Plasma Etching a Ceramic Composite

David R. Hull
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

Todd A. Leonhardt
Sverdrup Technology, Inc.
Lewis Research Center Group
Brook Park, Ohio

and

William A. Sanders
Analex Corporation
Brook Park, Ohio

Prepared for the
24th Annual Convention of the International
Metallographic Society
Monterey, California, July 29–August 1, 1991
PLASMA ETCHING A CERAMIC COMPOSITE

David R. Hull
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

Todd A. Leonhardt
Sverdrup Technology, Inc.
Lewis Research Center Group
Brook Park, Ohio 44142

and

William A. Sanders
Analex Corporation
3001 Aerospace Parkway
Brook Park, Ohio 44142

SUMMARY

Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiCW) in a matrix of silicon nitride (Si₃N₄), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si₃N₄ grain size by removing the glass phase. However, the latter obscures the original porosity. Neither technique allows the SiCW to be distinguished from the Si₃N₄. Plasma etching with CF₄+4%O₂ selectively attacks the Si₃N₄ grains, leaving the SiCW and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si₃N₄, allowing Si₃N₄ grains to be distinguished from SiCW by back scattered electron imaging.

INTRODUCTION

The need for more efficient propulsion systems requires materials to operate at increasingly higher temperatures in oxidizing environments. Ceramics are a leading candidate to provide high temperature strength and oxidation resistance. A major problem with ceramics is their low fracture toughness, which leads to brittle catastrophic failures. A method of increasing the toughness has been to introduce interfaces to deflect a propagating crack. One material system being studied is a ceramic composite composed of SiCW in a matrix of Si₃N₄. The SiCW provide the interfaces to deflect the crack tip (ref. 1).

The fabrication of SiCW/Si₃N₄ matrix composites involves several variables; i.e., whisker morphology and volume fraction, glass composition and volume fraction, consolidation temperature and pressure. Metallography plays a critical role in the evaluation of the effects of these variables on the composite. Metallography provides the ability to observe porosity, Si₃N₄ grain and SiCW size, percent glass and distribution of the phases. Correlation of microstructural
information with mechanical property data can be used to modify fabrication processes to further improve mechanical properties.

In metallography, etching is the critical step in revealing a material’s microstructure. Etching is performed by selective removal of material from a specimen by a chemical reaction. Different features in the microstructure react at different rates, providing topographic relief observable by optical and electron microscopy (ref. 2). An etchant commonly used on Si₃N₄ has been molten salts (e.g., potassium hydroxide, KOH, used at 673 K). The molten salt dissolves the intergranular glass phase that surrounds each Si₃N₄ grain, allowing the grains to be observed.

Plasma etching is a dry etching technique developed for the fabrication of microelectronics in the late 1960’s (refs. 4 to 7). The technique uses an electric discharge excited by a radio frequency source to produce chemically reactive fragments from an appropriate gas in a vacuum of 0.001 to 2 torr. The fragments react with the specimen creating volatile products which are pumped away. For silicon based materials the gas used is CF₄, which breaks down to CFₓ and reacts with Si to form SiFᵧ (gas) (ref. 4).

The use of plasma etching for revealing the microstructure of a sialon was first reported in 1983 (ref. 8). Since then, others have used plasma etching to reveal the microstructure of Si₃N₄ (refs. 9 to 11). In these materials, the β-sialon or Si₃N₄ are selectively removed, with the glass phase remaining in relief, thus revealing the microstructure. Only one reference was found on plasma etching a ceramic composite (SiC/Si₃N₄) (ref. 13). Plasma etching was used to remove Si₃N₄, thereby isolating the glass phase for chemical analysis in the transmission electron microscope (TEM). The purpose of this paper is to evaluate the use of plasma etching in revealing the microstructure of a SiCᵦ/Si₃N₄ matrix composite by examination in the scanning electron microscope (SEM).

EXPERIMENTAL

The SiCᵦ/Si₃N₄ composite used for the plasma etching studies was formulated to yield a fully dense composite containing 10 percent SiCᵦ and 14 percent glass by volume. Premilled Si₃N₄ powder was blended in hexane with SiCᵦ, and Ce₂O₃/SiO₂ sintering aid. The homogeneous blended slurry was then pressed into a 5.1-cm diameter by 0.7 cm thick disk which was dried, and then sintered at 2413 K for 4 hr under 2.5 MPa nitrogen overpressure. The bulk density of the disk was 3.31 g/cm³ (immersion method). The disk was then sectioned to provide specimens for the plasma etching studies.

Metallographic preparation consisted of mounting the specimen in a two part epoxy, followed by vacuum degassing, and curing for 12 hr. The subsequent grinding/polishing steps that were used are listed in table I.

Etching of the specimens was performed by two methods; molten salt or plasma etching. Etching with molten KOH was performed as outlined in figure 1. The specimen was removed from the epoxy mount, wrapped in platinum wire and immersed in molten KOH at 673 K for 10 to 15 sec. Plasma etching was performed using the system shown in figure 2. The mounted sample is placed in the vacuum chamber and evacuated to 0.1 torr. The sample is preheated using nitrogen at 0.2 torr and plasma RF power of 100 W for 10 min. Next, etching is performed using CF₄+4%O₂ at 0.3 torr and plasma RF power of 100 W for 2 to 5 min.
Specimens were sputter coated with palladium and examined in a SEM using back scattered electron imaging and an accelerating voltage of 20 kV. TEM specimens were prepared by conventional techniques. A 3 mm disk was ultrasonically drilled from a 0.5 mm thick section, ground on both surfaces with 15 and 3 µm diamond to a thickness of 140 µm, and dimpled from each side to a thickness of less than 20 µm. Final thinning was performed by ion milling to perforation using argon at 5 kV and 12° incidence angle. Electrical conductivity of the specimen was achieved by evaporation of approximately 10 nm of carbon onto one surface. The specimen was examined in the TEM at an accelerating voltage of 120 kV. After examination in the TEM, the specimen was affixed to a glass slide with small drop of carbon paint and plasma etched as described above, with a preheat of 5 min and an etch of 2 min. The specimen was removed from the glass slide and re-examined in the TEM. Electron energy loss spectroscopy (EELS) was performed to obtain chemical information.

RESULTS

Back scattered electron imaging of the as-polished composite allows the identification of three microstructural features (fig. 3). The white phase is the CeO₂ rich glass phase as determined by x-ray energy dispersive spectroscopy (XEDS), the black areas are regions of porosity, and the gray phase is SiC₃N₄. Measurement of the size and shape of the gray phase is possible, but SiC₃N₄ and Si₃N₄ cannot be differentiated due to their identical average atomic number (SiC:(14+6)/2=10; Si₃N₄:(3•14+4•7)/7=10).

Molten salt etching removes the intergranular glass leaving the SiC₃N₄ grains in relief (fig. 4). Back scattered electron imaging again can not differentiate SiC₃N₄ from Si₃N₄. The white particles were identified by XEDS as contamination from the platinum crucible during etching. Obtaining reproducible etching results is difficult as shown by the influence an additional 5 sec had on the depth of etching on a second specimen (fig. 4(b)).

Plasma etching selectively attacks the Si₃N₄ leaving the SiC₃N₄ and glass in relief (fig. 5). Back scattered electron imaging reveals the CeO₂ rich glass as the white phase. An atomic number difference between Si₃N₄ and SiC₃N₄ is observed, with the SiC₃N₄ being lighter, and thus, apparently higher in average atomic number. As etching time is increased to 5 min, the contrast between SiC₃N₄ and Si₃N₄ increases (fig. 5(b)). Examination of the specimen surfaces at higher magnification, using secondary electrons, reveals a mottled structure on the Si₃N₄, with the SiC₃N₄ and glass appearing unaffected (fig. 6). The longer etching time (5 min) removed more of the Si₃N₄.

TEM of an as prepared specimen shows the typical faulted structure of the SiC₃N₄, an intergranular glass phase, and Si₃N₄ grains containing dislocations (fig. 7(a)). After plasma etching for 2 min, examination of the exact same region shows the SiC₃N₄ and glass are intact, but the Si₃N₄ is removed as evidenced by the absence of the dislocations (fig. 7(b)). The evaporated conductive carbon film is intact with a mottled deposit on it. Electron diffraction of the deposit showed an amorphous pattern and EELS shows carbon as the only element present (fig. 7(c)).

DISCUSSION

Many problems exist with the conventional microstructural characterization techniques applied to SiC₃N₄/Si₃N₄ composites. Examination of both as-polished and molten salt-etched
surfaces with SEM does not reveal the complete microstructure of the SiC\textsubscript{w}/Si\textsubscript{3}N\textsubscript{4} composite. Neither technique allow distinction between SiC\textsubscript{w} and Si\textsubscript{3}N\textsubscript{4} grains in the SEM. Molten salt etching problems also include the requirement for the sample to be removed from the epoxy mount. This is necessary because the epoxy decomposes at 473 K and entrapped moisture can cause a small gas explosion, splattering molten salt. Etching of small delicate specimens cannot be performed because of destruction of the sample upon removal from the mount. Determining etching times is difficult because etching rate varies with the size of the sample. Larger samples have a higher heat capacity and require a longer etching time. Examination and handling of the sample is complicated when it is not in a uniform size mount, especially during observation with an inverted metallograph, where glass cover slips must be used to support the sample. Finally, if the sample is over-etched, it must be remounted for repolishing.

Plasma etching overcomes all of the problems discussed above. The temperature of the sample during plasma etching remains less than 358 K, using the etching conditions discussed. The epoxy mount can withstand temperatures to approximately 423 K, therefore the sample can remain in the mount. Another benefit of the lower etching temperature is the ability to partially etch a sample by simply covering a portion with adhesive tape (fig. 8). This is very useful for samples that might require unetched areas for electron microprobe studies.

The apparent atomic number difference between SiC\textsubscript{w} and Si\textsubscript{3}N\textsubscript{4} is explained by the deposition of carbon during removal of Si\textsubscript{3}N\textsubscript{4}, as identified by TEM (fig. 7). A schematic drawing of a cross section of the composite surface is shown in figure 9. Although the chemical reactions that occur in the plasma etching process are not fully understood (refs. 6 and 7), the chemical reaction shown in equation (1) provides a basic understanding of the source for the carbon. Fragments of CF\textsubscript{x}, generated by the CF\textsubscript{4}+4%O\textsubscript{2} plasma, react with Si\textsubscript{3}N\textsubscript{4} to form volatile products of SiF\textsubscript{y} and N\textsubscript{2} which are removed by the vacuum pump, while carbon is deposited on the Si\textsubscript{3}N\textsubscript{4}. For the etching to proceed the carbon must be removed by reaction with the 4%O\textsubscript{2} to form CO and/or CO\textsubscript{2} (eq. (2)). The selective carbon deposition provided by the chemical reaction at the Si\textsubscript{3}N\textsubscript{4} surface provides a decrease in the apparent average atomic number of the Si\textsubscript{3}N\textsubscript{4}, while the SiC\textsubscript{w} surface remains unetched (fig. 6).

\begin{equation}
\text{CF}_x(\text{gas}) + \text{Si}_3\text{N}_4(\text{solid}) \rightarrow \text{SiF}_y(\text{gas}) + \text{N}_2(\text{gas}) + \text{C}(\text{solid})
\end{equation}

\begin{equation}
\text{C}(\text{solid}) + \text{O}_2(\text{gas}) \rightarrow \text{CO}, \text{ CO}_2(\text{gas})
\end{equation}

CONCLUSIONS

The microstructure of a SiC\textsubscript{w}/Si\textsubscript{3}N\textsubscript{4} matrix composite is revealed by plasma etching with CF\textsubscript{4}+4%O\textsubscript{2}. All four microstructural constituents: Si\textsubscript{3}N\textsubscript{4} grains, SiC\textsubscript{w}, pores, and intergranular glass are distinguishable in one specimen. The selective deposition of carbon on Si\textsubscript{3}N\textsubscript{4} allows the SiC\textsubscript{w} to be imaged by back scattered electrons. Ability to keep the specimen in the mount allows examination of small, delicate specimens and facilitates imaging on an inverted metallograph. Partial etching saves time when both unetched and etched specimens are required for analysis.
REFERENCES

TABLE I.—METALLOGRAPHIC PREPARATION

<table>
<thead>
<tr>
<th>Step</th>
<th>Diamond abrasive, μm</th>
<th>Lubricant</th>
<th>Time, min</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grinding (fixed abrasive)</td>
<td>115</td>
<td>Water</td>
<td>Until planar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>Water</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Water</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lapping (nonfixed abrasive)</td>
<td>6</td>
<td>Alcohol</td>
<td>6</td>
<td>Iron/copper disk</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Alcohol</td>
<td>9</td>
<td>Plastic disk</td>
</tr>
<tr>
<td>Polishing (slurry)</td>
<td>6</td>
<td></td>
<td>3</td>
<td>Hard synthetic cloth</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Final polishing (vibratory)</td>
<td>0.5</td>
<td>Oil</td>
<td>16 hr</td>
<td>High nap synthetic cloth</td>
</tr>
</tbody>
</table>

(a) Mounted and polished specimen.
(b) Specimen removed from mount and wrapped in Pt wire.
(c) Specimen immersed in molten KOH at 673 K for 10 to 20 seconds.
(d) Specimen ultrasonically cleaned in water.

Figure 1.—Schematic diagram of steps involved in molten KOH etching.

Figure 2.—Schematic diagram of plasma etching system.
(a) Vacuum chamber. (b) Specimen. (c) Mechanical vacuum pump (fomblin oil). (d) Sorption trap. (e) Liquid nitrogen trap. (f) Thermocouple gauge. (g) Vacuum read out. (h) Flow meter.
Figure 3.—Back scattered electron image of as-polished SiC₉₃/Si₃N₄ matrix composite.

Figure 4.—Back scattered electron images of SiC₉₃/Si₃N₄ composite following molten KOH etching at 673 K.
Figure 5.—Back scattered electron images of plasma etched SiC_v/Si₃N₄ composite (10 minutes N₂ preheat and CF₄ + 4% O₂ etch for times shown).

(b) Etched 5 minutes.

Figure 6.—High magnification secondary electron micrographs after plasma etching.

(b) Etched 5 minutes.
Figure 8.—Partial etching of SiC\textsubscript{w}/Si\textsubscript{3}N\textsubscript{4} matrix composite.

(a) Secondary electrons.

(b) Back scattered electrons.

Figure 7.—TEM bright field of SiC\textsubscript{w}/Si\textsubscript{3}N\textsubscript{4} matrix composite.

(c) Electron energy loss spectrum of deposits.

Figure 7.—TEM bright field of SiC\textsubscript{w}/Si\textsubscript{3}N\textsubscript{4} matrix composite.
Figure 9.—Schematic cross-section of composite after plasma etching.
Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiCw) in a matrix of silicon nitride (Si$_3$N$_4$) glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si$_3$N$_4$ grain size by removing the glass phase. However, the latter obscures the original porosity. Neither technique allows the SiCw to be distinguished from the Si$_3$N$_4$. Plasma etching with CF$_4$+4%O$_2$ selectively attacks the Si$_3$N$_4$ grains, leaving the SiCw and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si$_3$N$_4$ allowing Si$_3$N$_4$ grains to be distinguished from SiCw by back scattered electron imaging.