid reduction method.

Line 62 - The bulk data cards of the ten-bay model should replace line 62. The bulk data cards of the FEM are shown in File 9 of Appendix III.

Line 68 - This line should be replaced by the contents of the ASET14.AST file (File 12 of Appendix III) in which the ASET cards that define the DOF retained in the TAM are listed.

File 13 of Appendix III contains the file assignment for this run (TENBAY14.COM).

Line 4 - The database DB01 is assigned to file TENBAY14.D01.

c) Write the TAM mass and mode shape matrices - (DMAP)

This DMAP extracts the mass and mode shape matrices of the ten-bay TAM from the NASTRAN database and writes them to OUTPUT4 files for the correlation analysis. The input NASTRAN file (WTTAM.DAT) is listed in File 14 of Appendix III and the following observations must be noted.

Line 17 - The DMAP instructions of WTTAM.DMP (File 4 of Appendix II) must replace this line.

Lines 28-39 - The parameters defined in these lines are necessary for this run.

File 15 of Appendix III shows the assignment file (WTTAM.COM), where:

Line 5 - The NASTRAN database file of step b (TENBAY14.D01) is identified as the database for this NASTRAN execution.

Line 9 - The OUTPUT4 file associated with unit 11 is assigned to the TAMMASS14.OP4 file. This file contains the TAM mass matrix in OUTPUT4 file format.
Line 13 - The OUTPUT4 file associated with unit 12 is assigned to the TAMMODES14.OP4 file. This file contains the TAM mode shape matrices in OUTPUT4 file format.

d) Partition FEM mass and mode shape matrices - (DMAP)

The following step partitions the FEM mode shapes to match the TAM DOF. The NASTRAN input file (PARTMODA14.DAT) for the execution of this procedure is shown in File 16 of Appendix III.

Line 16 - The PARTNMODX.DMP (File 5 of Appendix II) DMAP must replace this line.

Line 31 - The bulk data cards (File 9 of Appendix III) of the complete FEM must be present at this point.

Line 38 - The ASET cards (File 12 of Appendix III) defining the DOF to be retained in the TAM are required at this line.

The assignment file (PARTNMODA14.COM) for this run is shown in File 17 of Appendix III.

Line 4 - The OUTPUT4 file TENBAYFEM.OP4 that was created as the result of running the SEMCOMB utility program in step a is assigned to unit 11.

Line 7 - The partitioned FEM mode shapes are stored in the OUTPUT4 file (TENBAY14_PARTNA.OP4) associated with unit 12 of this run.

e) Correlation between modal parameters of the TAM and the FEM - (DMAP and FORTRAN program)

The correlation matrices between the TAM and the FEM models are computed using the NASTRAN input file CORL8TAM.DAT (File 18 of Appendix III) as follows:

Line 19 - The DMAP instructions associated with CORL8X.DMP must be on this line (File 6 of Appendix II).
Lines 30-40 - The parameters on these lines could be modified to execute or skip specific operations in the computation of the correlation matrices. The value of 1 indicates that the specific operation is to be performed, the value of -1 indicates that the specific operation should be skipped. When computing correlation matrices between the TAM and the FEM the following settings are recommended:

\[
\text{ORTHO} = 1 \quad \text{CROSS} = 1 \quad \text{MAC} = 1 \quad \text{NORMTAM} = -1 \quad \text{NORMTEST} = -1
\]

When computing correlation matrices between the TAM and the test model the following setting are recommended (note NORMTEST parameter):

\[
\text{ORTHO} = 1 \quad \text{CROSS} = 1 \quad \text{MAC} = 1 \quad \text{NORMTAM} = -1 \quad \text{NORMTEST} = 1
\]

See the CORL8X.DMP listing for a description of these parameters.

The assignment file (CORL8TAM14.COM, File 19 of Appendix III) contains the following instructions:

Line 5 - The OUTPUT4 file that contains the TAM mass matrix, created in step c, is assigned to unit 11 (TAMMASS14.OP4).
Line 9 - The OUTPUT4 file that contains the TAM mode shape matrices, also created in step c, is assigned to unit 12 (TAMMODES14.OP4).
Line 13 - The OUTPUT4 file that contains the partitioned FEM mode shapes, created in step d, is assigned to unit 13 (TENBAY14_PARTNA.OP4).

The output file of correlation analysis runs was processed through the NASTABLE utility program. Also, the correlation results from the Guyan, the IRS, and the Hybrid reduction methods were stored in the files called CORL8STAM.OUT, CORL8ITAM.OUT, and CORL8HTAM.OUT, respectively. These output files are shown in Files 20, 21, and 22 of Appendix III.
f) Correlation of TAM and test model - (DMAP and FORTRAN program)

In order to correlate the TAM and test model, the test mode shapes must be available in SDRC Universal file format. They are then converted to OUTPUT4 file format before computing the correlation matrices for the TAM and the test model. The TAM derived from the IRS method was chosen as a case study for the comparison with the test results, the correlation with the TAM derived from the other methods follows the same procedure.

File 23 of Appendix III shows a portion of the test mode shapes in the Universal file format (TEST.ORIG.UNV). Also, File 24 in Appendix III shows the content of the UNVRNM.INP file, which contains in the first column the grid labels associated with the test mode shapes and in the second column the grid labels as defined in the FEM. These files are required so that the UNVRNM utility program can match the test grid labels with those of the FEM. A portion of the modified test mode shape Universal file (TEST.UNV) is shown in File 25 of Appendix III. Since the FEM and test model of the ten-bay truss structure did not use different grid labels to represent the grids, the execution of the UNVRNM program was not necessary for this example.

The UNVDMI utility program is used to convert the test mode shapes to Direct Matrix Input format. This process requires the ten-bay bulk data cards to be stored under the filename GRIDS.BLK (File 26 of Appendix III). The test mode shapes in the Direct Matrix Input format were stored in TEST.DMI file a portion of which is shown in File 27.

The content of the TEST.DMI file along with the DMAP instructions PHIATEST.DMP (File 7 of Appendix II) were included in the NASTRAN run. The input file for this execution is shown in File 28 (PHIATEST.DAT) and the following items must be noted:

Line 13 - The DMAP instructions associated with PHIATEST.DMP should replace this line.
Line 27 - The content of TEST.DMI file should replace line 27.

The content of the PHIATEST.COM file (File 29 in Appendix III) identifies the file assignments for this run and the following observations should be noted:

Line 3 - The NASTRAN database filename is identified at this line.

Line 6 - The TAM database filename (TAM.D01) that was created in step b is identified here. This database will have a 'read only' status (see line 1 of PHIATEST.DAT).

Line 9 - The OUTPUT4 file that contains the test mode shapes is assigned to unit 11 (TEST.OP4).

Upon successful completion of the PHIATEST run, the test mode shapes are stored in an OUTPUT4 file called TEST.OP4.

The next step is the computation of the correlation matrices between the TAM and the test model. The input file CORL8_TAM_TEST.DAT for this run is shown in File 30, and the file assignments are specified in the CORL8_TAM_TEST.COM file shown in File 31.

The output file of the correlation analysis run was processed through the NASTABLE utility program, and the results using the IRS reduction method are stored in the file called CORL8_I_TAM_TEST.OUT (File 32).

5.3 Discussion of correlation results

a) Discussion of FEM-TAM correlation results

Assessing the quality of the correlation analysis is one of the most important phases of the test-analysis correlation process. The first step consists of comparing the frequencies predicted by the TAM with the system frequencies of the original FEM, as shown in Table 1. The next step is the computation of the correlation matrices, i.e., the modal assurance criterion, the cross-orthogonality,
and the orthogonality; these matrices are shown in Files 20, 21, and 22 of Appendix III respectively.

Table 1. - Comparison of TAM predicted frequencies.

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>FEM Freq (Hz)</th>
<th>Guyan Freq (Hz)</th>
<th>Guyan %Diff</th>
<th>IRS Freq (Hz)</th>
<th>IRS %Diff</th>
<th>Hybrid Freq (Hz)</th>
<th>Hybrid %Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.073</td>
<td>4.073</td>
<td>0.000</td>
<td>4.073</td>
<td>0.000</td>
<td>4.073</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>4.139</td>
<td>4.139</td>
<td>0.000</td>
<td>4.139</td>
<td>0.000</td>
<td>4.138</td>
<td>-0.024</td>
</tr>
<tr>
<td>3</td>
<td>26.856</td>
<td>27.053</td>
<td>-0.734</td>
<td>26.857</td>
<td>0.004</td>
<td>26.857</td>
<td>0.004</td>
</tr>
<tr>
<td>4</td>
<td>35.412</td>
<td>36.603</td>
<td>-3.363</td>
<td>35.414</td>
<td>0.006</td>
<td>35.412</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>37.274</td>
<td>39.042</td>
<td>-4.743</td>
<td>37.278</td>
<td>0.011</td>
<td>37.274</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>46.833</td>
<td>*</td>
<td>*</td>
<td>46.962</td>
<td>0.275</td>
<td>46.834</td>
<td>0.002</td>
</tr>
<tr>
<td>7</td>
<td>86.279</td>
<td>94.782</td>
<td>-9.855</td>
<td>86.440</td>
<td>0.187</td>
<td>86.279</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>89.434</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>89.434</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>94.070</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>94.070</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* - Did not predict the mode.

Ideally, the best correlation would yield a frequency difference of zero, and the normalized correlation matrices should be diagonal, have values of one on the main diagonal (in the ten-bay example the arbitrary value of 100 was chosen), and zero on the off-diagonals. Hence, the greater the deviation from these values the poorer the representation of the TAM. The frequency differences and the correlation matrices of the ten-bay example show clearly that the Guyan-derived TAM predicts only six of the first nine modes of the original FEM, and also, that the frequency errors increase for higher modes. In the IRS-derived TAM there is an improvement over Guyan since seven of the first nine modes of the original FEM are predicted, and the corresponding frequency error are much smaller. By definition, the Hybrid method-derived TAM predicts all the first nine modes exactly because these modes are used to create it. Note that, even though there are no axial degrees-of-freedom represented in the TAM models, the IRS and the Hybrid TAM still predict the axial mode (6th mode). This
phenomenon is due to the coupling between the axial and the transverse directions, and results in non-zero components for the axial mode.

b) Discussion of TAM-test correlation results

The IRS-TAM and the test mode frequencies and the corresponding frequency difference are shown in Table 2.

Table 2. - Comparison of the IRS TAM predicted frequencies with test frequencies.

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>TAM Freq (Hz)</th>
<th>Test Freq (Hz)</th>
<th>%Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.073</td>
<td>3.91</td>
<td>4.002</td>
</tr>
<tr>
<td>2</td>
<td>4.139</td>
<td>3.98</td>
<td>3.841</td>
</tr>
<tr>
<td>3</td>
<td>26.857</td>
<td>25.78</td>
<td>4.010</td>
</tr>
<tr>
<td>4</td>
<td>35.414</td>
<td>35.37</td>
<td>0.124</td>
</tr>
<tr>
<td>5</td>
<td>37.278</td>
<td>37.00</td>
<td>0.746</td>
</tr>
<tr>
<td>6</td>
<td>46.962</td>
<td>45.72</td>
<td>2.645</td>
</tr>
<tr>
<td>7</td>
<td>86.440</td>
<td>88.92</td>
<td>-2.869</td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>88.50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>92.50</td>
<td></td>
</tr>
</tbody>
</table>

* - Did not predict the mode.

As indicated in this comparison of frequencies an acceptable correlation between the FEM and the test model can be noticed. However, the analysis of the correlation matrices (File 32 of Appendix III) shows that a good correlation exists only for the first 5 modes (the diagonal terms are 100 and almost all the off-diagonal terms are zero or approximating zero), while the other two modes that have been predicted, the 6th and the 7th, display different values from 100 on the diagonal and more non-zero terms on the off-diagonal. This reflects a poorer correlation between the IRS TAM and the test for these two modes. If a better representation of the FEM is needed the TAM should include a greater
number of DOF. But, if the FEM fails to represent accurately the test model the FEM must be updated first, in order to provide an accurate TAM.

6. Software location

The files listed in Appendix II and III are available on the Spacecraft Dynamics Branch IMAT cluster, in the IMATDIR directory, at Langley Research Center.

7. Summary

This paper describes the main features of three reduction methods and the correlation criteria used to evaluate the TAM accuracy. A major emphasis of the paper is a description of the procedures necessary for creation of the TAM and for correlation of the reduced models with the FEM or with the test results. Computational tools for the test-analysis correlation using MSC/NASTRAN are also described in the paper and made available for future reference and modification. Application of these tools is demonstrated with an experimental test configuration of a ten-bay cantilevered truss structure. Test-analysis correlation results are presented using the IRS reduction method.

8. References

Appendix I

Creation/verification process flow chart and list of commands
TEST ANALYSIS MODEL (TAM) CREATION/VERIFICATION PROCESS

STEP 1: SOLVE COMPLETE FEM MODEL - (Solution 63 with Alter)

- **FEM.DAT (***)**
- **FEM.COM (****)**

 Run NASTRAN "FEM"

- **FEM.U11**

 Run SEMCOMB.COM

- **FEM.U12**

 Run SEMCOMB.COM

(*) MUST INCLUDE THE ALTER ALT RF63D307.DAT
(**) ASSIGNS FEM.D01, FEM.U11 AND FEM.U12
SEMCOMB PROGRAM = COMBINES THE SUPERELEMENT PLOTS.

STEP B: SOLVE TAM (REDUCED FEM) MODEL - (Solution 63 with Alter)

- **TAM.DAT (***)**
- **TAM.COM (****)**

 Run NASTRAN "TAM"

(*) MUST INCLUDE ASET AND BULK DATA, AND IF CREATING IRS INCLUDE IRSRED63.ALT;
IF CREATING HYBRID INCLUDE HRED63.ALT (NO OTHER STEPS ARE NECESSARY FOR HYBRID; THE CORRELATION MATRICES ARE IN FILE TAM.F06)
(**) ASSIGNS TAM.D01

STEP C: WRITE MASS & MODE SHAPE MATRICES OF TAM MODEL - (DMAP)

- **WTTAM.DAT (***)**
- **WTTAM.COM (****)**

 Run NASTRAN "WTTAM"

(*) MUST INCLUDE THE DMAP WTTAM.DMP
(**) ASSIGNS TAM.D01, TAMMASS.OP4 AND TAMMODES.OP4
TAM DATABASE CREATED IN STEP 2 (TAM.D01) IS USED IN WTTAM RUN.
STEP 4 - PARTITIONING FEM MODE SHAPES TO TAM DOFS - (DMAP)

```
PARTNMODA.DAT (*) ➔ RUN NASTRAN "PARTNMODA"
PARTNMODA.COM (**) ➔ PARTNMODA.DAT

PARTNMODA.DAT (*) ➔ NASTRAN OUTPUT FILE
PARTNMODA.COM (**) ➔ PARTNMODA.F06
PARTNMODA.F06 ➔ FEM_PARTNA.OP4

(*) MUST INCLUDE THE ASET, BULK DATA AND THE DMAP PARTNMODA.DMP
(**) ASSIGNS FEM.OP4, FEM_PARTNA.OP4

FEM.OP4 FILE (OUTPUT 4 FORMAT) GENERATED IN STEP 1 IS USED
IN PARTNMODA RUN.
```

STEP 5 - CORRELATING TAM & FEM MODELS - (DMAP and FORTRAN program)

```
CORL8TAM.DAT (*) ➔ RUN NASTRAN "CORL8TAM"
CORL8TAM.COM (**) ➔ CORL8TAM.DAT
CORL8TAM.DAT (*) ➔ CORL8TAM.COM (**) ➔ CORL8TAM.F06
CORL8TAM.F06 ➔ RUN NASTABLE ➔ CORL8TAM.OUT

(*) MUST INCLUDE THE DMAP CORL8TAM.DMP.
(**) ASSIGNS TAMMASS.OP4, TAMMODES.OP4 AND FEM_PARTNA.OP4

MASS & MODE SHAPE MATRICES OF TAM MODEL (TAMMASS.OP4 AND
TAMMODES.OP4) FROM STEP 3 AND PARTITIONED MODE SHAPES OF COMPLETE
MODEL (FEM_PARTNA.OP4) FROM STEP 4 ARE USED IN CORL8TAM RUN.
NASTABLE PROGRAM = REWRITES ORTHO, X-ORTHO, AND MAC MATRICES IN
EASY TO READ FORMAT.
CORL8TAM.OUT FILE = CONTAINS THE ORTHO, X-ORTHO, AND MAC MATRICES.
```
CORRELATING TAM & TEST MODELS - (DMAP and FORTRAN program)

STEP 1

1. **UNVRNM.INP**
2. **TEST.ORIG.UNV**
3. **RUN UNVRNM.COM**
4. **GRIDS.BLK**
5. **TEST.UNV**

6. **RUN UNVDMI.COM**
7. **TEST.DMI**
8. **PHIATEST.COM**
9. **PHIATEST.DAT**

STEP 2

1. **RUN NASTRAN “PHIATEST”**
2. **TEST.OP4**
3. **PHIATEST.D01**
4. **PHIATEST.F06**

REPEAT STEP 5 WITH FOLLOWING CHANGES:

1. **NORMALIZE TEST MODE SHAPES WRT TAM MASS MATRIX (SET PARAM NORMTEST TO 1).**
2. **REPLACE FEM_PARTNA.OP4 FILE WITH TEST.OP4 FILE.**

(*) **ASSIGNS TAM.D01 CREATED IN STEP 2**
(/**) **MUST INCLUDE THE DMAP PHIATEST.DMP AND THE TEST.DMI.**

UNVRNM.INP FILE
- TABLE OF CORRESPONDING TEST & TAM GRID POINT LABELS.

TEST.ORIG.UNV FILE
- UNIVERSAL FILE OF MEASURED TEST MODE SHAPES.

PROGRAM UNVRNM
- RENUMBERS TEST DOFS IN TEST.ORIG.UNV FILE TO TAM MODEL DOFS.

TEST.UNV FILE
- UNIVERSAL FILE OF TEST MODE SHAPES WITH RENUMERATED DOFS.

PROGRAM UNVDMI
- CREATES DIRECT MATRIX INPUT DATA FILE FROM TEST DOFS.

GRIDS.BLK FILE
- NASTRAN GRID CARDS AND COORDINATE SYSTEMS.

TEST.DMI FILE
- TEST DOFS IN DIRECT MATRIX INPUT FORMAT.

TEST.OP4 FILE
- OUTPUT 4 FORMAT FILE CONTAINING TEST MODES.
List of commands.

Step a:
- NASTRAN65 FEM.DAT
- SEMCOMB.COM

Step b:
- NASTRAN65 TAM.DAT

Step c:
- NASTRAN65 WTTAM.DAT

Step d:
- NASTRAN65 PARTNMODA.DAT

Step e:
- NASTRAN65 CORL8TAM.DAT
- NASTABLE
- CORL8TAM.OUT

Step f:
- UNVRNM.COM
- UNVDMI.COM
- NASTRAN65 PHIATEST.DAT
- NASTABLE
- CORL8TAM_TEST.OUT
Appendix II

Listing of DMAP alters and instructions
FILE 1. Listing of RF63D307.DAT

$ WRITE DEFLECTION DATA FOR PROCESSING BY PROGRAM SEMCOMB
$ ---
$ RIGID FORMAT 63 - NORMAL MODES ANALYSIS (SUPELEMENTS)
$ MSC/NASTRAN VERSION 65
$
$ THIS ALTER WRITES DEFLECTION DATA TO TWO NASTRAN OUTPUT2 FILES
$ FOR PROCESSING BY PROGRAM SEMCOMB. PROGRAM SEMCOMB COMBINES
$ THE DEFLECTION SHAPES OF INDIVIDUAL SUPELEMENTS INTO A SINGLE
$ UNIFIED DEFLECTION SHAPE.
$
$ THE DEFLECTION DATA IS WRITTEN TWICE TO TWO DIFFERENT OUTPUT2
$ FILES. THE DEFLECTIONS IN THE BASIC COORDINATE SYSTEM ARE WRITTEN
$ TO FORTRAN UNIT 11 (UT1), WHILE THE DEFLECTIONS IN THE DISPLACEMENT
$ COORDINATE SYSTEMS ARE WRITTEN TO FORTRAN UNIT 12. THE DEFLECTIONS
$ IN THE BASIC COORDINATE SYSTEM ARE SUITABLE FOR INPUT TO I-DEAS,
$ WHILE THE DEFLECTIONS IN THE DISPLACEMENT COORDINATE SYSTEMS ARE
$ PROPER FOR RE-INPUT TO NASTRAN.
$
$ SPECIAL INSTRUCTIONS TO USE THIS ALTER:
$--
$ JOB CONTROL LANGUAGE:
$ THE "UT1" AND "UT2" FILES MUST BE RETAINED AS PERMANENT FILES.
$ SEE THE MSC/NASTRAN APPLICATION MANUAL, VOLUME 2, SECTION 7.6,
$ FOR THE PROPER JOB CONTROL LANGUAGE FOR YOUR COMPUTER SYSTEM.
$--
$ EXECUTIVE CONTROL DECK:
$ SOL 63
$ INCLUDE THIS ALTER
$--
$ CASE CONTROL DECK:
$ THE CASE CONTROL DECK MUST INCLUDE STANDARD ANALYSIS REQUESTS
$ (SPC, ETC.). IN ADDITION, A REQUEST FOR DISPLACEMENT OUTPUT
$ (SUCH AS "DISP = ALL") IS REQUIRED.
$ THE DEGREES OF FREEDOM OUTPUT TO THE OUTPUT2 FILE MAY BE LIMITED
$ BY A SET AND A "PARTN = " COMMAND. OTHERWISE, ALL D-O-F OF THE
$ SUPELEMENT ARE OUTPUT. SEE THE EXAMPLE INPUT DECK FOR MORE
$ INFORMATION.
$--
$ BULK DATA DECK:
$ REQUIRED PARAMETER CARDS FOR MIRROR- AND IDENTICAL-IMAGE
$ SUPELEMENTS:
$ PARAM,GRIDINC SPECIFY GRID NUMBER INCREMENT ADDED TO
$ PRIMARY S.E. GRID NUMBERS TO FORM IMAGE S.E.
$ GRID NUMBERS
$ PARAM,SYMNORML FOR MIRROR-IMAGE SUPELEMENT, SPECIFY THE
$ BASIC COORDINATE SYSTEM AXIS NORMAL TO THE
$ PLANE OF SYMMETRY (1, 2, OR 3).
$ FOR ROTATED IDENTICAL-IMAGE SUPELEMENT, SPECIFY THE BASIC COORDINATE SYSTEM AXIS
$ ABOUT WHICH THE ROTATION WILL BE PERFORMED
$ (1, 2, OR 3)
$ FOR IDENTICAL-IMAGE SUPELEMENT WITHOUT
$ ROTATION, SPECIFY AS 0.
$
PARAM, ROTATION ANGLE (DEGREES) FOR ROTATING AN IDENTICAL-IMAGE SUPERELEMENT. MUST BE SPECIFIED AS A REAL NUMBER WITH A DECIMAL POINT. MUST BE SPECIFIED AS 0.0 FOR MIRROR-IMAGE TRANSFORMATION.

OPTIONAL PARAMETER CARDS:

PARAM, NOBASIC, -1 SUPPRESSES OUTPUT OF RESULTS IN BASIC C.S. (DEFAULT = 0 : DO OUTPUT BASIC C.S. RESULTS)

PARAM, NODISPL, -1 SUPPRESSES OUTPUT OF RESULTS IN DISPL. C.S. (DEFAULT = 0 : DO OUTPUT DISPL. C.S. RESULTS)

PARAM, UTBASIC FORTRAN UNIT NUMBER FOR THE BASIC C.S. RESULTS (DEFAULT = 11 : WRITE BASIC C.S. TO UNIT 11)

PARAM, UTDISPL FORTRAN UNIT NUMBER FOR THE DISPL. C.S. RESULTS (DEFAULT = 12 : WRITE DISPL. C.S. TO UNIT 12)

PARAM, DATAREC, -1 SKIPS THE REMAINDER OF DATA RECOVERY OPERATIONS AFTER RECOVERING DATA NEEDED FOR SEMCOMB (DEFAULT = 0 : PERFORM STANDARD DATA RECOVERY)

EXAMPLE INPUT DECK:

ID MODES, SPRELM
SOL 63
TIME 10
DIAG 8, 20
.
. THIS ALTER
.
CEND
TITLE = SUPERELEMENT MODES ANALYSIS
SEALL = ALL
DYNRED = 50
METHOD = 50
DISP(PLOT) = ALL
.
SET 2 = 201 THRU 299
.
SUBCASE 2
SUPER 2
LABEL = RIGHT WING
PARTN = 2
PARAM, GRIDINC, 0 $ NO GRID INCREMENT
.
SUBCASE 3
SUPER 3
LABEL = LEFT WING (MIRROR IMAGE OF RIGHT WING)
PARTN = 2
PARAM, GRIDINC, 1000 $ ADD 1000 TO S.E. 2 GRID NUMBERS
PARAM, SYMNORML, 2 $ Y AXIS IS NORMAL TO PLANE OF SYMMETRY
PARAM, ROTANGLE, 0.0 $ MIRROR IMAGE
.
SUBCASE 4
LABEL = VERTICAL TAIL
$ KEEP ONLY POINTS ON THE SPARS
SET 4 = 401, 402, 403, 404, 491, 492, 493, 494
PARTN = 4
$ \text{PARAM,GRIDINC,0}$ NO GRID INCREMENT
SUBCASE 1000
$\text{LABEL = RESIDUAL STRUCTURE}$
PARAM,GRIDINC,0 NO GRID INCREMENT
$\text{$\$ OUTPUT ALL RESIDUAL DOF - NO PARTN}$
BEGIN BULY:
$\text{$\$ OUTPUT DATA ONLY IN THE BASIC COORDINATE SYSTEM}$
$\text{$\$ PARAM,NODISPL,-1}$
ENDDATA
---
DEFAULT VALUES
ALTER 1 AFTER BEGIN
\text{PARAM} \text{//C,N,NOP/V,Y,DATAREC=0}$ DEFAULT - STND DATA REC
\text{PARAM} \text{//C,N,NOP/V,Y,GRIDINC=0}$ DEFAULT - NO GRID INC
\text{PARAM} \text{//C,N,NOP/V,Y,NOBASIC=0}$ DEFAULT - WRITE BASIC
\text{PARAM} \text{//C,N,NOP/V,Y,NODISPL=0}$ DEFAULT - WRITE DISPL
\text{PARAM} \text{//C,N,NOP/V,Y,SYMNORML=0}$ DEFAULT - NO SYMMETRY
\text{PARAM} \text{//C,N,NOP/V,Y,UTBASIC=11}$ DEFAULT - BASIC = 11
\text{PARAM} \text{//C,N,NOP/V,Y,UTDISPL=12}$ DEFAULT - DISPL = 12
PARAMR \text{C,N,NOP/V,Y,ROTANGLE=0}$ DEFAULT - NO ROTATION
$\text{WRITE MODAL FREQUENCIES}$
ALTER 849 V65 BEFORE SEDR LOOP
\text{COND NOBASIC1,NOBASIC}$ SKIP IF NO BASIC
\text{OUTPUT2 LAMA/-1/UTBASIC}$ MODAL FREQUENCIES
\text{LABEL NOBASIC1}$
$\text{COND NODISPL1,NODISPL}$ SKIP IF NO DISPL
\text{OUTPUT2 LAMA/-1/UTDISPL}$ MODAL FREQUENCIES
\text{LABEL NODISPL1}$
$\text{DIVIDE GRID POINT INCREMENT INTO TWO NUMBERS}$
ALTER 962 V65 BEFORE SDR2
\text{PARAM} \text{//C,N,DIV/V,Y,GRIDINC1/GRIDINC1/GRIDINC1/GRIDINC1}$ TRUNCATE LAST 4 DIGITS
\text{PARAM} \text{//C,N,MPY/V,Y,GRIDINCX/GRIDINC1/GRIDINC1}$ SHIFT LEFT 4 DIGITS
PARAM \text{//C,N,SUB/V,Y,GRIDINC2/GRIDINC2/GRIDINC2}$ TRUNC. FIRST 4 DIGITS
$\text{DIVIDE THE ROTATION ANGLE INTO WHOLE DEGREES AND FRACTIONS}$
$\text{OF A DEGREE (NOTE: FRACTION LIMITED TO 4 DIGITS)}$
PARAMR \text{//C,N,FIX/ROTANGLE/ROTANGLE/ROTANGLE/ROTANGLE/ROTANGLE}$ WHOLE DEGREES (INTEGER)
\text{PARAMR}$ \text{//C,N,FLOAT/V,N,ROTANG1/ROTANG1/ROTANG1/ROTANG1}$ CONVERT TO REAL NUMBER
\text{PARAMR}$ \text{//C,N,SUB/V,N,ROTANG2/ROTANG1/ROTANG1/ROTANG1}$ FRACTION OF DEGREE
$\text{MODIFY TRAILER OF GPL TO INCLUDE SUPERELEMENT ID NUMBERS}$
MODTRL \text{GPLS//SEID/PEID/GRIDINC1/GRIDINC2}$ INCLUDE SE IDS, GRIDINC
$\text{MODIFY TRAILER OF SIL TO INCLUDE SYMMETRY AND ROTATION DATA}$
MODTRL \text{SILS//SYMNORML/ROTANGW/ROTANGF}$ AXIS, ROTATION DATA
$\text{FORM PARTITION VECTOR IF REQUESTED}$
PARAMR \text{CASEDR/C,N,DTI/1/61/V,N,PARTNID}$ GET PARTN ID
PARAM /C,N,LEV/N,NOPRTN/PARTNID/0 $ -1 IF PARTN ID LE. 0
PURGE PRTNVECNOPRTN $ PURGE IF PARTN NOT USED
COND NOPRTN1,NOPRTN $ SKIP IF PARTN NOT USED
MATMOD EQEXINS,USET,SILS,CASEDR,,/PRTNVEC,/
17/0/1/S,N,NOPRTN $ -1 IF NO PARTITION VEC
COND NOPRTN1,NOPRTN $ SKIP IF NO PART. VEC
MATGPR GPLS,USET,SILS,PRTNVEC//H/G $ PRINT PART. VEC
PARAML PRTNVECV//TRAILER2/V,N,NOROW $ NO. OF ROWS IN PRTNVEC
MATGEN /,PRTNNULL/7/NOROW/1 $ MACH. PREC. NULL MATRIX
ADD PRTNVECPRTNNULL/PRTNVEC1 $ MAKE PRTNVEC MACH. PREC.
LABEL NOPRTN1 $ $ WRITE DISPLACEMENTS IN BASIC COORDINATE SYSTEM $ $ COND NOBASIC2,NOBASIC $ SKIP IF NO BASIC
VECPLOT UGVS,BGPDTS,EQEXINS,CSTMS,,UGVBAS/0/1/UGVBAS $ BASIC CS
PARAML UGV BAS//TRAILER/1/V,N,NOCOL $ NO. OF COLUMNS IN UGVS
PARAML UGVBAS//TRAILER2/V,N,NOROW $ NO. OF ROWS IN UGVS
MATGEN /,NULLMAT/7/NOROW/NOCOL $ MACH. PREC. NULL MATRIX
ADD NULLMAT,UGVBASUGVBASC $ MAKE UGVBAS MACH. PREC.
EQUIV UGVBASC,UGV BASCNOPTN $ EQUIV IF NO PART. VEC.
COND NOPRTN2,NOPRTN $ SKIP IF NO PART. VEC.
PARTN UGVBASC,PRTNVEC/,UGVBASIC $ ROW PARTITION
LABEL NOPRTN2 $ $ WRITE DISPLACEMENTS IN DISPLACEMENT COORDINATE SYSTEMS $ $ COND NODISPL2,NODISPL $ SKIP IF NO DISPL.
EQUIV UGVS,UGVS1/NOPRTN $ EQUIV IF NO PART. VEC.
COND NOPRTN3,NOPRTN $ SKIP IF NO PART. VEC.
PARTN UGVS,PRTNVECUGVS1,/1 $ ROW PARTITION
LABEL NOPRTN3 $ $ IF REQUESTED, SKIP THE REMAINDER OF THE DATA RECOVERY OPERATIONS $ $ COND LBLNOP,DATAREC $ SKIP IF DATAREC .LE. -1 $ $ --END OF SEMC, OMB ALTER ---
FILE 2. Listing of IRSRED63.ALT

$ IRSRED - REDUCE MASS AND STIFFNESS MATRICES USING IRS METHOD
$..
$
$ THIS ALTER REDUCES THE STIFFNESS AND MASS MATRICES OF THE
$ RESIDUAL STRUCTURE USING THE "IMPROVED REDUCED SYSTEM" METHOD.
$ THIS METHOD IMPROVES UPON THE STANDARD GUYAN (STATIC)
$ REDUCTION BY INCLUDING THE EFFECTS OF MASS AT THE O-SET DOF.
$
$ REFERENCE:
$
$ O'CALLAHAN, J., "A PROCEDURE FOR AN IMPROVED REDUCED SYSTEM
$ (IRS) MODEL," 7TH INTERNATIONAL MODAL ANALYSIS CONFERENCE,
$ FEBRUARY, 1989.
$
$ REQUIREMENTS TO USE THIS ALTER -
$..
$ DATA BASES -
$ NO SPECIAL REQUIREMENTS
$..
$ EXECUTIVE DECK -
$ SOL 63
$ THIS ALTER
$ DIAG 8,20 RECOMMENDED
$..
$ CASE CONTROL DECK -
$ INCLUDE SEMG, SEKR, AND SEMR (OR SEALL) REQUESTS FOR THE
$ RESIDUAL STRUCTURE.
$
$ THIS ALTER SHOULD *NOT* BE INCLUDED WHEN PROCESSING UPSTREAM
$ COMPONENTS.
$..
$ BULK DATA DECK -
$
$ INCLUDE ASET OR Omit CARDS TO SELECT THE A-SET DOF.
$
$ DO NOT INCLUDE Q-SET DOF FOR THE RESIDUAL STRUCTURE.
$..
$ EXAMPLE NASTRAN DECK-
$
$ ID TAMIRSRED
$ SOL 63
$ TIME 30
$ DIAG 8,20
$.
$. THIS ALTER
$.
$ CEND
$ TITLE = REDUCE RESIDUAL STRUCTURE USING IRS METHOD
$
$ SET 1000 = 0 $ RESIDUAL STRUCTURE
$ SEALL = 1000 $ ALL S.E. OPS FOR S.E. IN SET 1000
$
$ SUBCASE 1100
$ SUPER 100
$ LABEL = ANTENNA
$ METHOD = 50
$ SUBCASE 1200

File 2.
$ SUPER.200
$ LABEL = BUS STRUCTURE
$ METHOD = 50
$ SUBCASE 2000
$ LABEL = RESIDUAL STRUCTURE
$ METHOD = 25

$ BEGIN BULK
$. TAM BULK DATA INCLUDING ASET CARDS
$. ENDDATA

$ HISTORY DOCUMENTATION
$ VERSION 1.0 04-APR-89 CHRIS FLANIGAN
$ ORIGINAL VERSION

$ DEFAULT VALUES FOR PARAMETERS
$ ALTER 1 $ AFTER BEGIN
$ param /C,N,NOP/N,Y,NOIRSRED=0 $ 0 = USE IRS METHOD
$ $ STORE KFF FOR LATER USE
$ $ ALTER 381 $ V65 AFTER LBL3
$ DBSTORE KFF/MODEL/SEID/DBSET1 $ STORE KFF
$ $ CHANGE THE NAME OF GOAT AND KAA TO GOATS AND KAAS
$ $ (STATIC CONTRIBUTION)
$ ALTER 420,421 $ V65 REPLACE FBS AND MPYAD
$ FBS LOO,OOO,KOA/GOATS/-1/-1/0/0 $ FORM GOAT (STATIC)
$ MPYAD KAO,GOATS,KAA1/KAAS////UNSYM $ KAA (STATIC)
$ ALTER 424,424 $ V65 REPLACE DBSTORE
$ DBSTORE GOATS/MODEL/SEID/DBSET1 $ STORE GOAT (STATIC)
$ ALTER 426,426 $ V65 REPLACE EQUIV
$ EQUIV KAAS,KTT/NOQSET $ EQUIV IF NO Q-SET
$ ALTER 429,429 $ V65 REPLACE UPARTN
$ UPARTN USET,KAA,KTQ1,,KTT/C,N,A/C,N,Q/C,N,T $ EXTRACT KQQ
$ ALTER 430,430 $ V65 REPLACE DBSTORE
$ DBSTORE KAAS/MODEL/SEID/DBSET2 $ STORE KAAS (STATIC)
$ $ USE GOATS INSTEAD OF GOAT TO PERFORM THE STATIC
$ $ REDUCTION OF THE MASS MATRIX
$ $ ALTER 488,488 $ V65 REPLACE DBSTORE
$ DBFETCH AGM/GOATS,DM,USET,MODEL/PEID/DBSET3 $ FETCH DATA
$ ALTER 490,490 $ V65 REPLACE EQUIV
$ EQUIV GOATS,GOA/NP $ EQUIV
$ ALTER 511,511 $ V65 REPLACE MPYAD
$ MPYAD MOO,GOATS,MOA/MAO1 $ REDUCE O-SET MASS
$ ALTER 516,516 $ V65 REPLACE EQUIV
$ EQUIV MTM,MAAS/NOQSET $ EQUIV IF NO Q-SET
$ ALTER 518,518 $ V65 REPLACE UMERGE1
$ UMERGE1 USET,MTM,,MAAS/C,N,A/C,N,T/C,N,Q/0 $ SYMMETRIC MERGE
$ ALTER 521,522 $ V65 REPLACE MPYAD

File 2. (cont.)

II-VI
MPYAD MOA,GOATS,MAA1/MAA2/1 $ REDUCE O-SET MASS
MPYAD GOATS,MOA1,MAA2/MAAS/1//6 $ REDUCE O-SET MASS
ALTER 524,524 $ V65 REPLACE EQUIV
EQUIV MAAS,MTT/NOQSET $ EQUIV IF NO Q-SET
ALTER 527,527 $ V65 REPLACE UPARTN
UPARTN US$,MAAS/MMT,,,MOQ1/C,N,A,C,N,T,C,N,Q $ SYMMETRIC PARTN
ALTER 535,535 $ V65 REPLACE DBSTORE
DBSTORE MAAS/SOLID/SEID/DBSET2 $ STORE MAA (STATIC)
$
$ CALCULATE THE IMPROVED TRANSFORMATION MATRIX
$
$ GOAT = GOATS + GOATD
$
$ -1
$ GOATS = -KOO KOA
$
$ -1
$ GOATD = KOO (MOO * GOATS + MOA) MAA KAA
$
$ NOTE: THE A-SET MASS MATRIX *MUST* BE POSITIVE DEFINITE
$ SUCH THAT MAA CAN BE INVERTED. ALL ZERO MASS DOF
$ *MUST* BE OMITTED.
$
$ DBFETCH ,KFF,LOO,UOO,GOATS,KAA/MODEL/PEID//DBSET3 $ FETCH SEKR DATA
SOLVE MAAS,KAA/MINVK $ MAAS-INV°KAA
MPYAD MOO,GOATS,MOA/MOA1 $ (MOO*GOATS) + MOA
MPYAD MOO,MINVK/MOA2 $ MOA1°(MAAS-INV°KAA)
FBS LOO,UOO,MOA2/GOATD $ O-A TRANSFORM (DYNAMIC)
ADD GOATS,GOATD/GOAT $ TOTAL O-A TRANSFORM
DBSTORE GOAT/MODEL/SEID/DBSET1 $ STORE GOAT
$
$ FORM THE IMPROVED REDUCED STIFFNESS AND MASS MATRICES
$
$ MATGEN ,/IAA/1/NOASET $ A-SET IDENTITY MATRIX
VEC USET/VFOA/F/O/A $ F = O/A
MERGE GOAT,IAA,...,VFOA/TFA/1 $ ROW MERGE
SMPYAD TFA,KFF,TFA,,,KAA3///3///6 $ REDUCED K MATRIX
DBSTORE KAA/MODEL/SEID/DBSET2 $ STORE KAA
SMPYAD TFA,MFF,TFA,,,MAA3///3///6 $ REDUCED M MATRIX
DBSTORE MAA/SOLID/SEID/DBSET2 $ STORE MAA
$
$--END OF IRSRED--
FILE 3. Listing of HRED63.ALT

$ HRED - FORM KAA AND MAA USING HYBRID REDUCTION
$ ---
$ $ THIS ALTER REDUCES THE STIFFNESS AND MASS MATRICES OF THE TEST-
$ ANALYSIS MODEL (TAM) RESIDUAL STRUCTURE TO THE A-SET DOF USING
$ "HYBRID REDUCTION". HYBRID REDUCTION IS BASED UPON CALCULATING
$ THE MODE SHAPES OF THE OMITTED (O-SET) DOF AS AN EXPANSION OF
$ THE PREVIOUSLY CALCULATED FINITE ELEMENT MODEL (FEM) MODE SHAPES.
$ HYBRID REDUCTION COMBINES THE EXACT REPRESENTATION OF THE MODAL
$ TAM AND APPROXIMATE REPRESENTATION OF THE RESIDUAL MODES FROM THE
$ STATIC TAM.
$ $ THE FEM MODES MUST BE PARTITIONED TO THE G-SET DOF OF THE TAM
$ RESIDUAL STRUCTURE AND WRITTEN TO AN OUTPUT4 FILE (SEE DMAP
$ "PARTNMOD"). THE FEM MODE SHAPES MUST HAVE THE SAME INTERNAL
$ SEQUENCE AS THE TAM. ALTERNATIVELY, THE FEM MODES FOR THE
$ TAM G-SET DOF MAY BE INPUT VIA AN OUTPUT2 FILE WITH THE
$ MODE SHAPES IN "MATPOOL" DMIG FORMAT. IF THE "MATPOOL" METHOD
$ IS USED, THE FEM MODES ARE AUTOMATICALLY PLACED INTO THE
$ INTERNAL SEQUENCE OF THE TAM.
$ $ NOTE THAT HYBRID REDUCTION IS APPLIED ONLY TO THE TAM RESIDUAL
$ STRUCTURE. STANDARD STATIC AND COMPONENT MODE REDUCTION IS
$ APPLIED TO UPSTREAM SUPERELEMENTS (IF ANY).
$ $ REFERENCES:
$ $ KAMMER, D.C., TBD (HYBRID TAM REDUCTION)
$ $ KAMMER, D.C., "TEST-ANALYSIS MODEL DEVELOPMENT USING AN EXACT
$ MODAL REDUCTION," INTERNATIONAL JOURNAL OF ANALYTICAL AND
$ $ LINK, M., "IDENTIFICATION OF PHYSICAL SYSTEM MATRICES USING
$ INCOMPLETE VIBRATION TEST DATA," 4TH INTERNATIONAL MODAL ANALYSIS
$ CONFERENCE, FEBRUARY, 1986.
$ $ $ REQUIREMENTS TO USE THIS ALTER:
$ $ DATA BASES -
$ $ THE FOLLOWING DATA BASE FILES MUST BE AVAILABLE -
$ $ - TAM SYSTEM AND COMPONENT (IF ANY) DATA BASE(S)
$ $ USER FILES -
$ $ THE FEM MODE SHAPES FOR THE TAM G-SET DOF MUST BE PRESENT ON
$ FORTRAN UNIT 11 OR THE UNIT DEFINED BY PARAM,UTUNIT (SEE "BULK
$ DATA DECK" BELOW). THE FEM MODES MAY BE IN OUTPUT4 OR
$ OUTPUT2/MATPOOL FORMAT (SEE PARAM,FEMFMT).
$ $ EXECUTIVE DECK -
$ $ SOL 63
$ $ THIS ALTER
$ $ DIAG 8,20 RECOMMENDED
$ $ CASE CONTROL DECK -
$ $ INCLUDE STANDARD REQUESTS FOR RUNNING THE RESIDUAL STRUCTURE
$ $ (SEMG, SEKR, AND SEMR) AND FOR RECOVERING RESULTS (DISPL = ALL,
$ $ OUTPUT(PLOT), ETC.).

File 3.

II-VIII
BULK DATA DECK -

OPTIONAL PARAMETERS -

PARAM,ENCHECK - IF -1, END THE RUN AFTER CHECKING THE
TRANSFORMATION MATRIX
(DEFAULT = 0 - PERFORM ENTIRE SOLUTION)

PARAM,FEMUNIT - FORTRAN UNIT FOR THE FEM MODE SHAPE FILE
(DEFAULT = 11 - READ FEM MODES FROM UNIT 11)

PARAM,FEMFMT - FORMAT OF THE FEM MODE SHAPE FILE
-1 = OUTPUT2 MATPOOL FORMAT
0 = OUTPUT4 BDC FORMAT
1 = OUTPUT4 BINARY FORMAT
(DEFAULT = 0 - OUTPUT4 BCD FORMAT)

EXAMPLE NASTRAN DECK -

ID TAM, HRED
SOL 63
TIME 30
DIAG 8,20

. THIS ALTER

CEND
TITLE = FORM HYBRID TAM

SET 1000 = 0
SEALL = 1000

DISP = ALL

SUBCASE 1100
SUPER = 100
LABEL = ANTENNA
METHOD = 100

SUBCASE 1200
SUPER = 200
LABEL = BUS STRUCTURE
METHOD = 100

SUBCASE 2000
LABEL = RESIDUAL STRUCTURE
METHOD = 50

BEGIN BULK

. STANDARD BULK DATA INCLUDING TAM ASET AND ASET1 CARDS

ENDDATA

HISTORY DOCUMENTATION -

VERSION 1.0 21-JUL-89 Daniel C. Kammer, Ph.D.
Dept. of Engineering Mechanics
University of Wisconsin
Madison, WI 53706
(608) 262-5724

- ORIGINAL VERSION
VERSION 2.0 23-SEP-89 CHRIS FLANIGAN

File 3. (cont.)

II-IX
\$ - RENAMED TO "HRED" (WAS "XHYBRID")
\$ - USE SIMILAR DMAP SETUP "HRED"

$\texttt{...}

\$ DEFAULT VALUES FOR PARAMETERS
\$
$ALTER 1$$\text{AFTER BEGIN}$
$\text{PARAM /C,N,NOPN,Y,ENDCHECK=0}$ 0 = COMPLETE RUN
$\text{PARAM /C,N,NOPN,Y,RESTART=0}$ 0 = NON-RESTART RUN
$\text{PARAM /C,N,NOPN,Y,FEMUNIT=-11}$ FEM MODE SHAPE FILE
$\text{PARAM /C,N,NOPN,Y,FEMFMT=0}$ 0 = FORMATTED (BCD)

\$ SKIP THE REMAINDER OF SEKR FOLLOWING THE FORMATION OF THE
\$ STATIC CONSTRAINT MODES GOAT (DO K MATRIX REDUCTION IN SEMR)
\$
$ALTER 420$ V65 $$\text{AFTER FBS FOR GOAT}$
$\text{COND STATREDK,ACON}$ $\text{SKIP IF NOT RESID STRUC}$
$\text{DBSTORE KFF,GOAT/MODEL/SEID/DBSET1}$ $\text{STORE KFF AND GOAT}$
JUMP LBMR $\text{SKIP REMAINDER OF SEKR}$
LABEL STATREDK $\text{REDUCE K - STATIC RED}$

\$ FORM REQUIRED PARTITION VECTORS
\$
$ALTER 505$ V65 $$\text{AFTER COND GNMRT2}$
$\text{COND STATREDM,ACON}$ $\text{SKIP IF NOT RESID STRUC}$
$\text{VEC USETGFX/G/F/COMP}$ G = F / COMP
$\text{VEC USE TF/OA/F/O/A}$ G = F / COMP

\$ READ THE FEM MODE SHAPES FOR THE TAM G-SET DOF
\$
$\text{COND HRESTRT,RESTART}$ $\text{SKIP IF RESTART RUN}$
$\text{COND FEMOP2,FEMFMT}$ $\text{SKIP IF FEMFMT LE -1}$
$\text{INPUT4 /FEMPHIG,...,/1/FEMUNIT/-1/FEMFMT}$ $\text{FEM MODES FROM OUTPUT4}$
$\text{PARAM /C,N,NE/V,N,BADFEM/NOFEMDOF/NOGSET}$ $\text{-1 IF FEM NE TAM G-SET}$
$\text{COND LOOPER,BADFEM}$ $\text{ERROR IF BAD FEM SIZE}$
JUMP DNRFDFEM $\text{DONE READING FEM MODES}$
LABEL FEMOP2 $\text{FEM MODES FROM OUTPUT2}$
$\text{INPUT2 /MATPOOLF,...,/0/FEMUNIT}$ $\text{READ NEXT DATA BLOCK}$
$\text{MTRXIN /MATPOOLF,EQEXINS,SILS,/FEMPHIG,...}$
V,N,NOGSET PROCESS DMIG DATA
LABEL DNRFDFEM $\text{DONE READING FEM MODES}$

\$ FORM TAM O-SET AND A-SET PARTITIONS OF FEM MODE SHAPE S
\$
$\text{PARTN FEMPHIG},VFX/FEMPHIF,.../1$ ROW PARTITION
$\text{PARTN FEMPHIG},VFOA/FEMPHIO,FEMPHIA,.../1$ ROW PARTITION
$\text{DBSTORE FEMPHIG,FEMPHIO,FEMPHIA/MODEL/0/DBSET1}$ $\text{STORE IN DATA BASE}$

\$ T
\$ \text{CALCULATE } [FEMPHIA \cdot FEMPHIA]$ PHIA-T \cdot PHIA

\$ T
\$ \text{CALCULATE THE EIGENVALUES OF } [FEMPHIA \cdot FEMPHIA]$ $\text{TO GET CONDITION NUMBER}$

\$ \text{PARAML PTP/TRAILER/1/V,N,NOMODES}$ NUMBER OF MODES
$\text{MATGEN }/\text{HH1/NOMODES}$ $\text{H-SET IDENTITY MATRIX}$

File 3. (cont.)

II-X
MATMOD CASES,DYNAMICS,,,,/23/S,N,N,LANCZOS $ EIG METHOD
COND PTEIGL,LANCZOS $ JUMP IF LANCZOS METHOD
READ PTP,HH,

DYNAMICS,CASES/PTPLAMA,PTPHI,
PTPM,PTPOEIGS/MODE/S,N,NOZSET $ SOLVE FOR PTP EIGENVALS
JUMP DNPTEIG $ DONE WITH PTP EIG SOLVE
LABEL PTEIGL $ START LANCZOS SOLVE
REDGL PTP,HH,

DYNAMICS,CASES/PTPLAMA,PTPHI,
PTPM,PTPMATSV/N;READAPP/S,N,NOZSET $ SOLVE FOR PTP EIGENVALS
LABEL DNPTEIG $ DONE WITH PTP EIG SOLVE
OFP PTOEIGS,PTPLAMA/ $ PRINT PTP EIGENVALUES

$ CALCULATE THE GENERALIZED INVERSE OF THE FEM A-SET MODES
$ $ T -1 $ $ [FEMPHIA * FEMPHIA] $ $ DECOMPOSE PTP $ $ SYMMETRY USED BY DECOMP $ $ MIN. DIAG TERM OF PTP $ $ SCALE FOR DETERMINANT $ $ POWER FOR DETERMINANT $ $ -1 IF PTP IS SINGULAR $ $ NO. NEG. TERMS ON DIAG $ $ MAX MATRIX/FACTOR RATIO $ $ MIN. DIAG. TERM $ $ MAAMR $ $ MAX ERROR IN EACH ROW $ $ PRINT MAX ERR AND CHECK $ $ IF REQUESTED, END THE RUN $ $ COND FINIS,ENDCHECK $ END IF ENDCHECK .LT. 0
LABEL HRESTRT $ RESTART FOR HYBRID RED
DBFETCH /FEMPHIO,FEMPHIA,PTP,PTPINV,/MODEL/O/DBSET1 $ FETCH FROM DB
$ $ CHECK THE GENERALIZED INVERSE OF THE FEM A-SET MODES
$ MPYAD PTP,PTPINV,PTPINVKC $ SHOULD BE IDENTITY MTX
ADD PTPINVCK,HH/INVERR/(-1.0,0.0) $ ERROR MATRIX
MATMOD INVERR,,,,/INVERRMX,6 $ MAX ERROR IN EACH ROW
MATPRN INVERRMX,PTPINVCK/ $ PRINT MAX ERR AND CHECK
$ $ REDUCE THE MASS MATRIX USING MODAL REDUCTION $ $ TRNSP FEMPHIA,FEMPHIAT $ $ TRANSPOSE $ $ SMPYAD FEMPHIO,PTPINV,FEMPHIAT,,/DMREDOA/3 $ PHIO * PTP-INV * PHIA-T $ DBSTORE DMREDOA/MODEL/O/DBSET1 $ STORE IN DATA BASE
$ $ GENERATE OBLIQUE PROJECTOR $ $ SMPYAD FEMPHIA,FEMPHIAT,MAAMR,,/UKI3H/I/1 $ TRANSPOSE 2ND MATRIX
$ $ FORM STATIC TRANSFORMATION $ $ SMPYAD GOAT,IAA,,/VFOA/TREDFA/1 $ ROW MERGE

File 3. (cont.)
GENERATE HYBRID TRANSFORMATION

ADD TMREDFA,TSREDFA/DIFFMS/(-1.0,0.0) $ SUBTRACT TS FROM TM
MPYAD DIFFMS,UK,TSREDFA/THREDFA/ $ TH = TS + (TM-TS)° UK
PARTN THREDFA,VFOA/DHREDOA,/1 $ ROW PARTITION
DBSTORE DHREDOA//MODEL/0/DBSET1 $ STORE HYBRID TRAN MAT
DBMGR //MODEL/0/DBSET1/DHREDOA/GOAT $ EQUIVALENT NAME

REDUCE THE STIFFNESS AND MASS MATRICES USING HYBRID REDUCTION

DBFETCH /KFF,,,,/MODEL/0/DBSET1 $ FETCH KFF
SMPYAD THREDFA,KFF,THREDFA,,,,/KAA/3///0///1///6 $ KAA = T-T*KFF*T
SMPYAD THREDFA,MFF,THREDFA,,,,/MAA/3///0///1///6 $ MAA = T-T*MFF*T
DIAGONAL KAA/KAA/MAADIAG $ EXTRACT DIAGONAL TERMS
DIAGONAL MAA/MAADIAG $ EXTRACT DIAGONAL TERMS
MATGPR GPLS,USL,SILS,MAADIAG/H/A $ PRINT DIAGONAL TERMS
MATGPR GPLS,USL,SILS,KAAADIAG/H/A $ PRINT DIAGONAL TERMS
DBSTORE KAA//MODEL/0/DBSET2 $ STORE KAA
DBMGR //MODEL/0/DBSET2/SEKRDONE $ SEKR DONE
JUMP GNOTT2 $ DONE WITH M MODAL RED
LABEL STATRED $ BEGIN M STATIC RED

CALCULATE ORTHOGONALITY AND CROSS-ORTHOGONALITY MATRICES

ALTER 818 $ V65 AFTER FORMING PHIA
DBFETCH /FEMPHIA,,,,/MODEL/0/DBSET1 $ FETCH FROM DATA BASE
SMPYAD FEMPHIA,MAA,FEMPHIA,,,,/ORTHO/3///1///6 $ ORTHO USES ONLY FEM
SMPYAD FEMPHIA,MAA,PHIA,,,,/XORTHO/3///1///6 $ XORTHO USES FEM AND TAM
MATPRT ORTHO/$ $ PRINT ORTHO MATRIX
MATPRT XORTHO/$ $ PRINT XORTHO MATRIX

File 3. (cont.)
FILE 4. Listing of WTTAM.DMP

BEGIN $ WRITE TAM DATA AND OUTPUT4 FILE (WTTAM)$

$ THIS DMAP SEQUENCE WRITES THE TAM DATA TO TWO OUTPUT4 FILES.
$ SELECTED DATA MAY ALSO BE PRINTED IN THE NASTRAN OUTPUT FILE
$ TO DOCUMENT THE TAM RESULTS.
$ THE A-SET MASS AND STIFFNESS MATRICES ARE WRITTEN TO THE
$ FIRST OUTPUT4 FILE. THE MODAL FREQUENCIES (HZ), MODE SHAPES,
$ AND GENERALIZED MASS ARE WRITTEN TO THE SECOND OUTPUT4 FILE.
$ Optionally, the 6x6 rigid body mass matrix and "unit" rigid
$ body mode shapes can be written for modal effective mass
$ calculations (see param,effmas).
$ IF REQUESTED BY PARAM EXTSORT, THE MASS, STIFFNESS, MODE SHAPE,
$ AND UNIT RIGID BODY MODE MATRICES WILL BE CONVERTED FROM INTERNAL
$ TO EXTERNAL (NUMERICALLY ASCENDING) SORT. THE MATRIX NAMES
$ WRITTEN TO THE OUTPUT4 FILES WILL CHANGE AS SHOWN BELOW:
$ MAA -> MAAEXT PHIA -> PHIAEXT
$ KAA -> KAAEXT URBA -> URBAEXT
$ THE INTERNAL-TO-EXTERNAL SORT CONVERSION IS ONLY NEEDED IF THE
$ TAM RESIDUAL STRUCTURE IS INTERNALLY RESEQUENCED (NOT IN NUMERICALLY
$ ASCENDING ORDER) AND THE TAM MATRICES ARE REQUIRED TO BE IN EXTERNAL
$ SORT. THE INTERNAL-TO-EXTERNAL SORT CONVERSION IS USUALLY NOT
$ NEEDED FOR TAMS CREATED USING ONE OR MORE UPSTREAM SUPERELEMENTS.
$ IT WILL PROBABLY BE NEEDED WHEN THE TAM IS CREATED WITHOUT
$ SUPERELEMENTS.
$ THE MATRICES WRITTEN ARE AS FOLLOWS:
$ NAME DESCRIPTION NROW NCOL UNIT OPTIONAL?
$ ------------------------------- --- --- ---- ----
$ MAA(EXT) REDUCED MASS MATRIX A-SET A-SET 11 NO
$ KAA(EXT) REDUCED STIFFNESS MATRIX A-SET A-SET 11 NO
$ RBMO RIGID BODY MASS MATRIX 6 6 11 YES
$ PHIA(EXT) MODE SHAPES A-SET NMODE 12 NO
$ FREQHZ MODAL FREQUENCIES (HZ) NMODE 1 12 NO
$ GENMASS GENERALIZED MASS (DIAG ONLY) NMODE 1 12 NO
$ URBA(EXT) "UNIT" RIGID BODY MODE SHAPES A-SET 6 12 YES
$ THE FOLLOWING INFORMATION IS WRITTEN TO THE NASTRAN OUTPUT FILE:
$ DESCRIPTION OPTIONAL? PARAM
$ -- --- --- ---- ----
$ GEOMETRY DATA FOR RESIDUAL STRUCTURE GRIDS YES GEOMPRT
$ SET ALLOCATION TABLES (USET TABLES) YES USETPRT
$ DIAGONAL TERMS OF THE REDUCED STIFFNESS MATRIX NO
$ DIAGONAL TERMS OF THE REDUCED MASS MATRIX NO
$ REAL EIGENVALUE SUMMARY NO
$ MODE SHAPES OF THE A-SET DOF YES (CASE CON)
$ RIGID BODY MASS MATRIX YES EFFMASS
$ UNIT RIGID BODY MODE SHAPES YES EFFMASS
$ REQUIREMENTS TO USE THIS DMAP SEQUENCE -

File 4.

II-XIII
DATA BASES -
THE FOLLOWING DATA BASE FILES MUST BE AVAILABLE -
-TAM DATA BASE

USER FILES -
THE TAM DATA WILL BE WRITTEN TO FORTRAN UNITS 11 AND 12 IN
OUTPUT4 FORMAT. ALSO SEE PARAM,OP4FMT IN THE BULK DATA DECK.

EXECUTIVE DECK -
INCLUDE THIS DMAP SEQUENCE (DO NOT USE A RIGID FORMAT)
DIAG 8,14,20 RECOMMENDED

CASE CONTROL DECK -
A-SET MODE SHAPES MAY BE PRINTED BY AN "SVECTOR=A\" REQUEST.

BULK DATA DECK -

OPTIONAL PARAMETERS -

PARAM,EFFMASS - FORM RB MASS MATRIX AND UNIT RB MODES IF .GE. 0
(DEFAULT = -1 - DO NOT FORM EFFECTIVE MASS DATA)

PARAM,GEOMPRT - PRINT GEOMETRY DATA IF GE. 0
(DEFAULT = -1 - DO NOT PRINT GEOMETRY DATA)

PARAM,GRDPNTEM - ID OF THE REFERENCE GRID FOR THE EFFECTIVE
MASS OF THE RIGID BODY ROTATION MODES
(DEFAULT = 0 - ORIGIN OF BASIC COORD. SYSTEM)

PARAM,OP4FMT - WRITE OUTPUT4 FILE IN BINARY (1) OR BCD
(NE. 1) FORMAT.
(DEFAULT = 0 - WRITE BCD FORMAT)

PARAM,USETPRT - PRINT USET TABLE BY SET (0), DOF (1), OR BOTH
(2). DO NOT PRINT IF -1.
(DEFAULT = 0 - PRINT USET TABLE BY SET)

PARAM,WTMASS - PRINT THE MASS DATA IN WEIGHT UNITS
(DEFAULT = 1.0 - NO CONVERSION FOR WEIGHT UNITS)

EXAMPLE NASTRAN DECK-

ID PRETEST,TAM
TIME 10
DIAG 8,14,20

THIS DMAP SEQUENCE

CEND
TITLE = WRITE TAM DATA FOR PRETEST MODEL

SVECTOR = ALL $ PRINT A-SET MODE SHAPES

BEGIN BULK
$ PRINT GEOMETRY DATA
PARAM,GEOMPRT,0
$ $ PRINT USET TABLE
PARAM,USETPRINT,0
$ $
PRINT MASS DATA IN WEIGHT UNITS
PARAM,WTMASS,.00259

CALCULATE EFFECTIVE MASS AND WRITE MATRICES TO OUTPUT4 FILES
REFERENCE POINT FOR EFFECTIVE MASS IS GRID 101
PARAM,EFFMASS,0
PARAM,GRDPNTEM,101

ENDDATA

HISTORY DOCUMENTATION -

VERSION 1.0 22-SEP-88 CHRIS FLANIGAN
- ORIGINAL VERSION
VERSION 2.0 04-DEC-88 CHRIS FLANIGAN
- WRITE MAA AND KKAA TO UNIT 11, FREQHZ AND PHIA TO UNIT 12
VERSION 2.1 06-JAN-89 CHRIS FLANIGAN
- WRITE FREQHZ MATRIX AFTER PHIA MATRIX
VERSION 3.0 18-JAN-89 CHRIS FLANIGAN
- ADD MODAL EFFECTIVE MASS CALCULATIONS
VERSION 4.0 26-JAN-89 CHRIS FLANIGAN
- ADD EXTERNAL SORT OPTION
VERSION 4.1 02-MAR-89 CHRIS FLANIGAN
- REPLACE SMPYAD WITH MPYAD
- PRINT A-SET UNIT RIGID BODY MODES (URBA)

$234567890123456789012345678901234567890123456789012345678901$
$1 2 3 4 5 6 7$
$SET DEFAULT VALUES$
PARAM //C,N,NOP/N,Y,EFFMASS=-1
PARAM //C,N,NOP/N,Y,EXTSORT=-1
PARAM //C,N,NOP/N,Y,GEOMPR=-1
PARAM //C,N,NOP/N,Y,GRDPNTEM=0
PARAM //C,N,NOP/N,Y,OP4FMT=0
PARAM //C,N,NOP/N,Y,USSETPR=0
$
$FETCH THE GEOMETRY DATA$
DBFETCH /GPLS,SILS,EQEXINS,USET,/O/O
DBFETCH /CSTMS,GPDT,GPDPDT,/O/O
PARAML USSET/USSET////C,N,A/V,N,NOASET/C,N,GAV,N,NOGSET$ NO. OF DOF IN SETS
VEC USSET/VGAX/G/A/COMP$ G = A / COMP
$
$PRINT THE GEOMETRY DATA$
COND DNGEOM,GEOMPR$ SKIP IF GEOMPR LT. 0
TABPRT CSTMS/CSTM$ COORDINATE SYSTEMS
TABPRT GPPDL/GPL$ GRID POINT LIST
TABPRT GPDT/GPDP$ GRID POINT DEF. TABLE
TABPRT BGPD/GPDD$ BASIC GRID POINT DEF.
LABEL DNGEOM$ DONE WITH GEOMETRY
$
$PRINT THE USET TABLE$
COND DNUSET,USSETPR$ SKIP IF USSETPR LT. 0
TABPRT USSET,EQEXINS//USSET,V,Y,USSETPT,V,Y,USSETSEL$ PRINT USET TABLE
LABEL DNUSET$ DONE WITH USET TABLE
$

File 4. (cont.)

II-XV
$ FETCH A-SET MASS AND STIFFNESS MATRICES
$

DBFETCH /MAA, KAA, /0/0 $ A-SET M AND K MATRICES
PARAML MAA/PRESENCE///V,N,BADMAA $ -1 IF NO MAA
PARAML KAA/PRESENCE///V,N,BADKAA $ -1 IF NO KAA
COND ERROR,BADMAA $ ERROR IF NO MAA
COND ERROR,BADKAA $ ERROR IF NO KAA
$

$ PRINT DIAGONAL TERMS OF A-SET MASS AND STIFFNESS MATRICES.
$ USE PARAM,WTMASS TO PRINT

DIAGONAL MAA/MAADIAG1 $ STRIP DIAGONAL TERMS
PARAMR //C,N,DIVN,N,MW/1.0/C,Y,W'TMASS,I.O
$ MW = 1/WTMASS
PARAMR I/C,N,COMPLEX//V,N,MWIO.ON,
MASSWT
MASS-TO-WEIGHT
MATGPR GPLS, USET, SILS, MAADIAG/H/A $ PRINT M DIAG TERMS

DIAGONAL KAA/KAADIAG $ STRIP DIAGONAL TERMS
MATGPR GPLS, USET, SILS, KAADIAG/H/A $ PRINT K DIAG TERMS
$

$ FETCH THE MODAL RESULTS
$

DBFETCH /LAMA, PHIA, /0/0 $ MODAL RESULTS
PARAML LAMA/PRESENCE///V,N,BADLAMA $ -1 IF NO LAMA
PARAML PHIA/PRESENCE///V,N,BADPHIA $ -1 IF NO PHIA
COND ERROR,BADLAMA $ ERROR IF NO LAMA
COND ERROR,BADPHIA $ ERROR IF NO PHIA
$

$ PRINT THE EIGENVALUE SUMMARY
$

OFP LAMA/ $ PRINT EIGEN. SUMMARY
$

$ FORM THE FREQUENCY (HZ) AND GENERALIZED MASS MATRICES
$

LAMX ."LAMA,LAMAMAT/-1 $ MAKE MATRIX FROM LAMA
MATMOD LAMAMAT,,,,,/FREQHZ/,1/3 $ COL 3 = FREQ (HZ)
MATMOD LAMAMAT,,,,,/GENMASS/,1/4 $ COL 4 = GEN. MASS
$

$ IF REQUESTED, PRINT THE MODE SHAPES
$

VDR CASECC,EQEXINS, USET, PHIA, LAMA,,/OPHIA, /REIG/
DIRECT/0,S,N,NOOPHIA/S,N,NOPREQ/1 $ PROCESS SDISP REQUEST
COND DNPHIA, NOOPHIA $ SKIP IF NO SDISP REQ
OFP OPHIA/S,N,CARDNO $ PRINT A-SET MODES
LABEL DNPHIA $ DONE WITH A-SET MODES
$

$ WRITE THE TAM MASS, STIFFNESS, AND MODE SHAPE MATRICES
$ IN INTERNAL OR EXTERNAL SORT
$

COND INTERN1, EXTSORT $ SKIP IF EXTSORT.LE.-1
MATGEN EQEXINS/INTEXT/0/0/NOGSET $ INTERNAL-TO-EXTERNAL
MERGE MAA,,,,, VGAX, MAAG/ $ SYM. MERGE TO G-SET
MERGE KAA,,,,, VGAX, KAAG/ $ SYM. MERGE TO G-SET
MERGE PHIA,,,,, VGAX, PHIA/1 $ ROW MERGE TO G-SET
MPYAD INTXT, MAAG, MAAGEXT/1/ $ TRANSPOSE FIRST TERM
MPYAD MAAGEXT, INTXT, MAAGEXT/1/ $ EXTERNAL SORT
MPYAD INTXT, KAAG, KAAGEXT/1/ $ TRANSPOSE FIRST TERM
MPYAD KAAGEXT, INTXT, KAAGEXT/1/ $ EXTERNAL SORT
MPYAD INTXT, PHIA, PHIAE XT/1 $ EXTERNAL SORT
MPYAD INTXT, VGAX, VGAXE XT/1 $ EXTERNAL SORT
PARTN MAAGEXT, VGAXE XT, MAAXE T/1/ $ SYM. PARTN TO A-SET
PARTN KAAGE XT, VGAXE XT, KAAXE T/1/ $ SYM. PARTN TO A-SET
PARTN PHIAE XT, VGAXE XT, PHIAE XT/1/ $ ROW PARTN TO A-SET
OUTPUT4 MAAE XT, KAAXE T/1/1/OP4FMT $ TAM MASS AND STIFFNESS

File 4. (cont.)

II-XVI
OUTPUT4 PHIAEXT//-1/12/OP4FMT $ TAM MODE SHAPES
JUMP DNINEX1 $ JUMP TO LABEL DNINEX1
$
LABEL INTERN1 $ INTERNAL SORT
OUTPUT4 MAA,KAA/-1/11/OP4FMT $ TAM MASS AND STIFFNESS
OUTPUT4 PHIA//-1/12/OP4FMT $ TAM MODE SHAPES
LABEL DNINEX1 $ DONE WITH INT-EXT SORT
$
$ WRITE THE TAM FREQUENCIES (HZ) AND GENERALIZED MASS
$
OUTPUT4 FREQHZ,GENMASS/-1/12/OP4FMT $ TAM FREQ AND GEN. MASS
$
$ CHECK IF EFFECTIVE MASS IS TO BE CALCULATED
$
COND FINIS,EFFMASS $ SKIP IF EFFMASS .LE. -1
$
$ GENERATE RIGID BODY VECTORS USING GEOMETRY
$ VECPLT ,,BGPDTS,EqEXINS,CSTMS,,/URBG-TGRD/PNTEM/0/4 $ UNIT RB VECTORS
TRNSP URBGTURBG $ TRANPOSE
PARTN URBG,VGAX,URBA,,/1 $ ROW PARTN TO A-SET
MATGPR GPLS,USET,SILS,URBA//H/A $ PRINT UNIT RB MODES
$
$ NORMALIZE MODE SHAPES TO UNIT GENERALIZED MASS
$ MATMOD GENMASS,,,/GENM,28 $ FORM SQ. SYM. MATRIX
SOLVE GENM,GENMINV $ INVERT
DIAGONAL GENMINV/PHISCALE/SQUARE/-1 $ TAKE SQUARE ROOT
MPYAD PHIA,PHISCALE/PHIANRM $ SCALE MODES
$
$ GENERATE RIGID MASS MATRIX
$ MPYAD URBA,MAA,RBMO/1 $ TRANPOSE FIRST TERM
MPYAD RBMO,URBA,RBMO/6 $ 6X6 RB MASS MATRIX
DBSTORE URBA,RBMO/0/0 $ STORE IN DATABASE
MATPRT RBMO/ $ PRINT RIGID BODY MASS
DIAGONAL RBMO/RBMODINV/SQUARE/-1. $ INVERT DIAG TERMS
$
$ COMPUTE EFFECTIVE MASS
$ SMPYAD PHIANRM,MAA,URBA,,//MAR/3///1 $ PHI-T * M * URB
DIAGONAL MAR/MAR/SQ/WHO/2 $ MAR SQUARED
MPYAD MARSEQ,RBMODINV/EFFMAST $ NOFIM MODAL EFF MASS DIST
PARAML PHIA/TRAILE/1/V,N,NOMODES $ NUMBER OF MODES
MATGEN /H/6/NOMODES/0/NOMODES $ H-SIZE UNITY COLUMN
MPYAD IH,EFFMAST,TEFFMAST/1 $ SUM OVER MODES (ROWS)
TRNSP EFFMAST/TEFFMAST $ TRANPOSE
TRNSP TEFFMAST/TEFFMAST $ TRANPOSE
$
$ PRINT EFFECTIVE MASS
$ MATPRT EFFMASS/ $ PRINT EFFECTIVE MASS
MATPRT TEFFMASS/ $ PRINT TOTAL EFF MASS
DBSTORE EFFMASS,TEFFMASS/0/0 $ STORE IN DATABASE
$
$ WRITE THE 6X6 RIGID BODY MASS MATRIX
$
OUTPUT4 RBMO/0/11/OP4FMT $ RB MASS MATRIX
$
$ WRITE THE UNIT RIGID BODY MODES IN INTERNAL OR EXTERNAL SORT
$
COND INTERN2,EXTSORT $ SKIP IF EXTSORT .LE. -1
MERGE URBA,,,VGAX/URBAG/1 $ ROW MERGE TO G-SET

File 4. (cont.)

II-XVII
File 4. (cont.)

II-XVIII
FILE 5. Listing of PARTNMODX.DMP

BEGIN $ PARTITION MODE SHAPES TO A-SET DOF (PARTNMOD)

$ THIS DMAP SEQUENCE PARTITIONS THE MODE SHAPES TO THE A-SET OF
$ THE DOF DEFINED IN THE BULK DATA DECK. THE ORIGINAL MODES ARE
$ READ FROM AN OUTPUT4 FILE (BCD FORMAT). THE NUMBER OF DOF
$ DEFINED BY GRID AND/or SPOINT CARDS IN THE BULK DATA DECK MUST
$ EXACTLY MATCH THE NUMBER OF ROWS IN THE MODE SHAPE MATRIX.
$ THE MODE SHAPES ARE PARTITIONED TO THE A-SET DOF AS DEFINED
$ BY ASET/ASET1/OMIT/OMIT1 CARDS IN THE BULK DATA DECK. IN
$ ADDITION, RIGID BODY MODES CAN ALSO BE ELIMINATED FROM THE
$ A-SET MODE SHAPES (SEE PARAM,ELASTIC AND PARAM,NRBMODE).

$ THE A-SET MODES ARE WRITTEN TO AN OUTPUT4 FILE (BCD FORMAT). IF
$ REQUESTED, THE A-SET MODES WILL ALSO BE WRITTEN IN DMIG FORMAT
$ (SEE PARAM,WTDMIG AND PARAM,PUNDMIG).

$ SPECIAL INSTRUCTIONS TO USE THIS DMAP SEQUENCE:

$ USER FILES:

$ THE ORIGINAL (G-SET) MODE SHAPES ARE READ FROM AN OUTPUT4
$ FILE IN BCD FORMAT (PARAM,UTUNIT1 - DEFAULT = 11).
$ THE PARTITIONED (A-SET) MODE SHAPES ARE WRITTEN TO AN OUTPUT4
$ FILE IN BCD FORMAT (PARAM,UTUNIT2 - DEFAULT = 12).
$ THE PARTITIONED (A-SET) MODE SHAPES ARE WRITTEN TO AN OUTPUT2
$ FILE IN DMIG FORMAT (PARAM,UTUNIT3 - DEFAULT = 13)

$ DATA BASE FILES:

$ NONE

$ EXECUTIVE CONTROL DECK:

$ INCLUDE THIS DMAP SEQUENCE. DO NOT USE A RIGID FORMAT.

$ CASE CONTROL DECK:

$ NO SPECIAL INPUT IS REQUIRED.

$ BULK DATA DECK:

$ GRID AND/OR SPOINT CARDS MUST BE PROVIDED FOR THE ROWS IN
$ THE MODE SHAPE MATRIX. IF THE ROW ID NUMBERS ARE NOT IN
$ NUMERICALLY ASCENDING ORDER, SEQQP CARDS MUST BE DEFINED TO
$ CORRECTLY SEQUENCE THE GRIDS/SPOINTS WITH THE CORRESPONDING
$ ROWS.

$ ASET/ASET1/OMIT/OMIT1 CARDS MUST BE DEFINED TO SELECT THE

File 5.

II-XIX
A-SET DOF.

OPTIONAL PARAMETERS:

PARAM,ELASTIC - OPTION TO PARTITION TO THE ELASTIC MODES
(DEFAULT = -1 : KEEP ALL MODES)

PARAM, NRBMODE - NUMBER OF RIGID BODY MODES FOR "PARAM, ELASTIC"
(DEFAULT = 6)

PARAM, WTDIMG - IF .GE. 0, WRITE A-SET MODES IN DMIG FORMAT TO
OUTPUT2 FILE
(DEFAULT = -1 : DO NOT WRITE DMIG DATA)

PARAM, PUNDIMG - IF WTDIMG .GE. 0 AND PUNDIMG .NE. 0, PUNCH A-SET
MODES IN DMIG BULK DATA CARD FORMAT
(DEFAULT = 0 : DO NOT PUNCH DMIG CARDS)

PARAM, PUNCC - CONTINUATION MNEMONIC USED BY PUNCHED DMIG CARDS
(DEFAULT = BLANK : USE AUTO-CONTINUATION OPTION)

PARAM, OP4FMT - WRITE OUTPUT4 RLE IN BINARY (1) OR BCD
(DEFAULT = O - WRITE BCD FORMAT)

PARAM, IP4FMT - READ INPUT4 FILE IN BINARY (1) OR BCD
(DEFAULT = 0 - READ BCD FORMAT)

PARAM, UTUNIT1 - ORIGINAL (INPUT) MODE SHAPES (OUTPUT4 BCD)
(DEFAULT = 11)

PARAM, UTUNIT2 - PARTITIONED (OUTPUT) MODE SHAPES (OUTPUT4 BCD)
(DEFAULT = 12)

PARAM, UTUNIT3 - PARTITIONED (OUTPUT) MODE SHAPES (OUTPUT2 DMIG)
(DEFAULT = 13)

HISTORY:

20-OCT-86 DAN KAMMER
-ORIGINAL VERSION
15-JUN-88 CHRIS FLANIGAN
-ADD CHECK FOR PROPER NUMBER OF G-SET DOF
-ADD PARAM, NRBMODE FOR ELASTIC MODE PARTITION
-REWRITE THE ELASTIC MODE PARTITION OPERATIONS FOR EFFICIENCY
-ENHANCE DOCUMENTATION
08-JAN-89 CHRIS FLANIGAN
-ADD DMIG OPTION
07-MAR-89 CHRIS FLANIGAN
-READ FREHZ AND GENMDIAG MATRICES FROM FEM MODES FILE
-ADD PARAM USETPRT AND USETSSEL
14-JUN-90 ANDY FREED
-REMOVE DATABASE USAGE
-ADD PARAM IP4FMT AND OP4FMT

DEFAULT VALUES

File 5. (cont.)

II-XX
PARAM /C,N,NOP,V,Y,ELASTIC=1 $ ELASTIC PARTN OPTION
PARAM /C,N,NOP,V,Y,IP4FMT=0 $ INPUT4 FORMAT
PARAM /C,N,NOP,V,Y,MODEL=0 $ MODEL ID
PARAM /C,N,NOP,V,Y,NRBMODE=6 $ NO. OF RB MODES
PARAM /C,N,NOP,V,Y,OP4FMT=0 $ OUTPUT4 FORMAT
PARAM /C,N,NOP,V,Y,PUNDMIG=0 $ PUNCH DMIG OPTION
PARAM /C,N,NOP,V,Y,C2_ID=0 $ SUPERELEMENT ID
PARAM /C,N,NOP,V,Y,USE1PRT=0 $ USE TABLE PRINT
PARAM /C,N,NOP,V,Y,UTUNIT1=11 $ INPUT MODE SHAPES
PARAM /C,N,NOP,V,Y,UTUNIT2=12 $ OUTPUT4 MODE SHAPES
PARAM /C,N,NOP,V,Y,UTUNIT3=13 $ OUTPUT2 MODE SHAPES
PARAM /C,N,NOP,V,Y,WTDMIG=1 $ WRITE DMIG OPTION

$ PROCESS THE BULK DATA INFORMATION

GP1 GEOM1,GEOM2,GPLS,EQEXINS,GPPTS,CSTMS,BGPDTS,
SILS/S,N,NOSGSET/0/0 $ PROCESS GEOMETRY DATA

$ GENERATE USE TABLE

GP4 CASECC,GEOM4,EQEXINS,SILS,GPPTS,BGPDTS,CSTMS/
RG,YS,USET,NOGSET/S,N,NOMSET/S,N,NOSSET/
S,N,NOSGSET/S,N,NORSET/0/0/0 $ PROCESS SET INFORMATION
COND DNUSTPRT,USETPRT $ SKIP IF USETPRT.LE. -1
TABPRT USET,EQEXINS/USET/V,Y,USETPRT/V,Y,USETSEL $ PRINT USET TABLE
LABEL DNSTPRT $ DONE WITH USET PRINT

$ READ G-SET MODE SHAPES FROM AN OUTPUT4 FILE

INPUT4 /PHIG,FREQHZ,GENM,/3/V,Y,UTUNIT1/-1/IP4FMT $ READ MODAL DATA
PARAM PHIG/TRAILER/2/V,Y,NOROWPHIG $ NO. OF ROWS IN PHIG
PARAM /C,N,NE/V,N,BADGSET/NOSGSET/NORSET/0/0/0 $ IF G-SET .NE. ROWS
COND DNEI_AS1,ELASTIC $ SKIP IF ELASTIC
PARAM PHIC-J/TRAILEPJ1N,N,MODE $ NUMBER OF MODES
MATGEN /VHRBEL/6/NMODE/NRBMODE/NMODE $ H = RB / ELASTIC
MATPRN VHRBEL/$ $ PRINT PARTITION VECTOR
PARTN PHIG,VHRBEL/,PHIGE/,1 $ COLUMN PARTN TO ELASTIC
PARTN FREQHZ,VHRBEL,FREQHZE,/,1 $ ROW PARTN TO ELASTIC
PARTN GENM,VHRBEL/GENME/,/1 $ ROW PARTN TO ELASTIC
LABEL DNEI_ELS1 $ DONE WITH ELASTIC PARTN

$ PARTITION MODE SHAPES TO A-SET DOF

VEC USET/VGAX/G/A/COMP $ G = A / COMP
PARTN PHICEL/VGAX/PHICG/,/1 $ ROW PARTITION TO A-SET

$ WRITE A-SET MODES TO AN OUTPUT4 FILE

OUTPUT4 PHIA,FREQHZE,GENMEL/-1/UTUNIT2/OP4FMT $ WRITE MODAL DATA
COND FINIS,WTDMIG $ SKIP IF WTDMIG .LT. 0
MERGE PHIA,,,,VGAX/PHICG/1 $ ROW MERGE TO G-SET

File 5. (cont.)

II-XXI
MATGEN EOEXINS/INTEXT/0/NOGSET $ INT-TO-EXT TRANSFORM
MPYAD INTEXT,PHIAG/PHIAGEXT/1 $ EXTERNAL SORT
MATMOD PHIAGEXT,EOEXINS,.../PHIAGMPL/16/
 PUNDMIG///III///C,Y,PUNCC $ DMIG FORMAT
OUTPUT2 PHIAGMPL,FREQHEL,GENMEL/-1/UNIT3 $ WRITE TO OUTPUT2 FILE
JUMP FINIS $ DONE
$ $ COME ERROR IF ERROR
$ $ LABEL ERROR $ START ERROR PROCESSING
PRTPARM /0 $ PRINT PARAMETER TABLE
$ $ LABEL FINIS $ FINISHED
$ END $
FILE 6. Listing of CORL8X.DMP

BEGIN $ PERFORM ORTHO, CROSS-ORTH AND MAC CHECKS (CORL8)

$ THIS DMAP CAN BE USED IN EITHER TEST/ANALYSIS OR TAM/FEM
$ CORRELATION AN YES TO COMPUTE ORTHOGONALITY, CROSS-ORTHOGONALITY,
$ AND MODAL ASSURANCE CRITERION.

$ REQUIREMENTS TO USE THIS DMAP SEQUENCE -

$ DATA BASES -
$ THE FOLLOWING DATA BASE FILES MUST BE AVAILABLE -
$ -NONE

$ USER FILES -
$ THE USER MUST SUPPLY THE FOLLOWING INPUT FILES (OUTPUT4 FORMAT):
$ FOR011 - TAM MASS MATRIX (OPTION FOR MAC ONLY RUNS)
$ FOR012 - TAM MODE SHAPES
$ FOR013 - TEST MODE SHAPES (OR PARTITIONED FEM MODE SHAPES)

$ EXECUTIVE DECK -
$ INCLUDE THIS DMAP SEQUENCE (DO NOT USE A RIGID FORMAT)
$ DIAG 8,14,20 RECOMMENDED

$ CASE CONTROL DECK -
$ -NO SPECIAL REQUIREMENTS

$ BULK DATA DECK -

$ OPTIONAL PARAMETERS -
$ ORTHO = 1 PERFORM ORTHOGONALITY CHECK (DEFAULT)
$ -1 DO NOT PERFORM ORTHOGONALITY CHECK
$ CROSS = 1 PERFORM CROSS-ORTHO CHECK (DEFAULT)
$ -1 DO NOT PERFORM CROSS-ORTHO
$ MAC = 1 DO NOT COMPUTE MAC CRITERION (DEFAULT)
$ -1 COMPUTE MAC
$ MASS = 1 MASS MATRIX IS PRESENT (DEFAULT)
$ -1 NO TAM MASS MATRIX EXISTS
$ NORMTAM = 1 DO NOT NORMALIZE TAM MODES (DEFAULT)
$ -1 NORMALIZE TAM MODES
$ NORMTEST = 1 DO NOT NORMALIZE TEST MODES (DEFAULT)
$ -1 NORMALIZE TEST MODES
$ IP4FMT = 1 READ INPUT4 FILE IN BINARY FORMAT
$ -1 READ INPUT4 FILE IN BCD FORMAT (DEFAULT)

$ EXAMPLE NASTRAN DECK -
$ ID CORL8,TAM
$ TIME 10
$ DIAG 8,14,20

File 6.

II-XXIII
$: THIS DMAP SEQUENCE
$ CEND
$ TITLE = CORLB TAM TO TEST
$ BEGIN BULK
$ PARAM,ORTHO,-1 $ PERFORM ORTHOGONALITY CHECK
$ PARAM,CROSS,-1 $ PERFORM CROSS-ORTHOGONALITY CHECK
$ PARAM,MAC,-1 $ DO NOT PERFORM MAC CALCULATION
$ PARAM,MASS,-1 $ TAM MASS MATRIX IS PRESENT
$ PARAM,NORMTAM,-1 $ DO NOT RENORMALIZE TAM MODE SHAPES
$ PARAM,NORMTEST,-1 $ DO NOT RENORMALIZE TEST MODE SHAPES
$ PARAM,IP4FMT,1 $ READ INPUT4 IN BCD FORMAT
$ ENDDATA
$
$ HISTORY DOCUMENTATION -
$ VERSION 1.0 15-JUN-90 ANDY FREED
$ - ORIGINAL VERSION (BASED ON DAN KAMMER'S XCORLB.DMP)
$ PARAM /C,N,NOPN,Y,UTUNIT1=11 $
PARAM /C,N,NOPN,Y,UTUNIT2=12 $
PARAM /C,N,NOPN,Y,UTUNIT3=13 $
PARAM /C,N,NOPN,Y,MODEL=0 $
PARAM /C,N,NOPN,Y,SEID=0 $ SET TO RESIDUAL STRUCTURE
PARAM /C,N,NOPN,Y,CROSS=1 $ DO CROSS-ORTHOGONALITY
PARAM /C,N,NOPN,Y,ORTHO=1 $ DO ORTHOGONALITY
PARAM /C,N,NOPN,Y,MAC=-1 $ DO NOT COMPUTE MAC
PARAM /C,N,NOPN,Y,MASS=1 $ MASS MATRIX EXISTS
PARAM /C,N,NOPN,Y,NORMTAM=-1 $ DO NOT NORMALIZE TAM MODES
PARAM /C,N,NOPN,Y,NORMTEST=-1 $ DO NOT NORMALIZE TEST MODES
PARAM /C,N,NOPN,Y,IP4FMT=-1 $ INPUT4 FILES ARE BCD
$
$ READ IN TAM MASS MATRIX
$-cond NOMASS1,MASS $ JUMP IF NO MASS
$ INPUT4 /MAA,...,/IN,Y,UTUNIT1/-1/IP4FMT $ FORMATTED FILE
$ LABEL NOMASS1 $
$ READ IN TAM MODE SHAPES
$ INPUT4 /TAMPHI,...,/IN,Y,UTUNIT2/-1/IP4FMT $ FORMATTED FILE
$ NORMALIZE TAM MODE SHAPES WRT MASS
$
File 6. (cont.)
$
$ COND NONORM1,NORMTAM$
$ JUMP NOT TO NORMLZ
$ SMPYAD TAMPHI,MAA,TAMPHI,/,GMAST/3///1///6$
$ TRANPOSE FIRST PHI
$ DIAGONAL GMAST/GG1/C,Y,OPT=SQUARE/1.$
$ EXTRACT DIAGONAL
$ SOLVE GG1/TT/GG1TINV$
$ TAKE INVERSE
$ DIAGONAL GG1TINV/HGMAST/C,Y,OPT=SQUARE/5$
$ TAKE SQUARE ROOT
$ MPYAD TAMPHI,HGMAST/TAMPHI$
$ SCALE MODES
$ JUMP NOTAM1$
$ LABEL NONORM1$
$ ADD TAMPHI/TAMNRM/$
$ SET TAMPHI TO TAMNRM
$ LABEL NOTAM1$
$ $
$ READ IN TEST (OR FEM) MODES
$ $
$ INPUTT4 /TPHI,,1/AV,Y,UTUNIT3/-1/IP4FMT$
$ FORMATTED FILE
$ $
$ NORMALIZE TEST MODE SHAPES WRT MASS
$ $
$ COND NONORM2,NORMTEST$
$ JUMP NOT TO NORMLZ
$ COND NONORM2,MASS$
$ JUMP IF NO MASS
$ $
$ SMPYAD TPHI,MAA,TPHI,/,GMASS/3///1///6$
$ TRANPOSE FIRST PHI
$ DIAGONAL GMASS/GG1/C,Y,OPT=SQUARE/1.$
$ EXTRACT DIAGONAL
$ SOLVE GG1/INVGG1$
$ TAKE INVERSE
$ DIAGONAL GG1INV/HGMASS/C,Y,OPT=SQUARE/5$
$ TAKE SQUARE ROOT
$ MPYAD TPHI,HGMASS/TESNRM$
$ SCALE MODES
$ JUMP NONORM3$
$ LABEL NONORM2$
$ ADD TPHI/TESNRM$
$ SET TPHI TO PHI
$ LABEL NONORM3$
$ $
$ PERFORM CORRELATION ANALYSES
$ $
$ $
$ ORTHOGONALITY OF TEST MODES WRT TAM MASS
$ $
$ COND NOCROSS3,CROSS$
$ JUMP IF NO CROSS-ORTHOG
$ SMPYAD TAMNRM,MAA,TESNRM,/,CROSSORTHO///6$
$ TRANPOSE TAMNRM
$ MATPRT ORTHO///$
$ PRINT ORTHO
$ LABEL NOCROSS3$
$ $
$ TAM/TESNRM CROSS-ORTHOGONALITY
$ $
$ $
$ COMPUTE MODAL ASSURANCE CRITERION - TAM/TEST
$ $
$ COND NOMAC,MAC$
$ JUMP IF NO MAC
$ LABEL DOMAC$
$ DO MAC LABEL
$ MPYAD TAMNRM,TESNRM,ORT/1$
$ ORDINARY CROSSORTH
$ DIAGONAL ORT/ORT2/WHOLE/V,Y,POWER=2$
$ SQUARE EACH TERM
$ MPYAD TAMNRM,TAMNRM/TAMORT/1$
$ TAM ORTHOGONALITY
$ $

File 6. (cont.)

II-XXV
MPYAD TESNRM, TESNRM, TESORT/1 $
DIAGONAL TAMORT/TAMORTD/SQUARE $
DIAGONAL TESORT/TESORTD/SQUARE $
SOLVE TAMORTD/TAMINV $
SOLVE TESORTD/TE5INV $
SMYAD TAMINV, ORT2, TESINV, ..., MACM/3 $
MATPRT MACM/ $
LABEL NOMAC $
END $
FILE 7. Listing of PHIATEST.DMP

BEGIN $ CREATE MODAL DATA BLOCKS FROM UNIVERSAL FILE DATA (PHIATEST)

$--
$ THIS DMAP SEQUENCE STORES THE TEST MODE FREQUENCIES AND SHAPES
$ IN A DATA BASE COMPATIBLE WITH A TAM. THE MODAL DATA CAN ALSO
$ BE WRITTEN TO AN OUTPUT4 FILE FOR ADDITIONAL PROCESSING.
$ IF REQUESTED BY PARAM EXTSORT, THE A-SET MODE SHAPES WILL BE
$ CONVERTED FROM INTERNAL TO EXTERNAL (NUMERICALLY ASCENDING) SORT.
$ THE MATRIX NAME WRITTEN TO THE OUTPUT4 FILE WILL CHANGE AS SHOWN
$ BELOW:
$ PHIA -> PHIAEXT
$ THE INTERNAL-TO-EXTERNAL SORT CONVERSION IS ONLY NEEDED IF THE
$ TAM RESIDUAL STRUCTURE IS INTERNALLY RESEQUENCED (NOT IN NUMERICALLY
$ ASCENDING ORDER) AND THE TAM MATRICES ARE REQUIRED TO BE IN EXTERNAL
$ SORT. THE INTERNAL-TO-EXTERNAL SORT CONVERSION IS USUALLY NOT
$ NEEDED FOR TAMS CREATED USING ONE OR MORE UPSTREAM SUPERELEMENTS.
$ IT WILL PROBABLY BE NEEDED WHEN THE TAM IS CREATED WITHOUT
$ SUPERELEMENTS.
$ THE MATRICES WRITTEN ARE AS FOLLOWS:
$ NAME DESCRIPTION NROW NCOL UNIT OPTIONAL?
$ PHIA(EXT) MODE SHAPES A-SET NMODE 11 NO
$ FREQHZ MODAL FREQUENCIES (HZ) NMODE 1 11 NO
$ GENMASS GENERALIZED MASS (DIAG ONLY) NMODE 1 11 NO
$ THE FOLLOWING INFORMATION IS WRITTEN TO THE NASTRAN OUTPUT FILE:
$ DESCRIPTION OPTIONAL? PARAM
$ GEOMETRY DATA FOR RESIDUAL STRUCTURE GRIDS YES GEOMPR
$ SET ALLOCATION TABLES (USET TABLES) YES USETPR
$ DIAGONAL TERMS OF THE REDUCED STIFFNESS MATRIX NO
$ DIAGONAL TERMS OF THE REDUCED MASS MATRIX NO
$ REAL EIGENVALUE SUMMARY NO
$ MODE SHAPES OF THE A-SET DOF YES (CASE CON)
$ RIGID BODY MASS MATRIX YES EFFMASS
$ UNIT RIGID BODY MODE SHAPES YES EFFMASS
$ REQUIREMENTS TO USE THIS DMAP SEQUENCE:
$ DATA BASES -
$ THE FOLLOWING DATA BASE FILES MUST BE AVAILABLE -
$ TAM DATA BASE
$ USER FILES -
$ THE TEST DATA WILL BE WRITTEN TO FORTRAN UNIT 11 IN OUTPUT4
$ FORMAT. ALSO SEE PARAM.OP4FMT IN THE BULK DATA DECK.
$ EXECUTIVE DECK -
$ INCLUDE THIS DMAP SEQUENCE (DO NOT USE A RIGID FORMAT)
$ DIAG 8,14,20 RECOMMENDED

File 7.

II-XXVII
CASE CONTROL DECK -
A-SET MODE SHAPES MAY BE PRINTED BY AN "SVECTOR=ALL" REQUEST.

BULK DATA DECK -

OPTIONAL PARAMETERS -

PARAM,EXTSORT - IF 0, WRITE PHIA TO THE OUTPUT4 FILE IN EXTERNAL SORT
(DEFAULT = -1 - PHIA WRITTEN IN INTERNAL SORT)

PARAM,NORMTEST - IF 0, NORMALIZE THE TEST MODES TO UNITY ON THE DIAGONAL OF THE ORTHOGONALITY MATRIX
(DEFAULT = -1 - DO NOT NORMALIZE THE TEST MODES)

PARAM,OP4FMT - WRITE OUTPUT4 FILE IN BINARY (1) OR BCD
(NE. 1) FORMAT.
(DEFAULT = 0 - WRITE BCD FORMAT)

EXAMPLE NASTRAN DECK -

ID PHIA,TEST
TIME 10
DIAG 8,14,20
.
THIS DMAP SEQUENCE
.
CEND
TITLE = STORE TEST MODE SHAPES IN TAM-COMPATIBLE FORMAT

BEGIN BULK

WRITE THE PHIA DATA BLOCK TO THE OUTPUT4 FILE IN EXTERNAL SORT

PARAM,EXTSORT,0

(TEST MODE DATA IN DMIG AND DMI FORMAT FROM UNVDMI)

ENDDATA

HISTORY DOCUMENTATION -

VERSION 1.0 ??-??-?? CHRIS FLANIGAN
- ORIGINAL VERSION

VERSION 2.0 02-OCT-90 CHRIS FLANIGAN
- ADD EXTERNAL SORT OPTION
- WRITE DATA BLOCKS TO THE OUTPUT4 FILE AS DONE BY WTTAM
- ADD DOCUMENTATION

VERSION 3.0 13-NOV-90 CHRIS FLANIGAN
- ADD TEST MODES NORMALIZATION OPTION
- ENHANCE DOCUMENTATION

$ SET DEFAULT VALUES

PARAM /C,N,NOP/V,Y,EXTSORT=-1 $ EXTERNAL SORT OPTION
PARAM /C,N,NOP/V,Y,NORMTEST=-1 $ NORMALIZATION OPTION

File 7. (cont.)

II-XXVIII
PARAM //C,N,NOPV,Y,OP4FMT=0 $ OUTPUT4 FORMAT
$
CREATE A NEW DATA BASE
$
DBMGR //0/V,Y,DBCLEAN=0/V,Y,DBNBLKS=20000/
 V,Y,DBINHT=0/V,Y,DBNAME=DB01 $$
CREATE LAMA TABLE FROM DMI "LAMADM"$$
LAMX LAMADM,LAMA/$
OFF LAMA/$$
CREATE MODES SHAPE MATRIX FROM DMI "PHIG"$
DBFETCH /GPLS,EOEXINS,SILS,USET,MAA=0/0 $ FETCH TAM DATA
PARAML USET/UseT/\\\n
File 7. (cont.)

II-XXIX
$COND \ INTERNAL1,\ EXTSORT$ \ SKIP\ IF\ EXTSORT.LT.\ -1$
$MATGEN \ EQEXINS/\ INTTEXT/3/0/NOGSET$ \ INTERNAL-TO-EXTERNAL
$MERGE \ PHIA,..,VGAX/PHIAG/1$ \ ROW\ MERGE\ TO\ G-SET
$MPYAD\ INTTEXT,PHIAG/PHIAGEXT/1$ \ EXTERNAL\ SORT
$MPYAD\ INTTEXT,VGAX,VGAXEXT/1$ \ EXTERNAL\ SORT
$PARTN\ PHIAGEXT,..,VGAXEXT/PHIAEXT,../1$ \ ROW\ PARTN\ TO\ A-SET
$OUTPUT4\ PHIAGEXT/-1/11/OP4FMT$ \ TAM\ MODE\ SHAPES
$JUMP\ DNINEX1$ \ JUMP\ TO\ LABEL\ DNINEX1$
$
$LABEL \ INTERN1$ \ INTERNAL\ SORT
$OUTPUT4 \ PHIA/-1/11/OP4FMT$ \ TAM\ MODE\ SHAPES
$LABEL \ DNINEX1$ \ DONE\ WITH\ INT-EXT\ SORT
$
$WRITE\ THE\ TEST\ FREQUENCIES\ (HZ)\ AND\ GENERALIZED\ MASS$
$
$LAMX_,LAMA,LAMAMAT/-1$ \ MAKE\ MATRIX\ FROM\ LAMA
MATMOD\ LAMAMAT,_,FREQHZ/1/13$ \ COL\ 3 =\ FREQ.\ (HZ)
MATMOD\ LAMAMAT,_,/GENMASS/1/4$ \ COL\ 4 =\ GEN.\ MASS
$OUTPUT4\ FREQHZ,GENMASS/0/11/OP4FMT$ \ TAM\ FREQ\ AND\ GEN.\ MASS$
$
END

File 7. (cont.)

II-XXX
Appendix III

Data files associated with ten-bay model
FILE 8. Listing of TENBAYFEM.DAT

1. ID VIBRATION ANALYSIS, TEN BAY TRUSS
2. $
3. $
4. $ THIS MSC NASTRAN FEM SOLVES FREQUENCIES
5. $ AN D MODE SHAPES FOR A TEN BAY TRUSS-
6. $ CANT ILEVERED TO THE WALL WITH METAL PLATE ON THE END
7. $ METAL PLATE REFINED (7/22)
8. $
9. $ TEN BAY TRUSS SOLUTION 63
10. $ THIS SOLUTION STARTS WITH THE DATABASE FROM SOLUTION 64
11. $ (DIFFERENTIAL STIFFNESS EFFECT)
12. $
13. $--
14. SOL 63 $ NORMAL MODES
15. TIME 60 $ 60 CPU MINUTES (VAX 11/780 TIMING)
16. DIAG 8 $ PRINT MATRIX TRAILERS
17. DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
18. $
19. $ ALTER RF63D307.DAT
20. $ OUTPUT MODE SHAPES IN OUTPUT2 FILES
21. $ MODE SHAPES IN BASIC COORDINATES IN UNIT 12
22. $ COORDINATE SYSTEMS
23. $--
24. $ REPLACE THE NEXT LINE WITH ALTER RF63D307
25. $
26. &RF63D307.DAT
27. ECHOON
28. $
29. CEND
30. $
31. ECHO = BOTH
32. $
33. TITLE = TEN BAY TRUSS NORMAL MODES
34. SUBTITLE = NORMAL MODES - ORIGINAL RUN
35. $
36. SEKR = ALL
37. SEMR = ALL
38. $
39. SPC = 20
40. $
41. DISP = ALL $ RECOVER BUT DO NOT PRINT MODE SHAPES
42. $
43. METHOD = 50 $ COMPONENT MODES TO 150 HZ
44. $
45. $
46. BEGIN BULK
47. $
48. $ PARAMETER CARDS
49. $ ---------------------
50. $
51. PARAM, AUTOSPC, YES
52. PARAM, DBNBKLS, 33000
53. PARAM, GRDPNT, 0
54. PARAM, USEPRT, 0
55. PARAM, COUPMASS, 1
56. PARAM, MAXRATIO, 5.0E6
57. $
58. $ EIGENVALUE SOLUTION DATA
59. $ ---------------------
60. EIGRL, 50, 1.0, 150.0

File 8.

III-1
$ BULK DATA
$ -----------
$ REPLACE THE NEXT LINE WITH BULK CARDS
$ &TENBAYFEM.BLK
$ $ ENDDATA
FILE 9. Listing of the Bulk Data Deck

$BULK DATA DECK FOLLOWS
$-------------------------------------
$GRAVITY LOAD IN +Z
$GRAV,103,386.1,0.0,0.0,0.0
$GRAVITY LOAD IN -Y
$GRAV,103,386.1,0.0,-1.0,0.0
$
$-------------------------------------
$PROPERTIES FOR TIP PLATE CONNECTING STRUTS
$PBAR,101,103,1.0,1.0,1.0,1.0
MAT1,103,1.0,E9,3.0,000001
$
$PROPERTIES FOR LONGERONS AND DIAGONALS
$PROD,201,102,1139,.0169
PROD,202,204,1139,.0169
MAT1,102,1.0E6,3.0,,00001894
MAT1,111,1.0E6,3.0,,0002591
MAT1,112,30.0E6,3.0,,0007513
MAT1,204,1.0E6,3.0,,0002034
$
$TIP PLATE ELEMENTS
$cquad4,401,501,45,52,56,54,0.
cquad4,402,501,52,56,58,50,0.
cquad4,403,501,50,58,60,48,0.
cquad4,404,501,58,60,62,64,0.
cquad4,405,501,58,64,66,56,0.
cquad4,406,501,56,66,68,54,0.
cquad4,407,501,46,70,66,68,0.
cquad4,408,501,70,72,64,66,0.
cquad4,409,501,72,47,62,64,0.
cquad4,420,502,45,52,56,54,0.
cquad4,421,502,52,56,58,50,0.
cquad4,422,502,50,58,60,48,0.
cquad4,423,502,58,60,62,64,0.
cquad4,424,502,58,64,66,56,0.
cquad4,425,502,56,66,68,54,0.
cquad4,426,502,46,70,66,68,0.
cquad4,427,502,70,72,64,66,0.
cquad4,428,502,72,47,62,64,0.
pshell,501,111,375,111
pshell,502,112,5,112
$CANTILEVERED BOUNDARY CONDITIONS
$SPC1,20,123456,1,2,3,4
$
$TRUSS GRID POINTS
$GRID,1,,0.,0.,0.
GRID,2,,0.,0.000,19.700
GRID,3,,0.,19.7,19.7
GRID,4,,0.,19.700,0.000
GRID,5,,19.7,0.,0.
GRID,6,,19.7,0.000,19.700
GRID,7,,19.7,19.7,19.7
GRID.8,.19.7,19.700,0.000
GRID.9,.39.4,0.0.
GRID.10,.39.4,0.000,19.700
GRID.11,.39.4,19.7,19.7
GRID.12,.39.4,19.700,0.000
GRID.13,.59.1,0.0.
GRID.14,.59.1,0.000,19.700
GRID.15,.59.1,19.7,19.7
GRID.16,.59.1,19.700,0.000
GRID.17,.78.8,0.0.
GRID.18,.78.8,0.000,19.700
GRID.19,.78.8,19.7,19.7
GRID.20,.78.8,19.700,0.000
GRID.21,.98.5,0.0.
GRID.22,.98.5,0.000,19.700
GRID.23,.98.5,19.7,19.7
GRID.24,.98.5,19.700,0.000
GRID.25,.118.2,0.0.
GRID.26,.118.2,0.000,19.700
GRID.27,.118.2,19.7,19.7
GRID.28,.118.2,19.700,0.000
GRID.29,.137.9,0.0.
GRID.30,.137.9,0.000,19.700
GRID.31,.137.9,19.7,19.7
GRID.32,.137.9,19.700,0.000
GRID.33,.157.6,0.0.
GRID.34,.157.6,0.000,19.700
GRID.35,.157.6,19.7,19.7
GRID.36,.157.6,19.700,0.000
GRID.37,.177.3,0.0.
GRID.38,.177.3,0.000,19.700
GRID.39,.177.3,19.7,19.7
GRID.40,.177.3,19.700,0.000
GRID.41,.197.0,0.0.
GRID.42,.197.0,0.000,19.700
GRID.43,.197.0,19.7,19.7
GRID.44,.197.0,19.700,0.000
GRID.45,.198.125,0.0.
GRID.46,.198.125,0.000,19.700
GRID.47,.198.125,19.7,19.7
GRID.48,.198.125,19.700,0.000

$PLATE GRID POINTS$

GRID.52,.198.125,6.567,0.000
GRID.50,.198.125,13.134,0.000
GRID.54,.198.125,0.000,6.567
GRID.56,.198.125,6.567,6.567
GRID.58,.198.125,13.134,6.567
GRID.60,.198.125,19.700,6.567
GRID.62,.198.125,19.700,13.134
GRID.64,.198.125,13.134,13.134
GRID.66,.198.125,6.567,13.134
GRID.68,.198.125,0.000,13.134
GRID.70,.198.125,6.567,19.700
GRID.72,.198.125,13.134,19.700

$STRUSS ELEMENTS$

CROD.1,201,1.2
CROD.2,201,2.3
CROD.3,201,3.4
CROD.4,201,1.4

File 9. (cont.)

III-IV
CROD,5,201,5,6
CROD,6,201,6,7
CROD,7,201,7,8
CROD,8,201,5,8
CROD,9,201,1,5
CROD,10,201,2,6
CROD,11,201,3,7
CROD,12,201,4,8
CROD,13,202,2,4
CROD,14,202,2,7
CROD,15,202,6,8
CROD,16,202,4,5
CROD,17,202,4,7
CROD,18,202,2,5
CROD,19,201,6,10
CROD,20,201,9,10
CROD,21,201,5,9
CROD,22,201,7,11
CROD,23,201,8,12
CROD,24,201,11,12
CROD,25,201,10,11
CROD,26,201,9,12
CROD,27,202,5,10
CROD,28,202,7,12
CROD,29,202,7,10
CROD,30,202,10,12
CROD,31,202,5,12
CROD,32,201,10,14
CROD,33,201,9,13
CROD,34,201,13,14
CROD,35,201,11,15
CROD,36,201,12,16
CROD,37,201,15,16
CROD,38,201,14,15
CROD,39,201,13,16
CROD,40,202,10,13
CROD,41,202,12,15
CROD,42,202,10,15
CROD,43,202,12,13
CROD,44,202,14,16
CROD,45,201,14,18
CROD,46,201,13,17
CROD,47,201,17,18
CROD,48,201,15,19
CROD,49,201,16,20
CROD,50,201,19,20
CROD,51,201,18,19
CROD,52,201,17,20
CROD,53,202,13,18
CROD,54,202,15,20
CROD,55,202,15,18
CROD,56,202,13,20
CROD,57,202,18,20
CROD,58,201,18,22
CROD,59,201,17,21
CROD,60,201,19,23
CROD,61,201,20,24
CROD,62,201,23,24
CROD,63,201,22,23
CROD,64,201,21,24
CROD,65,201,21,22
CROD,66,202,18,21
CROD,67,202,20,23

File 9. (cont.)

III-V
File 9. (cont.)

III-VI
CROD,131,202,37,42
CROD,132,202,39,44
CROD,133,202,39,42
CROD,134,202,37,44
CROD,135,202,42,44

$CONNECTING STRUCT ELEMENTS$

CBAR,136,101,44,48,0.,0.,1.,1
CBAR,137,101,43,47,0.,0.,1.,1
CBAR,138,101,42,46,0.,0.,1.,1
CBAR,139,101,41,45,0.,0.,1.,1

$CONM2'S FOR JOINT MASSES
ADD MASS FOR ACCELS AND CABLING$

CONM2,301,1,,0.001821
CONM2,302,2,,0.002917
CONM2,303,3,,0.001821
CONM2,304,4,,0.002917
CONM2,305,5,,0.003648
CONM2,306,6,,0.002551
CONM2,307,7,,0.003648
CONM2,308,8,,0.002551
CONM2,309,9,,0.002186
CONM2,310,10,,0.004013
CONM2,311,11,,0.002186
CONM2,312,12,,0.004013
CONM2,313,13,,0.003648
CONM2,314,14,,0.002551
CONM2,315,15,,0.003648
CONM2,316,16,,0.002551
CONM2,317,17,,0.002186
CONM2,318,18,,0.004013
CONM2,319,19,,0.002186
CONM2,320,20,,0.004013
CONM2,321,21,,0.003648
CONM2,322,22,,0.002551
CONM2,323,23,,0.003648
CONM2,324,24,,0.002551
CONM2,325,25,,0.002186
CONM2,326,26,,0.004013
CONM2,327,27,,0.002186
CONM2,328,28,,0.004013
CONM2,329,29,,0.003648
CONM2,330,30,,0.002551
CONM2,331,31,,0.003648
CONM2,332,32,,0.002551
CONM2,333,33,,0.002186
CONM2,334,34,,0.004013
CONM2,335,35,,0.002186
CONM2,336,36,,0.004013
CONM2,337,37,,0.003648
CONM2,338,38,,0.002551
CONM2,339,39,,0.003648
CONM2,340,40,,0.002551
CONM2,341,41,,0.001821
CONM2,342,42,,0.002917
CONM2,343,43,,0.001821
CONM2,344,44,,0.002917
CONM2,345,45,,0.009719
CONM2,346,46,,0.009719
CONM2,347,47,,0.009719

File 9. (cont.)
CONM2,348,48,,.0009719
CONM2,350,50,,.000832
CONM2,352,52,,.000832
CONM2,354,54,,.000832
CONM2,360,60,,.000832
CONM2,362,62,,.000832
CONM2,368,68,,.000832
CONM2,370,70,,.000832
CONM2,372,72,,.000832
$END OF BULK DATA

File 9. (cont.)
FILE 10. Listing of TENBAYFEM.COM

1. $ I ASSIGNMENT FILE FOR FEM OF TENBAY ORIGINAL NORMAL MODES RUN (SOL63)
2. $ I
3. $ I FEM DATABASE
4. $ I ASSIGN TENBAYFEM.D01 DB01 ! O
5. $ I
6. $ I MODE SHAPES FOR SEMCOMB (BASIC CORD)
7. $ I ASSIGN TENBAYFEM.U11 FOR011 ! O
8. $ I
9. $ I MODE SHAPES FOR SEMCOMB (DISPLACEMENT CORD)
10. $ I ASSIGN TENBAYFEM.U12 FOR012 ! O

File 10.

III-IX

1. ID VIBRATION ANALYSIS, TEN BAY TRUSS
2. $
3. $ TEN BAY TRUSS SOLUTION 63
4. $ CANTILEVERED TO THE WALL WITH METAL PLATE AT THE FREE END
5. $ METAL PLATE REFINED (7/22)
6. $
7. $
8. $
9. SOL 63 $ NORMAL MODES
10. TIME 60 $ 60 CPU MINUTES (VAX 11/780 TIMING)
11. DIAG 8 $ PRINT MATRIX TRAILERS
12. DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
13. $
14. $ ADD EITHER THE ALTER IRSRED63.ALT FOR THE IRS REDUCTION
15. $ OR THE ALTER HRED63.ALT FOR THE HYBRID REDUCTION
16. $
17. $ DO NOT USE BOTH AT THE SAME TIME
18. $
19. $&IRSRED63.ALT $ FOR IRS REDUCTION
20. $&HRED63.ALT $ FOR HYBRID REDUCTION
21. $
22. ECHOON
23. $
24. CEND
25. $
26. ECHO = BOTH
27. $
28. TITLE = TEN BAY TRUSS NORMAL MODES
29. SUBTITLE = NORMAL MODES - ORIGINAL RUN
30. $
31. SEKR = ALL
32. SEMR = ALL
33. $
34. SPC = 20
35. $
36. DISP = ALL $ RECOVER BUT DO NOT PRINT MODE SHAPES
37. $
38. METHOD = 50 $ COMPONENT MODES TO 150 HZ
39. $
40. $
41. BEGIN BULK
42. $
43. $ PARAMETER CARDS
44. $
45. $
46. PARAM, AUTOSPC, YES
47. PARAM, DBNLKS, 33000
48. PARAM, GRDPNT, 0
49. PARAM, USETPRT, 0
50. PARAM, COUPMASS, 1
51. PARAM, MAXRATIO, 5.0E6
52. $
53. $ EIGENVALUE SOLUTION DATA
54. $
55. $
56. EIGRL, 50, 1.0, 150.0
57. $
58. $ BULK DATA
59. $
60. $ REPLACE THE NEXT LINE WITH BULK DATA CARDS

File 11.
61. $
62. &TENBAYFEM.BLK
63. $
64. $ A-SET DOF
65. $ -------
66. $ INSERT ASET CARDS (DEGREES OF FREEDOM TO BE RETAINED)
67. $
68. &ASET14.ASY
69. $
70. ENDDATA

File 11. (cont.)
III-XI
FILE 12. Listing of ASET14.AST

FILENAME ASET14.AST

REDUCED TEST CONFIGURATION

14 DOFS

ASET1,23,21,22
ASET1,2,24
ASET1,3,23
ASET1,23,45,46,47,48
FILE 13. Listing of TENBAY14.COM

1. $I ASSIGNMENT FILE FOR TENBAY14 RUN - SOL 63
2. $I
3. $I TAM DATABASE
4. $I ASSIGN TENBAY14.D01 DB01 !O
5. $I
FILE 14. Listing of WTTAM14.DAT

1. ID WRITE.TAM
2. $
3. $ FILE TO WRITE MASS & MODE SHAPE MATRICES OF TAM
4. $
5. $ DB01 = TAM DATA BASE
6. $ FOR011 = OUTPUT4 FILE CONTAINING MASS MATRIX (OUTPUT)
7. $ FOR012 = OUTPUT4 FILE CONTAINING MODE SHAPES (OUTPUT)
8. $
9. TIME 60 $ 60 CPU MINUTES (VAX 11/750 TIMING)
10. DIAG 8 $ PRINT MATRIX TRAILERS
11. DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
12. $
13. $ WRITE TAM TO OUTPUT4 FILES
14. $
15. $ REPLACE NEXT LINE WITH THE DMAP, WTTAM.DMP
16. $
17. &WTTAM.DMP
18. $
19. CEND
20. $
21. TITLE = 14 DOFS TENBAY TEST CONFIGURATION
22. SUBTITLE = WRITE TAM TO OUTPUT4 FILE
23. $
24. ECHO= NONE
25. $
26. BEGIN BULK
27. $
28. $ DO NOT FORM RB MASS MATRIX AND UNIT RB MODES
29. PARAM EFFMASS -1
30. $ DO NOT PRINT GEOMETRY DATA
31. PARAM GEOMPR T -1
32. $ PRINT USET TABLE
33. PARAM USERPRT 0
34. $ PRINT MODE SHAPES IN EXTERNAL SORT
35. PARAM EXTSORT 1
36. $
37. ENDDATA

File 14.

III-XIV
FILE 15. Listing of WTTAM14.COM

1. $ | ASSIGNMENT FILE TO WRITE MASS & MODE SHAPE MATRICES OF TAM
2. $ |
3. $ | TAM DATABASE
4. $ |
5. $ ASSIGN TENVAY14.D01 DB01 ! I
6. $ |
7. $ OUTPUT - OUTPUT 4 FILE CONTAINING MASS
8. $ |
9. $ ASSIGN TAMMASS14.OP4 FOR011 ! O
10. $ |
11. $ OUTPUT - OUTPUT 4 FILE CONTAINING MODE SHAPES
12. $ |
13. $ ASSIGN TAMMODES14.OP4 FOR012 ! O

File 15.

III-XV
FILE 16. Listing of PARTNMODA14.DAT

1. ID PARTNAMOD
2. $ PARTITIONING FEM MODE SHAPES TO TAM DOFS
3. $ INPUT: TENBAYFEM.OP4 ON FOR011
4. $ OUTPUT: TENBAYFEM_PARTNA_1.OP4 ON FOR012
5. $ TIME 30 $ 30 CPU MINS (VAX 11/750 TIMING)
6. $ DIAG 8 $ PRINT MATRIX TRAILERS
7. $ DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
8. $ PARTITION FEM MODE SHAPES
9. $ ----------------------------
10. $ REPLACE THE FOLLOWING LINE WITH DMAP PARTNMODAX.DMP
11. $ &PARTNMODX.DMP
12. $ CEND
13. $ TITLE = 14 DOFS TENBAY TEST CONFIGURATION
14. $ SUBTITLE = PARTITION FEM MODE SHAPES TO TAM A-SET DOF
15. $ ECHO = NONE
16. $ BEGIN BULK
17. $ $ BULK DATA
18. $ $ -----------
19. $ REPLACE THE FOLLOWING LINE WITH BULK DATA DECK
20. $ $ &TENBAY.BLK
21. $ $ A-SET DOF
22. $ $ -----------
23. $ INSERT A-SET CARDS (DOFS TO BE RETAINED)
24. $ $ IN PLACE OF THE NEXT LINE
25. $ $ &ASET14.AST
26. $ $ ENDDATA

File 16.

III-XVI
FILE 17. Listing of PARTNMODA14.COM

1. $I ASSIGNMENT FILE FOR PARTITIONING FEM MODE SHAPES TO TAM DOFS
2. $I
3. $I INPUT - FEM MODE SHAPES (FROM SEMCOMB)
4. $ ASSIGN TENBAYFEM.OP4 FOR011 !!
5. $I
6. $I OUTPUT - PARTITIONED FEM MODE SHAPES (TAM A-SET SIZE)
7. $ ASSIGN TENBAY14_PARTNA.OP4 FOR012 IO

File 17.

III-XVII
FILE 18. Listing of CORL8TAM14.DAT

1. ID TAM,XCORL8
2. $ CORRELATING TAM & FEM MODELS
3. $ USER ASSIGNED FILES:
4. $ -------------------------------------
5. $ FOR011 = TAM MASS MATRIX: OUTPUT4 FILE (BCD FORMAT)
6. $ FOR012 = TAM MODE SHAPES: OUTPUT4 FILE (BCD FORMAT)
7. $ FOR013 = TEST (OR FEM) MODE SHAPES: OUTPUT4 FILE (BCD FORMAT)
8. $ -------------------------------------
9. TIME 60 $ 60 CPU MINUTES (VAX 11/750 TIMING)
10. DIAG 8 $ PRINT MATRIX TRAILERS
11. DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
12. $ -------------------------------------
13. $ PERFORM FEM/TAM CORRELATION
14. $ -------------------------------------
15. $ REPLACE THE NEXT LINE WITH THE DMAP CORL8X.DMP
16. $ &CORL8X.DMP
17. $ -------------------------------------
18. $ END
19. $ $ TITLE = 14 DOFS TEST CONFIGURATION
20. $ SUBTITLE = CORRELATE TAM TO FEM
21. $ ECHO= NONE
22. $ BEGIN BULK
23. $ -------------------------------------
24. $ PARAM,ORTHO,1 $ PERFORM ORTHOGONALITY CHECK
25. $ -------------------------------------
26. $ PARAM,CROSS,1 $ PERFORM CROSS-ORTHOGONALITY CHECK
27. $-------------------------------------
28. $ PARAM,MAC,1 $ DO PERFORM MAC CALCULATION
29. $-------------------------------------
30. $ PARAM,MASS,1 $ TAM MASS MATRIX IS PRESENT
31. $-------------------------------------
32. $ PARAM,NORMTAM,-1 $ DO NOT RENORMALIZE TAM MODE SHAPES
33. $-------------------------------------
34. $ PARAM,NORMTEST,-1 $ DO NOT RENORMALIZE TEST MODE SHAPES
35. $-------------------------------------
36. ENDDATA

1. $ | ASSIGNMENT FILES CORRELATING TAM & FEM MODELS
2. $ | TAM MASS MATRIX
3. $ | TAM MODE SHAPES
4. $ | TAMMODES14.OP4 FOR011 !
5. $ | ASSIGNED TMMASS14.OP4 FOR011 !
6. $ | TAM MODE SHAPES
7. $ | TAMMODES14.OP4 FOR012 !
8. $ | ASSIGNED TMMASS14.OP4 FOR012 !
9. $ | FEM MODES (PARTITIONED TO TAM DOF)
10. $ | TENBAY14_PARTNA.OP4 FOR013 !
11. $ | ASSIGNED TENBAY14_PARTNA.OP4 FOR013 !
12. $ |
FILE 20. Listing of CORL8STAM.OUT

1 14 DOFS TEST CONFIGURATION CORRELATE GUYAN TAM TO FEM

INTERMEDIATE MATRIX ... ORTHO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>-8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>87</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>83</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-25</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-1</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>69</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>7</td>
<td>0</td>
<td>-13</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>-8</td>
<td>24</td>
<td>0</td>
<td>-25</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

1 14 DOFS TEST CONFIGURATION CORRELATE GUYAN TAM TO FEM

INTERMEDIATE MATRIX ... CROSSORT

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-100</td>
<td>0</td>
<td>0</td>
<td>-3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-20</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-100</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>0</td>
<td>1</td>
<td>-7</td>
<td>-24</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-98</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-93</td>
<td>5</td>
<td>-1</td>
<td>-3</td>
<td>15</td>
<td>-2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>91</td>
<td>1</td>
<td>3</td>
<td>-1</td>
<td>-28</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>82</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1 14 DOFS TEST CONFIGURATION CORRELATE GUYAN TAM TO FEM

INTERMEDIATE MATRIX ... MACM

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>100</td>
<td>16</td>
<td>7</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>98</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

File 20.

III-XX
FILE 21. Listing of CORL8ITAM.OUT

1 14 DOFS TEST CONFIGURATION
CORRELATE IRS TAM TO FEM

INTERMEDIATE MATRIX ... ORTHO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>-12</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>55</td>
<td>-1</td>
<td>-28</td>
<td>-43</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-28</td>
<td>0</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>-3</td>
<td>14</td>
<td>-1</td>
<td>-1</td>
<td>-12</td>
<td>-43</td>
<td>1</td>
<td>16</td>
<td>52</td>
</tr>
</tbody>
</table>

1 14 DOFS TEST CONFIGURATION
CORRELATE IRS TAM TO FEM

INTERMEDIATE MATRIX ... CROSSORT

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-100</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>74</td>
<td>-2</td>
<td>-37</td>
<td>-57</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>-1</td>
<td>45</td>
<td>-18</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>45</td>
<td>-18</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>-7</td>
<td>-36</td>
</tr>
</tbody>
</table>

1 14 DOFS TEST CONFIGURATION
CORRELATE IRS TAM TO FEM

INTERMEDIATE MATRIX ... MACM

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100</td>
<td>15</td>
<td>7</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>0</td>
<td>1</td>
<td>51</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>81</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>2</td>
<td>77</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>93</td>
</tr>
</tbody>
</table>

File 21.

III-XXI
FILE 22. Listing of CORL8HTAM.OUT

1 TEN BAY TRUSS NORMAL MODES HYBRID REDUCTION
NORMAL MODES - HYBRID TAM

INTERMEDIATE MATRIX ... ORTHO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

1 TEN BAY TRUSS NORMAL MODES HYBRID REDUCTION
NORMAL MODES - HYBRID TAM

INTERMEDIATE MATRIX ... XORTHO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-95</td>
<td>-32</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-32</td>
<td>95</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>98</td>
<td>4</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>-7</td>
<td>97</td>
<td>21</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>-1</td>
<td>14</td>
<td>23</td>
<td>-95</td>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>-29</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-1</td>
<td>5</td>
<td>2</td>
<td>17</td>
<td>-54</td>
<td>-14</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>-3</td>
<td>-47</td>
<td>82</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>62</td>
<td>53</td>
</tr>
</tbody>
</table>

File 22.

III-XXII
FILE 23. Listing of TEST_ORIG.UNV

-1
55
NONE
NONE
NONE
NONE

33 2 12 13
1 2 2 12 2 3
2 4 0 1
3.9090E+00 4.5173E+02 8.0867E-04 0.0000E+00
1
0.0000E+00 6.0598E-04 2.9084E-03
2
0.0000E+00 1.4637E-02 1.1003E-02
3
0.0000E+00 2.3236E-03 3.2214E-03
4
0.0000E+00 7.2575E-03 4.5881E-03
5
0.0000E+00 3.9754E-02 5.2787E-02
6
0.0000E+00 3.7175E-02 3.8073E-02
7
0.0000E+00 2.7262E-02 4.6967E-02
8
0.0000E+00 4.0051E-02 5.0498E-02
9
0.0000E+00 7.3659E-02 8.9809E-02
10
0.0000E+00 8.4366E-02 8.1000E-02
11
0.0000E+00 7.8636E-02 9.2258E-02
12
0.0000E+00 7.6370E-02 7.7075E-02
13
0.0000E+00 1.7780E-01 1.6498E-01
14
0.0000E+00 1.6343E-01 2.4313E-01
15
0.0000E+00 1.7414E-01 1.9806E-01
16
0.0000E+00 1.6028E-01 1.8534E-01
17
0.0000E+00 2.6203E-01 2.8511E-01
18
0.0000E+00 2.1055E-01 3.1227E-01
19
0.0000E+00 2.5698E-01 2.7272E-01
20
0.0000E+00 2.6081E-01 2.8144E-01
21
9.5919E-02 3.5201E-01 4.5856E-01
22
-2.4293E-02 3.5240E-01 4.9550E-01
23
-1.4212E-01 4.0425E-01 4.1355E-01
24
3.2666E-02 3.8758E-01 4.5075E-01
25

File 23.

III-XXIII
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000E+00</td>
<td>5.02115E-01</td>
<td>6.01115E-01</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>4.94801E-01</td>
<td>5.45924E-01</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>5.22141E-01</td>
<td>5.62843E-01</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>4.78459E-01</td>
<td>5.49035E-01</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.26400E-01</td>
<td>7.20207E-01</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.55085E-01</td>
<td>7.09896E-01</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.44776E-01</td>
<td>7.32553E-01</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.23617E-01</td>
<td>7.16556E-01</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55811E-01</td>
<td>7.30608E-01</td>
<td>8.95908E-01</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>7.46651E-01</td>
<td>8.71607E-01</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.30737E-01</td>
<td>7.55347E-01</td>
<td>8.96688E-01</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.52956E-01</td>
<td>9.34047E-01</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.74632E-01</td>
<td>1.17069E+00</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.35688E-01</td>
<td>1.05967E+00</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.95196E-01</td>
<td>1.02448E+00</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>9.34785E-01</td>
<td>1.04290E+00</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.81353E-02</td>
<td>1.15422E+00</td>
<td>1.33781E+00</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.98632E-02</td>
<td>1.04639E+00</td>
<td>1.30437E+00</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.63369E-01</td>
<td>1.17483E+00</td>
<td>1.38548E+00</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05389E-02</td>
<td>1.14973E+00</td>
<td>1.28467E+00</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| File 23. (cont.)

III-XXIV
8	0.00000E+00	9.32850E-03	-2.61823E-02
9	0.00000E+00	-9.97066E-03	9.17283E-03
10	0.00000E+00	1.47810E-01	-1.09791E-01
11	0.00000E+00	1.36299E-01	-1.54689E-01
12	0.00000E+00	7.32647E-02	-1.06356E-01
13	0.00000E+00	1.16417E-01	-1.43167E-01
14	0.00000E+00	2.15392E-01	-2.59829E-01
15	0.00000E+00	2.32233E-01	-2.54967E-01
16	0.00000E+00	2.52930E-01	-1.48849E-01
17	0.00000E+00	2.28479E-01	-2.55565E-01
18	0.00000E+00	4.16543E-01	-4.80167E-01
19	0.00000E+00	3.79088E-01	-3.99520E-01
20	0.00000E+00	4.06304E-01	-4.12648E-01
21	5.97803E-02	6.16944E-01	-3.73739E-01
22	2.11626E-01	6.06407E-01	-3.58789E-01
23	-1.45549E-02	6.49873E-01	-4.53493E-01
24	-1.71616E-01	5.47113E-01	-4.81807E-01
25	0.00000E+00	7.61613E-01	-6.49526E-01
26	0.00000E+00	8.39977E-01	-8.01377E-01
27	0.00000E+00	7.61650E-01	-8.87323E-01
28	0.00000E+00	8.31542E-01	-9.93342E-01
29	0.00000E+00	1.06211E+00	-1.14569E+00
30	0.00000E+00	1.01481E+00	-1.06296E+00
31	0.00000E+00	9.96015E-01	-1.10278E+00
32	0.00000E+00	1.02254E+00	-1.14745E+00
33	-2.61382E-03	1.23103E+00	-1.10961E+00
34	0.00000E+00	1.30161E+00	-1.36636E+00
35	-5.08692E-02	1.25538E+00	-1.16624E+00
36	0.00000E+00	1.20025E+00	-1.12043E+00
37	0.00000E+00	1.36889E+00	-1.46030E+00
38	0.00000E+00	1.46821E+00	-1.35390E+00

File 23. (cont.)

III-XXV
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>0.00000E+00</td>
<td>1.55369E+00 - 1.46922E+00</td>
</tr>
<tr>
<td>40</td>
<td>0.00000E+00</td>
<td>1.47302E+00 - 1.62463E+00</td>
</tr>
<tr>
<td>41</td>
<td>1.42426E-01</td>
<td>1.96961E+00 - 1.79585E+00</td>
</tr>
<tr>
<td>42</td>
<td>3.33163E-01</td>
<td>1.78586E+00 - 1.73646E+00</td>
</tr>
<tr>
<td>43</td>
<td>-5.66661E-02</td>
<td>1.92485E+00 - 2.03713E+00</td>
</tr>
<tr>
<td>44</td>
<td>-3.59747E-01</td>
<td>1.85784E+00 - 2.02265E+00</td>
</tr>
</tbody>
</table>

File 23. (cont.)

III-XXVI
FILE 24. Listing of UNVRNM.INP

21 21
22 22
23 23
24 24
45 45
46 46
47 47
48 48
File 25. Listing of TEST.UNV

-1
55
NONE
NONE
NONE

33 2 12 13
 1 2 2 12 2 3
 2 4 0 1
3.99090E+00 4.51733E+02 8.08673E-04 0.00000E+00
 1

0.00000E+00 6.05988E-04 2.90844E-03
 2

0.00000E+00 1.46372E-02 1.10035E-02
 3

0.00000E+00 2.32369E-03 3.22137E-03
 4

0.00000E+00 7.25754E-03 4.58817E-03
 5

0.00000E+00 3.97546E-02 5.27876E-02
 6

0.00000E+00 3.71753E-02 3.80735E-02
 7

0.00000E+00 2.72621E-02 4.69676E-02
 8

0.00000E+00 4.00515E-02 5.04985E-02
 9

0.00000E+00 7.36587E-02 8.98097E-02
 10

0.00000E+00 8.44366E-02 8.10007E-02
 11

0.00000E+00 7.86361E-02 9.22585E-02
 12

0.00000E+00 7.63707E-02 7.70751E-02
 13

0.00000E+00 1.77802E-01 1.64980E-01
 14

0.00000E+00 1.63436E-01 2.43131E-01
 15

0.00000E+00 1.74143E-01 1.98065E-01
 16

0.00000E+00 1.60286E-01 1.85348E-01
 17

0.00000E+00 2.62029E-01 2.85119E-01
 18

0.00000E+00 2.10558E-01 3.12275E-01
 19

0.00000E+00 2.56983E-01 2.72729E-01
 20

0.00000E+00 2.60810E-01 2.81446E-01
 21

9.59189E-02 3.52018E-01 4.58568E-01
 22

-2.42932E-02 3.52404E-01 4.95502E-01
 23

-1.42126E-01 4.04253E-01 4.13553E-01
 24

3.26569E-02 3.87585E-01 4.50759E-01
 25

0.00000E+00 5.02115E-01 6.01115E-01
 26

File 25.

III-XXVIII
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000E+00</td>
<td>4.94801E-01</td>
<td>5.45924E-01</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>5.22141E-01</td>
<td>5.62843E-01</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>4.78459E-01</td>
<td>5.49035E-01</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.26400E-01</td>
<td>7.20207E-01</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.55085E-01</td>
<td>7.09806E-01</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.44776E-01</td>
<td>7.32553E-01</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>6.23617E-01</td>
<td>7.16556E-01</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.55381E-01</td>
<td>7.30608E-01</td>
<td>8.95908E-01</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>7.46651E-01</td>
<td>8.71607E-01</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.30737E-01</td>
<td>7.55347E-01</td>
<td>8.96688E-01</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.52956E-01</td>
<td>9.34047E-01</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.74632E-01</td>
<td>1.17069E+00</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.35688E-01</td>
<td>1.05967E+00</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>8.95196E-01</td>
<td>1.02448E+00</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>9.34785E-01</td>
<td>1.04290E+00</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.81353E-02</td>
<td>1.15422E+00</td>
<td>1.33781E+00</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.98632E-02</td>
<td>1.04639E+00</td>
<td>1.30437E+00</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1.63369E-01</td>
<td>1.17483E+00</td>
<td>1.38548E+00</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.06369E-02</td>
<td>1.14973E+00</td>
<td>1.28467E+00</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3.97665E+00</td>
<td>1.14532E+03</td>
<td>5.37419E-04</td>
</tr>
</tbody>
</table>

File 25. (cont.)

III-XXIX
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0.00000E+00</td>
<td>-9.97006E-03</td>
<td>9.17283E-03</td>
</tr>
<tr>
<td>10</td>
<td>0.00000E+00</td>
<td>1.47810E-01</td>
<td>-1.09791E-01</td>
</tr>
<tr>
<td>11</td>
<td>0.00000E+00</td>
<td>1.36909E-01</td>
<td>-1.54689E-01</td>
</tr>
<tr>
<td>12</td>
<td>0.00000E+00</td>
<td>7.32647E-02</td>
<td>-1.06356E-01</td>
</tr>
<tr>
<td>13</td>
<td>0.00000E+00</td>
<td>1.16417E-01</td>
<td>-1.43167E-01</td>
</tr>
<tr>
<td>14</td>
<td>0.00000E+00</td>
<td>2.15392E-01</td>
<td>-2.59829E-01</td>
</tr>
<tr>
<td>15</td>
<td>0.00000E+00</td>
<td>2.32233E-01</td>
<td>-2.54967E-01</td>
</tr>
<tr>
<td>16</td>
<td>0.00000E+00</td>
<td>2.52930E-01</td>
<td>-1.48849E-01</td>
</tr>
<tr>
<td>17</td>
<td>0.00000E+00</td>
<td>2.28479E-01</td>
<td>-2.55555E-01</td>
</tr>
<tr>
<td>18</td>
<td>0.00000E+00</td>
<td>4.16543E-01</td>
<td>-4.80167E-01</td>
</tr>
<tr>
<td>19</td>
<td>0.00000E+00</td>
<td>3.79088E-01</td>
<td>-3.99520E-01</td>
</tr>
</tbody>
</table>

File 25. (cont.)

III-XXX
FILE 26. Listing of GRIDS.BLK

$--$
$BULK DATA DECK FOLLOWS
$--$
$
$GRAVITY LOAD IN +Z
$GRAV, 103, 386.1, 0.0, 0.0, 1.0
$GRAVITY LOAD IN -Y
$GRAV, 103, 386.1, 0.0, -1.0, 0.0
$
$--$
$
$PROPERTIES FOR TIP PLATE CONNECTING STRUTS
$PBAR, 101, 103, 1.0, 1.0, 1.0, 1.0
MAT1, 103, 10. E9, , .3, .000001
$
$PROPERTIES FOR LONGERONS AND DIAGONALS
$PROD, 201, 102, , 1139, 0.0169
PROD, 202, 204, , 1139, 0.0169
MAT1, 102, 10. E6, , .3, .0001894
MAT1, 111, 10. E6, , .3, .00002591
MAT1, 112, 30. E6, , .3, .0007513
MAT1, 204, 10. E6, , .3, .0002034
$
$TIP PLATE ELEMENTS
$cquad4, 401, 501, 45, 52, 56, 54, 0.$
cquad4, 402, 501, 52, 56, 58, 50, 0.$
cquad4, 403, 501, 50, 58, 60, 48, 0.$
cquad4, 404, 501, 58, 60, 62, 64, 0.$
cquad4, 405, 501, 58, 64, 66, 56, 0.$
cquad4, 406, 501, 56, 66, 68, 54, 0.$
cquad4, 407, 501, 46, 70, 66, 68, 0.$
cquad4, 408, 501, 70, 72, 64, 66, 0.$
cquad4, 409, 501, 72, 47, 62, 64, 0.$
cquad4, 420, 502, 45, 52, 56, 54, 0.$
cquad4, 421, 502, 52, 56, 58, 50, 0.$
cquad4, 422, 502, 50, 58, 60, 48, 0.$
cquad4, 423, 502, 58, 60, 62, 64, 0.$
cquad4, 424, 502, 58, 64, 66, 56, 0.$
cquad4, 425, 502, 56, 66, 68, 54, 0.$
cquad4, 426, 502, 46, 70, 66, 68, 0.$
cquad4, 427, 502, 70, 72, 64, 66, 0.$
cquad4, 428, 502, 72, 47, 62, 64, 0.$
pshell, 501, 111, , 375, 111
pshell, 502, 112, , 5, 112
$
$CANTILEVERED BOUNDARY CONDITIONS
$SPC1, 20, 123456, 1, 2, 3, 4$
$
$TRUSS GRID POINTS
$GRID, 1, , 0, 0, 0, 0.$
GRID, 2, , 0, 0.000, 19, 700
GRID, 3, , 19, 7, 19, 7
GRID, 4, , 19, 700, 0, 000
GRID, 5, , 19, 7, 0, 0
GRID, 6, , 19, 700, 000, 19, 700

File 26.

III-XXXI
FILE 26. (cont.)

III-XXXII
III-XXXIII
CROD,67,202,20,23
CROD,68,202,19,23
CROD,69,202,20,21
CROD,70,202,22,24
CROD,71,201,22,26
CROD,72,201,21,25
CROD,73,201,25,26
CROD,74,201,23,27
CROD,75,201,24,28
CROD,76,201,26,27
CROD,77,201,27,28
CROD,78,201,25,28
CROD,79,202,21,26
CROD,80,202,23,26
CROD,81,202,21,28
CROD,82,202,23,28
CROD,83,202,26,28
CROD,84,201,26,30
CROD,85,201,25,29
CROD,86,201,30,31
CROD,87,201,31,32
CROD,88,201,29,32
CROD,89,201,29,30
CROD,90,201,27,31
CROD,91,201,28,32
CROD,92,202,26,29
CROD,93,202,26,31
CROD,94,202,28,29
CROD,95,202,28,31
CROD,96,202,30,32
CROD,97,201,29,33
CROD,98,201,30,34
CROD,99,201,34,35
CROD,100,201,33,34
CROD,101,201,35,36
CROD,102,201,33,36
CROD,103,201,32,36
CROD,104,201,31,35
CROD,105,202,29,34
CROD,106,202,31,34
CROD,107,202,29,36
CROD,108,202,31,36
CROD,109,202,34,36
CROD,110,201,33,37
CROD,111,201,34,38
CROD,112,201,36,40
CROD,113,201,35,39
CROD,114,201,37,40
CROD,115,201,37,38
CROD,116,201,38,39
CROD,117,201,39,40
CROD,118,202,34,37
CROD,119,202,36,39
CROD,120,202,34,39
CROD,121,202,36,37
CROD,122,202,38,40
CROD,123,201,37,41
CROD,124,201,38,42
CROD,125,201,40,44
CROD,126,201,39,43
CROD,127,201,41,44
CROD,128,201,41,42
CROD,129,201,42,43

File 26. (cont.)

III-XXXIV
CROD,130,201,43,44
CROD,131,202,37,42
CROD,132,202,39,44
CROD,133,202,39,42
CROD,134,202,37,44
CROD,135,202,42,44
$ $CONNECTING STRUT ELEMENTS $
$ CBAR,136,101,44,48,0.,0.,1.,1
CBAR,137,101,43,47,0.,0.,1.,1
CBAR,138,101,42,46,0.,0.,1.,1
CBAR,139,101,41,45,0,0.,1. ,1
$ $CONM2'S FOR JOINT MASSES $
$ ADD MASS FOR ACCELS AND CABLEING $
$ CONM2,301,1,,.001821
CONM2,302,2,,.002917
CONM2,303,3,,.001821
CONM2,304,4,,.002917
CONM2,305,5,,.003648
CONM2,306,6,,.002551
CONM2,307,7,..003648
CONM2,308,8,,.002551
CONM2,309,9,..002186
CONM2,310,10,..004013
CONM2,311,11,..002186
CONM2,312,12,,.004013
CONM2,313,13,,.003648
CONM2,314,14,,.002551
CONM2,315,15,,.003648
CONM2,316,16,,.002551
CONM2,317,17,,.002186
CONM2,318,18,,.004013
CONM2,319,19,,.002186
CONM2,320,20,,.004013
CONM2,321,21,,.003648
CONM2,322,22,..002551
CONM2,323,23,,.003648
CONM2,324,24,,.002551
CONM2,325,25,,.002186
CONM2,326,26,,.004013
CONM2,327,27,,.002186
CONM2,328,28,,.004013
CONM2,329,29,,.003648
CONM2,330,30,,.002551
CONM2,331,31,,.003648
CONM2,332,32,,.002551
CONM2,333,33,,.002186
CONM2,334,34,,.004013
CONM2,335,35,,.002186
CONM2,336,36,,.004013
CONM2,337,37,,.003648
CONM2,338,38,,.002551
CONM2,339,39,,.003648
CONM2,340,40,,.002551
CONM2,341,41,..001821
CONM2,342,42,..002917
CONM2,343,43,,.001821
CONM2,344,44,,.002917
CONM2,345,45,..0009719
CONM2,346,46,..0009719

File 26. (cont.)

III-XXXV
CONM2,347,47,,.0009719
CONM2,348,48,,.0009719
CONM2,350,50,,.000832
CONM2,352,52,,.000832
CONM2,354,54,,.000832
CONM2,356,56,,.000832
CONM2,358,58,,.000832
CONM2,360,60,,.000832
CONM2,362,62,,.000832
CONM2,368,68,,.000832
CONM2,370,70,,.000832
CONM2,372,72,,.000832
$END OF BULK DATA

File 26. (cont.)

III-XXXVI
FILE 27. Listing of TEST.DMI

<table>
<thead>
<tr>
<th>DMIG</th>
<th>PHIG</th>
<th>0</th>
<th>9</th>
<th>1</th>
<th>0</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.208-3</td>
<td>2</td>
<td>2.01464</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.04110</td>
<td>3</td>
<td>2.3243</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.22321</td>
<td>4</td>
<td>2.72583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3.5883</td>
<td>5</td>
<td>2.03975</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.05279</td>
<td>6</td>
<td>2.09371</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.03807</td>
<td>7</td>
<td>2.02726</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3.04697</td>
<td>8</td>
<td>2.04005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3.05050</td>
<td>9</td>
<td>2.07366</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.09481</td>
<td>10</td>
<td>2.08444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.06100</td>
<td>11</td>
<td>2.07864</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.09226</td>
<td>12</td>
<td>2.07637</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.07708</td>
<td>13</td>
<td>2.01778</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.16498</td>
<td>14</td>
<td>2.01634</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.02313</td>
<td>15</td>
<td>2.01741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3.19806</td>
<td>16</td>
<td>2.01602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3.18535</td>
<td>17</td>
<td>2.02623</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3.02812</td>
<td>18</td>
<td>2.02105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3.31227</td>
<td>19</td>
<td>2.02569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3.27273</td>
<td>20</td>
<td>2.02681</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3.28145</td>
<td>21</td>
<td>1.00959</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.02520</td>
<td>22</td>
<td>3.04557</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1.02429</td>
<td>23</td>
<td>2.03204</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3.04950</td>
<td>24</td>
<td>1.01421</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.40425</td>
<td>25</td>
<td>3.04135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.03267</td>
<td>26</td>
<td>2.03875</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>3.45076</td>
<td>27</td>
<td>2.05021</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>3.06011</td>
<td>28</td>
<td>2.04940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>3.54592</td>
<td>29</td>
<td>2.05221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>3.56284</td>
<td>30</td>
<td>2.04784</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>3.54904</td>
<td>31</td>
<td>2.06240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>3.72021</td>
<td>32</td>
<td>2.06509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>3.70990</td>
<td>33</td>
<td>2.06478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>3.73255</td>
<td>34</td>
<td>2.06236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>3.71656</td>
<td>35</td>
<td>1.01553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2.73061</td>
<td>36</td>
<td>3.08951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2.74665</td>
<td>37</td>
<td>3.08716</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1.01374</td>
<td>38</td>
<td>2.75535</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>3.09869</td>
<td>39</td>
<td>2.85296</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>3.09340</td>
<td>40</td>
<td>2.87463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>3.117069</td>
<td>41</td>
<td>2.83569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>3.105967</td>
<td>42</td>
<td>2.89520</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>3.102448</td>
<td>43</td>
<td>2.93479</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>3.104290</td>
<td>44</td>
<td>1.09814</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2.115422</td>
<td>45</td>
<td>3.13781</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>1.03986</td>
<td>46</td>
<td>2.10463</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>3.130437</td>
<td>47</td>
<td>1.01633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2.17483</td>
<td>48</td>
<td>3.13854</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>1.03064</td>
<td>49</td>
<td>2.14973</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>3.128467</td>
<td>50</td>
<td>2.00148</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

File 27.

III-XXXVII
<table>
<thead>
<tr>
<th></th>
<th>3.01868</th>
<th>2.93293</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.02618</td>
<td>2.99703</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>3.17330</td>
<td>2.014781</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>3.10979</td>
<td>2.013691</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>3.15469</td>
<td>2.007326</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>3.10636</td>
<td>2.011642</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>3.14317</td>
<td>2.021539</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>3.25983</td>
<td>2.023223</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>3.25497</td>
<td>2.025293</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>3.14885</td>
<td>2.022848</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>3.25556</td>
<td>2.041654</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>3.48017</td>
<td>2.037909</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>3.39952</td>
<td>2.040630</td>
<td>19</td>
</tr>
<tr>
<td>19</td>
<td>3.41265</td>
<td>2.046693</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>3.44878</td>
<td>2.059783</td>
<td>21</td>
</tr>
<tr>
<td>21</td>
<td>2.61694</td>
<td>2.037374</td>
<td>22</td>
</tr>
<tr>
<td>22</td>
<td>1.21163</td>
<td>2.060641</td>
<td>23</td>
</tr>
<tr>
<td>23</td>
<td>3.05879</td>
<td>1.014555</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>2.64987</td>
<td>3.045349</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>1.17162</td>
<td>2.054711</td>
<td>26</td>
</tr>
<tr>
<td>26</td>
<td>3.48181</td>
<td>2.076161</td>
<td>27</td>
</tr>
<tr>
<td>27</td>
<td>3.64953</td>
<td>2.083998</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>3.80138</td>
<td>2.076165</td>
<td>29</td>
</tr>
<tr>
<td>29</td>
<td>3.88732</td>
<td>2.083154</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>3.89334</td>
<td>2.106211</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>3.114569</td>
<td>2.101481</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>3.10296</td>
<td>3.099602</td>
<td>33</td>
</tr>
<tr>
<td>33</td>
<td>3.10278</td>
<td>2.102254</td>
<td>34</td>
</tr>
<tr>
<td>34</td>
<td>3.14745</td>
<td>1.26143</td>
<td>35</td>
</tr>
<tr>
<td>35</td>
<td>2.13103</td>
<td>3.10961</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>2.130161</td>
<td>3.136636</td>
<td>37</td>
</tr>
<tr>
<td>37</td>
<td>2.02807</td>
<td>2.128538</td>
<td>38</td>
</tr>
<tr>
<td>38</td>
<td>2.16624</td>
<td>2.120025</td>
<td>39</td>
</tr>
<tr>
<td>39</td>
<td>2.12643</td>
<td>2.136689</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>2.46030</td>
<td>1.48621</td>
<td>41</td>
</tr>
<tr>
<td>41</td>
<td>2.35309</td>
<td>2.155369</td>
<td>42</td>
</tr>
<tr>
<td>42</td>
<td>2.16922</td>
<td>2.147302</td>
<td>43</td>
</tr>
<tr>
<td>43</td>
<td>2.36453</td>
<td>1.04243</td>
<td>44</td>
</tr>
<tr>
<td>44</td>
<td>2.05975</td>
<td>2.185784</td>
<td></td>
</tr>
</tbody>
</table>
FILE 28. Listing of PHIATEST.DAT

1. NASTRAN DBSET 15 = (DB02)
2. ID PHIA,TEST
3. $
4. $ DB01 = TEST MODES DATA BASE
5. $ DB02 = TAM DATA BASE (READ ONLY)
6. $
7. TIME 600 $ 600 CPU MINUTES (VAX 11/780 TIMING)
8. DIAG 8 $ PRINT MATRIX TRAILERS
9. DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
10. $
11. $ CREATE TEST MODE DATA BLOCKS
12. $
13. &PHIA TEST.DMP
14. $
15. CEND
16. TITLE = CONVERT TEST MODE DATA TO NASTRAN FORMAT (OUTPUT4)
17. $
18. ECHO = NONE
19. $
20. BEGIN BULK
21. $
22. PARAM EXTSORT 0
23. PARAM NORMTEST 0
24. $
25. $ TEST DATA IN DMI FORMAT (FROM UNVDMI)
26. $
27. &TEST.DMI
28. $
29. ENDDATA

File 28.

III-XXXIX
FILE 29. Listing of PHIATEST.COM

1. $!
2. $! DATABASE WITH TEST DATA
3. $! ASSIGN PHIATEST.D01 DB01 ! OUTPUT
4. $!
5. $! TAM DATABASE (READ ONLY)
6. $! ASSIGN TENBAY14.D01 DB02 ! INPUT
7. $!
8. $! OUTPUT: TEST MODES IN OUTPUT4 FORMAT
9. $! ASSIGN TEST.OP4 FOR011 ! OUTPUT
10. $!

File 29.

III-XL
FILE 30. Listing of CORL8_TAM_TEST.DAT

ID TAM,XCORL8_TAM_TEST
$ CORRELATING TAM & TEST MODELS
$ USER ASSIGNED FILES:
$ FOR011 = TAM MASS MATRIX: OUTPUT4 FILE (BCD FORMAT)
$ FOR012 = TAM MODE SHAPES: OUTPUT4 FILE (BCD FORMAT)
$ FOR013 = TEST MODE SHAPES: OUTPUT4 FILE (BCD FORMAT)
$ TIME 60 $ 60 CPU MINUTES (VAX 11/750 TIMING)
DIAG 8 $ PRINT MATRIX TRAILERS
DIAG 20 $ PRINT DATA BASE FETCH/STORE MESSAGES
$ PERFORM TEST/TAM CORRELATION
$ REPLACE THE NEXT LINE WITH THE DMAP CORL8X.DMP
$ DMAP $DUB0:\[JAVEED.LANGLEY.SOFTWARE]\CORL8X.DMP
$ CEND
$ TITLE .. 14 DOFS TEST CONFIGURATION
SUBTITLE = CORRELATE TAM TO TEST
$ ECHO=NONE
$ BEGIN BULK
$ PARAM,ORTHO,1 $ PERFORM ORTHOGONALITY CHECK
$ PARAM,CROSS,1 $ PERFORM CROSS-ORTHOGONALITY CHECK
$ PARAM,MAC,1 $ DO PERFORM MAC CALCULATION
$ PARAM,MASS,1 $ TAM MASS MATRIX IS PRESENT
$ PARAM,NORMTAM,-1 $ DO NOT RENORMAILZE TAM MODE SHAPES
$ PARAM,NORMTEST,1 $ RENORMALIZE TEST MODE SHAPES
$ ENDDATA
FILE 31. Listing of CORL8_TAM_TEST.COM

$! ASSIGNMENT FILES CORRELATING TAM & FEM MODELS
$!
$! TAM MASS MATRIX
$!
$ ASSIGN [PEM.14EXAMP]TAMMASS14.OP4 FOR011
$!
$! TAM MODE SHAPES
$!
$ ASSIGN [PEM.14EXAMP]TAMMODES14.OP4 FOR012
$!
$! FEM MODES (PARTITIONED TO TAM DOF)
$!
$ ASSIGN [PEM.14EXAMP]TEST.OP4 FOR013
$!

File 31.

III-XLII
FILE 32. Listing of CORL8_I_TAM_TEST.OUT

1 14 DOFS TEST CONFIGURATION
CORRELATE IRS TAM TO FEM

INTERMEDIATE MATRIX ... ORTHO

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>-1</td>
<td>1</td>
<td>-2</td>
<td>-12</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>55</td>
<td>-1</td>
<td>-28</td>
<td>-43</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>95</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>5</td>
<td>-1</td>
<td>-2</td>
<td>-2</td>
<td>-28</td>
<td>0</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>-3</td>
<td>14</td>
<td>-1</td>
<td>-1</td>
<td>-12</td>
<td>-43</td>
<td>1</td>
<td>16</td>
<td>52</td>
</tr>
</tbody>
</table>

1 14 DOFS TEST CONFIGURATION
CORRELATE IRS TAM TO FEM

INTERMEDIATE MATRIX ... CROSSORT

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-100</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>74</td>
<td>-2</td>
<td>-37</td>
<td>-57</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>45</td>
<td>-18</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>-7</td>
<td>-36</td>
</tr>
</tbody>
</table>

1 14 DOFS TEST CONFIGURATION
CORRELATE IRS TAM TO FEM

INTERMEDIATE MATRIX ... MACM

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>100</td>
<td>15</td>
<td>7</td>
<td>0</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>96</td>
<td>0</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>0</td>
<td>1</td>
<td>51</td>
<td>13</td>
<td>1</td>
<td>1</td>
<td>81</td>
<td>18</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>22</td>
<td>0</td>
<td>2</td>
<td>77</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>93</td>
</tr>
</tbody>
</table>

File 32.

III-XLIII
Title and Subtitle
Development of Test-Analysis Models (TAM) for Correlation of Dynamic Test and Analysis Results

Authors
Filippo Angelucci, Mehzad Javeed, and Paul McGowan

Performing Organization Name(s) and Address(es)
NASA Langley Research Center
Hampton, VA 23665-5225

National Aeronautics and Space Administration
Washington, DC 20546-0001

Abstract
The primary objective of structural analysis for aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A Test-Analysis Model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest.

Numerous methods for generating TAMs have been developed and presented in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or with test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten-bay cantilevered truss structure.

Subject Terms
- Test Analysis Correlation
- Test Analysis Model
- Reduced Model

Security Classification
- Unclassified

Number of Pages
112

Price Code
A06