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ABSTRACT

Initial results are reported from interdisciplinary
projects to provide guidance and assistance for
designers of intelligent systems and their human
interfaces. The objective is to achieve more
effective human-computer interaction (HCI) for
real-time fault management support systems.
Studies of the development of intelligent fault
management systems within NASA have resulted
in a new perspective of the user. If the user is
viewed as one of the subsystems in a
heterogeneous, distributed system, system design
becomes the design of a flexible architecture for
accomplishing system tasks with both human and
computer agents. HCI requirements and design
should be distinguished from user interface
(displays and controls) requirements and design.
Effective HCI design for multi-agent systems
requires explicit identification of activities and
information that support coordination and
communication between agents. We characterize
the effects of HCI design on overall system design
and identify approaches to addressing HCI
requirements in system design. Our results
include definition of (1) guidance based on
information-level requirements analysis of HCI,
(2) high-level requirements for a design
methodology that integrates the HCI perspective
into system design, and (3) requirements for
embedding HCI design tools into intelligent
system development environments.

INTRODUCTION

Two multi-year, interdisciplinary projects are
currently in progress to develop technology that
helps developers of intelligent systems vvith real-
time fault management capabilities achieve more
effective human-computer interaction (HCI)
design. The objective of the work is to specify
requirements for methods and tools and to
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provide design guidance to assist developers in
making intelligent systems better team players.
Intelligent systems can be viewed as computer
agents that share the task of process monitoring
and control with human agents. An important
part of designing the intelligent system is to
specify how these human and computer agents
will interact and what information they will
exchange to be an effective fault management
team.

Mitchell (1987) has observed that functional
requirements for complex systems rarely specify
information needed to support tasks of human
controllers or operators. Yet, real-time
interactive process control software usually
requires that the needed information be easily
accessible and discernible. This is especially true
when this software includes intelligent systems to
provide advanced support for human operators.
Intelligent systems can provide additional
information at a higher level of abstraction (e.g.,
reasoning about faults in addition to fault
signatures in numeric data), but can also increase
the need to coordinate and to monitor the
software. Lack of integration of HCI information
requirements into the functional requirements
specification is an important problem in the
design of real-time interactive process control
software. It is even more critical when such
software includes an intelligent system
component.

However, user interface (UI) and HCI analysis
and design has traditionally been viewed as
relevant not to the functional requirements, but
rather to the non-functional constraints (Roman,
1985), which are often applied later in software
development. As Marshall (1991) phrases it,
there is a common perception that human factors
specialists "should be brought in to sprinkle magic
dust on the interface or workstation once it is



largely developed." But deferring analysis of all
types of HCI needs until late in system
development contributes to lack of system support
for the operator tasks. HCI considerations,
however, can affect what the intelligent system
does (i.e., its functionality) as well as constrain
how the intelligent system is implemented.

The problem is due partly to a confusion between
HCI requirements analysis and UI design.
Human-computer interaction requirements refer
to the information exchange between the user and
the computer when performing the task which the
software system is intended to support. The user
interface design, on the other hand, concerns the
display and control software and hardware that
are the media for information presentation and
dialog with the user. One of the dangers of
confusing HCI and Ul is the tendency to overlook
task-level information needs (e.g., information
needed to make a good decision), while focusing
on physical interface characteristics (e.g., icon
shapes and colors) and low-level interface
functions (e.g., radio buttons and pull-down
menus). This danger is described in detail by
Woods and Eastman (1989) while introducing
their "levels"” of display design approach.

Specification of HCI requirements is critical in
design of real-time, interactive intelligent systems.
Focusing on screen display and low-level
interaction sequences can lead to ignoring the
more global issues of whether the right
information is flowing between the software
system and the user at the right time. Therefore,
it is important to clarify the UI/HCI distinction
and tackle the problem of including consideration
of HCI information exchange requirements in
development methods and tools.

METHODS

In one of the two projects, intelligent fault
management systems within NASA have been
evaluated for insight into the design of systems
with complex HCI (Malin et al., 1991). Fifteen
intelligent systems were selected from a variety of
aerospace programs, including Space Shuttle,
Space Station, unmanned spacecraft, and military
and advanced aircraft. Information was collected
by interviewing intelligent system developers and
users, observing intelligent system
demonstrations, and referencing available
documentation about applications. In one case,
participation in the design of the Space Shuttle
Payload Deployment and Retrieval System
(PDRS) Decision Support System (DESSY)

531

project permitted first-hand observation of the
design process and provided an opportunity to test
design recommendations and develop examples of
design guidance.

The other project has focused on conceptual
design and prototyping of methods and tools for
development of intelligent systems and their user
interfaces. A prototype software toolkit, User-
Intelligent System Interface Toolkit (UISIT), has
been developed to support a methodology for
developing conceptual designs for interactive
intelligent systems and their user interfaces. An
evaluation of UISIT prototype tools and methods
is now being conducted in an application case.
UISIT-based methods and tools are being used to
support the PDRS DESSY project, to develop a
prototype intelligent fault management support
system. The purpose of this effort is to evaluate
the underlying HCI development methodology and
its support by the tools.

RESULTS

Preliminary results of this work indicate that the
concept of information requirements is the
productive focus for identifying needed
modifications and additions to traditional
methods, guidelines and tools. Information
requirements identify the information which must
be exchanged between the user and the intelligent
system in order to support user tasks. Specifically
addressing information exchange requirements
helps the designer to elaborate what capabilities
the intelligent system and the UI will need to have
before determining exactly how to implement
these capabilities. As such, these are an important
subset of the external interface requirements
specification. Information requirements also help
to coordinate the design of the user interface and
the application software.

Our solutions to the problems outlined above can
be partitioned into the following areas, which
outline what it will take elevate HCI requirements
to the level of functional requirements: 1) HCI
Design Guidance for Information Requirements,
2) Development Methodology for Information
Requirements, 3) User Interface Tools and
Methods for Information Requirements.

1. HCI Design Guidance for Information
Requirements

Current forms of guidance should be extended to
support the development of information exchange
requirements.



Traditional guidance focuses primarily on visual
appearance and style, offering little assistance in
designing an intelligent system and its user
interface which provides the right information to
support user task performance. The example in
Figures 1 and 2 illustrates this new guidance and
its emphasis on information exchanged between
the human and the computer. This guidance
assists designers in determining the information
which is required from the intelligent system for
the display. It is relevant to decisions made early
in the development process that constrain the
information available for display. Unlike
decisions about how to display information, they
can not be deferred until later in the development
process. This design guidance can help the HCI
designer be more effective in identifying
requirements for both the intelligent system and
the user interface. Early involvement of the HCI
designer in intelligent system development helps
to integrate the efforts of the HCI designer and
the intelligent system designer.

2. Development Methodology for
Information Requirements

Another approach to elevating the consideration
of HCI information exchange requirements is to
provide an intelligent system development
methodology that incorporates HCI considerations
as an integral part of design. Such a methodology
features the explicit specification of information
requirements, including application of the new
guidance identified above.

Initial research efforts (Johns, 1990; Malin et al.,
1991) have resulted in a new perspective of the
user -- the user as another type of agent in a
heterogeneous, cooperating, distributed system.
System design then becomes the design of an
architecture for accomplishing domain tasks with
the available human (i.e., users) and computer
(i.e., applications) agents. HCI considerations are
an important part of such system design, even
before user interface design is addressed. We
have defined the following stages in developing
such a system (illustrated in Figure :

. Description of domain tasks. Monitoring
and fault management tasks, whether performed
by humans or software, are described in terms of
goals and the actions required to achieve these
goals. These goals and actions need not yet be
assigned to specific types of agents.
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. Identification of resources provided to
perform tasks and the constraints that affect task
performance. Resources include the capabilities
of the operational environment and of the agents,
and the availability of information. Constraints
result from complexity, dynamics, and
deficiencies in these resources.

. Specification of agent activities and valid
agent behaviors in an architecture for multi-
tasking and dynamic task allocation. Actions
defined in the task description are assigned as
specific agent activities consistent with the
available resources and the inherent constraints of
the fault management team and the operational
environment. The task description is not
complete until it includes activities supporting
both domain task performance and coordination
between agents of the fault management team.
Note the implications for modification of task
analysis and task description techniques to capture
human-computer coordination activities.

. Evaluation of the activity specification
using expected operational scenarios. The
specification of agent activities is evaluated using
complex, realistic activity sequences and modes of
agent interaction to derive the information and
functionality requirements. These scenarios
should include tasks shared by multiple agents
supporting both agent coordination and control of
the monitored process, they should include both
nominal and anomalous activity sequences, and
they should highlight information used and
exchanged to support each task.

. Analysis of information exchange
requirements. Requirements for information are
explicitly identified for both the intelligent system
and the user interface, based on results of the
evaluation using operational scenarios.

3. User Interface Tools and Methods for
Information Requirements

A third way to promote the consideration of HCI
information exchange requirements involves user
interface tools and methods. User interface tools
should support:

. Information requirements development
. Design team communication
. Run-time software module communication

User interface tools should support information
requirements development and use as well as user
interface design and management. Designing the
HCI so that the end user always has the right



EXAMPLE OF HCI DESIGN GUIDANCE

Topic: Intervention Into Intelligent System Reasoning Process

Probiem:

An intelligent system can becoms~disoriented” and require the operator to redirect il onlo a morae produciive
path of investigation (a.g.. the system Investigating an unproductive hypothesis of failing fo investigate a likaly hypothesis).

Recommendation:

Oparator intervention into the reasoning process of the intelligent sysiem can be usaed 10 manage errors In the intelligent system
Methods of intervention includa modification of the raasoning process of salection of an alternate reasoning mechanism

Supporting Information:

Intervantion Into Intelligent sysem processing is one approach for redirecting a“disorientad” Inteliigent systam onto a more productive
path of investigation. The inteligant system must be designed, howsvaer, 1o permil such Intervantion. To affectively intervens in
processing, the operator must first have a good understanding of the reasoning strategy used by the intelligent system.

Example lllustrating Problem:
Sea the following page for an example that illustrates the prablem.

Example lllustrating Recommendation:

Soee the following page for an example thal lilusirates the recommaendation.

Techniques:
Mathods of intervaning in 1he method of processing information Include modification of the reasoning process or selection of an alternate
reasoning mechanism. Examples of modification of the reasoning process aré (1) setting processing priorities {@.g., what hypothesis
1o investigate first), (2 alteralion of hypotheses, and (3) specification of alternale solutions.

Cross References:
The user interface used 1o intervene shauld reinforce he operator's understanding of the reasoning process 10 assist in identiying
appropriate action. See section 4.1.2 for a discussion of presenting )nformation about intelligent syslem reasoning. See tha discussion
of risk in inlervening in tha intelligent syslem later in this section.

Research Issues:
Making inlglligent systems easily interruptable and rediractable, developing vocabularies for communicaling advice about control
decisions which reduce the amount of knowledge required by human team members about intelligent sysiam intarnals.

Figure 1. Example of HCI Design Guidance, Page 1.

EXAMPLE OF HCI GUIDANCE

Topic: Intervention Into Intelligent System Reasoning

AGENT INTERACTION ILLUSTRATING PROBLEM

In this case, the operalor is unable 10 communicate
information about a likely fauft and its correction
procedure to the intelligent system. Unaware of this
information, the intelligant system would continue to
pursue fault isolation on an incomect sat of suspected
faults, even when the aclual fault was corrected. The
operator would have 1o do a restart 1o reset the knowledge
base and “fix" the intelligent system. Figure illustrates
the agent interaction ustration: Operator Restarting Intelligent System

AGENT INTERACTION IIIUSTRATING RECOMMENDATION

in this case, the abilily 1o atfect reasoning by aitering AT NGTY
hypotheses used by the inteligent system has been provided | *7 T
to the operator. The operator "informs® the intetligent el SoseeTo Do TTY]
system aboul the fault, performs a corrective procedure, Onwer 4 Corma b Pt MAITL 46 WATSCT
and normal processing to continues.  Figure illustrates the PN Oupley Wbwrvesth Suat L
agent interaction sy ors s o
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IMustration: Operator Informing Inteiligent System of a Fault

Figure 2. Example of HCI Design Guidance, Page 2.
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Figure 3. Recommended Requirements Development Methodology.

information at the right time during task
performance is difficult, and it requires different
tools from those which support user interface
design. Tools should support the represzntation
of information exchange items and the
interrelationships among these items.

User interface tools should also use information
exchange requirements for coordination and
communication among design team members.
This allows early and continued consideration of
the information exchanged between the user
interface and the applications components.

The preliminary design methodology developed in
conjunction with the UISIT prototype toolkit is
illustrated in Figure 4. It defines information
requirements early in the system design process
and supports coordination among design team
members. Analysis and preliminary design occur
first to derive high-level descriptions of
intelligent system functions, tasks, architecture,
and HCI. From these descriptions, requirements
are derived for the major software component
functions and for HCI information exchange.
Using information requirements, the design team
can be partitioned into smaller groups, with each
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group performing a separate but coordinated and
concurrent design of a software component. As it
is discovered that requirements must change to
match constraints, the information requirements
can serve as a point of coordination among the
design team members. For instance, if the
intelligent system designer discovers that
additional information from the user is required
to complete an activity, the information exchange
specification serves as a single point of
coordination with the user interface designer.
The intelligent system designer and user interface
designer can prototype their software modules
separately while using the information exchange
specification to coordinate with one another.

User interface tools and methods should support
user interface prototyping. An especially
effective form of prototyping support is to
represent information requirements in the same
module which supports run-time information
exchange. This allows the separate prototyping of
the user interface and the applications modules. It
also requires the information exchange
specification to be stated unambiguously.
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Figure 4. Recommended UISIT Methodology.

Finally, it presents a design team member with
an external cue to coordinate changes with the
remainder of the design team.

Figure 5 illustrates how a software system built
with the aid of UISIT segregates the information
exchange specification from the specification of
the intelligent system and the data acquisition
software. This segregation allows each specialist
to apply unique expertise to a single software
component, while providing a means for
coordinating design team efforts through the
information specification module. When it is
discovered that a change needs to be made to the
information specification module, it is clear to all
involved that the change needs to be coordinated

with the other members of the development team.

In this way, the information specification module
serves as an abstraction of what each module
designer needs to know about the design of the
other modules.

Figure 6 shows an object hierarchy comprising
the information specification component of a
sample system built for UISIT evaluation.

The contents of the object hierarchy represent the
information requirements and their relationships
for PDRS DESSY. The object layer was
constructed within the UISIT framework, in
accordance to the suggested UISIT hierarchy.
Because it is encoded as an object layer,
supporting run-time communications between the
user interface software and the applications
software, the information specification module is
unlikely to be misinterpreted by members of the
development team

RELATED WORK

In 1983, Norman outlined four strategies for
improving to human-computer interaction design.
Our recommendations for enhancing these
strategies are summarized below:

. Help the designer to maintain an awareness
of the user’s needs. Rather than simply trying “to
impress upon the designer the seriousness of the
matter,” we propose that it would be more
effective to assist in identifying user needs by
elevating analysis of information exchange
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Figure 5. UISIT-Supported Architecture.

between the software and the user to a functional
requirements level.

. Provide the designer with methods and
guidelines. Most assistance has concentrated on
support for evaluation of user interface designs.
We shift the focus to support for analysis of
information needed to support user tasks.

. Provide software tools for interface design.
As Norman suggests, this is a natural follow-on to
providing methods and guidelines. The software
tools can provide guidance in two ways: (1)
explicitly in the form of on-line guidelines,
templates, and examples; and (2) implicitly by the
design of the toolkit, which requires specific
architectural components and a specific sequence
of developmental steps. In either case, such tools
make it easier for the designer to follow the
prescribed methods and guidelines.

. Separate the interface design from other
programming tasks. While Norman's original
suggestion was based on such principles as
software reusability and interface modifiability,

we have found that this practice can also support
design team communication.

While we have been emphasizing HCI
development in our own work, we do not intend
to imply that user interface issues are
unimportant. We emphasize HCI development
because it is too often neglected. Both HCI and
UI challenges are important, and both are
necessary for effective system design. Without
effective HCI design, the Ul designer may not
have a clear idea of the information exchange
goals he is trying to optimize, and the resulting
software may not support the user's task
performance. Without effective UI design, the
user interface may not convey the information
effectively, thereby detracting from the support
of the user's task performance. Since both types
of issues are necessary for effective design and
since HCI issues are often overlooked, we have
concentrated our work on HCI issues. There are
significant UI design challenges in monitor and
control of complex processes, due to the large
quantities of real-time information, accompanied
by deficiencies of the quality and availability of
this information.
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Because the conclusions of this report are based
on the study of intelligent systems for real-time
fault management, the reader may be concemed
about how well they generalize to other types of
software systems, especially in view of Leveson's
(1990) waming that applying common data
processing approaches to process control systems
can lead to disaster. We believe that our results
for HCI design guidance are applicable to
complex software systems. Complex software
systems are characterized by (1) large amounts of
information from multiple sources, (2)
sophisticated software capability, often with
multiple tasks performed concurrently or jointly
by human and computer, (3) time-constrained
processing with deficiencies in information
quality and availability, and (4) active information
exchange between human and computer. Our
results on development methodology and tools
appear to be generalizable to a broader set of
systems, in particular systems where information
exchange between human and computer represents
a significant aspect of using the software.
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put) The HPH Unit o PORS-TAY Y Knowiedqe Base
Unit: MPM in knowledge base POAS-TAY1
Created by carroll on 1-11-91 132:45:46
Modifled by carroll on 2-8-91 11:51:44
Superclasses: PORS
Member Of: CLASSES (n GENERICUNITS
Members: TOGOLE=-SWITCH, HYBRID-RELAY, FUSE-BC11A FUSE-CAZ1A

Member slot. COMPONENT-STATUS from MPM
Inharitance: OVEARIDE.VALUES
VaineClass: (ONEOF POTENTIAL -FAIL FAIL)
Valves: UNKNOWN

Own slov DECOHPOSITION.OISJOINT from CLASSES

Inbaritance. UNION

ValeeClass: (LISTOF CLASSES (n GEMERICUNITS)

Comment. *
A disjoint decomposition i3 & list of
subclasses of this class which share no
members. More than one disjoint
decomposition may be specified.

Valees: UNKNOWN

,Own slov: MEMBERS.OATATYPE from CLASSES
t  Inheritance. OVERRIDE.VALUES

ValoeClass: V.TYPE

Valvas: UNIT

Own slot: HEMBERSHIP from CLASSES
Inreritance. HETHOOD
VaiveClass: HETHOO
Cardinality Max. 1
Cardinality Min. |
Valeas: MEMBER -DISJOINTPMETHOD

Own slot: MPM-COHMAND from MPM
Inheritance: OVERRIOE.VALUES
VaieeClass: (ONEOF STOW DEPLOY)
Cardinality Max: 1
Valwes: UNKNOWN

Own slot: MPM-STATE from MPM
Inkaritance: OVERRIDE. VALUES
ValeeClassy: (ONEOF DEPLOYED IN-TRANKT STOWED)
Cardinality Max: 1
Cardinglity Min. |
Valteas. UNKNOWN

,Own slot: MPH-STATUS from HPM
B _ranerimay . OVERRINE Vet liE T

Object Hierarchy and Sample Definition for UISIT Communication Layer.

SUMMARY

This paper has introduced an on-going research
project to improve human-computer interaction
for fault management intelligent systems. This
issue is being investigated by means of a case
study, by participation in intelligent system
design, and by prototyping methods and tools.
Preliminary results indicate that elevating HCI
information exchange requirements to the level of
software functional requirements is critical to
designing software which supports user task
performance. The following is a summary of the
findings from this research effort:

I HCI Design Guidance for Information
Requirements

User interface design guidance, which
focuses on visual appearance and style of
information presentation, should be extended HCI,
to also assist designers in developing information
requirements.

HCI design guidance should be integrated
within a development methodology that supports
use of these guidelines.



2. Development Methodology for Information
Requirements
. Task analysis and task description

techniques should be modified to identify human-
intelligent system coordination activities and to
support identification of information
requirements.

. Developers should adopt a methodology
that makes guidance easier to use and integral to
the development process from the early stages of
analysis and design.

. Mechanisms for communication of
information requirements and coordination of
design activities among members of the
development team should be provided with the
methodology.

3. User Interface Tools and Methods for
Information Requirements

. User interface tools should support
information requirements development and should
include explicit representation of information
items and the interrelationships among them.

. User interface tools should provide
information requirements as a point of
coordination and communication among members
of development team.

. User interface tools should represent
information requirements in the same module that
supports run-time information exchange.
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