The Neurochemical Basis of Photic Entrainment of the Circadian Pacemaker

Michael A. Rea, Ph.D
Becky Buckley
Sustained Operations Branch
Armstrong Laboratory
Brooks AFB, TX 78235-5301

Lewis M. Lutton, Ph.D
Mercyhurst College
Glenwood Hills
Erie, PA 16546

Abstract

Circadian rhythmicity in mammals is controlled by the action of a light-entrainable pacemaker located in the basal hypothalamus, in association with two cell clusters known as the suprachiasmatic nuclei (SCN). In the absence of temporal environmental cues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light-induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments which provide unreliable or conflicting temporal photic cues, such as the proposed space station.

Considerable evidence suggests that a major light-entrainable circadian pacemaker is located in the ventral hypothalamus in association with the suprachiasmatic nuclei (SCN; Rusak and Zucker, 1979; Meijer and Rietveld, 1989). Bilateral destruction or surgical isolation of the SCN results in the permanent disruption of circadian rhythms in mammals (Inouye et al., 1979; Rusak and Zucker, 1979). Furthermore, transplantation of the SCN from a fetal donor into the hypothalamus of an SCN-lesioned host restores rhythmicity (Sawaki et al., 1986; Lehman et al., 1987; Decoussey and Buggy, 1989), and the period of the restored rhythm matches that of the donor (Ralph et al., 1990). In addition, the isolated SCN continues to display circadian behavior in vitro. Circadian rhythms in the neuronal activity (Green and Gillette, 1982; Gillette and Reppert, 1987), neuropeptide release (Earnest and Sladek, 1986), and metabolic activity (Newman and Hospod, 1986) have been demonstrated to persist for several days in cultured SCN explants. These observations strongly suggest that the biological mechanism responsible for the generation of physiological circadian oscillations is an intrinsic component of the mammalian SCN.

Photic entrainment of circadian rhythms occurs as a consequence of the phase specific effects of environmental light on the activity of the circadian pacemaker. This relationship is defined by the phase response curve to light pulses administered to animals maintained under constant darkness (Daan and Pittendrigh, 1976; Takahashi et al., 1984). In nocturnal rodents, light pulses administered during the early subjective night cause phase delays of the pacemaker while pulses delivered during the latter half of the subjective night cause phase advances (Daan and Pittendrigh, 1976; Takahashi et al., 1984). Light pulses delivered in the middle of the subjective day do not cause phase shifts. Light-induced shifts represent long-term alterations in pacemaker function.

Photic information is conveyed to the SCN through at least two visual pathways. The retinohypothalamic tract (RHT) is a direct, bilateral monosynaptic projection from retinal ganglion cells to neurons in the SCN and the surrounding hypothalamus.
In addition, a second, indirect visual projection, the geniculohypothalamic tract (GHTr), has been described. This pathway projects from the retina to relay neurons in the intergeniculate leaflet (IGL) of the thalamus, which, in turn, send their axons to neurons in the SCN (Swanson et al., 1974; Card and Moore, 1982; Pickard, 1982). Lesion studies have shown that the GHTr is both necessary and sufficient to support photic entrainment of circadian rhythms in experimental rodents (Johnson et al., 1988b).

The Neuropharmacology of Photic Entrainment

In addition to light, a number of synthetic and natural neuroactive substances have been tested for their ability to reset the circadian pacemaker. Benzodiazepines (Turek and Losee-Olson, 1986), melatonin (Cassone et al., 1986), theophylline (Ehret et al., 1975), and various neurotransmitters (Albers et al., 1984; Albers et al., 1991) have all been shown to alter the phase of circadian oscillations. However, only a few neurotransmitter-specific agents have been systematically investigated for their effects on light-induced phase alterations.

Gamma-amino butyric acid. A large proportion of the neurons in the SCN contain glutamic acid decarboxylase (van den Pol and Tsujimoto, 1985), the enzyme responsible for the synthesis of the inhibitory amino acid neurotransmitter, gamma-aminobutyric acid (GABA). Although it is clear that GABA does not play a direct role in RHT neurotransmission, the abundance of GABA-ergic neurons in the SCN raise the possibility that this neurotransmitter may participate in the processing of photic information in the SCN. In fact, neurophysiological evidence suggests that GABA modulates retinal input to the SCN (Shibata et al., 1986), perhaps by acting presynaptically to regulate neurotransmitter release from RHT terminals (Ralph and Menaker, 1989). For this reason, Ralph and coworkers (1985; 1986; 1989) have investigated the effects of specific GABA agonists and antagonists on light-induced phase alterations of the free-running activity rhythm in rodents. These investigators reported that (a) GABA antagonists attenuate light-induced phase delays (Ralph and Menaker, 1985; 1989), (b) benzodiazepines attenuate light-induced phase advances (Ralph and Menaker, 1986; 1989), and (c) GABA agonists block both light-induced phase advances and delays (Ralph and Menaker, 1989). These results strongly support a role for the SCN GABA-ergic system in modulation of photic input to the circadian pacemaker.

Acetylcholine. Initial investigations into the identity of the RHT neurotransmitter focused on acetylcholine (ACh). Cholinergic agonists have been reported to mimic (Zatz and Herkenham, 1981; Earnest and Turek, 1983), and antagonists to block (Zatz and Brownstein, 1981; Keefe et al., 1987), the effects of light on the circadian system. Furthermore, Earnest and others (1985) reported that the phase response curve for intraventricular injections of the cholinergic agonist, carbachol, are similar to the phase response curve for light pulses. This similarity was offered as evidence that ACh might be the RHT neurotransmitter. However, neither retinal ganglion cells nor the optic nerves contain measurable quantities of choline acetyltransferase (Hebb and Silver, 1956), the synthetic enzyme for ACh, and bilateral lesions of the optic nerves do not alter the levels of cholinergic markers in the rat SCN (Rea, unpublished observations). On the other hand, the SCN do receive a cholinergic projection, possibly from the basal forebrain (Ichikawa and Hirata, 1986). One interesting possibility is that ACh from another source may modulate RHT neurotransmission by acting presynaptically (Rusak and Bina, 1990).

Excitatory Amino Acids. Excitatory amino acids (EAA) remain the best candidates for the RHT neurotransmitter. EAA agonists block fast EPSPs (Kim et al., 1989) and field-potential responses (Cahill and Menaker, 1987) of SCN neurons to optic nerve stimulation in the hypothalamic slice preparation. Furthermore, using the same preparation, Liou et al. (1986) have reported that optic nerve stimulation causes the release of radioactivity from SCN slices preloaded with radiolabeled EAs. Recently, Colwell and colleagues (1990) reported that intra-peritoneal injections of the non-competitive EAA antagonist MK-801 attenuated light-induced phase shifts of the free-running activity rhythm in the mouse. In order to determine whether EAA antagonists inhibit light-induced phase shifts by acting on the SCN, we determined the effect of direct injections of EAA antagonists into the SCN on light-induced phases advances of the free-running activity rhythm in hamsters.

Microinjection of EAA Antagonists into the SCN Attenuate Light-Induced Phase Advances

Syrian hamsters were implanted with 26 gauge guide cannulae stereotaxically aimed at the SCN. The cannulae were fixed in place with dental cement and the animals were allowed to recover for 7 -
10 days under LD 14:10. After the recovery period, the hamsters were transferred to individual cages equipped with computer-monitored running wheels and maintained under constant darkness (DD). Only animals with robust free running activity rhythms and stable periods were used in the study. Hamsters remained in DD for 7 - 10 days before treatment. At mid subjective night (CT18.5), hamsters received an injection of 300 nl of artificial CSF (aCSF) containing either 1 mM CNQX (a competitive, non-NMDA type EAA antagonist), 1 mM MK-801 (a non-competitive, NMDA type antagonist) or no drug (vehicle control) directly into the suprachiasmatic hypothalamus using a 33 gauge infusion cannula. Five minutes after injection, each animal was exposed to light (30 lux) for 10 minutes. After light exposure, the hamsters were returned to their cages and maintained under DD for an additional 10 days. The effect of treatment on the phase of the free-running activity rhythm was determined as described previously (Daan and Pittendrigh, 1976) using the onset of wheel running activity as a phase reference point. Injection sites were verified histologically and only data collected from animals with injection sites within 0.5 mm of the SCN were included in the analysis.

In the absence of drug injection, light treatment at this time results in a phase advance of the free running activity rhythm of approximately 81 ± 8 minutes. Both drugs attenuated light-induced phase advances by more than 85%. This result suggests that EAA antagonists inhibit light-induced phase shifts of the circadian pacemaker by acting directly on the SCN, possibly at the RHT synapse, and support a role for EAA as the RHT neurotransmitter.

Light-induced Gene Expression

Light-induced resetting of the circadian pacemaker represents a permanent alteration in pacemaker function. The c-fos protooncogene has been implicated in the process of stimulus-transcription coupling in the CNS (Curran and Morgan, 1987; Sagar et al., 1988) and appears to mediate long-term adaptive changes in neuronal function (Berridge, 1986; Goelet et al., 1986). Recent work in our own laboratory (Rea, 1989; 1992; Rea and Michel, 1990) and elsewhere (Kornhauser, et al., 1990; Rusak et al., 1990; Aronin et al., 1990) has demonstrated that light exposure during the subjective night induces the expression of certain immediate-early genes, including c-fos, among a population of SCN cells. Furthermore, light-induced c-fos expression only occurs when the light is administered at a circadian time at which

Actograms showing the effects of microinjections of vehicle (top), 1 mM CNQX (middle), or 1 mM MK-801 (bottom) on the light-induced phase advance of the free-running activity rhythm. In all cases, a brief light pulse (30 lux for 15 minutes) was given at CT18.5 (inverted triangle).
a phase shift of the pacemaker results (Kornhauser et al., 1990; Rea, and
Michel, 1990; Rea, 1992). These findings suggest that c-fos expression may repre-
sent a transcriptional event in the res-
ponse cascade leading to light-induced
phase alterations of the pacemaker. If
this is the case, then we could expec-
te that light-induced phase shifts and c-fos
expression would share similar
pharmacology.

This hypothesis was tested using our
cannulated hamster model. Hamsters were
housed in LD 14:10 for at least 7 days
after surgery. At lights-out on the day
before the experiment the animals were
transferred to DD. Thirty hours after
transfer (i.e., mid subjective
night) the animals received microinjec-
tions of either aCSF or a solution of EAA
antagonist in aCSF (300 nl at 1 mM)
directly into the SCN. Thirty minutes
later, each animal was exposed to 30 lux
of white light for 10 minutes and
returned to their cages under DD. Two
hours after the onset of the light pulse,
animals were deeply anesthetized, per-
fused transcardially with 0.4% para-
formaldehyde, and the brains were
processed for c-fos immunocytochemistry
as described previously (Rea, 1989).

Light stimulation induces c-fos
expression among a population of approxi-
mately 1055 ± 110 cells in the SCN. Both
CNQX and MK-801 reduced the number of SCN
cells expressing c-fos in response to
photic stimulation by about 45%. This
result strengthens our proposal that c-fos
expression represents an early transcrip-
tional event mediating the effects of
light on the SCN circadian pacemaker.

Significance of this Work to Aerospace
Operations

The global mission of the U. S. Air
Force demands that its personnel remain
prepared at all times to participate in
activities which are vital to the
national security and likely to involve
transmeridian air travel and irregular
work schedules for sustained periods. In
responding to this challenge, Air Force
personnel are uniquely vulnerable to the
performance limitations imposed upon them
by the circadian timing system.

Knowledge gained from an investigation of
the neurobiological basis of circadian
rhythmicity will provide the database
necessary for the development of photic
and/or pharmacological strategies for
alleviating the performance decrements
associated with work schedules and prac-
tices which are incompatible with the
circadian timing system. The elucidation of
the mechanism of photic entrainment is an
important step toward a detailed
understanding of circadian processes.

Pharmacological agents with specific
and predictable effects on the circadian
pacemaker could serve as useful tools for
the control of circadian rhythmicity.
For example, it may be possible to
develop a specific antagonist against the
RHT neurotransmitter. Such an agent
could be used to selectively "blind" the
circadian clock to the entraining
influence of environmental light. This
would alleviate the potential conflict
between a shift worker's work-rest cycle
and the environmental LD cycle.
Similarly, pharmacological aids could be
developed which would permit the rapid
resetting of the circadian clock, ac-
celerate rates of reentrainment of overt
rhythms after rapid transmeridian travel,
and maintain synchrony among shift
workers in environments which provide
unreliable or conflicting temporal photic
cues, such as the proposed space station.

References

Albers, H. E.; Ferris, C.F.; Leeman, S.
E.; Goldman, B. D. Avian pancreatic
polypeptide-like immunoreactivity in the
circadian rhythms when microinjected into
the suprachiasmatic region. Science 233:
833-835; 1984.

Albers, H.E.; Liou, SY.; Stopa, E.G.;
Zoeller, T. Interaction of colocalized
neuropeptides: Functional significance in
the circadian timing system. J.
Neuroscience, in press.

Aronin, N.; Sagar, S.M.; Sharp, F.R.;
Schwartz, W.J. Light regulates expression
of a Fos-related protein in rat supra-
USA 87:5959-5962; 1990.

Berridge, M. Neurobiology: Second
messenger dualism in neuromodulation

Cahill, G.M.; Menaker, M. Kynurenic acid
blocks suprachiasmatic nucleus responses
to optic nerve stimulation. Brain Res.

Card, J. P.; Moore, R. Y. Ventral
lateral geniculate nucleus efferents to the
circadian photic stimuli. J. Comp. Physiol.

Cassone, V. M.; Chesworth, M. J.;
Armstrong, S. M. Dose-dependent
entrainment of rat circadian rhythms by
daily injection of melatonin. J. Biol.

Colwell, C. S.; Ralph, M. R.; Menaker, M.
Do NMDA receptors mediate the effects of


Green, D. J.; Gillette, R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 245:198-200; 1982.


Rea, M. Different populations of cells in the suprachiasmatic nuclei express c-fos in association with light-induced phase delays and advances of the free-running activity rhythm in hamsters. Molecular Brain Res. submitted.


Acknowledgements

The authors gratefully acknowledge the generosity of Dr Michael Iadarola, NIDR for providing c-fos antiserum.

The animals involved in this study were procured, maintained and used in accordance with the Animal Welfare Act and the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources - National Research Council.

Support by AFOSR 2312W6 (MAR)